1
|
Das S, Máquina M, Phillips K, Cuamba N, Marrenjo D, Saúte F, Paaijmans KP, Huijben S. Fine-scale spatial distribution of deltamethrin resistance and population structure of Anopheles funestus and Anopheles arabiensis populations in Southern Mozambique. Malar J 2023; 22:94. [PMID: 36915131 PMCID: PMC10010967 DOI: 10.1186/s12936-023-04522-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Insecticide resistance in malaria vectors can be spatially highly heterogeneous, yet population structure analyses frequently find relatively high levels of gene flow among mosquito populations. Few studies have contemporaneously assessed phenotypic, genotypic and population structure analysis on mosquito populations and none at fine geographical scales. In this study, genetic diversity, population structure, and insecticide resistance profiles of Anopheles funestus and Anopheles arabiensis were examined across mosquito populations from and within neighbouring villages. METHODS Mosquitoes were collected from 11 towns in southern Mozambique, as well as from different neighbourhoods within the town of Palmeira, during the peak malaria transmission season in 2016. CDC bottle bioassay and PCR assays were performed with Anopheles mosquitoes at each site to determine phenotypic and molecular insecticide resistance profiles, respectively. Microsatellite analysis was conducted on a subsample of mosquitoes to estimate genetic diversity and population structure. RESULTS Phenotypic insecticide resistance to deltamethrin was observed in An. funestus sensu stricto (s.s.) throughout the area, though a high level of mortality variation was seen. However, 98% of An. funestus s.s. were CYP6P9a homozygous resistant. An. arabiensis was phenotypically susceptible to deltamethrin and 99% were kdr homozygous susceptible. Both Anopheles species exhibited high allelic richness and heterozygosity. Significant deviations from Hardy-Weinberg equilibrium were observed, and high linkage disequilibrium was seen for An. funestus s.s., supporting population subdivision. However, the FST values were low for both anophelines (- 0.00457 to 0.04213), Nm values were high (9.4-71.8 migrants per generation), AMOVA results showed almost 100% genetic variation among and within individuals, and Structure analysis showed no clustering of An. funestus s.s. and An. arabiensis populations. These results suggest high gene flow among mosquito populations. CONCLUSION Despite a relatively high level of phenotypic variation in the An. funestus population, molecular analysis shows the population is admixed. These data indicate that CYP6P9a resistance markers do not capture all phenotypic variation in the area, but also that resistance genes of high impact are likely to easily spread in the area. Conversely, other strategies, such as transgenic mosquito release programmes will likely not face challenges in this locality.
Collapse
Affiliation(s)
- Smita Das
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
- PATH, Seattle, WA, USA
| | - Mara Máquina
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Manhica, Mozambique
| | - Keeley Phillips
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Nelson Cuamba
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
- PMI VectorLink Project, Abt Associates Inc., Maputo, Mozambique
| | - Dulcisaria Marrenjo
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Manhica, Mozambique
| | - Krijn P Paaijmans
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, USA
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- ISGlobal, Barcelona, Spain
| | - Silvie Huijben
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
2
|
Shetty BD, Amaly N, Weimer BC, Pandey P. Predicting Escherichia coli levels in manure using machine learning in weeping wall and mechanical liquid solid separation systems. Front Artif Intell 2023; 5:921924. [PMID: 36686852 PMCID: PMC9848401 DOI: 10.3389/frai.2022.921924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/21/2022] [Indexed: 01/06/2023] Open
Abstract
An increased understanding of the interaction between manure management and public and environmental health has led to the development of Alternative Dairy Effluent Management Strategies (ADEMS). The efficiency of such ADEMS can be increased using mechanical solid-liquid-separator (SLS) or gravitational Weeping-Wall (WW) solid separation systems. In this research, using pilot study data from 96 samples, the chemical, physical, biological, seasonal, and structural parameters between SLS and WW of ADEM systems were compared. Parameters including sodium, potassium, total salts, volatile solids, pH, and E. coli levels were significantly different between the SLS and WW of ADEMS. The separated solid fraction of the dairy effluents had the lowest E. coli levels, which could have beneficial downstream implications in terms of microbial pollution control. To predict effluent quality and microbial pollution risk, we used Escherichia coli as the indicator organism, and a versatile machine learning, ensemble, stacked, super-learner model called E-C-MAN (Escherichia coli-Manure) was developed. Using pilot data, the E-C-MAN model was trained, and the trained model was validated with the test dataset. These results demonstrate that the heuristic E-C-MAN ensemble model can provide a pilot framework toward predicting Escherichia coli levels in manure treated by SLS or WW systems.
Collapse
Affiliation(s)
- B. Dharmaveer Shetty
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Noha Amaly
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States,Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, Egypt
| | - Bart C. Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Pramod Pandey
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States,*Correspondence: Pramod Pandey
| |
Collapse
|
3
|
Ghakanyuy BM, Teboh-Ewungkem MI, Schneider KA, Ngwa GA. Investigating the impact of multiple feeding attempts on mosquito dynamics via mathematical models. Math Biosci 2022; 350:108832. [PMID: 35718220 DOI: 10.1016/j.mbs.2022.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 04/07/2022] [Accepted: 05/09/2022] [Indexed: 11/27/2022]
Abstract
A deterministic differential equation model for the dynamics of terrestrial forms of mosquito populations is studied. The model assesses the impact of multiple probing attempts by mosquitoes that quest for blood within human populations by including a waiting class for mosquitoes that failed a blood feeding attempt. The equations are derived based on the idea that the reproductive cycle of the mosquito can be viewed as a set of alternating egg laying and blood feeding outcomes realized on a directed path called the gonotrophic cycle pathway. There exists a threshold parameter, the basic offspring number for mosquitoes, whose nature is affected by the way we interpret the transitions involving the different classes on the gonotrophic cycle path. The trivial steady state for the system, which always exists, can be globally asymptomatically stable whenever the threshold parameter is less than unity. The non-trivial steady state, when it exists, is stable for a range of values of the threshold parameter but can also be driven to instability via a Hopf bifurcation. The model's output reveals that the waiting class mosquitoes do contribute positively to sustain mosquito populations as well as increase their interactions with humans via increased frequency and initial amplitude of oscillations. We conclude that to understand human-mosquito interactions, it is informative to consider multiple probing attempts; known to occur when mosquitoes quest for blood meals within human populations.
Collapse
Affiliation(s)
- Bime M Ghakanyuy
- Department of Mathematics, University of Buea, P.O. Box 63, Buea, Cameroon
| | | | - Kristan A Schneider
- Department of Applied Computer and Bio-Sciences, University of Applied Sciences, Mittweida, Technikumplatz 17, 09648 Mittweida, Germany
| | - Gideon A Ngwa
- Department of Mathematics, University of Buea, P.O. Box 63, Buea, Cameroon.
| |
Collapse
|
4
|
Ditter RE, Campos M, Pinto J, Cornel AJ, Rompão H, Lanzaro GC. Mitogenome Analyses Reveal Limited Introduction of Anopheles coluzzii Into the Central African Islands of São Tomé and Príncipe. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.855272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Islands possess physical characteristics that make them uniquely well-suited for initial field trials of new genetic-based technologies applied to African malaria vectors. This has led to efforts to characterize the degree of isolation of island mosquito populations. São Tomé and Príncipe (STP) is a country composed of two small islands in the Gulf of Guinea (Central Africa) where Anopheles coluzzii is the primary malaria vector. Several studies have shown a relatively high degree of genetic isolation between A. coluzzii populations in STP and the mainland compared with pairs of mainland populations separated by equivalent distances. Here, we analyzed complete mitochondrial genomes of individual A. coluzzii specimens from STP and neighboring mainland countries. The objectives are to describe the history of A. coluzzii establishment in STP, specifically to address several questions germane to their suitability as sites for a field trial release of genetically engineered mosquitoes (GEMs). These questions include: (i) What are the origins of A. coluzzii populations in STP?; (ii) How many introductions occurred?; (iii) When was A. coluzzii introduced into STP? and (iv) Is there ongoing, contemporary gene flow into STP from mainland populations? Phylogenetic analysis and haplotype networks were constructed from sequences of 345 A. coluzzii from STP, and 107 individuals from 10 countries on or near the west coast of Africa. Analysis of these data suggest that there have been two introductions of A. coluzzii onto the island of São Tomé that occurred roughly 500 years ago and that these originated from mainland West Africa. It appears that A. coluzzii has never been introduced into Príncipe Island directly from mainland Africa, but there have been at least four introductions originating from São Tomé. Our findings provide further support for the notion that contemporary populations of A. coluzzii on São Tomé and Príncipe are genetically isolated from mainland populations of this mosquito species.
Collapse
|
5
|
Lanzaro GC, Campos M, Crepeau M, Cornel A, Estrada A, Gripkey H, Haddad Z, Kormos A, Palomares S. Selection of sites for field trials of genetically engineered mosquitoes with gene drive. Evol Appl 2021; 14:2147-2161. [PMID: 34603489 PMCID: PMC8477601 DOI: 10.1111/eva.13283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Novel malaria control strategies using genetically engineered mosquitoes (GEMs) are on the horizon. Population modification is one approach wherein mosquitoes are engineered with genes rendering them refractory to the malaria parasite, Plasmodium falciparum, coupled with a low-threshold, Cas9-based gene drive. When released into a wild vector population, GEMs preferentially transmit these parasite-blocking genes to their offspring, ultimately modifying a vector population into a nonvector one. Deploying this technology awaits ecologically contained field trial evaluations. Here, we consider a process for site selection, the first critical step in designing a trial. Our goal is to identify a site that maximizes prospects for success, minimizes risk, and serves as a fair, valid, and convincing test of efficacy and impacts of a GEM product intended for large-scale deployment in Africa. We base site selection on geographic, geological, and biological, rather than social or legal, criteria. We recognize the latter as critically important but not as a first step in selecting a site. We propose physical islands as being the best candidates for a GEM field trial and present an evaluation of 22 African islands. We consider geographic and genetic isolation, biological complexity, island size, and topography and identify two island groups that satisfy key criteria for ideal GEM field trial sites.
Collapse
Affiliation(s)
- Gregory C. Lanzaro
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Melina Campos
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Marc Crepeau
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Anthony Cornel
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Abram Estrada
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Hans Gripkey
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Ziad Haddad
- California Institute of TechnologyJet Propulsion LaboratoryPasadenaCaliforniaUSA
| | - Ana Kormos
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Steven Palomares
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
6
|
The origin of island populations of the African malaria mosquito, Anopheles coluzzii. Commun Biol 2021; 4:630. [PMID: 34040154 PMCID: PMC8155153 DOI: 10.1038/s42003-021-02168-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Abstract
Anopheles coluzzii is a major malaria vector throughout its distribution in west-central Africa. Here we present a whole-genome study of 142 specimens from nine countries in continental Africa and three islands in the Gulf of Guinea. This sample set covers a large part of this species' geographic range. Our population genomic analyses included a description of the structure of mainland populations, island populations, and connectivity between them. Three genetic clusters are identified among mainland populations and genetic distances (FST) fits an isolation-by-distance model. Genomic analyses are applied to estimate the demographic history and ancestry for each island. Taken together with the unique biogeography and history of human occupation for each island, they present a coherent explanation underlying levels of genetic isolation between mainland and island populations. We discuss the relationship of our findings to the suitability of São Tomé and Príncipe islands as candidate sites for potential field trials of genetic-based malaria control strategies.
Collapse
|
7
|
Xia S, Ury J, Powell JR. Increasing Effectiveness of Genetically Modifying Mosquito Populations: Risk Assessment of Releasing Blood-Fed Females. Am J Trop Med Hyg 2021; 104:1895-1906. [PMID: 33782213 PMCID: PMC8103460 DOI: 10.4269/ajtmh.19-0729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
Releasing mosquito refractory to pathogens has been proposed as a means of controlling mosquito-borne diseases. A recent modeling study demonstrated that instead of the conventional male-only releases, adding blood-fed females to the release population could significantly increase the program's efficiency, hastening the decrease in disease transmission competence of the target mosquito population and reducing the duration and costs of the release program. However, releasing female mosquitoes presents a short-term risk of increased disease transmission. To quantify this risk, we constructed a Ross-MacDonald model and an individual-based stochastic model to estimate the increase in disease transmission contributed by the released blood-fed females, using the mosquito Aedes aegypti and the dengue virus as a model system. Under baseline parameter values informed by empirical data, our stochastic models predicted a 1.1-5.5% increase in dengue transmission during the initial release, depending on the resistance level of released mosquitoes and release size. The basic reproductive number (R0) increased by 0.45-3.62%. The stochastic simulations were then extended to 10 releases to evaluate the long-term effect. The overall reduction of disease transmission was much greater than the number of potential infections directly contributed by the released females. Releasing blood-fed females with males could also outperform conventional male-only releases when the release strain is sufficiently resistant, and the release size is relatively small. Overall, these results suggested that the long-term benefit of releasing blood-fed females often outweighs the short-term risk.
Collapse
Affiliation(s)
- Siyang Xia
- Address correspondence to Siyang Xia, Harvard T.H. Chan School of Public Health, 677 Huntington Ave., Kresge Bldg. 9th Floor, Boston, MA 02115. E-mail:
| | | | - Jeffrey R. Powell
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut
| |
Collapse
|
8
|
Controlling Wolbachia Transmission and Invasion Dynamics among Aedes Aegypti Population via Impulsive Control Strategy. Symmetry (Basel) 2021. [DOI: 10.3390/sym13030434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work is devoted to analyzing an impulsive control synthesis to maintain the self-sustainability of Wolbachia among Aedes Aegypti mosquitoes. The present paper provides a fractional order Wolbachia invasive model. Through fixed point theory, this work derives the existence and uniqueness results for the proposed model. Also, we performed a global Mittag-Leffler stability analysis via Linear Matrix Inequality theory and Lyapunov theory. As a result of this controller synthesis, the sustainability of Wolbachia is preserved and non-Wolbachia mosquitoes are eradicated. Finally, a numerical simulation is established for the published data to analyze the nature of the proposed Wolbachia invasive model.
Collapse
|
9
|
Ahmed-Yusuf M, Vatandoost H, Oshaghi MA, Hanafi-Bojd AA, Enayati AA, Jalo RI. First Report of Target Site Insensitivity in Pyrethroid Resistant Anopheles gambiae from Southern Guinea Savanna, Northern-Nigeria. J Arthropod Borne Dis 2021; 14:228-238. [PMID: 33644236 PMCID: PMC7903364 DOI: 10.18502/jad.v14i3.4556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 07/11/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Malaria is a major public health problem and life threatening parasitic vector-borne disease. For the first time, we established and report the molecular mechanism responsible for Anopheles gambiae s.l. resistance to pyrethroids and DDT from Yamaltu Deba, Southern Guinea Savanna, Northern-Nigeria. Methods: The susceptibility profile of An. gambiae s.l. to four insecticides (DDT 4%, bendiocarb 0.1%, malathion 5% and deltamethrin 0.05%) using 2–3 days old females from larvae collected from study area between August and November, 2018 was first established. Genomic DNA was then extracted from 318 mosquitoes using Livak DNA extraction protocol for specie identification and kdr genotyping. The mosquitoes were identified to species level and then 96 genotyped for L1014F and L1014S kdr target site mutations. Results: The mosquitoes were all resistant to DDT, bendiocarb and deltamethrin but fully susceptible to malathion. An. coluzzii was found to be the dominant sibling species (97.8%) followed by An. arabiensis (1.9%) and An. gambiae s.s (0.3%). The frequency of the L1014F kdr mutation was relatively higher (83.3%) than the L1014S (39%) in the three species studied. The L1014F showed a genotypic frequency of 75% resistance (RR), 17% heterozygous (RS) and 8% susceptible (SS) with an allelic frequency of 87% RR and 13% SS while the L1014S showed a genotypic frequency of RR (16%), RS (38%) and SS (46%) with an allelic frequency of 40% RR and 60% SS, respectively. Conclusion: This study reveals that both kdr mutations present simultaneously in Northern-Nigeria, however contribution of L1014F which is common in West Africa was more than twice of L1014S mutation found in East Africa.
Collapse
Affiliation(s)
- Mustapha Ahmed-Yusuf
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Microbiology and Parasitology, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ali Hanafi-Bojd
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ali Enayati
- Department of Medical Entomology, School of Public Health and Health Sciences Research Centre, Mazandaran University of Medical Sciences, Sari, Iran
| | | |
Collapse
|
10
|
Regilme MAF, Carvajal TM, Honnen A, Amalin DM, Watanabe K. The influence of roads on the fine-scale population genetic structure of the dengue vector Aedes aegypti (Linnaeus). PLoS Negl Trop Dis 2021; 15:e0009139. [PMID: 33635860 PMCID: PMC7946359 DOI: 10.1371/journal.pntd.0009139] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/10/2021] [Accepted: 01/13/2021] [Indexed: 11/30/2022] Open
Abstract
Dengue is endemic in tropical and subtropical countries and is transmitted mainly by Aedes aegypti. Mosquito movement can be affected by human-made structures such as roads that can act as a barrier. Roads can influence the population genetic structure of Ae. aegypti. We investigated the genetic structure and gene flow of Ae. aegypti as influenced by a primary road, España Boulevard (EB) with 2000-meter-long stretch and 24-meters-wide in a very fine spatial scale. We hypothesized that Ae. aegypti populations separated by EB will be different due to the limited gene flow as caused by the barrier effect of the road. A total of 359 adults and 17 larvae Ae. aegypti were collected from June to September 2017 in 13 sites across EB. North (N1-N8) and South (S1-S5) comprised of 211 and 165 individuals, respectively. All mosquitoes were genotyped at 11 microsatellite loci. AMOVA FST indicated significant genetic differentiation across the road. The constructed UPGMA dendrogram found 3 genetic groups revealing the clear separation between North and South sites across the road. On the other hand, Bayesian cluster analysis showed four genetic clusters (K = 4) wherein each individual samples have no distinct genetic cluster thus genetic admixture. Our results suggest that human-made landscape features such as primary roads are potential barriers to mosquito movement thereby limiting its gene flow across the road. This information is valuable in designing an effective mosquito control program in a very fine spatial scale.
Collapse
Affiliation(s)
- Maria Angenica F. Regilme
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
- Biological Control Research Unit, Center for Natural Science and Environmental Research, De La Salle University, Manila, Philippines
- Department of Biology, De La Salle University, Manila, Philippines
| | - Thaddeus M. Carvajal
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
- Biological Control Research Unit, Center for Natural Science and Environmental Research, De La Salle University, Manila, Philippines
- Department of Biology, De La Salle University, Manila, Philippines
| | - Ann–Christin Honnen
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Divina M. Amalin
- Biological Control Research Unit, Center for Natural Science and Environmental Research, De La Salle University, Manila, Philippines
- Department of Biology, De La Salle University, Manila, Philippines
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
- Biological Control Research Unit, Center for Natural Science and Environmental Research, De La Salle University, Manila, Philippines
- Department of Biology, De La Salle University, Manila, Philippines
| |
Collapse
|
11
|
Yusuf MA, Vatandoost H, Oshaghi MA, Hanafi-Bojd AA, Manu AY, Enayati A, Ado A, Abdullahi AS, Jalo RI, Firdausi A. Biochemical Mechanism of Insecticide Resistance in Malaria Vector, Anopheles gambiae s.l in Nigeria. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:101-110. [PMID: 34178768 PMCID: PMC8213627 DOI: 10.18502/ijph.v50i1.5076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Malaria is a parasitic vector-borne disease endemic in the tropical and subtropical countries of the world. The aim of this study was to investigate the current activities of the detoxification enzymes in resistant and susceptible Anopheles gambiae s.l. in northern Nigeria. Methods Anopheles larvae were collected from northeast and northwestern Nigeria between Aug and Nov 2018. Biochemical analyses was carried out on the mosquitoes exposed to various insecticides (deltamethrin, DDT, bendiocarb, malathion) to measure and compare the enzymatic activities of the major detoxification enzymes (P450, GSTs, Esterase). Results High levels of resistance was observed; DDT 37%-53% (95%, CI: 29-61), bendiocarb 44%-55% (CI: 39-60) and deltamethrin 74%-82% (CI: 70-86). However, these mosquitoes were found to be susceptible to malathion 99%-100% (CI: 98-100). The P450 and GSTs enzymes were found to be elevated in the resistant mosquitoes exposed to deltamethrin (1.0240±0.1902); (1.3088±1.2478), DDT (1.7703±1.4528); (1.7462±0.9418) and bendiocarb (1.1814±0.0918); (1.4479±1.0083) compared to the Kisumu strain (0.764±0.4226); (0.6508±0.6542), (0.3875±0.3482); (0.4072±0.4916) and (0.6672±0.3949); (0.7126±0.7259) at P<0.05. Similarly, the resistant mosquitoes expressed increased activity to esterase (0.7606±1.1477), (0.3269±1.1957) and (2.8203±0.6488) compared to their susceptible counterpart (0.6841±0.7597), (0.7032±0.5380) and (0.6398±0.4159) at P<0.05. The enzyme ratio was found to be: P450 (1.341, 4.568 and 1.77); GSTs (2.011, 4.288 and 2.031); Esterases (1.111, 0.469 and 4.408). One way Anova and single sample t-test were also conducted to determine the effect of the enzymes on the resistant and susceptible strains. Conclusion High level of insecticide resistance was observed with significant elevation of detoxification enzymes activities in the resistant mosquitoes.
Collapse
Affiliation(s)
- Mustapha Ahmed Yusuf
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Microbiology and Parasitology, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Hassan Vatandoost
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ali Hanafi-Bojd
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdulsalam Yayo Manu
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Bayero University, Kano, Nigeria.,Center for Infectious Diseases Research, Bayero University, Kano, Nigeria
| | - Ahmadali Enayati
- Department of Medical Entomology, School of Public Health and Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abduljalal Ado
- Department of Science, Kano State Polytechnic, Kano, Nigeria
| | - Alhassan Sharrif Abdullahi
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Rabiu Ibrahim Jalo
- Department of Community Medicine, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Abubakar Firdausi
- Department of Family Medicine, College of Health Sciences, Bayero University, Kano, Nigeria
| |
Collapse
|
12
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Bonsall MB, Mumford J, Wimmer EA, Devos Y, Paraskevopoulos K, Firbank LG. Adequacy and sufficiency evaluation of existing EFSA guidelines for the molecular characterisation, environmental risk assessment and post-market environmental monitoring of genetically modified insects containing engineered gene drives. EFSA J 2020; 18:e06297. [PMID: 33209154 PMCID: PMC7658669 DOI: 10.2903/j.efsa.2020.6297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in molecular and synthetic biology are enabling the engineering of gene drives in insects for disease vector/pest control. Engineered gene drives (that bias their own inheritance) can be designed either to suppress interbreeding target populations or modify them with a new genotype. Depending on the engineered gene drive system, theoretically, a genetic modification of interest could spread through target populations and persist indefinitely, or be restricted in its spread or persistence. While research on engineered gene drives and their applications in insects is advancing at a fast pace, it will take several years for technological developments to move to practical applications for deliberate release into the environment. Some gene drive modified insects (GDMIs) have been tested experimentally in the laboratory, but none has been assessed in small-scale confined field trials or in open release trials as yet. There is concern that the deliberate release of GDMIs in the environment may have possible irreversible and unintended consequences. As a proactive measure, the European Food Safety Authority (EFSA) has been requested by the European Commission to review whether its previously published guidelines for the risk assessment of genetically modified animals (EFSA, 2012 and 2013), including insects (GMIs), are adequate and sufficient for GDMIs, primarily disease vectors, agricultural pests and invasive species, for deliberate release into the environment. Under this mandate, EFSA was not requested to develop risk assessment guidelines for GDMIs. In this Scientific Opinion, the Panel on Genetically Modified Organisms (GMO) concludes that EFSA's guidelines are adequate, but insufficient for the molecular characterisation (MC), environmental risk assessment (ERA) and post-market environmental monitoring (PMEM) of GDMIs. While the MC,ERA and PMEM of GDMIs can build on the existing risk assessment framework for GMIs that do not contain engineered gene drives, there are specific areas where further guidance is needed for GDMIs.
Collapse
|
13
|
Taghikhani R, Sharomi O, Gumel AB. Dynamics of a two-sex model for the population ecology of dengue mosquitoes in the presence of Wolbachia. Math Biosci 2020; 328:108426. [PMID: 32712316 DOI: 10.1016/j.mbs.2020.108426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/30/2022]
Abstract
The release of Wolbachia-infected mosquitoes into the population of wild mosquitoes is one of the promising biological control method for combating the population abundance of mosquitoes that cause deadly diseases, such as dengue. In this study, a new two-sex mathematical model for the population ecology of dengue mosquitoes and disease is designed and used to assess the population-level impact of the periodic release of Wolbachia-infected mosquitoes. Rigorous analysis of the model, which incorporates many of the lifecycle features of dengue disease and the cytoplasmic incompatibility property of Wolbachia bacterium in mosquitoes, reveal that the disease-free equilibrium of the model is locally-asymptotically stable whenever a certain epidemiological threshold, known as the reproduction number of the model (denoted by R0W), is less than unity. The model is shown, using centre manifold theory, to undergo the phenomenon of backward bifurcation at R0W=1. The consequence of this bifurcation is that Wolbachia may not persist, or dengue disease may not be effectively-controlled, when R0W is less than unity. Such persistence and elimination will depend on the initial sizes of the sub-populations of the model. Two mechanisms were identified for which the backward bifurcation phenomenon can be removed. When backward bifurcation does not occur, the associated non-trivial disease-free equilibrium is shown to be globally-asymptotically stable when the reproduction number of the model is less than unity. Numerical simulations, using data relevant to dengue transmission dynamics in northern Queensland, Australia, shows that releasing Wolbachia-infected mosquitoes every three weeks, for a one-year duration, can lead to the effective control of the population abundance of the local wild mosquitoes, and that such effective control increases with increasing number of Wolbachia-infected mosquitoes released (resulting in the reduction of over 90% of the wild mosquito population from their baseline values). Furthermore, simulations show that releasing only adult male Wolbachia-infected mosquitoes provide more beneficial population-level impact (in terms of reducing the population abundance of the wild mosquitoes), in comparison to releasing adult female Wolbachia-infected mosquitoes. Increasing the frequency of Wolbachia release (e.g., from the default release frequency of every three weeks to weekly) does not significantly affect the effectiveness of the Wolbachia-based control program in curtailing the local abundance of the wild mosquitoes. Finally, it was shown that the cytoplasmic incompatibility property of Wolbachia bacterium does not significantly affect the effectiveness of the Wolbachia-based mosquito control strategy implemented in the community.
Collapse
Affiliation(s)
- Rahim Taghikhani
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Abba B Gumel
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA; Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
14
|
Sougoufara S, Ottih EC, Tripet F. The need for new vector control approaches targeting outdoor biting Anopheline malaria vector communities. Parasit Vectors 2020; 13:295. [PMID: 32522290 PMCID: PMC7285743 DOI: 10.1186/s13071-020-04170-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Since the implementation of Roll Back Malaria, the widespread use of insecticide-treated nets (ITNs) and indoor residual spraying (IRS) is thought to have played a major part in the decrease in mortality and morbidity achieved in malaria-endemic regions. In the past decade, resistance to major classes of insecticides recommended for public health has spread across many malaria vector populations. Increasingly, malaria vectors are also showing changes in vector behaviour in response to current indoor chemical vector control interventions. Changes in the time of biting and proportion of indoor biting of major vectors, as well as changes in the species composition of mosquito communities threaten the progress made to control malaria transmission. Outdoor biting mosquito populations contribute to malaria transmission in many parts of sub-Saharan Africa and pose new challenges as they cannot be reliably monitored or controlled using conventional tools. Here, we review existing and novel approaches that may be used to target outdoor communities of malaria vectors. We conclude that scalable tools designed specifically for the control and monitoring of outdoor biting and resting malaria vectors with increasingly complex and dynamic responses to intensifying malaria control interventions are urgently needed. These are crucial for integrated vector management programmes designed to challenge current and future vector populations.
Collapse
Affiliation(s)
- Seynabou Sougoufara
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| | - Emmanuel Chinweuba Ottih
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| | - Frederic Tripet
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| |
Collapse
|
15
|
Xia S, Baskett ML, Powell JR. Quantifying the efficacy of genetic shifting in control of mosquito-borne diseases. Evol Appl 2019; 12:1552-1568. [PMID: 31462914 PMCID: PMC6708429 DOI: 10.1111/eva.12802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/11/2019] [Indexed: 01/07/2023] Open
Abstract
Many of the world's most prevalent diseases are transmitted by animal vectors such as dengue transmitted by mosquitoes. To reduce these vector-borne diseases, a promising approach is "genetic shifting": selective breeding of the vectors to be more resistant to pathogens and releasing them to the target populations to reduce their ability to transmit pathogens, that is, lower their vector competence. The efficacy of genetic shifting will depend on possible counterforces such as natural selection against low vector competence. To quantitatively evaluate the potential efficacy of genetic shifting, we developed a series of coupled genetic-demographic models that simulate the changes of vector competence during releases of individuals with low vector competence. We modeled vector competence using different genetic architectures, as a multilocus, one-locus, or two-locus trait. Using empirically determined estimates of model parameters, the model predicted a reduction of mean vector competence of at least three standard deviations after 20 releases, one release per generation, and 10% of the size of the target population released each time. Sensitivity analysis suggested that release efficacy depends mostly on the vector competence of the released population, release size, release frequency, and the survivorship of the released individuals, with duration of the release program less important. Natural processes such as density-dependent survival and immigration from external populations also strongly influence release efficacy. Among different sex-dependent release strategies, releasing blood-fed females together with males resulted in the highest release efficacy, as these females mate in captivity and reproduce when released, thus contributing a greater proportion of low-vector-competence offspring. Conclusions were generally consistent across three models assuming different genetic architectures of vector competence, suggesting that genetic shifting could generally apply to various vector systems and does not require detailed knowledge of the number of loci contributing to vector competence.
Collapse
Affiliation(s)
- Siyang Xia
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticut
| | - Marissa L. Baskett
- Department of Environmental Science and PolicyUniversity of California, DavisDavisCalifornia
| | | |
Collapse
|
16
|
Facchinelli L, North AR, Collins CM, Menichelli M, Persampieri T, Bucci A, Spaccapelo R, Crisanti A, Benedict MQ. Large-cage assessment of a transgenic sex-ratio distortion strain on populations of an African malaria vector. Parasit Vectors 2019; 12:70. [PMID: 30728060 PMCID: PMC6366042 DOI: 10.1186/s13071-019-3289-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/03/2019] [Indexed: 12/25/2022] Open
Abstract
Background Novel transgenic mosquito control methods require progressively more realistic evaluation. The goal of this study was to determine the effect of a transgene that causes a male-bias sex ratio on Anopheles gambiae target populations in large insectary cages. Methods Life history characteristics of Anopheles gambiae wild type and Ag(PMB)1 (aka gfp124L-2) transgenic mosquitoes, whose progeny are 95% male, were measured in order to parameterize predictive population models. Ag(PMB)1 males were then introduced at two ratios into large insectary cages containing target wild type populations with stable age distributions and densities. The predicted proportion of females and those observed in the large cages were compared. A related model was then used to predict effects of male releases on wild mosquitoes in a west African village. Results The frequency of transgenic mosquitoes in target populations reached an average of 0.44 ± 0.02 and 0.56 ± 0.02 after 6 weeks in the 1:1 and in the 3:1 release ratio treatments (transgenic male:wild male) respectively. Transgenic males caused sex-ratio distortion of 73% and 80% males in the 1:1 and 3:1 treatments, respectively. The number of eggs laid in the transgenic treatments declined as the experiment progressed, with a steeper decline in the 3:1 than in the 1:1 releases. The results of the experiment are partially consistent with predictions of the model; effect size and variability did not conform to the model in two out of three trials, effect size was over-estimated by the model and variability was greater than anticipated, possibly because of sampling effects in restocking. The model estimating the effects of hypothetical releases on the mosquito population of a West African village demonstrated that releases could significantly reduce the number of females in the wild population. The interval of releases is not expected to have a strong effect. Conclusions The biological data produced to parameterize the model, the model itself, and the results of the experiments are components of a system to evaluate and predict the performance of transgenic mosquitoes. Together these suggest that the Ag(PMB)1 strain has the potential to be useful for reversible population suppression while this novel field develops.
Collapse
Affiliation(s)
- Luca Facchinelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Present address: Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Ace R North
- Department of Zoology, University of Oxford, New Radcliffe House, Woodstock Road, Oxford, OX2 6GG, UK
| | - C Matilda Collins
- Centre for Environmental Policy, Imperial College London, 16-18 Princes Gardens, London, SW7 1NE, UK
| | - Miriam Menichelli
- Polo di Genomica Genetica e Biologia, Via mazzieri 3, 05100, Terni, Italy
| | - Tania Persampieri
- Polo di Genomica Genetica e Biologia, Via mazzieri 3, 05100, Terni, Italy
| | - Alessandro Bucci
- Polo di Genomica Genetica e Biologia, Via mazzieri 3, 05100, Terni, Italy
| | - Roberta Spaccapelo
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building Imperial College Road South Kensington, London, SW7 2AZ, UK
| | - Mark Q Benedict
- Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA, 30329, USA.
| |
Collapse
|
17
|
Li B, Liu X, Wang WJ, Zhao F, An ZY, Zhao H. Metanetwork Transmission Model for Predicting a Malaria-Control Strategy. Front Genet 2018; 9:446. [PMID: 30386373 PMCID: PMC6199348 DOI: 10.3389/fgene.2018.00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/14/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Mosquitoes are the primary vectors responsible for malaria transmission to humans, with numerous experiments having been conducted to aid in the control of malaria transmission. One of the main approaches aims to develop malaria parasite resistance within the mosquito population by introducing a resistance (R) allele. However, when considering this approach, some critical factors, such as the life of the mosquito, female mosquito fertility capacity, and human and mosquito mobility, have not been considered. Thus, an understanding of how mosquitoes and humans affect disease dynamics is needed to better inform malaria control policymaking. Methods: In this study, a method was proposed to create a metanetwork on the basis of the geographic maps of Gambia, and a model was constructed to simulate evolution within a mixed population, with factors such as birth, death, reproduction, biting, infection, incubation, recovery, and transmission between populations considered in the network metrics. First, the same number of refractory mosquitoes (RR genotype) was introduced into each population, and the prevalence of the R allele (the ratio of resistant alleles to all alleles) and malaria were examined. In addition, a series of simulations were performed to evaluate two different deployment strategies for the reduction of the prevalence of malaria. The R allele and malaria prevalence were calculated for both the strategies, with 10,000 refractory mosquitoes deployed into randomly selected populations or selection based on nodes with top-betweenness values. The 10,000 mosquitoes were deployed among 1, 5, 10, 20, or 40 populations. Results: The simulations in this paper showed that a higher RR genotype (resistant-resistant genes) ratio leads to a higher R allele prevalence and lowers malaria prevalence. Considering the cost of deployment, the simulation was performed with 10,000 refractory mosquitoes deployed among 1 or 5 populations, but this approach did not reduce the original malaria prevalence. Thus, instead, the 10,000 refractory mosquitoes were distributed among 10, 20, or 40 populations and were shown to effectively reduce the original malaria prevalence. Thus, deployment among a relatively small fraction of central nodes can offer an effective strategy to reduce malaria. Conclusion: The standard network centrality measure is suitable for planning the deployment of refractory mosquitoes. Importance: Malaria is an infectious disease that is caused by a plasmodial parasite, and some control strategies have focused on genetically modifying the mosquitoes. This work aims to create a model that takes into account mosquito development and malaria transmission among the population and how these factors influence disease dynamics so as to better inform malaria-control policymaking.
Collapse
Affiliation(s)
- Bo Li
- Shandong Technology and Business University, School of Computer Science and Technology, Yantai, China
- Shandong Co-Innovation Center of Future Intelligent Computing, Yantai, China
| | - Xiao Liu
- Northeastern University, School of Computer Science and Engineering, Shenyang, China
| | - Wen-Juan Wang
- Yantai Yuhuangding Hospital of Qingdao University, Reproduction Medical Center, Yantai, China
| | - Feng Zhao
- Shandong Technology and Business University, School of Computer Science and Technology, Yantai, China
- Shandong Co-Innovation Center of Future Intelligent Computing, Yantai, China
| | - Zhi-Yong An
- Shandong Technology and Business University, School of Computer Science and Technology, Yantai, China
- Shandong Co-Innovation Center of Future Intelligent Computing, Yantai, China
| | - Hai Zhao
- Northeastern University, School of Computer Science and Engineering, Shenyang, China
| |
Collapse
|
18
|
Abstract
The rapid spread of mosquito resistance to currently available insecticides, and the current lack of an efficacious malaria vaccine are among many challenges that affect large-scale efforts for malaria control. As goals of malaria elimination and eradication are put forth, new vector-control paradigms and tools and/or further optimization of current vector-control products are required to meet public health demands. Vector control remains the most effective measure to prevent malaria transmission and present gains against malaria mortality and morbidity may be maintained as long as vector-intervention strategies are sustained and adapted to underlying vector-related transmission dynamics. The following provides a brief overview of vector-control strategies and tools either in use or under development and evaluation that are intended to exploit key entomological parameters toward driving down transmission.
Collapse
Affiliation(s)
- Neil F Lobo
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Nicole L Achee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - John Greico
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Frank H Collins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
19
|
Pombi M, Kengne P, Gimonneau G, Tene-Fossog B, Ayala D, Kamdem C, Santolamazza F, Guelbeogo WM, Sagnon N, Petrarca V, Fontenille D, Besansky NJ, Antonio-Nkondjio C, Dabiré RK, Della Torre A, Simard F, Costantini C. Dissecting functional components of reproductive isolation among closely related sympatric species of the Anopheles gambiae complex. Evol Appl 2017; 10:1102-1120. [PMID: 29151864 PMCID: PMC5680640 DOI: 10.1111/eva.12517] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/10/2017] [Indexed: 01/10/2023] Open
Abstract
Explaining how and why reproductive isolation evolves and determining which forms of reproductive isolation have the largest impact on the process of population divergence are major goals in the study of speciation. By studying recent adaptive radiations in incompletely isolated taxa, it is possible to identify barriers involved at early divergence before other confounding barriers emerge after speciation is complete. Sibling species of the Anopheles gambiae complex offer opportunities to provide insights into speciation mechanisms. Here, we studied patterns of reproductive isolation among three taxa, Anopheles coluzzii, An. gambiae s.s. and Anopheles arabiensis, to compare its strength at different spatial scales, to dissect the relative contribution of pre‐ versus postmating isolation, and to infer the involvement of ecological divergence on hybridization. Because F1 hybrids are viable, fertile and not uncommon, understanding the dynamics of hybridization in this trio of major malaria vectors has important implications for how adaptations arise and spread across the group, and in planning studies of the safety and efficacy of gene drive as a means of malaria control. We first performed a systematic review and meta‐analysis of published surveys reporting on hybrid prevalence, showing strong reproductive isolation at a continental scale despite geographically restricted exceptions. Second, we exploited our own extensive field data sets collected at a regional scale in two contrasting environmental settings, to assess: (i) levels of premating isolation; (ii) spatio/temporal and frequency‐dependent dynamics of hybridization, (iii) relationship between reproductive isolation and ecological divergence and (iv) hybrid viability penalty. Results are in accordance with ecological speciation theory predicting a positive association between the strength of reproductive isolation and degree of ecological divergence, and indicate that postmating isolation does contribute to reproductive isolation among these species. Specifically, only postmating isolation was positively associated with ecological divergence, whereas premating isolation was correlated with phylogenetic distance.
Collapse
Affiliation(s)
- Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie InfettiveUniversità di Roma "Sapienza"RomeItaly.,Istituto Pasteur Italia-Fondazione Cenci-Bolognetti Rome Italy
| | - Pierre Kengne
- Institut de Recherche pour le Développement (IRD) UMR MIVEGEC (University of Montpellier, CNRS 5290 IRD 224) Centre IRD de Montpellier Montpellier France.,Organisation de Coordination pour la lutte contre les Endemies en Afrique Centrale (OCEAC) Yaoundé Cameroon
| | | | - Billy Tene-Fossog
- Institut de Recherche pour le Développement (IRD) UMR MIVEGEC (University of Montpellier, CNRS 5290 IRD 224) Centre IRD de Montpellier Montpellier France.,Organisation de Coordination pour la lutte contre les Endemies en Afrique Centrale (OCEAC) Yaoundé Cameroon
| | - Diego Ayala
- Institut de Recherche pour le Développement (IRD) UMR MIVEGEC (University of Montpellier, CNRS 5290 IRD 224) Centre IRD de Montpellier Montpellier France.,Centre International de Recherches Médicales de Franceville Franceville Gabon
| | - Colince Kamdem
- Department of Entomology University of California Riverside CA USA
| | - Federica Santolamazza
- Dipartimento di Sanità Pubblica e Malattie InfettiveUniversità di Roma "Sapienza"RomeItaly.,Istituto Pasteur Italia-Fondazione Cenci-Bolognetti Rome Italy
| | | | - N'Falé Sagnon
- Centre National de Recherche et Formation sur le Paludisme (CNRFP) Ouagadougou Burkina Faso
| | - Vincenzo Petrarca
- Dipartimento di Sanità Pubblica e Malattie InfettiveUniversità di Roma "Sapienza"RomeItaly.,Istituto Pasteur Italia-Fondazione Cenci-Bolognetti Rome Italy
| | - Didier Fontenille
- Institut de Recherche pour le Développement (IRD) UMR MIVEGEC (University of Montpellier, CNRS 5290 IRD 224) Centre IRD de Montpellier Montpellier France.,Institut Pasteur du Cambodge Phnom Penh Cambodia
| | - Nora J Besansky
- Eck Institute for Global Health & Department of Biological Sciences University of Notre Dame Notre Dame IN USA
| | | | - Roch Kounbobr Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS) Bobo-Dioulasso Burkina Faso
| | - Alessandra Della Torre
- Dipartimento di Sanità Pubblica e Malattie InfettiveUniversità di Roma "Sapienza"RomeItaly.,Istituto Pasteur Italia-Fondazione Cenci-Bolognetti Rome Italy
| | - Frédéric Simard
- Institut de Recherche pour le Développement (IRD) UMR MIVEGEC (University of Montpellier, CNRS 5290 IRD 224) Centre IRD de Montpellier Montpellier France.,Organisation de Coordination pour la lutte contre les Endemies en Afrique Centrale (OCEAC) Yaoundé Cameroon.,Institut de Recherche en Sciences de la Santé (IRSS) Bobo-Dioulasso Burkina Faso
| | - Carlo Costantini
- Institut de Recherche pour le Développement (IRD) UMR MIVEGEC (University of Montpellier, CNRS 5290 IRD 224) Centre IRD de Montpellier Montpellier France.,Organisation de Coordination pour la lutte contre les Endemies en Afrique Centrale (OCEAC) Yaoundé Cameroon.,Institut de Recherche en Sciences de la Santé (IRSS) Bobo-Dioulasso Burkina Faso
| |
Collapse
|
20
|
Affiliation(s)
| | - Michael J. Wade
- Department of Biology; Indiana University; Bloomington IN USA
| |
Collapse
|
21
|
Pang T, Mak TK, Gubler DJ. Prevention and control of dengue-the light at the end of the tunnel. THE LANCET. INFECTIOUS DISEASES 2017; 17:e79-e87. [PMID: 28185870 DOI: 10.1016/s1473-3099(16)30471-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/16/2016] [Accepted: 10/19/2016] [Indexed: 12/20/2022]
Abstract
Advances in the development of new dengue control tools, including vaccines and vector control, herald a new era of desperately needed dengue prevention and control. The burden of dengue has expanded for decades, and now affects more than 120 countries. Complex, large-scale global forces have and will continue to contribute to the expansion of dengue, including population growth, unplanned urbanisation, and suboptimal mosquito control in urban centres. Although no so-called magic bullets are available, there is new optimism following the first licensure of a dengue vaccine and other promising vaccine candidates, and the development of novel vector control interventions to help control dengue and other expanding mosquito-borne diseases such as Zika virus. Implementation of effective and sustainable immunisation programmes to complement existing methods will add complexity to the health systems of affected countries, which have varying levels of robustness and maturity. Long-term high prioritisation and adequate resources are needed. The way forward is full commitment to addressing a complex disease with a set of solutions integrating vaccination and vector control methods. A whole systems approach is thus needed to integrate these various approaches and strategies for controlling dengue within the goal of universal health coverage. The ultimate objective of these interventions will be to reduce the disease burden in a sustainable and equitable manner.
Collapse
Affiliation(s)
- Tikki Pang
- Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore.
| | - Tippi K Mak
- Regional Health & Community Outreach Division, Health Promotion Board, Singapore
| | - Duane J Gubler
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, National University of Singapore, Singapore
| |
Collapse
|
22
|
Backus GA, Gross K. Genetic engineering to eradicate invasive mice on islands: modeling the efficiency and ecological impacts. Ecosphere 2016. [DOI: 10.1002/ecs2.1589] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Gregory A. Backus
- Biomathematics Program North Carolina State University Box 8213 Raleigh North Carolina 27695‐8213 USA
- Zoology Program North Carolina State University Box 8213 Raleigh North Carolina 27695‐8213 USA
| | - Kevin Gross
- Biomathematics Program North Carolina State University Box 8213 Raleigh North Carolina 27695‐8213 USA
| |
Collapse
|
23
|
Severson DW, Behura SK. Genome Investigations of Vector Competence in Aedes aegypti to Inform Novel Arbovirus Disease Control Approaches. INSECTS 2016; 7:insects7040058. [PMID: 27809220 PMCID: PMC5198206 DOI: 10.3390/insects7040058] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 11/16/2022]
Abstract
Dengue (DENV), yellow fever, chikungunya, and Zika virus transmission to humans by a mosquito host is confounded by both intrinsic and extrinsic variables. Besides virulence factors of the individual arboviruses, likelihood of virus transmission is subject to variability in the genome of the primary mosquito vector, Aedes aegypti. The “vectorial capacity” of A. aegypti varies depending upon its density, biting rate, and survival rate, as well as its intrinsic ability to acquire, host and transmit a given arbovirus. This intrinsic ability is known as “vector competence”. Based on whole transcriptome analysis, several genes and pathways have been predicated to have an association with a susceptible or refractory response in A. aegypti to DENV infection. However, the functional genomics of vector competence of A. aegypti is not well understood, primarily due to lack of integrative approaches in genomic or transcriptomic studies. In this review, we focus on the present status of genomics studies of DENV vector competence in A. aegypti as limited information is available relative to the other arboviruses. We propose future areas of research needed to facilitate the integration of vector and virus genomics and environmental factors to work towards better understanding of vector competence and vectorial capacity in natural conditions.
Collapse
Affiliation(s)
- David W Severson
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
24
|
Near-Infrared Spectroscopy, a Rapid Method for Predicting the Age of Male and Female Wild-Type and Wolbachia Infected Aedes aegypti. PLoS Negl Trop Dis 2016; 10:e0005040. [PMID: 27768689 PMCID: PMC5074478 DOI: 10.1371/journal.pntd.0005040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/14/2016] [Indexed: 01/01/2023] Open
Abstract
Estimating the age distribution of mosquito populations is crucial for assessing their capacity to transmit disease and for evaluating the efficacy of available vector control programs. This study reports on the capacity of the near-infrared spectroscopy (NIRS) technique to rapidly predict the ages of the principal dengue and Zika vector, Aedes aegypti. The age of wild-type males and females, and males and females infected with wMel and wMelPop strains of Wolbachia pipientis were characterized using this method. Calibrations were developed using spectra collected from their heads and thoraces using partial least squares (PLS) regression. A highly significant correlation was found between the true and predicted ages of mosquitoes. The coefficients of determination for wild-type females and males across all age groups were R2 = 0.84 and 0.78, respectively. The coefficients of determination for the age of wMel and wMelPop infected females were 0.71 and 0.80, respectively (P< 0.001 in both instances). The age of wild-type female Ae. aegypti could be identified as < or ≥ 8 days old with an accuracy of 91% (N = 501), whereas female Ae. aegypti infected with wMel and wMelPop were differentiated into the two age groups with an accuracy of 83% (N = 284) and 78% (N = 229), respectively. Our results also indicate NIRS can distinguish between young and old male wild-type, wMel and wMelPop infected Ae. aegypti with accuracies of 87% (N = 253), 83% (N = 277) and 78% (N = 234), respectively. We have demonstrated the potential of NIRS as a predictor of the age of female and male wild-type and Wolbachia infected Ae. aegypti mosquitoes under laboratory conditions. After field validation, the tool has the potential to offer a cheap and rapid alternative for surveillance of dengue and Zika vector control programs.
Collapse
|
25
|
Mancini MV, Spaccapelo R, Damiani C, Accoti A, Tallarita M, Petraglia E, Rossi P, Cappelli A, Capone A, Peruzzi G, Valzano M, Picciolini M, Diabaté A, Facchinelli L, Ricci I, Favia G. Paratransgenesis to control malaria vectors: a semi-field pilot study. Parasit Vectors 2016; 9:140. [PMID: 26965746 PMCID: PMC4787196 DOI: 10.1186/s13071-016-1427-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria still remains a serious health burden in developing countries, causing more than 1 million deaths annually. Given the lack of an effective vaccine against its major etiological agent, Plasmodium falciparum, and the growing resistance of this parasite to the currently available drugs repertoire and of Anopheles mosquitoes to insecticides, the development of innovative control measures is an imperative to reduce malaria transmission. Paratransgenesis, the modification of symbiotic organisms to deliver anti-pathogen effector molecules, represents a novel strategy against Plasmodium development in mosquito vectors, showing the potential to reduce parasite development. However, the field application of laboratory-based evidence of paratransgenesis imposes the use of more realistic confined semi-field environments. METHODS Large cages were used to evaluate the ability of bacteria of the genus Asaia expressing green fluorescent protein (Asaia (gfp)), to diffuse in Anopheles stephensi and Anopheles gambiae target mosquito populations. Asaia (gfp) was introduced in large cages through the release of paratransgenic males or by sugar feeding stations. Recombinant bacteria transmission was directly detected by fluorescent microscopy, and further assessed by molecular analysis. RESULTS Here we show the first known trial in semi-field condition on paratransgenic anophelines. Modified bacteria were able to spread at high rate in different populations of An. stephensi and An. gambiae, dominant malaria vectors, exploring horizontal ways and successfully colonising mosquito midguts. Moreover, in An. gambiae, vertical and trans-stadial diffusion mechanisms were demonstrated. CONCLUSIONS Our results demonstrate the considerable ability of modified Asaia to colonise different populations of malaria vectors, including pecies where its association is not primary, in large environments. The data support the potential to employ transgenic Asaia as a tool for malaria control, disclosing promising perspective for its field application with suitable effector molecules.
Collapse
Affiliation(s)
| | - Roberta Spaccapelo
- Department of Experimental Medicine, Centro di Genomica Funzionale, University of Perugia, Perugia, Italy
| | - Claudia Damiani
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Camerino, Italy
| | - Anastasia Accoti
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Camerino, Italy
| | - Mario Tallarita
- Department of Experimental Medicine, Centro di Genomica Funzionale, University of Perugia, Perugia, Italy
| | - Elisabetta Petraglia
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Camerino, Italy
| | - Paolo Rossi
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Camerino, Italy
| | - Alessia Cappelli
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Camerino, Italy
| | - Aida Capone
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Camerino, Italy
| | - Giulia Peruzzi
- Department of Experimental Medicine, Centro di Genomica Funzionale, University of Perugia, Perugia, Italy
| | - Matteo Valzano
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Camerino, Italy
| | - Matteo Picciolini
- Department of Experimental Medicine, Centro di Genomica Funzionale, University of Perugia, Perugia, Italy
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Sante (IRSS), Direction Regionale de l'Ouest (DRO), BP 390, Bobo Dioulasso, Burkina Faso
| | - Luca Facchinelli
- Department of Experimental Medicine, Centro di Genomica Funzionale, University of Perugia, Perugia, Italy
| | - Irene Ricci
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Camerino, Italy
| | - Guido Favia
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Camerino, Italy.
| |
Collapse
|
26
|
Demarais S, Strickland BK, Webb SL, Smith T, Mcdonald C. Simulated effects of releasing pen‐raised deer into the wild to alter population‐level antler size. WILDLIFE SOC B 2016. [DOI: 10.1002/wsb.626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Stephen Demarais
- Department of Wildlife, Fisheries, and AquacultureMississippi State UniversityBox 9690Mississippi StateMS39762USA
| | - Bronson K. Strickland
- Department of Wildlife, Fisheries, and AquacultureMississippi State UniversityBox 9690Mississippi StateMS39762USA
| | - Stephen L. Webb
- The Samuel Roberts Noble Foundation2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Trent Smith
- Department of Animal and Dairy SciencesMississippi State UniversityBox 9815Mississippi StateMS39762USA
| | - Chris Mcdonald
- Mississippi Department of Wildlife, Fisheries, and ParksMississippi State University1505 Eastover DriveJacksonMS39211USA
| |
Collapse
|
27
|
Jamrozik E, de la Fuente-Núñez V, Reis A, Ringwald P, Selgelid MJ. Ethical aspects of malaria control and research. Malar J 2015; 14:518. [PMID: 26693920 PMCID: PMC4688922 DOI: 10.1186/s12936-015-1042-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/09/2015] [Indexed: 01/09/2023] Open
Abstract
Malaria currently causes more harm to human beings than any other parasitic disease, and disproportionally affects low-income populations. The ethical issues raised by efforts to control or eliminate malaria have received little explicit analysis, in comparison with other major diseases of poverty. While some ethical issues associated with malaria are similar to those that have been the subject of debate in the context of other infectious diseases, malaria also raises distinct ethical issues in virtue of its unique history, epidemiology, and biology. This paper provides preliminary ethical analyses of the especially salient issues of: (i) global health justice, (ii) universal access to malaria control initiatives, (iii) multidrug resistance, including artemisinin-based combination therapy (ACT) resistance, (iv) mandatory screening, (v) mass drug administration, (vi) benefits and risks of primaquine, and (vii) malaria in the context of blood donation and transfusion. Several ethical issues are also raised by past, present and future malaria research initiatives, in particular: (i) controlled infection studies, (ii) human landing catches, (iii) transmission-blocking vaccines, and (iv) genetically-modified mosquitoes. This article maps the terrain of these major ethical issues surrounding malaria control and elimination. Its objective is to motivate further research and discussion of ethical issues associated with malaria--and to assist health workers, researchers, and policy makers in pursuit of ethically sound malaria control practice and policy.
Collapse
Affiliation(s)
- Euzebiusz Jamrozik
- Centre for Human Bioethics, Monash University, Clayton, VIC, Australia. .,Department of Knowledge, Ethics and Research, World Health Organization, Geneva, Switzerland.
| | | | - Andreas Reis
- Department of Knowledge, Ethics and Research, World Health Organization, Geneva, Switzerland.
| | - Pascal Ringwald
- Global Malaria Programme, World Health Organization, Geneva, Switzerland.
| | | |
Collapse
|
28
|
Pimenta PFP, Orfano AS, Bahia AC, Duarte APM, Ríos-Velásquez CM, Melo FF, Pessoa FAC, Oliveira GA, Campos KMM, Villegas LM, Rodrigues NB, Nacif-Pimenta R, Simões RC, Monteiro WM, Amino R, Traub-Cseko YM, Lima JBP, Barbosa MGV, Lacerda MVG, Tadei WP, Secundino NFC. An overview of malaria transmission from the perspective of Amazon Anopheles vectors. Mem Inst Oswaldo Cruz 2015; 110:23-47. [PMID: 25742262 PMCID: PMC4371216 DOI: 10.1590/0074-02760140266] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/18/2014] [Indexed: 02/07/2023] Open
Abstract
In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Anopheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.
Collapse
Affiliation(s)
- Paulo FP Pimenta
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | | | - Ana C Bahia
- Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Ana PM Duarte
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
| | | | - Fabrício F Melo
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
| | | | | | - Keillen MM Campos
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | | | | | | | - Rejane C Simões
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | - Rogerio Amino
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris,
France
| | | | - José BP Lima
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
- Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Maria GV Barbosa
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | - Marcus VG Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
- Instituto Leônidas e Maria Deane-Fiocruz, Manaus, AM, Brasil
| | | | | |
Collapse
|
29
|
Robert MA, Okamoto KW, Gould F, Lloyd AL. Antipathogen genes and the replacement of disease-vectoring mosquito populations: a model-based evaluation. Evol Appl 2014; 7:1238-51. [PMID: 25558284 PMCID: PMC4275095 DOI: 10.1111/eva.12219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 08/27/2014] [Indexed: 12/25/2022] Open
Abstract
Recently, genetic strategies aimed at controlling populations of disease-vectoring mosquitoes have received considerable attention as alternatives to traditional measures. Theoretical studies have shown that female-killing (FK), antipathogen (AP), and reduce and replace (R&R) strategies can each decrease the number competent vectors. In this study, we utilize a mathematical model to evaluate impacts on competent Aedes aegypti populations of FK, AP, and R&R releases as well as hybrid strategies that result from combinations of these three approaches. We show that while the ordering of efficacy of these strategies depends upon population life history parameters, sex ratio of releases, and switch time in combination strategies, AP-only and R&R/AP releases typically lead to the greatest long-term reduction in competent vectors. R&R-only releases are often less effective at long-term reduction of competent vectors than AP-only releases or R&R/AP releases. Furthermore, the reduction in competent vectors caused by AP-only releases is easier to maintain than that caused by FK-only or R&R-only releases even when the AP gene confers a fitness cost. We discuss the roles that density dependence and inclusion of females play in the order of efficacy of the strategies. We anticipate that our results will provide added impetus to continue developing AP strategies.
Collapse
Affiliation(s)
- Michael A Robert
- Department of Mathematics and Biomathematics Graduate Program, North Carolina State University Raleigh, NC, USA ; Department of Biology and Department of Mathematics and Statistics, University of New Mexico Albuquerque, NM, USA
| | - Kenichi W Okamoto
- Department of Entomology, North Carolina State University Raleigh, NC, USA
| | - Fred Gould
- Department of Entomology, North Carolina State University Raleigh, NC, USA ; Fogarty International Center, National Institutes of Health Bethesda, MD, USA
| | - Alun L Lloyd
- Department of Mathematics and Biomathematics Graduate Program, North Carolina State University Raleigh, NC, USA ; Fogarty International Center, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
30
|
Pates HV, Curtis CF, Takken W. Hybridization studies to modify the host preference of Anopheles gambiae. MEDICAL AND VETERINARY ENTOMOLOGY 2014; 28 Suppl 1:68-74. [PMID: 25171608 DOI: 10.1111/mve.12070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/18/2014] [Accepted: 03/04/2014] [Indexed: 06/03/2023]
Abstract
A strategy to decrease the vector competence of Anopheles gambiae sensu stricto (Diptera: Culicidae), the most efficient malaria vector in Africa, may consist of exploiting the genes involved in zoophily. Crossing and backcrossing experiments were performed between An. gambiae s.s. and the zoophilic sibling species Anopheles quadriannulatus. Mosquito strains were tested in a dual-choice olfactometer to investigate their responses to cow odour. Totals of 12% of An. gambiae s.s. and 59% of An. quadriannulatus selected the port with the cow odour. Crosses and backcrosses did not show a significant preference for the cow-baited port. The results indicated that anthropophilic behaviour in An. gambiae s.s. is a dominant or partially dominant trait, which, in conjunction with the unstable zoophilic behaviour observed in An. quadriannulatus, poses a serious obstacle to plans to decrease vector competence by modifying the anthropophilic trait.
Collapse
Affiliation(s)
- H V Pates
- Laboratory of Entomology, Wageningen University, Wageningen, the Netherlands; Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, U.K
| | | | | |
Collapse
|
31
|
Esvelt KM, Smidler AL, Catteruccia F, Church GM. Concerning RNA-guided gene drives for the alteration of wild populations. eLife 2014; 3:e03401. [PMID: 25035423 PMCID: PMC4117217 DOI: 10.7554/elife.03401] [Citation(s) in RCA: 458] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 07/09/2014] [Indexed: 12/13/2022] Open
Abstract
Gene drives may be capable of addressing ecological problems by altering entire populations of wild organisms, but their use has remained largely theoretical due to technical constraints. Here we consider the potential for RNA-guided gene drives based on the CRISPR nuclease Cas9 to serve as a general method for spreading altered traits through wild populations over many generations. We detail likely capabilities, discuss limitations, and provide novel precautionary strategies to control the spread of gene drives and reverse genomic changes. The ability to edit populations of sexual species would offer substantial benefits to humanity and the environment. For example, RNA-guided gene drives could potentially prevent the spread of disease, support agriculture by reversing pesticide and herbicide resistance in insects and weeds, and control damaging invasive species. However, the possibility of unwanted ecological effects and near-certainty of spread across political borders demand careful assessment of each potential application. We call for thoughtful, inclusive, and well-informed public discussions to explore the responsible use of this currently theoretical technology.
Collapse
Affiliation(s)
- Kevin M Esvelt
- Synthetic Biology
Platform, Wyss Institute for Biologically Inspired
Engineering, Harvard Medical School, Boston, United
States
| | - Andrea L Smidler
- Synthetic Biology
Platform, Wyss Institute for Biologically Inspired
Engineering, Harvard Medical School, Boston, United
States; Department of Immunology and
Infectious Diseases, Harvard School of Public
Health, Boston, United States
| | - Flaminia Catteruccia
- Department of Immunology and Infectious
Diseases, Harvard School of Public
Health, Boston, United States;
Dipartimento di Medicina Sperimentale e Scienze
Biochimiche, Università degli Studi di
Perugia, Terni, Italy
| | - George M Church
- Synthetic Biology
Platform, Wyss Institute for Biologically Inspired
Engineering, Harvard Medical School, Boston, United
States
| |
Collapse
|
32
|
Feasible introgression of an anti-pathogen transgene into an urban mosquito population without using gene-drive. PLoS Negl Trop Dis 2014; 8:e2827. [PMID: 24992213 PMCID: PMC4081001 DOI: 10.1371/journal.pntd.0002827] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 03/13/2014] [Indexed: 11/19/2022] Open
Abstract
Background Introgressing anti-pathogen constructs into wild vector populations could reduce disease transmission. It is generally assumed that such introgression would require linking an anti-pathogen gene with a selfish genetic element or similar technologies. Yet none of the proposed transgenic anti-pathogen gene-drive mechanisms are likely to be implemented as public health measures in the near future. Thus, much attention now focuses instead on transgenic strategies aimed at mosquito population suppression, an approach generally perceived to be practical. By contrast, aiming to replace vector competent mosquito populations with vector incompetent populations by releasing mosquitoes carrying a single anti-pathogen gene without a gene-drive mechanism is widely considered impractical. Methodology/Principal Findings Here we use Skeeter Buster, a previously published stochastic, spatially explicit model of Aedes aegypti to investigate whether a number of approaches for releasing mosquitoes with only an anti-pathogen construct would be efficient and effective in the tropical city of Iquitos, Peru. To assess the performance of such releases using realistic release numbers, we compare the transient and long-term effects of this strategy with two other genetic control strategies that have been developed in Ae. aegypti: release of a strain with female-specific lethality, and a strain with both female-specific lethality and an anti-pathogen gene. We find that releasing mosquitoes carrying only an anti-pathogen construct can substantially decrease vector competence of a natural population, even at release ratios well below that required for the two currently feasible alternatives that rely on population reduction. Finally, although current genetic control strategies based on population reduction are compromised by immigration of wild-type mosquitoes, releasing mosquitoes carrying only an anti-pathogen gene is considerably more robust to such immigration. Conclusions/Significance Contrary to the widely held view that transgenic control programs aimed at population replacement require linking an anti-pathogen gene to selfish genetic elements, we find releasing mosquitoes in numbers much smaller than those considered necessary for transgenic population reduction can result in comparatively rapid and robust population replacement. In light of this non-intuitive result, directing efforts to improve rearing capacity and logistical support for implementing releases, and reducing the fitness costs of existing recombinant technologies, may provide a viable, alternative route to introgressing anti-pathogen transgenes under field conditions. Dengue is transmitted by the Aedes aegypti mosquito. Releases of genetically sterile males have been shown to reduce wild mosquito numbers. An alternative approach is to release mosquitoes carrying genes blocking dengue transmission. It is often assumed that spreading such genes in mosquito populations requires using selfish genetic elements (SGEs - genes that are inherited at higher rates than other genes in the genome). Absent such techniques, the release numbers required to transform mosquito populations is seen as prohibitive. However, strategies that rely on SGEs or related technologies to spread anti-dengue genes are unlikely to be implemented in the near future as a public health response. Using a biologically detailed model of Aedes aegypti populations dynamics and genetics, we assess how many mosquitoes need to be released to spread an anti-pathogen gene in an urban environment without using an SGE. We compare release numbers with two other, currently feasible transgenic strategies: releasing mosquitoes with female-lethal genes, and mosquitoes carrying both female-lethal and anti-pathogen genes. We show that even without using SGEs, releasing mosquitoes in numbers much smaller than those considered necessary for transgenic population reduction can effectively reduce the ability of Aedes aegypti to spread dengue.
Collapse
|
33
|
Pandey PK, Kass PH, Soupir ML, Biswas S, Singh VP. Contamination of water resources by pathogenic bacteria. AMB Express 2014; 4:51. [PMID: 25006540 PMCID: PMC4077002 DOI: 10.1186/s13568-014-0051-x] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 05/27/2014] [Indexed: 01/22/2023] Open
Abstract
Water-borne pathogen contamination in water resources and related diseases are a major water quality concern throughout the world. Increasing interest in controlling water-borne pathogens in water resources evidenced by a large number of recent publications clearly attests to the need for studies that synthesize knowledge from multiple fields covering comparative aspects of pathogen contamination, and unify them in a single place in order to present and address the problem as a whole. Providing a broader perceptive of pathogen contamination in freshwater (rivers, lakes, reservoirs, groundwater) and saline water (estuaries and coastal waters) resources, this review paper attempts to develop the first comprehensive single source of existing information on pathogen contamination in multiple types of water resources. In addition, a comprehensive discussion describes the challenges associated with using indicator organisms. Potential impacts of water resources development on pathogen contamination as well as challenges that lie ahead for addressing pathogen contamination are also discussed.
Collapse
|
34
|
Reeves RG, Bryk J, Altrock PM, Denton JA, Reed FA. First steps towards underdominant genetic transformation of insect populations. PLoS One 2014; 9:e97557. [PMID: 24844466 PMCID: PMC4028297 DOI: 10.1371/journal.pone.0097557] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/08/2014] [Indexed: 11/18/2022] Open
Abstract
The idea of introducing genetic modifications into wild populations of insects to stop them from spreading diseases is more than 40 years old. Synthetic disease refractory genes have been successfully generated for mosquito vectors of dengue fever and human malaria. Equally important is the development of population transformation systems to drive and maintain disease refractory genes at high frequency in populations. We demonstrate an underdominant population transformation system in Drosophila melanogaster that has the property of being both spatially self-limiting and reversible to the original genetic state. Both population transformation and its reversal can be largely achieved within as few as 5 generations. The described genetic construct {Ud} is composed of two genes; (1) a UAS-RpL14.dsRNA targeting RNAi to a haploinsufficient gene RpL14 and (2) an RNAi insensitive RpL14 rescue. In this proof-of-principle system the UAS-RpL14.dsRNA knock-down gene is placed under the control of an Actin5c-GAL4 driver located on a different chromosome to the {Ud} insert. This configuration would not be effective in wild populations without incorporating the Actin5c-GAL4 driver as part of the {Ud} construct (or replacing the UAS promoter with an appropriate direct promoter). It is however anticipated that the approach that underlies this underdominant system could potentially be applied to a number of species.
Collapse
Affiliation(s)
- R. Guy Reeves
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- * E-mail:
| | - Jarosław Bryk
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Philipp M. Altrock
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jai A. Denton
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Floyd A. Reed
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
35
|
Franz AWE, Sanchez-Vargas I, Raban RR, Black WC, James AA, Olson KE. Fitness impact and stability of a transgene conferring resistance to dengue-2 virus following introgression into a genetically diverse Aedes aegypti strain. PLoS Negl Trop Dis 2014; 8:e2833. [PMID: 24810399 PMCID: PMC4014415 DOI: 10.1371/journal.pntd.0002833] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/17/2014] [Indexed: 01/11/2023] Open
Abstract
In 2006, we reported a mariner (Mos1)-transformed Aedes aegypti line, Carb77, which was highly resistant to dengue-2 virus (DENV2). Carb77 mosquitoes expressed a DENV2-specific inverted-repeat (IR) RNA in midgut epithelial cells after ingesting an infectious bloodmeal. The IR-RNA formed double-stranded DENV2-derived RNA, initiating an intracellular antiviral RNA interference (RNAi) response. However, Carb77 mosquitoes stopped expressing the IR-RNA after 17 generations in culture and lost their DENV2-refractory phenotype. In the current study, we generated new transgenic lines having the identical transgene as Carb77. One of these lines, Carb109M, has been genetically stable and refractory to DENV2 for >33 generations. Southern blot analysis identified two transgene integration sites in Carb109M. Northern blot analysis detected abundant, transient expression of the IR-RNA 24 h after a bloodmeal. Carb109M mosquitoes were refractory to different DENV2 genotypes but not to other DENV serotypes. To further test fitness and stability, we introgressed the Carb109M transgene into a genetically diverse laboratory strain (GDLS) by backcrossing for five generations and selecting individuals expressing the transgene's EGFP marker in each generation. Comparison of transgene stability in replicate backcross 5 (BC5) lines versus BC1 control lines demonstrated that backcrossing dramatically increased transgene stability. We subjected six BC5 lines to five generations of selection based on EGFP marker expression to increase the frequency of the transgene prior to final family selection. Comparison of the observed transgene frequencies in the six replicate lines relative to expectations from Fisher's selection model demonstrated lingering fitness costs associated with either the transgene or linked deleterious genes. Although minimal fitness loss (relative to GDLS) was manifest in the final family selection stage, we were able to select homozygotes for the transgene in one family, Carb109M/GDLS.BC5.HZ. This family has been genetically stable and DENV2 refractory for multiple generations. Carb109M/GDLS.BC5.HZ represents an important line for testing proof-of-principle vector population replacement. Expression of a DENV2 sequence-derived IR RNA in the mosquito midgut initiates an antiviral intracellular RNAi response that efficiently blocks DENV2 infection and profoundly impairs vector competence for that virus in Aedes aegypti. DENV2-specific IR RNA expression in the Carb109M strain has maintained the RNAi-based, refractory phenotype for 33 generations in laboratory culture. The two transgene integration sites were stable after multiple generations and following introgression into a genetically-diverse (GDLS) Ae. aegypti population. Introgression of the transgene into the GDLS genetic background changed GDLS from a DENV2 susceptible phenotype to a DENV2 refractory phenotype. The DENV2 refractory homozygous line, Carb109M/GDLS.BC5.HZ, exhibits (relative to GDLS) minimal fitness loss associated with the transgene. This line could be a potential candidate for proof-of-principle field studies.
Collapse
Affiliation(s)
- Alexander W. E. Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Irma Sanchez-Vargas
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Robyn R. Raban
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - William C. Black
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Anthony A. James
- Departments of Microbiology and Molecular Genetics and Molecular Biology and Biochemistry, University of California, Irvine, California, United States of America
| | - Ken E. Olson
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
36
|
Manoukis NC, Butail S, Diallo M, Ribeiro JM, Paley DA. Stereoscopic video analysis of Anopheles gambiae behavior in the field: challenges and opportunities. Acta Trop 2014; 132 Suppl:S80-5. [PMID: 23850507 DOI: 10.1016/j.actatropica.2013.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/18/2013] [Accepted: 06/29/2013] [Indexed: 10/26/2022]
Abstract
Advances in our ability to localize and track individual swarming mosquitoes in the field via stereoscopic image analysis have enabled us to test long-standing ideas about individual male behavior and directly observe coupling. These studies further our fundamental understanding of the reproductive biology of mosquitoes. In addition, our analyses using stereoscopic video of swarms of the African malaria vector Anopheles gambiae have produced results that should be relevant to any "release-based" method of control including Sterile Insect Technique (SIT) and genetically modified male mosquitoes (GMM). The relevance of the results is primarily due to the fact that any mosquito vectors released for control are almost certainly going to be males; further, for SIT, GMM or similar approaches to be successful, the released males will have to successfully locate swarms and then mate with wild females. Thus, understanding and potentially manipulating the mating process could play a key role in future control programs. Our experience points to special challenges created by stereoscopic video of swarms. These include the expected technical difficulties of capturing usable images of mosquitoes in the field, and creating an automated tracking system to enable generation of large numbers of three dimensional tracks over many seconds of footage. Once the data are collected, visualization and application of appropriate statistical and analytic methods also are required. We discuss our recent progress on these problems, give an example of a statistical approach to quantify individual male movement in a swarm with some novel results, and suggest further studies incorporating experimental manipulation and three dimensional localization and tracking of individual mosquitoes in wild swarms.
Collapse
|
37
|
A regulatory structure for working with genetically modified mosquitoes: lessons from Mexico. PLoS Negl Trop Dis 2014; 8:e2623. [PMID: 24626164 PMCID: PMC3952825 DOI: 10.1371/journal.pntd.0002623] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
38
|
Alphey N, Bonsall MB. Interplay of population genetics and dynamics in the genetic control of mosquitoes. J R Soc Interface 2014; 11:20131071. [PMID: 24522781 PMCID: PMC3928937 DOI: 10.1098/rsif.2013.1071] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Some proposed genetics-based vector control methods aim to suppress or eliminate a mosquito population in a similar manner to the sterile insect technique. One approach under development in Anopheles mosquitoes uses homing endonuclease genes (HEGs)—selfish genetic elements (inherited at greater than Mendelian rate) that can spread rapidly through a population even if they reduce fitness. HEGs have potential to drive introduced traits through a population without large-scale sustained releases. The population genetics of HEG-based systems has been established using discrete-time mathematical models. However, several ecologically important aspects remain unexplored. We formulate a new continuous-time (overlapping generations) combined population dynamic and genetic model and apply it to a HEG that targets and knocks out a gene that is important for survival. We explore the effects of density dependence ranging from undercompensating to overcompensating larval competition, occurring before or after HEG fitness effects, and consider differences in competitive effect between genotypes (wild-type, heterozygotes and HEG homozygotes). We show that population outcomes—elimination, suppression or loss of the HEG—depend crucially on the interaction between these ecological aspects and genetics, and explain how the HEG fitness properties, the homing rate (drive) and the insect's life-history parameters influence those outcomes.
Collapse
Affiliation(s)
- Nina Alphey
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, , South Parks Road, Oxford OX1 3PS, UK
| | | |
Collapse
|
39
|
Boëte C, Agusto FB, Reeves RG. Impact of mating behaviour on the success of malaria control through a single inundative release of transgenic mosquitoes. J Theor Biol 2014; 347:33-43. [PMID: 24440174 DOI: 10.1016/j.jtbi.2014.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/07/2014] [Accepted: 01/07/2014] [Indexed: 12/25/2022]
Abstract
Transgenic mosquitoes are a potential tool for the control or eradication of insect-vectored diseases. For malaria, one possible strategy relies on the introduction of malaria-refractory transgenes into wild Anopheles mosquito populations that would limit their capacity to transmit the disease. The success of such an approach obviously depends on a variety of factors. By developing a model that integrates both population genetics and epidemiology, we explore how mosquito mating preferences and the cost and efficacy of refractoriness affects the long-term prevalence of malaria in humans subsequent to a single generation inundative release of male transgenic mosquitoes. As may be intuitively expected, mating discrimination by wild-type individuals against transgenic ones generally reduces the probability that transgenes become stably established at a high frequency in mosquito populations. We also show that in circumstances where transgenic individuals exhibit some degree of discrimination against wild-type individuals, this can favour the spread of refractory alleles and lead to a significant reduction in malaria prevalence in the human population (if the efficacy of a dominant refractory mechanism exceeds at least 75%). The existence of such a non-intuitive outcome highlights the practical value of increasing the understanding of Anopheles mating preferences in the wild as a means to harness them in the implementation of population replacement approaches. Potential strategies by which previously described mating preferences of Anopheles gambiae populations could be exploited to manipulate the mate choice of transgenic release stocks are discussed.
Collapse
Affiliation(s)
- C Boëte
- UMR_D 190 "Emergence des Pathologies Virales", Aix-Marseille Université, IRD (French Institute of Research for Development), EHESP (French School of Public Health), 27, Bd Jean Moulin, 13385 Marseille Cedex 5, France.
| | - F B Agusto
- Department of Mathematics and Statistics, Austin Peay State University, 601 College Street, Clarksville, 37044 TN, USA.
| | - R G Reeves
- Max Planck Institute for Evolutionary Biology, August-Thienemannstrasse 2, 24306 Plön, Germany.
| |
Collapse
|
40
|
Paton D, Touré M, Sacko A, Coulibaly MB, Traoré SF, Tripet F. Genetic and environmental factors associated with laboratory rearing affect survival and assortative mating but not overall mating success in Anopheles gambiae sensu stricto. PLoS One 2013; 8:e82631. [PMID: 24391719 PMCID: PMC3877013 DOI: 10.1371/journal.pone.0082631] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/25/2013] [Indexed: 11/24/2022] Open
Abstract
Anopheles gambiae sensu stricto, the main vector of malaria in Africa, is characterized by its vast geographical range and complex population structure. Assortative mating amongst the reproductively isolated cryptic forms that co-occur in many areas poses unique challenges for programs aiming to decrease malaria incidence via the release of sterile or genetically-modified mosquitoes. Importantly, whether laboratory-rearing affects the ability of An. gambiae individuals of a given cryptic taxa to successfully mate with individuals of their own form in field conditions is still unknown and yet crucial for mosquito-releases. Here, the independent effects of genetic and environmental factors associated with laboratory rearing on male and female survival, mating success and assortative mating were evaluated in the Mopti form of An. gambiae over 2010 and 2011. In semi-field enclosures experiments and despite strong variation between years, the overall survival and mating success of male and female progeny from a laboratory strain was not found to be significantly lower than those of the progeny of field females from the same population. Adult progeny from field-caught females reared at the larval stage in the laboratory and from laboratory females reared outdoors exhibited a significant decrease in survival but not in mating success. Importantly, laboratory individuals reared as larvae indoors were unable to mate assortatively as adults, whilst field progeny reared either outdoors or in the laboratory, as well as laboratory progeny reared outdoors all mated significantly assortatively. These results highlight the importance of genetic and environment interactions for the development of An. gambiae's full mating behavioral repertoire and the challenges this creates for mosquito rearing and release-based control strategies.
Collapse
Affiliation(s)
- Doug Paton
- Centre for Applied Entomology and Parasitology, Institute for Science and Technology in Medicine, Keele University, Staffordshire, United Kingdom
| | - Mahamoudou Touré
- Malaria Research and Training Centre, Faculty of Medicine Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Adama Sacko
- Malaria Research and Training Centre, Faculty of Medicine Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mamadou B. Coulibaly
- Malaria Research and Training Centre, Faculty of Medicine Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sékou F. Traoré
- Malaria Research and Training Centre, Faculty of Medicine Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Frédéric Tripet
- Centre for Applied Entomology and Parasitology, Institute for Science and Technology in Medicine, Keele University, Staffordshire, United Kingdom
| |
Collapse
|
41
|
Okamoto KW, Robert MA, Lloyd AL, Gould F. A reduce and replace strategy for suppressing vector-borne diseases: insights from a stochastic, spatial model. PLoS One 2013; 8:e81860. [PMID: 24376506 PMCID: PMC3869666 DOI: 10.1371/journal.pone.0081860] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/16/2013] [Indexed: 12/22/2022] Open
Abstract
Two basic strategies have been proposed for using transgenic Aedes aegypti mosquitoes to decrease dengue virus transmission: population reduction and population replacement. Here we model releases of a strain of Ae. aegypti carrying both a gene causing conditional adult female mortality and a gene blocking virus transmission into a wild population to assess whether such releases could reduce the number of competent vectors. We find this “reduce and replace” strategy can decrease the frequency of competent vectors below 50% two years after releases end. Therefore, this combined approach appears preferable to releasing a strain carrying only a female-killing gene, which is likely to merely result in temporary population suppression. However, the fixation of anti-pathogen genes in the population is unlikely. Genetic drift at small population sizes and the spatially heterogeneous nature of the population recovery after releases end prevent complete replacement of the competent vector population. Furthermore, releasing more individuals can be counter-productive in the face of immigration by wild-type mosquitoes, as greater population reduction amplifies the impact wild-type migrants have on the long-term frequency of the anti-pathogen gene. We expect the results presented here to give pause to expectations for driving an anti-pathogen construct to fixation by relying on releasing individuals carrying this two-gene construct. Nevertheless, in some dengue-endemic environments, a spatially heterogeneous decrease in competent vectors may still facilitate decreasing disease incidence.
Collapse
Affiliation(s)
- Kenichi W. Okamoto
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| | - Michael A. Robert
- Department of Mathematics and Biomathematics Graduate Program, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Alun L. Lloyd
- Department of Mathematics and Biomathematics Graduate Program, North Carolina State University, Raleigh, North Carolina, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fred Gould
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
42
|
Sawadogo SP, Costantini C, Pennetier C, Diabaté A, Gibson G, Dabiré RK. Differences in timing of mating swarms in sympatric populations of Anopheles coluzzii and Anopheles gambiae s.s. (formerly An. gambiae M and S molecular forms) in Burkina Faso, West Africa. Parasit Vectors 2013; 6:275. [PMID: 24330578 PMCID: PMC3851435 DOI: 10.1186/1756-3305-6-275] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 09/13/2013] [Indexed: 11/27/2022] Open
Abstract
Background The M and S molecular forms of Anopheles gambiae s.s. Giles appear to have speciated in West Africa and the M form is now formally named An. coluzzii Coetzee & Wilkerson sp.n. and the S form retains the nominotypical name (abbreviated here to An. gambiae). Reproductive isolation is thought to be the main barrier to hybridisation; even though both species are found in the same mating swarms, hybrid fertilisations in copulae have not been found in the study area. The aim of the study, therefore, was to determine whether differences in circadian and/or environmental control over the timing of swarming in the two species contribute to reproductive isolation. Methods The timing of male swarming in these species was recorded four nights per month over four years at five swarming sites in each of two villages. The timing of the start and end of swarming, and the concurrent environmental parameters, temperature, humidity and light intensity, were recorded for n = 20 swarms/month/species. The timing of 'spontaneous’ activity at dusk of individual An. coluzzii and An. gambiae males was video-recorded in an actograph outdoors for 21 nights. Results Of the environmental parameters considered, swarming was most strongly correlated with sunset (r2 > 0.946). Anopheles gambiae started and stopped swarming earlier than An. coluzzii (3:35 ± 0:68 min:sec and 4:51 ± 1:21, respectively), and the mean duration of swarming was 23:37 ± 0:33 for An. gambiae and 21:39 ± 0:33 for An. coluzzii. Accordingly, in principle, whenever both species swarm over the same marker, a mean of 15.3 ± 3.1% of An. gambiae swarming would occur before An. coluzzii males arrived, and 19.5 ± 4.55% of An. coluzzii swarming would occurred after An. gambiae males had stopped swarming. These results are consistent with the finding that An. gambiae males became active in the actograph 09:35 ± 00:22 min:sec earlier than An. coluzzii males. Conclusions The timing of swarming and spontaneous activity at dusk are primarily under circadian control, with the phase linked closely to sunset throughout the year. The mating activity of these two species is temporally segregated for 15-20% of the swarming period, which may contribute to the observed reproductive isolation of these species in local sympatric populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Roch K Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS)/Centre Muraz, Bobo-Dioulasso 01 BP 545, Burkina Faso.
| |
Collapse
|
43
|
Tetreau G, Chandor-Proust A, Faucon F, Stalinski R, Akhouayri I, Prud'homme SM, Raveton M, Reynaud S. Contrasting patterns of tolerance between chemical and biological insecticides in mosquitoes exposed to UV-A. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:389-397. [PMID: 23911355 DOI: 10.1016/j.aquatox.2013.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/27/2013] [Accepted: 07/08/2013] [Indexed: 06/02/2023]
Abstract
Mosquitoes are vectors of major human diseases, such as malaria, dengue or yellow fever. Because no efficient treatments or vaccines are available for most of these diseases, control measures rely mainly on reducing mosquito populations by the use of insecticides. Numerous biotic and abiotic factors are known to modulate the efficacy of insecticides used in mosquito control. Mosquito breeding sites vary from opened to high vegetation covered areas leading to a large ultraviolet gradient exposure. This ecological feature may affect the general physiology of the insect, including the resistance status against insecticides. In the context of their contrasted breeding sites, we assessed the impact of low-energetic ultraviolet exposure on mosquito sensitivity to biological and chemical insecticides. We show that several mosquito detoxification enzyme activities (cytochrome P450, glutathione S-transferases, esterases) were increased upon low-energy UV-A exposure. Additionally, five specific genes encoding detoxification enzymes (CYP6BB2, CYP6Z7, CYP6Z8, GSTD4, and GSTE2) previously shown to be involved in resistance to chemical insecticides were found over-transcribed in UV-A exposed mosquitoes, revealed by RT-qPCR experiments. More importantly, toxicological bioassays revealed that UV-exposed mosquitoes were more tolerant to four main chemical insecticide classes (DDT, imidacloprid, permethrin, temephos), whereas the bioinsecticide Bacillus thuringiensis subsp. israelensis (Bti) appeared more toxic. The present article provides the first experimental evidence of the capacity of low-energy UV-A to increase mosquito tolerance to major chemical insecticides. This is also the first time that a metabolic resistance to chemical insecticides is linked to a higher susceptibility to a bioinsecticide. These results support the use of Bti as an efficient alternative to chemical insecticides when a metabolic resistance to chemicals has been developed by mosquitoes.
Collapse
Affiliation(s)
- Guillaume Tetreau
- Laboratoire d'Ecologie Alpine, LECA-UMR 5553, Université de Grenoble 1, BP 53, 38041 Grenoble cedex 09, France.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Yamada H, Benedict MQ, Malcolm CA, Oliva CF, Soliban SM, Gilles JRL. Genetic sex separation of the malaria vector, Anopheles arabiensis, by exposing eggs to dieldrin. Malar J 2012; 11:208. [PMID: 22713308 PMCID: PMC3407755 DOI: 10.1186/1475-2875-11-208] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 06/19/2012] [Indexed: 11/30/2022] Open
Abstract
Background The sterile insect technique (SIT) has been used with success for suppressing or eliminating important insect pests of agricultural or veterinary importance. In order to develop SIT for mosquitoes, female elimination prior to release is essential as they are the disease-transmitting sex. A genetic sexing strain (GSS) of Anopheles arabiensis was created based on resistance to dieldrin, and methods of sex separation at the egg stage were developed. The use of this strain for SIT will require sexually sterile males: useful radiation doses for this purpose were determined for pupae and adults. Methods For the creation of the sexing strain, dieldrin-resistant males were irradiated with 40 Gy using a 60Co source and were subsequently crossed to homozygous susceptible virgin females. Individual families were screened for semi-sterility and for male resistance to dieldrin. For sex separation, eggs of a resulting GSS, ANO IPCL1, were exposed to varying concentrations of dieldrin for different durations. Percent hatch, larval survival, and male and female emergence were recorded. Radiation induced sterility was determined following adult and pupa exposure to gamma rays at 0–105 Gy. Mortality induced by dieldrin treatment, and levels of sterility post radiation were investigated. Results ANO IPCL1 contains a complex chromosome aberration that pseudo-links the male-determining Y chromosome and dieldrin resistance, conferring high natural semi-sterility. Exposure of eggs to 2, 3, and 4 ppm dieldrin solutions resulted in complete female elimination without a significant decrease of male emergence compared to the controls. A dose of 75 Gy reduced the fertility to 3.8 and 6.9% when males were irradiated as pupae or adults respectively, but the proportions of progeny of these males reaching adulthood were 0.6 and 1.5% respectively Conclusion The GSS ANO IPCL1 was shown to be a suitable strain for further testing for SIT though high semi-sterility is a disadvantage for mass rearing.
Collapse
Affiliation(s)
- Hanano Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
45
|
Valerio L, Facchinelli L, Ramsey JM, Bond JG, Scott TW. Dispersal of male Aedes aegypti in a coastal village in southern Mexico. Am J Trop Med Hyg 2012; 86:665-76. [PMID: 22492152 DOI: 10.4269/ajtmh.2012.11-0513] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Most Aedes aegypti dispersal studies have focused on females because of their central role in dengue virus transmission. Only a few mark-release-recapture (MRR) studies provided insights into male Ae. aegypti dispersal. To fill this knowledge gap, we conducted five male Ae. aegypti MRR experiments in a coastal village in southern Mexico. Small and large male cohorts were marked with fluorescent dusts, released outside buildings, and recaptures were carried out by using backpack aspirators. Recapture rates ranged between 0.35% and 6.55% and median distance traveled was 12-166 meters. A statistically significant difference in median distance traveled with large males dispersing farther than small ones was detected only in one experiment (MRR5: U = 3.5, P < 0.01). Male dispersal data will be useful for constructing and estimating parameter values and validating models that will be used to plan the most effective release strategies for genetically modified male Ae. aegypti.
Collapse
Affiliation(s)
- Laura Valerio
- Pasteur Institute-Cenci Bolognetti Foundation, University of Rome Sapienza, Italy.
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Helinski MEH, Valerio L, Facchinelli L, Scott TW, Ramsey J, Harrington LC. Evidence of polyandry for Aedes aegypti in semifield enclosures. Am J Trop Med Hyg 2012; 86:635-41. [PMID: 22492148 PMCID: PMC3403777 DOI: 10.4269/ajtmh.2012.11-0225] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 12/14/2011] [Indexed: 11/07/2022] Open
Abstract
Female Aedes aegypti are assumed to be primarily monandrous (i.e., mate only once in their lifetime), but true estimates of mating frequency have not been determined outside the laboratory. To assess polyandry in Ae. aegypti with first-generation progeny from wild mosquitoes, stable isotope semen-labeled males ((15)N or (13)C) were allowed to mate with unlabeled females in semifield enclosures (22.5 m(3)) in a dengue-endemic area in southern Mexico. On average, 14% of females were positive for both labels, indicating that they received semen from more than one male. Our results provide evidence of a small but potentially significant rate of multiple mating within a 48-hour period and provide an approach for future open-field studies of polyandry in this species. Polyandry has implications for understanding mosquito ecology, evolution, and reproductive behavior as well as genetic strategies for mosquito control.
Collapse
|
48
|
Liebman KA, Stoddard ST, Morrison AC, Rocha C, Minnick S, Sihuincha M, Russell KL, Olson JG, Blair PJ, Watts DM, Kochel T, Scott TW. Spatial dimensions of dengue virus transmission across interepidemic and epidemic periods in Iquitos, Peru (1999-2003). PLoS Negl Trop Dis 2012; 6:e1472. [PMID: 22363822 PMCID: PMC3283551 DOI: 10.1371/journal.pntd.0001472] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 11/29/2011] [Indexed: 11/18/2022] Open
Abstract
Background Knowledge of spatial patterns of dengue virus (DENV) infection is important for understanding transmission dynamics and guiding effective disease prevention strategies. Because movement of infected humans and mosquito vectors plays a role in the spread and persistence of virus, spatial dimensions of transmission can range from small household foci to large community clusters. Current understanding is limited because past analyses emphasized clinically apparent illness and did not account for the potentially large proportion of inapparent infections. In this study we analyzed both clinically apparent and overall infections to determine the extent of clustering among human DENV infections. Methodology/Principal Findings We conducted spatial analyses at global and local scales, using acute case and seroconversion data from a prospective longitudinal cohort in Iquitos, Peru, from 1999–2003. Our study began during a period of interepidemic DENV-1 and DENV-2 transmission and transitioned to epidemic DENV-3 transmission. Infection status was determined by seroconversion based on plaque neutralization testing of sequential blood samples taken at approximately six-month intervals, with date of infection assigned as the middate between paired samples. Each year was divided into three distinct seasonal periods of DENV transmission. Spatial heterogeneity was detected in baseline seroprevalence for DENV-1 and DENV-2. Cumulative DENV-3 seroprevalence calculated by trimester from 2001–2003 was spatially similar to preexisting DENV-1 and DENV-2 seroprevalence. Global clustering (case-control Ripley's K statistic) appeared at radii of ∼200–800 m. Local analyses (Kuldorf spatial scan statistic) identified eight DENV-1 and 15 DENV-3 clusters from 1999–2003. The number of seroconversions per cluster ranged from 3–34 with radii from zero (a single household) to 750 m; 65% of clusters had radii >100 m. No clustering was detected among clinically apparent infections. Conclusions/Significance Seroprevalence of previously circulating DENV serotypes can be a predictor of transmission risk for a different invading serotype and, thus, identify targets for strategically placed surveillance and intervention. Seroprevalence of a specific serotype is also important, but does not preclude other contributing factors, such as mosquito density, in determining where transmission of that virus will occur. Regardless of the epidemiological context or virus serotype, human movement appears to be an important factor in defining the spatial dimensions of DENV transmission and, thus, should be considered in the design and evaluation of surveillance and intervention strategies. To target prevention and control strategies for dengue fever, it is essential to understand how the virus travels through the city. We report spatial analyses of dengue infections from a study monitoring school children and adult family members for dengue infection at six-month intervals from 1999–2003, in the Amazonian city of Iquitos, Peru. At the beginning of the study, only DENV serotypes 1 and 2 were circulating. Clusters of infections of these two viruses were concentrated in the northern region of the city, where mosquito indices and previous DENV infection were both high. In 2002, DENV-3 invaded the city, replacing DENV-1 and -2 as the dominant strain. During the invasion process, the virus spread rapidly across the city, at low levels. After this initial phase, clusters of infection appeared first in the northern region of the city, where clusters of DENV-1 and DENV-2 had occurred in prior years. Most of the clusters we identified had radii >100 meters, indicating that targeted or reactive treatment of these high-risk areas might be an effective proactive intervention strategy. Our results also help explain why vector control within 100 m of a dengue case is often not successful for large-scale disease prevention.
Collapse
Affiliation(s)
- Kelly A Liebman
- Department of Entomology, University of California Davis, Davis, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Facchinelli L, Valerio L, Bond JG, Wise de Valdez MR, Harrington LC, Ramsey JM, Casas-Martinez M, Scott TW. Development of a semi-field system for contained field trials with Aedes aegypti in southern Mexico. Am J Trop Med Hyg 2011; 85:248-56. [PMID: 21813843 DOI: 10.4269/ajtmh.2011.10-0426] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract. Development of new genetic approaches to either interfere with the ability of mosquitoes to transmit dengue virus or to reduce vector population density requires progressive evaluation from the laboratory to contained field trials, before open field release. Trials in contained outdoor facilities are an important part of this process because they can be used to evaluate the effectiveness and reliability of modified strains in settings that include natural environmental variations without releasing mosquitoes into the open field. We describe a simple and cost-effective semi-field system designed to study Aedes aegypti carrying a dominant lethal gene (fsRIDL) in semi-field conditions. We provide a protocol for establishing, maintaining, and monitoring stable Ae. aegypti population densities inside field cages.
Collapse
Affiliation(s)
- Luca Facchinelli
- Department of Entomology, University of California, Davis, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Scientists and public involvement: a consultation on the relation between malaria, vector control and transgenic mosquitoes. Trans R Soc Trop Med Hyg 2011; 105:704-10. [PMID: 21955738 DOI: 10.1016/j.trstmh.2011.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 08/12/2011] [Accepted: 08/12/2011] [Indexed: 11/21/2022] Open
Abstract
Among the hopes for vector-based malaria control, the use of transgenic mosquitoes able to kill malaria parasites is seen as a potential way to interrupt malaria transmission. While this potential solution is gaining some support, the ethical and social aspects related to this high-tech method remain largely unexplored and underestimated. Related to those latter points, the aim of the present survey is to determine how scientists working on malaria and its vector mosquitoes perceive public opinion and how they evaluate public consultations on their research. This study has been performed through a questionnaire addressing questions related to the type of research, the location, the nationality and the perception of the public involvement by scientists. The results suggest that even if malaria researchers agree to interact with a non-scientific audience, they (especially the ones from the global North) remain quite reluctant to have their research project submitted in a jargon-free version to the evaluation and the prior-agreement by a group of non-specialists. The study, by interrogating the links between the scientific community and the public from the perspective of the scientists, reveals the importance of fostering structures and processes that could lead to a better involvement of a non specialist public in the actual debates linking scientific, technological and public health issues in Africa.
Collapse
|