1
|
Agam O, Braun E. Universal calcium fluctuations in Hydramorphogenesis. Phys Biol 2023; 20:066002. [PMID: 37696269 DOI: 10.1088/1478-3975/acf8a4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Understanding the collective physical processes that drive robust morphological transitions in animal development necessitates the characterization of the relevant fields involved in morphogenesis. Calcium (Ca2+) is recognized as one such field. In this study, we demonstrate that the spatial fluctuations of Ca2+duringHydraregeneration exhibit universal characteristics. To investigate this phenomenon, we employ two distinct controls, an external electric field andheptanol, a gap junction-blocking drug. Both lead to the modulation of the Ca2+activity and a reversible halting of the regeneration process. The application of an electric field enhances Ca2+activity in theHydra's tissue and increases its spatial correlations, while the administration ofheptanolinhibits its activity and diminishes the spatial correlations. Remarkably, the statistical characteristics of Ca2+spatial fluctuations, including the coefficient of variation and skewness, manifest universal shape distributions across tissue samples and conditions. We introduce a field-theoretic model, describing fluctuations in a tilted double-well potential, which successfully captures these universal properties. Moreover, our analysis reveals that the Ca2+activity is spatially localized, and theHydra's tissue operates near the onset of bistability, where the local Ca2+activity fluctuates between low and high excited states in distinct regions. These findings highlight the prominent role of the Ca2+field inHydramorphogenesis and provide insights into the underlying mechanisms governing robust morphological transitions.
Collapse
Affiliation(s)
- Oded Agam
- The Racah Institute of Physics, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Erez Braun
- Department of Physics and Network Biology Research Laboratories, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
2
|
Klimovich A, Giacomello S, Björklund Å, Faure L, Kaucka M, Giez C, Murillo-Rincon AP, Matt AS, Willoweit-Ohl D, Crupi G, de Anda J, Wong GCL, D'Amato M, Adameyko I, Bosch TCG. Prototypical pacemaker neurons interact with the resident microbiota. Proc Natl Acad Sci U S A 2020; 117:17854-17863. [PMID: 32647059 PMCID: PMC7395494 DOI: 10.1073/pnas.1920469117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Pacemaker neurons exert control over neuronal circuit function by their intrinsic ability to generate rhythmic bursts of action potential. Recent work has identified rhythmic gut contractions in human, mice, and hydra to be dependent on both neurons and the resident microbiota. However, little is known about the evolutionary origin of these neurons and their interaction with microbes. In this study, we identified and functionally characterized prototypical ANO/SCN/TRPM ion channel-expressing pacemaker cells in the basal metazoan Hydra by using a combination of single-cell transcriptomics, immunochemistry, and functional experiments. Unexpectedly, these prototypical pacemaker neurons express a rich set of immune-related genes mediating their interaction with the microbial environment. Furthermore, functional experiments gave a strong support to a model of the evolutionary emergence of pacemaker cells as neurons using components of innate immunity to interact with the microbial environment and ion channels to generate rhythmic contractions.
Collapse
Affiliation(s)
- Alexander Klimovich
- Department of Cell and Developmental Biology, Zoological Institute, University of Kiel, D-24118 Kiel, Germany;
| | - Stefania Giacomello
- Department of Biochemistry and Biophysics, National Infrastructure of Sweden, Science for Life Laboratory, Stockholm University, 17121 Solna, Sweden
- Department of Gene Technology, Science for Life Laboratory, Kungligia Tekniska Högskolan Royal Institute of Technology, 17121 Solna, Sweden
| | - Åsa Björklund
- Department of Cell and Molecular Biology, National Infrastructure of Sweden, Science for Life Laboratory, Uppsala University, 75237 Uppsala, Sweden
| | - Louis Faure
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria
| | - Marketa Kaucka
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, SH 24306 Plön, Germany
| | - Christoph Giez
- Department of Cell and Developmental Biology, Zoological Institute, University of Kiel, D-24118 Kiel, Germany
| | - Andrea P Murillo-Rincon
- Department of Cell and Developmental Biology, Zoological Institute, University of Kiel, D-24118 Kiel, Germany
| | - Ann-Sophie Matt
- Department of Cell and Developmental Biology, Zoological Institute, University of Kiel, D-24118 Kiel, Germany
| | - Doris Willoweit-Ohl
- Department of Cell and Developmental Biology, Zoological Institute, University of Kiel, D-24118 Kiel, Germany
| | - Gabriele Crupi
- Department of Cell and Developmental Biology, Zoological Institute, University of Kiel, D-24118 Kiel, Germany
| | - Jaime de Anda
- Department of Bioengineering, California NanoSystems Institute, University of California, Los Angeles, CA 90095-1600
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, CA 90095-1600
| | - Gerard C L Wong
- Department of Bioengineering, California NanoSystems Institute, University of California, Los Angeles, CA 90095-1600
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, CA 90095-1600
| | - Mauro D'Amato
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Igor Adameyko
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Thomas C G Bosch
- Department of Cell and Developmental Biology, Zoological Institute, University of Kiel, D-24118 Kiel, Germany;
| |
Collapse
|
3
|
Ilkhani S, Moradi A, Aliaghaei A, Norouzian M, Abdi S, Rojhani E, Ebadinejad A, Sajadi E, Abdollahifar M. Spatial arrangement of testicular cells disrupted by transient scrotal hyperthermia and subsequent impairment of spermatogenesis. Andrologia 2020; 52:e13664. [DOI: 10.1111/and.13664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 02/02/2023] Open
Affiliation(s)
- Saba Ilkhani
- Department of Biology and Anatomical Sciences School of Medicine Shahid Beheshti University Tehran Iran
| | - Ali Moradi
- Department of Biology and Anatomical Sciences School of Medicine Shahid Beheshti University Tehran Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences School of Medicine Shahid Beheshti University Tehran Iran
| | - Mohsen Norouzian
- Department of Biology and Anatomical Sciences School of Medicine Shahid Beheshti University Tehran Iran
| | - Shabnam Abdi
- Department of Anatomical Sciences & Cognitive Neuroscience Faculty of Medicine Tehran Medical Sciences Islamic Azad University Tehran Iran
| | - Ehsan Rojhani
- Department of Biology and Anatomical Sciences School of Medicine Shahid Beheshti University Tehran Iran
| | - Amir Ebadinejad
- Department of Biology and Anatomical Sciences School of Medicine Shahid Beheshti University Tehran Iran
| | - Ensieh Sajadi
- Department of Biology and Anatomical Sciences School of Medicine Shahid Beheshti University Tehran Iran
| | | |
Collapse
|
4
|
Gaps and barriers: Gap junctions as a channel of communication between the soma and the germline. Semin Cell Dev Biol 2019; 97:167-171. [PMID: 31558347 DOI: 10.1016/j.semcdb.2019.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022]
Abstract
Gap junctions, expressed in most tissues of the body, allow for the cytoplasmic coupling of adjacent cells and promote tissue cooperation. Gap junctions connect also the soma and the germline in many animals, and transmit somatic signals that are crucial for germline maturation and integrity. In this review, we examine the involvement of gap junctions in the relay of information between the soma and the germline, and ask whether such communication could have consequences for the progeny. While the influence of parental experiences on descendants is of great interest, the possibility that gap junctions participate in the transmission of information across generations is largely unexplored.
Collapse
|
5
|
"Naturalization" of Routine Assisted Reproductive Technologies by In Vitro Culture of Embryos with Microvibration: Sex Ratio, Body Length, and Weight of 2,456 Live-Birth Deliveries after Transfer of 9,624 Embryos In Vitro Cultured in Static System and with Microvibration. BIOMED RESEARCH INTERNATIONAL 2018; 2017:4964053. [PMID: 29423408 PMCID: PMC5750489 DOI: 10.1155/2017/4964053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/13/2017] [Accepted: 12/05/2017] [Indexed: 11/18/2022]
Abstract
Aim was to determine whether there is any difference in the sex ratio, body length, and body weight of 2,456 deliveries after transfer of 9,624 embryos derived using in vitro culture under static and mechanical microvibration conditions. Pronuclear embryos from 4435 patients were cultured in vitro under two different conditions: without (n = 4821) and with mechanical agitation (n = 4803). Sex ratio, body length, and weight of 2,456 live-birth deliveries after transfer of 9,624 embryos were noted. The proportion of males at birth was significantly associated with mode of in vitro culture of embryos only among women aged 40 years and older. The rate "body length" was significantly associated with mode of in vitro culture of embryos only among women aged 29 and younger. In the same time, among twins, this ratio positively associated with in vitro culture of embryos under microvibration only among women aged 30-34 years as well as ≥40 years and negatively among women aged 35-39 years. It was concluded that birth weight of infants was positively associated with mode of in vitro culture of embryos under microvibration among women of all age groups. This trial registration number is ISRCTN13773904, registered 6 April 2016.
Collapse
|
6
|
Abstract
Connexins and pannexins share very similar structures and functions; they also exhibit overlapping expression in many stages of neuronal development. Here, we review evidence implicating connexin- and pannexin-mediated communication in the regulation of the birth and development of neurons, specifically Cx26, Cx30, Cx32, Cx36, Cx43, Cx45, Panx1, and Panx2. We begin by dissecting the involvement of these proteins in the generation and development of new neurons in the embryonic, postnatal, and adult brain. Next we briefly outline common mechanisms employed by both pannexins and connexins in these roles, including modulation of purinergic receptor signalling and signalling nexus functions. Throughout this review we highlight developing themes as well as important gaps in knowledge to be bridged.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- />Division of Medical Sciences, University of Victoria, Medical Sciences Building Rm 224, 3800 Finnerty Rd, Victoria, BC V8P5C2 Canada
| | - Steffany A. L. Bennett
- />Department of Biochemistry, Microbiology and Immunology, Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
7
|
Cell communication across gap junctions: a historical perspective and current developments. Biochem Soc Trans 2016; 43:450-9. [PMID: 26009190 DOI: 10.1042/bst20150056] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Collaborative communication lies at the centre of multicellular life. Gap junctions (GJs) are surface membrane structures that allow direct communication between cells. They were discovered in the 1960s following the convergence of the detection of low-resistance electrical interactions between cells and anatomical studies of intercellular contact points. GJs purified from liver plasma membranes contained a 27 kDa protein constituent; it was later named Cx32 (connexin 32) after its full sequence was determined by recombinant technology. Identification of Cx43 in heart and later by a further GJ protein, Cx26 followed. Cxs have a tetraspan organization in the membrane and oligomerize during intracellular transit to the plasma membrane; these were shown to be hexameric hemichannels (connexons) that could interact end-to-end to generate GJs at areas of cell-to-cell contact. The structure of the GJ was confirmed and refined by a combination of biochemical and structural approaches. Progress continues towards obtaining higher atomic 3D resolution of the GJ channel. Today, there are 20 and 21 highly conserved members of the Cx family in the human and mouse genomes respectively. Model organisms such as Xenopus oocytes and zebra fish are increasingly used to relate structure to function. Proteins that form similar large pore membrane channels in cells called pannexins have also been identified in chordates. Innexins form GJs in prechordates; these two other proteins, although functionally similar, are very different in amino acid sequence to the Cxs. A time line tracing the historical progression of wide ranging research in GJ biology over 60 years is mapped out. The molecular basis of channel dysfunctions in disease is becoming evident and progress towards addressing Cx channel-dependent pathologies, especially in ischaemia and tissue repair, continues.
Collapse
|
8
|
Buzgariu W, Al Haddad S, Tomczyk S, Wenger Y, Galliot B. Multi-functionality and plasticity characterize epithelial cells in Hydra. Tissue Barriers 2015; 3:e1068908. [PMID: 26716072 PMCID: PMC4681288 DOI: 10.1080/21688370.2015.1068908] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 01/09/2023] Open
Abstract
Epithelial sheets, a synapomorphy of all metazoans but porifers, are present as 2 layers in cnidarians, ectoderm and endoderm, joined at their basal side by an extra-cellular matrix named mesoglea. In the Hydra polyp, epithelial cells of the body column are unipotent stem cells that continuously self-renew and concomitantly express their epitheliomuscular features. These multifunctional contractile cells maintain homeostasis by providing a protective physical barrier, by digesting nutrients, by selecting a stable microbiota, and by rapidly closing wounds. In addition, epithelial cells are highly plastic, supporting the adaptation of Hydra to physiological and environmental changes, such as long starvation periods where survival relies on a highly dynamic autophagy flux. Epithelial cells also play key roles in developmental processes as evidenced by the organizer activity they develop to promote budding and regeneration. We propose here an integrative view of the homeostatic and developmental aspects of epithelial plasticity in Hydra.
Collapse
Affiliation(s)
- W Buzgariu
- Department of Genetics and Evolution; Institute of Genetics and Genomics in Geneva (IGe3); Faculty of Sciences; University of Geneva; Geneva, Switzerland
| | - S Al Haddad
- Department of Genetics and Evolution; Institute of Genetics and Genomics in Geneva (IGe3); Faculty of Sciences; University of Geneva; Geneva, Switzerland
| | - S Tomczyk
- Department of Genetics and Evolution; Institute of Genetics and Genomics in Geneva (IGe3); Faculty of Sciences; University of Geneva; Geneva, Switzerland
| | - Y Wenger
- Department of Genetics and Evolution; Institute of Genetics and Genomics in Geneva (IGe3); Faculty of Sciences; University of Geneva; Geneva, Switzerland
| | - B Galliot
- Department of Genetics and Evolution; Institute of Genetics and Genomics in Geneva (IGe3); Faculty of Sciences; University of Geneva; Geneva, Switzerland
| |
Collapse
|
9
|
De Mello WC. Chemical Communication between Heart Cells is Disrupted by Intracellular Renin and Angiotensin II: Implications for Heart Development and Disease. Front Endocrinol (Lausanne) 2015; 6:72. [PMID: 26042086 PMCID: PMC4437035 DOI: 10.3389/fendo.2015.00072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 04/22/2015] [Indexed: 12/11/2022] Open
Abstract
HighlightsIntracellular renin and angiotensin disrupts chemical communication in heart.Epigenetic modification of renin angiotensin aldosterone system (RAAS) and heart disease.Intracrine renin angiotensin and metabolic cooperation.Gap junction, intracellular renin and angiotensin, cellular patterns, and heart development. The finding that intracellular renin and angiotensin II (Ang II) disrupts chemical communication and impairs metabolic cooperation between cardiomyocytes induced by aldosterone, hyperglycemia, and pathological conditions like myocardial ischemia is discussed. The hypothesis is presented that epigenetic changes of the renin angiotensin aldosterone system (RAAS) are responsible for cardiovascular abnormalities, including the expression of RAAS components inside cardiac myocytes (intracrine RAAS) with serious consequences including inhibition of electrical and chemical communication in the heart, resulting in metabolic disarrangement and cardiac arrhythmias. Moreover, the inhibition of gap junctional communication induced by intracellular Ang II or renin can contribute to the selection of cellular patterns during heart development.
Collapse
Affiliation(s)
- Walmor C. De Mello
- School of Medicine, University of Puerto Rico, San Juan, PR, USA
- *Correspondence: Walmor C. De Mello, School of Medicine, UPR, Medical Sciences Campus, San Juan, PR 00936, USA,
| |
Collapse
|
10
|
Takaku Y, Hwang JS, Wolf A, Böttger A, Shimizu H, David CN, Gojobori T. Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps. Sci Rep 2014; 4:3573. [PMID: 24394722 PMCID: PMC3882753 DOI: 10.1038/srep03573] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/04/2013] [Indexed: 01/09/2023] Open
Abstract
Nerve cells and spontaneous coordinated behavior first appeared near the base of animal evolution in the common ancestor of cnidarians and bilaterians. Experiments on the cnidarian Hydra have demonstrated that nerve cells are essential for this behavior, although nerve cells in Hydra are organized in a diffuse network and do not form ganglia. Here we show that the gap junction protein innexin-2 is expressed in a small group of nerve cells in the lower body column of Hydra and that an anti-innexin-2 antibody binds to gap junctions in the same region. Treatment of live animals with innexin-2 antibody eliminates gap junction staining and reduces spontaneous body column contractions. We conclude that a small subset of nerve cells, connected by gap junctions and capable of synchronous firing, act as a pacemaker to coordinate the contraction of the body column in the absence of ganglia.
Collapse
Affiliation(s)
- Yasuharu Takaku
- Hamamatsu University School of Medicine, Department of Biology, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
- These authors contributed equally to this work
| | - Jung Shan Hwang
- Center for Information Biology-DNA Data Bank of Japan, National Institute of Genetics, Mishima 411-8540, Japan
- These authors contributed equally to this work
| | - Alexander Wolf
- Helmholtz Zentrum München - German Research Center of Environmental Health, Institute of Molecular Toxicology and Pharmacology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- These authors contributed equally to this work
| | - Angelika Böttger
- Department Biologie II, Ludwig Maximilians University, Munich 80539, Germany
| | - Hiroshi Shimizu
- Department of Developmental Genetics, National Institute of Genetics, Mishima 411-8540, Japan
| | - Charles N. David
- Department Biologie II, Ludwig Maximilians University, Munich 80539, Germany
| | - Takashi Gojobori
- Biological and Environmental Science and Engineering Division and Computational Bioscience Research Center, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Tucker RP, Adams JC. Adhesion networks of cnidarians: a postgenomic view. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:323-77. [PMID: 24411175 DOI: 10.1016/b978-0-12-800097-7.00008-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-extracellular matrix (ECM) and cell-cell adhesion systems are fundamental to the multicellularity of metazoans. Members of phylum Cnidaria were classified historically by their radial symmetry as an outgroup to bilaterian animals. Experimental study of Hydra and jellyfish has fascinated zoologists for many years. Laboratory studies, based on dissection, biochemical isolations, or perturbations of the living organism, have identified the ECM layer of cnidarians (mesoglea) and its components as important determinants of stem cell properties, cell migration and differentiation, tissue morphogenesis, repair, and regeneration. Studies of the ultrastructure and functions of intercellular gap and septate junctions identified parallel roles for these structures in intercellular communication and morphogenesis. More recently, the sequenced genomes of sea anemone Nematostella vectensis, Hydra magnipapillata, and coral Acropora digitifera have opened up a new frame of reference for analyzing the cell-ECM and cell-cell adhesion molecules of cnidarians and examining their conservation with bilaterians. This chapter integrates a review of literature on the structure and functions of cell-ECM and cell-cell adhesion systems in cnidarians with current analyses of genome-encoded repertoires of adhesion molecules. The postgenomic perspective provides a fresh view on fundamental similarities between cnidarian and bilaterian animals and is impelling wider adoption of species from phylum Cnidaria as model organisms.
Collapse
Affiliation(s)
- Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, California, USA.
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
12
|
Brooun M, Manoukian A, Shimizu H, Bode HR, McNeill H. Organizer formation in Hydra is disrupted by thalidomide treatment. Dev Biol 2013; 378:51-63. [PMID: 23531412 DOI: 10.1016/j.ydbio.2013.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/09/2013] [Accepted: 03/04/2013] [Indexed: 11/18/2022]
Abstract
Thalidomide is a drug that is well known for its teratogenic properties in humans. Surprisingly, thalidomide does not have teratogenic effects on mouse development. We investigated the effect of thalidomide on patterning in hydra, an early metazoan with a very simple axial symmetry. Hydra develops asexually via Wnt-dependent organizer formation, leading to the budding of a new organism. We observe both induction and inhibition of organizer formation depending on cellular context. Interestingly, thalidomide treatment altered budding and the developing organizer, but had little effect on the adult. Expression of Hybra1, a marker of the organizer increased upon thalidomide treatment. However when the organizer is induced by ectopic activation of Wnt signaling via GSK3 inhibition, thalidomide suppresses induction. We show that inhibition of Wnt signaling is not mediated by induction of the BMP pathway. We show that thalidomide activity on organizer formation in hydra depends on the activity of casein kinase1 and the abundance of β-catenin. Finally, we find that interstitial cells, multipotent cells which give rise to nemoatocytes, neural, digestive and germline cells, are partially responsible for the inhibitory effect of thalidomide.
Collapse
Affiliation(s)
- Maria Brooun
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Room 884, Toronto, Ontario, Canada M5G1X5.
| | | | | | | | | |
Collapse
|
13
|
Gamba A, Nicodemi M, Soriano J, Ott A. Critical behavior and axis defining symmetry breaking in Hydra embryonic development. PHYSICAL REVIEW LETTERS 2012; 108:158103. [PMID: 22587289 DOI: 10.1103/physrevlett.108.158103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Indexed: 05/31/2023]
Abstract
The formation of a hollow cellular sphere is often one of the first steps of multicellular embryonic development. In the case of Hydra, the sphere breaks its initial symmetry to form a foot-head axis. During this process a gene, ks1, is increasingly expressed in localized cell domains whose size distribution becomes scale-free at the axis-locking moment. We show that a physical model based solely on the production and exchange of ks1-promoting factors among neighboring cells robustly reproduces the scaling behavior as well as the experimentally observed spontaneous and temperature-directed symmetry breaking.
Collapse
Affiliation(s)
- Andrea Gamba
- Politecnico di Torino and CNISM, 10129 Torino, Italy.
| | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Hans Bode
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697;
| |
Collapse
|
15
|
Isachenko V, Maettner R, Sterzik K, Strehler E, Kreinberg R, Hancke K, Roth S, Isachenko E. In-vitro culture of human embryos with mechanical micro-vibration increases implantation rates. Reprod Biomed Online 2011; 22:536-44. [DOI: 10.1016/j.rbmo.2011.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 01/29/2011] [Accepted: 02/02/2011] [Indexed: 12/26/2022]
|
16
|
Abstract
Morphogen gradients play an important role in pattern formation during early stages of embryonic development in many bilaterians. In an adult hydra, axial patterning processes are constantly active because of the tissue dynamics in the adult. These processes include an organizer region in the head, which continuously produces and transmits two signals that are distributed in gradients down the body column. One signal sets up and maintains the head activation gradient, which is a morphogenetic gradient. This gradient confers the capacity of head formation on tissue of the body column, which takes place during bud formation, hydra's mode of asexual reproduction, as well as during head regeneration following bisection of the animal anywhere along the body column. The other signal sets up the head inhibition gradient, which prevents head formation, thereby restricting bud formation to the lower part of the body column in an adult hydra. Little is known about the molecular basis of the two gradients. In contrast, the canonical Wnt pathway plays a central role in setting up and maintaining the head organizer.
Collapse
Affiliation(s)
- Hans R Bode
- Department of Developmental and Cell Biology, University of California Irvine, California 92697, USA.
| |
Collapse
|
17
|
Visualizing "green oil" in live algal cells. J Biosci Bioeng 2010; 109:198-201. [DOI: 10.1016/j.jbiosc.2009.08.004] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 07/15/2009] [Accepted: 08/04/2009] [Indexed: 11/21/2022]
|
18
|
Zoidl G, Kremer M, Zoidl C, Bunse S, Dermietzel R. Molecular Diversity of Connexin and Pannexin Genes in the Retina of the ZebrafishDanio rerio. ACTA ACUST UNITED AC 2009; 15:169-83. [DOI: 10.1080/15419060802014081] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Wnt/beta-catenin and noncanonical Wnt signaling interact in tissue evagination in the simple eumetazoan Hydra. Proc Natl Acad Sci U S A 2009; 106:4290-5. [PMID: 19237582 DOI: 10.1073/pnas.0812847106] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In and evaginations of 2D cell sheets are major shape generating processes in animal development. They result from directed movement and intercalation of polarized cells associated with cell shape changes. Work on several bilaterian model organisms has emphasized the role of noncanonical Wnt signaling in cell polarization and movement. However, the molecular processes responsible for generating tissue and body shape in ancestral, prebilaterian animals are unknown. We show that noncanonical Wnt signaling acts in mass tissue movements during bud and tentacle evagination and regeneration in the cnidarian polyp Hydra. The wnt5, wnt8, frizzled2 (fz2), and dishevelled-expressing cell clusters define the positions, where bud and tentacle evaginations are initiated; wnt8, fz2, and dishevelled remain up-regulated in those epithelial cells, undergoing cell shape changes during the entire evagination process. Downstream of wnt and dsh expression, JNK activity is required for the evagination process. Multiple ectopic wnt5, wnt8, fz2, and dishevelled-expressing centers and the subsequent evagination of ectopic tentacles are induced throughout the body column by activation of Wnt/beta-Catenin signaling. Our results indicate that integration of axial patterning and tissue morphogenesis by the coordinated action of canonical and noncanonical Wnt pathways was crucial for the evolution of eumetazoan body plans.
Collapse
|
20
|
Scemes E, Spray DC, Meda P. Connexins, pannexins, innexins: novel roles of "hemi-channels". Pflugers Arch 2008; 457:1207-26. [PMID: 18853183 DOI: 10.1007/s00424-008-0591-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 09/17/2008] [Indexed: 12/11/2022]
Affiliation(s)
- Eliana Scemes
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | | | | |
Collapse
|
21
|
Levin M. Gap junctional communication in morphogenesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:186-206. [PMID: 17481700 PMCID: PMC2292839 DOI: 10.1016/j.pbiomolbio.2007.03.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gap junctions permit the direct passage of small molecules from the cytosol of one cell to that of its neighbor, and thus form a system of cell-cell communication that exists alongside familiar secretion/receptor signaling. Because of the rich potential for regulation of junctional conductance, and directional and molecular gating (specificity), gap junctional communication (GJC) plays a crucial role in many aspects of normal tissue physiology. However, the most exciting role for GJC is in the regulation of information flow that takes place during embryonic development, regeneration, and tumor progression. The molecular mechanisms by which GJC establishes local and long-range instructive morphogenetic cues are just beginning to be understood. This review summarizes the current knowledge of the involvement of GJC in the patterning of both vertebrate and invertebrate systems and discusses in detail several morphogenetic systems in which the properties of this signaling have been molecularly characterized. One model consistent with existing data in the fields of vertebrate left-right patterning and anterior-posterior polarity in flatworm regeneration postulates electrophoretically guided movement of small molecule morphogens through long-range GJC paths. The discovery of mechanisms controlling embryonic and regenerative GJC-mediated signaling, and identification of the downstream targets of GJC-permeable molecules, represent exciting next areas of research in this fascinating field.
Collapse
Affiliation(s)
- Michael Levin
- Forsyth Center for Regenerative and Devlopmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Cruciani V, Mikalsen SO. Evolutionary selection pressure and family relationships among connexin genes. Biol Chem 2007; 388:253-64. [PMID: 17338632 DOI: 10.1515/bc.2007.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractWe suggest an extension ofconnexinorthology relationships across the major vertebrate lineages. We first show that the conserved domains of mammalianconnexins(encoding the N-terminus, four transmembrane domains and two extracellular loops) are subjected to a considerably more strict selection pressure than the full-length sequences or the variable domains (the intracellular loop and C-terminal tail). Therefore, the conserved domains are more useful for the study of family relationships over larger evolutionary distances. The conserved domains ofconnexinswere collected from chicken,Xenopus tropicalis, zebrafish, pufferfish, green spotted pufferfish,Ciona intestinalisandHalocynthia pyriformis(two tunicates). A total of 305connexinsequences were included in this analysis. Phylogenetic trees were constructed, from which the orthologies and the presumed evolutionary relationships between the sequences were deduced. The tunicateconnexinsstudied had the closest, but still distant, relationships to vertebrateconnexin36,39.2,43.4,45and47. The main structure in theconnexinfamily known from mammals pre-dates the divergence of bony fishes, but some additional losses and gains ofconnexinsequences have occurred in the evolutionary lineages of subsequent vertebrates. Thus, theconnexingene family probably originated in the early evolution of chordates, and underwent major restructuring with regard to gene and subfamily structures (including the number of genes in each subfamily) during early vertebrate evolution.
Collapse
Affiliation(s)
- Véronique Cruciani
- Department of Cancer Prevention, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway
| | | |
Collapse
|
23
|
Soriano J, Colombo C, Ott A. Hydra molecular network reaches criticality at the symmetry-breaking axis-defining moment. PHYSICAL REVIEW LETTERS 2006; 97:258102. [PMID: 17280397 DOI: 10.1103/physrevlett.97.258102] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Indexed: 05/13/2023]
Abstract
We study biological, multicellular symmetry breaking on a hollow cell sphere as it occurs during hydra regeneration from a random cell aggregate. We show that even a weak temperature gradient directs the axis of the regenerating animal--but only if it is applied during the symmetry-breaking moment. We observe that the spatial distribution of the early expressed, head-specific gene ks1 has become scale-free and fractal at that point. We suggest the self-organized critical state to reflect long range signaling, which is required for axis definition and arises from cell next-neighbor communication.
Collapse
Affiliation(s)
- Jordi Soriano
- Experimentalphysik I, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | | | |
Collapse
|
24
|
The neural net of Hydra and the modulation of its periodic activity. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/bfb0098167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Böttger A, Strasser D, Alexandrova O, Levin A, Fischer S, Lasi M, Rudd S, David CN. Genetic screen for signal peptides in Hydra reveals novel secreted proteins and evidence for non-classical protein secretion. Eur J Cell Biol 2006; 85:1107-17. [PMID: 16814424 DOI: 10.1016/j.ejcb.2006.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We have screened a Hydra cDNA library for sequences encoding N-terminal signal peptides using the yeast invertase secretion vector pSUC [Jacobs et al., 1997. A genetic selection for isolating cDNAs encoding secreted proteins. Gene 198, 289-296]. We isolated and sequenced 907 positive clones; 88% encoded signal peptides; 12% lacked signal peptides. By searching the Hydra EST database we identified full-length sequences for the selected clones. These encoded 37 known proteins with signal peptides and 40 novel Hydra-specific proteins with signal peptides. Localization of two signal peptide-containing sequences, VEGF and ferritin, to the secretory pathway was confirmed with GFP fusion proteins. In addition, we isolated 105 clones which lacked signal peptides but which supported invertase secretion from yeast. Isolation of plasmids from these clones and retransformation in invertase-negative yeast cells confirmed the phenotype. A GFP fusion protein of one such clone encoding the foot morphogen pedibin was localized to the cytoplasm in transfected Hydra cells and did not enter the ER/Golgi secretory pathway. Secretion of pedibin and other proteins lacking signal peptides appears to occur by a non-classical protein secretion route.
Collapse
Affiliation(s)
- Angelika Böttger
- Department Biologie II, Ludwig Maximilians University, Grosshadernerstr 2, D-82152, Planegg/Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Collins AG, Schuchert P, Marques AC, Jankowski T, Medina M, Schierwater B. Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Syst Biol 2006; 55:97-115. [PMID: 16507527 DOI: 10.1080/10635150500433615] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A newly compiled data set of nearly complete sequences of the large subunit of the nuclear ribosome (LSU or 28S) sampled from 31 diverse medusozoans greatly clarifies the phylogenetic history of Cnidaria. These data have substantial power to discern among many of the competing hypotheses of relationship derived from prior work. Moreover, LSU data provide strong support at key nodes that were equivocal based on other molecular markers. Combining LSU sequences with those of the small subunit of the nuclear ribosome (SSU or 18S), we present a detailed working hypothesis of medusozoan relationships and discuss character evolution within this diverse clade. Stauromedusae, comprising the benthic, so-called stalked jellyfish, appears to be the sister group of all other medusozoans, implying that the free-swimming medusa stage, the motor nerve net, and statocysts of ecto-endodermal origin are features derived within Medusozoa. Cubozoans, which have had uncertain phylogenetic affinities since the elucidation of their life cycles, form a clade-named Acraspeda-with the scyphozoan groups Coronatae, Rhizostomeae, and Semaeostomeae. The polyps of both cubozoans and hydrozoans appear to be secondarily simplified. Hydrozoa is comprised by two well-supported clades, Trachylina and Hydroidolina. The position of Limnomedusae within Trachylina indicates that the ancestral hydrozoan had a biphasic life cycle and that the medusa was formed via an entocodon. Recently hypothesized homologies between the entocodon and bilaterian mesoderm are therefore suspect. Laingiomedusae, which has often been viewed as a close ally of the trachyline group Narcomedusae, is instead shown to be unambiguously a member of Hydroidolina. The important model organisms of the Hydra species complex are part of a clade, Aplanulata, with other hydrozoans possessing direct development not involving a ciliated planula stage. Finally, applying phylogenetic mixture models to our data proved to be of little additional value over a more traditional phylogenetic approach involving explicit hypothesis testing and bootstrap analyses under multiple optimality criteria. [18S; 28S; Cubozoa; Hydrozoa; medusa; molecular systematics; polyp; Scyphozoa; Staurozoa.].
Collapse
Affiliation(s)
- Allen G Collins
- NMFS, National Systematics Laboratory, National Museum of Natural History, MRC-153, Smithsonian Institution, Washington DC 20013-7012, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Bauer R, Löer B, Ostrowski K, Martini J, Weimbs A, Lechner H, Hoch M. Intercellular communication: the Drosophila innexin multiprotein family of gap junction proteins. ACTA ACUST UNITED AC 2005; 12:515-26. [PMID: 15911372 DOI: 10.1016/j.chembiol.2005.02.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 02/23/2005] [Accepted: 02/25/2005] [Indexed: 10/25/2022]
Abstract
Gap junctions belong to the most conserved cellular structures in multicellular organisms, from Hydra to man. They contain tightly packed clusters of hydrophilic membrane channels connecting the cytoplasms of adjacent cells, thus allowing direct communication of cells and tissues through the diffusion of ions, metabolites, and cyclic nucleotides. Recent evidence suggests that gap junctions are constructed by three different families of four transmembrane proteins: the Connexins and the Innexins found in vertebrates and in invertebrates, respectively, and the Innexin-like Pannexins, which were recently discovered in humans. This article focuses on the Drosophila Innexin multiprotein family, which is comprised of eight members. We highlight common structural features and discuss recent findings that suggest close similarities in cellular distribution, function, and regulation of Drosophila Innexins and vertebrate gap junction proteins.
Collapse
Affiliation(s)
- Reinhard Bauer
- Institute of Molecular Physiology and Developmental Biology, University of Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Nogi T, Levin M. Characterization of innexin gene expression and functional roles of gap-junctional communication in planarian regeneration. Dev Biol 2005; 287:314-35. [PMID: 16243308 DOI: 10.1016/j.ydbio.2005.09.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 08/20/2005] [Accepted: 09/01/2005] [Indexed: 10/25/2022]
Abstract
Planaria possess remarkable powers of regeneration. After bisection, one blastema regenerates a head, while the other forms a tail. The ability of previously-adjacent cells to adopt radically different fates could be due to long-range signaling allowing determination of position relative to, and the identity of, remaining tissue. However, this process is not understood at the molecular level. Following the hypothesis that gap-junctional communication (GJC) may underlie this signaling, we cloned and characterized the expression of the Innexin gene family during planarian regeneration. Planarian innexins fall into 3 groups according to both sequence and expression. The concordance between expression-based and phylogenetic grouping suggests diversification of 3 ancestral innexin genes into the large family of planarian innexins. Innexin expression was detected throughout the animal, as well as specifically in regeneration blastemas, consistent with a role in long-range signaling relevant to specification of blastema positional identity. Exposure to a GJC-blocking reagent which does not distinguish among gap junctions composed of different Innexin proteins (is not subject to compensation or redundancy) often resulted in bipolar (2-headed) animals. Taken together, the expression data and the respecification of the posterior blastema to an anteriorized fate by GJC loss-of-function suggest that innexin-based GJC mediates instructive signaling during regeneration.
Collapse
Affiliation(s)
- Taisaku Nogi
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA
| | | |
Collapse
|
29
|
Ramundo-Orlando A, Serafino A, Villalobo A. Gap junction channels reconstituted in two closely apposed lipid bilayers. Arch Biochem Biophys 2005; 436:128-35. [PMID: 15752717 DOI: 10.1016/j.abb.2005.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 01/19/2005] [Indexed: 10/25/2022]
Abstract
Intercellular communication mediated by gap junction channels plays an important role in many cellular processes. In contrast to other channels, gap junction channels span two plasma membranes resulting in an intracellular location for both ends of the junctional pore and the regulatory sites for channel gating. This configuration presents unique challenges for detailed experimental studies of junctional channel physiology and ligand-activation in situ. Availability of an appropriate model system would significantly facilitate future studies of gap junction channel function and structure. Here we show that the double-membrane channel can be reconstituted in pairs of closely apposed lipid bilayers, as experienced in cells. We have trapped the calcium-sensitive dye, arsenazo III (AIII), partially calcium-saturated (AIII-Ca), in one population of connexin32 reconstituted-liposomes, and EGTA in a second one. In such mixtures, the interaction of EGTA with AIII-Ca was measured by a large color shift from blue to red (decreased absorbance at 652 nm). The exchange of these compounds through gap junctions was proportional to these decrements. Results indicate that these connexon-mediated interliposomal channels are functional and are inhibited by the addition of alpha-glycyrrhetinic acid and by flufenamic acid, two gap junction communication inhibitors. Future use of this model system has the potential to improve our understanding of the permeability and modulation of junctional channels in its native intercellular assembly.
Collapse
Affiliation(s)
- Alfonsina Ramundo-Orlando
- Institute of Neurobiology and Molecular Medicine, National Research Council Via del Fosso del Cavaliere, 00133 Rome, Italy.
| | | | | |
Collapse
|
30
|
White TW, Wang H, Mui R, Litteral J, Brink PR. Cloning and functional expression of invertebrate connexins from Halocynthia pyriformis. FEBS Lett 2005; 577:42-8. [PMID: 15527759 DOI: 10.1016/j.febslet.2004.09.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 09/22/2004] [Indexed: 11/13/2022]
Abstract
Unlike many other ion channels, unrelated gene families encode gap junctions in different animal phyla. Connexin and pannexin genes are found in deuterostomes, while protostomal species use innexin genes. Connexins are often described as vertebrate genes, despite the existence of invertebrate deuterostomes. We have cloned connexin sequences from an invertebrate chordate, Halocynthia pyriformis. Invertebrate connexins shared 25-40% sequence identity with human connexins, had extracellular domains containing six invariant cysteine residues, coding regions that were interrupted by introns, and formed functional channels in vitro. These data show that gap junction channels based on connexins are present in animals that predate vertebrate evolution.
Collapse
Affiliation(s)
- Thomas W White
- Department of Physiology and Biophysics, State University of New York, BST 5-147, Stony Brook, NY 11794, USA.
| | | | | | | | | |
Collapse
|
31
|
Alexopoulos H, Böttger A, Fischer S, Levin A, Wolf A, Fujisawa T, Hayakawa S, Gojobori T, Davies JA, David CN, Bacon JP. Evolution of gap junctions: the missing link? Curr Biol 2005; 14:R879-80. [PMID: 15498476 DOI: 10.1016/j.cub.2004.09.067] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Perez Velazquez JL, Kokarovtseva L, Weisspapir M, Frantseva MV. Anti-porin antibodies prevent excitotoxic and ischemic damage to brain tissue. J Neurotrauma 2003; 20:633-47. [PMID: 12908925 DOI: 10.1089/089771503322144554] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mitochondrial permeability transition (MPT) is a converging event for different molecular routes leading to cellular death after excitotoxic/oxidative stress, and is considered to represent the opening of a pore in the mitochondrial membrane. There is evidence that the outer mitochondrial membrane protein porin is involved in the MPT and apoptosis. We present here a proof-of-principle study to address the hypothesis that anti-porin antibodies can prevent excitotoxic/ischemia-induced cell death. We generated anti-porin antibodies and show that the F(ab)(2) fragments penetrate living cells, reduce Ca(2+)-induced mitochondrial swelling as other MPT blockers do, and decrease neuronal death in dissociated and organotypic brain slice cultures exposed to excitotoxic and ischemic episodes. These observations present direct evidence that anti-porin antibody fragments prevent cell damage in brain tissue, that porin is a crucial protein involved in mitochondrial and cell dysfunction, and that it is conceivable that antibodies can be used as therapeutic agents.
Collapse
Affiliation(s)
- Jose L Perez Velazquez
- The Hospital for Sick Children, Brain and Behaviour Programme, Department of Paediatrics, University of Toronto, Toronto, Canada.
| | | | | | | |
Collapse
|
33
|
Weber SA, Ross LS. Gap junctional coupling in the olfactory organ of zebrafish embryos. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 143:25-31. [PMID: 12763578 DOI: 10.1016/s0165-3806(03)00091-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intercellular communication through gap junctions is vital for many developmental processes, including cell division and synaptogenesis. This study is the first demonstration that olfactory organ cells are functionally coupled by gap junctions. Cell coupling was examined during development in the olfactory organ using gap junction permeable dyes in live zebrafish embryos. At 1 day post-fertilization (dpf), cells of the olfactory organ were not coupled by gap junctions. At 2 and 3 dpf, olfactory organ cells passed dye from one cell to another, indicating functional coupling via gap junctions. Coupled cell cohorts included combinations of all three olfactory cell types: basal cells, support cells, and olfactory receptor cells. As the olfactory organ matured, the number of cells per coupled cell cohort increased. Gap junctional coupling corresponded with maturation of the olfactory organ and indicates that functional gap junctions may be involved in proper development of the olfactory organ.
Collapse
Affiliation(s)
- Stacy A Weber
- Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | | |
Collapse
|
34
|
About I, Proust JP, Raffo S, Mitsiadis TA, Franquin JC. In vivo and in vitro expression of connexin 43 in human teeth. Connect Tissue Res 2003; 43:232-7. [PMID: 12489165 DOI: 10.1080/03008200290000952] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Gap junctions are composed of transmembrane proteins belonging to the connexin family. These proteins permit the exchange of mall regulatory molecules directly between cells for the control of growth, development and differentiation. Although the presence of gap junctions in teeth has been already evidenced, the involved connexins have not yet been identified in human species. Here, we examined the distribution of connexin 43 (Cx43) in embryonic and permanent intact and carious human teeth. During tooth development, Cx43 localized both in epithelial and mesenchymal dental cells, correlated with cytodifferentiation gradients. In adult intact teeth, Cx43 was distributed in odontoblast processes. While Cx43 expression was downregulated in mature intact teeth, Cx43 appeared to be upregulated in odontoblasts facing carious lesions. In cultured pulp cells, Cx43 expression was related to the formation of mineralized nodules. These results indicate that Cx43 expression is developmentally regulated in human dental tissues, and suggest that Cx43 may participate in the processes of dentin formation and pathology.
Collapse
Affiliation(s)
- Imad About
- Laboratoire IMEB, Faculté d'Odontologie, 27 Boulevard Jean Moulin, 13385 Marseille, France.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Gap junctions consist of intercellular channels that connect the cytoplasm of adjacent cells directly and allow the exchange of small molecules. These channels are unique in that they span two plasma membranes--the more orthodox ion or ligand-gated channels span only one. Each cell contributes half of the intercellular channel, and each half is known as a connexon or hemichannel. Recent studies indicate that connexons are also active in single plasma membranes and that they might be essential in intercellular signalling beyond their incorporation into gap junctions.
Collapse
|
36
|
Abstract
Hydra, a primitive metazoan, has a simple structure consisting of a head, body column, and foot aligned along a single oral-aboral axis. The body column has a high capacity for regeneration of both the head and foot. Because of the tissue dynamics that take place in adult Hydra, the processes governing axial patterning are continuously active to maintain the form of the animal. Regeneration in hydra is morphallactic and closely related to these axial patterning processes. As might be expected, analysis at the molecular level indicates that the same set of genes are involved in head regeneration and the maintenance of the head in the context of the tissue dynamics of the adult. The genes analyzed so far play roles in axial patterning processes in bilaterians.
Collapse
Affiliation(s)
- Hans R Bode
- Developmental Biology Center and Department of Developmental and Cell Biology, University of California, Irvine, California 92697, USA.
| |
Collapse
|
37
|
Holstein TW, Hobmayer E, Technau U. Cnidarians: an evolutionarily conserved model system for regeneration? Dev Dyn 2003; 226:257-67. [PMID: 12557204 DOI: 10.1002/dvdy.10227] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cnidarians are among the simplest metazoan animals and are well known for their remarkable regeneration capacity. They can regenerate any amputated head or foot, and when dissociated into single cells, even intact animals will regenerate from reaggregates. This extensive regeneration capacity is mediated by epithelial stem cells, and it is based on the restoration of a signaling center, i.e., an organizer. Organizers secrete growth factors that act as long-range regulators in axis formation and cell differentiation. In Hydra, Wnt and TGF-beta/Bmp signaling pathways are transcriptionally up-regulated early during head regeneration and also define the Hydra head organizer created by de novo pattern formation in aggregates. The signaling molecules identified in Cnidarian regeneration also act in early embryogenesis of higher animals. We suppose that they represent a core network of molecular interactions, which could explain at least some of the mechanisms underlying regeneration in vertebrates.
Collapse
Affiliation(s)
- T W Holstein
- Department of Biology, Darmstadt University of Technology, Darmstadt, Germany.
| | | | | |
Collapse
|
38
|
Law LY, Lin JS, Becker DL, Green CR. Knockdown of connexin43-mediated regulation of the zone of polarizing activity in the developing chick limb leads to digit truncation. Dev Growth Differ 2002; 44:537-47. [PMID: 12492512 DOI: 10.1046/j.1440-169x.2002.00666.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the developing chick wing, the use of antisense oligodeoxynucleotides to transiently knock down the expression of the gap junction protein, connexin43 (Cx43), results in limb patterning defects, including deletion of the anterior digits. To understand more about how such defects arise, the effects of transient Cx43 knockdown on the expression patterns of several genes known to play pivotal roles in limb formation were examined. Sonic hedgehog (Shh), which is normally expressed in the zone of polarizing activity (ZPA) and is required to maintain both the ZPA and the apical ectodermal ridge (AER), was found to be downregulated in treated limbs within 30 h. Bone morphogenetic protein-2 (Bmp-2), a gene downstream of Shh, was similarly downregulated. Fibroblast growth factor-8 expression, however, was unaltered 30 h after treatment but was greatly reduced at 48 h post-treatment, when the AER begins to regress. Expressions of Bmp-4 and Muscle segment homeobox-like gene (Msx-1) were not affected at any of the time points examined. Cx43 expression is therefore involved in some, but not all patterning cascades, and appears to play a role in the regulation of ZPA activity.
Collapse
Affiliation(s)
- Lee Yong Law
- Anatomy with Radiology, School of Medicine, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | |
Collapse
|
39
|
Abstract
Developmental processes in multicellular animals depend on an array of signal transduction pathways. Studies of model organisms have identified a number of such pathways and dissected them in detail. However, these model organisms are all bilaterians. Investigations of the roles of signal transduction pathways in the early-diverging metazoan Hydra have revealed that a number of the well-known developmental signaling pathways were already in place in the last common ancestor of Hydra and bilaterians. In addition to these shared pathways, it appears that developmental processes in Hydra make use of pathways involving a variety of peptides. Such pathways have not yet been identified as developmental regulators in more recently diverged animals. In this review I will summarize work to date on developmental signaling pathways in Hydra and discuss the future directions in which such work will need to proceed to realize the potential that lies in this simple animal.
Collapse
Affiliation(s)
- Robert E Steele
- Department of Biological Chemistry, University of California-Irvine, Irvine, CA 92627-1700, USA.
| |
Collapse
|
40
|
Brumwell GB, Martin VJ. Immunocytochemically defined populations of neurons progressively increase in size through embryogenesis of Hydra vulgaris. THE BIOLOGICAL BULLETIN 2002; 203:70-79. [PMID: 12200257 DOI: 10.2307/1543459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The hydra nervous system shares many features with nervous systems of more complex organisms but serves as a unique model system due to its simplicity and constant regeneration. Development of neuron populations during and after hydra embryogenesis is not well understood. In this study, neurons were identified at prehatching and posthatching stages with RFamide or JD1 antisera. These populations were further subdivided into ganglion, sensory, or unclassifiable neurons, and all identified populations were statistically analyzed over developmental time. RFamide-positive neurons appeared 20 days after the cuticle formed around the embryo. The JD1-positive neuron population appeared just after hatching, but by adulthood it had surpassed the size of the RFamide-positive population. All neuron populations progressively increased through their adult levels. Density of most of the populations, however, did not. For instance, during the 5-fold increase in size that the hydra experienced between 5 days posthatching and adulthood, the number of RFamide-positive neurons rose approximately 2-fold and the number of JD1-positive neurons 4-fold. However, the density of neurons in each of these populations fell. These data do not support the hypothesis that large-scale culling of neurons during development, frequently found in other animals, occurs in hydra.
Collapse
Affiliation(s)
- Gordon B Brumwell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | |
Collapse
|
41
|
Schiffmann Y. Polarity and form regulation in development and reconstitution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 75:19-74. [PMID: 11311714 DOI: 10.1016/s0079-6107(01)00002-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the literature, it is often assumed, for example with respect to Hydra, that several Turing systems coexist and it is also assumed that maintaining the polar profile, even when the system increases in size, is important for the polarity of the final phenotype. It is shown here that in reality there is only one Turing system, Child's system. To obtain a complete polar individual or organ, whether in reconstitution or development, it is essential that the complete succession of metabolic patterns occurs. Child's concepts of physiological dominance, subordination and isolation are interpreted in the light of Turing theory and in particular the Turing wavelength. It is emphasised, particularly by pointing to Child's metabolic patterns in coelenterates, both in development and in reconstitution, that it is the elongation that drives the succession polar metabolic pattern-->bipolar metabolic pattern, and this corresponds to the prediction of Turing theory supporting the thesis that Child's metabolic pattern is a Turing pattern. It is shown that if we assume that ATP is the Turing inhibitor then the many results of Child about the reduction of the scale of organisation with the decrease in the intensity of the energy metabolism correspond to the reduction of the Turing wavelength. The interplay between the Turing wavelength and the length of the form explains the conditions of reconstitution under which partial forms, wholes and form regulation are obtained. It is suggested that higher metabolism is responsible for both larger size and larger Turing wavelength thus securing form regulation. The results could be of importance in modern 'regenerative biology'. Heteromorphosis, i.e. animals with two heads (or two tails), one at each end, is explained by a bipolar Turing-Child metabolic pattern replacing a polar metabolic pattern. This can be brought about by chemical or by genetic means and indeed the prediction for Drosophila that the transition, wild type-->Bicaudal D, occurs because a polar Turing pattern is replaced by bipolar Turing pattern is confirmed, again if we accept that Child's metabolic pattern is the underlying Turing pattern. Child's experiments on Drosophila, including the requirement of critical length for metabolic polarity, are explained by Turing theory. Phenocopies and phenotypes are explained by the Turing-Child theory. It is shown that both Child's results about metabolic patterns and modern results for Hydra about gap junctions, 'endogeneous inhibitor' and gene expression, are correlated and explained by (cAMP, ATP) Turing theory. It is argued that the double-gradient hypothesis is incorrect in its original formulation and that it is Child's conception of succeeding metabolic patterns that is the correct one and that it corresponds to the prediction of the Turing theory.
Collapse
Affiliation(s)
- Y Schiffmann
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, UK.
| |
Collapse
|
42
|
|
43
|
|
44
|
Tu ZJ, Pan W, Gong Z, Kiang DT. Involving AP-2 transcription factor in connexin 26 up-regulation during pregnancy and lactation. Mol Reprod Dev 2001; 59:17-24. [PMID: 11335942 DOI: 10.1002/mrd.1002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gap junction connexin 26 (Cx26) is up-regulated in mammary epithelial cells during pregnancy and lactation. To understand the transcriptional regulation of Cx26, we identified a protected DNase I footprint region (-140 to -113) in the rat Cx26 promoter. This rCx26 Promoter Footprinting Region, or CPFR, contains an Sp binding site (CCGCCC) overlapping with an AP-2 binding site (GCCCGCGGC), and is evolutionarily conserved. Nuclear extracts from rat mammary glands and human MCF-10 mammary epithelial cells formed protein-DNA complexes with the labeled CPFR probe in the electrophoretic mobility shift assay (EMSA), and these complexes were markedly enhanced during pregnancy and lactation. Antibody supershift analysis further identified the presence of Sp1, Sp3, and AP-2 in these binding complexes. Human mammary epithelial MCF-10A and MCF-12A cells were transiently transfected with chimeric mutant rCx26 promoter/luciferase reporter constructs, and luciferase activities measured. Mutations along the CPFR fragment drastically reduced the promoter activity, specially at the Sp/AP-2 overlapping site. Cotransfection of AP-2 with rCx26 promoter/reporter constructs into MCF-10 cells markedly induced the reporter activity. These data infer that AP-2, along with previously reported Sp transcription factors, is involved in the up-regulation of Cx26 gene during pregnancy and lactation.
Collapse
Affiliation(s)
- Z J Tu
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
45
|
Sakuma E, Soji T, Herbert DC. Effects of hydrocortisone on the formation of gap junctions and the abnormal growth of cilia within the rat anterior pituitary gland: possible role of gap junctions on the regulation of cell development. THE ANATOMICAL RECORD 2001; 262:169-75. [PMID: 11169911 DOI: 10.1002/1097-0185(20010201)262:2<169::aid-ar1026>3.0.co;2-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We investigated the effects of hydrocortisone on the formation of gap junctions in and the growth of cilia on folliculo-stellate cells. The male rats of experimental groups were given daily intraperitoneal injections of 5 mg/kg of hydrocortisone from Day 20 to 60. Five rats were killed at ages 10, 20, 30 and 40 days after initiation of injections, and the pituitary gland was removed from each rat. Then, the specimens were prepared for observation by transmission electron microscopy. A delay in the formation of gap junctions between folliculo-stellate cells was observed in hydrocortisone treated rats compared with control rats on Day 30, 40 and 50. Another finding in the present study was the increase of ciliated follicles on Day 40 and 50 in the hydrocortisone treated groups, simultaneous with the delay in gap junction formation. The results suggest that hydrocortisone has a suppressive effect on the gap junction formation between folliculo-stellate cells, and loss of intercellular communication by way of gap junctions may lead to alteration of morphological development of the cell.
Collapse
Affiliation(s)
- E Sakuma
- Department of Anatomy, Nagoya City University Medical School, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya City, Aichi, Japan.
| | | | | |
Collapse
|
46
|
Ehmann UK, Calderwood SK, Stevenson MA. Gap-junctional communication between feeder cells and recipient normal epithelial cells correlates with growth stimulation. In Vitro Cell Dev Biol Anim 2001; 37:100-10. [PMID: 11332735 DOI: 10.1290/1071-2690(2001)037<0100:gjcbfc>2.0.co;2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
LA7 rat mammary tumor cells stimulate the proliferation, in culture, of three normal epithelial cell types, namely mouse mammary, rat mammary, and mouse thymic cells. Gap-junctional communication between LA7 feeders and mouse mammary cells was demonstrated by microinjection of lucifer yellow, which traveled from LA7 to the surrounding mouse mammary cells. The amount of 3H-uridine exchange between feeder and recipient mouse mammary, rat mammary, and mouse thymus cells correlated with the growth rate induced by the feeders. Cells of the Madin Darby canine kidney (MDCK) line, which do not appreciably stimulate mouse mammary cell growth when used as feeder cells, also exchange little 3H-uridine with them. Expression of connexins Cx43, 32, and 26 was studied in all these cell lines and strains by immunocytochemistry. Mouse mammary cells expressed Cx26, and a few mouse thymic cells expressed Cx32. LA7, mouse mammary, mouse thymic, and rat mammary cells all expressed easily detectable amounts of the gap-junction protein Cx43, in contrast to MDCK cells, which expressed only a hint of the protein. These results suggest that gap junctions composed of Cx43 are those by which the normal epithelial cells communicate with the LA feeders. Thus, the ability of feeder cells to stimulate proliferation in recipients correlates with the expression of Cx43 in both members of the feeder/recipient pair and the capacity to form functional gap junctions between these cells.
Collapse
Affiliation(s)
- U K Ehmann
- Department of Pathology and Laboratory Services, Veterans Affairs Palo Alto Health Care System, California 94304, USA.
| | | | | |
Collapse
|
47
|
Cardenas M, Fabila YV, Yum S, Cerbon J, Böhmer FD, Wetzker R, Fujisawa T, Bosch TC, Salgado LM. Selective protein kinase inhibitors block head-specific differentiation in hydra. Cell Signal 2000; 12:649-58. [PMID: 11080617 DOI: 10.1016/s0898-6568(00)00115-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Several studies have suggested that morphogenesis and patterning in hydra are regulated through pathways involving protein kinase C (PKC). Nevertheless, the complete signal system for regeneration in hydra is still not completely understood. Using inhibitors of different signalling pathways we are dissecting this system. We found that sphingosine (2 microM), staurosporine (0.1 microM), PP1/AGL1872 (1 microM) and H7 (25 microM) were able to inhibit head but not foot regeneration. The inhibition was reversible. When the inhibitor was replaced with hydra medium the animals continue their regeneration in a normal way. The exception was PP1/AGL1872, in this case the animals regenerated only one or two tentacles. These results imply that head and foot regeneration are independent processes and they are not directly related as has been proposed. Sphingosine and PP1/AGL1872 inhibit the transcription of ks1, an early regeneration gene, at 24 and 48 h of treatment. Sphingosine 2 microM arrested the cells on the G1 phase of the cell cycle, but 1 microM of PP1/AGL1872 did not. The regeneration was not affected if the animals were exposed to inhibitors of human growth factor receptors. We propose that head regeneration in hydra may be regulated at least by two pathways, one going through PKC and the other through Src. The first pathway could be related to cellular proliferation and the second one to cellular differentiation.
Collapse
Affiliation(s)
- M Cardenas
- Department of Biochemistry, CINVESTAV-IPN, 07360, D.F., Mexico, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Becker DL, McGonnell I, Makarenkova HP, Patel K, Tickle C, Lorimer J, Green CR. Roles for alpha 1 connexin in morphogenesis of chick embryos revealed using a novel antisense approach. DEVELOPMENTAL GENETICS 2000; 24:33-42. [PMID: 10079509 DOI: 10.1002/(sici)1520-6408(1999)24:1/2<33::aid-dvg5>3.0.co;2-f] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gap junctional communication has been implicated in embryonic development and pattern formation. The gap junction protein, alpha 1 connexin (Cx43) is expressed in dynamic and spatially restricted patterns in the developing chick embryo and its expression correlates with many specific developmental events. High levels of expression are found in regions of budding, which leads to shaping and appears to be a necessary prelude for tissue fusions. In order to investigate the role of alpha 1 connexin in these morphogenetic events, we developed a novel method of applying unmodified antisense deoxyoligonucleotides (ODNs) to chick embryos. The use of pluronic gel to deliver antisense ODNs has allowed us to regulate the expression of alpha 1 connexin protein, both spatially and temporally. This "knockdown" results in some striking developmental defects that mimic some common congenital abnormalities, such as spina bifida, anencephaly, myeloschisis, limb malformation, cleft palate, failure of hematopoiesis, and cardiovascular deformity. The results imply a major role for alpha 1 connexin communication in the integration of signaling required for pattern formation during embryonic development. This novel antisense technique may also be widely applicable.
Collapse
Affiliation(s)
- D L Becker
- Department of Anatomy and Developmental Biology, University College London, UK.
| | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Levin M, Mercola M. Gap junction-mediated transfer of left-right patterning signals in the early chick blastoderm is upstream of Shh asymmetry in the node. Development 1999; 126:4703-14. [PMID: 10518488 DOI: 10.1242/dev.126.21.4703] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Invariant patterning of left-right asymmetry during embryogenesis depends upon a cascade of inductive and repressive interactions between asymmetrically expressed genes. Different cascades of asymmetric genes distinguish the left and right sides of the embryo and are maintained by a midline barrier. As such, the left and right sides of an embryo can be viewed as distinct and autonomous fields. Here we describe a series of experiments that indicate that the initiation of these programs requires communication between the two sides of the blastoderm. When deprived of either the left or the right lateral halves of the blastoderm, embryos are incapable of patterning normal left-right gene expression at Hensen's node. Not only are both flanks required, suggesting that there is no single signaling source for LR pattern, but the blastoderm must be intact. These results are consistent with our previously proposed model in which the orientation of LR asymmetry in the frog, Xenopus laevis, depends on large-scale partitioning of LR determinants through intercellular gap junction channels (M. Levin and M. Mercola (1998) Developmental Biology 203, 90–105). Here we evaluate whether gap junctional communication is required for the LR asymmetry in the chick, where it is possible to order early events relative to the well-characterized left and right hierarchies of gene expression. Treatment of cultured chick embryos with lindane, which diminishes gap junctional communication, frequently unbiased normal LR asymmetry of Shh and Nodal gene expression, causing the normally left-sided program to be recapitulated symmetrically on the right side of the embryo. A survey of early expression of connexin mRNAs revealed that Cx43 is present throughout the blastoderm at Hamburger-Hamilton stage 2–3, prior to known asymmetric gene expression. Application of antisense oligodeoxynucleotides or blocking antibody to cultured embryos also resulted in bilateral expression of Shh and Nodal transcripts. Importantly, the node and primitive streak at these stages lack Cx43 mRNA. This result, together with the requirement for an intact blastoderm, suggests that the path of communication through gap junction channels circumvents the node and streak. We propose that left-right information is transferred unidirectionally throughout the epiblast by gap junction channels in order to pattern left-sided Shh expression at Hensen's node.
Collapse
Affiliation(s)
- M Levin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|