1
|
Pereira AT, Schneider KH, Henriques PC, Grasl C, Melo SF, Fernandes IP, Kiss H, Martins MCL, Bergmeister H, Gonçalves IC. Graphene Oxide Coating Improves the Mechanical and Biological Properties of Decellularized Umbilical Cord Arteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32662-32672. [PMID: 34240610 DOI: 10.1021/acsami.1c04028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The lack of small-diameter vascular grafts (inner diameter <5 mm) to substitute autologous grafts in arterial bypass surgeries has a massive impact on the prognosis and progression of cardiovascular diseases, the leading cause of death globally. Decellularized arteries from different sources have been proposed as an alternative, but their poor mechanical performance and high collagen exposure, which promotes platelet and bacteria adhesion, limit their successful application. In this study, these limitations were surpassed for decellularized umbilical cord arteries through the coating of their lumen with graphene oxide (GO). Placental and umbilical cord arteries were decellularized and perfused with a suspension of GO (C/O ratio 2:1) with ∼1.5 μm lateral size. A homogeneous GO coating that completely covered the collagen fibers was obtained for both arteries, with improvement of mechanical properties being achieved for umbilical cord decellularized arteries. GO coating increased the maximum force in 27%, the burst pressure in 29%, the strain in 25%, and the compliance in 10%, compared to umbilical cord decellularized arteries. The achieved theoretical burst pressure (1960 mmHg) and compliance (13.9%/100 mmHg) are similar to the human saphenous vein and mammary artery, respectively, which are used nowadays as the gold standard in coronary and peripheral artery bypass surgeries. Furthermore, and very importantly, coatings with GO did not compromise the endothelial cell adhesion but decreased platelet and bacteria adhesion to decellularized arteries, which will impact on the prevention of thrombosis and infection, until full re-endothetialization is achieved. Overall, our results reveal that GO coating has an effective role in the improvement of decellularized umbilical cord artery performance, which is a huge step toward their application as a small-diameter vascular graft.
Collapse
Affiliation(s)
- Andreia T Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Karl H Schneider
- Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute of Cardiovascular Research, 1090 Vienna, Austria
| | - Patrícia C Henriques
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Christian Grasl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Sofia F Melo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Inês P Fernandes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Herbert Kiss
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - M Cristina L Martins
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Helga Bergmeister
- Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute of Cardiovascular Research, 1090 Vienna, Austria
| | - Inês C Gonçalves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- FEUP-Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal
| |
Collapse
|
2
|
Zhuang Y, Ren L, Zhang S, Wei X, Yang K, Dai K. Antibacterial effect of a copper-containing titanium alloy against implant-associated infection induced by methicillin-resistant Staphylococcus aureus. Acta Biomater 2021; 119:472-484. [PMID: 33091623 DOI: 10.1016/j.actbio.2020.10.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023]
Abstract
Implant-associated infection (IAI) induced by methicillin-resistant Staphylococcus aureus (MRSA) is a devastating complication in the orthopedic clinic. Traditional implant materials, such as Ti6Al4V, are vulnerable to microbial infection. In this study, we fabricated a copper (Cu)-containing titanium alloy (Ti6Al4V-Cu) for the prevention and treatment of MRSA-induced IAI. The material characteristics, antibacterial activity, and biocompatibility of Ti6Al4V-Cu were systematically investigated and compared with those of Ti6Al4V. Ti6Al4V-Cu provided stable and continuous Cu2+ release, at a rate of 0.106 mg/cm2/d. Its antibacterial performance against MRSA in vitro was confirmed by plate counting analysis, crystal violet staining, and scanning electron microscopic observations. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis demonstrated that Ti6Al4V-Cu suppressed biofilm formation, virulence, and antibiotic-resistance of MRSA. The in vivo anti-MRSA effect was investigated in a rat IAI model. Implants were contaminated with MRSA solution, implanted into the femur, and left for 6 weeks. Severe IAI developed in the Ti6Al4V group, with increased radiological score (9.6 ± 1.3) and high histological score (10.1 ± 1.9). However, no sign of infection was found in the Ti6Al4V-Cu group, as indicated by decreased radiological score (1.3 ± 0.4) and low histological score (2.3 ± 0.5). In addition, Ti6Al4V-Cu had favorable biocompatibility both in vitro and in vivo. In summary, Ti6Al4V-Cu is a promising implant material to protect against MRSA-induced IAI.
Collapse
|
3
|
Hemmadi V, Biswas M. An overview of moonlighting proteins in Staphylococcus aureus infection. Arch Microbiol 2020; 203:481-498. [PMID: 33048189 PMCID: PMC7551524 DOI: 10.1007/s00203-020-02071-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 01/01/2023]
Abstract
Staphylococcus aureus is responsible for numerous instances of superficial, toxin-mediated, and invasive infections. The emergence of methicillin-resistant (MRSA), as well as vancomycin-resistant (VRSA) strains of S. aureus, poses a massive threat to human health. The tenacity of S. aureus to acquire resistance against numerous antibiotics in a very short duration makes the effort towards developing new antibiotics almost futile. S. aureus owes its destructive pathogenicity to the plethora of virulent factors it produces among which a majority of them are moonlighting proteins. Moonlighting proteins are the multifunctional proteins in which a single protein, with different oligomeric conformations, perform multiple independent functions in different cell compartments. Peculiarly, proteins involved in key ancestral functions and metabolic pathways typically exhibit moonlighting functions. Pathogens mainly employ those proteins as virulent factors which exhibit high structural conservation towards their host counterparts. Consequentially, the host immune system counteracts these invading bacterial virulent factors with minimal protective action. Additionally, many moonlighting proteins also play multiple roles in various stages of pathogenicity while augmenting the virulence of the bacterium. This has necessitated elaborative studies to be conducted on moonlighting proteins of S. aureus that can serve as drug targets. This review is a small effort towards understanding the role of various moonlighting proteins in the pathogenicity of S. aureus.
Collapse
Affiliation(s)
- Vijay Hemmadi
- Department of Biological Sciences, Birla Institute of Technology and Science, BITS-Pilani, K. K. Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India
| | - Malabika Biswas
- Department of Biological Sciences, Birla Institute of Technology and Science, BITS-Pilani, K. K. Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India.
| |
Collapse
|
4
|
Çankirili NK, Kart D, Çelebi-Saltik B. Evaluation of the biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa on human umbilical cord CD146+ stem cells and stem cell-based decellularized matrix. Cell Tissue Bank 2020; 21:215-231. [PMID: 32020424 DOI: 10.1007/s10561-020-09815-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
This study aims to evaluate the CD146+ stem cells obtained from the human umbilical cord and their extracellular matrix proteins on in vitro Pseudomonas aeruginosa and Staphylococcus aureus biofilms to understand their possible antimicrobial activity. CD146+ stem cells were determined according to cell surface markers and differentiation capacity. Characterization of the decellularized matrix was done with DAPI, Masson's Trichrome staining and proteome analysis. Cell viability/proliferation of cells in co-cultures was evaluated by WST-1 and crystal-violet staining. The effects of cells and decellularized matrix proteins on biofilms were investigated on a drip flow biofilm reactor and their effects on gene expression were determined by RT-qPCR. We observed that CD146/105+ stem cells could differentiate adipogenically and decellularized matrix showed negative DAPI and positive collagen staining with Masson' s Trichrome. Proteome analysis of the decellularized matrix revealed some matrix components and growth factors. Although the decellularized matrix significantly reduced the cell counts of P. aeruginosa, no significant difference was observed for S. aureus cells in both groups. Supporting data was obtained from the gene expression results of P. aeruginosa with the significant down-regulation of rhlR and lasR. For S. aureus, icaADBC genes were significantly up-regulated when grown on the decellularized matrix.
Collapse
Affiliation(s)
- Nur Kübra Çankirili
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Sihhiye, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Didem Kart
- Department of Pharmaceutical Microbiology, Hacettepe University Faculty of Pharmacy, 06100, Sihhiye, Ankara, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Sihhiye, Ankara, Turkey.
- Center for Stem Cell Research and Development, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.
| |
Collapse
|
5
|
Multi-functionalized nanocarriers targeting bacterial reservoirs to overcome challenges of multi drug-resistance. ACTA ACUST UNITED AC 2020; 28:319-332. [PMID: 32193748 DOI: 10.1007/s40199-020-00337-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Infectious diseases associated with intracellular bacteria such as Staphylococcus aureus, Salmonella typhimurium and Mycobacterium tuberculosis are important public health concern. Emergence of multi and extensively drug-resistant bacterial strains have made it even more obstinate to offset such infections. Bacteria residing within intracellular compartments provide additional barriers to effective treatment. METHOD Information provided in this review has been collected by accessing various electronic databases including Google scholar, Web of science, Scopus, and Nature index. Search was performed using keywords nanoparticles, intracellular targeting, multidrug resistance, Staphylococcus aureus; Salmonella typhimurium; Mycobacterium tuberculosis. Information gathered was categorized into three major sections as 'Intracellular targeting of Staphylococcus aureus, Intracellular targeting of Salmonella typhimurium and Intracellular targeting of Mycobacterium tuberculosis' using variety of nanocarrier systems. RESULTS Conventional management for infectious diseases typically comprises of long-term treatment with a combination of antibiotics, which may lead to side effects and decreased patient compliance. A wide range of multi-functionalized nanocarrier systems have been studied for delivery of drugs within cellular compartments where bacteria including Staphylococcus aureus, Salmonella typhimurium and Mycobacterium tuberculosis reside. Such carrier systems along with targeted delivery have been utilized for sustained and controlled delivery of drugs. These strategies have been found useful in overcoming the drawbacks of conventional treatments including multi-drug resistance. CONCLUSION Development of multi-functional nanocargoes encapsulating antibiotics that are proficient in targeting and releasing drug into infected reservoirs seems to be a promising strategy to circumvent the challenge of multidrug resistance. Graphical abstract.
Collapse
|
6
|
Affiliation(s)
- Andrew Butterworth
- Department of Clinical Veterinary Science, University of Bristol, Langford, North Somerset BS40 5DU, UK
| |
Collapse
|
7
|
De Cicco M, Campisi C, Matovic M. Central Venous Catheter-Related Bloodstream Infections: Pathogenesis Factors, New Perspectives in Prevention and Early Diagnosis. J Vasc Access 2018. [DOI: 10.1177/112972980300400302] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- M. De Cicco
- Center of Oncological Reference, INRCCS, Aviano (PN) - Italy
| | - C. Campisi
- Institute of Biomedical Engineering, Div. of Biomedicine Technology, CNR, Rome - Italy
| | - M. Matovic
- Center of Oncological Reference, INRCCS, Aviano (PN) - Italy
| |
Collapse
|
8
|
Valotteau C, Prystopiuk V, Pietrocola G, Rindi S, Peterle D, De Filippis V, Foster TJ, Speziale P, Dufrêne YF. Single-Cell and Single-Molecule Analysis Unravels the Multifunctionality of the Staphylococcus aureus Collagen-Binding Protein Cna. ACS NANO 2017; 11:2160-2170. [PMID: 28151647 DOI: 10.1021/acsnano.6b08404] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The collagen-binding protein Cna is a prototype cell surface protein from Staphylococcus aureus which fulfils important physiological functions during pathogenesis. While it is established that Cna binds to collagen (Cn) via the high-affinity collagen hug mechanism, whether this protein is engaged in other ligand-binding mechanisms is poorly understood. Here, we use atomic force microscopy to demonstrate that Cna mediates attachment to two structurally and functionally different host proteins, i.e., the complement system protein C1q and the extracellular matrix protein laminin (Lam), through binding mechanisms that differ from the collagen hug. We show that single Cna-C1q and Cna-Lam bonds are much weaker than the high-affinity Cna-Cn bond and that their formation does not require the B-region of Cna. At the whole cell level, we find that bacterial adhesion to C1q-substrates involves only one (or two) molecular bond(s), while adhesion to Lam is mediated by multiple bonds, thus suggesting that multivalent or cooperative interactions may enhance the strength of adhesion. Both C1q and Lam interactions can be efficiently blocked by monoclonal antibodies directed against the minimal Cn-binding domain of Cna. These results show that Cna is a multifunctional protein capable of binding to multiple host ligands through mechanisms that differ from the classical collagen hug.
Collapse
Affiliation(s)
- Claire Valotteau
- Institute of Life Sciences, Université Catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06, Louvain-la-Neuve B-1348, Belgium
| | - Valeria Prystopiuk
- Institute of Life Sciences, Université Catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06, Louvain-la-Neuve B-1348, Belgium
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia , Viale Taramelli 3/b, Pavia 27100, Italy
| | - Simonetta Rindi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia , Viale Taramelli 3/b, Pavia 27100, Italy
| | - Daniele Peterle
- Laboratory of Protein Chemistry, Department of Pharmaceutical and Pharmacological Sciences, University of Padua , via F. Marzolo 5, Padova 35131, Italy
| | - Vincenzo De Filippis
- Laboratory of Protein Chemistry, Department of Pharmaceutical and Pharmacological Sciences, University of Padua , via F. Marzolo 5, Padova 35131, Italy
| | - Timothy J Foster
- Department of Microbiology, Trinity College Dublin , Dublin 2, Ireland
| | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia , Viale Taramelli 3/b, Pavia 27100, Italy
| | - Yves F Dufrêne
- Institute of Life Sciences, Université Catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06, Louvain-la-Neuve B-1348, Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO) , Liège 4000, Belgium
| |
Collapse
|
9
|
Abstract
AbstractPersistent staphylococcal infections are a major medical problem, especially when they occur on implanted materials or intravascular catheters. This review describes some of the recently discovered molecular mechanisms ofStaphylococcus aureusattachment to host proteins coating biomedical implants. These interactions involve specific surface proteins, called bacterial adhesins, that recognize specific domains of host proteins deposited on indwelling devices, such as fibronectin, fibrinogen, or fibrin. Elucidation of molecular mechanisms ofS aureusadhesion to the different host proteins may lead to the development of specific inhibitors blocking attachment ofS aureus, which may decrease the risk of bacterial colonization of indwelling devices.
Collapse
|
10
|
Abstract
Orthopaedic implants are highly susceptible to infection. The aims of treatment of infection associated with internal fixation devices are fracture consolidation and prevention of chronic osteomyelitis. Complete biofilm eradication is not the primary goal, as remaining adherent microorganisms can be removed with the device after fracture consolidation. By contrast, in periprosthetic joint infection (PJI), biofilm elimination is required. Surgical treatment of PJI includes debridement with retention, one- or two-stage exchange and removal without reimplantation. In addition, prolonged antibiotic treatment, preferably with an agent that is effective against biofilm bacteria, is required. Rifampicin is an example of an antibiotic with these properties against staphylococci. However, to avoid the emergence of resistance, rifampicin must always be combined with another antimicrobial agent. With this novel treatment approach, orthopaedic implant-associated infection is likely to be eradicated in up to 80-90% of patients. Because most antibiotics have a limited effect against biofilm infections, novel prophylactic and therapeutic options are needed. Surface coating with antimicrobial peptides that reduce bacterial attachment and biofilm formation can potentially prevent implant-associated infection. In addition, quorum-sensing inhibitors are a novel therapeutic option against biofilm infections.
Collapse
Affiliation(s)
- W Zimmerli
- Interdisciplinary Unit of Orthopaedic Infections, Kantonsspital Baselland, University of Basel, Liestal, Switzerland
| |
Collapse
|
11
|
Voltan AR, Sardi JDCO, Soares CP, Pelajo Machado M, Fusco Almeida AM, Mendes-Giannini MJS. Early Endosome Antigen 1 (EEA1) decreases in macrophages infected with Paracoccidioides brasiliensis. Med Mycol 2013; 51:759-64. [PMID: 23566224 DOI: 10.3109/13693786.2013.777859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a chronic granulomatous disease caused by the dimorphic fungus Paracoccidioides brasiliensis, endemic in Latin America. P. brasiliensis has been observed in epithelial cells in vivo and in vitro, as well as within the macrophages. The identification of the mechanism by which it survives within the host cell is fertile ground for the discovery of its pathogenesis since this organism has the ability to induce its own endocytosis in epithelial cells and most likely in macrophages. The study of the expression of endocytic proteins pathway and co-localization of microorganisms enable detection of the mechanism by which microorganisms survive within the host cell. The aim of this study was to evaluate the expression of the endocytic protein EEA1 (early endosome antigen 1) in macrophages infected with P. brasiliensis. For detection of EEA1, three different techniques were employed: immunofluorescence, real-time polymerase chain reaction (PCR) and immunoblotting. In the present study, decreased expression of EEA1 as well as the rearrangement of the actin was observed when the fungus was internalized, confirming that the input mechanism of the fungus in macrophages occurs through phagocytosis.
Collapse
Affiliation(s)
- Aline Raquel Voltan
- * Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista , Araraquara , São Paulo
| | | | | | | | | | | |
Collapse
|
12
|
Dias FDA, dos Santos ALS, Lery LMS, Alves e Silva TL, Oliveira MM, Bisch PM, Saraiva EM, Souto-Padrón TC, Lopes AH. Evidence that a laminin-like insect protein mediates early events in the interaction of a Phytoparasite with its vector's salivary gland. PLoS One 2012; 7:e48170. [PMID: 23118944 PMCID: PMC3485148 DOI: 10.1371/journal.pone.0048170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/20/2012] [Indexed: 11/25/2022] Open
Abstract
Phytomonas species are plant parasites of the family Trypanosomatidae, which are transmitted by phytophagous insects. Some Phytomonas species cause major agricultural damages. The hemipteran Oncopeltus fasciatus is natural and experimental host for several species of trypanosomatids, including Phytomonas spp. The invasion of the insect vectors' salivary glands is one of the most important events for the life cycle of Phytomonas species. In the present study, we show the binding of Phytomonas serpens at the external face of O. fasciatus salivary glands by means of scanning electron microscopy and the in vitro interaction of living parasites with total proteins from the salivary glands in ligand blotting assays. This binding occurs primarily through an interaction with a 130 kDa salivary gland protein. The mass spectrometry of the trypsin-digest of this protein matched 23% of human laminin-5 β3 chain precursor sequence by 16 digested peptides. A protein sequence search through the transcriptome of O. fasciatus embryo showed a partial sequence with 51% similarity to human laminin β3 subunit. Anti-human laminin-5 β3 chain polyclonal antibodies recognized the 130 kDa protein by immunoblotting. The association of parasites with the salivary glands was strongly inhibited by human laminin-5, by the purified 130 kDa insect protein, and by polyclonal antibodies raised against the human laminin-5 β3 chain. This is the first report demonstrating that a laminin-like molecule from the salivary gland of O. fasciatus acts as a receptor for Phytomonas binding. The results presented in this investigation are important findings that will support further studies that aim at developing new approaches to prevent the transmission of Phytomonas species from insects to plants and vice-versa.
Collapse
Affiliation(s)
- Felipe de Almeida Dias
- Instituto de Microbiologia Paulo de Goes, UFRJ, Ilha do Fundao, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquimica Medica, UFRJ, Ilha do Fundao, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Thiago Luiz Alves e Silva
- Instituto de Microbiologia Paulo de Goes, UFRJ, Ilha do Fundao, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio Martins Oliveira
- Instituto de Microbiologia Paulo de Goes, UFRJ, Ilha do Fundao, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Mascarello Bisch
- Instituto de Biofisica Carlos Chagas Filho, UFRJ, Ilha do Fundao, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elvira Maria Saraiva
- Instituto de Microbiologia Paulo de Goes, UFRJ, Ilha do Fundao, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Angela Hampshire Lopes
- Instituto de Microbiologia Paulo de Goes, UFRJ, Ilha do Fundao, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Ribeiro M, Monteiro FJ, Ferraz MP. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. BIOMATTER 2012; 2:176-94. [PMID: 23507884 PMCID: PMC3568104 DOI: 10.4161/biom.22905] [Citation(s) in RCA: 438] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Staphylococcus comprises up to two-thirds of all pathogens in orthopedic implant infections and they are the principal causative agents of two major types of infection affecting bone: septic arthritis and osteomyelitis, which involve the inflammatory destruction of joint and bone. Bacterial adhesion is the first and most important step in implant infection. It is a complex process influenced by environmental factors, bacterial properties, material surface properties and by the presence of serum or tissue proteins. Properties of the substrate, such as chemical composition of the material, surface charge, hydrophobicity, surface roughness and the presence of specific proteins at the surface, are all thought to be important in the initial cell attachment process. The biofilm mode of growth of infecting bacteria on an implant surface protects the organisms from the host immune system and antibiotic therapy. The research for novel therapeutic strategies is incited by the emergence of antibiotic-resistant bacteria. This work will provide an overview of the mechanisms and factors involved in bacterial adhesion, the techniques that are currently being used studying bacterial-material interactions as well as provide insight into future directions in the field.
Collapse
Affiliation(s)
- Marta Ribeiro
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
| | | | | |
Collapse
|
14
|
Singh B, Fleury C, Jalalvand F, Riesbeck K. Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev 2012; 36:1122-80. [PMID: 22537156 DOI: 10.1111/j.1574-6976.2012.00340.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 02/08/2012] [Accepted: 03/29/2012] [Indexed: 01/11/2023] Open
Abstract
Laminin (Ln) and collagen are multifunctional glycoproteins that play an important role in cellular morphogenesis, cell signalling, tissue repair and cell migration. These proteins are ubiquitously present in tissues as a part of the basement membrane (BM), constitute a protective layer around blood capillaries and are included in the extracellular matrix (ECM). As a component of BMs, both Lns and collagen(s), thus function as major mechanical containment molecules that protect tissues from pathogens. Invasive pathogens breach the basal lamina and degrade ECM proteins of interstitial spaces and connective tissues using various ECM-degrading proteases or surface-bound plasminogen and matrix metalloproteinases recruited from the host. Most pathogens associated with the respiratory, gastrointestinal, or urogenital tracts, as well as with the central nervous system or the skin, have the capacity to bind and degrade Lns and collagen(s) in order to adhere to and invade host tissues. In this review, we focus on the adaptability of various pathogens to utilize these ECM proteins as enhancers for adhesion to host tissues or as a targets for degradation in order to breach the cellular barriers. The major pathogens discussed are Streptococcus, Staphylococcus, Pseudomonas, Salmonella, Yersinia, Treponema, Mycobacterium, Clostridium, Listeria, Porphyromonas and Haemophilus; Candida, Aspergillus, Pneumocystis, Cryptococcus and Coccidioides; Acanthamoeba, Trypanosoma and Trichomonas; retrovirus and papilloma virus.
Collapse
Affiliation(s)
- Birendra Singh
- Medical Microbiology, Department of Laboratory Medicine Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | | | | |
Collapse
|
15
|
Pathogenesis of implant-associated infection: the role of the host. Semin Immunopathol 2011; 33:295-306. [DOI: 10.1007/s00281-011-0275-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/14/2011] [Indexed: 01/30/2023]
|
16
|
Baillif S, Hartmann D, Freney J, Kodjikian L. [Intraocular lens and bacterial adhesion: influence of the environmental factors, the characteristics of the bacteria, and the target material surface]. J Fr Ophtalmol 2010; 33:210-21. [PMID: 20202716 DOI: 10.1016/j.jfo.2010.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 12/22/2009] [Indexed: 10/19/2022]
Abstract
Adhesion of bacteria to intraocular lenses is an important step in the pathogenesis of postoperative endophthalmitis. It can be described as a two-phase process including an initial, instantaneous, and reversible phase followed by a time-dependant and irreversible molecular and cellular phase. The binding of bacteria is affected by many factors including environmental factors such as medium composition, presence of proteins and flow conditions, the bacterial cell surface characteristics, and the material's surface properties. This article reviews all these factors affecting the adhesion of bacteria to intraocular lenses. A better understanding of these mechanisms would make it possible to reduce the bacterial adhesion process and thus could help decrease the incidence of postoperative endophthalmitis.
Collapse
Affiliation(s)
- S Baillif
- Département d'Ophtalmologie, Centre hospitalo-universitaire Saint Roch, Nice, France; Laboratoire "Réparation Tissulaire, Interactions Biologiques et Biomatériaux", UPSP 2007.03.135 RTI2B, Lyon, France
| | | | | | | |
Collapse
|
17
|
Gram-negative bacterial sensors for eukaryotic signal molecules. SENSORS 2009; 9:6967-90. [PMID: 22399982 PMCID: PMC3290508 DOI: 10.3390/s90906967] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/24/2009] [Accepted: 08/25/2009] [Indexed: 11/16/2022]
Abstract
Ample evidence exists showing that eukaryotic signal molecules synthesized and released by the host can activate the virulence of opportunistic pathogens. The sensitivity of prokaryotes to host signal molecules requires the presence of bacterial sensors. These prokaryotic sensors, or receptors, have a double function: stereospecific recognition in a complex environment and transduction of the message in order to initiate bacterial physiological modifications. As messengers are generally unable to freely cross the bacterial membrane, they require either the presence of sensors anchored in the membrane or transporters allowing direct recognition inside the bacterial cytoplasm. Since the discovery of quorum sensing, it was established that the production of virulence factors by bacteria is tightly growth-phase regulated. It is now obvious that expression of bacterial virulence is also controlled by detection of the eukaryotic messengers released in the micro-environment as endocrine or neuro-endocrine modulators. In the presence of host physiological stress many eukaryotic factors are released and detected by Gram-negative bacteria which in return rapidly adapt their physiology. For instance, Pseudomonas aeruginosa can bind elements of the host immune system such as interferon-γ and dynorphin and then through quorum sensing circuitry enhance its virulence. Escherichia coli sensitivity to the neurohormones of the catecholamines family appears relayed by a recently identified bacterial adrenergic receptor. In the present review, we will describe the mechanisms by which various eukaryotic signal molecules produced by host may activate Gram-negative bacteria virulence. Particular attention will be paid to Pseudomonas, a genus whose representative species, P. aeruginosa, is a common opportunistic pathogen. The discussion will be particularly focused on the pivotal role played by these new types of pathogen sensors from the sensing to the transduction mechanism involved in virulence factors regulation. Finally, we will discuss the consequence of the impact of host signal molecules on commensally or opportunistic pathogens associated with different human tissue.
Collapse
|
18
|
Abstract
Infections of the hip joint are usually of bacterial etiology. Only rarely, an infectious arthritis is caused in this localization by viruses or fungi. Native joint infections of the hip are less common than infections after implantation of prosthetic devices. Difficulties in prosthetic joint infections are, (I) a higher age of patients, and, thus an associated presence of other medical risk factors, (II) often long courses of treatment regimes depending on the bacterium and its antibiotic resistance, (III) an increased mortality, and (IV) a high economic burden for removal and reimplantation of an infected prosthetic device. The pathogenic mechanisms responsible for articular infections are well studied only for some bacteria, e.g. Staphylococcus aureus, while others are only partially understood. Important known bacterial properties and microbiological characteristics of infection are the bacterial adhesion on the native joint or prosthetic material, the bacterial biofilm formation, the development of small colony variants (SCV) as sessile bacterial types and the increasing resistance to antibiotics.
Collapse
Affiliation(s)
- Udo Geipel
- Institute of Medical Microbiology and Hygiene, University of Saarland Hospital, Homburg, Germany.
| |
Collapse
|
19
|
Graham LL, Ceri H, Costerton JW. Lectin-like Proteins from Uroepithelial Cells which InhibitIn VitroAdherence of Three Urethral Bacterial Isolates to Uroepithelial Cells. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.3109/08910609209141293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- L. L. Graham
- Department of Biology, University of Calgary Calgary, Alberta, T2N 1N4, Canada
| | - H. Ceri
- Department of Biology, University of Calgary Calgary, Alberta, T2N 1N4, Canada
| | - J. W. Costerton
- Department of Biology, University of Calgary Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
20
|
Kuusela P, Ullberg M, Kronvall G, Tervo T, Tarkkanen A, Saksela O. Surface-associated activation of plasminogen on gram-positive bacteria. Effect of plasmin on the adherence of Staphylococcus aureus. Acta Ophthalmol 2009:42-6. [PMID: 1322010 DOI: 10.1111/j.1755-3768.1992.tb02167.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this article we review a novel type of plasminogen activation on staphylococcal and streptococcal cells. The activation mechanism implies a specific binding of glu-plasminogen to bacterial surface via the lysine-binding sites of plasminogen. Association of plasminogen with bacterial surfaces greatly enhances the t-PA mediated activation which takes place only poorly in solution. The end product, surface-associated plasmin, is enzymatically active, protected against high molecular weight plasmin inhibitors and capable of converting itself from glu-plasmin to the lys-form. The modification is associated with an increased affinity of the bound lys-plasmin towards the binding molecules on bacterial surface. This novel way of retaining plasmin on the surface may be important for the bacteria to invade and penetrate surrounding tissues. Our data on the effect of plasmin on staphylococcal adherence indicate that plasmin is not very effective in cleaning bacteria from surfaces coated with extracellular matrix components, fibronectin and fibrinogen.
Collapse
Affiliation(s)
- P Kuusela
- Department of Bacteriology, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
21
|
Twardowski ZJ. Peritoneal Dialysis Catheter Exit Site Infections: Prevention, Diagnosis, Treatment, and Future Directions. Semin Dial 2007. [DOI: 10.1111/j.1525-139x.1992.tb00235.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Lima FRS, Arantes CP, Muras AG, Nomizo R, Brentani RR, Martins VR. Cellular prion protein expression in astrocytes modulates neuronal survival and differentiation. J Neurochem 2007; 103:2164-76. [PMID: 17868300 DOI: 10.1111/j.1471-4159.2007.04904.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The functions of cellular prion protein (PrP(C)) are under intense debate and PrP(C) loss of function has been implicated in the pathology of prion diseases. Neuronal PrP(C) engagement with stress-inducible protein-1 and laminin (LN) plays a key role in cell survival and differentiation. The present study evaluated whether PrP(C) expression in astrocytes modulates neuron-glia cross-talk that underlies neuronal survival and differentiation. Astrocytes from wild-type mice promoted a higher level neuritogenesis than astrocytes obtained from PrP(C)-null animals. Remarkably, neuritogenesis was greatly diminished in co-cultures combining PrP(C)-null astrocytes and neurons. LN secreted and deposited at the extracellular matrix by wild-type astrocytes presented a fibrillary pattern and was permissive for neuritogenesis. Conversely, LN coming from PrP(C)-null astrocytes displayed a punctate distribution, and did not support neuronal differentiation. Additionally, secreted soluble factors from PrP(C)-null astrocytes promoted lower levels of neuronal survival than those secreted by wild-type astrocytes. PrP(C) and stress-inducible protein-1 were characterized as soluble molecules secreted by astrocytes which participate in neuronal survival. Taken together, these data indicate that PrP(C) expression in astrocytes is critical for sustaining cell-to-cell interactions, the organization of the extracellular matrix, and the secretion of soluble factors, all of which are essential events for neuronal differentiation and survival.
Collapse
Affiliation(s)
- Flavia R S Lima
- Ludwig Institute for Cancer Research, Hospital Alemão Oswaldo Cruz, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
An important facet in the interaction between Staphylococcus aureus and its host is the ability of the bacterium to adhere to human extracellular matrix components and serum proteins. In order to colonise the host and disseminate, it uses a wide range of strategies, the molecular and genetic basis of which are multifactorial, with extensive functional overlap between adhesins. Here, we describe the current knowledge of the molecular features of the adhesive components of S. aureus, mechanisms of adhesion and the impact that these have on host-pathogen interaction.
Collapse
Affiliation(s)
- Simon R Clarke
- Department of Molecular Biology & Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | | |
Collapse
|
24
|
Carneiro CRW, Postol E, Nomizo R, Reis LFL, Brentani RR. Identification of enolase as a laminin-binding protein on the surface of Staphylococcus aureus. Microbes Infect 2005; 6:604-8. [PMID: 15158195 DOI: 10.1016/j.micinf.2004.02.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 02/03/2004] [Indexed: 11/20/2022]
Abstract
We have previously demonstrated that Staphylococcus aureus, a highly invasive bacteria, presents a 52-kDa surface protein that mediates its binding to laminin. In order to better characterize this receptor, we excised this putative laminin receptor from two-dimensional (2-D) PAGE and used it as antigen for raising a mouse hyperimmune serum which was for screening an S. aureus expression library. A single clone of 0.3 kb was obtained, and its sequence revealed 100% homology with S. aureus alpha-enolase. Moreover, amino acid sequencing of the 52-kDa protein eluted from the 2-D gel indicated its molecular homology with alpha-enolase, an enzyme that presents a high evolutionary conservation among species. In parallel, monoclonal antibodies raised against the S. aureus 52-kDa band also recognized yeast alpha-enolase in western blot analysis. These monoclonal antibodies were also able to promote capture of iodine-labeled bacteria when adsorbed to a solid phase, and this capture was inhibited by the addition of excess rabbit muscle alpha-enolase. Finally, the cell surface localization of S. aureus alpha-enolase was further confirmed by flow cytometry. Hence, alpha-enolase might play a critical role in the pathogenesis of S. aureus by allowing its adherence to laminin-containing extracellular matrix.
Collapse
Affiliation(s)
- Celia R W Carneiro
- Discipline of Immunology, Microbiology, Immunology and Parasitology Department, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
25
|
Abstract
Pathogenic spirochetes are the causative agents of several important diseases including syphilis, Lyme disease, leptospirosis, swine dysentery, periodontal disease and some forms of relapsing fever. Spirochetal bacteria possess two membranes and the proteins present in the outer membrane are at the site of interaction with host tissue and the immune system. This review describes the current knowledge in the field of spirochetal outer membrane protein (OMP) biology. What is known concerning biogenesis and structure of OMPs, with particular regard to the atypical signal peptide cleavage sites observed amongst the spirochetes, is discussed. We examine the functions that have been determined for several spirochetal OMPs including those that have been demonstrated to function as adhesins, porins or to have roles in complement resistance. A detailed description of the role of spirochetal OMPs in immunity, including those that stimulate protective immunity or that are involved in antigenic variation, is given. A final section is included which covers experimental considerations in spirochetal outer membrane biology. This section covers contentious issues concerning cellular localization of putative OMPs, including determination of surface exposure. A more detailed knowledge of spirochetal OMP biology will hopefully lead to the design of new vaccines and a better understanding of spirochetal pathogenesis.
Collapse
Affiliation(s)
- Paul A. Cullen
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Melbourne, Vic. 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Vic. 3800, Australia
| | - David A. Haake
- School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Division of Infectious Diseases, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Ben Adler
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Melbourne, Vic. 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Vic. 3800, Australia
- Corresponding author. Tel.: +61-3-9905-4815; fax: +61-3-9905-4811. E-mail address: (B. Adler)
| |
Collapse
|
26
|
Heilmann C, Thumm G, Chhatwal GS, Hartleib J, Uekötter A, Peters G. Identification and characterization of a novel autolysin (Aae) with adhesive properties from Staphylococcus epidermidis. Microbiology (Reading) 2003; 149:2769-2778. [PMID: 14523110 DOI: 10.1099/mic.0.26527-0] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus epidermidisbiofilm formation on polymer surfaces is considered a major pathogenicity factor in foreign-body-associated infections. Previously, the 148 kDa autolysin AtlE fromS.epidermidis, which is involved in the initial attachment of the cells to polymer surfaces and also binds to the extracellular matrix protein vitronectin, was characterized. Here, the characterization of a novel autolysin/adhesin (Aae) inS.epidermidis is described. Aae was identified as a 35 kDa surface-associated protein that has bacteriolytic activity and binds vitronectin. Its N-terminal amino acid sequence was determined and the respective gene,aae, was cloned. DNA-sequence analysis revealed thataaeencodes a deduced protein of 324 amino acids with a predicted molecular mass of 35 kDa. Aae contains three repetitive sequences in its N-terminal portion. These repeats comprise features of a putative peptidoglycan binding domain (LysM domain) found in a number of enzymes involved in cell-wall metabolism and also in some adhesins. Expression ofaaebyEscherichia coliand subsequent analysis revealed that Aae possesses bacteriolytic activity and adhesive properties. The interaction of Aae with fibrinogen, fibronectin and vitronectin was found to be dose-dependent and saturable and to occur with high affinity, by using the real-time Biomolecular Interaction Analysis (BIA). Aae binds to the Aα- and Bβ-chains of fibrinogen and to the 29 kDa N-terminal fragment of fibronectin. In conclusion, Aae is a surface-associated protein with bacteriolytic and adhesive properties representing a new member of the staphylococcal autolysin/adhesins potentially involved in colonization.
Collapse
Affiliation(s)
- Christine Heilmann
- Institute of Medical Microbiology, University of Münster, Domagkstr. 10, D-48149 Münster, Germany
| | - Günther Thumm
- Mikrobielle Genetik, University of Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Gursharan S Chhatwal
- Division of Microbiology, GBF-National Research Center for Biotechnology, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | - Jörg Hartleib
- Institute of Medical Microbiology, University of Münster, Domagkstr. 10, D-48149 Münster, Germany
| | - Andreas Uekötter
- Institute of Medical Microbiology, University of Münster, Domagkstr. 10, D-48149 Münster, Germany
| | - Georg Peters
- Institute of Medical Microbiology, University of Münster, Domagkstr. 10, D-48149 Münster, Germany
| |
Collapse
|
27
|
Bunikowski R, Mielke M, Bräutigam M, Renz H, Wahn U. Effect of oral cyclosporin A in children with Staphylococcus aureus-colonized vs S aureus-infected severe atopic dermatitis. Pediatr Allergy Immunol 2003; 14:55-9. [PMID: 12603712 DOI: 10.1034/j.1399-3038.2003.02105.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Atopic dermatitis (AD) is frequently associated with skin colonization or infection with Staphylococcus aureus strains producing exotoxins. The aim of this investigation was to evaluate the effect of oral cyclosporin A (CsA) on disease severity and bacterial counts in colonized and infected patients. Eleven children with severe AD (SCORAD index >50, mean objective SCORAD score >40) were treated for 8 weeks with 2.5-5 mg/kg CsA. In five patients, the skin was only colonized with S. aureus whereas the remaining six patients presented clinically relevant suppurative S. aureus skin infections characterized by small pustules, crustings, pus and increased pruritus in the presence of S. aureus as determined by contact sampling and culture which regularly resulted in the indication for antibiotic treatment. Clinical and microbiological investigations were performed before and after CsA therapy. Clinical signs and symptoms of AD improved in all patients with a reduction in mean SCORAD index from 74 to 29 (p < 0.001). However, disease severity and bacterial counts were more reduced by CsA in the colonized patients compared with the patients with clinical overt infections. In conclusion, treatment with CsA resulted in an improvement of clinical symptoms in children suffering from severe AD. However, anti-infective treatment administered before immunomodulatory therapy is likely to be decisive for the long-term therapeutic effect.
Collapse
Affiliation(s)
- Rita Bunikowski
- Department of Pediatric Pneumology and Immunology, Humboldt University of Berlin, Germany.
| | | | | | | | | |
Collapse
|
28
|
Lee KS, Linden R, Prado MAM, Brentani RR, Martins VR. Towards cellular receptors for prions. Rev Med Virol 2003; 13:399-408. [PMID: 14625887 DOI: 10.1002/rmv.408] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transmissible spongiform encephalopathies (TSE) are attributed to the conversion of the cellular prion protein (PrP(c)) into an abnormal isoform (PrP(sc)). This can be caused by the invasion of living organisms by infectious particles, or be inherited due to mutations on the PrP(c) gene. One of the most intriguing problems of prion biology is the inability to generate the infectious agent in vitro. This argues strongly that other cellular proteins besides those added in test tubes or found in cellular preparations are necessary for infection. Despite recent progress in the understanding of prion pathology, the subcellular compartments in which the interaction and conversion of PrP(c) into PrP(sc) take place are still controversial. PrP(c) interacts with various macromolecules at the cell membrane, in endocytic compartments and in the secretory pathway, all of which may play specific roles in the internalisation of PrP(sc) and conversion of PrP(c). A specific interacting protein required for the propagation of prions was originally proposed as a prion receptor, and later referred to as a ligand, a cofactor, protein X, or a partner. However, current studies indicate that PrP(c) associates with multi-molecular complexes, which mediate a variety of functions in distinct cellular compartments. It is proposed that a deeper understanding of the mechanics of such interactions, coupled to a better knowledge of the corresponding signalling pathways and ensuing cellular responses, will have a major impact on the prevention and treatment of TSE.
Collapse
Affiliation(s)
- Kil Sun Lee
- Ludwig Institute for Cancer Research, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
29
|
Shinji H, Seki K, Tajima A, Uchida A, Masuda S. Fibronectin bound to the surface of Staphylococcus aureus induces association of very late antigen 5 and intracellular signaling factors with macrophage cytoskeleton. Infect Immun 2003; 71:140-6. [PMID: 12496159 PMCID: PMC143151 DOI: 10.1128/iai.71.1.140-146.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus Cowan I and a clinically isolated coagulase-negative Staphylococcus strain, S. saprophyticus 10312, were found to have two fibronectin binding proteins, FnBPA and FnBPB. While both staphylococci bound to serum fibronectin to a similar extent, fibronectin binding significantly increased the phagocytic activity of macrophages against S. aureus (by ca. 150%) but not against S. saprophyticus. This enhancing effect of fibronectin was inhibited by an RGD sequence-containing peptide and also by anti-very late antigen 5 antibody. This suggests that the effect is mediated by very late antigen 5 expressed on macrophages. In macrophages ingesting fibronectin-bound Cowan I, alpha(5) and beta(1) chains were associated with the cytoskeleton. Cytosolic signaling factors such as paxillin, c-Src, and c-Csk were also associated with the cytoskeleton. On the contrary, beta(3) integrin transiently disappeared from the cytoskeleton when macrophages ingested the fibronectin-treated S. aureus Cowan I. Furthermore, the Src kinase family tyrosine kinase Lyn dissociated from the cytoskeleton. These cellular components did not respond in a fibronectin-dependent manner when macrophages phagocytosed S. saprophyticus. This means that only fibronectin-treated S. aureus Cowan I induces the accumulation of very late antigen 5, which in turn induces the association of paxillin and tyrosine kinases. It is thought that the phagocytic activity of macrophages against fibronectin-treated S. aureus was increased by signaling via the activation of very late antigen 5.
Collapse
Affiliation(s)
- Hitomi Shinji
- Department of Microbiology II, Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan.
| | | | | | | | | |
Collapse
|
30
|
Lee LY, Miyamoto YJ, McIntyre BW, Höök M, McCrea KW, McDevitt D, Brown EL. The Staphylococcus aureus Map protein is an immunomodulator that interferes with T cell–mediated responses. J Clin Invest 2002. [DOI: 10.1172/jci0216318] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
31
|
Lee LY, Miyamoto YJ, McIntyre BW, Höök M, McCrea KW, McDevitt D, Brown EL. The Staphylococcus aureus Map protein is an immunomodulator that interferes with T cell-mediated responses. J Clin Invest 2002; 110:1461-71. [PMID: 12438444 PMCID: PMC151818 DOI: 10.1172/jci16318] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus (SA) is an opportunistic pathogen that affects a variety of organ systems and is responsible for many diseases worldwide. SA express an MHC class II analog protein (Map), which may potentiate SA survival by modulating host immunity. We tested this hypothesis in mice by generating Map-deficient SA (Map(-)SA) and comparing disease outcome to wild-type Map(+)SA-infected mice. Map(-)SA-infected mice presented with significantly reduced levels of arthritis, osteomyelitis, and abscess formation compared with control animals. Furthermore, Map(-)SA-infected nude mice developed arthritis and osteomyelitis to a severity similar to Map(+)SA-infected controls, suggesting that T cells can affect disease outcome following SA infection and Map may attenuate cellular immunity against SA. The capacity of Map to alter T cell function was tested more specifically in vitro and in vivo using native and recombinant forms of Map. T cells or mice treated with recombinant Map had reduced T cell proliferative responses and a significantly reduced delayed-type hypersensitivity response to challenge antigen, respectively. These data suggest a role for Map as an immunomodulatory protein that may play a role in persistent SA infections by affecting protective cellular immunity.
Collapse
Affiliation(s)
- Lawrence Y Lee
- The Center for Extracellular Matrix Biology, Texas A&M University System Health Science Center, Albert B. Alkek Institute of Biosciences and Technology, Houston, Texas 77030-7552, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Ferretti G, Mandala M, Di Cosimo S, Moro C, Curigliano G, Barni S. Catheter-related bloodstream infections, part I: pathogenesis, diagnosis, and management. Cancer Control 2002; 9:513-23. [PMID: 12514569 DOI: 10.1177/107327480200900610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
Abstract
Acute septic arthritis may develop as a result of hematogenous seeding, direct introduction, or extension from a contiguous focus of infection. The pathogenesis of acute septic arthritis is multifactorial and depends on the interaction of the host immune response and the adherence factors, toxins, and immunoavoidance strategies of the invading pathogen. Neisseria gonorrhoeae and Staphylococcus aureus are used in discussing the host-pathogen interaction in the pathogenesis of acute septic arthritis. While diagnosis rests on isolation of the bacterial species from synovial fluid samples, patient history, clinical presentation, laboratory findings, and imaging studies are also important. Acute nongonococcal septic arthritis is a medical emergency that can lead to significant morbidity and mortality. Therefore, prompt recognition, rapid and aggressive antimicrobial therapy, and surgical treatment are critical to ensuring a good prognosis. Even with prompt diagnosis and treatment, high mortality and morbidity rates still occur. In contrast, gonococcal arthritis is often successfully treated with antimicrobial therapy alone and demonstrates a very low rate of complications and an excellent prognosis for full return of normal joint function. In the case of prosthetic joint infections, the hardware must be eventually removed by a two-stage revision in order to cure the infection.
Collapse
Affiliation(s)
- Mark E Shirtliff
- Center for Biofilm Engineering Montana State University, Bozeman, Montana 59717-3980, USA.
| | | |
Collapse
|
34
|
Vaudaux P, Francois P, Bisognano C, Kelley WL, Lew DP, Schrenzel J, Proctor RA, McNamara PJ, Peters G, Von Eiff C. Increased expression of clumping factor and fibronectin-binding proteins by hemB mutants of Staphylococcus aureus expressing small colony variant phenotypes. Infect Immun 2002; 70:5428-37. [PMID: 12228267 PMCID: PMC128368 DOI: 10.1128/iai.70.10.5428-5437.2002] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Small colony variants (SCVs) of Staphylococcus aureus are slow-growing subpopulations that cause persistent and relapsing infections. The altered phenotype of SCV can arise from defects in menadione or hemin biosynthesis, which disrupt the electron transport chain and decrease ATP concentrations. With SCVs, virulence is altered by a decrease in exotoxin production and susceptibility to various antibiotics, allowing their intracellular survival. The expression of bacterial adhesins by SCVs is poorly documented. We tested fibrinogen- and fibronectin-mediated adhesion of a hemB mutant of S. aureus 8325-4 that is defective for hemin biosynthesis and exhibits a complete SCV phenotype. In this strain, adhesion to fibrinogen and fibronectin was significantly higher than that of its isogenic, normally growing parent and correlated with the increased surface display of these adhesins as assessed by flow cytometry. Real-time quantitative reverse transcription-PCR demonstrated increased expression of clfA and fnb genes by the hemB mutant compared to its isogenic parent. The influence of the hemB mutation on altered adhesin expression was confirmed by showing complete restoration of the wild-type adhesive phenotype in the hemB mutant, either by complementing with intact hemB or by supplementing the growth medium with hemin. Increased surface display of fibrinogen and fibronectin adhesins by the hemB mutation occurred independently from agr, a major regulatory locus of virulence factors in S. aureus. Both agr-positive and agr-lacking hemB mutants were also more efficiently internalized by human embryonic kidney cells than were their isogenic controls, presumably because of increased surface display of their fibronectin adhesins.
Collapse
Affiliation(s)
- Pierre Vaudaux
- Division of Infectious Diseases, University Hospital, CH-1211 Geneva 14, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kreikemeyer B, McDevitt D, Podbielski A. The role of the map protein in Staphylococcus aureus matrix protein and eukaryotic cell adherence. Int J Med Microbiol 2002; 292:283-95. [PMID: 12398219 DOI: 10.1078/1438-4221-00212] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Staphylococcus aureus Map protein was proposed to act as a multifunctional adhesin. Using a map- mutant, a complemented strain and recombinant Map, we demonstrated that Map was not a conventional adhesin and was not involved in binding soluble extracellular matrix (ECM) proteins and in staphylococcal adherence to immobilized ECM proteins. However, Map provided a substrate for efficient and species-specific adherence of staphylococcal cells. This interaction was dose-dependent and was inhibited by specific anti-Map antibodies. According to ligand blots, two staphylococcal surface proteins of 82 and 50 kDa appeared to function as Map receptors. Adherence of the mutant to epithelial cells was reduced by 80% as compared to wild-type and complemented strains. However, adherence was not followed by a similar high rate of internalization. In conclusion, Map can function as an endogenous adhesion substrate in the attachment to plastic surfaces and eukaryotic cells via interaction with staphylococcal surface adhesins.
Collapse
Affiliation(s)
- Bernd Kreikemeyer
- Department of Biochemistry and Biophysics, Institute of Biosciences and Technology, Texas A&M University, Houston, USA.
| | | | | |
Collapse
|
36
|
Mempel M, Schnopp C, Hojka M, Fesq H, Weidinger S, Schaller M, Korting HC, Ring J, Abeck D. Invasion of human keratinocytes by Staphylococcus aureus and intracellular bacterial persistence represent haemolysin-independent virulence mechanisms that are followed by features of necrotic and apoptotic keratinocyte cell death. Br J Dermatol 2002; 146:943-51. [PMID: 12072060 DOI: 10.1046/j.1365-2133.2002.04752.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Colonization of human skin by Staphylococcus aureus is a characteristic feature of several inflammatory skin diseases, which is often followed by tissue invasion and severe cell damage. A crucial role has been attributed to staphylococcal haemolysins in the cytotoxicity to epidermal structures. OBJECTIVES To investigate haemolysin-independent virulence to human keratinocytes. METHODS The stable alpha-haemolysin, beta-haemolysin double-negative S. aureus mutant DU 5720 was compared with the fully virulent parent strain 8325-4 and with its isogenic fibronectin-binding protein A/B-negative variant DU 5883 in an invasion model. RESULTS This assay showed dose-dependent internalization of all the strains investigated by human HaCaT keratinocytes, with reduced internalization of DU 5883. Transmission electron microscopy revealed adhesion of staphylococci to cellular pilus-like extrusions, followed by the embedding of the bacteria in cellular grooves. Following attachment to the keratinocytes the staphylococci were engulfed into vesicles within the cytoplasm where some bacteria persisted for 24-48 h. Addition of cytochalasin D strongly reduced the bacterial uptake, suggesting an active keratinocyte process. Bacterial invasion was followed by severe keratinocyte cell damage showing the morphological changes of cytotoxic and, to a lesser extent, apoptotic cell death as determined by the trypan blue exclusion test and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling assay. The highest levels of lethal cytotoxicity were observed in haemolysin-producing strains, whereas the induction of apoptosis seemed to depend on internalization. CONCLUSIONS Staphylococcal invasion of human keratinocytes represents a potent staphylococcal virulence factor, which, independently of alpha- and beta-haemolysins, leads to necrotic and apoptotic cell damage.
Collapse
Affiliation(s)
- M Mempel
- Department of Dermatology and Allergy Biederstein, Technical University Munich, Biedersteiner Str. 29, D-80802 Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Salacinski HJ, Tiwari A, Hamilton G, Seifalian AM. Cellular engineering of vascular bypass grafts: role of chemical coatings for enhancing endothelial cell attachment. Med Biol Eng Comput 2001; 39:609-18. [PMID: 11804165 DOI: 10.1007/bf02345431] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Surgical treatment of vascular disease has become common. The use of synthetic materials is limited to grafts larger than 5-6mm, because of the frequency of occlusion observed with small-diameter prosthetics. An alternative would be a hybrid or tissue-engineered graft with the surface coated with a monolayer of the patient's own cells. Currently, to be effective, high-density seeding regimens have to be undertaken. This is because endothelial cells (ECs) are washed off the graft lumen once exposed to physiological blood flow. EC attachment has been shown to be significantly improved by pre-coating with substances known to attach ECs selectively. The review examines the various types of coating and bonding technology used to date to enhance endothelial cell attachment onto the surface of prosthetic vascular bypass grafts.
Collapse
Affiliation(s)
- H J Salacinski
- Tissue Engineering Centre, University Department of Surgery, Royal Free and University College Medical School, University College London & Royal Free Hospital, UK
| | | | | | | |
Collapse
|
38
|
Tcholakian RK, Raad II. Durability of anti-infective effect of long-term silicone sheath catheters impregnated with antimicrobial agents. Antimicrob Agents Chemother 2001; 45:1990-3. [PMID: 11408213 PMCID: PMC90590 DOI: 10.1128/aac.45.7.1990-1993.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was performed to test the long-term antimicrobial efficacy of impregnated silicone catheters comprising an antimicrobial layer sandwiched between an external surface sheath and a luminal surface silicone sheath. The design of the catheter permits the introduction of various antimicrobials in addition to anticoagulants or antifibrins in the antimicrobial layer and allows their gradual release over a period of months after insertion. The in vitro data presented show that the catheter can provide antimicrobial activity for 90 days, after being replated for 15 7-day cycles of replating. When the catheters were immersed in human serum and incubated at 37 degrees C, they demonstrated significant antimicrobial activity after more than 325 days of incubation. The significant long-term in vitro antimicrobial activity observed may imply effective in vivo activity for almost 1 year after insertion and could serve as a cost-effective alternative to surgically implantable silicone catheters.
Collapse
Affiliation(s)
- R K Tcholakian
- Department of Interdisciplinary Research, University of Texas-Houston Medical School, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.
| | | |
Collapse
|
39
|
Nallapareddy SR, Qin X, Weinstock GM, Höök M, Murray BE. Enterococcus faecalis adhesin, ace, mediates attachment to extracellular matrix proteins collagen type IV and laminin as well as collagen type I. Infect Immun 2000; 68:5218-24. [PMID: 10948147 PMCID: PMC101781 DOI: 10.1128/iai.68.9.5218-5224.2000] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adhesin-mediated binding to extracellular matrix (ECM) proteins is thought to be a crucial step in the pathogenic process of many bacterial infections. We have previously reported conditional adherence of most Enterococcus faecalis isolates, after growth at 46 degrees C, to ECM proteins collagen types I and IV and laminin; identified an E. faecalis-specific gene, ace, whose encoded protein has characteristics of a bacterial adhesin; and implicated Ace in binding to collagen type I. In this study, we constructed an ace disruption mutant from E. faecalis strain OG1RF that showed marked reduction in adherence to collagen types I and IV and laminin when compared to the parental OG1RF strain after growth at 46 degrees C. Polyclonal immune serum raised against the OG1RF-derived recombinant Ace A domain reacted with a single approximately 105-kDa band of mutanolysin extracts from OG1RF grown at 46 degrees C, while no band was detected in extracts from OG1RF grown at 37 degrees C, nor from the OG1RF ace mutant grown at 37 or 46 degrees C. IgGs purified from the anti-Ace A immune serum inhibited adherence of 46 degrees C-grown E. faecalis OG1RF to immobilized collagen type IV and laminin as well as collagen type I, at a concentration as low as 1 microg/ml, and also inhibited the 46 degrees C-evoked adherence of two clinical isolates tested. We also showed in vitro interaction of collagen type IV with Ace from OG1RF mutanolysin extracts on a far-Western blot. Binding of recombinant Ace A to immobilized collagen types I and IV and laminin was demonstrated in an enzyme-linked immunosorbent assay and was shown to be concentration dependent. These results indicate that Ace A mediates the conditional binding of E. faecalis OG1RF to collagen type IV and laminin in addition to collagen type I.
Collapse
Affiliation(s)
- S R Nallapareddy
- Division of Infectious Diseases, Department of Internal Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
40
|
Ciampolini J, Harding KG. Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often? Postgrad Med J 2000; 76:479-83. [PMID: 10908375 PMCID: PMC1741709 DOI: 10.1136/pmj.76.898.479] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this review the pathophysiology of chronic bacterial osteomyelitis is summarised, focusing on how bacteria succeed so often in overcoming both host defence mechanisms and antibiotic agents. Bacteria adhere to bone matrix and orthopaedic implants via receptors to fibronectin and to other structural proteins. They subsequently elude host defences and antibiotics by "hiding" intracellularly, by developing a slimy coat, or by acquiring a very slow metabolic rate. The presence of an orthopaedic implant also causes a local polymorphonuclear cell defect, with decreased ability to kill phagocytosed bacteria. Osteolysis is determined locally by the interaction of bacterial surface components with immune system cells and subsequent cytokine production. The increasing development of antibiotic resistance by Staphylococcus aureus and S epidermidis will probably make conservative treatment even less successful than it is now. A close interaction between orthopaedic surgeons and physicians, with combined medical and operative treatment, is to be commended.
Collapse
Affiliation(s)
- J Ciampolini
- Wound Healing Research Unit, University of Wales College of Medicine, Cardiff, UK
| | | |
Collapse
|
41
|
Nair SP, Williams RJ, Henderson B. Advances in our understanding of the bone and joint pathology caused by Staphylococcus aureus infection. Rheumatology (Oxford) 2000; 39:821-34. [PMID: 10952735 DOI: 10.1093/rheumatology/39.8.821] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- S P Nair
- Cellular Microbiology Research Group, Division of Surgical Sciences, Eastman Dental Institute, University College London, London, UK
| | | | | |
Collapse
|
42
|
An YH, Friedman RJ. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2000; 43:338-48. [PMID: 9730073 DOI: 10.1002/(sici)1097-4636(199823)43:3<338::aid-jbm16>3.0.co;2-b] [Citation(s) in RCA: 662] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This article reviews the mechanisms of bacterial adhesion to biomaterial surfaces and the factors affecting the adhesion. The process of bacterial adhesion includes an initial physicochemical interaction phase (phase one) and a late molecular and cellular interaction phase (phase two), which is a complicated process affected by many factors, including the characteristics of the bacteria themselves, the target material surface, and the environmental factors, such as the presence of serum proteins or bactericidal substances.
Collapse
Affiliation(s)
- Y H An
- Department of Orthopaedic Surgery, Medical University of South Carolina, Charleston, USA.
| | | |
Collapse
|
43
|
Mongodin E, Bajolet O, Hinnrasky J, Puchelle E, de Bentzmann S. Cell wall-associated protein A as a tool for immunolocalization of Staphylococcus aureus in infected human airway epithelium. J Histochem Cytochem 2000; 48:523-34. [PMID: 10727294 DOI: 10.1177/002215540004800410] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus aureus is a common human pathogen involved in non-bronchial diseases and in genetic and acquired bronchial diseases. In this study, we applied an immunolabeling approach for in vivo and in vitro detection of S. aureus, based on the affinity of staphylococcal protein A (SpA) for the Fc region of immunoglobulins, especially IgG. Most strains of S. aureus, including clinical strains, can be detected with this labeling technique. The approach can be used for detection and localization with transmission electron microscopy or light-fluorescence microscopy of S. aureus in infected tissues such as human bronchial tissue from cystic fibrosis (CF) patients. The methodology can also be applied to cell culture models with the aim of characterizing bacterial adherence to epithelial cells in backscattered electron imaging with scanning electron microscopy. Application to the study of S. aureus adherence to airway epithelium showed that the bacteria did not adhere in vivo to intact airway epithelium. In contrast, bacteria adhered to the basolateral plasma membrane of columnar cells, to basal cells, to the basement membrane and were identified beneath the lamina propria when the epithelium was injured and remodeled, or in vitro when the epithelial cells were dedifferentiated.
Collapse
Affiliation(s)
- E Mongodin
- INSERM U514, IFR53, CHU Maison-Blanche, Reims, France
| | | | | | | | | |
Collapse
|
44
|
Graner E, Mercadante AF, Zanata SM, Forlenza OV, Cabral AL, Veiga SS, Juliano MA, Roesler R, Walz R, Minetti A, Izquierdo I, Martins VR, Brentani RR. Cellular prion protein binds laminin and mediates neuritogenesis. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 76:85-92. [PMID: 10719218 DOI: 10.1016/s0169-328x(99)00334-4] [Citation(s) in RCA: 233] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Laminin (LN) plays a major role in neuronal differentiation, migration and survival. Here, we show that the cellular prion protein (PrPc) is a saturable, specific, high-affinity receptor for LN. The PrPc-LN interaction is involved in the neuritogenesis induced by NGF plus LN in the PC-12 cell line and the binding site resides in a carboxy-terminal decapeptide from the gamma-1 LN chain. Neuritogenesis induced by LN or its gamma-1-derived peptide in primary cultures from rat or either wild type or PrP null mice hippocampal neurons, indicated that PrPc is the main cellular receptor for that particular LN domain. These results point out to the importance of the PrPc-LN interaction for the neuronal plasticity mechanism.
Collapse
Affiliation(s)
- E Graner
- Ludwig Institute for Cancer Research, São Paulo Branch, Rua Prof. Antônio Prudente 109/4A, 01509-010, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shiomori T, Yoshida S, Miyamoto H, Makishima K. Relationship of nasal carriage of Staphylococcus aureus to pathogenesis of perennial allergic rhinitis. J Allergy Clin Immunol 2000; 105:449-54. [PMID: 10719292 DOI: 10.1067/mai.2000.104256] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Several studies have previously shown some factors that modify the pathogenesis of perennial allergic rhinitis (PAR). However, the association between bacterial colonization and PAR has not been well understood. OBJECTIVE We sought to study the association between superantigen-producing Staphylococcus aureus and PAR. METHODS S aureus colonization in the nasal cavity and its superantigen production were studied in 65 patients with PAR and 45 nonallergic control subjects. The nasal symptom scores of the patients were evaluated. Furthermore, we examined the response to staphylococcal enterotoxin B or toxic shock syndrome toxin 1 of peripheral blood lymphocytes from both patients and control subjects by measuring proliferative responses and production of cytokines (IFN-gamma, IL-4, and IL-5). RESULTS The rate of nasal carriage of S aureus in the patients (44%) was significantly higher than that of the control subjects (20%, P <.01). Moreover, the rate of nasal carriage of superantigen-producing S aureus in the patients (22%) was significantly higher than that of the control subjects (6.7%, P <.05). The nasal symptom scores of the S aureus -positive patients were significantly higher than those of the S aureus -negative patients (P <.05), although there was no significant association between symptom scores and superantigen production. Peripheral blood lymphocytes from the patients showed significantly higher proliferative responses and were more likely to produce T(H2 )type cytokines in response to superantigens (P <.01), but the responses were not different among the patients with S aureus carriage and superantigen production. CONCLUSION This study suggests that PAR leads to a higher carriage rate of S aureus, and nasal carriage of S aureus may aggravate PAR.
Collapse
Affiliation(s)
- T Shiomori
- Department of Otorhinolaryngology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | | | | | | |
Collapse
|
46
|
Garcia-Abreu J, Mendes FA, Onofre GR, De Freitas MS, Silva LC, Moura Neto V, Cavalcante LA. Contribution of heparan sulfate to the non-permissive role of the midline glia to the growth of midbrain neurites. Glia 2000; 29:260-72. [PMID: 10642752 DOI: 10.1002/(sici)1098-1136(20000201)29:3<260::aid-glia7>3.0.co;2-i] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radial glial cells and astrocytes are heterogeneous with respect to morphology, cytoskeletal- and membrane-associated molecules and intercellular interactions. Astrocytes derived from lateral (L) and medial (M) midbrain sectors differ in their abilities to support neuritic growth of midbrain neurons in coculture (Garcia-Abreu et al. J Neurosci Res 40:471, 1995). There is a correlation between these abilities and the differential patterns of laminin (LN) organization that is fibrillar in growth-permissive L astrocytes and punctate in the non-permissive M astroglia (Garcia-Abreu et al. NeuroReport 6:761, 1995). There are also differences in the production of glycosaminoglycans (GAGs) by L and M midbrain astrocytes (Garcia-Abreu et al. Glia 17:339, 1996). We show that the relative amounts of the glycoproteins laminin LN, fibronectin (FN) and tenascin (TN) are virtually identical in L and M glia, thus, confirming that an abundant content of LN is not sufficient to promote neurite growth. To further analyze the role of GAGs in the properties of M and L glia, we employed enzymatic degradation of the GAGs chondroitin sulfate (CS) and heparan sulfate (HS). Treatment with chondroitinase has little effect on the non-permissive properties of M glia but reduces the growth-supporting ability of L glia. By contrast, heparitinase I produces no significant changes on L glia but leads to neurite growth promotion by M glia. Taken together, these results suggest that glial CS helps to promote neurite growth and, more importantly, they indicate that a HS proteoglycan is, at least, partially responsible for the non-permissive role of the midline glia to the growth of midbrain neurites.
Collapse
Affiliation(s)
- J Garcia-Abreu
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
47
|
Park HM, Yoo HS, Oh TH, Kim D, Han HR. Immunogenicity of alpha-toxin, capsular polysaccharide (CPS) and recombinant fibronectin-binding protein (r-FnBP) of Staphylococcus aureus in rabbit. J Vet Med Sci 1999; 61:995-1000. [PMID: 10535504 DOI: 10.1292/jvms.61.995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was conducted to evaluate the antibody levels of alpha-toxin, capsular polysaccharides (CPS) and fibronectin-binding protein (FnBP) in rabbits immunized with an experimental vaccine against Staphylococcus aureus and to develop the bovine mastitis subunit vaccine in the future. Enzyme immunoassay was used for detection of IgG antibodies against staphylococcal CPS, alpha-toxin and FnBP. The levels of specific antibodies against CPS, alpha-toxin and FnBP in immunized rabbits were significantly increased after first immunization compared with control animals (p<0.05). Of three antigen used in vaccine, immunogenicity of CPS was relatively lower, compared with those of alpha toxin and fibronectin binding protein. Numbers of S. aureus in blood of immunized groups were lower than those of control group after bacterial challenge. But the bacterial numbers among immunized groups were not significantly different. S. aureus counts in excised organs were significantly lower in all immunized rabbits than in PBS-control group (p<0.05). The present study showed that alpha-toxin, capsular polysaccharide and fibronectin binding protein included in a subunit vaccine were protective.
Collapse
Affiliation(s)
- H M Park
- Department of Internal Medicine and Infectious Disease, College of Veterinary Medicine, Seoul National University, Sinlim-dong, Korea
| | | | | | | | | |
Collapse
|
48
|
Rayes AA, Lambertucci JR. [The association between human toxocariasis and pyogenic abscesses]. Rev Soc Bras Med Trop 1999; 32:425-38. [PMID: 10495673 DOI: 10.1590/s0037-86821999000400014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The association between hepatic abscesses and schistosomiasis mansoni was confirmed by clinical and experimental studies. Other parasites may cause systemic immunologic changes and local structural alterations in the affected organs that can facilitate the seeding of these areas by bacteria. Tropical pyomyositis, pyogenic liver and renal abscesses are frequent diseases in tropical areas. The visceral larva migrans syndrome is caused by the presence, in the human body, of larvae of worms that have other animals as their definitive host, most commonly being caused by Toxocara canis. The larvae migrate to various body organs leading to many inflammatory reactions in the form of granuloma and tissue necrosis. In this review we discuss the possible host-parasite-bacteria interactions that would favour the formation of abscesses in the organs involved by the larva of T. canis and present preliminary results of a clinical and experimental study undertaken during the last four years to define the role of this parasite in the pathogenesis of the abscesses.
Collapse
Affiliation(s)
- A A Rayes
- Departamento de Clínica Medica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte
| | | |
Collapse
|
49
|
von Eiff C, Heilmann C, Herrmann M, Peters G. Basic aspects of the pathogenesis of staphylococcal polymer-associated infections. Infection 1999; 27 Suppl 1:S7-10. [PMID: 10379436 DOI: 10.1007/bf02561610] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- C von Eiff
- Institut für Medizinische Mikrobiologie, Westfälische Wilhelms-Universität Münster, Germany
| | | | | | | |
Collapse
|
50
|
Styriak I, Lauková A, Fallgren C, Wadström T. Binding of extracellular matrix proteins by animal strains of staphylococcal species. Vet Microbiol 1999; 67:99-112. [PMID: 10414365 DOI: 10.1016/s0378-1135(99)00037-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
All 81 strains of Staphylococcus species isolated mainly from animals express high surface hydrophobicity as a stable property upon cultivation on blood agar. Bovine lactoferrin, human vitronectin, human fibronectin, heparin, human and bovine serum albumin were immobilized on latex beads to detect protein-binding cell surface components of 67 non-autoaggregating staphylococcal strains by a particle agglutination assay. Bovine lactoferrin was bound well by 22 strains (3 or 2) while 15 strains reacted weakly (1) and 30 did not react (0) with the lactoferrin-coated latex beads. The particle agglutination assay showed similar differences among staphylococcal strains in binding other proteins with the exception of human and bovine serum albumins for which 66 of 67 strains were negative (0). The specificity of the agglutination reaction was confirmed by a particle agglutination inhibition assay by preincubating bacterial cells with the protein (lactoferrin, vitronectin, etc.) used subsequently in particle agglutination assay. Autoaggregating strains together with some non-autoaggregating strains were selected for microtitre plate assay. According to absorbance at 570 nm, 14 strains were classified as non-adherent, 16 strains as weakly adherent and 18 strains as strongly adherent to bovine lactoferrin in microtitre plate assays. A direct correlation was found between the absorbance values at 570 nm of microtitre plate binding assay and test values obtained in particle agglutination assay. Binding of bovine lactoferrin to 81 staphylococcal strains as well as of human vitronectin and human fibronectin to a selected number of these strains was studied with radiolabeled (125I-labeled) proteins. Radiolabeled bovine lactoferrin was bound common by all except four strains (7 to 39%). Staphylococcal strains isolated from diseased pigs commonly bound 125I-labeled vitronectin (21 to 42% of the vitronectin added). Binding of vitronectin and lactoferrin was efficiently inhibited by preincubating of staphylococcal cells with sulphated carbohydrate compounds as heparin, dextran sulphate and fucoidan, but not by other non-sulphated highly charged glycoconjugates such as hyaluronic acid.
Collapse
Affiliation(s)
- I Styriak
- Department of Microbiology, Institute of Animal Physiology, Slovak Academy of Sciences, Kosice, Slovakia.
| | | | | | | |
Collapse
|