1
|
Korf HW. Photoneuroendocrine, circadian and seasonal systems: from photoneuroendocrinology to circadian biology and medicine. Cell Tissue Res 2024:10.1007/s00441-024-03913-7. [PMID: 39264444 DOI: 10.1007/s00441-024-03913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/30/2024] [Indexed: 09/13/2024]
Abstract
This contribution highlights the scientific development of two intertwined disciplines, photoneuroendocrinology and circadian biology. Photoneuroendocrinology has focused on nonvisual photoreceptors that translate light stimuli into neuroendocrine signals and serve rhythm entrainment. Nonvisual photoreceptors first described in the pineal complex and brain of nonmammalian species are luminance detectors. In the pineal, they control the formation of melatonin, the highly conserved hormone of darkness which is synthesized night by night. Pinealocytes endowed with both photoreceptive and neuroendocrine capacities function as "photoneuroendocrine cells." In adult mammals, nonvisual photoreceptors controlling pineal melatonin biosynthesis and pupillary reflexes are absent from the pineal and brain and occur only in the inner layer of the retina. Encephalic photoreceptors regulate seasonal rhythms, such as the reproductive cycle. They are concentrated in circumventricular organs, the lateral septal organ and the paraventricular organ, and represent cerebrospinal fluid contacting neurons. Nonvisual photoreceptors employ different photopigments such as melanopsin, pinopsin, parapinopsin, neuropsin, and vertebrate ancient opsin. After identification of clock genes and molecular clockwork, circadian biology became cutting-edge research with a focus on rhythm generation. Molecular clockworks tick in every nucleated cell and, as shown in mammals, they drive the expression of more than 3000 genes and are of overall importance for regulation of cell proliferation and metabolism. The mammalian circadian system is hierarchically organized; the central rhythm generator is located in the suprachiasmatic nuclei which entrain peripheral circadian oscillators via multiple neuronal and neuroendocrine pathways. Disrupted molecular clockworks may cause various diseases, and investigations of this interplay will establish a new discipline: circadian medicine.
Collapse
Affiliation(s)
- Horst-Werner Korf
- Institute Anatomy I, Medical Faculty, Heinrich Heine University, Duesseldorf, Federal Republic of Germany.
| |
Collapse
|
2
|
Korf HW, von Gall C. Mouse Models in Circadian Rhythm and Melatonin Research. J Pineal Res 2024; 76:e12986. [PMID: 38965880 DOI: 10.1111/jpi.12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
This contribution reviews the role of inbred and transgenic mouse strains for deciphering the mammalian melatoninergic and circadian system. It focusses on the pineal organ as melatonin factory and two major targets of the melatoninergic system, the suprachiasmatic nuclei (SCN) and the hypophysial pars tuberalis (PT). Mammalian pinealocytes sharing molecular characteristics with true pineal and retinal photoreceptors synthesize and secrete melatonin into the blood and cerebrospinal fluid night by night. Notably, neuron-like connections exist between the deep pinealocytes and the habenular/pretectal region suggesting direct pineal-brain communication. Control of melatonin biosynthesis in rodents involves transcriptional regulation including phosphorylation of CREB and upregulation of mPer1. In the SCN, melatonin acts upon MT1 and MT2 receptors. Melatonin is not necessary to maintain the rhythm of the SCN molecular clockwork, but it has distinct effects on the synchronization of the circadian rhythm by light, facilitates re-entrainment of the circadian system to phase advances in the level of the SCN molecular clockwork by acting upon MT2 receptors and plays a stabilizing role in the circadian system as evidenced from locomotor activity recordings. While the effects in the SCN are subtle, melatonin is essential for PT functions. Via the MT1 receptor it drives the PT-intrinsic molecular clockwork and the retrograde and anterograde output pathways controlling seasonal rhythmicity. Although inbred and transgenic mice do not show seasonal reproduction, the pathways from the PT are fully intact if the animals are melatonin proficient. Thus, only melatonin-proficient strains are suited to investigate the circadian and melatoninergic systems.
Collapse
Affiliation(s)
- Horst-Werner Korf
- Institute of Anatomy I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
3
|
An ultrastructural study of the deep pineal gland of the Sprague Dawley rat using transmission and serial block face scanning electron microscopy: cell types, barriers, and innervation. Cell Tissue Res 2022; 389:531-546. [PMID: 35737105 DOI: 10.1007/s00441-022-03654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
The morphology of the deep pineal gland of the Sprague Dawley rat was investigated by serial block face scanning electron microscopy. Cells were three-dimensionally (3-D) reconstructed using the software Fiji TrackEM. The deep pineal gland consisted of 2-5 layers of electron-lucent pinealocytes, with a euchromatic nucleus, endowed with one or two processes. Laterally, the deep pineal merged with the habenula and the stria medullaris thalami, via an intermediate area containing cells with more electron-dense cytoplasm and an indented nucleus with heterochromatin. Neither nerve terminals nor capillaries were observed in the deep pineal itself but present in the intermediate parts of the gland. The deep pineal was in contact with the third ventricle via the pineal and suprahabenular recesses. The ependymal lining in these recesses was an epithelium connected by tight junctions between their lateral cell membranes. Several intraventricular nerve terminals were in contact with the ependyma. 3-D reconstructions showed the ependymal cells endowed with long slender process penetrating the underlying pineal parenchyma. Few "tanocyte-like" ependymal cells, endowed with a process, reaching the subarachnoid space on the inferior surface of the deep pineal were observed. In addition, pinealocyte and astrocyte processes, often connected by gap junctions, bordered the inferior surface. In summary, the rat deep pineal gland is a neuroendocrine structure connected to the habenula. We here report specialized ependymal cells that might transmit signals from the cerebrospinal fluid to the deep pineal parenchyma and a "trans-pineal tanocyte-like cell" that connects the ventricular system with the subarachnoid space.
Collapse
|
4
|
Hertz H, Blancas-Velazquez AS, Rath MF. The role of homeobox gene-encoded transcription factors in regulation of phototransduction: Implementing the primary pinealocyte culture as a photoreceptor model. J Pineal Res 2021; 71:e12753. [PMID: 34129741 DOI: 10.1111/jpi.12753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
Homeobox genes encode transcription factors controlling development; however, a number of homeobox genes are expressed postnatally specifically in melatonin-producing pinealocytes of the pineal gland and photoreceptors of the retina along with transcripts devoted to melatonin synthesis and phototransduction. Homeobox genes regulate melatonin synthesis in pinealocytes, but some homeobox genes also seem to be involved in regulation of retinal phototransduction. Due to the lack of photoreceptor models, we here introduce the rat pinealocyte culture as an in vitro model for studying retinal phototransduction. Systematic qPCR analyses were performed on the rat retina and pineal gland in 24 hour in vivo series and on primary cultures of rat pinealocytes: All homeobox genes and melatonin synthesis components, as well as nine out of ten phototransduction genes, were readily detectable in all three experimental settings, confirming molecular similarity between cultured pinealocytes and in vivo retinal tissue. 24 hours circadian expression was mostly confined to transcripts in the pineal gland, including a novel rhythm in arrestin (Sag). Individual knockdown of the homeobox genes orthodenticle homeobox 2 (Otx2), cone-rod homeobox (Crx) and LIM homeobox 4 (Lhx4) in pinealocyte culture using siRNA resulted in specific downregulation of transcripts representing all levels of phototransduction; thus, all phototransduction genes studied in culture were affected by one or several siRNA treatments. Histological colocalization of homeobox and phototransduction transcripts in the rat retinal photoreceptor was confirmed by RNAscope in situ hybridization, thus suggesting that homeobox gene-encoded transcription factors control postnatal expression of phototransduction genes in the retinal photoreceptor.
Collapse
Affiliation(s)
- Henrik Hertz
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Fredensborg Rath
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Dumas G, Goubran‐Botros H, Matondo M, Pagan C, Boulègue C, Chaze T, Chamot‐Rooke J, Maronde E, Bourgeron T. Mass-spectrometry analysis of the human pineal proteome during night and day and in autism. J Pineal Res 2021; 70:e12713. [PMID: 33368564 PMCID: PMC8047921 DOI: 10.1111/jpi.12713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
The human pineal gland regulates day-night dynamics of multiple physiological processes, especially through the secretion of melatonin. Using mass-spectrometry-based proteomics and dedicated analysis tools, we identify proteins in the human pineal gland and analyze systematically their variation throughout the day and compare these changes in the pineal proteome between control specimens and donors diagnosed with autism. Results reveal diverse regulated clusters of proteins with, among others, catabolic carbohydrate process and cytoplasmic membrane-bounded vesicle-related proteins differing between day and night and/or control versus autism pineal glands. These data show novel and unexpected processes happening in the human pineal gland during the day/night rhythm as well as specific differences between autism donor pineal glands and those from controls.
Collapse
Affiliation(s)
- Guillaume Dumas
- Human Genetics and Cognitive FunctionsInstitut PasteurUMR 3571 CNRSUniversity Paris DiderotParisFrance
- Precision Psychiatry and Social Physiology laboratoryCHU Ste‐Justine Research CenterDepartment of PsychiatryUniversity of MontrealQuebecQCCanada
| | - Hany Goubran‐Botros
- Human Genetics and Cognitive FunctionsInstitut PasteurUMR 3571 CNRSUniversity Paris DiderotParisFrance
| | - Mariette Matondo
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Cécile Pagan
- Paris Descartes UniversityParisFrance
- Service de Biochimie et Biologie MoléculaireINSERM U942Hôpital LariboisièreAPHPParisFrance
| | - Cyril Boulègue
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Thibault Chaze
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Julia Chamot‐Rooke
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Erik Maronde
- Institute for Anatomy IIFaculty of MedicineGoethe UniversityFrankfurtGermany
| | - Thomas Bourgeron
- Human Genetics and Cognitive FunctionsInstitut PasteurUMR 3571 CNRSUniversity Paris DiderotParisFrance
| |
Collapse
|
6
|
Rohde K, Bering T, Furukawa T, Rath MF. A modulatory role of the Rax
homeobox gene in mature pineal gland function: Investigating the photoneuroendocrine circadian system of a Rax
conditional knockout mouse. J Neurochem 2017; 143:100-111. [DOI: 10.1111/jnc.14120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/09/2017] [Accepted: 06/25/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Kristian Rohde
- Department of Neuroscience; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Tenna Bering
- Department of Neuroscience; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
- Laboratory of Neuropsychiatry; Psychiatric Center Copenhagen; Mental Health Services of the Capital Region of Denmark; Copenhagen Denmark
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology; Institute for Protein Research; Osaka University; Suita Osaka Japan
| | - Martin Fredensborg Rath
- Department of Neuroscience; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
7
|
Tsutsumi S, Ono H, Yasumoto Y. The suprapineal recess of the third ventricle: an anatomic study with magnetic resonance imaging. Surg Radiol Anat 2016; 39:725-730. [PMID: 27942944 DOI: 10.1007/s00276-016-1794-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/04/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE The suprapineal recess (SPR) is a small, backward extension of the third ventricle. Few radiological studies have investigated the morphology of the SPR. Here, we explore the SPR with magnetic resonance (MR) imaging. METHODS A total of 124 patients underwent thin-slice MR imaging examinations with T2-weighted imaging and the constructive interference steady-state (CISS) sequence. Imaging data were transferred to a workstation for analysis. RESULTS The pineal gland (P) was delineated in 99% of the patients on T2-weighted imaging and 100% of the patients on the CISS sequence. In contrast, the SPR was identified in 27% of the patients on T2-weighted imaging and 82% of the patients on the CISS sequence. The location of the P relative to the lowest point of the splenium was roughly classified into two types. Of them, the anterior P location was the more frequent type and observed in 73% of the patients. The angle formed by the roof and floor of the SPR showed remarkable interindividual diversity. A membranous posterior extension with variable length, spanning between the posterosuperior margin of the P and Galenic complex was found in 55% of the identified SPRs on T2-weighted imaging and 45% on the CISS sequence. CONCLUSIONS The SPR is a distinct structure with diversity in appearance among individuals but commonly extends posterior to the P. High-resolution MR imaging is useful for delineating the SPR in vivo.
Collapse
Affiliation(s)
- Satoshi Tsutsumi
- Department of Neurological Surgery, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan.
| | - Hideo Ono
- Division of Radiological Technology, Medical Satellite Yaesu Clinic, Tokyo, Japan
| | - Yukimasa Yasumoto
- Department of Neurological Surgery, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan
| |
Collapse
|
8
|
Rath MF, Coon SL, Amaral FG, Weller JL, Møller M, Klein DC. Melatonin Synthesis: Acetylserotonin O-Methyltransferase (ASMT) Is Strongly Expressed in a Subpopulation of Pinealocytes in the Male Rat Pineal Gland. Endocrinology 2016; 157:2028-40. [PMID: 26950199 PMCID: PMC4870883 DOI: 10.1210/en.2015-1888] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The rat pineal gland has been extensively used in studies of melatonin synthesis. However, the cellular localization of melatonin synthesis in this species has not been investigated. Here we focus on the localization of melatonin synthesis using immunohistochemical methods to detect the last enzyme in melatonin synthesis, acetylserotonin O-methyltransferase (ASMT), and in situ hybridization techniques to study transcripts encoding ASMT and two other enzymes in melatonin synthesis, tryptophan hydroxylase (TPH)-1 and aralkylamine N-acetyltransferase. In sections of the rat pineal gland, marked cell-to-cell differences were found in ASMT immunostaining intensity and in the abundance of Tph1, Aanat, and Asmt transcripts. ASMT immunoreactivity was localized to the cytoplasm in pinealocytes in the parenchyma of the superficial pineal gland, and immunopositive pinealocytes were also detected in the pineal stalk and in the deep pineal gland. ASMT was found to inconsistently colocalize with S-antigen, a widely used pinealocyte marker; this colocalization was seen in cells throughout the pineal complex and also in displaced pinealocyte-like cells of the medial habenular nucleus. Inconsistent colocalization between ASMT and TPH protein was also detected in the pineal gland. ASMT protein was not detected in extraepithalamic parts of the central nervous system or in peripheral tissues. The findings in this report are of special interest because they provide reason to suspect that melatonin synthesis varies significantly among individual pinealocytes.
Collapse
Affiliation(s)
- Martin F Rath
- Department of Neuroscience and Pharmacology (M.F.R., M.M.), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Section on Neuroendocrinology (M.F.R., S.L.C., F.G.A., J.L.W., D.C.K.), Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Steven L Coon
- Department of Neuroscience and Pharmacology (M.F.R., M.M.), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Section on Neuroendocrinology (M.F.R., S.L.C., F.G.A., J.L.W., D.C.K.), Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Fernanda G Amaral
- Department of Neuroscience and Pharmacology (M.F.R., M.M.), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Section on Neuroendocrinology (M.F.R., S.L.C., F.G.A., J.L.W., D.C.K.), Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Joan L Weller
- Department of Neuroscience and Pharmacology (M.F.R., M.M.), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Section on Neuroendocrinology (M.F.R., S.L.C., F.G.A., J.L.W., D.C.K.), Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Morten Møller
- Department of Neuroscience and Pharmacology (M.F.R., M.M.), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Section on Neuroendocrinology (M.F.R., S.L.C., F.G.A., J.L.W., D.C.K.), Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - David C Klein
- Department of Neuroscience and Pharmacology (M.F.R., M.M.), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Section on Neuroendocrinology (M.F.R., S.L.C., F.G.A., J.L.W., D.C.K.), Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
9
|
Anatomical, molecular and pathological consideration of the circumventricular organs. Neurochirurgie 2014; 61:90-100. [PMID: 24974365 DOI: 10.1016/j.neuchi.2013.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/15/2013] [Accepted: 04/23/2013] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE Circumventricular organs (CVOs) are a diverse group of specialised structures characterized by peculiar vascular and position around the third and fourth ventricles of the brain. In humans, these organs are present during the fetal period and some become vestigial after birth. Some, such as the pineal gland (PG), subcommissural organ (SCO) and organum vasculosum of the lamina terminalis (OVLT), which are located around the third ventricle, might be the site of origin of periventricular tumours. In contrast to humans, CVOs are present in the adult rat and can be dissected by laser capture microdissection (LCM). METHODS In this study, we used LCM and microarrays to analyse the transcriptomes of three CVOs, the SCO, the subfornical organ (SFO) and the PG and the third ventricle ependyma of the adult rat, in order to better characterise these organs at the molecular level. Furthermore, an immunohistochemical study of Claudin-3 (CLDN3), a membrane protein involved in forming cellular tight junctions, was performed at the level of the SCO. RESULTS This study highlighted some potentially new or already described specific markers of these structures as Erbb2 and Col11a1 in ependyma, Epcam and CLDN3 in the SCO, Ren1 and Slc22a3 in the SFO and Tph, Anat and Asmt in the PG. Moreover, we found that CLDN3 expression was restricted to the apical pole of ependymocytes in the SCO.
Collapse
|
10
|
Roussigne M, Blader P, Wilson SW. Breaking symmetry: the zebrafish as a model for understanding left-right asymmetry in the developing brain. Dev Neurobiol 2012; 72:269-81. [PMID: 22553774 DOI: 10.1002/dneu.20885] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
How does left-right asymmetry develop in the brain and how does the resultant asymmetric circuitry impact on brain function and lateralized behaviors? By enabling scientists to address these questions at the levels of genes, neurons, circuitry and behavior,the zebrafish model system provides a route to resolve the complexity of brain lateralization. In this review, we present the progress made towards characterizing the nature of the gene networks and the sequence of morphogenetic events involved in the asymmetric development of zebrafish epithalamus. In an attempt to integrate the recent extensive knowledge into a working model and to identify the future challenges,we discuss how insights gained at a cellular/developmental level can be linked to the data obtained at a molecular/genetic level. Finally, we present some evolutionary thoughts and discuss how significant discoveries made in zebrafish should provide entry points to better understand the evolutionary origins of brain lateralization.
Collapse
Affiliation(s)
- Myriam Roussigne
- Universite Paul Sabatier, Centre de Biologie du Developpement,Toulouse, France.
| | | | | |
Collapse
|
11
|
Watanabe N, Itoh K, Mogi M, Fujinami Y, Shimizu D, Hashimoto H, Uji S, Yokoi H, Suzuki T. Circadian pacemaker in the suprachiasmatic nuclei of teleost fish revealed by rhythmic period2 expression. Gen Comp Endocrinol 2012; 178:400-7. [PMID: 22732079 DOI: 10.1016/j.ygcen.2012.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 01/06/2023]
Abstract
In mammals, the role of the suprachiasmatic nucleus (SCN) as the primary circadian clock that coordinates the biological rhythms of peripheral oscillators is well known. However, in teleosts, it remains unclear whether the SCN also functions as a circadian pacemaker. We used in situ hybridization (ISH) techniques to demonstrate that the molecular clock gene, per2, is expressed in the SCN of flounder (Paralichthys olivaceus) larvae during the day and down-regulated at night, demonstrating that a circadian pacemaker exists in the SCN of this teleost. The finding that per2 expression in the SCN was also observed in the amberjack (Seriola dumerili), but not in medaka (Oryzias latipes), implies that interspecific variation exists in the extent to which the SCN controls the circadian rhythms of fish species, presumably reflecting their lifestyle. Rhythmic per2 expression was also detected in the pineal gland and pituitary, and aperiodic per2 expression was observed in the habenula, which is known to exhibit circadian rhythms in rodents. Since the ontogeny of per2 expression in the brain of early flounder larvae can be monitored by whole mount ISH, it is possible to investigate the effects of drugs and environmental conditions on the functional development of circadian clocks in the brain of fish larvae. In addition, flounder would be a good model for understanding the rhythmicity of marine fish. Our findings open a new frontier for investigating the role of the SCN in teleost circadian rhythms.
Collapse
Affiliation(s)
- Nanako Watanabe
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Szathmari A, Champier J, Ghersi-Egea JF, Jouvet A, Watrin C, Wierinckx A, Fèvre Montange M. Molecular characterization of circumventricular organs and third ventricle ependyma in the rat: potential markers for periventricular tumors. Neuropathology 2012; 33:17-29. [PMID: 22537279 DOI: 10.1111/j.1440-1789.2012.01321.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Circumventricular organs (CVOs) are specialized ventricular structures around the third and fourth ventricles of the brain. In humans, these structures are present during the fetal period and some become vestigial after birth. Some of these organs, such as the pineal gland (PG), subcommissural organ (SCO), and organum vasculosum of the lamina terminalis, might be the sites of origin of periventricular tumors, notably pineal parenchymal tumors, papillary tumor of the pineal region and chordoid glioma. In contrast to the situation in humans, CVOs are present in the adult rat and can be dissected by laser capture microdissection (LCM). In this study, we used LCM and microarrays to analyze the transcriptomes of three CVOs, the SCO, the subfornical organ (SFO), and the PG and the third ventricle ependyma in the adult rat, in order to better characterize these organs at the molecular level. Several genes were expressed only, or mainly, in one of these structures, for example, Erbb2 and Col11a1 in the ependyma, Epcam and Claudin-3 (CLDN3) in the SCO, Ren1 and Slc22a3 in the SFO and Tph, Aanat and Asmt in the PG. The expression of these genes in periventricular tumors should be examined as evidence for a possible origin from the CVOs. Furthermore, we performed an immunohistochemical study of CLDN3, a membrane protein involved in forming cellular tight junctions and found that CLDN3 expression was restricted to the apical pole of ependymocytes in the SCO. This microarray study provides new evidence regarding the possible origin of some rare periventricular tumors.
Collapse
Affiliation(s)
- Alexandru Szathmari
- Fac Med RTH Laennec, Inserm U1028, CNRS UMR5292, Centre de Recherche en Neurosciences, Equipe Neurooncologie et Neuroinflammation, Université de Lyon, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
13
|
de Borsetti NH, Dean BJ, Bain EJ, Clanton JA, Taylor RW, Gamse JT. Light and melatonin schedule neuronal differentiation in the habenular nuclei. Dev Biol 2011; 358:251-61. [PMID: 21840306 DOI: 10.1016/j.ydbio.2011.07.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 07/26/2011] [Accepted: 07/28/2011] [Indexed: 01/16/2023]
Abstract
The formation of the embryonic brain requires the production, migration, and differentiation of neurons to be timely and coordinated. Coupling to the photoperiod could synchronize the development of neurons in the embryo. Here, we consider the effect of light and melatonin on the differentiation of embryonic neurons in zebrafish. We examine the formation of neurons in the habenular nuclei, a paired structure found near the dorsal surface of the brain adjacent to the pineal organ. Keeping embryos in constant darkness causes a temporary accumulation of habenular precursor cells, resulting in late differentiation and a long-lasting reduction in neuronal processes (neuropil). Because constant darkness delays the accumulation of the neurendocrine hormone melatonin in embryos, we looked for a link between melatonin signaling and habenular neurogenesis. A pharmacological block of melatonin receptors delays neurogenesis and reduces neuropil similarly to constant darkness, while addition of melatonin to embryos in constant darkness restores timely neurogenesis and neuropil. We conclude that light and melatonin schedule the differentiation of neurons and the formation of neural processes in the habenular nuclei.
Collapse
|
14
|
Maronde E, Saade A, Ackermann K, Goubran-Botros H, Pagan C, Bux R, Bourgeron T, Dehghani F, Stehle JH. Dynamics in enzymatic protein complexes offer a novel principle for the regulation of melatonin synthesis in the human pineal gland. J Pineal Res 2011; 51:145-55. [PMID: 21517958 DOI: 10.1111/j.1600-079x.2011.00880.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Time of day is communicated to the body through rhythmic cues, including pineal gland melatonin synthesis, which is restricted to nighttime. Whereas in most rodents transcriptional regulation of the arylalkylamine N-acetyltransferase (Aanat) gene is essential for rhythmic melatonin synthesis, investigations into nonrodent mammalian species have shown post-transcriptional regulation to be of central importance, with molecular mechanisms still elusive. Therefore, human pineal tissues, taken from routine autopsies were allocated to four time-of-death groups (night/dawn/day/dusk) and analyzed for daytime-dependent changes in phosphorylated AANAT (p31T-AANAT) and in acetyl-serotonin-methyltransferase (ASMT) expression and activity. Protein content, intracellular localization, and colocalization of p31T-AANAT and ASMT were assessed, using immunoblotting, immunofluorescence, and immunoprecipitation techniques. Fresh sheep pineal gland preparations were used for comparative purposes. The amount of p31T-AANAT and ASMT proteins as well as their intracellular localization showed no diurnal variation in autoptic human and fresh sheep pineal glands. Moreover, in human and sheep pineal extracts, AANAT could not be dephosphorylated, which was at variance to data derived from rat pineal extracts. P31T-AANAT and ASMT were often found to colocalize in cellular rod-like structures that were also partly immunoreactive for the pinealocyte process-specific marker S-antigen (arrestin) in both, human and sheep pinealocytes. Protein-protein interaction studies with p31T-AANAT, ASMT, and S-antigen demonstrated a direct association and formation of robust complexes, involving also 14-3-3. This work provides evidence for a regulation principle for AANAT activity in the human pineal gland, which may not be based on a p31T-AANAT phosphorylation/dephosphorylation switch, as described for other mammalian species.
Collapse
Affiliation(s)
- Erik Maronde
- Institute of Anatomy III, Goethe-University, Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Expression of Hydroxyindole-O-Methyltransferase Enzyme in the Human Central Nervous System and in Pineal Parenchymal Cell Tumors. J Neuropathol Exp Neurol 2010; 69:498-510. [DOI: 10.1097/nen.0b013e3181db7d3c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
16
|
Domínguez G, Ramírez M, Arechaga G. Day–Night Differences in Membrane‐Bound Pyroglutamyl‐2‐Naphthylamide‐Hydrolyzing Activity in Rat Hypothalamus, Pituitary, and Retina. Chronobiol Int 2009; 23:767-77. [PMID: 16887747 DOI: 10.1080/07420520600865582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Membrane-bound pyroglutamyl-2-naphthylamide-hydrolyzing enzyme activity was analyzed fluorometrically in the anterior hypothalamus, pituitary, and retina of adult male rats to investigate day-night differences. Six groups (n=6 per group) were assessed--three during the light span and three during the dark span--under a standard 12 h-12 h light-dark cycle (light on from 07:00 to 19:00 h) and controlled temperature environment, with food and water available ad libitum. In the hypothalamus, enzyme activity levels were higher for time points of the dark than the light period. In contrast, the pituitary and retina exhibited the highest levels at the time points of the light period. The pituitary and retina also exhibited significant differences between the clock-hour means of the light period. Day-night differences in membrane-bound pyroglutamyl-2-naphthylamide-hydrolyzing activity may reflect differences in its susceptible endogenous substrates.
Collapse
Affiliation(s)
- Germán Domínguez
- Dpto. CC de la Salud, Area de Fisiología, Facultad de CC Experimentales, Jaén, Spain
| | | | | |
Collapse
|
17
|
Montalvo V, Chan CC, Gery I, Campos MM, Wawrousek EF, Bush RA, Lambris JD. Complement Deposits on Ocular Tissues Adjacent to Sites of Inflammation. Curr Eye Res 2009; 32:917-22. [DOI: 10.1080/02713680701656343] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Domínguez G, Ramírez M, Arechaga G. Day/night variations in membrane bound leucyl-2-naphthylamide hydrolysing activity in rat anterior hypothalamus, pituitary and retina. BIOL RHYTHM RES 2007. [DOI: 10.1080/09291010600903783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Tavakoli-Nezhad M, Schwartz WJ. Hamsters running on time: is the lateral habenula a part of the clock? Chronobiol Int 2006; 23:217-24. [PMID: 16687295 DOI: 10.1080/07420520500521947] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Previous anatomical and physiological studies have implicated the lateral habenula, and especially its medial division (LHbM), as a candidate component of the circadian timing system in rodents. We assayed lateral habenula rhythmicity in rodents using c-FOS immunohistochemistry and found a robust rhythm in immunoreactive cell counts in the LHbM, with higher counts during the dark phase of a light-dark (LD) cycle and during subjective night in constant darkness. We have also observed an obvious asymmetry of c-FOS expression in the LHbM of behaviorally "split" hamsters in constant light, but only during their active phase (when they were running in wheels). Locomotor activity rhythms appear to be regulated by the suprachiasmatic nucleus (SCN) via multiple output pathways, one of which might be diffusible while the other might be neural, involving the lateral habenula.
Collapse
|
20
|
Fèvre-Montange M, Champier J, Szathmari A, Wierinckx A, Mottolese C, Guyotat J, Figarella-Branger D, Jouvet A, Lachuer J. Microarray Analysis Reveals Differential Gene Expression Patterns in Tumors of the Pineal Region. J Neuropathol Exp Neurol 2006; 65:675-84. [PMID: 16825954 DOI: 10.1097/01.jnen.0000225907.90052.e3] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Several types of tumors are known to originate from the pineal region, among them pineal parenchymal tumors (PPTs) and papillary tumors of the pineal region (PTPRs), probably derived from the subcommissural organ. As a result of their rarity, their histologic diagnosis remains difficult. To identify molecular markers, using CodeLink oligonucleotide arrays, gene expression was studied in 3 PPTs (2 pineocytomas and one pineoblastoma), 2 PTPRs, and one chordoid glioma, another rare tumor of the third ventricle. Because PTPR and chordoid glioma may present ependymal differentiation, gene expression was also analyzed in 4 ependymomas. The gene patterns of the 3 PPTs fell in the same cluster. The pineocytomas showed high expression of TPH, HIOMT, and genes related to phototransduction in the retina (OPN4, RGS16, and CRB3), whereas the pineoblastoma showed high expression of UBEC2, SOX4, TERT, TEP1, PRAME, CD24, POU4F2, and HOXD13. Using reverse transcriptase-polymerase chain reaction on 13 PPTs, we demonstrated that PRAME, CD24, POU4F2, and HOXD13 might be candidates for grading PPT with intermediate differentiation. PTPRs, classified with chordoid glioma and separately from ependymomas, showed high expression of SPEDF, KRT18, and genes encoding proteins reported to be expressed in the subcommissural organ, namely ZFH4, RFX3, TTR, and CGRP. Our results highlight the usefulness of gene expression profiling for classify tumors of the pineal region and identify genes with potential use as diagnostic markers.
Collapse
|
21
|
Guglielmotti V, Cristino L. The interplay between the pineal complex and the habenular nuclei in lower vertebrates in the context of the evolution of cerebral asymmetry. Brain Res Bull 2006; 69:475-88. [PMID: 16647576 DOI: 10.1016/j.brainresbull.2006.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 02/24/2006] [Accepted: 03/19/2006] [Indexed: 10/24/2022]
Abstract
This paper presents an overview on the epithalamus of vertebrates, with particular reference to the pineal and to the asymmetrical organization of the habenular nuclei in lower vertebrates. The relationship between the pineal and the habenulae in the course of phylogenesis is here emphasized, taking data in the frog as example. Altogether the data support the hypothesis, put forward also in earlier studies, of a correlation of habenular asymmetry in lower vertebrates with phylogenetic modification of the pineal complex. The present re-visitation was also stimulated by recent data on the asymmetrical expression of Nodal genes, which involves the pineal and habenular structures in zebrafish. The comparative analysis of data, from cyclostomes to mammals, suggests that transformation of epithalamic structures may play an important role in brain evolution. In addition, in mammals, including rodents, a remarkable complexity has evolved in the organization of the habenulae and their functional interactions with the pineal gland. The evolution of these two epithalamic structures seems to open also new perspectives of knowledge on their implication in the regulation of biological rhythms.
Collapse
Affiliation(s)
- Vittorio Guglielmotti
- Institute of Cybernetics E. Caianiello, Consiglio Nazionale delle Ricerche, via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy.
| | | |
Collapse
|
22
|
Simonneaux V, Ribelayga C. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 2003; 55:325-95. [PMID: 12773631 DOI: 10.1124/pr.55.2.2] [Citation(s) in RCA: 449] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melatonin, the major hormone produced by the pineal gland, displays characteristic daily and seasonal patterns of secretion. These robust and predictable rhythms in circulating melatonin are strong synchronizers for the expression of numerous physiological processes in photoperiodic species. In mammals, the nighttime production of melatonin is mainly driven by the circadian clock, situated in the suprachiasmatic nucleus of the hypothalamus, which controls the release of norepinephrine from the dense pineal sympathetic afferents. The pivotal role of norepinephrine in the nocturnal stimulation of melatonin synthesis has been extensively dissected at the cellular and molecular levels. Besides the noradrenergic input, the presence of numerous other transmitters originating from various sources has been reported in the pineal gland. Many of these are neuropeptides and appear to contribute to the regulation of melatonin synthesis by modulating the effects of norepinephrine on pineal biochemistry. The aim of this review is firstly to update our knowledge of the cellular and molecular events underlying the noradrenergic control of melatonin synthesis; and secondly to gather together early and recent data on the effects of the nonadrenergic transmitters on modulation of melatonin synthesis. This information reveals the variety of inputs that can be integrated by the pineal gland; what elements are crucial to deliver the very precise timing information to the organism. This also clarifies the role of these various inputs in the seasonal variation of melatonin synthesis and their subsequent physiological function.
Collapse
Affiliation(s)
- Valerie Simonneaux
- Laboratoire de Neurobiologie Rythmes, UMR 7518 CNRS/ULP, 12, rue de l'Université, 67000 Strasbourg, France.
| | | |
Collapse
|
23
|
Yu EZ, Hallenbeck JM, Cai D, McCarron RM. Elevated arylalkylamine-N-acetyltransferase (AA-NAT) gene expression in medial habenular and suprachiasmatic nuclei of hibernating ground squirrels. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 102:9-17. [PMID: 12191489 DOI: 10.1016/s0169-328x(02)00138-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hibernation, an adaptive response for energy conservation in mammals, involves a variety of physiological changes. Melatonin is linked with the regulation of core body temperature and intervenes in generating circadian cycles; its role in seasonal (circannual) rhythms of hibernation is explored here. Melatonin is primarily produced in the pineal gland. Since arylalkylamine-N-acetyltransferase (AA-NAT) is the rate-limiting enzyme for synthesizing melatonin, AA-NAT gene expression was investigated to assess the possible role of melatonin in hibernation. The findings presented here utilized combined in situ hybridization and immunohistochemistry methodologies to evaluate the AA-NAT mRNA expression in brains of both hibernating and non-hibernating ground squirrels. Brains were examined for the expression of AA-NAT mRNA using a oligonucleotide AA-NAT probe; antibody against neurofilament-70 (NF-70) was used as a neuronal marker. All hibernating animals expressed significantly (P<0.01) elevated levels of AA-NAT mRNA in both the epithalamic medial habenular nuclei (MHb) area and the hypothalamic suprachiasmatic nuclei (SCN), which is also known as the master biologic clock. These findings represent the first demonstration of the expression of mRNA encoding for AA-NAT in the extra-pineal (i.e. SCN and MHb) sites of thirteen-lined ground squirrels and indicate that the habenular nucleus may be an important supplementary location for melatonin biosynthesis. The data presented here indicate that AA-NAT gene is one of the few specific genes up-regulated during hibernation and suggest that elevation of its expression in SCN and MHb may play an essential role in the generation and maintenance of hibernation.
Collapse
Affiliation(s)
- Erik Z Yu
- Resuscitative Medicine Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA
| | | | | | | |
Collapse
|
24
|
Ramírez M, Arechaga G, Martínez JM, Prieto I, Ramírez-Expósito MJ, Sánchez B, Alba F. Environmental light-darkness conditions induce changes in brain and peripheral pyroglutamyl-peptidase I activity. Neurochem Res 2001; 26:463-8. [PMID: 11513470 DOI: 10.1023/a:1010996425408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To evaluate the influence of light and darkness on brain pyroglutamyl-peptidase I (pGluPI) activity, four experimental groups of rats were compared at the same time-point (10.00 h). Two groups were designed with a standard 12-12 h light-dark cycle: In group A, the lights were on from 7.00 h to 19.00 h, and the experiment was done under light conditions; in group B, the lights were on from 19.00 h to 7.00 h, and the experiment was done under darkness conditions. Two additional groups were designed with nonstandard light-dark conditions: In group C, the animals were subjected to constant light, and the experiment was done under light conditions. In group D, animals were subjected to constant darkness, and the experiment was done under darkness conditions. Light (vs darkness) and standard (vs nonstandard) conditions produced significant changes on pGluPI activity in specific structures; the data suggested that endogenous substrates of pGluPI such as thyrotropin-releasing hormone and gonadotropin-releasing hormone, might be modified in parallel. There was left predominance in the retina under light conditions on a standard schedule (group A). The regional pattern of distribution of activity was similar in groups on a standard schedule (A vs B) and in groups tested under constant light-dark conditions (C vs D). However, this pattern differed between groups subjected to standard vs constant light-dark conditions (A and B vs C and D). These results support an influence of environmental light and darkness on pGluPI activity, which may reflect concomitant changes in its susceptible substrates and consequently in their functions.
Collapse
Affiliation(s)
- M Ramírez
- Area de Fisiologia, University of Jaén, Spain.
| | | | | | | | | | | | | |
Collapse
|
25
|
Oishi T, Yamao M, Kondo C, Haida Y, Masuda A, Tamotsu S. Multiphotoreceptor and multioscillator system in avian circadian organization. Microsc Res Tech 2001; 53:43-7. [PMID: 11279669 DOI: 10.1002/jemt.1067] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Photoperiodism and circadian rhythms have been studied intensively in birds because Aves are typical seasonal breeders and diurnal animals. Light is the most important environmental factor involved in entrainment of circadian rhythms and photoperiodism. The eyes and the extraocular photoreceptors, such as the pineal organ and hypothalamus, are reported to have an important function not only for photoreception but also for circadian organization in nonmammalian vertebrates, including birds. In this report, we review the roles of the eyes, pineal organ, and deep brain as the components of the multiphotoreceptor and multioscillator system in avian circadian organization.
Collapse
Affiliation(s)
- T Oishi
- Graduate School of Human Culture, Nara Women's University, Nara 630-8506, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Maronde E, Pfeffer M, von Gall C, Dehghani F, Schomerus C, Wicht H, Kroeber S, Olcese J, Stehle JH, Korf HW. Signal transduction in the rodent pineal organ. From the membrane to the nucleus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 460:109-31. [PMID: 10810507 DOI: 10.1007/0-306-46814-x_14] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The rodent pineal organ transduces a photoneural input into a hormonal output. This photoneuroendocrine transduction leads to highly elevated levels of the hormone melatonin at night-time which serves as a message for darkness. The melatonin rhythm depends on transcriptional, translational and posttranslational regulation of the arylalkylamine-N-acetyltransferase, the key enzyme of melatonin biosynthesis. These regulatory mechanisms are fundamentally linked to two second messenger systems, namely the cAMP- and the Ca(2+)-signal transduction pathways. Our data gained by molecular biology, immunohistochemistry and single-cell imaging demonstrate a time- and substance-specific activation of these signaling pathways and provide a framework for the understanding of the complex signal transduction cascades in the rodent pineal gland which in concert not only regulate the basic profile but also fine-tune the circadian rhythm in melatonin synthesis.
Collapse
Affiliation(s)
- E Maronde
- Dr. Senckenbergische Anatomie, Anatomisches Institut II, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Korf HW. Evolution of melatonin-producing pinealocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 460:17-29. [PMID: 10810496 DOI: 10.1007/0-306-46814-x_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- H W Korf
- Dr. Senckenbergische Anatomie, Anatomisches Institut II, Universitätsklinikum der Johann Wolfgang Goethe-Universität, Frankfurt/Main.
| |
Collapse
|
28
|
Maronde E, Wicht H, Taskén K, Genieser HG, Dehghani F, Olcese J, Korf HW. CREB phosphorylation and melatonin biosynthesis in the rat pineal gland: involvement of cyclic AMP dependent protein kinase type II. J Pineal Res 1999; 27:170-82. [PMID: 10535767 DOI: 10.1111/j.1600-079x.1999.tb00613.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phosphorylation of cyclic AMP response element binding protein (CREB) at amino acid serine 133 appears as an important link between the norepinephrine (NE)-induced activation of second messenger systems and the stimulation of melatonin biosynthesis. Here we investigated in the rat pineal gland: 1) the type of protein kinase that mediates CREB phosphorylation: and 2) its impact on melatonin biosynthesis. Immunochemical or immunocytochemical demonstration of serine133-phosphorylated cyclic AMP regulated element binding protein (pCREB) and radioimmunological detection of melatonin revealed that only cyclic AMP-dependent protein kinase (PKA) inhibitors suppressed NE-induced CREB phosphorylation and stimulation of melatonin biosynthesis, whereas inhibitors of cyclic GMP-dependent protein kinase (PKG), mitogen-activated protein kinase kinase, protein kinase C, or calcium-calmodulin-dependent protein kinase (CaMK) were ineffective. Investigations with cyclic AMP-agonist pairs that selectively activate either PKA type I or II link NE-induced CREB phosphorylation and stimulation of melatonin biosynthesis to the activation of PKA type II. Our data suggest that PKA type II plays an important role in the transcriptional control of melatonin biosynthesis in the rat pineal organ.
Collapse
Affiliation(s)
- E Maronde
- Dr. Senckenbergische Anatomie, Anatomisches Institut II, J.W. Goethe Universität, Frankfurt, FRG
| | | | | | | | | | | | | |
Collapse
|
29
|
Teclemariam-Mesbah R, Ter Horst G, Postema F, Wortel J, Buijs R. Anatomical demonstration of the suprachiasmatic nucleus-pineal pathway. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990405)406:2<171::aid-cne3>3.0.co;2-u] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Wicht H, Maronde E, Olcese J, Korf HW. A semiquantitative image-analytical method for the recording of dose-response curves in immunocytochemical preparations. J Histochem Cytochem 1999; 47:411-20. [PMID: 10026243 DOI: 10.1177/002215549904700315] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Knowledge about intracellular signal transduction cascades is largely based on investigations of cultured cells whose responses to different stimuli are typically quantified via RIA, ELISA, or immunoblots. These techniques, which require relatively large amounts of biological material, are performed with homogenized cells and therefore do not allow localization of the molecules under investigation. We describe a protocol for recording dose-response curves directly from immunocytochemical preparations using rat pinealocytes as a model system. The cells were exposed to beta-adrenergic stimuli inducing the phosphorylation of the transcription factor CREB (mediated by PKA), an increase in ICER protein levels, and synthesis and release of melatonin. Melatonin concentrations were determined by ELISA. cPKA, phosphorylated CREB, and ICER were demonstrated by immunocytochemistry and immunoblots. Dose-response curves were recorded by measuring the integrated density of the immunoreactive sites with an image analysis program. Dose-response curves from immunoblots and immunocytochemical preparations showed almost identical dynamics, validating the immunocytochemical approach, which minimizes the amount of biological material needed for such studies, allows combined quantification and localization of biomolecules, and may even be more sensitive than immunoblotting.
Collapse
Affiliation(s)
- H Wicht
- Dr. Senckenbergische Anatomie, Anatomisches Institut II, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt, Germany.
| | | | | | | |
Collapse
|
31
|
Vrang N, Mikkelsen JD, Larsen PJ. Direct link from the suprachiasmatic nucleus to hypothalamic neurons projecting to the spinal cord: a combined tracing study using cholera toxin subunit B and Phaseolus vulgaris-leucoagglutinin. Brain Res Bull 1998; 44:671-80. [PMID: 9421129 DOI: 10.1016/s0361-9230(97)00138-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
By combining retrograde and anterograde tracing, evidence for a bineuronal connection from the suprachiasmatic nucleus (SCN) to the intermediolateral cell column in the spinal cord (IML) was obtained. The retrograde tracer cholera toxin subunit B (ChB) was pressure-injected into the spinal cord and the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHA-L) was iontophoretically injected into the SCN. The two tracers were visualized simultaneously by a double immunohistochemical procedure. In the hypothalamus, ChB injections gave rise to retrogradely labeled cell bodies in the paraventricular nucleus, retrochiasmatic area, perifornical region, lateral hypothalamic area, and the posterior hypothalamic area. The SCN were found to project to all of these areas. Furthermore, spinal-projecting neurons were found in the brain stem, but no efferents from the SCN were observed to innervate these areas. In the most sparsely innervated areas, the lateral hypothalamic area and the perifornical region, only occasionally a PHA-L fiber in close apposition to a ChB-ir cell body was observed. This was also the case in the retrochiasmatic area and posterior hypothalamic area, although these areas received a moderate number-immunoreactive (ir) PHA-L-ir fibers. The highest number of closely apposed PHA-L-ir fibers and ChB-ir cell bodies was observed in the dorsal parvicellular and in the ventral division of the medial parvicellular paraventricular nucleus, which were also the areas receiving the densest input from the SCN. By anterograde tracing from the paraventricular nucleus of the hypothalamus, the exact topography of the terminal field formed by descending paraventricular neurons was established. Thus, it was confirmed that the paraventricular nucleus of the hypothalamus predominantly innervates the IML. The present study suggests the existence of a bineuronal link between the SCN and the IML, possibly involved in transmission of circadian signals from the endogenous clock to the pineal gland and other organs receiving sympathetic afferents.
Collapse
Affiliation(s)
- N Vrang
- Department B, The Panum Institute, University of Copenhagen, Denmark
| | | | | |
Collapse
|
32
|
Sunayashiki-Kusuzaki K, Kikuchi T, Wawrousek EF, Shinohara T. Arrestin and phosducin are expressed in a small number of brain cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 52:112-20. [PMID: 9450683 DOI: 10.1016/s0169-328x(97)00247-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Retinal photoreceptor rods and pinealocytes contain well-characterized proteins such as arrestin and phosducin whose expression is highly restricted to these cell types. Transgenic mice having a LacZ gene under the control of an arrestin promoter expressed beta-galactosidase (beta-Gal) in the photoreceptor rods and pinealocytes. In addition, it was expressed in very small numbers of discrete cells in the habenular commissura, amygdala, ventral tegmental area and superior colliculus of the brain. Immunocytochemical studies with antibody probes revealed that high level of arrestin and phosducin were also found in the same cell types. Furthermore melatonin was found in those cells of the habenula commissura. The results indicate that novel cell types are present in the brain tissues. Since high levels of arrestin and phosducin expression are generally restricted to photoreceptor rod cells and pinealocytes, these data suggest that certain brain cells may have functions similar to pinealocytes.
Collapse
Affiliation(s)
- K Sunayashiki-Kusuzaki
- Brigham and Women's Hospital and Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
33
|
Developmental expression pattern of phototransduction components in mammalian pineal implies a light-sensing function. J Neurosci 1997. [PMID: 9334383 DOI: 10.1523/jneurosci.17-21-08074.1997] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Whereas the pineal organs of lower vertebrates have been shown to be photosensitive, photic regulation of pineal function in adult mammals is thought be mediated entirely by retinal photoreceptors. Extraretinal regulation of pineal function has been reported in neonatal rodents, although both the site and molecular basis of extraretinal photoreception have remained obscure. In this study we examine the developmental expression pattern of all of the principal components of retinal phototransduction in rat pineal via cRNA in situ hybridization. All of the components needed to reconstitute a functional phototransduction pathway are expressed in the majority of neonatal pinealocytes, although the expression levels of many of these genes decline dramatically during development. These findings strongly support the theory that the neonatal rat pineal itself is photosensitive. In addition, we observe in neonatal pinealocytes the expression of both rod-specific and cone-specific phototransduction components, implying the existence of functionally different subtypes of pinealocytes that express varying combinations of phototransduction enzymes.
Collapse
|
34
|
Redecker P, Cetin Y, Korf HW. Differential immunocytochemical localization of calretinin in the pineal gland of three mammalian species. JOURNAL OF NEUROCYTOLOGY 1996; 25:9-18. [PMID: 8852935 DOI: 10.1007/bf02284782] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Calcium plays an important role for signal transduction in the mammalian pineal organ. The regulation of the intracellular concentration of free calcium probably involves calcium-binding proteins of the calmodulin superfamily. In the present study, we have investigated the expression of calretinin, one member of this superfamily, in the pineal organ of hamsters, gerbils and guinea-pigs by means of immunochemical and immunocytochemical analyses with a calretinin-specific antiserum. In immunoblots this antibody recognized a single protein band of approximately 29 kDa in the brain and pineal organ of all three mammalian species. Immunocytochemical investigations of serial semithin sections of plastic-embedded pineals revealed the constant occurrence of variable numbers of calretinin-positive cells throughout all glands. In order to identify the immunopositive cells precisely, adjacent sections were exposed to antibodies against various marker proteins of pineal cell types, i.e., synaptophysin, neuron-specific enolase, protein gene product 9.5, S-antigen, vimentin and S-100. By this approach, calretinin could be localized to vimentin-positive cells in the gerbil which are generally considered as interstitial glial cells. Likewise, calretinin-positive cells in the guinea-pig probably correspond to interstitial cells, taking into account their morphology and the lack of calretinin immunoreactivity in pinealocytes. The unusual expression of calretinin in astrocyte-like cells further supports the notion that pineal glial cells are endowed with peculiar properties. In contrast to gerbil and guinea-pig, a subpopulation of pinealocytes displayed calretinin immunoreactivity in the hamster. This finding adds to the hypothesis that in pinealocytes of some species calretinin plays a role in calcium-mediated signal transduction which eventually is linked to melatonin synthesis. Our results demonstrate that calretinin is a regular constituent of pineal glands in three mammalian species, but that its cellular localisation shows interspecific variation. This variation suggests that the protein is involved in diverse calcium-mediated functions in the mammalian pineal gland.
Collapse
Affiliation(s)
- P Redecker
- Department of Anatomy 1, Hannover Medical School, Germany
| | | | | |
Collapse
|
35
|
Tamotsu S, Schomerus C, Stehle JH, Roseboom PH, Korf HW. Norepinephrine-induced phosphorylation of the transcription factor CREB in isolated rat pinealocytes: an immunocytochemical study. Cell Tissue Res 1995; 282:219-26. [PMID: 8565052 DOI: 10.1007/bf00319113] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the present study we investigated whether norepinephrine, which stimulates melatonin biosynthesis in the mammalian pineal organ, causes phosphorylation of the cyclic AMP responsive element binding protein (CREB) in rat pinealocytes. Cells isolated from the pineal organ of adult male rats and cultured on coated coverslips were treated with norepinephrine, beta- or alpha 1-adrenergic agonists for 12, 5, 10, 20, 30, 60 or 300 min and then immunocytochemically analyzed with an antibody against phosphorylated CREB (p-CREB). Treatment with norepinephrine or beta-adrenergic agonists resulted in a similar, time-dependent induction of p-CREB immunoreactivity, exclusively found in cell nuclei. The alpha 1-adrenergic agonist phenylephrine did not induce p-CREB immunoreactivity at low doses (0.1 microM) or when high doses (10 microM) were applied in combination with a beta-antagonist (propranolol, 0.1 microM). This indicates that induction of CREB phosphorylation is elicited by beta-adrenergic receptor stimulation. The response was first seen after 10 min and reached a maximum after 30 to 60 min when more than 90% of the cells displayed p-CREB immunoreactivity. The intensity of the p-CREB immunoreactivity showed marked cell-to-cell variation, but nearly all immunoreactive cells were identified as pinealocytes by double-labeling with an antibody against the S-antigen, a pinealocyte-specific marker. The results show that norepinephrine stimulation induces p-CREB immunoreactivity by acting upon beta-adrenergic receptors in virtually all rat pinealocytes. The findings support the notion that phosphorylation of CREB is a rather rapid and uniform response of pinealocytes to noradrenergic stimulation and thus is an important link between adrenoreceptor activation and subsequent gene expression in the rat pineal organ.
Collapse
Affiliation(s)
- S Tamotsu
- Section Neurobiology, Johann Wolfgang Goethe-University, Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Korf HW. The pineal organ as a component of the biological clock. Phylogenetic and ontogenetic considerations. Ann N Y Acad Sci 1994; 719:13-42. [PMID: 8010588 DOI: 10.1111/j.1749-6632.1994.tb56818.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In conclusion, several trends are observed in regard to the phylogenetic development of the pineal organ, which are relevant for our understanding of the evolution of biological clock mechanisms. 1. The pineal organ of all vertebrates investigated thus far is capable of producing and releasing melatonin. Melatonin is rhythmically produced and released during darkness and, thus, represents an important neuroendocrine information on the ambient photoperiod. 2. The rhythmic production of melatonin is under control of endogenous oscillators and photoreceptor cells. In several nonmammalian species, these endogenous oscillators and photoreceptors are located within the pineal organ itself. In some avian species, the inherent rhythmicity of the pineal organ appears to be influenced by pacemakers located in other parts of the central nervous system. Their information may be transmitted to the pineal organ via the sympathetic innervation. This innervation develops progressively in the course of phylogeny. In mammals certain pinealocytes express proteins which are specific of retinal and pineal photoreceptors, but these proteins are obviously not involved in photoreception and phototransduction. The mammalian pineal organ lacks not only functioning photoreceptors, but also endogenous oscillators. The photoreceptor cells involved in regulation of the melatonin biosynthesis are located in the retina; the major endogenous oscillator is the suprachiasmatic nucleus (SCN) of the hypothalamus. Information from the retina and the SCN is transmitted to the mammalian pineal organ via a complex neuronal chain, whose last member is the sympathetic innervation originating from the superior cervical ganglion. This innervation is mandatory to maintain the rhythm of the melatonin biosynthesis in the mammalian pineal organ. Interestingly, the effects of noradrenaline, the major neurotransmitter in the sympathetic nerve fibers, displays opposite effects on the melatonin biosynthesis in birds and mammals: it stimulates the melatonin biosynthesis in the mammalian pineal organ, but inhibits the melatonin formation in the chicken. This conversion occurs at the level of the adrenoreceptors. 3. The intrapineal nerve cells giving rise to pinealofugal neuronal projections are reduced in the course of phylogeny. Nevertheless, direct neuronlike connections appear to exist between the pineal organ and the central nervous system of mammals. These projections originate from a population of pinealocytes. Whether such projections are involved in biological clock mechanisms remains an issue not yet resolved. The ontogenetic data reviewed support the notion that, in lower vertebrates, melatonin biosynthesis is primarily controlled by intrapineal photoreceptors, whereas, in mammals, it depends on retinal photoreceptors and the sympathetic innervation of the pineal.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- H W Korf
- Center of Morphology, Johann Wolfgang Goethe-University, Frankfurt/Main, Germany
| |
Collapse
|
38
|
Reuss S. [Work of the inner clock. Neuroanatomy of circadian systems of mammals]. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 1993; 80:501-10. [PMID: 7903428 DOI: 10.1007/bf01140805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Many aspects of mammalian life exhibit distinct alterations throughout the 24-h cycle. Morphological, physiological, and biochemical parameters display circadian rhythms which are thought to be generated by an endogenous pacemaker and regulated by environmental factors. The morphological substrates of the endogenous circadian system have been studied extensively during the last two decades. Although knowledge is far from complete, there is general agreement that the pathways involved consist mainly of retina, hypothalamus, spinal cord, sympathetic trunk, and pineal gland. This review characterizes the anatomical structures and tracts responsible for generation and maintenance of circadian rhythmicity and discusses functional implications of neurotransmitter involvement and the selectivity of connections.
Collapse
Affiliation(s)
- S Reuss
- Anatomisches Institut, Fachbereich Medizin der Universität, Mainz
| |
Collapse
|
39
|
Kramm CM, de Grip WJ, Korf HW. Rod-opsin immunoreaction in the pineal organ of the pigmented mouse does not indicate the presence of a functional photopigment. Cell Tissue Res 1993; 274:71-8. [PMID: 8242713 DOI: 10.1007/bf00327987] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The aim of the present study was to characterize the rod-opsin immunoreaction in the mammalian pineal organ. Pigmented mice (strain C57BL) were selected as the animal model. Immunocytochemical investigations involving the use of highly specific polyclonal and monoclonal antibodies against bovine rod-opsin (the apoprotein of the photopigment rhodopsin) showed that approximately 25% of all pinealocytes were rod-opsin immunoreactive. Immunoblotting techniques revealed three protein bands of approximately 40, 75, and 110 kDa; these were detected by the monoclonal antibody and the polyclonal antiserum in retinal and pineal extracts. These protein bands presumably represented the monomeric, dimeric and trimeric forms of rod-opsin. The amount of rod-opsin in retina and pineal organ was quantified by means of an enzyme-linked immunosorbent assay. This yielded 570 +/- 30 pmoles rod-opsin per eye and 0.3 +/- 0.05 pmoles rod-opsin per pineal organ. High pressure liquid chromatography analysis of whole eye extracts demonstrated the chromophoric group of the photopigment rhodopsin, 11-cis retinal, and its isomer, all-trans-retinal. A shift from 11-cis retinal to all-trans-retinal was found upon light adaptation. No retinals were detected in the pineal organ. Autoradiographic investigations showed that 3H-retinol, intraperitoneally injected into the animals, was incorporated into the outer and inner segments of retinal photoreceptors, but not into the pineal organ. It is concluded that the mouse pineal organ contains the authentic apoprotein of rhodopsin but that it lacks retinal derivatives as essential components of all known vertebrate photopigments.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C M Kramm
- Abteilung Neurobiologie, Johann-Wolfgang-Goethe-Universität, Frankfurt/Main, Germany
| | | | | |
Collapse
|
40
|
Redecker P. Dense accumulations of synaptic-like microvesicles in 'dark' pinealocytes of the gerbil pineal gland. JOURNAL OF NEUROCYTOLOGY 1993; 22:572-81. [PMID: 8410078 DOI: 10.1007/bf01189044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In an electron-microscopical study the occurrence and ultrastructural features of electron-dense 'dark' variants of pinealocytes were evaluated in the gerbil pineal gland. A few 'dark' pinealocytes, which tended to form small clusters of contiguous cells, could consistently be detected in pineals fixed and embedded by various procedures. Apart from the different degree of electron density, the only conspicuous difference between 'dark' and electron-lucent 'light' pinealocytes concerned their compartment of synaptic-like microvesicles. Thus, both variants of pinealocytes contained abundant clear microvesicles of variable size which accumulated in dilated process terminals. However, the vesicles within the process endings of 'dark' pinealocytes showed an unusually dense arrangement throughout the cytoplasm. As was demonstrated by immunogold staining, the accumulations of vesicles in the 'dark' terminals contained synaptophysin, a major synaptic vesicle-associated protein. This protein is present in small clear vesicles with putative secretory functions in a wide variety of neuroendocrine cells and has previously been shown to be a common constituent of microvesicles in mammalian pinealocytes. Since gerbil pinealocytes displayed distinct gradations of electron density, their ultrastructural heterogeneity may be the expression of different states of secretory activity of one pinealocyte cell type. On the other hand, differences in the content of synaptic-like microvesicles in the process terminals of 'light' and 'dark' cells could also indicate a principal functional heterogeneity of the microvesicular compartment among pinealocytes, pointing to the existence of different types of pinealocytes.
Collapse
Affiliation(s)
- P Redecker
- Department of Anatomy 1, Hannover Medical School, Germany
| |
Collapse
|
41
|
Romeo HE, Weihe E, Müller S, Vollrath L. Protein gene product (PGP) 9.5 immunoreactivity in nerve fibres and pinealocytes of guinea-pig pineal gland: interrelationship with tyrosine- hydroxylase- and neuropeptide-Y-immunoreactive nerve fibres. Cell Tissue Res 1993; 271:477-84. [PMID: 8097136 DOI: 10.1007/bf02913730] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This light-microscopic (LM) immunohistochemical study has evaluated the presence and distribution of the pan-neural and neuroendocrine marker protein gene product (PGP) 9.5 in pinealocytes and nerve fibres of guinea-pig pineal gland. The pattern of PGP 9.5-immunoreactive (ir) nerve fibres has been compared with that of fibres staining for tyrosine hydroxylase (TH) or neuropeptide Y (NPY). The vast majority of pinealocytes stained for PGP 9.5, although with variable intensity. PGP 9.5 immunoreactivity was localized in pinealocytic cell bodies and processes. Double-immunofluorescence revealed that PGP 9.5 immunoreactivity was absent from glial cells identified with a monoclonal antibody against glial fibrillary acidic protein (GFAP). PGP 9.5 immunoreactivity was also present in a large number of nerve fibres and varicosities distributed throughout the pineal gland. The number of TH-ir and NPY-ir nerve fibres was lower compared with those containing PGP 9.5 immunoreactivity. All fibres staining for NPY also stained for TH. NPY-ir nerve fibres were found to be much more numerous than previously reported for this species. The double-immunofluorescence analysis indicated that almost all TH-ir nerve fibres of the pineal gland contained PGP 9.5 immunoreactivity. However, few PGP 9.5-ir nerve fibres, located in the periphery and the central part of the gland, were TH-negative. A large number of PGP 9.5-ir fibres was concentrated in the pineal stalk. In contrast, TH-ir and NPY-ir nerve fibres were rare in this part of the pineal gland. Our data provide evidence that immunohistochemistry for PGP 9.5 may be a useful tool further to differentiate central and peripheral origins of pineal innervation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H E Romeo
- Anatomisches Institut, Johannes Gutenberg-Universität, Mainz, Germany
| | | | | | | |
Collapse
|
42
|
Redecker P, Bargsten G. Synaptophysin--a common constituent of presumptive secretory microvesicles in the mammalian pinealocyte: a study of rat and gerbil pineal glands. J Neurosci Res 1993; 34:79-96. [PMID: 8423638 DOI: 10.1002/jnr.490340109] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recent studies have established that pinealocytes of the mammalian pineal gland contain marker molecules of neuroendocrine cells or paraneurons like the synaptic vesicle-associated protein synaptophysin (p38). The objective of this study was to identify the subcellular synaptophysin-positive compartment and to characterize in detail the intracellular distribution of this protein in rat and gerbil pinealocytes. An analysis of serial semithin sections of plastic-embedded pineals immunostained for synaptophysin, including computer-assisted optical density measurements of synaptophysin immunoreactivities, demonstrated unequivocally that synaptophysin was highly concentrated in dilated process terminals of the pinealocytes. More than 75% of these process terminals were found to border or lie within the pericapillary space. At the ultrastructural level, they contained accumulations of small clear vesicles of variable size that turned out to be the site of synaptophysin immunoreactivity when immunogold staining was performed. In addition, microvesicles surrounding synaptic ribbons were also immunolabeled. Hence, the pinealocyte is the first neuroendocrine cell type that has now been shown to concentrate synaptophysin-positive microvesicles in perivascular process endings. This observation lends strong support to the hypothesis that small clear vesicles in neuroendocrine cells in general, and in pinealocytes in particular, serve secretory functions. The quantitative analysis of completely sectioned process endings revealed that the microvesicles outnumber by far the amount of dense core vesicles and therefore cannot arise by endocytosis of dense core vesicle membranes. Thus, small synaptic-like vesicles probably constitute an independent secretory pathway of the paraneuronal pinealocytes. In the present study, we could also establish the absence of immunoreactivity for synapsin I (belonging to a family of neuron-specific nerve terminal phosphoproteins) from pinealocytes. Synapsin I immunoreactivity was only detectable in intrapineal nerve terminals and varicosities. Taken together, the immunostaining patterns of the pineal gland obtained with antibodies directed against synaptic vesicle-associated proteins render the mammalian pinealocyte a very special type of neuroendocrine cell or paraneuron rather than a "classic" neuron.
Collapse
Affiliation(s)
- P Redecker
- Department of Anatomy, Hannover Medical School, Germany
| | | |
Collapse
|
43
|
Mikkelsen JD, Panula P, Møller M. Histamine-immunoreactive nerve fibers in the rat pineal gland: evidence for a histaminergic central innervation. Brain Res 1992; 597:200-8. [PMID: 1472993 DOI: 10.1016/0006-8993(92)91475-t] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An immunohistochemical method that utilizes carbodiimide as a fixative and antisera directed against histamine was applied to investigate the location of histamine in the rat pineal complex. Numerous histamine-immunoreactive cell bodies were observed in different subdivisions of the tuberomammillary nucleus of the posterior hypothalamus, and a few cell bodies were present in the posterior and dorsal part of the periventricular hypothalamic nucleus. Histamine-immunoreactive fibers were observed to leave the posterior hypothalamus in various directions of which one dorsally projecting tract was followed in the periventricular area of the caudal diencephalon to the epithalamus. Several histamine-immunoreactive nerve fibers of this tract continued through the posterior commissure directly into the deep pineal gland. A few immunoreactive fibers were also observed in the habenular commissure. In midsagittal sections, histamine-immunoreactive nerve fibers were observed to enter the pineal stalk from the deep pineal gland. Most of histamine-immunoreactive fibers in the stalk continued towards the superficial pineal gland, but their number decreased in more distal locations of the stalk, indicating that some fibers terminate in the stalk as well. A few fibers were found to terminate in the most rostral part of the superficial pineal gland. The immunoreactive nerve fibers in the epithalamus and pineal complex were endowed with prominent varicosities. Taken together, these results indicate that histaminergic nerve fibers, originating from the posterior hypothalamus, project to the pineal complex of the rat. Histamine must therefore be considered a putative neurotransmitter contained in the central innervation of the pineal gland, but its function in pineal physiology has so far not been elucidated.
Collapse
Affiliation(s)
- J D Mikkelsen
- Institute of Medical Anatomy, University of Copenhagen, Denmark
| | | | | |
Collapse
|
44
|
Lau KC, So KF, Campbell G, Lieberman AR. Pupillary constriction in response to light in rodents, which does not depend on central neural pathways. J Neurol Sci 1992; 113:70-9. [PMID: 1469457 DOI: 10.1016/0022-510x(92)90267-o] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We show here that the widely held belief that reflex constriction of the mammalian pupil in response to light depends exclusively upon neural pathways between eye and brain is in need of revision. We investigated the response of the pupil to light in dark-adapted rodents (golden hamsters; hooded rats; albino rats) subjected to a variety of surgical and pharmacological interventions designed to destroy or block all of the neural pathways and structures through which the reflex could be mediated. The interventions included bilateral intraorbital optic nerve section, or unilateral intracranial optic nerve section with enucleation of the contralateral eye, combined in some cases with bilateral removal of the superior cervical ganglia and/or pinealectomy; topical application of atropine; intraocular injection of tetrodotoxin (TTX). Golden hamsters and hooded rats, but not albino rats, retained an effective constriction of the pupil in response to light after all of these interventions, although the constriction was less and slower than in normal animals. These findings show that hamsters and hooded rats have both a neurally mediated fast light reflex that can be eliminated by severing connections between eye and brain, by blockade of cholinergic transmission to iris smooth muscle, and by blockade of action potentials by TTX; and a local, slower constriction in response to light, which remains after all these procedures. We have also confirmed previous observations of Bito and Turansky (1975) that pupillary constriction in response to light occurs in isolated in vitro anterior chamber preparations of hamster and hooded rat eyes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K C Lau
- Department of Anatomy, University of Hong Kong
| | | | | | | |
Collapse
|
45
|
Babila T, Schaad NC, Simonds WF, Shinohara T, Klein DC. Development of MEKA (phosducin), G beta, G gamma and S-antigen in the rat pineal gland and retina. Brain Res 1992; 585:141-8. [PMID: 1511297 DOI: 10.1016/0006-8993(92)91199-o] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pinealocytes and retinal photoreceptor cells contain an unusual cytoplasmic complex composed of the G beta gamma dimer of GTP-binding regulatory proteins (G-proteins) tightly bound to an acidic 33 kDa phosphoprotein termed MEKA or phosducin; MEKA is a substrate of cyclic AMP-dependent protein kinase. This study characterized the developmental appearance of these and two related proteins, G gamma and S-antigen, in pineal and retinal tissue. MEKA was absent in the pineal gland prior to birth, at a time when it was possible to detect G beta in pineal cytoplasm, indicating that the appearance of G beta in the cytoplasm precedes that of MEKA and does not appear to require the presence of MEKA. The absence of MEKA at this time indicates that the cyclic AMP stimulation of pineal serotonin N-acetyltransferase activity is not mediated by MEKA, which has been considered as a possible role of MEKA. After postnatal day 7, pineal MEKA and cytoplasmic G beta increased in a parallel manner, with peak values occurring at about postnatal day 21. Thereafter, both proteins in the pineal gland decreased in a parallel fashion to 10 and 35% of their peak values, respectively; in contrast, the cytoplasmic protein S-antigen and membrane associated G beta remained at maximal levels after this time. Whereas both MEKA and G beta decreased late in development in the pineal gland, these proteins either increased or remained constant in the retina. These tissue-specific patterns were found to differ from those of another cytosolic protein found exclusively in the pineal gland and retina, S-antigen, which remained constant after day 21 in the pineal gland but decreased in the retina late in life.
Collapse
Affiliation(s)
- T Babila
- Section on Neuroendocrinology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
46
|
Abstract
The mammalian pineal gland is innervated by peripheral sympathetic and parasympathetic nerve fibers as well as by nerve fibers originating in the central nervous system (central innervation). The perikarya of the sympathetic fibers are located in the superior cervical ganglia, while the fibers terminate in boutons containing small granular vesicles and a few large granular vesicles. Both noradrenaline and neuropeptide Y are contained in these neurons. The parasympathetic fibers originate from perikarya in the pterygopalatine ganglia. The neuropeptides, vasoactive intestinal peptide and peptide histidine isoleucine, are present in these fibers, the boutons of which contain small clear transmitter vesicles and larger granular vesicles. The fibers of the central innervation originate predominantly from perikarya located in hypothalamic and limbic forebrain structures as well as from perikarya in the optic system. These fibers terminate in boutons containing small clear and, in certain fibers, an abundant number of large granular vesicles. In rodents, the majority of the central fibers terminate in the deep pineal gland and the pineal stalk. From these areas impulses might be transmitted further caudally to the superficial pineal gland via neuronal structures or processes from pinealocytes. Several hypothalamic neuropeptides and monoamines might be contained in the central fibers. The intrapineal nerve fibers are located both in the perivascular spaces and intraparenchymally. The majority of the intraparenchymally located fibers terminate freely between the pinealocytes. However, some nerve terminals make synaptic contacts with the pinealocytes and in some species with intrapineal neurons. In fetal mammals, sympathetic, parasympathetic, and central fibers are also present. In addition, an unpaired nerve, connecting the caudal part of the pineal gland with the extreme rostral part of the mesencephalon, is present. This nerve is a homologue to the pineal nerve (nervus pinealis) observed in lower vertebrates.
Collapse
Affiliation(s)
- M Møller
- Department B, University of Copenhagen, Denmark
| |
Collapse
|
47
|
Korf HW, Wicht H. Receptor and effector mechanisms in the pineal organ. PROGRESS IN BRAIN RESEARCH 1992; 91:285-97. [PMID: 1410411 DOI: 10.1016/s0079-6123(08)62345-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- H W Korf
- Department of Neurobiology, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | | |
Collapse
|
48
|
Sáez JC, Berthoud VM, Kadle R, Traub O, Nicholson BJ, Bennett MV, Dermietzel R. Pinealocytes in rats: connexin identification and increase in coupling caused by norepinephrine. Brain Res 1991; 568:265-75. [PMID: 1667618 DOI: 10.1016/0006-8993(91)91407-r] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dye coupling was observed between pinealocytes in acutely dissected pineal glands of adult rats. Pinealocytes maintained in culture were also electrically coupled. Connexins 26 and 43 and their respective mRNAs were present but neither connexin32 nor its mRNA were detected. Pinealocytes expressed only connexin26 whereas connexin43 was confined to astrocytes. In 5-day-old cultures of pinealocytes the incidence of dye coupling and level of immunodetectable connexin26 were low, and both were increased by norepinephrine (NE). The increase in incidence of coupling was maximal at around 6 h after treatment and was prevented by inhibitors of protein or mRNA synthesis. NE-induced metabolic and electrical synchronization mediated by gap junctions may favor melatonin secretion.
Collapse
Affiliation(s)
- J C Sáez
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | | | | | | | | | |
Collapse
|
49
|
Welsh MG, Ding JM, Buggy J, Terracio L. Application of confocal laser scanning microscopy to the deep pineal gland and other neural tissues. Anat Rec (Hoboken) 1991; 231:473-81. [PMID: 1686536 DOI: 10.1002/ar.1092310410] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The study of the deep pineal gland of the Mongolian gerbil and other neuronal tissue from the rat by means of confocal laser scanning microscopy (CLSM) is described. Opical serial sectioning was performed on thick (100-200 microns) sections of the deep pineal gland of the Mongolian gerbil stained immunohistochemically using antisera to S-antigen and tyrosine hydroxylase (TH). Both dual-stained and single-stained material was examined using the fluorochromes fluorescein isothiocyanate (FITC) and Texas Red. High resolution images were obtained showing that pinealocytes have 1-3 processes that extend primarily to other pinealocytes or presumptive pinealocytes. Pinealocytes are located within the deep pineal gland as well as adjacent to the posterior aspect of the medial habenular nuclei. Pinealocyte processes were not seen extending into the habenular nuclei, but rather ended within the deep pineal gland a significant distance from their perikarya. The TH-immunopositive fibers were distributed throughout the deep pineal gland, often forming "baskets" of fibers around pinealocytes rather than being associated primarily with blood vessels. Other uses of the confocal microscope are demonstrated on rat neural tissue reacted with peroxidase/diaminobenzidine (DAB) immunohistochemistry and FITC fluorescence immunohistochemistry (paraventricular nucleus) as well as Golgi-stained neuronal tissue (cerebral cortex). The HRP/DAB and Golgi-stained images were visualized using the reflected image mode of the confocal system.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M G Welsh
- Department of Anatomy, Cell Biology, and Neurosciences, School of Medicine, University of South Carolina, Columbia 29208
| | | | | | | |
Collapse
|
50
|
Li K, Welsh MG. S-antigen and glial fibrillary acidic protein immunoreactivity in the in situ pineal gland of hamster and gerbil and in pineal grafts: developmental expression of pinealocyte and glial markers. THE AMERICAN JOURNAL OF ANATOMY 1991; 192:510-22. [PMID: 1781457 DOI: 10.1002/aja.1001920415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Postnatal development of S-Ag and GFAP immunoreactivity in the in situ pineal glands of golden hamsters and gerbils was examined using the avidin-biotin-peroxidase immunohistochemical technique. S-Ag was present in the gerbil pineal gland on the first postnatal day (P1), whereas it did not appear in the hamster pineal until P6. GFAP-immunoreactive astrocytes were first observed in the hamster pineal gland on P7 and in the gerbil pineal gland on P10. The number of S-Ag-immunoreactive pinealocytes and GFAP-immunoreactive astrocytes in the pineal glands of hamsters and gerbils increased with increasing age from P7 to 3 weeks. By 4 weeks, strong S-Ag and GFAP immunoreactivity was observed in both hamster and gerbil pineal glands. GFAP-immunoreactive stellate astrocytes were distributed evenly throughout the gerbil superficial pineal gland, but they were more often located in the peripheral region of the hamster superficial pineal. For the pineal grafts, pineal glands from neonatal (3-5 day old) hamsters were transplanted into the third cerebral ventricle (infundibular recess or posterior third ventricle) or beneath the renal capsule of adult male hamsters. S-Ag immunoreactivity appeared in the pineal grafts within 1 week following transplantation. By 4 weeks the pineal grafts showed strong S-Ag immunoreactivity which was maintained until at least 12 weeks after transplantation. The time course of glial cell maturation in the cerebroventricular pineal grafts is generally parallel to the hamster pineal gland in situ before 4 weeks. By 12 weeks, however, more astrocytes differentiated and developed GFAP-immunoreactivity in the pineal grafts than in the in situ pineals. These studies have described the postnatal development of S-Ag and GFAP immunoreactivity in in situ pineal glands and in neonatal pineal grafts.
Collapse
Affiliation(s)
- K Li
- Department of Anatomy, Cell Biology and Neurosciences, School of Medicine, University of South Carolina, Columbia 29208
| | | |
Collapse
|