1
|
Huerta MÁ, Molina-Álvarez M, García MM, Tejada MA, Goicoechea C, Ghasemlou N, Ruiz-Cantero MC, Cobos EJ. The role of neutrophils in pain: systematic review and meta-analysis of animal studies. Pain 2024:00006396-990000000-00754. [PMID: 39450928 DOI: 10.1097/j.pain.0000000000003450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024]
Abstract
ABSTRACT The peripheral inflammatory response is an attractive therapeutic target for pain treatment. Neutrophils are the first circulating inflammatory cells recruited to sites of injury, but their contribution to pain outcomes is unclear. We performed a systematic review and meta-analysis of original preclinical studies, which evaluated the effect of preemptive neutrophil depletion on pain outcomes (PROSPERO registration number: CRD42022364004). Literature search (PubMed, January 19, 2023) identified 49 articles, which were meta-analyzed using a random-effects model. The risk of bias was evaluated using SYRCLE's tool. The pooled effect considering all studies showed that neutrophil depletion induced a consistent pain reduction. Inflammatory, joint, neuropathic, and visceral pain showed significant pain alleviation by neutrophil depletion with medium-large effect sizes. However, muscle and postoperative pain were not significantly alleviated by neutrophil depletion. Further analysis showed a differential contribution of neutrophils to pain outcomes. Neutrophils had a higher impact on mechanical hyperalgesia, followed by nociceptive behaviors and mechanical allodynia, with a smaller contribution to thermal hyperalgesia. Interspecies (mice or rats) differences were not appreciated. Analyses regarding intervention unveiled a lower pain reduction for some commonly used methods for neutrophil depletion, such as injection of antineutrophil serum or an anti-Gr-1 antibody, than for other agents such as administration of an anti-Ly6G antibody, fucoidan, vinblastine, CXCR1/2 inhibitors, and etanercept. In conclusion, the contribution of neutrophils to pain depends on pain etiology (experimental model), pain outcome, and the neutrophil depletion strategy. Further research is needed to improve our understanding on the mechanisms of these differences.
Collapse
Affiliation(s)
- Miguel Á Huerta
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Miguel Molina-Álvarez
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University, Asociated Unit I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Alcorcón, Spain
- High Performance Experimental Pharmacology Research Group, Rey Juan Carlos University (PHARMAKOM), Alcorcón, Spain
| | - Miguel M García
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University, Asociated Unit I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Alcorcón, Spain
- High Performance Experimental Pharmacology Research Group, Rey Juan Carlos University (PHARMAKOM), Alcorcón, Spain
| | - Miguel A Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Carlos Goicoechea
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University, Asociated Unit I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Alcorcón, Spain
- High Performance Experimental Pharmacology Research Group, Rey Juan Carlos University (PHARMAKOM), Alcorcón, Spain
| | - Nader Ghasemlou
- Pain Chronobiology & Neuroimmunology Laboratory, Departments of Anesthesiology and Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - M Carmen Ruiz-Cantero
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain
- Teófilo Hernando Institute for Drug Discovery, Madrid, Spain
| |
Collapse
|
2
|
Huerta MÁ, Tejada MÁ, Nieto FR. Fucoidan as a Promising Drug for Pain Treatment: Systematic Review and Meta-Analysis. Mar Drugs 2024; 22:290. [PMID: 39057399 PMCID: PMC11277653 DOI: 10.3390/md22070290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Fucoidan is a polymer of L-fucose and L-fucose-4-sulphate naturally found in marine sources that inhibits p-selectin, preventing neutrophil recruitment to the site of injury. Fucoidan is employed in many studies as a tool to investigate the contribution of neutrophils to pain, showing analgesic effects. We performed a systematic review and meta-analysis to quantify the analgesic effects of pretreatment with fucoidan reported in the available preclinical studies. In addition, we summarized the articles which have studied the therapeutic effects of fucoidan in pathological pain at preclinical and clinical levels. The results of this systematic review reveal that pretreatment with fucoidan is a powerful tool which reduces neutrophil infiltration by 70-90% at early time points. This meta-analysis showed that preventative treatment with fucoidan produced a significant pain reduction. In addition, several preclinical studies have observed that fucoidan treatment reduces the pain that is associated with various pathologies. Finally, fucoidan has also been tested in several clinical trials, with some degree of analgesic efficacy, but they were mostly small pilot studies. Considering all the above information, it can be concluded that fucoidan is not only a preclinical tool for studying the role of neutrophils in pain but also a promising therapeutic strategy for pain treatment.
Collapse
Affiliation(s)
- Miguel Á. Huerta
- Department of Pharmacology, University of Granada, 18016 Granada, Spain; (M.Á.H.); (M.Á.T.)
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| | - Miguel Á. Tejada
- Department of Pharmacology, University of Granada, 18016 Granada, Spain; (M.Á.H.); (M.Á.T.)
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| | - Francisco R. Nieto
- Department of Pharmacology, University of Granada, 18016 Granada, Spain; (M.Á.H.); (M.Á.T.)
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
3
|
Xue R, Ji D, Gong J, Qu L, Zhang Q, Xu R, Chen P, Qin Y, Su L, Mao C, Guo Z, Gao B, Lu T. Research on the effects of processing Heishunpian from Aconiti lateralis radix praeparata on components and efficacy using the "step knockout" strategy. Fitoterapia 2024; 172:105747. [PMID: 37977305 DOI: 10.1016/j.fitote.2023.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Heishunpian is obtained through complex processing of Aconiti lateralis radix praeparata. However, the impact of each processing step on chemical compositions and pharmacological activities is still unclear. The mechanism of the processing needs to be further studied. The samples were all prepared using the "step knockout" strategy for UPLC-QTOF-MS analysis, and analgesic and anti-inflammatory efficacy evaluation. Each sample was analyzed by UPLC-QTOF-MS to determine the component differences. The hot plate test and acetic acid writhing test were used to evaluate the analgesic effect. Anti-inflammatory efficacy was evaluated by xylene-induced ear edema test. The correlation between components and efficacies was studied to screen the effective components for further investigating the processing of Heishunpian. Mass spectrum analysis results showed that 49 components were identified, and it appeared that brine immersion and rinsing had a great influence on the components. In the hot plate test, ibuprofen and Heishunpian had the most significant effect, while ibuprofen and the sample without rinsing showed the best efficacy for the acetic acid writhing test. The sample without dyeing had the best effect on ear edema. The correlation analysis indicated that mesaconine, aconine, 3-deoxyaconine, delbruine, and asperglaucide were potentially considered effective analgesic components. It is not recommended to remove brine immersion and rinsing. Boiling and steaming are necessary processes that improve efficacy. Dyeing, which does not have a significant impact on components and efficacy, may be an unnecessary process. This research has been of great significance in identifying anti-inflammatory and analgesic components and optimizing processing for Heishunpian.
Collapse
Affiliation(s)
- Rong Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, PR China
| | - De Ji
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, PR China
| | - Jingwen Gong
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, PR China
| | - Lingyun Qu
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, PR China
| | - Qian Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, PR China
| | - Ruijie Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, PR China
| | - Peng Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, PR China
| | - Yuwen Qin
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, PR China
| | - Lianlin Su
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, PR China
| | - Chunqin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, PR China
| | - ZhiJun Guo
- China Resources Sanjiu Medical & Pharmaceutical Co. Ltd., Shenzhen, Longhua 518110, China
| | - Bo Gao
- China Resources Sanjiu Medical & Pharmaceutical Co. Ltd., Shenzhen, Longhua 518110, China.
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, PR China.
| |
Collapse
|
4
|
Echeverria-Villalobos M, Tortorici V, Brito BE, Ryskamp D, Uribe A, Weaver T. The role of neuroinflammation in the transition of acute to chronic pain and the opioid-induced hyperalgesia and tolerance. Front Pharmacol 2023; 14:1297931. [PMID: 38161698 PMCID: PMC10755684 DOI: 10.3389/fphar.2023.1297931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Current evidence suggests that activation of glial and immune cells leads to increased production of proinflammatory mediators, creating a neuroinflammatory state. Neuroinflammation has been proven to be a fundamental mechanism in the genesis of acute pain and its transition to neuropathic and chronic pain. A noxious event that stimulates peripheral afferent nerve fibers may also activate pronociceptive receptors situated at the dorsal root ganglion and dorsal horn of the spinal cord, as well as peripheral glial cells, setting off the so-called peripheral sensitization and spreading neuroinflammation to the brain. Once activated, microglia produce cytokines, chemokines, and neuropeptides that can increase the sensitivity and firing properties of second-order neurons, upregulating the signaling of nociceptive information to the cerebral cortex. This process, known as central sensitization, is crucial for chronification of acute pain. Immune-neuronal interactions are also implicated in the lesser-known complex regulatory relationship between pain and opioids. Current evidence suggests that activated immune and glial cells can alter neuronal function, induce, and maintain pathological pain, and disrupt the analgesic effects of opioid drugs by contributing to the development of tolerance and dependence, even causing paradoxical hyperalgesia. Such alterations may occur when the neuronal environment is impacted by trauma, inflammation, and immune-derived molecules, or when opioids induce proinflammatory glial activation. Hence, understanding these intricate interactions may help in managing pain signaling and opioid efficacy beyond the classical pharmacological approach.
Collapse
Affiliation(s)
| | - Victor Tortorici
- Neuroscience Laboratory, Faculty of Science, Department of Behavioral Sciences, Universidad Metropolitana, Caracas, Venezuela
- Neurophysiology Laboratory, Center of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Beatriz E. Brito
- Immunopathology Laboratory, Center of Experimental Medicine, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - David Ryskamp
- College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Alberto Uribe
- Anesthesiology Department, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Tristan Weaver
- Anesthesiology Department, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
5
|
Balog BM, Sonti A, Zigmond RE. Neutrophil biology in injuries and diseases of the central and peripheral nervous systems. Prog Neurobiol 2023; 228:102488. [PMID: 37355220 PMCID: PMC10528432 DOI: 10.1016/j.pneurobio.2023.102488] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
The role of inflammation in nervous system injury and disease is attracting increased attention. Much of that research has focused on microglia in the central nervous system (CNS) and macrophages in the peripheral nervous system (PNS). Much less attention has been paid to the roles played by neutrophils. Neutrophils are part of the granulocyte subtype of myeloid cells. These cells, like macrophages, originate and differentiate in the bone marrow from which they enter the circulation. After tissue damage or infection, neutrophils are the first immune cells to infiltrate into tissues and are directed there by specific chemokines, which act on chemokine receptors on neutrophils. We have reviewed here the basic biology of these cells, including their differentiation, the types of granules they contain, the chemokines that act on them, the subpopulations of neutrophils that exist, and their functions. We also discuss tools available for identification and further study of neutrophils. We then turn to a review of what is known about the role of neutrophils in CNS and PNS diseases and injury, including stroke, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, spinal cord and traumatic brain injuries, CNS and PNS axon regeneration, and neuropathic pain. While in the past studies have focused on neutrophils deleterious effects, we will highlight new findings about their benefits. Studies on their actions should lead to identification of ways to modify neutrophil effects to improve health.
Collapse
Affiliation(s)
- Brian M Balog
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Anisha Sonti
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Richard E Zigmond
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA.
| |
Collapse
|
6
|
Caxaria S, Bharde S, Fuller AM, Evans R, Thomas B, Celik P, Dell’Accio F, Yona S, Gilroy D, Voisin MB, Wood JN, Sikandar S. Neutrophils infiltrate sensory ganglia and mediate chronic widespread pain in fibromyalgia. Proc Natl Acad Sci U S A 2023; 120:e2211631120. [PMID: 37071676 PMCID: PMC10151464 DOI: 10.1073/pnas.2211631120] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/05/2023] [Indexed: 04/19/2023] Open
Abstract
Fibromyalgia is a debilitating widespread chronic pain syndrome that occurs in 2 to 4% of the population. The prevailing view that fibromyalgia results from central nervous system dysfunction has recently been challenged with data showing changes in peripheral nervous system activity. Using a mouse model of chronic widespread pain through hyperalgesic priming of muscle, we show that neutrophils invade sensory ganglia and confer mechanical hypersensitivity on recipient mice, while adoptive transfer of immunoglobulin, serum, lymphocytes, or monocytes has no effect on pain behavior. Neutrophil depletion abolishes the establishment of chronic widespread pain in mice. Neutrophils from patients with fibromyalgia also confer pain on mice. A link between neutrophil-derived mediators and peripheral nerve sensitization is already established. Our observations suggest approaches for targeting fibromyalgia pain via mechanisms that cause altered neutrophil activity and interactions with sensory neurons.
Collapse
Affiliation(s)
- Sara Caxaria
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Sabah Bharde
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Alice M. Fuller
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Romy Evans
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Bethan Thomas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Petek Celik
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Francesco Dell’Accio
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Simon Yona
- Institute of Biomedical and Oral Research, Hebrew University, 9112102Jerusalem, Israel
| | - Derek Gilroy
- Division of Medicine, Molecular Nociception Group, Wolfson Institute of Biomedical Research, University College London, WC1E 6BTLondon, United Kingdom
| | - Mathieu-Benoit Voisin
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - John N. Wood
- Division of Medicine, Molecular Nociception Group, Wolfson Institute of Biomedical Research, University College London, WC1E 6BTLondon, United Kingdom
| | - Shafaq Sikandar
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| |
Collapse
|
7
|
Asahara M, Ito N, Hoshino Y, Sasaki T, Yokomizo T, Nakamura M, Shimizu T, Yamada Y. Role of leukotriene B4 (LTB4)-LTB4 receptor 1 signaling in post-incisional nociceptive sensitization and local inflammation in mice. PLoS One 2022; 17:e0276135. [PMID: 36264904 PMCID: PMC9584502 DOI: 10.1371/journal.pone.0276135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022] Open
Abstract
Leukotriene B4 (LTB4) is a potent lipid mediator involved in the recruitment and activation of neutrophils, which is an important feature of tissue injury and inflammation. The biological effects of LTB4 are primarily mediated through the high-affinity LTB4 receptor, BLT1. Postoperative incisional pain is characterized by persistent acute pain at the site of tissue injury and is associated with local inflammation. Here, we compared the role of LTB4-BLT1 signaling in postoperative incisional pain between BLT1-knockout (BLT1KO) and wild-type (BLT1WT) mice. A planter incision model was developed, and mechanical pain hypersensitivity was determined using the von Frey test before and after incision. Local infiltration of neutrophils and inflammatory monocytes was quantified by flow cytometry. Inflammatory cytokine levels in the incised tissue were also determined. Mechanical pain hypersensitivity was significantly reduced in BLT1KO mice compared to BLT1WT mice at 2, 3, and 4 days after incision. LTB4 levels in the tissue at the incision site peaked 3 hours after the incision. Infiltrated neutrophils peaked 1 day after the incision in both BLT1KO and BLT1WT mice. The accumulation of inflammatory monocytes increased 1-3 days after the incision and was significantly more reduced in BLT1KO mice than in BLT1WT mice. In BLT1KO mice, Interleukin-1β and Tumor Necrosis Factor-α levels 1 day after the incision were significantly lower than those of BLT1WT mice. Our data suggest that LTB4 is produced and activates its receptor BLT1 in the very early phase of tissue injury, and that LTB4-BLT1 signaling exacerbates pain responses by promoting local infiltration of inflammatory monocytes and cytokine production. Thus, LTB4-BLT1 signaling is a potential target for therapeutic intervention of acute and persistent pain induced by tissue injury.
Collapse
Affiliation(s)
- Miho Asahara
- Department of Anesthesiology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuko Ito
- Department of Anesthesiology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Yoko Hoshino
- Department of Anesthesiology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takaharu Sasaki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Motonao Nakamura
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Lipidomics, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitsugu Yamada
- International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| |
Collapse
|
8
|
Navrazhina K, Garcet S, Gonzalez J, Grand D, Frew JW, Krueger JG. In-Depth Analysis of the Hidradenitis Suppurativa Serum Proteome Identifies Distinct Inflammatory Subtypes. J Invest Dermatol 2021; 141:2197-2207. [PMID: 33766512 DOI: 10.1016/j.jid.2021.02.742] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Hidradenitis suppurativa is a chronic inflammatory dermatosis with presentations ranging from painful nodules and abscesses to draining tunnels. Using an unbiased proteomics approach, we assessed cardiovascular-, cardiometabolic-, and inflammation-related biomarkers in the serum of patients with moderate-to-severe hidradenitis suppurativa. The serum of patients with hidradenitis suppurativa clustered separately from that of healthy controls and had an upregulation of neutrophil-related markers (Cathepsin D, IL-17A, CXCL1). Patients with histologically diagnosed dermal tunnels had higher serum lipocalin-2 levels compared with those without tunnels. Consistent with this, patients with tunnels had a more neutrophilic-rich serum signature, marked by Cathepsin D, IL-17A, and IL-17D alterations. There was a significant serum‒skin correlation between proteins in the serum and the corresponding mRNA expression in skin biopsies, with healthy-appearing perilesional skin demonstrating a significant correlation with neutrophil-related proteins in the serum. CSF3 mRNA levels in lesional skin significantly correlated with neutrophil-related proteins in the serum, suggesting that CFS3 in the skin may be a driver of neutrophilic inflammation. Clinical significantly correlated with the levels of lipocalin-2 and IL-17A in the serum. Using an unbiased, large-scale proteomic approach, we demonstrate that hidradenitis suppurativa is a systemic neutrophilic dermatosis, with a specific molecular signature associated with the presence of dermal tunnels.
Collapse
Affiliation(s)
- Kristina Navrazhina
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York, USA
| | - Sandra Garcet
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Juana Gonzalez
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - David Grand
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - John W Frew
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - James G Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA.
| |
Collapse
|
9
|
Maia-Marques R, Nascimento IMR, Lauria PSS, Silva ECPD, Silva DF, Casais-E-Silva LL. Inflammatory mediators in the pronociceptive effects induced by Bothrops leucurus snake venom: The role of biogenic amines, nitric oxide, and eicosanoids. Toxicology 2020; 448:152649. [PMID: 33259823 DOI: 10.1016/j.tox.2020.152649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/10/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Bothrops leucurus is the major causative agent of venomous snakebites in Northeastern Brazil. Severe pain is the most frequent symptom in these envenomings, with an important inflammatory component. This work characterized the pronociceptive effects evoked by B. leucurus venom (BLV) in mice and the role of inflammatory mediators in these responses. The nociceptive behaviors were quantified by the modified formalin test. The mechanical hyperalgesia was assessed by the digital von Frey test. Pharmacological assays were performed with different antagonists and synthesis inhibitors to investigate the involvement of inflammatory mediators in both nociceptive events. BLV (1-15 μg/paw) injection in mice evoked intense and dose-dependent nociceptive behaviors that lasted for up to 1 h. BLV (10 μg/paw) also caused sustained mechanical hyperalgesia. Histamine and serotonin played a role in the nociception, but not in the BLV-induced mechanical hyperalgesia. Nitric oxide contributed to both responses, but only to the late stages of mechanical hyperalgesia. Eicosanoids were also present in both nociceptive responses. Prostanoid synthesis by COX-1 seemed to be more relevant for the nociception, whereas COX-2 had a more prominent role in the mechanical hyperalgesia. Leukotrienes were the most relevant mediators of BLV-induced mechanical hyperalgesia, hence inhibiting lipoxygenase pathway could be an efficient therapeutic strategy for pain management during envenoming. Our behavioral data demonstrates that BLV promotes nociceptive transmission mediated by biogenic amines, nitric oxide and eicosanoids, and nociceptor sensitization through nitric oxide and eicosanoids. Moreover, phospholipases A2 (PLA2), an important class of toxins present in bothropic venoms, appear to play an important role in the nociceptive and hypernociceptive response induced by BLV.
Collapse
Affiliation(s)
- Rodrigo Maia-Marques
- Laboratory of Neuroimmunoendocrinology and Toxinology, Federal University of Bahia, Salvador, BA, Brazil.
| | - Igor M R Nascimento
- Laboratory of Neuroimmunoendocrinology and Toxinology, Federal University of Bahia, Salvador, BA, Brazil.
| | - Pedro S S Lauria
- Laboratory of Pharmacology and Experimental Therapeutics, Federal University of Bahia, Salvador, BA, Brazil.
| | - Ellen C P da Silva
- Laboratory of Neuroimmunoendocrinology and Toxinology, Federal University of Bahia, Salvador, BA, Brazil.
| | - Darizy F Silva
- Laboratory of Endocrine and Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador, BA, Brazil.
| | - Luciana L Casais-E-Silva
- Laboratory of Neuroimmunoendocrinology and Toxinology, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
10
|
Hemati K, Pourhanifeh MH, Dehdashtian E, Fatemi I, Mehrzadi S, Reiter RJ, Hosseinzadeh A. Melatonin and morphine: potential beneficial effects of co-use. Fundam Clin Pharmacol 2020; 35:25-39. [PMID: 32415694 DOI: 10.1111/fcp.12566] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/27/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Morphine is a potent analgesic agent used to control acute or chronic pain. Chronic administration of morphine results in analgesic tolerance, hyperalgesia, and other side effects including dependence, addiction, respiratory depression, and constipation, which limit its clinical usage. Therefore, identifying the new analgesics with fewer side effects which could increase the effect of morphine and reduce its side effects is crucial. Melatonin, a multifunctional molecule produced in the body, is known to play an important role in pain regulation. The strong anti-inflammatory effect of melatonin is suggested to be involved in the attenuation of the pain associated with inflammation. Melatonin also increases the anti-nociceptive actions of opioids, such as morphine, and reverses their tolerance through regulating several cellular signaling pathways. In this review, published articles evaluating the effect of the co-consumption of melatonin and morphine in different conditions were investigated. Our results show that melatonin has pain-killing properties when administered alone or in combination with other anti-nociceptive drugs. Melatonin decreases morphine consumption in different pathologies. Furthermore, attenuation of morphine intake can be accompanied by reduction of morphine-associated side-effects, including physical dependence, morphine tolerance, and morphine-related hyperalgesia. Therefore, it is reasonable to believe that the combination of melatonin with morphine could reduce morphine-induced tolerance and hyperalgesia, which may result from anti-inflammatory and antioxidant properties of melatonin. Overall, we underscore that, to further ameliorate patients' life quality and control their pain in various pathological conditions, melatonin deserves to be used with morphine by anesthesiologists in clinical practice.
Collapse
Affiliation(s)
- Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Ghotb-e-Ravandy Boulevard, Kashan, 8715988141, Iran
| | - Ehsan Dehdashtian
- School of Medicine, Iran University of Medical Sciences, IRAN, Shahid Hemmat Highway, Tehran, 1449614535, Iran
| | - Iman Fatemi
- Rafsanjan University of Medical Sciences, imam Ali Bolvard, Rafsanjan, 7719617996, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, Mail Code 7762, San Antonio, TX, 78229-3900, USA
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran
| |
Collapse
|
11
|
Bindu PS. Sjogren-Larsson Syndrome: Mechanisms and Management. APPLICATION OF CLINICAL GENETICS 2020; 13:13-24. [PMID: 32021380 PMCID: PMC6954685 DOI: 10.2147/tacg.s193969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/23/2019] [Indexed: 12/19/2022]
Abstract
Sjogren Larsson syndrome (SLS) is a rare autosomal recessive inborn error of lipid metabolism due to mutations in the ALDH3A2 that result in a deficiency of fatty aldehyde dehydrogenase (FALDH). The syndrome has a high prevalence in Sweden where it was first described, but now known to occur worldwide. The classical triad of ichthyosis, mental retardation and spasticity characterizes clinical features. Preterm birth is common. “Glistening white dots” in the retina is a pathognomic clinical feature. Magnetic resonance imaging of the brain demonstrates leukoencephalopathy predominant in the periventricular region. Cerebral MR spectroscopy reveals a characteristic abnormal lipid peak at 1.3ppm and a small peak at 0.9ppm. The primary role of FALDH is oxidation of medium and long-chain aliphatic aldehydes derived from fatty alcohol, phytanic acid, ether glycerolipids and sphingolipids. The diagnosis is based on the typical phenotype, demonstration of the enzyme deficiency and presence of biallelic mutations in the ALDH3A2. The management of SLS largely remains symptomatic currently. However, several potential therapeutic options are being developed, keeping in view of the fundamental metabolic defects or correcting the genetic defect. This review aims to summarize the clinical, genetic and biochemical findings, pathogenetic mechanisms and the current therapeutic options, in SLS.
Collapse
Affiliation(s)
- Parayil Sankaran Bindu
- TY Nelson Department of Neurology and Neurosurgery, Children's Hospital at Westmead, Sydney, NSW, Australia
| |
Collapse
|
12
|
Kanashiro A, Hiroki CH, da Fonseca DM, Birbrair A, Ferreira RG, Bassi GS, Fonseca MD, Kusuda R, Cebinelli GCM, da Silva KP, Wanderley CW, Menezes GB, Alves-Fiho JC, Oliveira AG, Cunha TM, Pupo AS, Ulloa L, Cunha FQ. The role of neutrophils in neuro-immune modulation. Pharmacol Res 2019; 151:104580. [PMID: 31786317 DOI: 10.1016/j.phrs.2019.104580] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/07/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023]
Abstract
Neutrophils are peripheral immune cells that represent the first recruited innate immune defense against infections and tissue injury. However, these cells can also induce overzealous responses and cause tissue damage. Although the role of neutrophils activating the immune system is well established, only recently their critical implications in neuro-immune interactions are becoming more relevant. Here, we review several aspects of neutrophils in the bidirectional regulation between the nervous and immune systems. First, the role of neutrophils as a diffuse source of acetylcholine and catecholamines is controversial as well as the effects of these neurotransmitters in neutrophil's functions. Second, neutrophils contribute for the activation and sensitization of sensory neurons, and thereby, in events of nociception and pain. In addition, nociceptor activation promotes an axon reflex triggering a local release of neural mediators and provoking neutrophil activation. Third, the recruitment of neutrophils in inflammatory responses in the nervous system suggests these immune cells as innovative targets in the treatment of central infectious, neurological and neurodegenerative disorders. Multidisciplinary studies involving immunologists and neuroscientists are required to define the role of the neurons-neutrophils communication in the pathophysiology of infectious, inflammatory, and neurological disorders.
Collapse
Affiliation(s)
- Alexandre Kanashiro
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Carlos Hiroji Hiroki
- Department of Immunology and Biochemistry, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Denise Morais da Fonseca
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Raphael Gomes Ferreira
- Araguaína Medical School, Federal University of Tocantins, Avenida Paraguai s/n, 77824-838, Araguaína, TO, Brazil
| | - Gabriel Shimizu Bassi
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, 27710, USA
| | - Mirian D Fonseca
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Kusuda
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Katiussia Pinho da Silva
- Department of Pharmacology, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Carlos Wagner Wanderley
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - José Carlos Alves-Fiho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - André Gustavo Oliveira
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - André Sampaio Pupo
- Department of Pharmacology, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, 27710, USA.
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
13
|
Effect of the metanolic extract from the leaves of Garcinia humilis Vahl (Clusiaceae) on acute inflammation. Inflammopharmacology 2019; 29:423-438. [PMID: 31552547 DOI: 10.1007/s10787-019-00645-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/09/2019] [Indexed: 01/01/2023]
Abstract
Garcinia humilis is popularly used to treat digestive, intestinal and inflammatory illness. We investigated the in vivo and in vitro effects of the methanol extract of G. humilis leaves (MEGh) on inflammatory cells behavior (migration and chemical mediators release) and hypersensitivity. Anti-inflammatory activity was investigated using carrageenan-induced inflammation in the subcutaneous tissue of male Swiss mice treated orally with MEGh (0.1-30 mg/kg). Leucocyte migration, chemical mediators secretion (TNF, IL-1β, IL-6 and CXCL1) and protein exudation were quantified in the exudate. The adhesion molecules expression (CD62L and CD18), chemical mediators and chemotaxis was evaluated using neutrophils or macrophages RAW.264.7 previously treated with the extract (1-100 µg/mL) and activated with LPS. The anti-inflammatory activity of the isolated compounds friedelin, canophyllol, amentoflavone and 3-desmethyl-2-geranyl-4-prenylbellidypholine xanthone (10 μM) was evaluated in macrophages nitric oxide (NO) and TNF release. MEGh, given orally (30 mg/kg), significantly reduced neutrophil migration and decreased TNF, IL-1β and CXCL1 levels, without interfering with protein exudation and IL-6. In vitro, the extract significantly reduced IL-1β and IL-6 levels but did not alter TNF and CXCL1. The MEGh also reduced the expression of CD62L and CD18 and consequently neutrophil chemotaxis. The compounds friedelin, amentoflavone and 3-demethyl-2-geranyl-4-prenylbellidypholine xanthone decreased the secretion of NO and TNF by RAW264.7. The MEGh effects were extended to the pain-like behaviour induced by carrageenan in the mice hindpaw. MEGh presented important anti-inflammatory effects probably due to its activity on neutrophil migration and on important chemical mediator release, scientifically reinforcing its use as medicinal plant.
Collapse
|
14
|
Abstract
Pain is a hallmark of tissue injury, inflammatory diseases, pathogen invasion and neuropathy. It is mediated by nociceptor sensory neurons that innervate the skin, joints, bones, muscles and mucosal tissues and protects organisms from noxious stimuli. Nociceptors are sensitized by inflammatory mediators produced by the immune system, including cytokines, lipid mediators and growth factors, and can also directly detect pathogens and their secreted products to produce pain during infection. Upon activation, nociceptors release neuropeptides from their terminals that potently shape the function of innate and adaptive immune cells. For some pathogens, neuron-immune interactions enhance host protection from infection, but for other pathogens, neuron-immune signalling pathways can be exploited to facilitate pathogen survival. Here, we discuss the role of nociceptor interactions with the immune system in pain and infection and how understanding these pathways could produce new approaches to treat infectious diseases and chronic pain.
Collapse
|
15
|
Spiller F, Oliveira Formiga R, Fernandes da Silva Coimbra J, Alves-Filho JC, Cunha TM, Cunha FQ. Targeting nitric oxide as a key modulator of sepsis, arthritis and pain. Nitric Oxide 2019; 89:32-40. [PMID: 31051258 DOI: 10.1016/j.niox.2019.04.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/22/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO) is produced by enzymatic activity of neuronal (nNOS), endothelial (eNOS), and inducible nitric oxide synthase (iNOS) and modulates a broad spectrum of physiological and pathophysiological conditions. The iNOS isoform is positively regulated at transcriptional level and produces high levels of NO in response to inflammatory mediators and/or to pattern recognition receptor signaling, such as Toll-like receptors. In this review, we compiled the main contributions of our group for understanding of the role of NO in sepsis and arthritis outcome and the peripheral contributions of NO to inflammatory pain development. Although neutrophil iNOS-derived NO is necessary for bacterial killing, systemic production of high levels of NO impairs neutrophil migration to infections through inhibiting neutrophil adhesion on microcirculation and their locomotion. Moreover, neutrophil-derived NO contributes to multiple organ dysfunction in sepsis. In arthritis, NO is chief for bacterial clearance in staphylococcal-induced arthritis; however, it contributes to articular damage and bone mass degradation. NO produced in inflammatory sites also downmodulates pain. The mechanism involved in analgesic effect and inhibition of neutrophil migration is dependent on the activation of the classical sGC/cGMP/PKG pathway. Despite the increasing number of studies performed after the identification of NO as an endothelium-derived relaxing factor, the underlying mechanisms of NO in inflammatory diseases remain unclear.
Collapse
Affiliation(s)
- Fernando Spiller
- Department of Pharmacology, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil.
| | | | | | | | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeiro Preto Medical School, University of Sao Paulo, Brazil
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeiro Preto Medical School, University of Sao Paulo, Brazil.
| |
Collapse
|
16
|
Multi-Target Cinnamic Acids for Oxidative Stress and Inflammation: Design, Synthesis, Biological Evaluation and Modeling Studies. Molecules 2018; 24:molecules24010012. [PMID: 30577525 PMCID: PMC6337588 DOI: 10.3390/molecules24010012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 11/29/2022] Open
Abstract
Inflammation is a complex phenomenon that results as a healing response of organisms to different factors, exerting immune signaling, excessive free radical activity and tissue destruction. Lipoxygenases and their metabolites e.g., LTB4, are associated with allergy, cell differentiation and carcinogenesis. Lipoxygenase 12/15 has been characterized as a mucosal-specific inhibitor of IgA and a contributor to the development of allergic sensitization and airway inflammation. Development of drugs that interfere with the formation or effects of these metabolites would be important for the treatment of various diseases like asthma, psoriasis, ulcerative colitis, rheumatoid arthritis, atherosclerosis, cancer and blood vessel disorders. In this study we extended our previous research synthesizing a series of multi-target cinnamic acids from the corresponding aldehydes with suitable 4-OH/Br substituted phenyl acetic acid by Knoevenagel condensation. The final products 1i, 3i, 3ii, 4i, 6i, 6ii, and 7i were obtained in high yields (52–98%) Their structures were verified spectrometrically, while their experimentally lipophilicity was determined as RM values. The novel derivatives were evaluated for their antioxidant activity using DPPH, hydroxyl radical, superoxide anion and ABTS+•, anti-lipid peroxidation and soybean lipoxygenase inhibition assays. The compounds presented medium interaction with DPPH (30–48% at 100 µM). In contrast all the synthesized derivatives strongly scavenge OH radicals (72–100% at 100 µM), ABTS+• (24–83% at 100 µM) and presented remarkable inhibition (87–100% at 100 µM) in linoleic acid peroxidation (AAPH). The topological polar surface of the compounds seems to govern the superoxide anion scavenging activity. Molecular docking studies were carried out on cinnamic acid derivative 3i and found to be in accordance with experimental biological results. All acids presented interesting lipoxygenase inhibition (IC50 = 7.4–100 µM) with compound 3i being the most potent LOX inhibitor with IC50 = 7.4 µM combining antioxidant activities. The antioxidant results support the LOX inhibitory activities. The recorded in vitro results highlight compound 3i as a lead compound for the design of new potent lipoxygenase inhibitors for the treatment of asthma, psoriasis, ulcerative colitis, rheumatoid arthritis, atherosclerosis, cancer and blood vessel disorders.
Collapse
|
17
|
Tanvir EM, Sakib Hossen M, Mahfuza Shapla U, Mondal M, Afroz R, Mandal M, Alamgir Zaman Chowdhury M, Ibrahim Khalil M, Hua Gan S. Antioxidant, brine shrimp lethality and analgesic properties of propolis from Bangladesh. J Food Biochem 2018. [DOI: 10.1111/jfbc.12596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- E. M. Tanvir
- Institute of Food & Radiation Biology, Atomic Energy Research Establishment; Savar Bangladesh
- School of Pharmacy, Pharmacy Australia Centre of Excellence; The University of Queensland; Brisbane Australia
| | - Md. Sakib Hossen
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology; Jahangirnagar University; Savar Bangladesh
- Department of Biochemistry; Primeasia University; Banani Bangladesh
| | - Ummay Mahfuza Shapla
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology; Jahangirnagar University; Savar Bangladesh
| | - Milon Mondal
- Department of Pharmacy; Jahangirnagar University; Savar Bangladesh
| | - Rizwana Afroz
- School of Pharmacy, Pharmacy Australia Centre of Excellence; The University of Queensland; Brisbane Australia
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology; Jahangirnagar University; Savar Bangladesh
| | - Manoj Mandal
- Department of Biochemistry and Molecular Biology; Bangabandhu Sheikh Mujibur Rahman Science & Technology University; Gopalganj Bangladesh
| | | | - Md. Ibrahim Khalil
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology; Jahangirnagar University; Savar Bangladesh
- School of Medical Science; Universiti Sains malaysia; Kota Bharu Malaysia
| | - Siew Hua Gan
- School of Pharmacy; Monash University Malaysia; Bandar Sunway Malaysia
| |
Collapse
|
18
|
Zinn S, Sisignano M, Kern K, Pierre S, Tunaru S, Jordan H, Suo J, Treutlein EM, Angioni C, Ferreiros N, Leffler A, DeBruin N, Offermanns S, Geisslinger G, Scholich K. The leukotriene B4 receptors BLT1 and BLT2 form an antagonistic sensitizing system in peripheral sensory neurons. J Biol Chem 2017; 292:6123-6134. [PMID: 28242764 DOI: 10.1074/jbc.m116.769125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/09/2017] [Indexed: 11/06/2022] Open
Abstract
Sensitization of the heat-activated ion channel transient receptor potential vanilloid 1 (TRPV1) through lipids is a fundamental mechanism during inflammation-induced peripheral sensitization. Leukotriene B4 is a proinflammatory lipid mediator whose role in peripheral nociceptive sensitization is not well understood to date. Two major G-protein-coupled receptors for leukotriene B4 have been identified: the high-affinity receptor BLT1 and the low-affinity receptor BLT2. Transcriptional screening for the expression G-protein-coupled receptors in murine dorsal root ganglia showed that both receptors were among the highest expressed in dorsal root ganglia. Calcium imaging revealed a sensitization of TRPV1-mediated calcium increases in a relative narrow concentration range for leukotriene B4 (100-200 nm). Selective antagonists and neurons from knock-out mice demonstrated a BLT1-dependent sensitization of TRPV1-mediated calcium increases. Accordingly, leukotriene B4-induced thermal hyperalgesia was mediated through BLT1 and TRPV1 as shown using the respective knock-out mice. Importantly, higher leukotriene B4 concentrations (>0.5 μm) and BLT2 agonists abolished sensitization of the TRPV1-mediated calcium increases. Also, BLT2 activation inhibited protein kinase C- and protein kinase A-mediated sensitization processes through the phosphatase calcineurin. Consequently, a selective BLT2-receptor agonist increased thermal and mechanical withdrawal thresholds during zymosan-induced inflammation. In accordance with these data, immunohistochemical analysis showed that both leukotriene B4 receptors were expressed in peripheral sensory neurons. Thus, the data show that the two leukotriene B4 receptors have opposing roles in the sensitization of peripheral sensory neurons forming a self-restricting system.
Collapse
Affiliation(s)
- Sebastian Zinn
- From the Institut für Klinische Pharmakologie, Pharmazentrum Frankfurt, Klinikum der Goethe-Universität Frankfurt, 60590 Frankfurt, Germany
| | - Marco Sisignano
- From the Institut für Klinische Pharmakologie, Pharmazentrum Frankfurt, Klinikum der Goethe-Universität Frankfurt, 60590 Frankfurt, Germany
| | - Katharina Kern
- From the Institut für Klinische Pharmakologie, Pharmazentrum Frankfurt, Klinikum der Goethe-Universität Frankfurt, 60590 Frankfurt, Germany
| | - Sandra Pierre
- From the Institut für Klinische Pharmakologie, Pharmazentrum Frankfurt, Klinikum der Goethe-Universität Frankfurt, 60590 Frankfurt, Germany
| | - Sorin Tunaru
- the Department of Pharmacology, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Holger Jordan
- the Fraunhofer Institute of Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, 60590 Frankfurt, Germany, and
| | - Jing Suo
- From the Institut für Klinische Pharmakologie, Pharmazentrum Frankfurt, Klinikum der Goethe-Universität Frankfurt, 60590 Frankfurt, Germany
| | - Elsa-Marie Treutlein
- From the Institut für Klinische Pharmakologie, Pharmazentrum Frankfurt, Klinikum der Goethe-Universität Frankfurt, 60590 Frankfurt, Germany
| | - Carlo Angioni
- From the Institut für Klinische Pharmakologie, Pharmazentrum Frankfurt, Klinikum der Goethe-Universität Frankfurt, 60590 Frankfurt, Germany
| | - Nerea Ferreiros
- From the Institut für Klinische Pharmakologie, Pharmazentrum Frankfurt, Klinikum der Goethe-Universität Frankfurt, 60590 Frankfurt, Germany
| | - Andreas Leffler
- the Department for Anaesthesiology and Critical Care Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Natasja DeBruin
- the Fraunhofer Institute of Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, 60590 Frankfurt, Germany, and
| | - Stefan Offermanns
- the Department of Pharmacology, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Gerd Geisslinger
- From the Institut für Klinische Pharmakologie, Pharmazentrum Frankfurt, Klinikum der Goethe-Universität Frankfurt, 60590 Frankfurt, Germany.,the Fraunhofer Institute of Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, 60590 Frankfurt, Germany, and
| | - Klaus Scholich
- From the Institut für Klinische Pharmakologie, Pharmazentrum Frankfurt, Klinikum der Goethe-Universität Frankfurt, 60590 Frankfurt, Germany,
| |
Collapse
|
19
|
Shapiro H, Singer P, Ariel A. Beyond the classic eicosanoids: Peripherally-acting oxygenated metabolites of polyunsaturated fatty acids mediate pain associated with tissue injury and inflammation. Prostaglandins Leukot Essent Fatty Acids 2016; 111:45-61. [PMID: 27067460 DOI: 10.1016/j.plefa.2016.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
Pain is a complex sensation that may be protective or cause undue suffering and loss of function, depending on the circumstances. Peripheral nociceptor neurons (PNs) innervate most tissues, and express ion channels, nocisensors, which depolarize the cell in response to intense stimuli and numerous substances. Inflamed tissues manifest inflammatory hyperalgesia in which the threshold for pain and the response to painful stimuli are decreased and increased, respectively. Constituents of the inflammatory milieu sensitize PNs, thereby contributing to hyperalgesia. Polyunsaturated fatty acids undergo enzymatic and free radical-mediated oxygenation into an array of bioactive metabolites, oxygenated polyunsaturated fatty acids (oxy-PUFAs), including the classic eicosanoids. Oxy-PUFA production is enhanced during inflammation. Pioneering studies by Vane and colleagues from the early 1970s first implicated classic eicosanoids in the pain associated with inflammation. Here, we review the production and action of oxy-PUFAs that are not classic eicosanoids, but nevertheless are produced in injured/ inflamed tissues and activate or sensitize PNs. In general, oxy-PUFAs that sensitize PNs may do so directly, by activation of nocisensors, ion channels or GPCRs expressed on the surface of PNs, or indirectly, by increasing the production of inflammatory mediators that activate or sensitize PNs. We focus on oxy-PUFAs that act directly on PNs. Specifically, we discuss the role of arachidonic acid-derived 12S-HpETE, HNE, ONE, PGA2, iso-PGA2 and 15d-PGJ2, 5,6-and 8,9-EET, PGE2-G and 8R,15S-diHETE, as well as the linoleic acid-derived 9-and 13-HODE in inducing acute nocifensive behavior and/or inflammatory hyperalgesia in rodents. The nocisensors TRPV1, TRPV4 and TRPA1, and putative Gαs-type GPCRs are the PN targets of these oxy-PUFAs.
Collapse
Affiliation(s)
- Haim Shapiro
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Abba Khoushy Ave, Mount Carmel, Haifa 3498838, Israel.
| | - Pierre Singer
- Department of General Intensive Care, Institute for Nutrition Research, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva 49100, Israel
| | - Amiram Ariel
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Abba Khoushy Ave, Mount Carmel, Haifa 3498838, Israel
| |
Collapse
|
20
|
Kurganova YM, Danilov AB. The Role of Melatonin in the Treatment of Chronic Back Pain. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s11055-016-0303-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Analgesic and Antipyretic Activities of Methanol Extract and Its Fraction from the Root of Schoenoplectus grossus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:3820704. [PMID: 26977173 PMCID: PMC4761666 DOI: 10.1155/2016/3820704] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 01/31/2023]
Abstract
The study aims to evaluate analgesic and antipyretic activities of the methanol extract and its different fractions from root of Schoenoplectus grossus using acetic acid induced writhing and radiant heat tail flick method of pain models in mice and yeast induced pyrexia in rats at the doses of 400 and 200 mg/kg. In acetic acid writhing test, the methanol extract, petroleum ether, and carbon tetrachloride fractions produced significant (P < 0.001 and P < 0.05) inhibition of writhing responses in dose dependent manner. The methanol extract at 400 and 200 mg/kg being more protective with 54% and 45.45% of inhibition compared to diclofenac sodium of 56% followed by petroleum ether fractions of 49.69% and 39.39% at the same doses. The extracts did not produce any significant antinociceptive activity in tail flick test except standard morphine. When studied on yeast induced pyrexia, methanol and petroleum ether fractions significantly lowered the rectal temperature time dependently in a manner similar to standard drug paracetamol and distinctly more significant (P < 0.001) after second hour. These findings suggest that the root extracts of S. grossus possess significant peripherally acting analgesic potential and antipyretic property. The phytochemical screening showed the presence of flavonoids, alkaloids, and tannins.
Collapse
|
22
|
Ferrari LF, Levine JD, Green PG. Mechanisms mediating nitroglycerin-induced delayed-onset hyperalgesia in the rat. Neuroscience 2016; 317:121-9. [PMID: 26779834 DOI: 10.1016/j.neuroscience.2016.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 12/22/2022]
Abstract
Nitroglycerin (glycerol trinitrate, GTN) induces headache in migraineurs, an effect that has been used both diagnostically and in the study of the pathophysiology of this neurovascular pain syndrome. An important feature of this headache is a delay from the administration of GTN to headache onset that, because of GTN's very rapid metabolism, cannot be due to its pharmacokinetic profile. It has recently been suggested that activation of perivascular mast cells, which has been implicated in the pathophysiology of migraine, may contribute to this delay. We reported that hyperalgesia induced by intradermal GTN has a delay to onset of ∼ 30 min in male and ∼ 45 min in female rats. This hyperalgesia was greater in females, was prevented by pretreatment with the anti-migraine drug, sumatriptan, as well as by chronic pretreatment with the mast cell degranulator, compound 48/80. The acute administration of GTN and compound 48/80 both induced hyperalgesia that was prevented by pretreatment with octoxynol-9, which attenuates endothelial function, suggesting that GTN and mast cell-mediated hyperalgesia are endothelial cell-dependent. Furthermore, A-317491, a P2X3 antagonist, which inhibits endothelial cell-dependent hyperalgesia, also prevents GTN and mast cell-mediated hyperalgesia. We conclude that delayed-onset mechanical hyperalgesia induced by GTN is mediated by activation of mast cells, which in turn release mediators that stimulate endothelial cells to release ATP, to act on P2X3, a ligand-gated ion channel, in perivascular nociceptors. A role of the mast and endothelial cell in GTN-induced hyperalgesia suggests potential novel risk factors and targets for the treatment of migraine.
Collapse
Affiliation(s)
- L F Ferrari
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA 94143-0440, United States; Division of Neuroscience, University of California at San Francisco, San Francisco, CA 94143-0440, United States
| | - J D Levine
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA 94143-0440, United States; Department of Dental Science and Medicine, University of California at San Francisco, San Francisco, CA 94143-0440, United States; Division of Neuroscience, University of California at San Francisco, San Francisco, CA 94143-0440, United States.
| | - P G Green
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA 94143-0440, United States; Department of Preventative & Restorative, University of California at San Francisco, San Francisco, CA 94143-0440, United States; Division of Neuroscience, University of California at San Francisco, San Francisco, CA 94143-0440, United States
| |
Collapse
|
23
|
Kurganova YM, Danilov AB. [A role of melatonin in the treatment of low back pain]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:30-35. [PMID: 26288285 DOI: 10.17116/jnevro20151154130-35] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To study an analgesic role of melatonin in the treatment of low back pain. MATERIAL AND METHODS A study included 178 patients, aged from 40 to 65 years, with low back pain during at least 12 weeks and the VAS score > 3. Patients were stratified into 6 groups (3 pairs of comparison). In the first pair, patients of the main group (n = 31) received APTPA (a combination of 500 mg of glucosamine hydrochloride and 500 mg of chondroitin sulfate) in dosage 1 tablet twice a day during 1 month and then 1 tablet during 2 months plus melaxen (3 mg of melatonin 30-40 min before sleep), patients of the control group (n = 29) received only APTPA. In the second pair, patients of the comparison group (n = 30) received APTPA in dosage 1 tablet twice a day and diclofenac in dosage 25 mg 2-3 times a day, patients of the main group (n = 30) received additionally melaxen (3 mg of melatonin 30-40 min before sleep). In the third pair, patients of the main group (n = 29) received APTPA in dosage 1 tablet twice a day, diclofenac in dosage 25 mg 2-3 times a day and melaxen (3 mg of melatonin 30-40 min before sleep), patients of the comparison group (n = 29) did not receive melaxen. Treatment results were assessed after 3 months for the first pair and after 1 month for the second and third pairs. RESULTS A significant reduction in pain intensity at movement and resting state was noted in the main groups compared to controls. CONCLUSION Possible mechanisms of analgesic properties of melatonin and world experience in chronic low back pain treatment are discussed.
Collapse
Affiliation(s)
| | - A B Danilov
- Sechenov First Moscow State Medical University, Moscow
| |
Collapse
|
24
|
Fernandes HB, Machado DL, Dias JM, Brito TV, Batista JA, Silva RO, Pereira AC, Ferreira GP, Ramos MV, Medeiros JVR, Aragão KS, Ribeiro RA, Barbosa AL, Oliveira JS. Laticifer proteins from Plumeria pudica inhibit the inflammatory and nociceptive responses by decreasing the action of inflammatory mediators and pro-inflammatory cytokines. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2015. [DOI: 10.1016/j.bjp.2015.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Pace-Asciak CR. Pathophysiology of the hepoxilins. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:383-96. [DOI: 10.1016/j.bbalip.2014.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/06/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
|
26
|
Pinheiro MMG, Miltojević AB, Radulović NS, Abdul-Wahab IR, Boylan F, Fernandes PD. Anti-inflammatory activity of Choisya ternata Kunth essential oil, ternanthranin, and its two synthetic analogs (methyl and propyl N-methylanthranilates). PLoS One 2015; 10:e0121063. [PMID: 25807367 PMCID: PMC4373924 DOI: 10.1371/journal.pone.0121063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/27/2015] [Indexed: 11/25/2022] Open
Abstract
Choisya ternata Kunth (Rutaceae) is native to North America where it is popularly known as "Mexican orange". In this study, the anti-inflammatory effects of the essential oil (EO) obtained from the leaves of C. ternata, one of its minor components (ternanthranin-ISOAN) and its two synthetic analogues (methyl and propyl N-methylanthranilate--MAN and PAN) were evaluated. Mice pretreated with the EO (EO) obtained from C. ternata leaves (3-100 mg/kg, p.o.), ISOAN, MAN or PAN (1-30 mg/kg, p.o.) and the reference drugs, morphine (1 mg/kg, p.o.) and acetylsalicylic acid (ASA, 100 mg/kg, p.o.), were evaluated in inflammation models such as formalin and subcutaneous air pouch models, with measurement of cell migration, exudate volume, protein extravasation, nitric oxide and pro-inflammatory cytokines. The EO from C. ternata significantly inhibited the time that the animals spent licking the formalin-injected paw in the second phase of the model at their higher doses (30 and 100 mg/kg, respectively). An inhibition of the inflammatory reaction induced after subcutaneous carrageenan injection into air pouch was also observed. In this model, the EO significantly reduced cell migration, exudate volume, protein extravased, and the increase in levels of inflammatory mediators (nitric oxide, TNF-α and IL-1β). ISOAN, MAN and PAN behaved in the same fashion at much smaller doses. Also, these molecules were able to show significant effects in the reduction of paw edema (at all tested doses) when the phlogistic agent was carrageenan, bradykinin, 5-HT, PGE2, C48/80 or 12-O-tetradecanoylphorbol-acetate (TPA). None of the tested doses had any effect in reducing histamine-induced edema. Our results indicate that the EO from C. ternata and anthranilate derivatives demonstrates an anti-inflammatory effect.
Collapse
Affiliation(s)
- Mariana Martins Gomes Pinheiro
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brasil
| | - Ana B. Miltojević
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Niko S. Radulović
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Ikarastika Rahayu Abdul-Wahab
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Patrícia Dias Fernandes
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brasil
| |
Collapse
|
27
|
Costa VV, Amaral FA, Coelho FM, Queiroz-Junior CM, Malagoli BG, Gomes JHS, Lopes F, Silveira KD, Sachs D, Fagundes CT, Tavares LD, Pinho V, Silva TA, Teixeira MM, Braga FC, Souza DG. Lithothamnion muelleri treatment ameliorates inflammatory and hypernociceptive responses in antigen-induced arthritis in mice. PLoS One 2015; 10:e0118356. [PMID: 25793994 PMCID: PMC4368517 DOI: 10.1371/journal.pone.0118356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/14/2015] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic disease characterized by persistent inflammation and pain. Alternative therapies to reduce these symptoms are needed. Marine algae are valuable sources of diverse bioactive compounds. Lithothamnion muelleri (Hapalidiaceae) is a marine algae with anti-inflammatory, antitumor, and immunomodulatory properties. Here, we investigated the potential anti-inflammatory and analgesic activities of L. muelleri in a murine model of antigen-induced arthritis (AIA) in mice. Our results demonstrate that treatment with L. muelleri prevented inflammation and hypernociception in arthritic mice. Mechanistically, the crude extract and the polysaccharide-rich fractions of L. muelleri may act impairing the production of the chemokines CXCL1 and CXCL2, and consequently inhibit neutrophil influx to the knee joint by dampening the adhesion step of leukocyte recruitment in the knee microvessels. Altogether our results suggest that treatment with L.muelleri has a potential therapeutic application in arthritis treatment.
Collapse
Affiliation(s)
- Vivian V. Costa
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, ICB, UFMG, Belo Horizonte, MG, Brazil
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, UFMG, Belo Horizonte, MG, Brazil
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Flavio A. Amaral
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Fernanda M. Coelho
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Celso M. Queiroz-Junior
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, ICB, UFMG, Belo Horizonte, MG, Brazil
- Departamento de Clínica, Patologia e Cirurgia Odontológicas, Faculdade de Odontologia, UFMG, Belo Horizonte, MG, Brazil
| | - Bruna G. Malagoli
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, UFMG, Belo Horizonte, MG, Brazil
| | - Jose Hugo S. Gomes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, UFMG, Belo Horizonte, MG, Brazil
| | - Fernando Lopes
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, UFMG, Belo Horizonte, MG, Brazil
- Departamento de Morfologia, ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Kátia D. Silveira
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Daniela Sachs
- Departamento de Física e Química, Instituto de Ciências Exatas da Universidade Federal de Itajubá (UNIFEI), Itajubá, MG, Brazil
| | - Caio T. Fagundes
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, ICB, UFMG, Belo Horizonte, MG, Brazil
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Lívia D. Tavares
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, ICB, UFMG, Belo Horizonte, MG, Brazil
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Vanessa Pinho
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, UFMG, Belo Horizonte, MG, Brazil
- Departamento de Morfologia, ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Tarcilia A. Silva
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, UFMG, Belo Horizonte, MG, Brazil
- Departamento de Clínica, Patologia e Cirurgia Odontológicas, Faculdade de Odontologia, UFMG, Belo Horizonte, MG, Brazil
| | - Mauro M. Teixeira
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Fernão C. Braga
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, UFMG, Belo Horizonte, MG, Brazil
| | - Danielle G. Souza
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, ICB, UFMG, Belo Horizonte, MG, Brazil
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, UFMG, Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
28
|
Rzodkiewicz P, Gasinska E, Maslinski S, Bujalska-Zadrozny M. Antinociceptive properties of esculetin in non-inflammatory and inflammatory models of pain in rats. Clin Exp Pharmacol Physiol 2015; 42:213-9. [DOI: 10.1111/1440-1681.12346] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 11/12/2014] [Accepted: 11/18/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Przemyslaw Rzodkiewicz
- Department of Biochemistry and Molecular Biology; Institute of Rheumatology; Warsaw Poland
- Department of Pharmacodynamics; Centre for Preclinical Research and Technology; Medical University of Warsaw; Warsaw Poland
| | - Emilia Gasinska
- Department of Pharmacodynamics; Centre for Preclinical Research and Technology; Medical University of Warsaw; Warsaw Poland
| | - Slawomir Maslinski
- Department of General and Experimental Pathology; Medical University of Warsaw; Warsaw Poland
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacodynamics; Centre for Preclinical Research and Technology; Medical University of Warsaw; Warsaw Poland
| |
Collapse
|
29
|
Hasan MM, Uddin N, Hasan MR, Islam AFMM, Hossain MM, Rahman AB, Hossain MS, Chowdhury IA, Rana MS. Analgesic and anti-inflammatory activities of leaf extract of Mallotus repandus (Willd.) Muell. Arg. BIOMED RESEARCH INTERNATIONAL 2014; 2014:539807. [PMID: 25629031 PMCID: PMC4297635 DOI: 10.1155/2014/539807] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/09/2014] [Accepted: 11/11/2014] [Indexed: 11/18/2022]
Abstract
In folk medicine Mallotus repandus (Willd.) Muell. Arg. is used to treat muscle pain, itching, fever, rheumatic arthritis, snake bite, hepatitis, and liver cirrhosis. This study aimed to evaluate the antinociceptive as well as the anti-inflammatory activities of the methanol extract of leaf. The leaves were extracted with methanol following hot extraction and tested for the presence of phytochemical constituents. Analgesic and anti-inflammatory activities were evaluated using acetic acid induced writhing test, xylene induced ear edema, cotton pellet induced granuloma, and tail immersion methods at doses of 500, 1000, and 2000 mg/kg body weight. The presence of flavonoids, saponins, and tannins was identified in the extract. The extract exhibited considerable antinociceptive and anti-inflammatory activities against four classical models of pain. In acetic acid induced writhing, xylene induced ear edema, and cotton pellet granuloma models, the extract revealed dose dependent activity. Additionally, it increased latency time in tail immersion model. It can be concluded that M. repandus possesses significant antinociceptive potential. These findings suggest that this plant can be used as a potential source of new antinociceptive and anti-inflammatory candidates. The activity of methanol extract is most likely mediated through central and peripheral inhibitory mechanisms. This study justified the traditional use of leaf part of this plant.
Collapse
Affiliation(s)
- Md. Mahadi Hasan
- Laboratory of Natural Products Research, Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Nizam Uddin
- Laboratory of Natural Products Research, Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md. Rakib Hasan
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | | | - Md. Monir Hossain
- Laboratory of Natural Products Research, Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Akib Bin Rahman
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md. Sazzad Hossain
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | | | - Md. Sohel Rana
- Laboratory of Natural Products Research, Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
30
|
Lewis ND, Muthukumarana A, Fogal SE, Corradini L, Stefanopoulos DE, Adusumalli P, Pelletier J, Panzenbeck M, Berg K, Canfield M, Cook BN, Razavi H, Kuzmich D, Anderson S, Allard D, Harrison P, Grimaldi C, Souza D, Harcken C, Fryer RM, Modis LK, Brown ML. CCR1 plays a critical role in modulating pain through hematopoietic and non-hematopoietic cells. PLoS One 2014; 9:e105883. [PMID: 25170619 PMCID: PMC4149507 DOI: 10.1371/journal.pone.0105883] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 07/29/2014] [Indexed: 12/25/2022] Open
Abstract
Inflammation is associated with immune cells infiltrating into the inflammatory site and pain. CC chemokine receptor 1 (CCR1) mediates trafficking of leukocytes to sites of inflammation. However, the contribution of CCR1 to pain is incompletely understood. Here we report an unexpected discovery that CCR1-mediated trafficking of neutrophils and CCR1 activity on non-hematopoietic cells both modulate pain. Using a genetic approach (CCR1−/− animals) and pharmacological inhibition of CCR1 with selective inhibitors, we show significant reductions in pain responses using the acetic acid-induced writhing and complete Freund's adjuvant-induced mechanical hyperalgesia models. Reductions in writhing correlated with reduced trafficking of myeloid cells into the peritoneal cavity. We show that CCR1 is highly expressed on circulating neutrophils and their depletion decreases acetic acid-induced writhing. However, administration of neutrophils into the peritoneal cavity did not enhance acetic acid-induced writhing in wild-type (WT) or CCR1−/− mice. Additionally, selective knockout of CCR1 in either the hematopoietic or non-hematopoietic compartments also reduced writhing. Together these data suggest that CCR1 functions to significantly modulate pain by controlling neutrophil trafficking to the inflammatory site and having an unexpected role on non-hematopoietic cells. As inflammatory diseases are often accompanied with infiltrating immune cells at the inflammatory site and pain, CCR1 antagonism may provide a dual benefit by restricting leukocyte trafficking and reducing pain.
Collapse
Affiliation(s)
- Nuruddeen D. Lewis
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Akalushi Muthukumarana
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Steven E. Fogal
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Laura Corradini
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Dimitria E. Stefanopoulos
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Prathima Adusumalli
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Josephine Pelletier
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Mark Panzenbeck
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Karen Berg
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Melissa Canfield
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Brian N. Cook
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Hossein Razavi
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Daniel Kuzmich
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Shawn Anderson
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Devan Allard
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Paul Harrison
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Christine Grimaldi
- Department of Integrative Toxicology, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Donald Souza
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Christian Harcken
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Ryan M. Fryer
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Louise K. Modis
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
- * E-mail:
| | - Maryanne L. Brown
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| |
Collapse
|
31
|
|
32
|
Medicinal potential of Passiflora foetida L. plant extracts: biological and pharmacological activities. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2014; 12:121-6. [DOI: 10.1016/s2095-4964(14)60017-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Sisignano M, Bennett DLH, Geisslinger G, Scholich K. TRP-channels as key integrators of lipid pathways in nociceptive neurons. Prog Lipid Res 2013; 53:93-107. [PMID: 24287369 DOI: 10.1016/j.plipres.2013.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/12/2013] [Accepted: 11/14/2013] [Indexed: 12/22/2022]
Abstract
TRP-channels are the most prominent family of ligand-gated ion channels for pain perception. In sensory neurons, TRPV1-V4, TRPA1 and TRPM8 are expressed and are responsible for the conversion of external stimuli to painful sensations. Under pathophysiological conditions, excessive activity of TRP-channels leads to mechanical allodynia and thermal hyperalgesia. Among the endogenous TRP-channel sensitizers, activators and inhibitors, more than 50 arachidonic acid- and linoleic acid-metabolites from the COX-, LOX- and CYP-pathways, as well as lysophospholipids and isoprenoids can be found. As a consequence, these lipids represent the vast majority of endogenous TRP-channel modulators in sensory neurons. Although the precise mechanisms of TRP-channel modulation by most lipids are still unknown, it became clear that lipids can either bind directly to the target TRP-channel or modulate TRP-channels indirectly by activating G-protein coupled receptors. Thus, TRP-channels seem to be key sensors for lipids, integrating and interpreting incoming signals from the different metabolic lipid pathways. Here, we discuss the specific properties of the currently known endogenous lipid-derived TRP-channel modulators concerning their ability to activate or inhibit TRP-channels, the molecular mechanisms of lipid/TRP-channel interactions and specific TRP-regulatory characteristics of the individual lipid families.
Collapse
Affiliation(s)
- Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital of the Goethe-University, D-60590 Frankfurt am Main, Germany
| | - David L H Bennett
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital of the Goethe-University, D-60590 Frankfurt am Main, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital of the Goethe-University, D-60590 Frankfurt am Main, Germany.
| |
Collapse
|
34
|
Martinez RM, Zarpelon AC, Cardoso RDR, Vicentini FTMC, Georgetti SR, Baracat MM, Andrei CC, Moreira IC, Verri WA, Casagrande R. Tephrosia sinapou ethyl acetate extract inhibits inflammatory pain in mice: opioid receptor dependent inhibition of TNFα and IL-1β production. PHARMACEUTICAL BIOLOGY 2013; 51:1262-1271. [PMID: 23855752 DOI: 10.3109/13880209.2013.786099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
UNLABELLED CONTEXT. Tephrosia toxicaria is currently known as Tephrosia sinapou (Buc'hoz) A. Chev. (Fabaceae) and is a source of compounds such as flavonoids that inhibit inflammatory pain. OBJECTIVE To investigate the analgesic effect and mechanisms of the ethyl acetate extract of T. sinapou in inflammatory pain in mice. MATERIALS AND METHODS Behavioral responses were evaluated using mechanical (1-24 h) and thermal hyperalgesia (0.5-5 h), writhing response (20 min) and rota-rod (1-5 h) tests. Neutrophil recruitment (myeloperoxidase activity), cytokines (tumor necrosis factor [TNF]α and interleukin [IL]-1β), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) serum levels were determined by colorimetric assays. Pharmacological treatments were opioid receptor antagonist (naloxone, 0.1-1 mg/kg) and control opioid (morphine, 5 mg/kg). Inflammatory stimuli were carrageenin (100 µg/paw), complete Freund's adjuvant (CFA, 10 µl/paw), prostaglandin E2 (PGE2, 100 ng/paw) and acetic acid (0.8%). RESULTS The intraperitoneal pre-treatment with extract inhibited in a dose-dependent (30-300 mg/kg) dependent manner the mechanical hyperalgesia induced by carrageenin (up to 93% inhibition). The post-treatment (100 mg/kg) inhibited CFA-induced hyperalgesia (up to 63% inhibition). Naloxone (1 mg/kg) prevented the inhibitory effect of the extract over carrageenin-induced mechanical (100%) and thermal (100%) hyperalgesia, neutrophil recruitment (52%) and TNFα (63%) and IL-1β (98%) production, thermal threshold in naïve mice (99%), PGE2-induced mechanical hyperalgesia (88%) and acetic acid-induced writhing response (49%). There was no significant alteration in the rota-rod test, and AST and ALT serum levels by extract treatment. Discussion and conclusion. Tephrosia sinapou ethyl acetate extract reduces inflammatory pain by activating an opioid receptor-dependent mechanism.
Collapse
Affiliation(s)
- Renata M Martinez
- Department of Pharmaceutical Sciences, University Hospital (Health Science Centre), Londrina State University, Parana, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Finley A, Chen Z, Esposito E, Cuzzocrea S, Sabbadini R, Salvemini D. Sphingosine 1-phosphate mediates hyperalgesia via a neutrophil-dependent mechanism. PLoS One 2013; 8:e55255. [PMID: 23372844 PMCID: PMC3555820 DOI: 10.1371/journal.pone.0055255] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/21/2012] [Indexed: 01/12/2023] Open
Abstract
Novel classes of pain-relieving molecules are needed to fill the void between non-steroidal anti-inflammatory agents and narcotics. We have recently shown that intraplantar administration of sphingosine 1-phosphate (S1P) in rats causes peripheral sensitization and hyperalgesia through the S1P(1) receptor subtype (S1PR(1)): the mechanism(s) involved are largely unknown and were thus explored in the present study. Intraplantar injection of carrageenan in rats led to a time-dependent development of thermal hyperalgesia that was associated with pronounced edema and infiltration of neutrophils in paw tissues. Inhibition of 1) S1P formation with SK-I, a sphingosine kinase inhibitor, 2) S1P bioavailability with the S1P blocking antibody Sphingomab, LT1002 (but not its negative control, LT1017) or 3) S1P actions through S1PR(1) with the selective S1PR(1) antagonist, W146 (but not its inactive enantiomer, W140) blocked thermal hyperalgesia and infiltration of neutrophils. Taken together, these findings identify S1P as an important contributor to inflammatory pain acting through S1PR(1) to elicit hyperalgesia in a neutrophil-dependant manner. In addition and in further support, we demonstrate that the development of thermal hyperalgesia following intraplantar injection of S1P or SEW2871 (an S1PR(1) agonist) was also associated with neutrophilic infiltration in paw tissues as these events were attenuated by fucoidan, an inhibitor of neutrophilic infiltration. Importantly, FTY720, an FDA-approved S1P receptor modulator known to block S1P-S1PR(1) signaling, attenuated carrageenan-induced thermal hyperalgesia and associated neutrophil infiltration. Targeting the S1P/S1PR(1) axis opens a therapeutic strategy for the development of novel non-narcotic anti-hyperalgesic agents.
Collapse
Affiliation(s)
- Amanda Finley
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Zhoumou Chen
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Emanuela Esposito
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy
| | - Roger Sabbadini
- Lpath, Inc., and Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Daniela Salvemini
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
36
|
Petho G, Reeh PW. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors. Physiol Rev 2013; 92:1699-775. [PMID: 23073630 DOI: 10.1152/physrev.00048.2010] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Peripheral mediators can contribute to the development and maintenance of inflammatory and neuropathic pain and its concomitants (hyperalgesia and allodynia) via two mechanisms. Activation or excitation by these substances of nociceptive nerve endings or fibers implicates generation of action potentials which then travel to the central nervous system and may induce pain sensation. Sensitization of nociceptors refers to their increased responsiveness to either thermal, mechanical, or chemical stimuli that may be translated to corresponding hyperalgesias. This review aims to give an account of the excitatory and sensitizing actions of inflammatory mediators including bradykinin, prostaglandins, thromboxanes, leukotrienes, platelet-activating factor, and nitric oxide on nociceptive primary afferent neurons. Manifestations, receptor molecules, and intracellular signaling mechanisms of the effects of these mediators are discussed in detail. With regard to signaling, most data reported have been obtained from transfected nonneuronal cells and somata of cultured sensory neurons as these structures are more accessible to direct study of sensory and signal transduction. The peripheral processes of sensory neurons, where painful stimuli actually affect the nociceptors in vivo, show marked differences with respect to biophysics, ultrastructure, and equipment with receptors and ion channels compared with cellular models. Therefore, an effort was made to highlight signaling mechanisms for which supporting data from molecular, cellular, and behavioral models are consistent with findings that reflect properties of peripheral nociceptive nerve endings. Identified molecular elements of these signaling pathways may serve as validated targets for development of novel types of analgesic drugs.
Collapse
Affiliation(s)
- Gábor Petho
- Pharmacodynamics Unit, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | | |
Collapse
|
37
|
The role of PAF/PAFR signaling in zymosan-induced articular inflammatory hyperalgesia. Naunyn Schmiedebergs Arch Pharmacol 2012. [DOI: 10.1007/s00210-012-0813-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Amaral FA, Costa VV, Tavares LD, Sachs D, Coelho FM, Fagundes CT, Soriani FM, Silveira TN, Cunha LD, Zamboni DS, Quesniaux V, Peres RS, Cunha TM, Cunha FQ, Ryffel B, Souza DG, Teixeira MM. NLRP3 inflammasome-mediated neutrophil recruitment and hypernociception depend on leukotriene B(4) in a murine model of gout. ACTA ACUST UNITED AC 2012; 64:474-84. [PMID: 21952942 DOI: 10.1002/art.33355] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Deposition of monosodium urate monohydrate (MSU) crystals in the joints promotes an intense inflammatory response and joint dysfunction. This study evaluated the role of the NLRP3 inflammasome and 5-lipoxygenase (5-LOX)-derived leukotriene B(4) (LTB(4) ) in driving tissue inflammation and hypernociception in a murine model of gout. METHODS Gout was induced by injecting MSU crystals into the joints of mice. Wild-type mice and mice deficient in NLRP3, ASC, caspase 1, interleukin-1β (IL-1β), IL-1 receptor type I (IL-1RI), IL-18R, myeloid differentiation factor 88 (MyD88), or 5-LOX were used. Evaluations were performed to assess neutrophil influx, LTB(4) activity, cytokine (IL-1β, CXCL1) production (by enzyme-linked immunosorbent assay), synovial microvasculature cell adhesion (by intravital microscopy), and hypernociception. Cleaved caspase 1 and production of reactive oxygen species (ROS) were analyzed in macrophages by Western blotting and fluorometric assay, respectively. RESULTS Injection of MSU crystals into the knee joints of mice induced neutrophil influx and neutrophil-dependent hypernociception. MSU crystal-induced neutrophil influx was CXCR2-dependent and relied on the induction of CXCL1 in an NLRP3/ASC/caspase 1/IL-1β/MyD88-dependent manner. LTB(4) was produced rapidly after injection of MSU crystals, and this was necessary for caspase 1-dependent IL-1β production and consequent release of CXCR2-acting chemokines in vivo. In vitro, macrophages produced LTB(4) after MSU crystal injection, and LTB(4) was relevant in the MSU crystal-induced maturation of IL-1β. Mechanistically, LTB(4) drove MSU crystal-induced production of ROS and ROS-dependent activation of the NLRP3 inflammasome. CONCLUSION These results reveal the role of the NLRP3 inflammasome in mediating MSU crystal-induced inflammation and dysfunction of the joints, and highlight a previously unrecognized role of LTB(4) in driving NLRP3 inflammasome activation in response to MSU crystals, both in vitro and in vivo.
Collapse
|
39
|
Moura RDM, Aragão KS, de Melo AA, Carneiro RF, Osório CBH, Luz PB, de Queiroz AFS, Dos Santos EA, de Alencar NMN, Cavada BS. Holothuria grisea agglutinin (HGA): the first invertebrate lectin with anti-inflammatory effects. Fundam Clin Pharmacol 2012; 27:656-68. [PMID: 22943744 DOI: 10.1111/j.1472-8206.2012.01073.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/30/2012] [Accepted: 06/22/2012] [Indexed: 12/16/2022]
Abstract
Holothuria grisea agglutinin (HGA) is a dimeric lectin of molecular mass 228 kDa by gel filtration with monomers of 105 kDa by SDS-PAGE. The lectin is highly thermostable as it retains full activity for 1 h at 70 °C. Unlike other lectins purified from marine invertebrates, the hemagglutination activity of HGA does not require any divalent metal ions. The affinity analysis of HGA showed that only mucin was able to inhibit the hemagglutinating activity. HGA administered intravenously was tested in classical models of nociception and inflammation. HGA was able to inhibit neutrophil migration into the peritoneal cavity induced by carrageenan. This inhibitory effect was 68% at a dose of 1 mg/kg. In acetic acid-induced writhing tests, a significant antinociceptive effect was observed by treatment with HGA (0.1; 1 or 10 mg/kg) reducing constrictions by 27, 90 and 84%, respectively. In formalin tests, HGA at a dose of 10 mg/kg showed antinociceptive effect only in the inflammatory phase (phase 2). Nevertheless, in hot-plate tests, HGA did not show any nociceptive effect. In rota-rod and open-field tests, HGA did not alter the animals' behavior. The treatment with HGA 10 mg/kg presented diminished myeloperoxidase activity activity (81.6% inhibition) and raised the circulating levels of NO by 50.4% when compared with the carrageenan group. HGA has demonstrated the ability to modulate the inflammatory response in models of inflammation in vivo. HGA is the first marine invertebrate lectin that showed an anti-inflammatory effect. This finding opens a new perspective on the potential of lectins from the marine environment.
Collapse
Affiliation(s)
- Raniere da M Moura
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Campus do Pici, s/n, Bloco 907, Fortaleza, CE, 60451-970, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
COMMUNICATIONS. Br J Pharmacol 2012. [DOI: 10.1111/j.1476-5381.1985.tb14736.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
41
|
Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors. Proc Natl Acad Sci U S A 2012; 109:6721-6. [PMID: 22493235 DOI: 10.1073/pnas.1110460109] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Peripheral inflammation initiates changes in spinal nociceptive processing leading to hyperalgesia. Previously, we demonstrated that among 102 lipid species detected by LC-MS/MS analysis in rat spinal cord, the most notable increases that occur after intraplantar carrageenan are metabolites of 12-lipoxygenases (12-LOX), particularly hepoxilins (HXA(3) and HXB(3)). Thus, we examined involvement of spinal LOX enzymes in inflammatory hyperalgesia. In the current work, we found that intrathecal (IT) delivery of the LOX inhibitor nordihydroguaiaretic acid prevented the carrageenan-evoked increase in spinal HXB(3) at doses that attenuated the associated hyperalgesia. Furthermore, IT delivery of inhibitors targeting 12-LOX (CDC, Baicalein), but not 5-LOX (Zileuton) dose-dependently attenuated tactile allodynia. Similarly, IT delivery of 12-LOX metabolites of arachidonic acid 12(S)-HpETE, 12(S)-HETE, HXA(3), or HXB(3) evoked profound, persistent tactile allodynia, but 12(S)-HpETE and HXA(3) produced relatively modest, transient heat hyperalgesia. The pronociceptive effect of HXA(3) correlated with enhanced release of Substance P from primary sensory afferents. Importantly, HXA(3) triggered sustained mobilization of calcium in cells stably overexpressing TRPV1 or TRPA1 receptors and in acutely dissociated rodent sensory neurons. Constitutive deletion or antagonists of TRPV1 (AMG9810) or TRPA1 (HC030031) attenuated this action. Furthermore, pretreatment with antihyperalgesic doses of AMG9810 or HC030031 reduced spinal HXA(3)-evoked allodynia. These data indicate that spinal HXA(3) is increased by peripheral inflammation and promotes initiation of facilitated nociceptive processing through direct activation of TRPV1 and TRPA1 at central terminals.
Collapse
|
42
|
Leite JFM, Assreuy AMS, Mota MRL, Bringel PHDSF, e Lacerda RR, Gomes VDM, Cajazeiras JB, do Nascimento KS, Pessôa HDLF, Gadelha CADA, Delatorre P, Cavada BS, Santi-Gadelha T. Antinociceptive and anti-inflammatory effects of a lectin-like substance from Clitoria fairchildiana R. Howard seeds. Molecules 2012; 17:3277-90. [PMID: 22418929 PMCID: PMC6268884 DOI: 10.3390/molecules17033277] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 11/16/2022] Open
Abstract
Lectins are proteins that have the ability to bind specifically and reversibly to carbohydrates and glycoconjugates, without altering the structure of the glycosyl ligand. They are found in organisms such as viruses, plants and humans, and they have been shown to possess important biological activities. The objective of this study was to purify and characterize lectins in the seeds of Clitoria fairchildiana, as well as to verify their biological activities. The results indicated the presence of a lectin (CFAL) in the glutelin acid protein fraction, which agglutinated native rabbit erythrocytes. CFAL was purified by column chromatography ion-exchange, DEAE-Sephacel, which was obtained from a peak of protein retained in the matrix by applying 0.5 M NaCl using the step-wise method. Electrophoretic analysis of this lectin in SDS-PAGE indicated a two band pattern protein molecular mass of approximately 100 and 116 kDa. CFAL proved to be unspecific to all carbohydrates/glycoconjugates in common use for the sugar inhibition test. This lectin showed no significant cytotoxicity to human red blood cells. It was observed that CFAL has anti-inflammatory activity in the paw edema induced by carrageenan model, in which a 64% diminution in edema was observed. Antinociceptive effects were observed for CFAL in the abdominal writhing test (induced by acetic acid), in which increasing doses of the lectin caused reduction in the number of contortions by up to 72%. It was concluded that the purified and characterized lectin from the seeds of Clitoria fairchildiana has anti-inflammatory and antinociceptive activity, and is not cytotoxic to human erythrocytes.
Collapse
Affiliation(s)
- Joana Filomena Magalhães Leite
- Laboratory of Biologically Actives Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceará, P.O. Box 6043, CEP 60455-970 Fortaleza, Ceará, Brazil; (J.F.M.L.); (J.B.C.); (K.S.N.)
| | - Ana Maria Sampaio Assreuy
- Institute of Biomedical Sciences, State University of Ceará-Itaperi, CEP 60740-000, Fortaleza, Ceará, Brazil; (A.M.S.A.); (P.H.S.F.B.)
| | - Mário Rogério Lima Mota
- Faculty of Dentistry, Department of Pharmacy, Dentistry and Nursing, Federal University of Ceará, CEP 60430-160, Fortaleza, Ceará, Brazil; (M.R.L.M.)
| | | | - Rodrigo Rodrigues e Lacerda
- Department of Molecular Biology, Federal University of Paraíba, Campus I, CEP 58059-900, João Pessoa, Paraíba, Brazil; (R.R.L.); (V.M.G.); (H.L.F.P.); (C.A.A.G.); (P.D.)
| | - Vinícius de Morais Gomes
- Department of Molecular Biology, Federal University of Paraíba, Campus I, CEP 58059-900, João Pessoa, Paraíba, Brazil; (R.R.L.); (V.M.G.); (H.L.F.P.); (C.A.A.G.); (P.D.)
| | - João Batista Cajazeiras
- Laboratory of Biologically Actives Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceará, P.O. Box 6043, CEP 60455-970 Fortaleza, Ceará, Brazil; (J.F.M.L.); (J.B.C.); (K.S.N.)
| | - Kyria Santiago do Nascimento
- Laboratory of Biologically Actives Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceará, P.O. Box 6043, CEP 60455-970 Fortaleza, Ceará, Brazil; (J.F.M.L.); (J.B.C.); (K.S.N.)
| | - Hilzeth de Luna Freire Pessôa
- Department of Molecular Biology, Federal University of Paraíba, Campus I, CEP 58059-900, João Pessoa, Paraíba, Brazil; (R.R.L.); (V.M.G.); (H.L.F.P.); (C.A.A.G.); (P.D.)
| | - Carlos Alberto de Almeida Gadelha
- Department of Molecular Biology, Federal University of Paraíba, Campus I, CEP 58059-900, João Pessoa, Paraíba, Brazil; (R.R.L.); (V.M.G.); (H.L.F.P.); (C.A.A.G.); (P.D.)
| | - Plinio Delatorre
- Department of Molecular Biology, Federal University of Paraíba, Campus I, CEP 58059-900, João Pessoa, Paraíba, Brazil; (R.R.L.); (V.M.G.); (H.L.F.P.); (C.A.A.G.); (P.D.)
| | - Benildo Sousa Cavada
- Laboratory of Biologically Actives Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceará, P.O. Box 6043, CEP 60455-970 Fortaleza, Ceará, Brazil; (J.F.M.L.); (J.B.C.); (K.S.N.)
| | - Tatiane Santi-Gadelha
- Department of Molecular Biology, Federal University of Paraíba, Campus I, CEP 58059-900, João Pessoa, Paraíba, Brazil; (R.R.L.); (V.M.G.); (H.L.F.P.); (C.A.A.G.); (P.D.)
| |
Collapse
|
43
|
Ming-Tatt L, Khalivulla SI, Akhtar MN, Mohamad AS, Perimal EK, Khalid MH, Akira A, Lajis N, Israf DA, Sulaiman MR. Antinociceptive activity of a synthetic curcuminoid analogue, 2,6-bis-(4-hydroxy-3-methoxybenzylidene)cyclohexanone, on nociception-induced models in mice. Basic Clin Pharmacol Toxicol 2011; 110:275-82. [PMID: 21967232 DOI: 10.1111/j.1742-7843.2011.00804.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study investigated the potential antinociceptive efficacy of a novel synthetic curcuminoid analogue, 2,6-bis-(4-hydroxy-3-methoxybenzylidene)cyclohexanone (BHMC), using chemical- and thermal-induced nociception test models in mice. BHMC (0.03, 0.1, 0.3 and 1.0 mg/kg) administered via intraperitoneal route (i.p.) produced significant dose-related inhibition in the acetic acid-induced abdominal constriction test in mice with an ID(50) of 0.15 (0.13-0.18) mg/kg. It was also demonstrated that BHMC produced significant inhibition in both neurogenic (first phase) and inflammatory phases (second phase) of the formalin-induced paw licking test with an ID(50) of 0.35 (0.27-0.46) mg/kg and 0.07 (0.06-0.08) mg/kg, respectively. Similarly, BHMC also exerted significant increase in the response latency period in the hot-plate test. Moreover, the antinociceptive effect of the BHMC in the formalin-induced paw licking test and the hot-plate test was antagonized by pre-treatment with the non-selective opioid receptor antagonist, naloxone. Together, these results indicate that the compound acts both centrally and peripherally. In addition, administration of BHMC exhibited significant inhibition of the neurogenic nociception induced by intraplantar injections of glutamate and capsaicin with ID(50) of 0.66 (0.41-1.07) mg/kg and 0.42 (0.38-0.51) mg/kg, respectively. Finally, it was also shown that BHMC-induced antinociception was devoid of toxic effects and its antinociceptive effect was associated with neither muscle relaxant nor sedative action. In conclusion, BHMC at all doses investigated did not cause any toxic and sedative effects and produced pronounced central and peripheral antinociceptive activities. The central antinociceptive activity of BHMC was possibly mediated through activation of the opioid system as well as inhibition of the glutamatergic system and TRPV1 receptors, while the peripheral antinociceptive activity was perhaps mediated through inhibition of various inflammatory mediators.
Collapse
Affiliation(s)
- Lee Ming-Tatt
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sachs D, Coelho FM, Costa VV, Lopes F, Pinho V, Amaral FA, Silva TA, Teixeira AL, Souza DG, Teixeira MM. Cooperative role of tumour necrosis factor-α, interleukin-1β and neutrophils in a novel behavioural model that concomitantly demonstrates articular inflammation and hypernociception in mice. Br J Pharmacol 2011; 162:72-83. [PMID: 20942867 DOI: 10.1111/j.1476-5381.2010.00895.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
UNLABELLED BACKGROUND AND PURPOSE; Chronic joint inflammation and pain are the hallmarks of disease in patients with inflammatory arthritis, notably rheumatoid arthritis. The aim of the present study was to investigate the relative contribution of tumour necrosis factor (TNF)-α, interleukin (IL)-1β and neutrophil influx for joint inflammation and nociception in a novel murine model of antigen-induced arthritis (AIA). EXPERIMENTAL APPROACH AIA was induced by administration of antigen into knee joint of previously immunized mice. Neutrophil accumulation was determined by counting neutrophils in the joints and assessing myeloperoxidase activity in tissues surrounding the joints. TNF-α, IL-1β and CXCL-1 were measured by elisa. Mechanical hypernociception was assessed in parallel, using an electronic pressure meter. KEY RESULTS Hypernociception was dependent on antigen dose and the time after its administration; it was prevented by treatment with morphine and associated with neutrophil infiltration and local production of TNF-α, IL-1β and CXCL-1. Administration of a chimeric monoclonal antibody to TNF-α (infliximab) or IL-1receptor antagonist prevented neutrophil influx and hypernociception, and this was comparable to the effects of dexamethasone. Treatment with fucoidin (a leucocyte adhesion inhibitor) greatly suppressed neutrophil influx and local production of TNF-α and IL-1β, and hypernociception. CONCLUSIONS AND IMPLICATIONS In conclusion, the present study describes a new model that allows for the concomitant evaluation of articular hypernociception and inflammation. Using this system, we demonstrated that a positive feedback loop involving neutrophil influx and the pro-inflammatory cytokines TNF-α and IL-1β is necessary for articular hypernociception after antigen challenge of immunized mice.
Collapse
Affiliation(s)
- Daniela Sachs
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Noguchi K, Okubo M. Leukotrienes in Nociceptive Pathway and Neuropathic/Inflammatory Pain. Biol Pharm Bull 2011; 34:1163-9. [DOI: 10.1248/bpb.34.1163] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine
| | - Masamichi Okubo
- Department of Anatomy and Neuroscience, Hyogo College of Medicine
| |
Collapse
|
46
|
Obidike IC, Salawu OA, Ndukuba M, Okoli CO, Osunkwo UA. The Anti-Inflammatory and Antinociceptive Properties of the Chloroform Fraction FromPhyllanthus niruriPlant Is Mediated via the Peripheral Nervous System. J Diet Suppl 2010; 7:341-50. [DOI: 10.3109/19390211.2010.522553] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Analgesic and Anti-Inflammatory Properties of Extracts from the Bulbils of Dioscorea bulbifera L. var sativa (Dioscoreaceae) in Mice and Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2010; 2011. [PMID: 20953397 PMCID: PMC2952333 DOI: 10.1155/2011/912935] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 07/01/2010] [Indexed: 11/20/2022]
Abstract
The aqueous and methanol extracts from the dry bulbils of Dioscorea bulbifera L. var sativa (Dioscoreaceae)—evaluated orally at the doses of 300 and 600 mg/kg against pain induced by acetic acid, formalin, pressure and against inflammation induced by carrageenan, histamine, serotonin and formalin in mice and rats, showed a dose dependant inhibition of pain and inflammation with a maximum effect of 56.38%, 73.06% and 42.79% produced by the aqueous extract, respectively on pain induced by acetic acid, formalin and pressure while the methanol extract at the same dose respectively inhibited these models of pain by 62.70%, 84.54% and 47.70%. The oral administration of aqueous and methanol extracts caused significant anti-inflammatory activity on paw oedema induced by histamine, serotonin and formalin. The present results show that the bulbils of Dioscorea bulbifera var sativa possess potent analgesic and anti-inflammatory activities. These activities may results from the inhibition of inflammatory mediators such as histamine, serotonin and prostaglandins. Thus, the analgesic activity of the bulbils of Dioscorea bulbifera may be at least partially linked to its anti-inflammatory activity.
Collapse
|
48
|
Schumacher MA, Eilers H. TRPV1 splice variants: structure and function. Front Biosci (Landmark Ed) 2010; 15:872-82. [PMID: 20515731 DOI: 10.2741/3651] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The capsaicin receptor (TRPV1) is a non-selective cation channel predominantly expressed in specialized sensory neurons that detect painful stimuli. Although its many functional roles continue to be revealed, it has been confirmed to play a critical role in the perception of peripheral inflammatory hyperalgesia and pain. TRPV1 not only is sensitized and/or activated under a wide range of conditions including inflammation and nerve injury but also undergoes changes in expressed levels in response to these same pathologic conditions. Just as our understanding of the structural requirements of TRPV1 activation has grown, there is evidence that TRPV1 forms heteromeric channel complexes. This review is focused on the structural and functional consequence of TRPV1 splice variants: VR.5'sv, TRPV1b/beta and TRPV1var. Through their co-expression and formation of heteromeric complexes with TRPV1, they have been shown to modulate TRPV1 activation. Moreover, TRPV1 splice variant subunits may also contribute unique properties of activation such as the detection of hypertonic conditions.
Collapse
Affiliation(s)
- Mark A Schumacher
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143-0427, USA.
| | | |
Collapse
|
49
|
Hasegawa S, Kohro Y, Shiratori M, Ishii S, Shimizu T, Tsuda M, Inoue K. Role of PAF receptor in proinflammatory cytokine expression in the dorsal root ganglion and tactile allodynia in a rodent model of neuropathic pain. PLoS One 2010; 5:e10467. [PMID: 20454616 PMCID: PMC2862737 DOI: 10.1371/journal.pone.0010467] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 04/10/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Neuropathic pain is a highly debilitating chronic pain following damage to peripheral sensory neurons and is often resistant to all treatments currently available, including opioids. We have previously shown that peripheral nerve injury induces activation of cytosolic phospholipase A(2) (cPLA(2)) in injured dorsal root ganglion (DRG) neurons that contribute to tactile allodynia, a hallmark of neuropathic pain. However, lipid mediators downstream of cPLA(2) activation to produce tactile allodynia remain to be determined. PRINCIPAL FINDINGS Here we provide evidence that platelet-activating factor (PAF) is a potential candidate. Pharmacological blockade of PAF receptors (PAFRs) reduced the development and expression of tactile allodynia following nerve injury. The expression of PAFR mRNA was increased in the DRG ipsilateral to nerve injury, which was seen mainly in macrophages. Furthermore, mice lacking PAFRs showed a reduction of nerve injury-induced tactile allodynia and, interestingly, a marked suppression of upregulation of tumor necrosis factor alpha (TNFalpha) and interleukin-1beta (IL-1beta) expression in the injured DRG, crucial proinflammatory cytokines involved in pain hypersensitivity. Conversely, a single injection of PAF near the DRG of naïve rats caused a decrease in the paw withdrawal threshold to mechanical stimulation in a dose-dependent manner and an increase in the expression of mRNAs for TNFalpha and IL-1beta, both of which were inhibited by pretreatment with a PAFR antagonist. CONCLUSIONS Our results indicate that the PAF/PAFR system has an important role in production of TNFalpha and IL-1beta in the DRG and tactile allodynia following peripheral nerve injury and suggest that blocking PAFRs may be a viable therapeutic strategy for treating neuropathic pain.
Collapse
MESH Headings
- 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism
- Animals
- Cyclooxygenase Inhibitors/pharmacology
- Disease Models, Animal
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/enzymology
- Ganglia, Spinal/pathology
- Inflammation Mediators/metabolism
- Injections
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Lipoxygenase Inhibitors/pharmacology
- Mice
- Models, Biological
- Pain/metabolism
- Pain/pathology
- Peripheral Nerve Injuries
- Peripheral Nerves/drug effects
- Peripheral Nerves/pathology
- Platelet Activating Factor/pharmacology
- Platelet Membrane Glycoproteins/antagonists & inhibitors
- Platelet Membrane Glycoproteins/deficiency
- Platelet Membrane Glycoproteins/genetics
- Platelet Membrane Glycoproteins/metabolism
- Rats
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Lysophosphatidic Acid/antagonists & inhibitors
- Receptors, Lysophosphatidic Acid/metabolism
- Touch/drug effects
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Shigeo Hasegawa
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuta Kohro
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Miho Shiratori
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Ishii
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takao Shimizu
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
50
|
Okubo M, Yamanaka H, Kobayashi K, Noguchi K. Leukotriene synthases and the receptors induced by peripheral nerve injury in the spinal cord contribute to the generation of neuropathic pain. Glia 2010; 58:599-610. [PMID: 19908283 DOI: 10.1002/glia.20948] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Leukotrienes (LTs) belong to a large family of lipid mediators, termed eicosanoids, which are derived from arachidonic acids and released from the cell membrane by phospholipases. LTs are involved in the pathogenesis of inflammatory diseases, such as asthma, rheumatoid arthritis, and peripheral inflammatory pain. In the present study, we examined whether LTs were implicated in pathomechanism of neuropathic pain following peripheral nerve injury. Using the spared nerve injury (SNI) model in rats, we investigated the expression of LT synthases (5-lipoxygenase; 5-LO, Five lipoxygenase activating protein; FLAP, LTA4 hydrolase; LTA4h and LTC4 synthase; LTC4s) and receptors (BLT1, 2 and CysLT1, 2) mRNAs in the rat spinal cord. Semi-quantitative RT-PCR revealed that 5-LO, FLAP, LTC4s, BLT1, and CysLT1 mRNAs increased following SNI, but not CysLT2 mRNAs. Using double labeling analysis of in situ hybridization with immunohistochemistry, we observed that 5-LO, FLAP, and CysLT1 mRNAs were expressed in spinal microglia. LTA4h and LTC4s mRNAs were expressed in both spinal neurons and microglia. BLT1 mRNA was expressed in spinal neurons. The p38 mitogen-activated protein kinase inhibitor, but not MEK inhibitor, reduced the increase in 5-LO in spinal microglia. Continuous intrathecal administration of the 5-LO inhibitor or BLT1 and CysLT1 receptor antagonists suppressed mechanical allodynia induced by SNI. Our findings suggest that the increase of LT synthesis in spinal microglia produced via p38 MAPK plays a role in the generation of neuropathic pain.
Collapse
Affiliation(s)
- Masamichi Okubo
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | | | | | | |
Collapse
|