1
|
Morris RGM. Episodic Aspects of a Path Navigated Through Hippocampal Neurobiology. Hippocampus 2025; 35:e23672. [PMID: 39719302 DOI: 10.1002/hipo.23672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024]
Abstract
As requested by the editors of this special issue of Hippocampus on Scientific Histories of Hippocampal Research, this review provides a detailed personal perspective and historical background on the research involved in a number of findings. The review includes description of the development of the water maze and its use in providing evidence to support the role of the hippocampus in spatial memory function. The review also describes how the water maze was then used in further work to support the proposal that NMDA-dependent synaptic modification in the hippocampus mediates the encoding of new spatial memories. This personal history gives a perspective on the convergence of different streams of physiological, biochemical, theoretical and behavioral research that resulted in these findings on hippocampal function.
Collapse
|
2
|
Nowacka A, Getz AM, Bessa-Neto D, Choquet D. Activity-dependent diffusion trapping of AMPA receptors as a key step for expression of early LTP. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230220. [PMID: 38853553 PMCID: PMC11343219 DOI: 10.1098/rstb.2023.0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 06/11/2024] Open
Abstract
This review focuses on the activity-dependent diffusion trapping of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as a crucial mechanism for the expression of early long-term potentiation (LTP), a process central to learning and memory. Despite decades of research, the precise mechanisms by which LTP induction leads to an increase in AMPAR responses at synapses have been elusive. We review the different hypotheses that have been put forward to explain the increased AMPAR responsiveness during LTP. We discuss the dynamic nature of AMPAR complexes, including their constant turnover and activity-dependent modifications that affect their synaptic accumulation. We highlight a hypothesis suggesting that AMPARs are diffusively trapped at synapses through activity-dependent interactions with protein-based binding slots in the post-synaptic density (PSD), offering a potential explanation for the increased synaptic strength during LTP. Furthermore, we outline the challenges still to be addressed before we fully understand the functional roles and molecular mechanisms of AMPAR dynamic nanoscale organization in LTP. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Agata Nowacka
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
| | - Angela M. Getz
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, BordeauxF-33000, France
| | - Diogo Bessa-Neto
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
| | - Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, BordeauxF-33000, France
| |
Collapse
|
3
|
Carles A, Freyssin A, Perin-Dureau F, Rubinstenn G, Maurice T. Targeting N-Methyl-d-Aspartate Receptors in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:3733. [PMID: 38612544 PMCID: PMC11011887 DOI: 10.3390/ijms25073733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are the main class of ionotropic receptors for the excitatory neurotransmitter glutamate. They play a crucial role in the permeability of Ca2+ ions and excitatory neurotransmission in the brain. Being heteromeric receptors, they are composed of several subunits, including two obligatory GluN1 subunits (eight splice variants) and regulatory GluN2 (GluN2A~D) or GluN3 (GluN3A~B) subunits. Widely distributed in the brain, they regulate other neurotransmission systems and are therefore involved in essential functions such as synaptic transmission, learning and memory, plasticity, and excitotoxicity. The present review will detail the structure, composition, and localization of NMDARs, their role and regulation at the glutamatergic synapse, and their impact on cognitive processes and in neurodegenerative diseases (Alzheimer's, Huntington's, and Parkinson's disease). The pharmacology of different NMDAR antagonists and their therapeutic potentialities will be presented. In particular, a focus will be given on fluoroethylnormemantine (FENM), an investigational drug with very promising development as a neuroprotective agent in Alzheimer's disease, in complement to its reported efficacy as a tomography radiotracer for NMDARs and an anxiolytic drug in post-traumatic stress disorder.
Collapse
Affiliation(s)
- Allison Carles
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; (A.C.); (A.F.)
| | - Aline Freyssin
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; (A.C.); (A.F.)
- ReST Therapeutics, 34095 Montpellier, France; (F.P.-D.); (G.R.)
| | | | | | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; (A.C.); (A.F.)
| |
Collapse
|
4
|
Xie YR, Castro DC, Rubakhin SS, Trinklein TJ, Sweedler JV, Lam F. Multiscale biochemical mapping of the brain through deep-learning-enhanced high-throughput mass spectrometry. Nat Methods 2024; 21:521-530. [PMID: 38366241 PMCID: PMC10927565 DOI: 10.1038/s41592-024-02171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
Spatial omics technologies can reveal the molecular intricacy of the brain. While mass spectrometry imaging (MSI) provides spatial localization of compounds, comprehensive biochemical profiling at a brain-wide scale in three dimensions by MSI with single-cell resolution has not been achieved. We demonstrate complementary brain-wide and single-cell biochemical mapping using MEISTER, an integrative experimental and computational mass spectrometry (MS) framework. Our framework integrates a deep-learning-based reconstruction that accelerates high-mass-resolving MS by 15-fold, multimodal registration creating three-dimensional (3D) molecular distributions and a data integration method fitting cell-specific mass spectra to 3D datasets. We imaged detailed lipid profiles in tissues with millions of pixels and in large single-cell populations acquired from the rat brain. We identified region-specific lipid contents and cell-specific localizations of lipids depending on both cell subpopulations and anatomical origins of the cells. Our workflow establishes a blueprint for future development of multiscale technologies for biochemical characterization of the brain.
Collapse
Affiliation(s)
- Yuxuan Richard Xie
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Daniel C Castro
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Stanislav S Rubakhin
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Timothy J Trinklein
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jonathan V Sweedler
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Fan Lam
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Baudry M, Bi X. Revisiting the calpain hypothesis of learning and memory 40 years later. Front Mol Neurosci 2024; 17:1337850. [PMID: 38361744 PMCID: PMC10867166 DOI: 10.3389/fnmol.2024.1337850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
In 1984, Gary Lynch and Michel Baudry published in Science a novel biochemical hypothesis for learning and memory, in which they postulated that the calcium-dependent protease, calpain, played a critical role in regulating synaptic properties and the distribution of glutamate receptors, thereby participating in memory formation in hippocampus. Over the following 40 years, much work has been done to refine this hypothesis and to provide convincing arguments supporting what was viewed at the time as a simplistic view of synaptic biochemistry. We have now demonstrated that the two major calpain isoforms in the brain, calpain-1 and calpain-2, execute opposite functions in both synaptic plasticity/learning and memory and in neuroprotection/neurodegeneration. Thus, calpain-1 activation is required for triggering long-term potentiation (LTP) of synaptic transmission and learning of episodic memory, while calpain-2 activation limits the magnitude of LTP and the extent of learning. On the other hand, calpain-1 is neuroprotective while calpain-2 is neurodegenerative, and its prolonged activation following various types of brain insults leads to neurodegeneration. The signaling pathways responsible for these functions have been identified and involve local protein synthesis, cytoskeletal regulation, and regulation of glutamate receptors. Human families with mutations in calpain-1 have been reported to have impairment in motor and cognitive functions. Selective calpain-2 inhibitors have been synthesized and clinical studies to test their potential use to treat disorders associated with acute neuronal damage, such as traumatic brain injury, are being planned. This review will illustrate the long and difficult journey to validate a bold hypothesis.
Collapse
Affiliation(s)
- Michel Baudry
- Western University of Health Sciences, Pomona, CA, United States
| | | |
Collapse
|
6
|
Mitchell-Heggs R, Tse D. Reflecting on 50 years of long-term potentiation: Insights from the Royal Society's LTP50 conference. Brain Neurosci Adv 2024; 8:23982128241288004. [PMID: 39431202 PMCID: PMC11489908 DOI: 10.1177/23982128241288004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024] Open
Abstract
On November 20-21 2023, the Royal Society in London hosted a landmark scientific meeting led by Professor Wickliffe C Abraham, Professor Timothy VP Bliss, Professor Graham L Collingridge, and Professor Richard GM Morris. The conference, commemorating the 50th anniversary of the discovery of Long-Term Potentiation, focused on discussing the latest research and developments in the field of synaptic plasticity. We have invited former presidents of the British Neuroscience Association, Professor Graham Collingridge CBE FRS and Professor Richard Morris CBE FRS, for interviews.
Collapse
Affiliation(s)
- Rufus Mitchell-Heggs
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, The University of Edinburgh, Edinburgh, UK
| | - Dorothy Tse
- Department of Psychology, Edge Hill University, Ormskirk, UK
| |
Collapse
|
7
|
Xie YR, Castro DC, Rubakhin SS, Trinklein TJ, Sweedler JV, Lam F. Integrative Multiscale Biochemical Mapping of the Brain via Deep-Learning-Enhanced High-Throughput Mass Spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543144. [PMID: 37398021 PMCID: PMC10312594 DOI: 10.1101/2023.05.31.543144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Elucidating the spatial-biochemical organization of the brain across different scales produces invaluable insight into the molecular intricacy of the brain. While mass spectrometry imaging (MSI) provides spatial localization of compounds, comprehensive chemical profiling at a brain-wide scale in three dimensions by MSI with single-cell resolution has not been achieved. We demonstrate complementary brain-wide and single-cell biochemical mapping via MEISTER, an integrative experimental and computational mass spectrometry framework. MEISTER integrates a deep-learning-based reconstruction that accelerates high-mass-resolving MS by 15-fold, multimodal registration creating 3D molecular distributions, and a data integration method fitting cell-specific mass spectra to 3D data sets. We imaged detailed lipid profiles in tissues with data sets containing millions of pixels, and in large single-cell populations acquired from the rat brain. We identified region-specific lipid contents, and cell-specific localizations of lipids depending on both cell subpopulations and anatomical origins of the cells. Our workflow establishes a blueprint for future developments of multiscale technologies for biochemical characterization of the brain.
Collapse
Affiliation(s)
- Yuxuan Richard Xie
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Daniel C. Castro
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Stanislav S. Rubakhin
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Timothy J. Trinklein
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Jonathan V. Sweedler
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Carl R. Woese Institute for Genomic Biology. University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Fan Lam
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Carl R. Woese Institute for Genomic Biology. University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
8
|
Abdel-Ghani M, Lee Y, Akli LA, Moran M, Schneeweis A, Djemil S, ElChoueiry R, Murtadha R, Pak DTS. Plk2 promotes synaptic destabilization through disruption of N-cadherin adhesion complexes during homeostatic adaptation to hyperexcitation. J Neurochem 2023; 167:362-375. [PMID: 37654026 PMCID: PMC10592368 DOI: 10.1111/jnc.15948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/20/2023] [Accepted: 08/12/2023] [Indexed: 09/02/2023]
Abstract
Synaptogenesis in the brain is highly organized and orchestrated by synaptic cellular adhesion molecules (CAMs) such as N-cadherin and amyloid precursor protein (APP) that contribute to the stabilization and structure of synapses. Although N-cadherin plays an integral role in synapse formation and synaptic plasticity, its function in synapse dismantling is not as well understood. Synapse weakening and loss are prominent features of neurodegenerative diseases, and can also be observed during homeostatic compensation to neuronal hyperexcitation. Previously, we have shown that during homeostatic synaptic plasticity, APP is a target for cleavage triggered by phosphorylation by Polo-like kinase 2 (Plk2). Here, we found that Plk2 directly phosphorylates N-cadherin, and during neuronal hyperexcitation Plk2 promotes N-cadherin proteolytic processing, degradation, and disruption of complexes with APP. We further examined the molecular mechanisms underlying N-cadherin degradation. Loss of N-cadherin adhesive function destabilizes excitatory synapses and promotes their structural dismantling as a prerequisite to eventual synapse elimination. This pathway, which may normally help to homeostatically restrain excitability, could also shed light on the dysregulated synapse loss that occurs in cognitive disorders.
Collapse
Affiliation(s)
- Mai Abdel-Ghani
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Yeunkum Lee
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Lyna Ait Akli
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Marielena Moran
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Amanda Schneeweis
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Sarra Djemil
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Rebecca ElChoueiry
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Ruqaya Murtadha
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Daniel T. S. Pak
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
9
|
Jiang F, Bello ST, Gao Q, Lai Y, Li X, He L. Advances in the Electrophysiological Recordings of Long-Term Potentiation. Int J Mol Sci 2023; 24:ijms24087134. [PMID: 37108295 PMCID: PMC10138642 DOI: 10.3390/ijms24087134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Understanding neuronal firing patterns and long-term potentiation (LTP) induction in studying learning, memory, and neurological diseases is critical. However, recently, despite the rapid advancement in neuroscience, we are still constrained by the experimental design, detection tools for exploring the mechanisms and pathways involved in LTP induction, and detection ability of neuronal action potentiation signals. This review will reiterate LTP-related electrophysiological recordings in the mammalian brain for nearly 50 years and explain how excitatory and inhibitory neural LTP results have been detected and described by field- and single-cell potentials, respectively. Furthermore, we focus on describing the classic model of LTP of inhibition and discuss the inhibitory neuron activity when excitatory neurons are activated to induce LTP. Finally, we propose recording excitatory and inhibitory neurons under the same experimental conditions by combining various electrophysiological technologies and novel design suggestions for future research. We discussed different types of synaptic plasticity, and the potential of astrocytes to induce LTP also deserves to be explored in the future.
Collapse
Affiliation(s)
- Feixu Jiang
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | | | - Qianqian Gao
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | - Yuanying Lai
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | - Xiao Li
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Ling He
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
10
|
Atta-Ur-Rahman. Protein Folding and Molecular Basis of Memory. Curr Med Chem 2022; 29:4317-4319. [PMID: 35532256 DOI: 10.2174/0929867329666220508173020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Atta-Ur-Rahman
- International Center for Chemical and Biological Sciences, H. E. J. Research Institute of Chemistry, Pakistan
| |
Collapse
|
11
|
Calpain Inhibitors as Potential Therapeutic Modulators in Neurodegenerative Diseases. Neurochem Res 2022; 47:1125-1149. [PMID: 34982393 DOI: 10.1007/s11064-021-03521-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023]
Abstract
It is considered a significant challenge to understand the neuronal cell death mechanisms with a suitable cure for neurodegenerative disorders in the coming years. Calpains are one of the best-considered "cysteine proteases activated" in brain disorders. Calpain is an important marker and mediator in the pathophysiology of neurodegeneration. Calpain activation being the essential neurodegenerative factor causing apoptotic machinery activation, it is crucial to develop reliable and effective approaches to prevent calpain-mediated apoptosis in degenerating neurons. It has been recently seen that the "inhibition of calpain activation" has appeared as a possible therapeutic target for managing neurodegenerative diseases. A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was conducted. The present article reviews the basic pathobiology and role of selective calpain inhibitors used in various neurodegenerative diseases as a therapeutic target.
Collapse
|
12
|
Ji Y, Koch D, González Delgado J, Günther M, Witte OW, Kessels MM, Frahm C, Qualmann B. Poststroke dendritic arbor regrowth requires the actin nucleator Cobl. PLoS Biol 2021; 19:e3001399. [PMID: 34898601 PMCID: PMC8699704 DOI: 10.1371/journal.pbio.3001399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/23/2021] [Accepted: 11/16/2021] [Indexed: 01/15/2023] Open
Abstract
Ischemic stroke is a major cause of death and long-term disability. We demonstrate that middle cerebral artery occlusion (MCAO) in mice leads to a strong decline in dendritic arborization of penumbral neurons. These defects were subsequently repaired by an ipsilateral recovery process requiring the actin nucleator Cobl. Ischemic stroke and excitotoxicity, caused by calpain-mediated proteolysis, significantly reduced Cobl levels. In an apparently unique manner among excitotoxicity-affected proteins, this Cobl decline was rapidly restored by increased mRNA expression and Cobl then played a pivotal role in poststroke dendritic arbor repair in peri-infarct areas. In Cobl knockout (KO) mice, the dendritic repair window determined to span day 2 to 4 poststroke in wild-type (WT) strikingly passed without any dendritic regrowth. Instead, Cobl KO penumbral neurons of the primary motor cortex continued to show the dendritic impairments caused by stroke. Our results thereby highlight a powerful poststroke recovery process and identified causal molecular mechanisms critical during poststroke repair. Ischemic stroke is a major cause of death and long-term disability. This study reveals that, in mice, stroke-induced damage to dendritic arborization in the area around an infarct is rapidly repaired via dendritic regrowth; this plasticity requires the actin nucleator Cobl.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
| | - Dennis Koch
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
| | - Jule González Delgado
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
| | - Madlen Günther
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W. Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Michael M. Kessels
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
- * E-mail: (MMK); (CF); (BQ)
| | - Christiane Frahm
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- * E-mail: (MMK); (CF); (BQ)
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
- * E-mail: (MMK); (CF); (BQ)
| |
Collapse
|
13
|
Skrzymowska J, Zalas M, Goszczyński TM, Miazek A. An alpha II spectrin mutant peptide with unstable scaffold structure and increased sensitivity to calpain cleavage. Biochem Biophys Res Commun 2021; 581:68-73. [PMID: 34656850 DOI: 10.1016/j.bbrc.2021.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
A spontaneous missense mutation in the alpha II spectrin (αII) gene, replacing a highly conserved arginine 1098 with the glutamine (R1098Q), causes progressive neurodegeneration in heterozygous mutant mice. The molecular mechanism underlying this phenotype is unknown but the accumulation of 150kD αII breakdown products in brains of homozygous mutant embryos suggests an imbalance in the substrate level control of αII cleavage by calpains. This is further supported by in silico simulation predicting unmasked calpain target site and increased spectrin scaffold bending and flexibility of R1098Q mutant peptide. Here, using spectroscopic and in situ enzymatic techniques, we aimed at obtaining direct experimental support for the impact of R1098Q mutation on the αII stability and its propensity for calpain-mediated degradation. Thermal circular dichroism analyses performed on recombinant wildtype and R1098Q mutant αII peptides, composed of spectrin repeat 9-10 revealed that although both had very similar secondary structure contents, thermal stability curve profiles varied and the observed midpoint of the unfolding transition (Tm) was 5.5 °C lower for the R1098Q peptide. Yet, the dynamic light scattering profiles of both peptides closely overlapped, implying the same thermal propensity to aggregate. Calpain digestion of plate-bound αII peptides with and without added calmodulin revealed an enhancement of the R1098Q peptide digestion rate relative to WT control. In summary, these results support the unstable scaffold structure of the R1098Q peptide as contributing to its enhanced intrinsic sensitivity to calpain and suggest physiologic relevance of a proper calpain/spectrin balance in preventing neurodegeneration.
Collapse
Affiliation(s)
- Joanna Skrzymowska
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Michał Zalas
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Tomasz M Goszczyński
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Arkadiusz Miazek
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland.
| |
Collapse
|
14
|
Parmar S, Tadavarty R, Sastry BR. G-protein coupled receptors and synaptic plasticity in sleep deprivation. World J Psychiatry 2021; 11:954-980. [PMID: 34888167 PMCID: PMC8613756 DOI: 10.5498/wjp.v11.i11.954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/05/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
Insufficient sleep has been correlated to many physiological and psychoneurological disorders. Over the years, our understanding of the state of sleep has transcended from an inactive period of rest to a more active state involving important cellular and molecular processes. In addition, during sleep, electrophysiological changes also occur in pathways in specific regions of the mammalian central nervous system (CNS). Activity mediated synaptic plasticity in the CNS can lead to long-term and sometimes permanent strengthening and/or weakening synaptic strength affecting neuronal network behaviour. Memory consolidation and learning that take place during sleep cycles, can be affected by changes in synaptic plasticity during sleep disturbances. G-protein coupled receptors (GPCRs), with their versatile structural and functional attributes, can regulate synaptic plasticity in CNS and hence, may be potentially affected in sleep deprived conditions. In this review, we aim to discuss important functional changes that can take place in the CNS during sleep and sleep deprivation and how changes in GPCRs can lead to potential problems with therapeutics with pharmacological interventions.
Collapse
Affiliation(s)
- Shweta Parmar
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Ramakrishna Tadavarty
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Bhagavatula R Sastry
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| |
Collapse
|
15
|
Abstract
Abstract
Purpose of review
As fields such as neurotoxicity evaluation and neuro-related drug research are increasing in popularity, there is a demand for the expansion of neurotoxicity research. Currently, neurotoxicity is assessed by measuring changes in weight and behavior. However, measurement of such changes does not allow the detection of subtle and inconspicuous neurotoxicity. In this review, methods for advancing neurotoxicity research are divided into molecule-, cell-, circuit-, and animal model-based methods, and the results of previous studies assessing neurotoxicity are provided and discussed.
Recent findings
In coming decades, cooperation between universities, national research institutes, industrial research institutes, governments, and the private sector will become necessary when identifying alternative methods for neurotoxicity evaluation, which is a current goal related to improving neurotoxicity assessment and an appropriate approach to neurotoxicity prediction. Many methods for measuring neurotoxicity in the field of neuroscience have recently been reported. This paper classifies the supplementary and complementary experimental measures for evaluating neurotoxicity.
Collapse
|
16
|
Historical perspective and progress on protein ubiquitination at glutamatergic synapses. Neuropharmacology 2021; 196:108690. [PMID: 34197891 DOI: 10.1016/j.neuropharm.2021.108690] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
Transcription-translation coupling leads to the production of proteins that are key for controlling essential neuronal processes that include neuronal development and changes in synaptic strength. Although these events have been a prevailing theme in neuroscience, the regulation of proteins via posttranslational signaling pathways are equally relevant for these neuronal processes. Ubiquitin is one type of posttranslational modification that covalently attaches to its targets/substrates. Ubiquitination of proteins play a key role in multiple signaling pathways, the predominant being removal of its substrates by a large molecular machine called the proteasome. Here, I review 40 years of progress on ubiquitination in the nervous system at glutamatergic synapses focusing on axon pathfinding, synapse formation, presynaptic release, dendritic spine formation, and regulation of postsynaptic glutamate receptors. Finally, I elucidate emerging themes in ubiquitin biology that may challenge our current understanding of ubiquitin signaling in the nervous system.
Collapse
|
17
|
Baudry M. Meet Our Editorial Board Member. Curr Neuropharmacol 2021. [DOI: 10.2174/1570159x1903210216110739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Michel Baudry
- University Professor Western University of Health Sciences 309 E. 2nd St Pomona, CA 91766,United States
| |
Collapse
|
18
|
Ferrari C, Vecchi T, Sciamanna G, Blandini F, Pisani A, Natoli S. Facemasks and face recognition: Potential impact on synaptic plasticity. Neurobiol Dis 2021; 153:105319. [PMID: 33647447 DOI: 10.1016/j.nbd.2021.105319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
Visual recognition of facial expression modulates our social interactions. Compelling experimental evidence indicates that face conveys plenty of information that are fundamental for humans to interact. These are encoded at neural level in specific cortical and subcortical brain regions through activity- and experience-dependent synaptic plasticity processes. The current pandemic, due to the spread of SARS-CoV-2 infection, is causing relevant social and psychological detrimental effects. The institutional recommendations on physical distancing, namely social distancing and wearing of facemasks are effective in reducing the rate of viral spread. However, by impacting social interaction, facemasks might impair the neural responses to recognition of facial cues that are overall critical to our behaviors. In this survey, we briefly review the current knowledge on the neurobiological substrate of facial recognition and discuss how the lack of salient stimuli might impact the ability to retain and consolidate learning and memory phenomena underlying face recognition. Such an "abnormal" visual experience raises the intriguing possibility of a "reset" mechanism, a renewed ability of adult brain to undergo synaptic plasticity adaptations.
Collapse
Affiliation(s)
- Chiara Ferrari
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Tomaso Vecchi
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | | | - Fabio Blandini
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy.
| | - Silvia Natoli
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
19
|
Wang Y, Liu Y, Bi X, Baudry M. Calpain-1 and Calpain-2 in the Brain: New Evidence for a Critical Role of Calpain-2 in Neuronal Death. Cells 2020; 9:E2698. [PMID: 33339205 PMCID: PMC7765587 DOI: 10.3390/cells9122698] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 01/24/2023] Open
Abstract
Calpains are a family of soluble calcium-dependent proteases that are involved in multiple regulatory pathways. Our laboratory has focused on the understanding of the functions of two ubiquitous calpain isoforms, calpain-1 and calpain-2, in the brain. Results obtained over the last 30 years led to the remarkable conclusion that these two calpain isoforms exhibit opposite functions in the brain. Calpain-1 activation is required for certain forms of synaptic plasticity and corresponding types of learning and memory, while calpain-2 activation limits the extent of plasticity and learning. Calpain-1 is neuroprotective both during postnatal development and in adulthood, while calpain-2 is neurodegenerative. Several key protein targets participating in these opposite functions have been identified and linked to known pathways involved in synaptic plasticity and neuroprotection/neurodegeneration. We have proposed the hypothesis that the existence of different PDZ (PSD-95, DLG and ZO-1) binding domains in the C-terminal of calpain-1 and calpain-2 is responsible for their association with different signaling pathways and thereby their different functions. Results with calpain-2 knock-out mice or with mice treated with a selective calpain-2 inhibitor indicate that calpain-2 is a potential therapeutic target in various forms of neurodegeneration, including traumatic brain injury and repeated concussions.
Collapse
Affiliation(s)
- Yubin Wang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (Y.W.); (Y.L.)
| | - Yan Liu
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (Y.W.); (Y.L.)
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (Y.W.); (Y.L.)
| |
Collapse
|
20
|
Li Y, He Z, Lv H, Chen W, Chen J. Calpain-2 plays a pivotal role in the inhibitory effects of propofol against TNF-α-induced autophagy in mouse hippocampal neurons. J Cell Mol Med 2020; 24:9287-9299. [PMID: 32627970 PMCID: PMC7417688 DOI: 10.1111/jcmm.15577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
Calpains are calcium‐dependent proteases and play critical roles in neuronal autophagy induced by inflammation. Propofol has been reported to exert anti‐inflammatory effects in neurons. We aimed to identify whether and how propofol‐modulated calpain activity and neuron autophagy in response to tumour necrosis factor‐α (TNF‐α). Mouse hippocampal neurons were pre‐treated with propofol and exposed to TNF‐α. Autophagy was evaluated by fluorescent autophagy assay and by measuring LC3I and LC3II expression. Intracellular calcium concentration was measured by fluorescent assay. Calpain activation was measured by calpain activity assay. The protein expression of intracellular signalling molecules was detected by Western blot analysis. Compared with untreated control neurons, 40 ng/mL TNF‐α treatment for 2 hours induced neuron autophagy, which was attenuated by 25 μmol/L propofol. TNF‐α induced intracellular calcium accumulation, the phosphorylation of calcium/calmodulin‐dependent protein kinase II (CAMK II) and calpain‐2, calpain activation and lysosomal cathepsin B release as well as tyrosine kinase receptor B (TrkB) truncation. These effects were alleviated by propofol, calcium chelator, CAMK II inhibitor, calpain‐2 inhibitor, calpain‐2 siRNA transfection and N‐Methyl‐d‐aspartic acid (NMDA) receptor antagonist. Propofol, via NMDA receptor, inhibited TNF‐α‐mediated hippocampal neuron autophagy. The mechanism may involve calcium and calcium‐dependent signalling pathway, especially CAMK II and calpain‐2.
Collapse
Affiliation(s)
- Ying Li
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiyong He
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hu Lv
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiawei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Hervas R, Rau MJ, Park Y, Zhang W, Murzin AG, Fitzpatrick JAJ, Scheres SHW, Si K. Cryo-EM structure of a neuronal functional amyloid implicated in memory persistence in Drosophila. Science 2020; 367:1230-1234. [PMID: 32165583 DOI: 10.1126/science.aba3526] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
How long-lived memories withstand molecular turnover is a fundamental question. Aggregates of a prion-like RNA-binding protein, cytoplasmic polyadenylation element-binding (CPEB) protein, is a putative substrate of long-lasting memories. We isolated aggregated Drosophila CPEB, Orb2, from adult heads and determined its activity and atomic structure, at 2.6-angstrom resolution, using cryo-electron microscopy. Orb2 formed ~75-nanometer-long threefold-symmetric amyloid filaments. Filament formation transformed Orb2 from a translation repressor to an activator and "seed" for further translationally active aggregation. The 31-amino acid protofilament core adopted a cross-β unit with a single hydrophilic hairpin stabilized through interdigitated glutamine packing. Unlike the hydrophobic core of pathogenic amyloids, the hydrophilic core of Orb2 filaments suggests how some neuronal amyloids could be a stable yet regulatable substrate of memory.
Collapse
Affiliation(s)
- Ruben Hervas
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Michael J Rau
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Younshim Park
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wenjuan Zhang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Alexey G Murzin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA.,Departments of Neuroscience and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sjors H W Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Kausik Si
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA. .,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
22
|
Linking Nanoscale Dynamics of AMPA Receptor Organization to Plasticity of Excitatory Synapses and Learning. J Neurosci 2019; 38:9318-9329. [PMID: 30381423 DOI: 10.1523/jneurosci.2119-18.2018] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 11/21/2022] Open
Abstract
The spatiotemporal organization of neurotransmitter receptors in the postsynaptic membrane is a fundamental determinant of synaptic transmission and thus of information processing by the brain. The ionotropic AMPA subtype of glutamate receptors (AMPARs) mediate fast excitatory synaptic transmission in the CNS. The number of AMPARs located en face presynaptic glutamate release sites sets the efficacy of synaptic transmission. Understanding how this number is set and regulated has been the topic of intense research in the last two decades. We showed that AMPARs are not stable in the synapse as initially thought. They continuously enter and exit the postsynaptic density by lateral diffusion, and they exchange between the neuronal surface and intracellular compartments by endocytosis and exocytosis at extrasynaptic sites. Regulation of these various trafficking pathways has emerged as a key mechanism for activity-dependent plasticity of synaptic transmission, a process important for learning and memory. I here present my view of these findings. In particular, the advent of super-resolution microscopy and single-molecule tracking has helped to uncover the intricacy of AMPARs' dynamic organization at the nanoscale. In addition, AMPAR surface diffusion is highly regulated by a variety of factors, including neuronal activity, stress hormones, and neurodegeneration, suggesting that AMPAR diffusion-trapping may play a central role in synapse function. Using innovative tools to understand further the link between receptor dynamics and synapse plasticity is now unveiling new molecular mechanisms of learning. Modifying AMPAR dynamics may emerge as a new target to correct synapse dysfunction in the diseased brain.
Collapse
|
23
|
Heysieattalab S, Lee KH, Liu Y, Wang Y, Foy MR, Bi X, Baudry M. Impaired cerebellar plasticity and eye-blink conditioning in calpain-1 knock-out mice. Neurobiol Learn Mem 2019; 170:106995. [PMID: 30735788 DOI: 10.1016/j.nlm.2019.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/14/2019] [Accepted: 02/02/2019] [Indexed: 11/28/2022]
Abstract
Calpain-1 and calpain-2 are involved in the regulation of several signaling pathways and neuronal functions in the brain. Our recent studies indicate that calpain-1 is required for hippocampal synaptic plasticity, including long-term depression (LTD) and long-term potentiation (LTP) in field CA1. However, little is known regarding the contributions of calpain-1 to cerebellar synaptic plasticity. Low frequency stimulation (LFS, 5 Hz, 5 min)-induced LTP at parallel fibers to Purkinje cell synapses was markedly impaired in cerebellar slices from calpain-1 knock-out (KO) mice. Application of a selective calpain-2 inhibitor enhanced LFS-induced LTP in both wild-type (WT) and calpain-1 KO mice. Three protocols were used to induce LTD at these synapses: LFS (1 Hz, 15 min), perfusion with high potassium and glutamate (K-Glu) or dihydroxyphenylglycine (DHPG), a mGluR1 agonist. All three forms of LTD were impaired in calpain-1 KO mice. DHPG application stimulated calpain-1 but not calpain-2 in cerebellar slices, and DHPG-induced LTD impairment was reversed by application of a protein phosphatase 2A (PP2A) inhibitor, okadaic acid. As in hippocampus, BDNF induced calpain-1 activation and PH domain and Leucine-rich repeat Protein Phosphatase 1/suprachiasmatic nucleus oscillatory protein (PHLPP1/SCOP) degradation followed by extracellular signal-regulated kinase (ERK) activation, as well as calpain-2 activation leading to degradation of phosphatase and tensin homolog deleted on chromosome ten (PTEN) in cerebellar slices. The role of calpain-1 in associative learning was evaluated in the delay eyeblink conditioning (EBC). Calpain-1 KO mice exhibited significant learning impairment in EBC during the first 2 days of acquisition training. However, after 5 days of training, the percentage of conditioned responses (CRs) between calpain-1 KO and WT mice was identical. Both calpain-1 KO and WT mice exhibited typical extinction patterns. Our results indicate that calpain-1 plays critical roles in multiple forms of synaptic plasticity and associative learning in both hippocampus and cerebellum.
Collapse
Affiliation(s)
- Soomaayeh Heysieattalab
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States; Division of Cognitive Neuroscience, University of Tabriz, Tabriz, Iran
| | - Ka-Hung Lee
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Yan Liu
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Yubin Wang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Michael R Foy
- Department of Psychology, Loyola Marymount University, Los Angeles, CA 90045, United States
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States.
| |
Collapse
|
24
|
Lodge D, Watkins JC, Bortolotto ZA, Jane DE, Volianskis A. The 1980s: D-AP5, LTP and a Decade of NMDA Receptor Discoveries. Neurochem Res 2018; 44:516-530. [PMID: 30284673 PMCID: PMC6420420 DOI: 10.1007/s11064-018-2640-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 01/02/2023]
Abstract
In the 1960s and 70s, biochemical and pharmacological evidence was pointing toward glutamate as a synaptic transmitter at a number of distinct receptor classes, known as NMDA and non-NMDA receptors. The field, however, lacked a potent and highly selective antagonist to block these putative postsynaptic receptors. So, the discoveries in the early 1980s of d-AP5 as a selective NMDA receptor antagonist and of its ability to block synaptic events and plasticity were a major breakthrough leading to an explosion of knowledge about this receptor subtype. During the next 10 years, the role of NMDA receptors was established in synaptic transmission, long-term potentiation, learning and memory, epilepsy, pain, among others. Hints at pharmacological heterogeneity among NMDA receptors were followed by the cloning of separate subunits. The purpose of this review is to recognize the important contributions made in the 1980s by Graham L. Collingridge and other key scientists to the advances in our understanding of the functions of NMDA receptors throughout the central nervous system.
Collapse
Affiliation(s)
- D Lodge
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - J C Watkins
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Z A Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - D E Jane
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - A Volianskis
- School of Clinical Sciences, University of Bristol, Bristol, UK.
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
25
|
Song Z, Chen H, Xu W, Wu S, Zhu G. Basolateral amygdala calpain is required for extinction of contextual fear-memory. Neurobiol Learn Mem 2018; 155:180-188. [PMID: 30086394 DOI: 10.1016/j.nlm.2018.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/25/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Abstract
Extinction of fear-memory is essential for emotional and mental changes. However, the mechanisms underlying extinction of fear-memory are largely unknown. Calpain is a type of calcium-dependent protease that plays a critical role in memory consolidation and reconsolidation. Whether calpain functions in extinction of fear-memory is unknown, as are the molecular mechanisms. In this study, we investigated the pivotal role of calpain in extinction of fear-memory in mice, and assessed its mechanism. Conditioned stimulation/unconditioned stimulation-conditioned stimulation paradigms combined with pharmacological methods were employed to evaluate the action of calpain in memory extinction. Our data demonstrated that intraperitoneal or intra-basolateral amygdala (BLA) injection of calpain inhibitors could eliminate extinction of fear-memory in mice. Moreover, extinction of fear-memory paradigm-activated BLA calpain activity, which degraded suprachiasmatic nucleus circadian oscillatory protein (SCOP) and phosphatase and tensin homolog (PTEN), subsequently contributing to activation of a protein kinase B (AKT)-mammalian target of the rapamycin (mTor) signaling pathway. Additionally, cAMP-response element binding protein (CREB) phosphorylation was also augmented following extinction of fear-memory. Calpain inhibitor blocked the signaling pathway activation induced by extinction of fear-memory. Additionally, intra-BLA injection of rapamycin or cycloheximide also blocked the extinction of fear-memory. Conversely, intra-BLA injection of PTEN inhibitor, bpV, reversed the effect of calpeptin on extinction of fear-memory. Together, our data confirmed the function of BLA calpain in extinction of fear-memory, likely via degrading PTEN and activating AKT-mTor-dependent protein synthesis.
Collapse
Affiliation(s)
- Zhujin Song
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Hui Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Wen Xu
- Department of Neurology, The first Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei 230001, China
| | - Shengbing Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Academy of Chinese Medicine, Hefei 230038, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Academy of Chinese Medicine, Hefei 230038, China.
| |
Collapse
|
26
|
Hastings MH, Qiu A, Zha C, Farah CA, Mahdid Y, Ferguson L, Sossin WS. The zinc fingers of the small optic lobes calpain bind polyubiquitin. J Neurochem 2018; 146:429-445. [PMID: 29808476 DOI: 10.1111/jnc.14473] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/09/2018] [Accepted: 05/22/2018] [Indexed: 12/27/2022]
Abstract
The small optic lobes (SOL) calpain is a highly conserved member of the calpain family expressed in the nervous system. A dominant negative form of the SOL calpain inhibited consolidation of one form of synaptic plasticity, non-associative facilitation, in sensory-motor neuronal cultures in Aplysia, presumably by inhibiting cleavage of protein kinase Cs (PKCs) into constitutively active protein kinase Ms (PKMs) (Hu et al. 2017a). SOL calpains have a conserved set of 5-6 N-terminal zinc fingers. Bioinformatic analysis suggests that these zinc fingers could bind to ubiquitin. In this study, we show that both the Aplysia and mouse SOL calpain (also known as Calpain 15) zinc fingers bind ubiquitinated proteins, and we confirm that Aplysia SOL binds poly- but not mono- or diubiquitin. No specific zinc finger is required for polyubiquitin binding. Neither polyubiquitin nor calcium was sufficient to induce purified Aplysia SOL calpain to autolyse or to cleave the atypical PKC to PKM in vitro. In Aplysia, over-expression of the atypical PKC in sensory neurons leads to an activity-dependent cleavage event and an increase in nuclear ubiquitin staining. Activity-dependent cleavage is partially blocked by a dominant negative SOL calpain, but not by a dominant negative classical calpain. The cleaved PKM was stabilized by the dominant negative classical calpain and destabilized by a dominant negative form of the PKM stabilizing protein KIdney/BRAin protein. These studies provide new insight into SOL calpain's function and regulation. Open Data: Materials are available on https://cos.io/our-services/open-science-badges/ https://osf.io/93n6m/.
Collapse
Affiliation(s)
- Margaret H Hastings
- Department of Psychology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Alvin Qiu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Congyao Zha
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Carole A Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yacine Mahdid
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Larissa Ferguson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Wayne S Sossin
- Department of Psychology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
27
|
Borovac J, Bosch M, Okamoto K. Regulation of actin dynamics during structural plasticity of dendritic spines: Signaling messengers and actin-binding proteins. Mol Cell Neurosci 2018; 91:122-130. [PMID: 30004015 DOI: 10.1016/j.mcn.2018.07.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent plasticity of synaptic structure and function plays an essential role in neuronal development and in cognitive functions including learning and memory. The formation, maintenance and modulation of dendritic spines are mainly controlled by the dynamics of actin filaments (F-actin) through interaction with various actin-binding proteins (ABPs) and postsynaptic signaling messengers. Induction of long-term potentiation (LTP) triggers a cascade of events involving Ca2+ signaling, intracellular pathways such as cAMP and cGMP, and regulation of ABPs such as CaMKII, Cofilin, Aip1, Arp2/3, α-actinin, Profilin and Drebrin. We review here how these ABPs modulate the rate of assembly, disassembly, stabilization and bundling of F-actin during LTP induction. We highlight the crucial role that CaMKII exerts in both functional and structural plasticity by directly coupling Ca2+ signaling with F-actin dynamics through the β subunit. Moreover, we show how cAMP and cGMP second messengers regulate postsynaptic structural potentiation. Brain disorders such as Alzheimer's disease, schizophrenia or autism, are associated with alterations in the regulation of F-actin dynamics by these ABPs and signaling messengers. Thus, a better understanding of the molecular mechanisms controlling actin cytoskeleton can provide cues for the treatment of these disorders.
Collapse
Affiliation(s)
- Jelena Borovac
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Miquel Bosch
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain.
| | - Kenichi Okamoto
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
28
|
Popik B, Crestani AP, Silva MO, Quillfeldt JA, de Oliveira Alvares L. Calpain modulates fear memory consolidation, retrieval and reconsolidation in the hippocampus. Neurobiol Learn Mem 2018; 151:53-58. [PMID: 29630999 DOI: 10.1016/j.nlm.2018.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/20/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
Abstract
It has been proposed that long-lasting changes in dendritic spines provide a physical correlate for memory formation and maintenance. Spine size and shape are highly plastic, controlled by actin polymerization/depolymerization cycles. This actin dynamics are regulated by proteins such as calpain, a calcium-dependent cysteine protease that cleaves the structural cytoskeleton proteins and other targets involved in synaptic plasticity. Here, we tested whether the pharmacological inhibition of calpain in the dorsal hippocampus affects memory consolidation, retrieval and reconsolidation in rats trained in contextual fear conditioning. We first found that post-training infusion of the calpain inhibitor PD150606 impaired long-term memory consolidation, but not short-term memory. Next, we showed that pre-test infusion of the calpain inhibitor hindered memory retrieval. Finally, blocking calpain activity after memory reactivation disrupted reconsolidation. Taken together, our results show that calpain play an essential role in the hippocampus by enabling memory formation, expression and reconsolidation.
Collapse
Affiliation(s)
- Bruno Popik
- Laboratório de Neurobiologia da Memória, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, 90.046-900 Porto Alegre, Brazil
| | - Ana Paula Crestani
- Laboratório de Psicobiologia e Neurocomputação, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, 91.501-970 Porto Alegre, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, 90.046-900 Porto Alegre, Brazil
| | - Mateus Oliveira Silva
- Laboratório de Neurobiologia da Memória, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, 90.046-900 Porto Alegre, Brazil
| | - Jorge Alberto Quillfeldt
- Laboratório de Psicobiologia e Neurocomputação, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, 91.501-970 Porto Alegre, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, 90.046-900 Porto Alegre, Brazil
| | - Lucas de Oliveira Alvares
- Laboratório de Neurobiologia da Memória, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, 90.046-900 Porto Alegre, Brazil.
| |
Collapse
|
29
|
Abstract
INTRODUCTION Calpains represent a family of neutral, calcium-dependent proteases, which modify the function of their target proteins by partial truncation. These proteases have been implicated in numerous cell functions, including cell division, proliferation, migration, and death. In the CNS, where calpain-1 and calpain-2 are the main calpain isoforms, their activation has been linked to synaptic plasticity as well as to neurodegeneration. This review will focus on the role of calpain-2 in acute neuronal injury and discuss the possibility of developing selective calpain-2 inhibitors for therapeutic purposes. Areas covered: This review covers the literature showing how calpain-2 is implicated in neuronal death in a number of pathological conditions. The possibility of developing new selective calpain-2 inhibitors for treating these conditions is discussed. Expert opinion: As evidence accumulates that calpain-2 activation participates in acute neuronal injury, there is interest in developing therapeutic approaches using selective calpain-2 inhibitors. Recent data indicate the potential use of such inhibitors in various pathologies associated with acute neuronal death. The possibility of extending the use of such inhibitors to more chronic forms of neurodegeneration is discussed.
Collapse
Affiliation(s)
- Yubin Wang
- Graduate College of Biomedical Sciences, COMP Western University of Health Sciences 309 E. 2 St., Pomona, CA 91766
| | - Xiaoning Bi
- Department of Basic Science, COMP Western University of Health Sciences 309 E. 2 St., Pomona, CA 91766
| | - Michel Baudry
- Graduate College of Biomedical Sciences, COMP Western University of Health Sciences 309 E. 2 St., Pomona, CA 91766
| |
Collapse
|
30
|
Wang Y, Liu Y, Lopez D, Lee M, Dayal S, Hurtado A, Bi X, Baudry M. Protection against TBI-Induced Neuronal Death with Post-Treatment with a Selective Calpain-2 Inhibitor in Mice. J Neurotrauma 2018; 35:105-117. [PMID: 28594313 PMCID: PMC5757088 DOI: 10.1089/neu.2017.5024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic Brain Injury (TBI) is a major cause of death and disability worldwide. The calcium-dependent protease, calpain, has been shown to be involved in TBI-induced neuronal death. However, whereas various calpain inhibitors have been tested in several animal models of TBI, there has not been any clinical trial testing the efficacy of calpain inhibitors in human TBI. One important reason for this could be the lack of knowledge regarding the differential functions of the two major calpain isoforms in the brain, calpain-1 and calpain-2. In this study, we used the controlled cortical impact (CCI) model in mice to test the roles of calpain-1 and calpain-2 in TBI-induced neuronal death. Immunohistochemistry (IHC) with calpain activity markers performed at different time-points after CCI in wild-type and calpain-1 knock-out (KO) mice showed that calpain-1 was activated early in cortical areas surrounding the impact, within 0-8 h after CCI, whereas calpain-2 activation was delayed and was predominant during 8-72 h after CCI. Calpain-1 KO enhanced cell death, whereas calpain-2 activity correlated with the extent of cell death, suggesting that calpain-1 activation suppresses and calpain-2 activation promotes cell death following TBI. Systemic injection(s) of a calpain-2 selective inhibitor, NA101, at 1 h or 4 h after CCI significantly reduced calpain-2 activity and cell death around the impact site, reduced the lesion volume, and promoted motor and learning function recovery after TBI. Our data indicate that calpain-1 activity is neuroprotective and calpain-2 activity is neurodegenerative after TBI, and that a selective calpain-2 inhibitor can reduce TBI-induced cell death.
Collapse
Affiliation(s)
- Yubin Wang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California
| | - Yan Liu
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California
| | - Dulce Lopez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California
| | - Moses Lee
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California
| | | | - Alexander Hurtado
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California
| |
Collapse
|
31
|
Nagayoshi T, Isoda K, Mamiya N, Kida S. Hippocampal calpain is required for the consolidation and reconsolidation but not extinction of contextual fear memory. Mol Brain 2017; 10:61. [PMID: 29258546 PMCID: PMC5735908 DOI: 10.1186/s13041-017-0341-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/04/2017] [Indexed: 11/10/2022] Open
Abstract
Memory consolidation, reconsolidation, and extinction have been shown to share similar molecular signatures, including new gene expression. Calpain is a Ca2+-dependent protease that exerts its effects through the proteolytic cleavage of target proteins. Neuron-specific conditional deletions of calpain 1 and 2 impair long-term potentiation in the hippocampus and spatial learning. Moreover, recent studies have suggested distinct roles of calpain 1 and 2 in synaptic plasticity. However, the role of hippocampal calpain in memory processes, especially memory consolidation, reconsolidation, and extinction, is still unclear. In the current study, we demonstrated the critical roles of hippocampal calpain in the consolidation, reconsolidation, and extinction of contextual fear memory in mice. We examined the effects of pharmacological inhibition of calpain in the hippocampus on these memory processes, using the N-Acetyl-Leu-Leu-norleucinal (ALLN; calpain 1 and 2 inhibitor). Microinfusion of ALLN into the dorsal hippocampus impaired long-term memory (24 h memory) without affecting short-term memory (2 h memory). Similarly, this pharmacological blockade of calpain in the dorsal hippocampus also disrupted reactivated memory but did not affect memory extinction. Importantly, the systemic administration of ALLN inhibited the induction of c-fos in the hippocampus, which is observed when memory is consolidated. Our observations showed that hippocampal calpain is required for the consolidation and reconsolidation of contextual fear memory. Further, the results suggested that calpain contributes to the regulation of new gene expression that is necessary for these memory processes as a regulator of Ca2+-signal transduction pathway.
Collapse
Affiliation(s)
- Taikai Nagayoshi
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kiichiro Isoda
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Nori Mamiya
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoshi Kida
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
32
|
Novel calpain families and novel mechanisms for calpain regulation in Aplysia. PLoS One 2017; 12:e0186646. [PMID: 29053733 PMCID: PMC5650170 DOI: 10.1371/journal.pone.0186646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/04/2017] [Indexed: 11/19/2022] Open
Abstract
Calpains are a family of intracellular proteases defined by a conserved protease domain. In the marine mollusk Aplysia californica, calpains are important for the induction of long-term synaptic plasticity and memory, at least in part by cleaving protein kinase Cs (PKCs) into constitutively active kinases, termed protein kinase Ms (PKMs). We identify 14 genes encoding calpains in Aplysia using bioinformatics, including at least one member of each of the four major calpain families into which metazoan calpains are generally classified, as well as additional truncated and atypical calpains. Six classical calpains containing a penta-EF-hand (PEF) domain are present in Aplysia. Phylogenetic analysis determined that these six calpains come from three separate classical calpain families. One of the classical calpains in Aplysia, AplCCal1, has been implicated in plasticity. We identify three splice cassettes and an alternative transcriptional start site in AplCCal1. We characterize several of the possible isoforms of AplCCal1 in vitro, and demonstrate that AplCCal1 can cleave PKCs into PKMs in a calcium-dependent manner in vitro. We also find that AplCCal1 has a novel mechanism of auto-inactivation through N-terminal cleavage that is modulated through its alternative transcriptional start site.
Collapse
|
33
|
Abstract
Modern laboratory techniques allow studying NMDA receptors (NMDAR) either anatomically with specific antibodies coupled to sophisticated confocal microscopy, or physiologically by live imaging or electrophysiological techniques. However, NMDARs are not fixed in time and space and changes in their composition and/or distribution on the post-synaptic membrane may significantly impact the synaptic strength and overall function. The computational modeling approach therefore constitutes a complementary tool for investigating the properties of biological systems based on the knowledge provided by the lab experiments.Here, we describe a general computational method aiming at developing kinetic Markov-chain based models of NMDARs subtypes capable of reproducing various experimental results. These models are then used to make predictions on additional (non-obvious) properties and on their role in synaptic function under various physiological and pharmacological conditions. For the purpose of this book chapter, we will focus on the method used to develop a NMDAR model that includes pharmacological site of action of different compounds. Notably, this elementary model can subsequently be included in a neuron model (not described in detail here) to explore the impact of their differential distribution on synaptic functions.
Collapse
|
34
|
Bhattacharya S, Mukherjee B, Doré JJE, Yuan Q, Harley CW, McLean JH. Histone deacetylase inhibition induces odor preference memory extension and maintains enhanced AMPA receptor expression in the rat pup model. ACTA ACUST UNITED AC 2017; 24:543-551. [PMID: 28916629 PMCID: PMC5602343 DOI: 10.1101/lm.045799.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/07/2017] [Indexed: 11/24/2022]
Abstract
Histone deacetylase (HDAC) plays a role in synaptic plasticity and long-term memory formation. We hypothesized that trichostatin-A (TSA), an HDAC inhibitor, would promote long-term odor preference memory and maintain enhanced GluA1 receptor levels that have been hypothesized to support memory. We used an early odor preference learning model in neonate rat pups that normally produces only 24-h memory to test behavior and examine receptor protein expression. Our behavioral studies showed that intrabulbar infusion of TSA, prior to pairing of the conditioned stimulus (peppermint odor) with the unconditioned stimulus (tactile stimulation), prolonged 24-h odor preference memory for at least 9 d. The prolonged odor preference memory was selective for the paired odor and was also observed using a specific HDAC6 inhibitor, tubacin, supporting a role for histone acetylation in associative memory. Immunoblot analysis showed that GluA1 receptor membrane expression in the olfactory bulbs of the TSA-treated group was significantly increased at 48 h unlike control rats without TSA. Immunohistochemistry revealed significant increase of GluA1 expression in olfactory bulb glomeruli 5 d after training. These results extend previous evidence for a close relationship between enhanced GluA1 receptor membrane expression and memory expression. Together, these findings provide a new single-trial appetitive model for understanding the support and maintenance of memories of varying duration.
Collapse
Affiliation(s)
- Sriya Bhattacharya
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3V6
| | - Bandhan Mukherjee
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3V6
| | - Jules J E Doré
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3V6
| | - Qi Yuan
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3V6
| | - Carolyn W Harley
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3X9
| | - John H McLean
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3V6
| |
Collapse
|
35
|
Trent S, Barnes P, Hall J, Thomas KL. AMPA receptors control fear extinction through an Arc-dependent mechanism. ACTA ACUST UNITED AC 2017; 24:375-380. [PMID: 28716957 PMCID: PMC5516687 DOI: 10.1101/lm.045013.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/21/2017] [Indexed: 11/24/2022]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) supports fear memory through synaptic plasticity events requiring actin cytoskeleton rearrangements. We have previously shown that reducing hippocampal Arc levels through antisense knockdown leads to the premature extinction of contextual fear. Here we show that the AMPA receptor antagonist CNQX elevates hippocampal Arc levels during extinction and blocks extinction that can be rescued by reducing Arc. Increasing Arc levels with CNQX also overcomes the actin-destabilizing properties of cytochalasin D and promotes extinction. Therefore, extinction is dependent on AMPA-mediated reductions of Arc via a mechanism consistent with a role for Arc in stabilizing the actin cytoskeleton to constrain extinction.
Collapse
Affiliation(s)
- Simon Trent
- Neuroscience and Mental Health Research Institute, Cardiff University, Haydn Ellis Building, Cardiff CF24 4HQ, United Kingdom
| | - Philip Barnes
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AX, United Kingdom
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Haydn Ellis Building, Cardiff CF24 4HQ, United Kingdom.,MRC Centre for Neuropsychiatric Genetics and Genomics, Haydn Ellis Building, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Haydn Ellis Building, Cardiff CF24 4HQ, United Kingdom.,Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AX, United Kingdom
| |
Collapse
|
36
|
Zhu G, Briz V, Seinfeld J, Liu Y, Bi X, Baudry M. Calpain-1 deletion impairs mGluR-dependent LTD and fear memory extinction. Sci Rep 2017; 7:42788. [PMID: 28202907 PMCID: PMC5311935 DOI: 10.1038/srep42788] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/17/2017] [Indexed: 01/02/2023] Open
Abstract
Recent studies indicate that calpain-1 is required for the induction of long-term potentiation (LTP) elicited by theta-burst stimulation in field CA1 of hippocampus. Here we determined the contribution of calpain-1 in another type of synaptic plasticity, the long-term depression (LTD) elicited by activation of type-I metabotropic glutamate receptors (mGluR-LTD). mGluR-LTD was associated with calpain-1 activation following T-type calcium channel opening, and resulted in the truncation of a regulatory subunit of PP2A, B56α. This signaling pathway was required for both the early and late phase of Arc translation during mGluR-LTD, through a mechanism involving mTOR and ribosomal protein S6 activation. In contrast, in hippocampal slices from calpain-1 knock-out (KO) mice, application of the mGluR agonist, DHPG, did not result in B56α truncation, increased Arc synthesis and reduced levels of membrane GluA1-containing AMPA receptors. Consistently, mGluR-LTD was impaired in calpain-1 KO mice, and the impairment could be rescued by phosphatase inhibitors, which also restored Arc translation in response to DHPG. Furthermore, calpain-1 KO mice exhibited impairment in fear memory extinction to tone presentation. These results indicate that calpain-1 plays a critical role in mGluR-LTD and is involved in many forms of synaptic plasticity and learning and memory.
Collapse
Affiliation(s)
- Guoqi Zhu
- Graduate College of Biomedical Sciences, Pomona, CA 91766, USA
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Victor Briz
- Graduate College of Biomedical Sciences, Pomona, CA 91766, USA
- VIB Center for the Biology of Disease, KU Leuven, 3000 Leuven, Belgium
| | - Jeff Seinfeld
- Graduate College of Biomedical Sciences, Pomona, CA 91766, USA
| | - Yan Liu
- Graduate College of Biomedical Sciences, Pomona, CA 91766, USA
- College of Osteopathic Medicine of the Pacific Western University of Health Sciences Pomona, CA 91766, CA 91766, USA
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific Western University of Health Sciences Pomona, CA 91766, CA 91766, USA
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Pomona, CA 91766, USA
| |
Collapse
|
37
|
Sedmak G, Jovanov-Milošević N, Puskarjov M, Ulamec M, Krušlin B, Kaila K, Judaš M. Developmental Expression Patterns of KCC2 and Functionally Associated Molecules in the Human Brain. Cereb Cortex 2016; 26:4574-4589. [PMID: 26428952 DOI: 10.1093/cercor/bhv218] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Work on rodents demonstrated that steep upregulation of KCC2, a neuron-specific Cl- extruder of cation-chloride cotransporter (CCC) family, commences in supraspinal structures at around birth, leading to establishment of hyperpolarizing GABAergic responses. We describe spatiotemporal expression profiles of the entire CCC family in human brain. KCC2 mRNA was observed already at 10th postconceptional week (PCW) in amygdala, cerebellum, and thalamus. KCC2-immunoreactive (KCC2-ir) neurons were abundant in subplate at 18 PCW. By 25 PCW, numerous subplate and cortical plate neurons became KCC2-ir. The mRNA expression profiles of α- and β-isoforms of Na-K ATPase, which fuels cation-chloride cotransport, as well of tropomyosin receptor kinase B (TrkB), which promotes developmental upregulation of KCC2, were consistent with data from studies on rodents about their interactions with KCC2. Thus, in human brain, expression of KCC2 and its functionally associated proteins begins in early fetal period. Our work facilitates translation of results on CCC functions from animal studies to human and refutes the view that poor efficacy of anticonvulsants in the term human neonate is attributable to the lack of KCC2. We propose that perinatally low threshold for activation of Ca2+-dependent protease calpain renders neonates susceptible to downregulation of KCC2 by traumatic events, such as perinatal hypoxia ischemia.
Collapse
Affiliation(s)
| | | | - Martin Puskarjov
- Department of Biosciences and Neuroscience Center, University of Helsinki, Viikinkaari 1, Helsinki FI-00014, Finland
| | - Monika Ulamec
- Department of Pathology, Clinical Hospital Center Sisters of Mercy, University of Zagreb School of Medicine, Zagreb 10 000, Croatia
| | - Božo Krušlin
- Department of Pathology, Clinical Hospital Center Sisters of Mercy, University of Zagreb School of Medicine, Zagreb 10 000, Croatia
| | - Kai Kaila
- Department of Biosciences and Neuroscience Center, University of Helsinki, Viikinkaari 1, Helsinki FI-00014, Finland
| | | |
Collapse
|
38
|
Differential role of calpain-dependent protein cleavage in intermediate and long-term operant memory in Aplysia. Neurobiol Learn Mem 2016; 137:134-141. [PMID: 27913293 DOI: 10.1016/j.nlm.2016.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 01/06/2023]
Abstract
In addition to protein synthesis, protein degradation or protein cleavage may be necessary for intermediate (ITM) and long-term memory (LTM) to remove molecular constraints, facilitate persistent kinase activity and modulate synaptic plasticity. Calpains, a family of conserved calcium dependent cysteine proteases, modulate synaptic function through protein cleavage. We used the marine mollusk Aplysia californica to investigate the in vivo role of calpains during intermediate and long-term operant memory formation using the learning that food is inedible (LFI) paradigm. A single LFI training session, in which the animal associates a specific netted seaweed with the failure to swallow, generates short (30min), intermediate (4-6h) and long-term (24h) memory. Using the calpain inhibitors calpeptin and MDL-28170, we found that ITM requires calpain activity for induction and consolidation similar to the previously reported requirements for persistent protein kinase C activity in intermediate-term LFI memory. The induction of LTM also required calpain activity. In contrast to ITM, calpain activity was not necessary for the molecular consolidation of LTM. Surprisingly, six hours after LFI training we found that calpain activity was necessary for LTM, although this is a time at which neither persistent PKC activity nor protein synthesis is required for the maintenance of long-term LFI memory. These results demonstrate that calpains function in multiple roles in vivo during associative memory formation.
Collapse
|
39
|
Compans B, Choquet D, Hosy E. Review on the role of AMPA receptor nano-organization and dynamic in the properties of synaptic transmission. NEUROPHOTONICS 2016; 3:041811. [PMID: 27981061 PMCID: PMC5109202 DOI: 10.1117/1.nph.3.4.041811] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Receptor trafficking and its regulation have appeared in the last two decades to be a major controller of basal synaptic transmission and its activity-dependent plasticity. More recently, considerable advances in super-resolution microscopy have begun deciphering the subdiffraction organization of synaptic elements and their functional roles. In particular, the dynamic nanoscale organization of neurotransmitter receptors in the postsynaptic membrane has recently been suggested to play a major role in various aspects of synapstic function. We here review the recent advances in our understanding of alpha-amino-3-hydroxy-5-méthyl-4-isoxazolepropionic acid subtype glutamate receptors subsynaptic organization and their role in short- and long-term synaptic plasticity.
Collapse
Affiliation(s)
- Benjamin Compans
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
| | - Daniel Choquet
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
- University of Bordeaux, Bordeaux Imaging Center, UMS 3420 CNRS, US4 INSERM, France
| | - Eric Hosy
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
| |
Collapse
|
40
|
Abstract
Despite references in the psychomotor literature regarding the use of rehearsal strategies in recovering movements from longer term memory, no significant difference between physical (overt) and mental (covert) rehearsal strategies for retrieving a complex dance movement over 30 min., 2 days, and 1 wk. were observed for 72 college women in beginning dance classes. Further, no rehearsal was as effective as either physical or mental rehearsal for retrieving dance movements for up to 1 wk. after original learning by these inexperienced dancers. The findings raise the possibility that other forms of retrieval than those already proposed are used to recover complex dance movements from longer term memory.
Collapse
|
41
|
Sachser RM, Haubrich J, Lunardi PS, de Oliveira Alvares L. Forgetting of what was once learned: Exploring the role of postsynaptic ionotropic glutamate receptors on memory formation, maintenance, and decay. Neuropharmacology 2016; 112:94-103. [PMID: 27425202 DOI: 10.1016/j.neuropharm.2016.07.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022]
Abstract
Over the past years, extensive research in experimental cognitive neuroscience has provided a comprehensive understanding about the role of ionotropic glutamate receptor (IGluR)-dependent signaling underpinning postsynaptic plasticity induced by long-term potentiation (LTP), the leading cellular basis of long-term memory (LTM). However, despite the fact that iGluR-mediated postsynaptic plasticity regulates the formation and persistence of LTP and LTM, here we discuss the state-of-the-art regarding the mechanisms underpinning both LTP and LTM decay. First, we review the crucial roles that iGluRs play on memory encoding and stabilization. Second, we discuss the latest findings in forgetting considering hippocampal GluA2-AMPAR trafficking at postsynaptic sites as well as dendritic spine remodeling possibly involved in LTP decay. Third, on the role of retrieving consolidated LTMs, we discuss the mechanisms involved in memory destabilization that occurs followed reactivation that share striking similarities with the neurobiological basis of forgetting. Fourth, since different AMPAR subunits as well as postsynaptic scaffolding proteins undergo ubiquitination, the ubiquitin-proteasome system (UPS) is discussed in light of memory decay. In conclusion, we provide an integrated overview revealing some of the mechanisms determining memory forgetting that are mediated by iGluRs. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- Ricardo Marcelo Sachser
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Josué Haubrich
- Psychobiology and Neurocomputation Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paula Santana Lunardi
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas de Oliveira Alvares
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
42
|
Liu Y, Sun J, Wang Y, Lopez D, Tran J, Bi X, Baudry M. Deleting both PHLPP1 and CANP1 rescues impairments in long-term potentiation and learning in both single knockout mice. ACTA ACUST UNITED AC 2016; 23:399-404. [PMID: 27421891 PMCID: PMC4947237 DOI: 10.1101/lm.042721.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/18/2016] [Indexed: 11/25/2022]
Abstract
Calpain-1 (CANP1) has been shown to play a critical role in synaptic plasticity and learning and memory, as its deletion in mice results in impairment in theta-burst stimulation- (TBS) induced LTP and various forms of learning and memory. Likewise, PHLPP1 (aka SCOP) has also been found to participate in learning and memory, as PHLPP1 overexpression impairs hippocampus-dependent learning. We previously showed that TBS-induced LTP was associated with calpain-1 mediated truncation of PHLPP1.To better understand the roles of these 2 genes in synaptic plasticity and learning and memory, we generated a double knockout (DKO) mouse by crossing the parent strains. Surprisingly, DKO mice exhibit normal TBS-induced LTP, and the learning impairments in fear conditioning and novel object or novel location recognition were absent in the DKO mice. Moreover, TBS-induced ERK activation in field CA1 of hippocampal slices, which is impaired in both single deletion mice, was restored in the DKO mice. These results further strengthen the roles of both CANP1 and PHLPP1 in synaptic plasticity and learning and memory, and illustrate the complexities of the interactions between multiple pathways participating in synaptic plasticity.
Collapse
Affiliation(s)
- Yan Liu
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766, USA
| | - Jiandong Sun
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| | - Yubin Wang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766, USA
| | - Dulce Lopez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766, USA
| | - Jennifer Tran
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766, USA College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
43
|
Benjamin ER, Haftl SL, Xanthos DN, Crumley G, Hachicha M, Valenzano KJ. A Miniaturized Column Chromatography Method for Measuring Receptor-Mediated Inositol Phosphate Accumulation. ACTA ACUST UNITED AC 2016; 9:343-53. [PMID: 15191651 DOI: 10.1177/1087057103262841] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Inositol phosphates (IPs), such as 1,4,5-inositol-trisphosphate (IP3), comprise a ubiquitous intracellular signaling cascade initiated in response to G protein-coupled receptor-mediated activation of phospholipase C. Classical methods for measuring intracellular accumulation of these molecules include time-consuming high-performance liquid chromatography (HPLC) separation or large-volume, gravity-fed anion-exchange column chromatography. More recent approaches, such as radio-receptor and AlphaScreen™ assays, offer higher throughput. However, these techniques rely on measurement of IP3itself, rather than its accumulation with other downstream IPs, and often suffer from poor signal-to-noise ratios due to the transient nature of IP3. The authors have developed a miniaturized, anion-exchange chromatography method for measuring inositol phosphate accumulation in cells that takes advantage of signal amplification achieved through measuring IP3and downstream IPs. This assay uses centrifugation of 96-well-formatted anion-exchange mini-columns for the isolation of radiolabeled inositol phosphates from cell extracts, followed by low-background dry-scintillation counting. This improved assay method measures receptor-mediated IP accumulation with signal-to-noise and pharmacological values comparable to the classical large-volume, column-based methods. Assay validation data for recombinant muscarinic receptor 1, galanin receptor 2, and rat astrocyte metabotropic glutamate receptor 5 are presented. This miniaturized protocol reduces reagent usage and assay time as compared to large-column methods and is compatible with standard 96-well scintillation counters.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- Base Sequence
- CHO Cells
- Cell Line
- Chromatography, Ion Exchange/instrumentation
- Chromatography, Ion Exchange/methods
- Cricetinae
- DNA, Complementary/genetics
- Humans
- Inositol 1,4,5-Trisphosphate
- Inositol Phosphates/analysis
- Inositol Phosphates/metabolism
- Miniaturization/instrumentation
- Miniaturization/methods
- Rats
- Receptor, Galanin, Type 2/genetics
- Receptor, Galanin, Type 2/metabolism
- Receptor, Metabotropic Glutamate 5
- Receptor, Muscarinic M1/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Metabotropic Glutamate/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Elfrida R Benjamin
- Purdue Pharma Discovery Research, 6 Cedarbrook Drive, Cranbury, NJ 08512, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Multicolour Multilevel STED nanoscopy of Actin/Spectrin Organization at Synapses. Sci Rep 2016; 6:26725. [PMID: 27220554 PMCID: PMC4879624 DOI: 10.1038/srep26725] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 11/29/2022] Open
Abstract
Superresolution fluorescence microscopy of multiple fluorophores still requires development. Here we present simultaneous three-colour stimulated emission depletion (STED) nanoscopy relying on a single STED beam at 620 nm. Toggling the STED beam between two or more power levels (“multilevelSTED”) optimizes resolution and contrast in all colour channels, which are intrinsically co-aligned and well separated. Three-colour recording is demonstrated by imaging the nanoscale cytoskeletal organization in cultured hippocampal neurons. The down to ~35 nm resolution identified periodic actin/betaII spectrin lattices along dendrites and spines; however, at presynaptic and postsynaptic sites, these patterns were found to be absent. Both our multicolour scheme and the 620 nm STED line should be attractive for routine STED microscopy applications.
Collapse
|
45
|
Pirbhoy PS, Farris S, Steward O. Synaptic activation of ribosomal protein S6 phosphorylation occurs locally in activated dendritic domains. ACTA ACUST UNITED AC 2016; 23:255-69. [PMID: 27194793 PMCID: PMC4880148 DOI: 10.1101/lm.041947.116] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/07/2016] [Indexed: 01/08/2023]
Abstract
Previous studies have shown that induction of long-term potentiation (LTP) induces phosphorylation of ribosomal protein S6 (rpS6) in postsynaptic neurons, but the functional significance of rpS6 phosphorylation is poorly understood. Here, we show that synaptic stimulation that induces perforant path LTP triggers phosphorylation of rpS6 (p-rpS6) locally near active synapses. Using antibodies specific for phosphorylation at different sites (ser235/236 versus ser240/244), we show that strong synaptic activation led to dramatic increases in immunostaining throughout postsynaptic neurons with selectively higher staining for p-ser235/236 in the activated dendritic lamina. Following LTP induction, phosphorylation at ser235/236 was detectable by 5 min, peaked at 30 min, and was maintained for hours. Phosphorylation at both sites was completely blocked by local infusion of the NMDA receptor antagonist, APV. Despite robust induction of p-rpS6 following high frequency stimulation, assessment of protein synthesis by autoradiography revealed no detectable increases. Exploration of a novel environment led to increases in the number of p-rpS6-positive neurons throughout the forebrain in a pattern reminiscent of immediate early gene induction and many individual neurons that were p-rpS6-positive coexpressed Arc protein. Our results constrain hypotheses about the possible role of rpS6 phosphorylation in regulating postsynaptic protein synthesis during induction of synaptic plasticity.
Collapse
Affiliation(s)
- Patricia Salgado Pirbhoy
- Reeve-Irvine Research Center, Center for the Neurobiology of Learning and Memory Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory
| | - Shannon Farris
- Reeve-Irvine Research Center, Center for the Neurobiology of Learning and Memory Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA
| | - Oswald Steward
- Reeve-Irvine Research Center, Center for the Neurobiology of Learning and Memory Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA Department of Neurosurgery, University of California, Irvine, California 92697, USA
| |
Collapse
|
46
|
Abstract
Although calpain was proposed to participate in synaptic plasticity and learning and memory more than 30 years ago, the mechanisms underlying its activation and the roles of different substrates have remained elusive. Recent findings have provided evidence that the two major calpain isoforms in the brain, calpain-1 and calpain-2, play opposite functions in synaptic plasticity. In particular, while calpain-1 activation is the initial trigger for certain forms of synaptic plasticity, that is, long-term potentiation, calpain-2 activation restricts the extent of plasticity. Moreover, while calpain-1 rapidly cleaves regulatory and cytoskeletal proteins, calpain-2-mediated stimulation of local protein synthesis reestablishes protein homeostasis. These findings have important implications for our understanding of learning and memory and disorders associated with impairment in these processes.
Collapse
Affiliation(s)
- Victor Briz
- 1 KU Leuven, Center for Human Genetics and Leuven Institute for Neuroscience and Disease, Leuven, Belgium
- 2 VIB Center for the Biology of Disease, Leuven, Belgium
| | - Michel Baudry
- 3 Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
47
|
Gan-Or Z, Bouslam N, Birouk N, Lissouba A, Chambers D, Vérièpe J, Androschuk A, Laurent S, Rochefort D, Spiegelman D, Dionne-Laporte A, Szuto A, Liao M, Figlewicz D, Bouhouche A, Benomar A, Yahyaoui M, Ouazzani R, Yoon G, Dupré N, Suchowersky O, Bolduc F, Parker J, Dion P, Drapeau P, Rouleau G, Ouled Amar Bencheikh B. Mutations in CAPN1 Cause Autosomal-Recessive Hereditary Spastic Paraplegia. Am J Hum Genet 2016; 98:1038-1046. [PMID: 27153400 DOI: 10.1016/j.ajhg.2016.04.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 04/05/2016] [Indexed: 12/23/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a genetically and clinically heterogeneous disease characterized by spasticity and weakness of the lower limbs with or without additional neurological symptoms. Although more than 70 genes and genetic loci have been implicated in HSP, many families remain genetically undiagnosed, suggesting that other genetic causes of HSP are still to be identified. HSP can be inherited in an autosomal-dominant, autosomal-recessive, or X-linked manner. In the current study, we performed whole-exome sequencing to analyze a total of nine affected individuals in three families with autosomal-recessive HSP. Rare homozygous and compound-heterozygous nonsense, missense, frameshift, and splice-site mutations in CAPN1 were identified in all affected individuals, and sequencing in additional family members confirmed the segregation of these mutations with the disease (spastic paraplegia 76 [SPG76]). CAPN1 encodes calpain 1, a protease that is widely present in the CNS. Calpain 1 is involved in synaptic plasticity, synaptic restructuring, and axon maturation and maintenance. Three models of calpain 1 deficiency were further studied. In Caenorhabditis elegans, loss of calpain 1 function resulted in neuronal and axonal dysfunction and degeneration. Similarly, loss-of-function of the Drosophila melanogaster ortholog calpain B caused locomotor defects and axonal anomalies. Knockdown of calpain 1a, a CAPN1 ortholog in Danio rerio, resulted in abnormal branchiomotor neuron migration and disorganized acetylated-tubulin axonal networks in the brain. The identification of mutations in CAPN1 in HSP expands our understanding of the disease causes and potential mechanisms.
Collapse
|
48
|
Khan MR, Li L, Pérez-Sánchez C, Saraf A, Florens L, Slaughter BD, Unruh JR, Si K. Amyloidogenic Oligomerization Transforms Drosophila Orb2 from a Translation Repressor to an Activator. Cell 2016; 163:1468-83. [PMID: 26638074 DOI: 10.1016/j.cell.2015.11.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/02/2015] [Accepted: 11/10/2015] [Indexed: 12/21/2022]
Abstract
Memories are thought to be formed in response to transient experiences, in part through changes in local protein synthesis at synapses. In Drosophila, the amyloidogenic (prion-like) state of the RNA binding protein Orb2 has been implicated in long-term memory, but how conformational conversion of Orb2 promotes memory formation is unclear. Combining in vitro and in vivo studies, we find that the monomeric form of Orb2 represses translation and removes mRNA poly(A) tails, while the oligomeric form enhances translation and elongates the poly(A) tails and imparts its translational state to the monomer. The CG13928 protein, which binds only to monomeric Orb2, promotes deadenylation, whereas the putative poly(A) binding protein CG4612 promotes oligomeric Orb2-dependent translation. Our data support a model in which monomeric Orb2 keeps target mRNA in a translationally dormant state and experience-dependent conversion to the amyloidogenic state activates translation, resulting in persistent alteration of synaptic activity and stabilization of memory.
Collapse
Affiliation(s)
- Mohammed Repon Khan
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Liying Li
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Consuelo Pérez-Sánchez
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Anita Saraf
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Brian D Slaughter
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Kausik Si
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
49
|
Abstract
Fear memory is the best-studied form of memory. It was thoroughly investigated in the past 60 years mostly using two classical conditioning procedures (contextual fear conditioning and fear conditioning to a tone) and one instrumental procedure (one-trial inhibitory avoidance). Fear memory is formed in the hippocampus (contextual conditioning and inhibitory avoidance), in the basolateral amygdala (inhibitory avoidance), and in the lateral amygdala (conditioning to a tone). The circuitry involves, in addition, the pre- and infralimbic ventromedial prefrontal cortex, the central amygdala subnuclei, and the dentate gyrus. Fear learning models, notably inhibitory avoidance, have also been very useful for the analysis of the biochemical mechanisms of memory consolidation as a whole. These studies have capitalized on in vitro observations on long-term potentiation and other kinds of plasticity. The effect of a very large number of drugs on fear learning has been intensively studied, often as a prelude to the investigation of effects on anxiety. The extinction of fear learning involves to an extent a reversal of the flow of information in the mentioned structures and is used in the therapy of posttraumatic stress disorder and fear memories in general.
Collapse
Affiliation(s)
- Ivan Izquierdo
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane R. G. Furini
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jociane C. Myskiw
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
50
|
Calpain-1 and Calpain-2: The Yin and Yang of Synaptic Plasticity and Neurodegeneration. Trends Neurosci 2016; 39:235-245. [PMID: 26874794 DOI: 10.1016/j.tins.2016.01.007] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 01/09/2023]
Abstract
Many signaling pathways participate in both synaptic plasticity and neuronal degeneration. While calpains participate in these phenomena, very few studies have evaluated the respective roles of the two major calpain isoforms in the brain, calpain-1 and calpain-2. We review recent studies indicating that calpain-1 and calpain-2 exhibit opposite functions in both synaptic plasticity and neurodegeneration. Calpain-1 activation is required for the induction of long-term potentiation (LTP) and is generally neuroprotective, while calpain-2 activation limits the extent of potentiation and is neurodegenerative. This duality of functions is related to their associations with different PDZ-binding proteins, resulting in differential subcellular localization, and offers new therapeutic opportunities for a number of indications in which these proteases have previously been implicated.
Collapse
|