1
|
Lin FV, Heffner KL. Autonomic nervous system flexibility for understanding brain aging. Ageing Res Rev 2023; 90:102016. [PMID: 37459967 PMCID: PMC10530154 DOI: 10.1016/j.arr.2023.102016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
A recent call was made for autonomic nervous system (ANS) measures as digital health markers for early detection of Alzheimer's disease and related dementia (AD/ADRD). Nevertheless, contradictory or inconclusive findings exist. To help advance understanding of ANS' role in dementia, we draw upon aging and dementia-related literature, and propose a framework that centers on the role of ANS flexibility to guide future work on application of ANS function to differentiating the degree and type of dementia-related brain pathologies. We first provide a brief review of literature within the past 10 years on ANS and dementia-related brain pathologies. Next, we present an ANS flexibility model, describing how the model can be applied to understand these brain pathologies, as well as differentiate or even be leveraged to modify typical brain aging and dementia. Lastly, we briefly discuss the implication of the model for understanding resilience and vulnerability to dementia-related outcomes.
Collapse
Affiliation(s)
- Feng V Lin
- Department of Psychiatry and Behavioral Sciences, Stanford University, USA; Wu Tsai Neurosciences Institute, Stanford University, USA.
| | - Kathi L Heffner
- School of Nursing, University of Rochester, USA; Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, USA
| |
Collapse
|
2
|
Jacob Y, Schneider B, Spies C, Heinrich M, von Haefen C, Kho W, Pohrt A, Müller A. In a secondary analysis from a randomised, double-blind placebo-controlled trial Dexmedetomidine blocks cholinergic dysregulation in delirium pathogenesis in patients with major surgery. Sci Rep 2023; 13:3971. [PMID: 36894596 PMCID: PMC9998872 DOI: 10.1038/s41598-023-30756-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Dexmedetomidine is an alpha-2 adrenoreceptor agonist with anti-inflammatory and anti-delirogenic properties. Pathogenesis of postoperative delirium (POD) includes cholinergic dysfunction and deregulated inflammatory response to surgical trauma. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are discussed as biomarkers for both POD and severity in acute inflammation. To show whether there is a link between blood cholinesterase activities and dexmedetomidine, we performed a secondary analysis of a randomised, double-blind, placebo-controlled trial that recently showed a lower incidence of POD in the dexmedetomidine group. Abdominal or cardiac surgical patients aged ≥ 60 years were randomised to receive dexmedetomidine or placebo intra- and postoperatively in addition to standard general anaesthesia. We analysed the course of perioperative cholinesterase activities of 56 patients, measured preoperatively and twice postoperatively. Dexmedetomidine resulted in no change in AChE activity and caused a rapid recovery of BChE activity after an initial decrease, while placebo showed a significant decrease in both cholinesterase activities. There were no significant between-group differences at any point in time. From these data it can be assumed that dexmedetomidine could alleviate POD via altering the cholinergic anti-inflammatory pathway (CAIP). We advocate for further investigations to show the direct connection between dexmedetomidine and cholinesterase activity.
Collapse
Affiliation(s)
- Yanite Jacob
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charité Platz 1, 10117, Berlin, Germany
| | - Bill Schneider
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charité Platz 1, 10117, Berlin, Germany
| | - Claudia Spies
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charité Platz 1, 10117, Berlin, Germany
| | - Maria Heinrich
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charité Platz 1, 10117, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, 10178, Berlin, Germany
| | - Clarissa von Haefen
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charité Platz 1, 10117, Berlin, Germany
| | - Widuri Kho
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charité Platz 1, 10117, Berlin, Germany
| | - Anne Pohrt
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Anika Müller
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charité Platz 1, 10117, Berlin, Germany.
| |
Collapse
|
3
|
Cao SQ, Aman Y, Fang EF, Tencomnao T. P. edulis Extract Protects Against Amyloid-β Toxicity in Alzheimer's Disease Models Through Maintenance of Mitochondrial Homeostasis via the FOXO3/DAF-16 Pathway. Mol Neurobiol 2022; 59:5612-5629. [PMID: 35739408 DOI: 10.1007/s12035-022-02904-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/26/2022] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a common and devastating disease characterized by pathological aggregations of beta-amyloid (Aβ) plaques extracellularly, and Tau tangles intracellularly. While our understandings of the aetiologies of AD have greatly expanded over the decades, there is no drug available to stop disease progression. Here, we demonstrate the potential of Passiflora edulis (P. edulis) pericarp extract in protecting against Aβ-mediated neurotoxicity in mammalian cells and Caenorhabditis elegans (C. elegans) models of AD. We show P. edulis pericarp protects against memory deficit and neuronal loss, and promotes longevity in the Aβ model of AD via stimulation of mitophagy, a selective cellular clearance of damaged and dysfunctional mitochondria. P. edulis pericarp also restores memory and increases neuronal resilience in a C. elegans Tau model of AD. While defective mitophagy-induced accumulation of damaged mitochondria contributes to AD progression, P. edulis pericarp improves mitochondrial quality and homeostasis through BNIP3/DCT1-dependent mitophagy and SOD-3-dependent mitochondrial resilience, both via increased nuclear translocation of the upstream transcriptional regulator FOXO3/DAF-16. Further studies to identify active molecules in P. edulis pericarp that could maintain neuronal mitochondrial homeostasis may enable the development of potential drug candidates for AD.
Collapse
Affiliation(s)
- Shu-Qin Cao
- Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Yahyah Aman
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway.
- The Norwegian Centre On Healthy Ageing (NO-Age), Oslo, Norway.
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
The Interplay between Anticholinergic Burden and Anemia in Relation to 1-Year Mortality among Older Patients Discharged from Acute Care Hospitals. J Clin Med 2021; 10:jcm10204650. [PMID: 34682773 PMCID: PMC8539729 DOI: 10.3390/jcm10204650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/26/2021] [Accepted: 10/08/2021] [Indexed: 01/15/2023] Open
Abstract
Anticholinergic burden (ACB) and anemia were found associated with an increased risk of death among older patients. Additionally, anticholinergic medications may contribute to the development of anemia. Therefore, we aimed at investigating the prognostic interplay of ACB and anemia among older patients discharged from hospital. Our series consisted of 783 patients enrolled in a multicenter observational study. The outcome of the study was 1 year mortality. ACB was assessed by an Anticholinergic Cognitive Burden score. Anemia was defined as hemoglobin < 13 g/dL in men and <12 g/dL in women. The association between study variables and mortality was investigated by Cox regression analysis. After adjusting for several potential confounders, ACB score = 2 or more was significantly associated with the outcome in anemic patients (HR = 1.93, 95%CI = 1.13–3.40), but not non anemic patients (HR = 1.51, 95%CI = 0.65–3.48). An additive prognostic interaction between ACB and anemia was observed (p = 0.02). Anemia may represent a relevant effect modifier in the association between ACB and mortality.
Collapse
|
5
|
Galvin VC, Yang S, Lowet AS, Datta D, Duque A, Arnsten AFT, Wang M. M1 receptors interacting with NMDAR enhance delay-related neuronal firing and improve working memory performance. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2. [PMID: 35098156 PMCID: PMC8794314 DOI: 10.1016/j.crneur.2021.100016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The recurrent excitatory circuits in dlPFC underlying working memory are known to require activation of glutamatergic NMDA receptors (NMDAR). The neurons in these circuits also rely on acetylcholine to maintain persistent activity, with evidence for actions at both nicotinic α7 receptors and muscarinic M1 receptors (M1R). It is known that nicotinic α7 receptors interact with NMDAR in these circuits, but the interactions between M1R and NMDAR on dlPFC neuronal activity are unknown. Here, we investigated whether M1Rs contribute to the permissive effects of ACh in dlPFC circuitry underlying working memory via interactions with NMDA receptors. We tested interactions between M1Rs and NMDARs in vivo on single neuron activity in rhesus macaques performing a working memory task, as well as on working memory behavior in rodents following infusion of M1R and NMDAR compounds into mPFC. We report that M1R antagonists block the enhancing effects of NMDA application, consistent with M1R permissive actions. Conversely, M1R positive allosteric modulators prevented the detrimental effects of NMDAR blockade in single neurons in dlPFC and on working memory performance in rodents. These data support an interaction between M1R and NMDARs in working memory circuitry in both primates and rats, and suggest M1Rs contribute to the permissive actions of ACh in primate dlPFC. These results are consistent with recent data suggesting that M1R agonists may be helpful in the treatment of schizophrenia, a cognitive disorder associated with NMDAR dysfunction. Working memory-related persistent firing in primate prefrontal cortex relies on NMDAR. Unlike classic circuits, NMDAR transmission requires permissive acetylcholine actions. Muscarinic M1R blockade prevents the excitatory effects of NMDA on neuronal firing. M1R stimulation averts the harmful effects of NMDAR blockade on cell firing and memory.
Collapse
|
6
|
D'Alia S, Guarasci F, Bartucci L, Caloiero R, Guerrieri ML, Soraci L, Colombo D, Crescibene L, Onder G, Volpato S, Cherubini A, Ruggiero C, Corsonello A, Lattanzio F, Fabbietti P. Hand Grip Strength May Affect the Association Between Anticholinergic Burden and Mortality Among Older Patients Discharged from Hospital. Drugs Aging 2020; 37:447-455. [PMID: 32415534 DOI: 10.1007/s40266-020-00766-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE The relationship between anticholinergic burden and mortality is unclear, and the impact of anticholinergic burden on prognosis may vary in the presence of other conditions common in old age. We aimed to investigate the role of hand grip strength as a potential effect modifier in the association between anticholinergic burden and 1-year mortality in older patients discharged from hospital. METHODS Our series consisted of 620 older patients consecutively admitted to seven geriatric and internal medicine acute care wards in the context of a prospective multicenter observational study. Overall anticholinergic burden was assessed by Anticholinergic Cognitive Burden (ACB) score. Hand grip strength was assessed by the use of a North Coast medical hand dynamometer and categorized by using sex-specific cut-offs (women < 15 kg, men < 20 kg). The study outcome was 1-year mortality. Statistical analysis was performed by Cox regression analysis. RESULTS After adjusting for potential confounders, the co-occurrence of an ACB score of 2 or more and low hand grip strength was significantly associated with mortality (hazard ratio [HR] = 2.30, 95% confidence interval [CI] 1.07-6.01). Stratified analysis confirmed that an ACB score of 2 or more was associated with mortality among patients with low (HR = 2.15, 95% CI 1.08-5.02), but not normal hand grip strength (HR = 0.88, 95% CI 0.13-3.52). The association was confirmed among patients with low hand grip strength after adjusting for the ACB score at the 3-month follow-up (HR = 2.20; 95% CI 1.09-4.87), as well as when considering the ACB score as a continuous variable (HR = 1.24, 95% CI 1.03-1.48). CONCLUSIONS The ACB score at discharge may predict mortality among older patients discharged from an acute care hospital with low hand grip strength. Hospital physicians should be aware that prescribing anticholinergic medications in such a vulnerable population may have negative prognostic implications.
Collapse
Affiliation(s)
- Sonia D'Alia
- Unit of Geriatric Pharmacoepidemiology and Biostatistics, Scientific Research Institute-Italian National Research Center on Aging (IRCCS INRCA), Ancona and Cosenza, Italy
| | - Francesco Guarasci
- Unit of Geriatric Pharmacoepidemiology and Biostatistics, Scientific Research Institute-Italian National Research Center on Aging (IRCCS INRCA), Ancona and Cosenza, Italy.
| | - Luca Bartucci
- Unit of Geriatric Medicine, Scientific Research Institute-Italian National Research Center on Aging (IRCCS INRCA), Ancona and Cosenza, Italy
| | - Ramona Caloiero
- Unit of Geriatric Medicine, Scientific Research Institute-Italian National Research Center on Aging (IRCCS INRCA), Ancona and Cosenza, Italy
| | - Maurizio Leonardo Guerrieri
- Unit of Geriatric Medicine, Scientific Research Institute-Italian National Research Center on Aging (IRCCS INRCA), Ancona and Cosenza, Italy
| | - Luca Soraci
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | - Daniele Colombo
- Unit of Rehabilitative Pneumology, Scientific Research Institute-Italian National Research Center on Aging (IRCCS INRCA), Casatenovo, Italy
| | - Lucia Crescibene
- Clinical Laboratory, Scientific Research Institute-Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| | - Graziano Onder
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Volpato
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Carmelinda Ruggiero
- Section of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Andrea Corsonello
- Unit of Geriatric Pharmacoepidemiology and Biostatistics, Scientific Research Institute-Italian National Research Center on Aging (IRCCS INRCA), Ancona and Cosenza, Italy.,Unit of Geriatric Medicine, Scientific Research Institute-Italian National Research Center on Aging (IRCCS INRCA), Ancona and Cosenza, Italy
| | - Fabrizia Lattanzio
- Scientific Direction, Scientific Research Institute-Italian National Research Center on Aging (IRCCS INRCA), Ancona, Italy
| | - Paolo Fabbietti
- Unit of Geriatric Pharmacoepidemiology and Biostatistics, Scientific Research Institute-Italian National Research Center on Aging (IRCCS INRCA), Ancona and Cosenza, Italy
| |
Collapse
|
7
|
Galvin VC, Yang ST, Paspalas CD, Yang Y, Jin LE, Datta D, Morozov YM, Lightbourne TC, Lowet AS, Rakic P, Arnsten AFT, Wang M. Muscarinic M1 Receptors Modulate Working Memory Performance and Activity via KCNQ Potassium Channels in the Primate Prefrontal Cortex. Neuron 2020; 106:649-661.e4. [PMID: 32197063 DOI: 10.1016/j.neuron.2020.02.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/21/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Working memory relies on the dorsolateral prefrontal cortex (dlPFC), where microcircuits of pyramidal neurons enable persistent firing in the absence of sensory input, maintaining information through recurrent excitation. This activity relies on acetylcholine, although the molecular mechanisms for this dependence are not thoroughly understood. This study investigated the role of muscarinic M1 receptors (M1Rs) in the dlPFC using iontophoresis coupled with single-unit recordings from aging monkeys with naturally occurring cholinergic depletion. We found that M1R stimulation produced an inverted-U dose response on cell firing and behavioral performance when given systemically to aged monkeys. Immunoelectron microscopy localized KCNQ isoforms (Kv7.2, Kv7.3, and Kv7.5) on layer III dendrites and spines, similar to M1Rs. Iontophoretic manipulation of KCNQ channels altered cell firing and reversed the effects of M1R compounds, suggesting that KCNQ channels are one mechanism for M1R actions in the dlPFC. These results indicate that M1Rs may be an appropriate target to treat cognitive disorders with cholinergic alterations.
Collapse
Affiliation(s)
- Veronica C Galvin
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sheng Tao Yang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Yang Yang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lu E Jin
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Taber C Lightbourne
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adam S Lowet
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
8
|
Cisneros-Franco JM, Voss P, Kang MS, Thomas ME, Côté J, Ross K, Gaudreau P, Rudko DA, Rosa-Neto P, de-Villers-Sidani É. PET Imaging of Perceptual Learning-Induced Changes in the Aged Rodent Cholinergic System. Front Neurosci 2020; 13:1438. [PMID: 32038142 PMCID: PMC6985428 DOI: 10.3389/fnins.2019.01438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
The cholinergic system enhances attention and gates plasticity, making it a major regulator of adult learning. With aging, however, progressive degeneration of the cholinergic system impairs both the acquisition of new skills and functional recovery following neurological injury. Although cognitive training and perceptual learning have been shown to enhance auditory cortical processing, their specific impact on the cholinergic system remains unknown. Here we used [18F]FEOBV, a positron emission tomography (PET) radioligand that selectively binds to the vesicular acetylcholine transporter (VAChT), as a proxy to assess whether training on a perceptual task results in increased cholinergic neurotransmission. We show for the first time that perceptual learning is associated with region-specific changes in cholinergic neurotransmission, as detected by [18F]FEOBV PET imaging and corroborated with immunohistochemistry.
Collapse
Affiliation(s)
- J Miguel Cisneros-Franco
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| | - Patrice Voss
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| | - Min Su Kang
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Maryse E Thomas
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| | - Jonathan Côté
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| | - Karen Ross
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Pierrette Gaudreau
- Réseau Québécois de Recherche sur le Vieillissement, Université de Montréal, Montreal, QC, Canada
| | - David A Rudko
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Pedro Rosa-Neto
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Étienne de-Villers-Sidani
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Molecular imaging identifies age-related attenuation of acetylcholine in retrosplenial cortex in response to acetylcholinesterase inhibition. Neuropsychopharmacology 2019; 44:2091-2098. [PMID: 31009936 PMCID: PMC6887892 DOI: 10.1038/s41386-019-0397-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/28/2019] [Accepted: 04/07/2019] [Indexed: 02/05/2023]
Abstract
The neurotransmitter of the cholinergic system, acetylcholine plays a major role in the brain's cognitive function and is involved in neurodegenerative disorders. Here, we present age-related alterations of acetylcholine levels after administration of the acetylcholinesterase inhibitor drug tacrine in normal mice. Using a quantitative, robust and molecular-specific mass spectrometry imaging method we found that tacrine administration significantly raised acetylcholine levels in most areas of sectioned mice brains, inter alia the striatum, hippocampus and cortical areas. However, acetylcholine levels in retrosplenial cortex were significantly lower in 14-month-old than in 12-week-old animals following its administration, indicating that normal aging affects the cholinergic system's responsivity. This small brain region is interconnected with an array of brain networks and is involved in numerous cognitive tasks. Simultaneous visualization of distributions of tacrine and its hydroxylated metabolites in the brain revealed a significant decrease in levels of the metabolites in the 14-month-old mice. The results highlight strengths of the imaging technique to simultaneously investigate multiple molecular species and the drug-target effects in specific regions of the brain. The proposed approach has high potential in studies of neuropathological conditions and responses to neuroactive treatments.
Collapse
|
10
|
Segura-Uribe JJ, Farfán-García ED, Guerra-Araiza C, Ciprés-Flores FJ, García-dela Torre P, Soriano-Ursúa MA. Differences in brain regions of three mice strains identified by label-free micro-Raman. SPECTROSCOPY LETTERS 2018. [DOI: 10.1080/00387010.2018.1473883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Julia Jeanett Segura-Uribe
- Departamento de Fisiología, Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades. Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Eunice Dalet Farfán-García
- Departamento de Fisiología, Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades. Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Fabiola Jimena Ciprés-Flores
- Departamento de Fisiología, Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Paola García-dela Torre
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades. Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Marvin Antonio Soriano-Ursúa
- Departamento de Fisiología, Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
11
|
Voss P, Thomas ME, Cisneros-Franco JM, de Villers-Sidani É. Dynamic Brains and the Changing Rules of Neuroplasticity: Implications for Learning and Recovery. Front Psychol 2017; 8:1657. [PMID: 29085312 PMCID: PMC5649212 DOI: 10.3389/fpsyg.2017.01657] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022] Open
Abstract
A growing number of research publications have illustrated the remarkable ability of the brain to reorganize itself in response to various sensory experiences. A traditional view of this plastic nature of the brain is that it is predominantly limited to short epochs during early development. Although examples showing that neuroplasticity exists outside of these finite time-windows have existed for some time, it is only recently that we have started to develop a fuller understanding of the different regulators that modulate and underlie plasticity. In this article, we will provide several lines of evidence indicating that mechanisms of neuroplasticity are extremely variable across individuals and throughout the lifetime. This variability is attributable to several factors including inhibitory network function, neuromodulator systems, age, sex, brain disease, and psychological traits. We will also provide evidence of how neuroplasticity can be manipulated in both the healthy and diseased brain, including recent data in both young and aged rats demonstrating how plasticity within auditory cortex can be manipulated pharmacologically and by varying the quality of sensory inputs. We propose that a better understanding of the individual differences that exist within the various mechanisms that govern experience-dependent neuroplasticity will improve our ability to harness brain plasticity for the development of personalized translational strategies for learning and recovery following brain injury or disease.
Collapse
Affiliation(s)
- Patrice Voss
- *Correspondence: Étienne de Villers-Sidani, Patrice Voss,
| | | | | | - Étienne de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, MontrealQC, Canada
| |
Collapse
|
12
|
Manning C, Hall J, Gold P. Glucose Effects on Memory and Other Neuropsychological Tests in Elderly Humans. Psychol Sci 2017. [DOI: 10.1111/j.1467-9280.1990.tb00223.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Recent experiments indicate that peripheral glucose administration enhances memory in rodents and humans. This study examined the effects of glucose on memory and nonmemory measures of neuropsychological functioning in elderly humans. Healthy older adults were given a series of neuropsychological tests after drinking glucose- or saccharin-flavored lemonade. A repeated measures design using counter-balanced beverages and tests was used. Glucose enhanced performance on declarative memory tests but not on short-term or nonmemory neuropsychological measures. Glucose tolerance predicted performance on declarative memory tasks but not on other measures.
Collapse
Affiliation(s)
- C.A. Manning
- Department of Psychology, University of Virignia
| | - J.L. Hall
- Department of Psychology, University of Virignia
- Now at Department of Psychology, Mott Center, Wayne State University, Detroit, MI 48202
| | - P.E. Gold
- Department of Psychology, University of Virignia
| |
Collapse
|
13
|
Pairing Cholinergic Enhancement with Perceptual Training Promotes Recovery of Age-Related Changes in Rat Primary Auditory Cortex. Neural Plast 2015; 2016:1801979. [PMID: 27057359 PMCID: PMC4709731 DOI: 10.1155/2016/1801979] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/25/2015] [Indexed: 02/04/2023] Open
Abstract
We used the rat primary auditory cortex (A1) as a model to probe the effects of cholinergic enhancement on perceptual learning and auditory processing mechanisms in both young and old animals. Rats learned to perform a two-tone frequency discrimination task over the course of two weeks, combined with either the administration of a cholinesterase inhibitor or saline. We found that while both age groups learned the task more quickly through cholinergic enhancement, the young did so by improving target detection, whereas the old did so by inhibiting erroneous responses to nontarget stimuli. We also found that cholinergic enhancement led to marked functional and structural changes within A1 in both young and old rats. Importantly, we found that several functional changes observed in the old rats, particularly those relating to the processing and inhibition of nontargets, produced cortical processing features that resembled those of young untrained rats more so than those of older adult rats. Overall, these findings demonstrate that combining auditory training with neuromodulation of the cholinergic system can restore many of the auditory cortical functional deficits observed as a result of normal aging and add to the growing body of evidence demonstrating that many age-related perceptual and neuroplastic changes are reversible.
Collapse
|
14
|
Zhang K, Chen C, Liu Y, Chen H, Liu JP. Cellular senescence occurred widespread to multiple selective sites in the fetal tissues and organs of mice. Clin Exp Pharmacol Physiol 2014; 41:965-75. [DOI: 10.1111/1440-1681.12328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 09/16/2014] [Accepted: 09/30/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Kexiong Zhang
- Institute of Aging Research; Hangzhou Normal University School of Medicine; Hangzhou Zhejiang Province China
| | - Chengshu Chen
- Institute of Aging Research; Hangzhou Normal University School of Medicine; Hangzhou Zhejiang Province China
| | - Yingying Liu
- Institute of Aging Research; Hangzhou Normal University School of Medicine; Hangzhou Zhejiang Province China
| | - Hao Chen
- Institute of Aging Research; Hangzhou Normal University School of Medicine; Hangzhou Zhejiang Province China
| | - Jun-Ping Liu
- Institute of Aging Research; Hangzhou Normal University School of Medicine; Hangzhou Zhejiang Province China
- Department of Immunology; Central Eastern Clinical School, Monash University; Melbourne Vic. Australia
- Centre for Cancer Research; Monash Institute of Medical Research; Clayton Vic. Australia
| |
Collapse
|
15
|
Abstract
Delirium is a commonly encountered clinical problem and, contrary to popular belief, should be treated as an acute neurologic emergency. It can be caused by a multitude of conditions and is frequently observed in hospitalized patients. In some cases, delirium results from the direct effect of a toxin, as observed with anticholinergic medications, or from neuronal injury, as seen in herpes simplex virus encephalitis. Because the treatment of delirium rests on the identification and treatment of the underlying illness, the astute clinician must tease apart these various possibilities with a careful history and physical examination and judicious use of laboratory tests and imaging studies. This chapter will review an approach to the patient with delirium and discuss management strategies based on current evidence.
Collapse
|
16
|
Katayama T, Mori D, Miyake H, Fujiwara S, Ono Y, Takahashi T, Onozuka M, Kubo KY. Effect of bite-raised condition on the hippocampal cholinergic system of aged SAMP8 mice. Neurosci Lett 2012; 520:77-81. [PMID: 22640898 DOI: 10.1016/j.neulet.2012.05.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/09/2012] [Accepted: 05/10/2012] [Indexed: 11/30/2022]
Abstract
Occlusal disharmony induces chronic stress, which results in learning deficits in association with the morphologic changes in the hippocampus, e.g., neuronal degeneration and increased hypertrophied glial fibrillary acidic protein-positive cells. To investigate the mechanisms underlying impaired hippocampal function resulting from occlusal disharmony, we examined the effects of the bite-raised condition on the septohippocampal cholinergic system by assessing acetylcholine release in the hippocampus and choline acetyltransferase immunoreactivity in the medial septal nucleus in aged SAMP8 mice that underwent the bite raising procedure. Aged bite-raised mice showed decreased acetylcholine release in the hippocampus and a reduced number of choline acetyltransferase-immunopositive neurons in the medial septal nucleus compared to age-matched control mice. These findings suggest that the bite-raised condition in aged SAMP8 mice enhances the age-related decline in the septohippocampal cholinergic system, leading to impaired learning.
Collapse
Affiliation(s)
- Tasuku Katayama
- Department of Prosthodontics, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The literature on the neuroanatomical changes that occur during normal, non-demented aging is reviewed here with an emphasis on the improved accuracy of studies that use stereological techniques. Loss of neural tissue involved in cognition occurs during aging of humans as well as the other mammals that have been examined. There is considerable regional specificity within the cerebral cortex and the hippocampus in both the degree and cellular basis for loss. The anatomy of the prefrontal cortex is especially vulnerable to the effects of aging while the major subfields of the hippocampus are not. A loss of neurons, dendrites and synapses has been documented, as well as changes in neurotransmitter systems, in some regions of the cortex and hippocampus but not others. Species differences are also apparent in the cortical white matter and the corpus callosum where there are indications of loss of myelin in humans, but most evidence favors preservation in rats. The examination of whether the course of neuroanatomical aging is altered by hormone replacement in females is just beginning. When hormone replacement is started close to the time of cycle cessation, there are indications in humans and rats that replacement can preserve neural tissue but there is some variability due to the type of hormones and regimen of administration.
Collapse
Affiliation(s)
- Janice M Juraska
- Department of Psychology and Program in Neuroscience, University of Illinois, 603 E Daniel, Champaign, IL, 61820, USA,
| | | |
Collapse
|
18
|
Furey ML. The prominent role of stimulus processing: cholinergic function and dysfunction in cognition. Curr Opin Neurol 2011; 24:364-70. [PMID: 21725241 DOI: 10.1097/wco.0b013e328348bda5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The present review develops a framework from which to understand the role of the cholinergic system in healthy cognition and in cognitive dysfunction. Traditionally, the cholinergic system has been thought to have direct influence on cognitive processes such as working memory and attention. Although the influence of cholinergic function on stimulus processing has been long appreciated, the notion that cholinergic effects on stimulus processing is the mechanism by which acetylcholine influences cognitive processes has only more recently been considered. RECENT FINDINGS Literature supporting the hypothesis that cholinergic modulation influences cognitive functions through stimulus processing mechanisms has been growing for over a decade. Recent conceptualizations of the developing literature have argued for a new interpretation to an old and developing literature. SUMMARY The argument that cholinergic function modulates cognitive processes by direct effects on basic stimulus processing extends to cognitive dysfunction in neuropathological conditions including dementia and mood disorders. Memory and attention deficits observed in these and other conditions can be understood by evaluating the impact of cholinergic dysfunction on stimulus processing, rather than on the cognitive function in general.
Collapse
Affiliation(s)
- Maura L Furey
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
19
|
Kobayashi S, Iwamoto M, Kon K, Waki H, Ando S, Tanaka Y. Acetyl-L-carnitine improves aged brain function. Geriatr Gerontol Int 2010; 10 Suppl 1:S99-106. [PMID: 20590847 DOI: 10.1111/j.1447-0594.2010.00595.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of acetyl-L-carnitine (ALCAR), an acetyl derivative of L-carnitine, on memory and learning capacity and on brain synaptic functions of aged rats were examined. Male Fischer 344 rats were given ALCAR (100 mg/kg bodyweight) per os for 3 months and were subjected to the Hebb-Williams tasks and AKON-1 task to assess their learning capacity. Cholinergic activities were determined with synaptosomes isolated from brain cortices of the rats. Choline parameters, the high-affinity choline uptake, acetylcholine (ACh) synthesis and depolarization-evoked ACh release were all enhanced in the ALCAR group. An increment of depolarization-induced calcium ion influx into synaptosomes was also evident in rats given ALCAR. Electrophysiological studies using hippocampus slices indicated that the excitatory postsynaptic potential slope and population spike size were both increased in ALCAR-treated rats. These results indicate that ALCAR increases synaptic neurotransmission in the brain and consequently improves learning capacity in aging rats.
Collapse
Affiliation(s)
- Satoru Kobayashi
- Tokyo Metropolitan Institute of Gerontology, Tokyo Metropolitan Foundation for Research on Aging and Promotion, Sakaecho, Itabashiku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Uranga RM, Bruce-Keller AJ, Morrison CD, Fernandez-Kim SO, Ebenezer PJ, Zhang L, Dasuri K, Keller JN. Intersection between metabolic dysfunction, high fat diet consumption, and brain aging. J Neurochem 2010; 114:344-61. [PMID: 20477933 PMCID: PMC2910139 DOI: 10.1111/j.1471-4159.2010.06803.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Deleterious neurochemical, structural, and behavioral alterations are a seemingly unavoidable aspect of brain aging. However, the basis for these alterations, as well as the basis for the tremendous variability in regards to the degree to which these aspects are altered in aging individuals, remains to be elucidated. An increasing number of individuals regularly consume a diet high in fat, with high-fat diet consumption known to be sufficient to promote metabolic dysfunction, although the links between high-fat diet consumption and aging are only now beginning to be elucidated. In this review we discuss the potential role for age-related metabolic disturbances serving as an important basis for deleterious perturbations in the aging brain. These data not only have important implications for understanding the basis of brain aging, but also may be important to the development of therapeutic interventions which promote successful brain aging.
Collapse
Affiliation(s)
- Romina M. Uranga
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | | | - Christopher D. Morrison
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Sun Ok Fernandez-Kim
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Philip J. Ebenezer
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Le Zhang
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Kalavathi Dasuri
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Jeffrey N. Keller
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
21
|
Abstract
The pros and cons of estrogen therapy for use in postmenopausal women continue to be a major topic of debate in women's health. Much of this debate focuses on the potential benefits vs. harm of estrogen therapy on the brain and the risks for cognitive impairment associated with aging and Alzheimer's disease. Many animal and human studies suggest that estrogens can have significant beneficial effects on brain aging and cognition and reduce the risk of Alzheimer's-related dementia; however, others disagree. Important discoveries have been made, and hypotheses have emerged that may explain some of the inconsistencies. This review focuses on the cholinergic hypothesis, specifically on evidence that beneficial effects of estrogens on brain aging and cognition are related to interactions with cholinergic projections emanating from the basal forebrain. These cholinergic projections play an important role in learning and attentional processes, and their function is known to decline with advanced age and in association with Alzheimer's disease. Evidence suggests that many of the effects of estrogens on neuronal plasticity and function and cognitive performance are related to or rely upon interactions with these cholinergic projections; however, studies also suggest that the effectiveness of estrogen therapy decreases with age and time after loss of ovarian function. We propose a model in which deficits in basal forebrain cholinergic function contribute to age-related changes in the response to estrogen therapy. Based on this model, we propose that cholinergic-enhancing drugs, used in combination with an appropriate estrogen-containing drug regimen, may be a viable therapeutic strategy for use in older postmenopausal women with early evidence of mild cognitive decline.
Collapse
Affiliation(s)
- Robert B Gibbs
- University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, Pennsylvania 15261, USA.
| |
Collapse
|
22
|
Coiro V, Volpi R, Gramellini D, Maffei ML, Volta E, Melani A, Chiodera P. Effect of physical training on age-related reduction of GH secretion during exercise in normally cycling women. Maturitas 2010; 65:392-5. [PMID: 20117890 DOI: 10.1016/j.maturitas.2009.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/18/2009] [Accepted: 12/18/2009] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To evaluate whether prolonged physical activity (25 km/week running for 8 years) modifies GH decline. DESIGN The GH response to maximal exercise on bicycle-ergometer was tested in younger (26-30 years) and older (42-46 years) healthy women. Each age group included 2 subgroups of 10 sedentary and 10 runners, which were compared. The workload was increased at 3 min intervals from time 0 until exhaustion. Subjects with a low maximal capacity (as established in a preliminary test) pedalled for 3-4 min against no workload at the beginning of the test, so that exercises lasted about 15 min in all individuals. RESULTS At exhaustion, heart rate and systolic pressure were significantly higher in sedentary than in trained subjects, whereas V(O(2)max), blood glucose and plasma lactate levels were similar in all groups. Exercise induced similar GH responses in younger sedentary and exercise-trained subjects and in older exercise-trained subjects, with mean peak levels 7.5 times higher than baseline. In contrast, in older sedentary women peak GH level was only 4.4 times higher than baseline and was significantly lower than in the other groups. CONCLUSION These data suggest that in women prolonged physical training exerts protective effects against age-dependent decline in GH secretion.
Collapse
Affiliation(s)
- Vittorio Coiro
- Department of Internal Medicine and Biomedical Sciences, Via A. Gramsci 14, 43100 Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Acetylcholine and muscarinic receptor function in cerebral cortex of diabetic young and old male Wistar rats and the role of muscarinic receptors in calcium release from pancreatic islets. Biogerontology 2009; 11:151-66. [DOI: 10.1007/s10522-009-9237-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 06/02/2009] [Indexed: 10/20/2022]
|
24
|
Gibbs R, Mauk R, Nelson D, Johnson D. Donepezil treatment restores the ability of estradiol to enhance cognitive performance in aged rats: evidence for the cholinergic basis of the critical period hypothesis. Horm Behav 2009; 56:73-83. [PMID: 19303882 PMCID: PMC2737520 DOI: 10.1016/j.yhbeh.2009.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/27/2009] [Accepted: 03/06/2009] [Indexed: 11/18/2022]
Abstract
Recent studies suggest that the ability of estradiol to enhance cognitive performance diminishes with age and/or time following loss of ovarian function. We hypothesize that this is due, in part, to a decrease in basal forebrain cholinergic function. This study tested whether donepezil, a cholinesterase inhibitor, could restore estradiol effects on cognitive performance in aged rats that had been ovariectomized as young adults. Rats were ovariectomized at 3 months of age, and then trained on a delayed matching to position (DMP) T-maze task, followed by a configural association (CA) operant condition task, beginning at 12-17 or 22-27 months of age. Three weeks prior to testing, rats started to receive either donepezil or vehicle. After one week, half of each group also began receiving estradiol. Acclimation and testing began seven days later and treatment continued throughout testing. Estradiol alone significantly enhanced DMP acquisition in middle-aged rats, but not in aged rats. Donepezil alone had no effect on DMP acquisition in either age group; however, donepezil treatment restored the ability of estradiol to enhance DMP acquisition in aged rats. This effect was due largely to a reduction in the predisposition to adopt a persistent turn strategy during acquisition. These same treatments did not affect acquisition of the CA task in middle-aged rats, but did have small but significant effects on response time in aged rats. The data are consistent with the idea that estrogen effects on cognitive performance are task specific, and that deficits in basal forebrain cholinergic function are responsible for the loss of estradiol effect on DMP acquisition in aged ovariectomized rats. In addition, the data suggest that enhancing cholinergic function pharmacologically can restore the ability of estradiol to enhance acquisition of the DMP task in very old rats following long periods of hormone deprivation. Whether donepezil has similar restorative effects on other estrogen-sensitive tasks needs to be explored.
Collapse
Affiliation(s)
- R.B. Gibbs
- University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, PA 15261, TEL: 412-624-8185, Fax: 412-624-1850,
- Correspondence: Robert Gibbs, Ph.D., University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, PA 15261. TEL: 412-624-8185, FAX: 412-383-7436,
| | - R. Mauk
- University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, PA 15261, TEL: 412-624-8185, Fax: 412-624-1850,
| | - D. Nelson
- University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, PA 15261, TEL: 412-624-8185, Fax: 412-624-1850,
| | - D.A. Johnson
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282
| |
Collapse
|
25
|
Ricciardi E, Pietrini P, Schapiro MB, Rapoport SI, Furey ML. Cholinergic modulation of visual working memory during aging: a parametric PET study. Brain Res Bull 2009; 79:322-32. [PMID: 19480991 DOI: 10.1016/j.brainresbull.2009.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 01/29/2009] [Accepted: 01/29/2009] [Indexed: 10/21/2022]
Abstract
Age-related differences in the regional recruitment of prefrontal cortex (PFC) during cognitive tasks suggests that aging is associated with functional reorganization. Cholinergic enhancement with physostigmine reduces activity in the PFC regions selectively recruited during working memory (WM) and increases activity in visual processing areas, suggesting that augmenting cholinergic function reduces task effort by improving the visual representation of WM stimuli. Here, we investigated how cholinergic enhancement influenced PFC and visual cortical activity in young and older subjects as WM difficulty was altered. Regional cerebral blood flow (rCBF) was measured using H(2)(15)O-PET in 10 young and 10 older volunteers during a parametrically varied face WM task, following an i.v. infusion of saline and physostigmine. Reaction time decreased during physostigmine relative to placebo in both groups. Prefrontal brain regions selectively recruited in each age group that responded differentially to task demands during placebo, had no significant activity during physostigmine. Medial visual processing areas showed task-selective increases in activity during drug in both groups, while lateral regions showed decreased activity in young and increased activity in older participants at longer task delays. These results are consistent with our previous findings, showing that the modulatory role of the cholinergic system persists during aging, and that the effects of cholinergic enhancement are functionally specific rather than anatomically specific. Moreover, the use of the parametric design allowed us to uncover group specific effects in lateral visual processing areas where increasing cholinergic function produced opposite effects on neural activity in the two age groups.
Collapse
Affiliation(s)
- Emiliano Ricciardi
- Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Italy.
| | | | | | | | | |
Collapse
|
26
|
Fanciulli G, Delitala A, Delitala G. Growth hormone, menopause and ageing: no definite evidence for 'rejuvenation' with growth hormone. Hum Reprod Update 2009; 15:341-58. [DOI: 10.1093/humupd/dmp005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
27
|
Pathoetiological model of delirium: a comprehensive understanding of the neurobiology of delirium and an evidence-based approach to prevention and treatment. Crit Care Clin 2008; 24:789-856, ix. [PMID: 18929943 DOI: 10.1016/j.ccc.2008.06.004] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Delirium is the most common complication found in the general hospital setting. Yet, we know relatively little about its actual pathophysiology. This article contains a summary of what we know to date and how different proposed intrinsic and external factors may work together or by themselves to elicit the cascade of neurochemical events that leads to the development delirium. Given how devastating delirium can be, it is imperative that we better understand the causes and underlying pathophysiology. Elaborating a pathoetiology-based cohesive model to better grasp the basic mechanisms that mediate this syndrome will serve clinicians well in aspiring to find ways to correct these cascades, instituting rational treatment modalities, and developing effective preventive techniques.
Collapse
|
28
|
Cassel JC, Lazaris A, Birthelmer A, Jackisch R. Spatial reference- (not working- or procedural-) memory performance of aged rats in the water maze predicts the magnitude of sulpiride-induced facilitation of acetylcholine release by striatal slices. Neurobiol Aging 2007; 28:1270-85. [PMID: 16843572 DOI: 10.1016/j.neurobiolaging.2006.05.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/18/2006] [Accepted: 05/30/2006] [Indexed: 11/17/2022]
Abstract
Cluster analysis of water-maze reference-memory performance distinguished subpopulations of young adult (3-5 months), aged (25-27 months) unimpaired (AU) and aged impaired (AI) rats. Working-memory performances of AU and AI rats were close to normal (though young and aged rats differed in exploration strategies). All aged rats showed impaired procedural-memory. Electrically evoked release of tritium was assessed in striatal slices (preloaded with [(3)H]choline) in the presence of oxotremorine, physostigmine, atropine+physostigmine, quinpirole, nomifensine or sulpiride. Aged rats exhibited reduced accumulation of [(3)H]choline (-30%) and weaker transmitter release. Drug effects (highest concentration) were reductions of release by 44% (oxotremorine), 72% (physostigmine), 84% (quinpirole) and 65% (nomifensine) regardless of age. Sulpiride and atropine+physostigmine facilitated the release more efficiently in young rats versus aged rats. The sulpiride-induced facilitation was weaker in AI rats versus AU rats; it significantly correlated with reference-memory performance. The results confirm age-related alterations of cholinergic and dopaminergic striatal functions, and point to the possibility that alterations in the D(2)-mediated dopaminergic regulation of these functions contribute to age-related reference-memory deficits.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Laboratoire de Neurosciences Comportementales et Cognitives, FRE 2855, CNRS-Université Louis Pasteur, IFR 37 Neurosciences, GDR CNRS 2905, Strasbourg, France.
| | | | | | | |
Collapse
|
29
|
Thouvarecq R, Caston J, Protais P. Cholinergic system, rearing environment and trajectory learning during aging in mice. Physiol Behav 2007; 90:155-64. [PMID: 17074375 DOI: 10.1016/j.physbeh.2006.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 09/17/2006] [Accepted: 09/20/2006] [Indexed: 10/24/2022]
Abstract
Three, 12- and 20-month-old C57BL6/J mice, reared in standard conditions or in enriched environments, were administered subcutaneously either scopolamine hydrobromide, 0.6 or 1.2 mg kg(-1), or physiological saline (control mice) 15 min before testing their abilities to find an invisible platform in a modified version of the Morris water maze, the starting point being kept unchanged throughout the experiment to allow the aged animals to solve the task. The results demonstrated that: 1) All control mice, whatever their age, were able to learn the platform location, but the number of trials needed to reach the learning criterion (3 consecutive trials in less than 8 s) increased with age; 2) All the scopolamine-treated mice, whatever their age, were also able to learn the platform location. However, compared to age-matched controls, the number of trials needed to reach the learning criterion was greater; 3) Rearing the animals in an enriched environment antagonized the effect of scopolamine, but only in the youngest (3 month-old) mice. All control and scopolamine-treated mice, whatever their age and their rearing environment, remembered, 7 days later, the platform location.
Collapse
Affiliation(s)
- R Thouvarecq
- UPRES PSY.CO EA 1780, Faculté des Sciences, Laboratoire de Neurobiologie de l'Apprentissage, Université de Rouen, 76821 Mont-Saint-Aignan Cedex, France
| | | | | |
Collapse
|
30
|
Meier-Ruge W, Kolbe M, Sattler J. Investigations of the cholinergic deficit hypothesis in the hippocampus of the aged rat brain with physostigmine and scopolamine. Arch Gerontol Geriatr 2005; 12:239-51. [PMID: 15374451 DOI: 10.1016/0167-4943(91)90031-k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/1990] [Accepted: 12/13/1990] [Indexed: 11/24/2022]
Abstract
Using histochemically demonstrated acetylcholinesterase activity and (14)C-2-deoxyglucose uptake as the respective indices, a study was set up to determine whether cerebral (hippocampal) metabolism was stimulated by a cholinergic agonist and/or inhibited by a cholinergic antagonist. For this 36 12-month-old (adult) and 48 27-month-old (aged) Fischer 344 rats were given intraperitoneal injections of physostigmine 0.05, 0.1 or 0.2 mg/kg or scopolamine 0.01, 0.03 or 0.1 mg/kg for 5 days. In the aged rats there was a slight increase in acetylcholinesterase activity after physostigmine but no convincing evidence of enhanced (14)C-2-deoxyglucose uptake. In neither age group was glucose uptake significantly reduced by scopolamine; it was in fact increased, as was - slightly but significantly - acetylcholinesterase activity. Findings for acetylcholinesterase activity and (14)C-2-deoxyglucose uptake in aged Fischer 344 rats thus do not provide firm corroboration of physostigmine-induced stimulation of mental performance found in behavioural studies, while scopolamine did not adversely affect the hippocampal variables studied. It is concluded that cholinergic agents such as physostigmine and scopolamine have only a marginal effect on the functional and metabolic deficits associated with cerebral aging.
Collapse
Affiliation(s)
- W Meier-Ruge
- Division of Gerontological Brain Research, Institute of Pathology, Basle University Medical School, Basle, Switzerland
| | | | | |
Collapse
|
31
|
Hoyer S. Causes and consequences of disturbances of cerebral glucose metabolism in sporadic Alzheimer disease: therapeutic implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 541:135-52. [PMID: 14977212 DOI: 10.1007/978-1-4419-8969-7_8] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alzheimer disease is not a single disorder. Etiologically, two different types or even diseases exist: inheritance in 5% to 10% of all Alzheimer cases versus 90% to 95% AD cases whith sporadic origin (SAD). Different susceptibility genes along with adult lifestyle risk-factors- in the case of SAD the risk factor aging- may be assumed to cause the latter disorder. There is evidence that a disturbance in the insulin signal transduction pathway may be a central and early pathophysiologic event in SAD. Both, hypercortisolemia and increased adrenergic activity, in both old age and SAD may render the function of the neuronal insulin receptor vulnerable resulting in a diminished production of ATP. The reduced availability of ATP may damage the function of the endoplasmic reticulum/Golgi apparatus/trans Golgi network generating misfolded and malfolded proteins retained in the cell. In SAD, amyloid precursor protein is found to accumulate intracellularly thus not representing the cause but a driving force in the pathogenesis of SAD. Additionally, both disturbed insulin signaling and reduced ATP forward the hyperphosphorylation of tau protein. Thus, abnormalities in oxidative brain metabolism lead to the formation of two main morphologic hallmarks of SAD: senile plaques and neurofibrillary tangles. Therefore, the therapeutic goal in SAD should be the improvement of the neuronal energy state. Findings from both basic and clinical studies showed that Ginkgo biloba extract (EGb 761) may be appropiate to approach that goal.
Collapse
Affiliation(s)
- Siegfried Hoyer
- Department of Pathochemistry and General Neurochemistry, University of Heidelberg, Im Neuenheimer Feld 220/221, Heidelberg, Germany 69120
| |
Collapse
|
32
|
Lanfranco F, Gianotti L, Giordano R, Pellegrino M, Maccario M, Arvat E. Ageing, growth hormone and physical performance. J Endocrinol Invest 2003; 26:861-72. [PMID: 14964439 DOI: 10.1007/bf03345237] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Human ageing is associated to a declining activity of the GH/IGF-I axis and to several changes in body composition, function and metabolism which show strict similarities with those of younger adults with pathological GH deficiency. The age-related changes of the GH/IGF-I axis activity are mainly dependent on age-related variations in the hypothalamic control of somatotroph function, which is also affected by changes in peripheral hormones and metabolic input. The term "somatopause" indicates the potential link between the age-related decline in GH and IGF-I levels and changes in body composition, structural functions and metabolism which characterise ageing. Physical exercise is an important environmental regulator of the GH/IGF-I axis activity. Increased physical fitness and regular training increase GH production in adults, while the GH response to aerobic or resistance exercise is reduced with age. In older subjects regular exercise has the potential to improve overall fitness and quality of life and is also associated to decreased morbidity and increased longevity. Similar effects are seen following GH therapy in adult deficiency. This assumption led to clinical trials focusing on rhGH and/or rhlGF-I as potential anabolic drug interventions in elderly subjects. To restore the activity of GH/IGF-I axis with anabolic, anti-ageing purposes, attention has been also paid to GH-releasing molecules such as GHRH, orally active synthetic GH-secretagogues (GHS) and, more recently, to the endogenous natural GHS, ghrelin, which exerts several important biological actions, including the regulation of metabolic balance and orexigenic effects. At present, however, there is no definite evidence that "frail" elderly subjects really benefit from restoring GH and IGF-I levels within the young adult range by treatment with rhGH, rhlGF-I, GHRH or GHS. In this article the alteration of the GH/IGF-I axis activity during ageing is revised taking into account the role of physical activity as a regulator of the axis function and considering the effects of the restoration of GH and IGF-I circulating levels on body composition and physical performance.
Collapse
Affiliation(s)
- F Lanfranco
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Turin, Turin, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Teather LA, Wurtman RJ. Dietary cytidine (5')-diphosphocholine supplementation protects against development of memory deficits in aging rats. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27:711-7. [PMID: 12787861 DOI: 10.1016/s0278-5846(03)00086-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study was designed to assess the effect of supplementation with dietary cytidine (5')-diphosphocholine (CDP-choline), a source of cytidine and choline, on memory in young and older rats. Although the hippocampal-dependent memory deficits in aged rats are well documented, cognitive functioning in early aging has not been as thoroughly evaluated. Female Sprague-Dawley rats (3 or 15 months of age) consumed either a control diet or a diet supplemented with CDP-choline (approximately 500 mg/kg/day) for 8 weeks, after which they were trained to perform spatial and cued versions of the Morris water maze. Compared with young rats, aged rats exhibited a selective deficit in spatial memory tasks that required rats to retain information for 24 h or longer. CDP-choline supplementation protected against the development of this deficit, but had no memory-enhancing effect in normal young rats. These findings suggest that early-aged rats display a selective impairment in hippocampal-dependent long-term memory, and that dietary CDP-choline supplementation can protect against this deficit.
Collapse
Affiliation(s)
- Lisa A Teather
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 45 Carleton Street, E25-604, Cambridge, MA, USA.
| | | |
Collapse
|
34
|
Gibbs RB. Effects of ageing and long-term hormone replacement on cholinergic neurones in the medial septum and nucleus basalis magnocellularis of ovariectomized rats. J Neuroendocrinol 2003; 15:477-85. [PMID: 12694373 DOI: 10.1046/j.1365-2826.2003.01012.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ovariectomized aged rats, some of which received long-term hormone replacement with oestrogen or oestrogen plus progesterone, were evaluated for the number and size of basal forebrain cholinergic neurones, as well as relative levels of choline acetyltransferase (ChAT) and trkA mRNA, in order to determine whether effects on basal forebrain cholinergic cell survival and function correspond with differences in cognitive performance previously described. The results show that ageing combined with long-term loss of ovarian function produced substantial reductions in the levels of ChAT and trkA mRNA in the medial septum and nucleus basalis magnocellularis, relative to much younger ovariectomized controls. In contrast, no significant effects on the number or size of the cholinergic cells were detected, indicating that loss of ovarian function does not cause a loss of cholinergic neurones with age. Long-term hormone replacement had no apparent effect on the number of ChAT-positive neurones detected, and did not prevent the reductions in ChAT and trkA mRNA associated with ovariectomy and ageing. Collectively, the data suggest that ageing combined with long-term loss of ovarian function has a severe negative impact on basal forebrain cholinergic function, but not on cholinergic cell survival per se.
Collapse
Affiliation(s)
- R B Gibbs
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA. gibbsr+@pitt.edu
| |
Collapse
|
35
|
Van Someren EJW, Riemersma RF, Swaab DF. Functional plasticity of the circadian timing system in old age: light exposure. PROGRESS IN BRAIN RESEARCH 2002; 138:205-31. [PMID: 12432772 DOI: 10.1016/s0079-6123(02)38080-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eus J W Van Someren
- Graduate School Neuroscience Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands.
| | | | | |
Collapse
|
36
|
Abstract
Neural transplantation provides a powerful novel technique for investigating the neurobiological basis and potential strategies for repair of a variety of neurodegenerative conditions. The present review considers applications of this technique to dementia. After a general introduction (section 1), attempts to replace damaged neural systems by transplantation are considered in the context of distinct animal models of dementia. These include grafting into aged animals (section 2), into animals with neurotransmitter-selective lesions of subcortical nuclei, in particular involving basal forebrain cholinergic systems (section 3), and into animals with non-specific lesions of neocortical and hippocampal systems (section 4). The next section considers the alternative use of grafts as a source of growth/trophic factors to inhibit degeneration and promote regeneration in the aged brain (section 5). Finally, a number of recent studies have employed transplanted tissues to model and study the neurodegenerative processes associated with ageing and Alzheimer's disease taking place within the transplant itself (section 6). It is concluded (section 7) that although neural transplantation does not offer any immediate prospect of therapeutic repair in clinical dementia, the technique does offer a powerful neurobiological tool for studying the neuropathological processes involved in both spontaneous degeneration and specific diseases of ageing. New understandings derived from neural transplantation may be expected to lead to rational development of novel strategies to inhibit the neurodegenerative process and to promote regeneration in the aged brain.
Collapse
Affiliation(s)
- S. B. Dunnett
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| |
Collapse
|
37
|
Niewiadomska G, Komorowski S, Baksalerska-Pazera M. Amelioration of cholinergic neurons dysfunction in aged rats depends on the continuous supply of NGF. Neurobiol Aging 2002; 23:601-13. [PMID: 12009509 DOI: 10.1016/s0197-4580(01)00345-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The present study was designed to examine whether NGF-induced improvement in morphology of senile basal forebrain cholinergic neurons persist after discontinuation of NGF treatment. Trophic effect of continuous intraventricular infusion of NGF was tested in the 4- and 28 months old male Wistar rats immediately after cessation of NGF and 3 or 6 weeks after termination of treatment. Immunohistochemical procedure for ChAT, TrkA, and p75(NTR) receptor has been applied to identify cholinergic cells in the basal forebrain structures. Using the quantitative image analyzer, morphometric and densitometric parameters of cholinergic cells were measured. In untreated 28-month-old rats a reduction in the number, size and intensity of staining of cholinergic neurons was observed in all basal forebrain structures. NGF significantly improved morphological parameters of ChAT- and TrkA-positive cells in aged rats. In 28-month-old rats tested within 3 and 6 weeks after discontinuation of infusion a renewed progressive deterioration of cholinergic phenotype of basal forebrain neurons was observed when compared with the NGF-treated immediately tested group. The parallel staining for p75(NTR) revealed normal morphology of the basal forebrain neurons, despite of the age of rats or the NGF treatment. Analysis of Nissl stained sections also showed that 28-month-old rats did not display significant losses of neurons in the basal forebrain when compared with the young animals. These findings demonstrate that senile impairment of cholinergic neurons is induced by a loss of cholinergic phenotype rather than an acute degeneration of cell bodies. NGF may be beneficial in enhancing cholinergic neurochemical parameters, but the protective effects seem to be dependent on the continuous supply of NGF.
Collapse
Affiliation(s)
- Grazyna Niewiadomska
- Department of Neurophysiology, Nencki Institute, 3 Pasteur St., 02-093 Warsaw, Poland.
| | | | | |
Collapse
|
38
|
Matsuda Y, Hirano H, Watanabe Y. Effects of estrogen on acetylcholine release in frontal cortex of female rats: involvement of serotonergic neuronal systems. Brain Res 2002; 937:58-65. [PMID: 12020863 DOI: 10.1016/s0006-8993(02)02465-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of estrogen on cortically projecting cholinergic neurons were investigated using in vivo microdialysis to measure cortical basal acetylcholine (ACh) levels and serotonin (5-HT)-stimulated ACh release in frontal cortex of freely moving Wistar female rats. Bilateral ovariectomy (OVX) or sham operations were performed under anesthesia. Immediately after surgery, each OVX animal was subcutaneously implanted with pellet containing 0.1/0.5 mg of 17beta-estradiol (E(2)) or a vehicle. Nineteen days later, a transverse microdialysis probe was stereotaxically implanted in the frontal cortex (AP: +2.7 mm, DV: -2.5 mm relative to bregma). Two days later (21 days after beginning of estrogen treatment), in vivo microdialysis experimentation was conducted. Serum E(2) levels of animals with 0.1 and 0.5 mg-pellets were equivalent to those levels during diestrous and proestrous, respectively. Although the replacement of different amounts of E(2) produced significant changes in body weight, it failed to affect basal ACh levels in the frontal cortex. Systemically administered serotonin releasing agent, fenfluramine, significantly increased cortical ACh release in all animal groups. The fenfluramine's ability to increase ACh release was potentiated by E(2) replacement with a 0.5 mg-pellet. E(2)-induced enhancement was also observed when the selective 5-HT(1A) agonist, 8-hydroxy-2-(di-n-propylamino) tetralin, but not the 5-HT(2A/2C) agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane, was administered. Therefore, the effect of estrogen on 5-HT-stimulated ACh release might be exerted partly via 5-HT(1A) receptors, and not via 5-HT(2) receptors. These results suggest that the positive effects of estrogen on cognitive functions might be mediated through the ACh-5-HT interactions.
Collapse
Affiliation(s)
- Yoshito Matsuda
- Department of Neuropsychiatry, Yamaguchi University School of Medicine, 1-1-1 Minamikogushi, Ube Yamaguchi 755-8505, Japan.
| | | | | |
Collapse
|
39
|
Tottori K, Nakai M, Uwahodo Y, Miwa T, Yamada S, Oshiro Y, Kikuchi T, Altar CA. Attenuation of scopolamine-induced and age-associated memory impairments by the sigma and 5-hydroxytryptamine(1A) receptor agonist OPC-14523 (1-[3-[4-(3-chlorophenyl)-1-piperazinyl]propyl]-5-methoxy-3,4-dihydro-2[1H]-quinolinone monomethanesulfonate). J Pharmacol Exp Ther 2002; 301:249-57. [PMID: 11907181 DOI: 10.1124/jpet.301.1.249] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sigma and 5-HT(1A) receptor stimulation can increase acetylcholine (ACh) release in the brain. Because ACh release facilitates learning and memory, we evaluated the degree to which OPC-14523 (1-[3-[4-(3-chlorophenyl)-1-piperazinyl]propyl]-5-methoxy-3,4-dihydro-2[1H]-quinolinone monomethane sulfonate), a novel sigma and 5-HT(1A) receptor agonist, can augment ACh release and improve learning impairments in rats due to cholinergic- or age-related deficits. Single oral administration of OPC-14523 improved scopolamine-induced learning impairments in the passive-avoidance task and memory impairment in the Morris water maze. The chronic oral administration of OPC-14523 attenuated age-associated impairments of learning acquisition in the water maze and in the conditioned active-avoidance response test. OPC-14523 did not alter basal locomotion or inhibit acetylcholinesterase (AChE) activity at concentrations up to 100 microM and, unlike AChE inhibitors, did not cause peripheral cholinomimetic responses. ACh release in the dorsal hippocampus of freely moving rats increased after oral delivery of OPC-14523 and after local delivery of OPC-14523 into the hippocampus. The increases in hippocampal ACh release were blocked by the sigma receptor antagonist NE-100 (N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)-phenyl]-ethylamine). Thus, OPC-14523 improves scopolamine-induced and age-associated learning and memory impairments by enhancing ACh release, due to a stimulation of sigma and probably 5-HT(1A) receptors. Combined sigma/5-HT(1A) receptor agonism may be a novel approach to ameliorate cognitive disorders associated with age-associated cholinergic deficits.
Collapse
Affiliation(s)
- Katsura Tottori
- Research Institute of Pharmacological and Therapeutical Development, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Endo Y, Shinohara K, Fueta Y, Irie M. Influences of cholinergic neurotoxin ethylcholine aziridinium ion on circadian rhythms in rats. Neurosci Res 2001; 41:385-90. [PMID: 11755225 DOI: 10.1016/s0168-0102(01)00295-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To investigate whether damages of cholinergic neurons in the brain produce aging-like changes in circadian rhythms, we examined the influences of intracerebroventricular injection of cholinergic neurotoxin ethylcholine aziridinium ion (AF64A, 5 nmol/5 microl) on circadian rhythms in rats, by measuring locomotor activity and body temperature with the automatic behavioral measurement system combined with the telemetry. Daily rhythms in locomotor activity and body temperature were observed in AF64A-treated rats under a 12:12 h light:dark (LD) cycle, however, in AF64A-treated rats, the amplitude of activity and temperature rhythms was significantly decreased, the phase of the both rhythms was advanced and the amount of activity was decreased, compared with control rats. Locomotor activity and body temperature also showed a circadian rhythm in AF64A-treated rats under the constant dark condition with the period similar to that in the control rats. The present findings are in accordance with the observation in aged animals in which cholinergic hypofunction are often observed, suggesting that hypofunctions of the cholinergic systems in the brain might be involved in aging-like changes in the circadian rhythms.
Collapse
Affiliation(s)
- Y Endo
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
| | | | | | | |
Collapse
|
41
|
Ando S, Tadenuma T, Tanaka Y, Fukui F, Kobayashi S, Ohashi Y, Kawabata T. Enhancement of learning capacity and cholinergic synaptic function by carnitine in aging rats. J Neurosci Res 2001; 66:266-71. [PMID: 11592123 DOI: 10.1002/jnr.1220] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effects of a carnitine derivative, acetyl-L-carnitine (ALCAR), on the cognitive and cholinergic activities of aging rats were examined. Rats were given ALCAR (100 mg/kg) per os for 3 months and were subjected to the Hebb-Williams tasks and a new maze task, AKON-1, to assess their learning capacity. The learning capacity of the ALCAR-treated group was superior to that of the control. Cholinergic activities were determined with synaptosomes isolated from the cortices. The high-affinity choline uptake by synaptosomes, acetylcholine synthesis in synaptosomes, and acetylcholine release from synaptosomes on membrane depolarization were all enhanced in the ALCAR group. This study indicates that chronic administration of ALCAR increases cholinergic synaptic transmission and consequently enhances learning capacity as a cognitive function in aging rats.
Collapse
Affiliation(s)
- S Ando
- Department of Membrane Biochemistry, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Thouvarecq R, Protais P, Jouen F, Caston J. Influence of cholinergic system on motor learning during aging in mice. Behav Brain Res 2001; 118:209-18. [PMID: 11164519 DOI: 10.1016/s0166-4328(00)00330-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three, 12- and 20-month-old C57Bl6 mice, reared in standard conditions or in an enriched environment, were administered subcutaneously either scopolamine hydrobromide (SIGMA), 0.6 and 1.2 mg kg(-1), or physiological saline 15 min before testing their motor skills (muscular strength, dynamic equilibrium and motor coordination) and motor learning abilities (number of trials needed to reach a learning criterion on a rotorod rotating at 27 revolutions per min). The results demonstrated a lack of correlation between motor skill scores and between motor skill and motor learning scores, suggesting that the rotorod training procedure measures motor learning and not motor skills or is insensitive to changes in motor skills. They also demonstrated that motor skills decreased with age but were insensitive to environmental rearing and to scopolamine. In contrast, the learning scores, which also decreased with age, were very sensitive to scopolamine, particularly in the oldest mice. These results are discussed according to the role of cholinergic system in motor learning during aging.
Collapse
Affiliation(s)
- R Thouvarecq
- UPRES PSY.CO 1780 Faculté des Sciences Laboratoire de Neurobiologie de l'Apprentissage Université, de Rouen 76821, Mont-Saint-Aignan Cedex, France
| | | | | | | |
Collapse
|
43
|
Brandner C, Vantini G, Schenk F. Enhanced visuospatial memory following intracerebroventricular administration of nerve growth factor. Neurobiol Learn Mem 2000; 73:49-67. [PMID: 10686123 DOI: 10.1006/nlme.1999.3917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present work assessed the effects of intracerebroventricular injections of rh recombined human nerve growth factor (rh NGF) (5 micrograms/2.5 microl) at postnatal days 12 and 13 upon the development of spatial learning capacities. The treated rats were trained at the age of 22 days to escape onto an invisible platform at a fixed position in space in a Morris navigation task. For half of the subjects, the training position was also cued, a procedure aimed at facilitating escape and at reducing attention to the distant spatial cues. Later, at the age of 6 months, all the rats were trained in a radial-arm maze task. Treatment effects were found in both immature and adult rats. The injection of NGF improved the performance in the Morris navigation task in both training conditions. There was a significant reduction in the escape latency and an increased bias toward the training platform quadrant during probe trials. The most consistent effect was the precocious development of an adult-like spatial memory. In the radial-arm maze, the NGF-treated rats made significantly fewer reentries than vehicle rats and this effect was particularly marked in the treated female rats. Taken together, these experiments reveal that the development and the maintenance of an accurate spatial representation are tightly related to the development of brain structures facilitated by the action of NGF. Moreover, these experiments demonstrate that an acute pharmacological treatment that leads to a transient modification in the choline acetyltransferase activity can induce a behavioral change long after the treatment.
Collapse
Affiliation(s)
- C Brandner
- Institut de Physiologie, Bugnon 7, Lausanne, CH-1005, Switzerland.
| | | | | |
Collapse
|
44
|
Rhodes ME, Rubin RT. Functional sex differences ('sexual diergism') of central nervous system cholinergic systems, vasopressin, and hypothalamic-pituitary-adrenal axis activity in mammals: a selective review. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 30:135-52. [PMID: 10525171 DOI: 10.1016/s0165-0173(99)00011-9] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sexual dimorphism of the mammalian central nervous system (CNS) has been widely documented. Morphological sex differences in brain areas underlie sex differences in function. To distinguish sex differences in physiological function from underlying sexual dimorphisms, we use the term, sexual diergism, to encompass differences in function between males and females. Whereas the influence of sex hormones on CNS morphological characteristics and function of the hypothalamic-pituitary-gonadal axis has been well-documented, little is known about sexual diergism of CNS control of the hypothalamic-pituitary-adrenal (HPA) axis. Many studies have been conducted on both men and women but have not reported comparisons between them, and many animal studies have used males or females, but not both. From a diergic standpoint, the CNS cholinergic system appears to be more responsive to stress and other stimuli in female than in male mammals; but from a dimorphic standpoint, it is anatomically larger, higher in cell density, and more stable with age in males than in females. Dimorphism often produces diergism, but age, hormones, environment and genetics contribute differentially. This review focuses on the sexual diergism of CNS cholinergic and vasopressinergic systems and their relationship to the HPA axis, with resulting implications for the study of behavior, disease, and therapeutics.
Collapse
Affiliation(s)
- M E Rhodes
- Center for Neurosciences Research, MCP-Hahnemann School of Medicine, Pittsburgh, PA, USA.
| | | |
Collapse
|
45
|
Rampello L, Drago F. Nicergoline facilitates vestibular compensation in aged male rats with unilateral labyrinthectomy. Neurosci Lett 1999; 267:93-6. [PMID: 10400220 DOI: 10.1016/s0304-3940(99)00328-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ergoline derivatives, nicergoline (NIC) or dihydroergocristine (DHE) were administered at various doses (0.1, 0.5 and 1 mg/kg) to aged male rats subjected to labyrinth unilateral lesion (LBX). The nystagmus rate appeared to be lower in animals treated with DHE or NIC 1mg/kg than in saline-injected rats, when observed on day 1 and 2 after operation. The number of falls in the rotorod test of LBX animals was decreased by NIC 0.5 or 1 mg/kg at all observation times. This parameter was affected by DHE only at the higher dose. These results suggest that NIC facilitates vestibular compensation of LBX rats. DHE appeared to be less potent in this respect. Since both drugs act on central dopaminergic neurotransmission, it is possible that this neurotransmission may be involved in their mechanism of action.
Collapse
Affiliation(s)
- L Rampello
- Department of Neuroscience, University of Catania Medical School, Italy
| | | |
Collapse
|
46
|
Arvat E, Giordano R, Gianotti L, Broglio F, Camanni F, Ghigo E. Neuroendocrinology of the human growth hormone-insulin-like growth factor I axis during ageing. Growth Horm IGF Res 1999; 9 Suppl A:111-115. [PMID: 10429893 DOI: 10.1016/s1096-6374(99)80022-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- E Arvat
- Department of Internal Medicine, University of Turin, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Chen YC, Lei JL, Chen QS, Wang SL. Effect of physical training on the age-related changes of acetylcholinesterase-positive fibers in the hippocampal formation and parietal cortex in the C57BL/6J mouse. Mech Ageing Dev 1998; 102:81-93. [PMID: 9663794 DOI: 10.1016/s0047-6374(98)00026-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We investigated the effect of a moderate amount of prolonged physical training initiated at 3 months of age on the age-related changes of the hippocampal and cortical cholinergic fibers. A total of 80 male C57BL/6J mice were divided into five groups which were trained (including adult and old trained, AT and OT), sedentary (adult and old sedentary, AS and OS) and young (Y). From 3 months old, the mice of the trained groups were treated with a voluntary running wheel for 1 h each day, 5 days per week. AT had been trained up to 13-month-old whereas OT up to 24 months old. At the same time, the mice of the sedentary groups were put in immobilized wheels. We set the criterion for effective training in the trained mice such that the heart-to-body weight ratio should be at least 2 S.D. above the mean in the age-matched groups. Using AChE histochemistry and stereology, the AChE-positive fibers were analyzed quantitatively in the molecular layers in CA1, CA3 and the dentate gyrus of the hippocampal formation, and in III, V layers in the motor and somatosensory cortex. Comparison of Y, AS and OS (3, 13 and 24 months of age) showed minimum AChE-positive fiber density in the hippocampal formation and the cortex in OS (P < 0.01). After 10 and 21 months of running, the AChE-positive fibers in all regions examined in the trained groups were significantly increased compared to their age-matched controls (P < 0.05 or 0.01). In the hippocampal formation, the increase was about 17% in AT and 23% in OT, whereas, in the cortex, it was 13% in AT and 22% in OT. These results indicated that a moderate amount of prolonged physical training could modify the age-related loss of cholinergic fibers in the hippocampal formation and cortex, furthermore the modified loss of cholinergic fibers might be associated with the regeneration of hippocampal and cortical cholinergic fibers stimulated by chronic running.
Collapse
Affiliation(s)
- Y C Chen
- Department of Anatomy, Beijing Medical University, People's Republic of China.
| | | | | | | |
Collapse
|
48
|
De Ronchi D, Rucci P, Lodi M, Ravaglia G, Forti P, Volterra V. Fluoxetine and amitriptyline in elderly depressed patients. A 10-week, double-blind study on course of neurocognitive adverse events and depressive symptoms. Arch Gerontol Geriatr 1998. [DOI: 10.1016/s0167-4943(98)80021-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Lapchak PA, Miller PJ, Jiao S. Glial cell line-derived neurotrophic factor induces the dopaminergic and cholinergic phenotype and increases locomotor activity in aged Fischer 344 rats. Neuroscience 1997; 77:745-52. [PMID: 9070749 DOI: 10.1016/s0306-4522(96)00492-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glial cell line-derived neurotrophic factor has been shown to affect dopaminergic and cholinergic neuron markers and functions in young rats. However, it is not known if the response to exogenous glial cell line-derived neurotrophic factor is augmented during normal aging. Thus, the effects of chronic intraventricular infusions of glial cell line-derived neurotrophic factor were determined in young adult (three-months-old) and aged (24-months-old) Fischer 344 (F344) male rats. The effects of glial cell line-derived neurotrophic factor were compared to the effects of the neurotrophin nerve growth factor. Growth factors were administered at a dose of 10 mg/day for 14 days. Locomotor activity and weight changes were also examined in all rats. Aged F344 rats showed significantly reduced (by 75-80%) locomotor activity compared to young rats. In glial cell line-derived neurotrophic factor-treated aged and young rats there was significantly increased (242% and 149%, respectively) locomotor activity measured at seven days. There was also a significant increase in locomotor activity measured 14 days after the start of infusion. Both glial cell line-derived neurotrophic factor and nerve growth factor reduced weight gain by 10% in young and old F344 rats. Two weeks following the start of nerve growth factor or glial cell line-derived neurotrophic factor administration the brains were used for neurochemical analyses. Glial cell line-derived neurotrophic factor significantly increased tyrosine hydroxylase activity in the substantia nigra and striatum of aged rats and in the substantia nigra of young rats. Nerve growth factor treatment did not significantly affect tyrosine hydroxylase activity. However, glial cell line-derived neurotrophic factor and nerve growth factor increased choline acetyltransferase activity in the septum, hippocampus, striatum and cortex of aged rats and in the hippocampus and striatum of young rats to a comparable degree. These findings indicate that specific dopaminergic and cholinergic neuron populations remain responsive to glial cell line-derived neurotrophic factor during the life span of the rat and may be involved in maintaining phenotypic expression within multiple neuronal populations. Additionally, the glial cell line-derived neurotrophic factor-induced up-regulation of brain neurotransmitter systems may be responsible for increased locomotor activity in F344 rats.
Collapse
Affiliation(s)
- P A Lapchak
- AMGEN Inc., Department of Neuroscience, Thousand Oaks, CA 91320-1789, U.S.A
| | | | | |
Collapse
|
50
|
Gibbs RB, Hashash A, Johnson DA. Effects of estrogen on potassium-stimulated acetylcholine release in the hippocampus and overlying cortex of adult rats. Brain Res 1997; 749:143-6. [PMID: 9070640 DOI: 10.1016/s0006-8993(96)01375-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vivo microdialysis techniques were used to examine the effects of estrogen on potassium-stimulated acetylcholine release in the hippocampus and overlying cortex of adult, ovariectomized rats. Estrogen treatment resulted in a significant increase in the percent change in acetylcholine release induced by potassium relative to controls, particularly after prolonged (90 min) exposure to high potassium. The data suggest that estrogen may help to maintain cholinergic function under conditions where cholinergic afferents to the hippocampal formation and cortex are challenged or impaired.
Collapse
Affiliation(s)
- R B Gibbs
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, PA 15261, USA.
| | | | | |
Collapse
|