1
|
Kim MY, Mason HS, Ma JKC, Reljic R. Recombinant immune complexes as vaccines against infectious diseases. Trends Biotechnol 2024:S0167-7799(24)00123-9. [PMID: 38825437 DOI: 10.1016/j.tibtech.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024]
Abstract
New vaccine technologies are needed to combat many existing infections and prepare better for those that may emerge in the future. The conventional technologies that rely on protein-based vaccines are still severely restricted by the sparsity and poor accessibility of available adjuvants. One possible solution to this problem is to enhance antigen immunogenicity by a more natural means by complexing it with antibodies in the form of immune complexes (ICs). However, natural ICs are impractical as vaccines, and significant research efforts have been made to generate them in recombinant form, with plant bioengineering being at the forefront of these efforts. Here, we describe the challenges and progress made to date to make recombinant IC vaccines applicable to humans.
Collapse
Affiliation(s)
- Mi-Young Kim
- St. George's University of London, London, UK; Jeonbuk National University, Jeonju, South Korea
| | - Hugh S Mason
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | | |
Collapse
|
2
|
Göritzer K, Groppelli E, Grünwald-Gruber C, Figl R, Ni F, Hu H, Li Y, Liu Y, Hu Q, Puligedda RD, Jung JW, Strasser R, Dessain S, Ma JKC. Recombinant neutralizing secretory IgA antibodies for preventing mucosal acquisition and transmission of SARS-CoV-2. Mol Ther 2024; 32:689-703. [PMID: 38268188 PMCID: PMC10928148 DOI: 10.1016/j.ymthe.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
Passive delivery of antibodies to mucosal sites may be a valuable adjunct to COVID-19 vaccination to prevent infection, treat viral carriage, or block transmission. Neutralizing monoclonal IgG antibodies are already approved for systemic delivery, and several clinical trials have been reported for delivery to mucosal sites where SARS-CoV-2 resides and replicates in early infection. However, secretory IgA may be preferred because the polymeric complex is adapted for the harsh, unstable external mucosal environment. Here, we investigated the feasibility of producing neutralizing monoclonal IgA antibodies against SARS-CoV-2. We engineered two class-switched mAbs that express well as monomeric and secretory IgA (SIgA) variants with high antigen-binding affinities and increased stability in mucosal secretions compared to their IgG counterparts. SIgAs had stronger virus neutralization activities than IgG mAbs and were protective against SARS-CoV-2 infection in an in vivo murine model. Furthermore, SIgA1 can be aerosolized for topical delivery using a mesh nebulizer. Our findings provide a persuasive case for developing recombinant SIgAs for mucosal application as a new tool in the fight against COVID-19.
Collapse
Affiliation(s)
- Kathrin Göritzer
- Hotung Molecular Immunology Unit, St. George's University of London, London SW17 0RE, UK.
| | - Elisabetta Groppelli
- Institute for Infection and Immunity, St. George's University of London, London SW17 0RE, UK
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Rudolf Figl
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Fengfeng Ni
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Huimin Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuncheng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qinxue Hu
- Institute for Infection and Immunity, St. George's University of London, London SW17 0RE, UK; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | | | - Jae-Wan Jung
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Scott Dessain
- Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| | - Julian K-C Ma
- Hotung Molecular Immunology Unit, St. George's University of London, London SW17 0RE, UK.
| |
Collapse
|
3
|
Wang J, Zhang Q, Tung J, Zhang X, Liu D, Deng Y, Tian Z, Chen H, Wang T, Yin W, Li B, Lai Z, Dinesh-Kumar SP, Baker B, Li F. High-quality assembled and annotated genomes of Nicotiana tabacum and Nicotiana benthamiana reveal chromosome evolution and changes in defense arsenals. MOLECULAR PLANT 2024; 17:423-437. [PMID: 38273657 DOI: 10.1016/j.molp.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
Nicotiana tabacum and Nicotiana benthamiana are widely used models in plant biology research. However, genomic studies of these species have lagged. Here we report the chromosome-level reference genome assemblies for N. benthamiana and N. tabacum with an estimated 99.5% and 99.8% completeness, respectively. Sensitive transcription start and termination site sequencing methods were developed and used for accurate gene annotation in N. tabacum. Comparative analyses revealed evidence for the parental origins and chromosome structural changes, leading to hybrid genome formation of each species. Interestingly, the antiviral silencing genes RDR1, RDR6, DCL2, DCL3, and AGO2 were lost from one or both subgenomes in N. benthamiana, while both homeologs were kept in N. tabacum. Furthermore, the N. benthamiana genome encodes fewer immune receptors and signaling components than that of N. tabacum. These findings uncover possible reasons underlying the hypersusceptible nature of N. benthamiana. We developed the user-friendly Nicomics (http://lifenglab.hzau.edu.cn/Nicomics/) web server to facilitate better use of Nicotiana genomic resources as well as gene structure and expression analyses.
Collapse
Affiliation(s)
- Jubin Wang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330299, China
| | - Qingling Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Jeffrey Tung
- Plant Gene Expression Center, Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94706, USA
| | - Xi Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dan Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yingtian Deng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhendong Tian
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Huilan Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Taotao Wang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Weixiao Yin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bo Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Zhibing Lai
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Barbara Baker
- Plant Gene Expression Center, Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94706, USA.
| | - Feng Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
4
|
Verdú-Navarro F, Moreno-Cid JA, Weiss J, Egea-Cortines M. The advent of plant cells in bioreactors. FRONTIERS IN PLANT SCIENCE 2023; 14:1310405. [PMID: 38148861 PMCID: PMC10749943 DOI: 10.3389/fpls.2023.1310405] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
Ever since agriculture started, plants have been bred to obtain better yields, better fruits, or sustainable products under uncertain biotic and abiotic conditions. However, a new way to obtain products from plant cells emerged with the development of recombinant DNA technologies. This led to the possibility of producing exogenous molecules in plants. Furthermore, plant chemodiversity has been the main source of pharmacological molecules, opening a field of plant biotechnology directed to produce high quality plant metabolites. The need for different products by the pharma, cosmetics agriculture and food industry has pushed again to develop new procedures. These include cell production in bioreactors. While plant tissue and cell culture are an established technology, beginning over a hundred years ago, plant cell cultures have shown little impact in biotechnology projects, compared to bacterial, yeasts or animal cells. In this review we address the different types of bioreactors that are currently used for plant cell production and their usage for quality biomolecule production. We make an overview of Nicotiana tabacum, Nicotiana benthamiana, Oryza sativa, Daucus carota, Vitis vinifera and Physcomitrium patens as well-established models for plant cell culture, and some species used to obtain important metabolites, with an insight into the type of bioreactor and production protocols.
Collapse
Affiliation(s)
- Fuensanta Verdú-Navarro
- Bioprocessing R&D Department, Bionet, Parque Tecnológico Fuente Álamo, Fuente Álamo, Spain
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Juan A. Moreno-Cid
- Bioprocessing R&D Department, Bionet, Parque Tecnológico Fuente Álamo, Fuente Álamo, Spain
| | - Julia Weiss
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Marcos Egea-Cortines
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
5
|
Strasser R. Plant glycoengineering for designing next-generation vaccines and therapeutic proteins. Biotechnol Adv 2023; 67:108197. [PMID: 37315875 DOI: 10.1016/j.biotechadv.2023.108197] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Protein glycosylation has a huge impact on biological processes in all domains of life. The type of glycan present on a recombinant glycoprotein depends on protein intrinsic features and the glycosylation repertoire of the cell type used for expression. Glycoengineering approaches are used to eliminate unwanted glycan modifications and to facilitate the coordinated expression of glycosylation enzymes or whole metabolic pathways to furnish glycans with distinct modifications. The formation of tailored glycans enables structure-function studies and optimization of therapeutic proteins used in different applications. While recombinant proteins or proteins from natural sources can be in vitro glycoengineered using glycosyltransferases or chemoenzymatic synthesis, many approaches use genetic engineering involving the elimination of endogenous genes and introduction of heterologous genes to cell-based production systems. Plant glycoengineering enables the in planta production of recombinant glycoproteins with human or animal-type glycans that resemble natural glycosylation or contain novel glycan structures. This review summarizes key achievements in glycoengineering of plants and highlights current developments aiming to make plants more suitable for the production of a diverse range of recombinant glycoproteins for innovative therapies.
Collapse
Affiliation(s)
- Richard Strasser
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
6
|
Eidenberger L, Kogelmann B, Steinkellner H. Plant-based biopharmaceutical engineering. NATURE REVIEWS BIOENGINEERING 2023; 1:426-439. [PMID: 37317690 PMCID: PMC10030082 DOI: 10.1038/s44222-023-00044-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/24/2023]
Abstract
Plants can be engineered to recombinantly produce high-quality proteins such as therapeutic proteins and vaccines, also known as molecular farming. Molecular farming can be established in various settings with minimal cold-chain requirements and could thus ensure rapid and global-scale deployment of biopharmaceuticals, promoting equitable access to pharmaceuticals. State of the art plant-based engineering relies on rationally assembled genetic circuits, engineered to enable the high-throughput and rapid expression of multimeric proteins with complex post-translational modifications. In this Review, we discuss the design of expression hosts and vectors, including Nicotiana benthamiana, viral elements and transient expression vectors, for the production of biopharmaceuticals in plants. We examine engineering of post-translational modifications and highlight the plant-based expression of monoclonal antibodies and nanoparticles, such as virus-like particles and protein bodies. Techno-economic analyses suggest a cost advantage of molecular farming compared with mammalian cell-based protein production systems. However, regulatory challenges remain to be addressed to enable the widespread translation of plant-based biopharmaceuticals.
Collapse
Affiliation(s)
- Lukas Eidenberger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benjamin Kogelmann
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- acib — Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
7
|
The Plant Viruses and Molecular Farming: How Beneficial They Might Be for Human and Animal Health? Int J Mol Sci 2023; 24:ijms24021533. [PMID: 36675043 PMCID: PMC9863966 DOI: 10.3390/ijms24021533] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Plant viruses have traditionally been studied as pathogens in the context of understanding the molecular and cellular mechanisms of a particular disease affecting crops. In recent years, viruses have emerged as a new alternative for producing biological nanomaterials and chimeric vaccines. Plant viruses were also used to generate highly efficient expression vectors, revolutionizing plant molecular farming (PMF). Several biological products, including recombinant vaccines, monoclonal antibodies, diagnostic reagents, and other pharmaceutical products produced in plants, have passed their clinical trials and are in their market implementation stage. PMF offers opportunities for fast, adaptive, and low-cost technology to meet ever-growing and critical global health needs. In this review, we summarized the advancements in the virus-like particles-based (VLPs-based) nanotechnologies and the role they played in the production of advanced vaccines, drugs, diagnostic bio-nanomaterials, and other bioactive cargos. We also highlighted various applications and advantages plant-produced vaccines have and their relevance for treating human and animal illnesses. Furthermore, we summarized the plant-based biologics that have passed through clinical trials, the unique challenges they faced, and the challenges they will face to qualify, become available, and succeed on the market.
Collapse
|
8
|
Design of a Diagnostic Immunoassay for Aflatoxin M1 Based on a Plant-Produced Antibody. Toxins (Basel) 2022; 14:toxins14120851. [PMID: 36548748 PMCID: PMC9781297 DOI: 10.3390/toxins14120851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
A new green competitive ELISA for aflatoxin M1 quantification in raw milk was developed. This diagnostic tool is based on an anti AFM1 mAb produced by plant molecular farming in alternative to classical systems. Our assay, showing an IC50 below 25 ng/L, fits with the requirements of EU legislation limits for AFM1 (50 ng/L). Optimal accuracy was achieved in correspondence of the decision levels (25 and 50 ng/L), and the assay enabled AFM1 quantification in the range 5-110 ng/L, with limit of detection 3 ng/L. Moreover, to evaluate a real applicability in diagnostics, raw milk-spiked samples were analysed, achieving satisfactory recovery rates of AFM1. In conclusion, an efficient and ready-to-use diagnostic assay for the quantification of aflatoxin M1 in milk, based on a plant-produced recombinant mAb, has been successfully developed.
Collapse
|
9
|
Mu H, Wang B, Yuan F. Bioinformatics in Plant Breeding and Research on Disease Resistance. PLANTS (BASEL, SWITZERLAND) 2022; 11:3118. [PMID: 36432847 PMCID: PMC9696050 DOI: 10.3390/plants11223118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
In the context of plant breeding, bioinformatics can empower genetic and genomic selection to determine the optimal combination of genotypes that will produce a desired phenotype and help expedite the isolation of these new varieties. Bioinformatics is also instrumental in collecting and processing plant phenotypes, which facilitates plant breeding. Robots that use automated and digital technologies to collect and analyze different types of information to monitor the environment in which plants grow, analyze the environmental stresses they face, and promptly optimize suboptimal and adverse growth conditions accordingly, have helped plant research and saved human resources. In this paper, we describe the use of various bioinformatics databases and algorithms and explore their potential applications in plant breeding and for research on plant disease resistance.
Collapse
Affiliation(s)
| | | | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
10
|
Jugler C, Grill FJ, Eidenberger L, Karr TL, Grys TE, Steinkellner H, Lake DF, Chen Q. Humanization and expression of IgG and IgM antibodies in plants as potential diagnostic reagents for Valley Fever. FRONTIERS IN PLANT SCIENCE 2022; 13:925008. [PMID: 36119630 PMCID: PMC9478164 DOI: 10.3389/fpls.2022.925008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/12/2022] [Indexed: 05/10/2023]
Abstract
Monoclonal antibodies (mAbs) are important proteins used in many life science applications, from diagnostics to therapeutics. High demand for mAbs for different applications urges the development of rapid and reliable recombinant production platforms. Plants provide a quick and inexpensive system for producing recombinant mAbs. Moreover, when paired with an established platform for mAb discovery, plants can easily be tailored to produce mAbs of different isotypes against the same target. Here, we demonstrate that a hybridoma-generated mouse mAb against chitinase 1 (CTS1), an antigen from Coccidioides spp., can be biologically engineered for use with serologic diagnostic test kits for coccidioidomycosis (Valley Fever) using plant expression. The original mouse IgG was modified and recombinantly produced in glycoengineered Nicotiana benthamiana plants via transient expression as IgG and IgM isotypes with human kappa, gamma, and mu constant regions. The two mAb isotypes produced in plants were shown to maintain target antigen recognition to CTS1 using similar reagents as the Food and Drug Administration (FDA)-approved Valley Fever diagnostic kits. As none of the currently approved kits provide antibody dilution controls, humanization of antibodies that bind to CTS1, a major component of the diagnostic antigen preparation, may provide a solution to the lack of consistently reactive antibody controls for Valley Fever diagnosis. Furthermore, our work provides a foundation for reproducible and consistent production of recombinant mAbs engineered to have a specific isotype for use in diagnostic assays.
Collapse
Affiliation(s)
- Collin Jugler
- The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Francisca J. Grill
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Lukas Eidenberger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Timothy L. Karr
- The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Thomas E. Grys
- Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, United States
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Douglas F. Lake
- The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Qiang Chen
- The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
11
|
Long Y, Wei X, Wu S, Wu N, Li QX, Tan B, Wan X. Plant Molecular Farming, a Tool for Functional Food Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2108-2116. [PMID: 35139640 DOI: 10.1021/acs.jafc.1c07185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The demand of functional food is increasing for improving human health. Plant molecular farming (PMF) employs plants as bioreactors for the production of pharmaceuticals. Now PMF has been used to produce antibodies, vaccines, and medicinal proteins, but it has not been well-studied for production of nutraceuticals and functional food. In this perspective, we extend the concept of PMF, present an updated overview of PMF for functional food development, including the progress, problem, and strategy, and then speculate how to use the PMF strategy to produce functional foods, especially with four major staple food crops (rice, wheat, maize, and soybean). Finally, we discuss the opportunities and challenges of PMF on functional food production in the future.
Collapse
Affiliation(s)
- Yan Long
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, People's Republic of China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Company, Limited, Beijing 100192, People's Republic of China
| | - Xun Wei
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, People's Republic of China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Company, Limited, Beijing 100192, People's Republic of China
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, People's Republic of China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Company, Limited, Beijing 100192, People's Republic of China
| | - Nana Wu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, People's Republic of China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Bin Tan
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, People's Republic of China
- School of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150076, People's Republic of China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, People's Republic of China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Company, Limited, Beijing 100192, People's Republic of China
| |
Collapse
|
12
|
Szeto TH, Drake PMW, Teh AYH, Falci Finardi N, Clegg AG, Paul MJ, Reljic R, Ma JKC. Production of Recombinant Proteins in Transgenic Tobacco Plants. Methods Mol Biol 2022; 2480:17-48. [PMID: 35616855 DOI: 10.1007/978-1-0716-2241-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nicotiana tabacum (the tobacco plant ) has numerous advantages for molecular farming, including rapid growth, large biomass and the possibility of both cross- and self-fertilization. In addition, genetic transformation and tissue culture protocols for regeneration of transgenic plants are well-established. Here, we describe the production of transgenic tobacco using Agrobacterium tumefaciens and the analysis of recombinant proteins, either in crude plant extracts or after purification, by enzyme-linked immunosorbent assays, sodium dodecyl sulfate polyacrylamide gel electrophoresis with western blotting and surface plasmon resonance.
Collapse
Affiliation(s)
- Tim H Szeto
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK
| | - Pascal M W Drake
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK.
| | - Audrey Y-H Teh
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK
| | - Nicole Falci Finardi
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK
| | - Ashleigh G Clegg
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK
| | - Mathew J Paul
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK
| | - Rajko Reljic
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK
| | - Julian K-C Ma
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK
| |
Collapse
|
13
|
Chin-Fatt A, Saberianfar R, Menassa R. A Rationally Designed Bovine IgA Fc Scaffold Enhances in planta Accumulation of a V HH-Fc Fusion Without Compromising Binding to Enterohemorrhagic E. coli. FRONTIERS IN PLANT SCIENCE 2021; 12:651262. [PMID: 33936135 PMCID: PMC8079772 DOI: 10.3389/fpls.2021.651262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
We previously isolated a single domain antibody (VHH) that binds Enterohemorrhagic Escherichia coli (EHEC) with the end-goal being the enteromucosal passive immunization of cattle herds. To improve the yield of a chimeric fusion of the VHH with an IgA Fc, we employed two rational design strategies, supercharging and introducing de novo disulfide bonds, on the bovine IgA Fc component of the chimera. After mutagenizing the Fc, we screened for accumulation levels after transient transformation in Nicotiana benthamiana leaves. We identified and characterized five supercharging and one disulfide mutant, termed '(5 + 1)Fc', that improve accumulation in comparison to the native Fc. Combining all these mutations is associated with a 32-fold increase of accumulation for the Fc alone, from 23.9 mg/kg fresh weight (FW) to 599.5 mg/kg FW, as well as a twenty-fold increase when fused to a VHH that binds EHEC, from 12.5 mg/kg FW tissue to 236.2 mg/kg FW. Co-expression of native or mutated VHH-Fc with bovine joining chain (JC) and bovine secretory component (SC) followed by co-immunoprecipitation suggests that the stabilizing mutations do not interfere with the capacity of VHH-Fc to assemble with JC and FC into a secretory IgA. Both the native and the mutated VHH-Fc similarly neutralized the ability of four of the seven most prevalent EHEC strains (O157:H7, O26:H11, O111:Hnm, O145:Hnm, O45:H2, O121:H19 and O103:H2), to adhere to HEp-2 cells as visualized by immunofluorescence microscopy and quantified by fluorometry. These results collectively suggest that supercharging and disulfide bond tethering on a Fc chain can effectively improve accumulation of a VHH-Fc fusion without impacting VHH functionality.
Collapse
Affiliation(s)
- Adam Chin-Fatt
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Reza Saberianfar
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
| | - Rima Menassa
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
14
|
Göritzer K, Strasser R. Glycosylation of Plant-Produced Immunoglobulins. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:519-543. [PMID: 34687021 DOI: 10.1007/978-3-030-76912-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many economically important protein-based therapeutics like monoclonal antibodies are glycosylated. Due to the recognized importance of this type of posttranslational modification, glycoengineering of expression systems to obtain highly active and homogenous therapeutics is an emerging field. Although most of the monoclonal antibodies on the market are still produced in mammalian expression platforms, plants are emerging as an alternative cost-effective and scalable production platform that allows precise engineering of glycosylation to produce targeted human glycoforms at large homogeneity. Apart from producing more effective antibodies, pure glycoforms are required in efforts to link biological functions to specific glycan structures. Much is already known about the role of IgG1 glycosylation and this antibody class is the dominant recombinant format that has been expressed in plants. By contrast, little attention has been paid to the glycoengineering of recombinant IgG subtypes and the other four classes of human immunoglobulins (IgA, IgD, IgE, and IgM). Except for IgD, all these antibody classes have been expressed in plants and the glycosylation has been analyzed in a site-specific manner. Here, we summarize the current data on glycosylation of plant-produced monoclonal antibodies and discuss the findings in the light of known functions for these glycans.
Collapse
Affiliation(s)
| | - Richard Strasser
- University of Natural Resources and Life Sciences Vienna, Vienna, Austria.
| |
Collapse
|
15
|
Teh AYH, Cavacini L, Hu Y, Kumru OS, Xiong J, Bolick DT, Joshi SB, Grünwald-Gruber C, Altmann F, Klempner M, Guerrant RL, Volkin DB, Wang Y, Ma JKC. Investigation of a monoclonal antibody against enterotoxigenic Escherichia coli, expressed as secretory IgA1 and IgA2 in plants. Gut Microbes 2021; 13:1-14. [PMID: 33439092 PMCID: PMC7833773 DOI: 10.1080/19490976.2020.1859813] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 02/04/2023] Open
Abstract
Passive immunization with antibodies is a promising approach against enterotoxigenic Escherichia coli diarrhea, a prevalent disease in LMICs. The objective of this study was to investigate expression of a monoclonal anti-ETEC CfaE secretory IgA antibody in N. benthamiana plants, with a view to facilitating access to ETEC passive immunotherapy. SIgA1 and SIgA2 forms of mAb 68-81 were produced by co-expressing the light and engineered heavy chains with J chain and secretory component in N. benthamiana. Antibody expression and assembly were compared with CHO-derived antibodies by SDS-PAGE, western blotting, size-exclusion chromatography and LC-MS peptide mapping. N-linked glycosylation was assessed by rapid fluorescence/mass spectrometry and LC-ESI-MS. Susceptibility to gastric digestion was assessed in an in vitro model. Antibody function was compared for antigen binding, a Caco-2 cell-based ETEC adhesion assay, an ETEC hemagglutination inhibition assay and a murine in vivo challenge study. SIgA1 assembly appeared superior to SIgA2 in plants. Both sub-classes exhibited resistance to degradation by simulated gastric fluid, comparable to CHO-produced 68-61 SIgA1. The plant expressed SIgAs had more homogeneous N-glycosylation than CHO-derived SIgAs, but no alteration of in vitro functional activity was observed, including antibodies expressed in a plant line engineered for mammalian-like N glycosylation. The plant-derived SIgA2 mAb demonstrated protection against diarrhea in a murine infection model. Although antibody yield and purification need to be optimized, anti-ETEC SIgA antibodies produced in a low-cost plant platform are functionally equivalent to CHO antibodies, and provide promise for passive immunotherapy in LMICs.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/genetics
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/metabolism
- Antibodies, Bacterial/therapeutic use
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antibody Affinity
- Bacterial Adhesion/drug effects
- Caco-2 Cells
- Enterotoxigenic Escherichia coli/immunology
- Escherichia coli Infections/microbiology
- Escherichia coli Infections/therapy
- Gastric Acid/metabolism
- Glycosylation
- Humans
- Immunoglobulin A, Secretory/genetics
- Immunoglobulin A, Secretory/immunology
- Immunoglobulin A, Secretory/metabolism
- Immunoglobulin A, Secretory/therapeutic use
- Immunotherapy
- Mice
- Plants, Genetically Modified
- Nicotiana/genetics
- Nicotiana/metabolism
Collapse
Affiliation(s)
- Audrey Y-H Teh
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George’s University of London, London, UK
| | - Lisa Cavacini
- MassBiologics of the University of Massachusetts Medical School, Boston, MA, USA
| | - Yue Hu
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Ozan S. Kumru
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Jian Xiong
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - David T. Bolick
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sangeeta B. Joshi
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Clemens Grünwald-Gruber
- Department for Chemistry, Division of Biochemistry, Universität Für Bodenkultur Wien, Vienna, Austria
| | - Friedrich Altmann
- Department for Chemistry, Division of Biochemistry, Universität Für Bodenkultur Wien, Vienna, Austria
| | - Mark Klempner
- MassBiologics of the University of Massachusetts Medical School, Boston, MA, USA
| | - Richard L. Guerrant
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - David B. Volkin
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Yang Wang
- MassBiologics of the University of Massachusetts Medical School, Boston, MA, USA
| | - Julian K-C. Ma
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George’s University of London, London, UK
| |
Collapse
|
16
|
Hendriksen CF. A Call for a European Prohibition of Monoclonal Antibody Production by the Ascites Procedure in Laboratory Animals. Altern Lab Anim 2020. [DOI: 10.1177/026119299802600414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Monoclonal antibodies (mAbs) are particularly valuable in therapeutics and research. Unfortunately, one of the most familiar methods of producing mAbs, the ascites induction method, causes pain and distress to the animals used. In most cases, non-animal or in vitro alternatives can be employed to reduce or eliminate the use of animals for mAb production. Prohibition of the use of animals in the production of mAbs is recommended, except when the replacement in vitro methods prove to be insufficient, and in a limited number of other well-documented cases, such as an exceptional need for an emergency therapeutic application. A total ban on the use of animals for mAb production is impractical and it is imperative that an appeals process should accompany the prohibition. The need for the establishment of core facilities for in vitro mAb production is emphasised.
Collapse
Affiliation(s)
- Coenraad F.M. Hendriksen
- National Institute of Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
17
|
Abstract
Vaccines are biological preparations that improve immunity to particular diseases and form an important innovation of 19th century research. It contains a protein that resembles a disease-causing microorganism and is often made from weak or killed forms of the microbe. Vaccines are agents that stimulate the body’s immune system to recognize the antigen. Now, a new form of vaccine was introduced which will have the power to mask the risk side of conventional vaccines. This type of vaccine was produced from plants which are genetically modified. In the production of edible vaccines, the gene-encoding bacterial or viral disease-causing agent can be incorporated in plants without losing its immunogenic property. The main mechanism of action of edible vaccines is to activate the systemic and mucosal immunity responses against a foreign disease-causing organism. Edible vaccines can be produced by incorporating transgene in to the selected plant cell. At present edible vaccine are developed for veterinary and human use. But the main challenge faced by edible vaccine is its acceptance by the population so that it is necessary to make aware the society about its use and benefits. When compared to other traditional vaccines, edible vaccines are cost effective, efficient and safe. It promises a better prevention option from diseases.
Collapse
Affiliation(s)
- Vrinda M Kurup
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences Healthcare, Education & Research, Kochi, Kerala, 682041, India
| | - Jaya Thomas
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences Healthcare, Education & Research, Kochi, Kerala, 682041, India.
| |
Collapse
|
18
|
Göritzer K, Goet I, Duric S, Maresch D, Altmann F, Obinger C, Strasser R. Efficient N-Glycosylation of the Heavy Chain Tailpiece Promotes the Formation of Plant-Produced Dimeric IgA. Front Chem 2020; 8:346. [PMID: 32426328 PMCID: PMC7212365 DOI: 10.3389/fchem.2020.00346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/02/2020] [Indexed: 01/06/2023] Open
Abstract
Production of monomeric IgA in mammalian cells and plant expression systems such as Nicotiana benthamiana is well-established and can be achieved by co-expression of the corresponding light and heavy chains. In contrast, the assembly of dimeric IgA requires the additional expression of the joining chain and remains challenging especially in plant-based systems. Here, we examined factors affecting the assembly and expression of HER2 binding dimeric IgA1 and IgA2m(2) variants transiently produced in N. benthamiana. While co-expression of the joining chain resulted in efficient formation of dimeric IgAs in HEK293F cells, a mixture of monomeric, dimeric and tetrameric variants was detected in plants. Mass-spectrometric analysis of site-specific glycosylation revealed that the N-glycan profile differed between monomeric and dimeric IgAs in the plant expression system. Co-expression of a single-subunit oligosaccharyltransferase from the protozoan Leishmania major in N. benthamiana increased the N-glycosylation occupancy at the C-terminal heavy chain tailpiece and changed the ratio of monomeric to dimeric IgAs. Our data demonstrate that N-glycosylation engineering is a suitable strategy to promote the formation of dimeric IgA variants in plants.
Collapse
Affiliation(s)
- Kathrin Göritzer
- Department of Applied Genetics and Cell Biology, Institute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Iris Goet
- Department of Applied Genetics and Cell Biology, Institute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Stella Duric
- Department of Applied Genetics and Cell Biology, Institute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Maresch
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Friedrich Altmann
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christian Obinger
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
19
|
Nakanishi K, Matsuda M, Ida R, Hosokawa N, Kurohane K, Niwa Y, Kobayashi H, Imai Y. Lettuce-derived secretory IgA specifically neutralizes the Shiga toxin 1 activity. PLANTA 2019; 250:1255-1264. [PMID: 31222495 DOI: 10.1007/s00425-019-03215-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
MAIN CONCLUSION An edible plant was tested as a host for the production of secretory monoclonal IgA against Shiga toxin 1 (Stx1). The lettuce-derived IgA completely protected Vero cells from Stx1. Secretory immunoglobulin A (SIgA) is thought to control mucosal infections and thus it may be applicable to oral passive immunotherapy. Edible plants are candidate hosts for producing oral formulations with SIgA against pathogenic agents. We previously established a recombinant IgA specific for the B subunit of Shiga toxin 1 (Stx1B) consisting of the Fab fragment of Stx1B-specific monoclonal IgG and the Fc region of IgA (hyIgA). Here, we developed transgenic lettuce (Lactuca sativa) that produces hyIgA in a secretory form (S-hyIgA). An Arabidopsis-derived light-harvesting complex II (LHCB) promoter was used for the expression of all four transgenes (hyIgA heavy, light and j chains, and secretory component). Agrobacterium-mediated transformation was carried out to introduce genes into lettuce leaf discs by means of a single vector harboring all four transgenes. Consistent with the tissue specificity of the LHCB promoter, the expression of hyIgA transgenes was observed in leaf and stem tissues, which contain chloroplasts, at the mRNA and protein levels. The leaves produced hyIgA in a more than tenfold higher yield as compared with stems. The lettuce-derived S-hyIgA was found to bind to Stx1B in a dose-dependent manner by means of ELISA. A leaf extract of the transgenic lettuce completely neutralized the cytotoxicity of Stx1 against Vero cells, which are highly susceptible to Stx1. In conclusion, we established a transgenic lettuce producing a secretory form of hyIgA that can bind bacterial toxin. The results indicate that edible practical plants containing S-hyIgA will provide a possible means for immunotherapy for food poisoning.
Collapse
Affiliation(s)
- Katsuhiro Nakanishi
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Minami Matsuda
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Ryota Ida
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Nao Hosokawa
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Kohta Kurohane
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Yasuo Niwa
- Laboratory of Plant Molecular Improvement, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Hirokazu Kobayashi
- Laboratory of Plant Molecular Improvement, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Yasuyuki Imai
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan.
| |
Collapse
|
20
|
Palaci J, Virdi V, Depicker A. Transformation strategies for stable expression of complex hetero-multimeric proteins like secretory immunoglobulin A in plants. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1760-1769. [PMID: 30801876 PMCID: PMC6686127 DOI: 10.1111/pbi.13098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 05/03/2023]
Abstract
Plant expression systems have proven to be exceptional in producing high-value complex polymeric proteins such as secretory IgAs (SIgAs). However, polymeric protein production requires the expression of multiple genes, which can be transformed as single or multiple T-DNA units to generate stable transgenic plant lines. Here, we evaluated four strategies to stably transform multiple genes and to obtain high expression of all components. Using the in-seed expression of a simplified secretory IgA (sSIgA) as a reference molecule, we conclude that it is better to spread the genes over two T-DNAs than to contain them in a single T-DNA, because of the presence of homologous recombination events and gene silencing. These T-DNAs can be cotransformed to obtain transgenic plants in one transformation step. However, if time permits, more transformants with high production levels of the polymeric protein can be obtained either by sequential transformation or by in-parallel transformation followed by crossing of transformants independently selected for excellent expression of the genes in each T-DNA.
Collapse
Affiliation(s)
- Jorge Palaci
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- VIB Center for Plant Systems BiologyGentBelgium
| | - Vikram Virdi
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- VIB Center for Plant Systems BiologyGentBelgium
- Department of Biochemistry and MicrobiologyGhent UniversityGentBelgium
- VIB Center for Medical BiotechnologyGentBelgium
| | - Ann Depicker
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- VIB Center for Plant Systems BiologyGentBelgium
| |
Collapse
|
21
|
Komarova TV, Sheshukova EV, Dorokhov YL. Plant-Made Antibodies: Properties and Therapeutic Applications. Curr Med Chem 2019; 26:381-395. [PMID: 29231134 DOI: 10.2174/0929867325666171212093257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/18/2017] [Accepted: 10/06/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND A cost-effective plant platform for therapeutic monoclonal antibody production is both flexible and scalable. Plant cells have mechanisms for protein synthesis and posttranslational modification, including glycosylation, similar to those in animal cells. However, plants produce less complex and diverse Asn-attached glycans compared to animal cells and contain plant-specific residues. Nevertheless, plant-made antibodies (PMAbs) could be advantageous compared to those produced in animal cells due to the absence of a risk of contamination from nucleic acids or proteins of animal origin. OBJECTIVE In this review, the various platforms of PMAbs production are described, and the widely used transient expression system based on Agrobacterium-mediated delivery of genetic material into plant cells is discussed in detail. RESULTS We examined the features of and approaches to humanizing the Asn-linked glycan of PMAbs. The prospects for PMAbs in the prevention and treatment of human infectious diseases have been illustrated by promising results with PMAbs against human immunodeficiency virus, rotavirus infection, human respiratory syncytial virus, rabies, anthrax and Ebola virus. The pre-clinical and clinical trials of PMAbs against different types of cancer, including lymphoma and breast cancer, are addressed. CONCLUSION PMAb biosafety assessments in patients suggest that it has no side effects, although this does not completely remove concerns about the potential immunogenicity of some plant glycans in humans. Several PMAbs at various developmental stages have been proposed. Promise for the clinical use of PMAbs is aimed at the treatment of viral and bacterial infections as well as in anti-cancer treatment.
Collapse
Affiliation(s)
- Tatiana V Komarova
- Vavilov Institute of General Genetics Russian Academy of Sciences 119991, Moscow, Russian Federation.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Ekaterina V Sheshukova
- Vavilov Institute of General Genetics Russian Academy of Sciences 119991, Moscow, Russian Federation
| | - Yuri L Dorokhov
- Vavilov Institute of General Genetics Russian Academy of Sciences 119991, Moscow, Russian Federation.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| |
Collapse
|
22
|
Current state-of-the-art in plant-based antibody production systems. Biotechnol Lett 2019; 41:335-346. [DOI: 10.1007/s10529-019-02651-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/18/2019] [Indexed: 12/26/2022]
|
23
|
Schillberg S, Raven N, Spiegel H, Rasche S, Buntru M. Critical Analysis of the Commercial Potential of Plants for the Production of Recombinant Proteins. FRONTIERS IN PLANT SCIENCE 2019; 10:720. [PMID: 31244868 PMCID: PMC6579924 DOI: 10.3389/fpls.2019.00720] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/16/2019] [Indexed: 05/06/2023]
Abstract
Over the last three decades, the expression of recombinant proteins in plants and plant cells has been promoted as an alternative cost-effective production platform. However, the market is still dominated by prokaryotic and mammalian expression systems, the former offering high production capacity at a low cost, and the latter favored for the production of complex biopharmaceutical products. Although plant systems are now gaining widespread acceptance as a platform for the larger-scale production of recombinant proteins, there is still resistance to commercial uptake. This partly reflects the relatively low yields achieved in plants, as well as inconsistent product quality and difficulties with larger-scale downstream processing. Furthermore, there are only a few cases in which plants have demonstrated economic advantages compared to established and approved commercial processes, so industry is reluctant to switch to plant-based production. Nevertheless, some plant-derived proteins for research or cosmetic/pharmaceutical applications have reached the market, showing that plants can excel as a competitive production platform in some niche areas. Here, we discuss the strengths of plant expression systems for specific applications, but mainly address the bottlenecks that must be overcome before plants can compete with conventional systems, enabling the future commercial utilization of plants for the production of valuable proteins.
Collapse
Affiliation(s)
- Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Phytopathology, Justus-Liebig-University Giessen, Giessen, Germany
- *Correspondence: Stefan Schillberg,
| | - Nicole Raven
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stefan Rasche
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Aachen-Maastricht Institute for Biobased Materials, Geleen, Netherlands
| | - Matthias Buntru
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| |
Collapse
|
24
|
Webster GR, van Dolleweerd C, Guerra T, Stelter S, Hofmann S, Kim M, Teh AY, Diogo GR, Copland A, Paul MJ, Hart P, Reljic R, Ma JK. A polymeric immunoglobulin-antigen fusion protein strategy for enhancing vaccine immunogenicity. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1983-1996. [PMID: 29682888 PMCID: PMC6230950 DOI: 10.1111/pbi.12932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/15/2018] [Accepted: 03/21/2018] [Indexed: 05/06/2023]
Abstract
In this study, a strategy based on polymeric immunoglobulin G scaffolds (PIGS) was used to produce a vaccine candidate for Mycobacterium tuberculosis. A genetic fusion construct comprising genes encoding the mycobacterial Ag85B antigen, an immunoglobulin γ-chain fragment and the tailpiece from immunoglobulin μ chain was engineered. Expression was attempted in Chinese Hamster Ovary (CHO) cells and in Nicotiana benthamiana. The recombinant protein assembled into polymeric structures (TB-PIGS) in N. benthamiana, similar in size to polymeric IgM. These complexes were subsequently shown to bind to the complement protein C1q and FcγRs with increased affinity. Modification of the N-glycans linked to TB-PIGS by removal of xylose and fucose residues that are normally found in plant glycosylated proteins also resulted in increased affinity for low-affinity FcγRs. Immunization studies in mice indicated that TB-PIGS are highly immunogenic with and without adjuvant. However, they did not improve protective efficacy in mice against challenge with M. tuberculosis compared to conventional vaccination with BCG, suggesting that additional or alternative antigens may be needed to protect against this disease. Nevertheless, these results establish a novel platform for producing polymeric antigen-IgG γ-chain molecules with inherent functional characteristics that are desirable in vaccines.
Collapse
Affiliation(s)
- Gina R. Webster
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | | | - Thais Guerra
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Szymon Stelter
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Sven Hofmann
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Mi‐Young Kim
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Audrey Y‐H. Teh
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Gil Reynolds Diogo
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Alastair Copland
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Mathew J. Paul
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Peter Hart
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Rajko Reljic
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Julian K‐C. Ma
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| |
Collapse
|
25
|
Luke GA, Ryan MD. "Therapeutic applications of the 'NPGP' family of viral 2As". Rev Med Virol 2018; 28:e2001. [PMID: 30094875 DOI: 10.1002/rmv.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Abstract
Oligopeptide "2A" and "2A-like" sequences ("2As"; 18-25aa) are found in a range of RNA virus genomes controlling protein biogenesis through "recoding" of the host-cell translational apparatus. Insertion of multiple 2As within a single open reading frame (ORF) produces multiple proteins; hence, 2As have been used in a very wide range of biotechnological and biomedical applications. During translation, these 2A peptide sequences mediate a eukaryote-specific, self-"cleaving" event, termed "ribosome skipping" with very high efficiency. A particular advantage of using 2As is the ability to simultaneously translate a number of proteins at an equal level in all eukaryotic systems although, naturally, final steady-state levels depend upon other factors-notably protein stability. By contrast, the use of internal ribosome entry site elements for co-expression results in an unbalanced expression due to the relative inefficiency of internal initiation. For example, a 1:1 ratio is of particular importance for the biosynthesis of the heavy-chain and light-chain components of antibodies: highly valuable as therapeutic proteins. Furthermore, each component of these "artificial polyprotein" systems can be independently targeted to different sub-cellular sites. The potential of this system was vividly demonstrated by concatenating multiple gene sequences, linked via 2A sequences, into a single, long, ORF-a polycistronic construct. Here, ORFs comprising the biosynthetic pathways for violacein (five gene sequences) and β-carotene (four gene sequences) were concatenated into a single cistron such that all components were co-expressed in the yeast Pichia pastoris. In this review, we provide useful information on 2As to serve as a guide for future utilities of this co-expression technology in basic research, biotechnology, and clinical applications.
Collapse
Affiliation(s)
- Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, St Andrews, UK
| | - Martin D Ryan
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
26
|
Abstract
Plants and their rich variety of natural compounds are used to maintain and to improve health since the earliest stages of civilization. Despite great advances in synthetic organic chemistry, one fourth of present-day drugs have still a botanical origin, and we are currently living a revival of interest in new pharmaceuticals from plant sources. Modern biotechnology has defined the potential of plants to be systems able to manufacture not only molecules naturally occurring in plants but also newly engineered compounds, from small to complex protein molecules, which may originate even from non-plant sources. Among these compounds, pharmaceuticals such as vaccines, antibodies and other therapeutic or prophylactic entities can be listed. For this technology, the term plant molecular farming has been coined with reference to agricultural applications due to the use of crops as biofactories for the production of high-added value molecules. In this perspective, edible plants have also been thought as a tool to deliver by the oral route recombinant compounds of medical significance for new therapeutic strategies. Despite many hurdles in establishing regulatory paths for this “novel” biotechnology, plants as bioreactors deserve more attention when considering their intrinsic advantages, such as the quality and safety of the recombinant molecules that can be produced and their potential for large-scale and low-cost production, despite worrying issues (e.g. amplification and diffusion of transgenes) that are mainly addressed by regulations, if not already tackled by the plant-made products already commercialized. The huge benefits generated by these valuable products, synthesized through one of the safest, cheapest and most efficient method, speak for themselves. Milestone for plant-based recombinant protein production for human health use was the approval in 2012 by the US Food and Drug Administration of plant-made taliglucerase alfa, a therapeutic enzyme for the treatment of Gaucher’s disease, synthesized in carrot suspension cultures by Protalix BioTherapeutics. In this review, we will go through the various approaches and results for plant-based production of proteins and recent progress in the development of plant-made pharmaceuticals (PMPs) for the prevention and treatment of human diseases. An analysis on acceptance of these products by public opinion is also tempted.
Collapse
|
27
|
Li Y, Guan L, Liu X, Liu W, Yang J, Zhang X, Wang F, Guo Y, Li H, Li X. Oral immunization with rotavirus VP7-CTB fusion expressed in transgenic Arabidopsis thaliana induces antigen-specific IgA and IgG and passive protection in mice. Exp Ther Med 2018; 15:4866-4874. [PMID: 29805507 PMCID: PMC5952079 DOI: 10.3892/etm.2018.6003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
Human rotavirus (HRV) is the primary cause of severe gastroenteritis in children. However, there is currently no protective virus for rotavirus available. In the present study, an HRVVP7-cholera toxin B subunit (CTB) fusion protein was expressed in Arabidopsis thaliana. To determine the adjuvant effect of HRVVP7-CTB, HRVVP7 without CTB was expressed in the same manner. HRVVP7-CTB accounted for 0.39% of the total soluble protein (TSP) in the transgenic seeds and 52.65 µg/g of HRVVP7 protein was expressed in these seeds. Mice were immunized with TSP from the transformed seeds and produced serum immunoglobulin G (IgG) and mucosal IgA specifically directed against HRVVP7. Antibody titers were highest in mice orally immunized with the plant-expressed HRVVP7-CTB protein, whereas HRVVP7-CTB-specific IgG neutralized the rotavirus. Suckling pups born from dams immunized with the HRVVP7-CTB fusion protein were protected against challenge with virulent rotavirus. The results of the present study suggest that the HRVVP7-CTB fusion protein produced in A. thaliana may be a rotaviral-specific candidate subunit vaccine.
Collapse
Affiliation(s)
- Yuxian Li
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China.,College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China.,Traditional Chinese Medicine Department, Jilin Agricultural Science and Technology College, Jilin 132101, P.R. China
| | - Lili Guan
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Xiuming Liu
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Weican Liu
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Jing Yang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Xiaomei Zhang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Fawei Wang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Yongxin Guo
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Haiyan Li
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Xiaokun Li
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China.,College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
28
|
Lin Y, Hung CY, Bhattacharya C, Nichols S, Rahimuddin H, Kittur FS, Leung T, Xie J. An Effective Way of Producing Fully Assembled Antibody in Transgenic Tobacco Plants by Linking Heavy and Light Chains via a Self-Cleaving 2A Peptide. FRONTIERS IN PLANT SCIENCE 2018; 9:1379. [PMID: 30283486 PMCID: PMC6156355 DOI: 10.3389/fpls.2018.01379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/30/2018] [Indexed: 05/02/2023]
Abstract
Therapeutic monoclonal antibodies (mAbs) have evolved into an important class of effective medicine in treatment of various diseases. Since the antibody molecule consists of two identical heavy chains (HC) and two light chains (LC), each chain encoded by two different genes, their expressions at similar levels are critical for efficient assembly of functional recombinant mAbs. Although the plant-based expression system has been tested to produce fully assembled recombinant mAbs, coordinately expressing HC and LC at similar levels in a transgenic plant remains a challenge. A sequence coding for a foot-and-mouth disease virus (FMDV) 2A peptide has been successfully used to link two or more genes, which enable the translated polyprotein to be "self-cleaved" into individual protein in various genetically modified organisms. In the present study, we exploited the usage of F2A in Ebola virus monoclonal antibody (EBOV mAb) production. We found that transgenic tobacco plants carrying a transcription unit containing HC and LC linked by 2A not only produced similar levels of HC and LC but also rendered a higher yield of fully assembled EBOV mAb compared to those expressing HC and LC in two independent transcription units. Purified EBOV mAb bound to an Ebola epitope peptide with apparent Kd -values of 90.13-149.2 nM, indicating its proper assembly and high affinity binding to Ebola epitope peptide. To our knowledge, this is the first report showing mAb production by overexpressing a single transcription unit consisting of HC, LC and 2A in stable transformed tobacco plants.
Collapse
Affiliation(s)
- Yuan Lin
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Chayanika Bhattacharya
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Starr Nichols
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Hafsa Rahimuddin
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Farooqahmed S. Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - TinChung Leung
- Department of Biological and Biomedical Sciences, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, United States
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
- *Correspondence: Jiahua Xie,
| |
Collapse
|
29
|
Protein-Based Bioproducts. PLANT BIOPRODUCTS 2018. [PMCID: PMC7121387 DOI: 10.1007/978-1-4939-8616-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plant proteins can be used for the production of a variety of bioproducts, including films and coatings, adhesives, fibres and pharmaceuticals. Proteins derived from plant production systems have many advantages: they are safe, low-cost and rapidly deployable, allow for simple product storage and result in proteins that are properly folded, assembled and post-translationally modified. While plant-derived protein-based products are natural, renewable, biodegradable and environmentally friendly, they tend to be lower in strength and elasticity than their corresponding synthetic products. Current research in this area is focused on overcoming challenges in plant production platforms related to yield, purification, regulatory approval and customer acceptance.
Collapse
|
30
|
Melnik S, Neumann AC, Karongo R, Dirndorfer S, Stübler M, Ibl V, Niessner R, Knopp D, Stoger E. Cloning and plant-based production of antibody MC10E7 for a lateral flow immunoassay to detect [4-arginine]microcystin in freshwater. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:27-38. [PMID: 28421663 PMCID: PMC5785354 DOI: 10.1111/pbi.12746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/14/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
Antibody MC10E7 is one of a small number of monoclonal antibodies that bind specifically to [Arg4]-microcystins, and it can be used to survey natural water sources and food samples for algal toxin contamination. However, the development of sensitive immunoassays in different test formats, particularly user-friendly tests for on-site analysis, requires a sensitive but also cost-effective antibody. The original version of MC10E7 was derived from a murine hybridoma, but we determined the sequence of the variable regions using the peptide mass-assisted cloning strategy and expressed a scFv (single-chain variable fragment) format of this antibody in yeast and a chimeric full-size version in leaves of Nicotiana tabacum and Nicotiana benthamiana to facilitate inexpensive and scalable production. The specific antigen-binding activity of the purified antibody was verified by surface plasmon resonance spectroscopy and ELISA, confirming the same binding specificity as its hybridoma-derived counterpart. The plant-derived antibody was used to design a lateral flow immunoassay (dipstick) for the sensitive detection of [Arg4]-microcystins at concentrations of 100-300 ng/L in freshwater samples collected at different sites. Plant-based production will likely reduce the cost of the antibody, currently the most expensive component of the dipstick immunoassay, and will allow the development of further antibody-based analytical devices and water purification adsorbents for the efficient removal of toxic contaminants.
Collapse
Affiliation(s)
- Stanislav Melnik
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Anna-Cathrine Neumann
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Ryan Karongo
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Sebastian Dirndorfer
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Martin Stübler
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Verena Ibl
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Reinhard Niessner
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Dietmar Knopp
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
31
|
Abstract
Molecular farming provides an unprecedented approach for the production of metabolites or proteins of medicinal value from plants used previously only in agricultural setting. These plants act as protein factories that can synthesize a variety of proteins free from pathogens such as plasma proteins, growth factors, and vaccines. This method provides a novel, tempting, inexpensive, easy, and safe alternative to other techniques of protein or antigen production. With the advent of transgenic plants, it is possible to produce unlimited amounts of subunit vaccines (for oral use/edible and of parenteral use), protein used for pharmaceutical/medicinal purpose, recombinant proteins, antibodies, and industrial enzymes. Plants have numerous advantages over the production systems on account of scalability, safety, and are economic; for example, less cost of production is involved for Hepatitis B nucleocapsid antigen using transgenic tobacco. Biopharming or molecular farming provides an important resource for cheaper drug production used in the treatment of cancer, heart diseases, and infectious diseases. The pharmaceutical products are manufactured by genetically engineered plants that are extracted and purified, also known as pharmaceuticals produced by plants. Edible vaccines are cheaper in cost, easy to administer mostly by oral route, fail-safe, and are acceptable by society especially in developing countries. These vaccines are targeted to provide systemic as well as mucosal types of immunity. It has been predicted that in future children may get their immunization by munching on foods instead of getting enduring shots. The production of edible vaccines consists of the process of introducing the selected genes of desired quality into plant to induce these altered or transgenic plants to produce the encoded proteins in a natural way. These vaccines provide safer alternatives and help in reduction of cost of production and shipping and also decrease the potential hazards associated with conventional vaccines. However, becoming a reality and readily availability of edible vaccine is challenged by many problems of technical, regulatory, and nonscientific issues, which should be ruled out and rectified. This chapter provides insight into the current scenario and future applications of this new preventive modality.
Collapse
|
32
|
Singh A, Kaur G, Singh S, Singh N, Saxena G, Verma PC. Recombinant Plant Engineering for Immunotherapeutic Production. CURRENT MOLECULAR BIOLOGY REPORTS 2017; 3:306-316. [PMID: 32226727 PMCID: PMC7099902 DOI: 10.1007/s40610-017-0078-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PURPOSE OF REVIEW The requirement for large quantities of therapeutic proteins has fueled a great interest in the production of recombinant proteins in plant bioreactors. The vaccines and bio-therapeutic protein production in plants hold the promise of significantly lowering the cost of manufacturing life-saving drugs. This review will reflect the current status and challenges that the molecular farming platform faces becoming a strategic solution for the development of low-cost bio-therapeutics for developing countries. RECENT FINDINGS Different plant parts have been successfully identified as suitable expression systems for the commercial production of therapeutic proteins for some human and animal diseases ranging from common cold to AIDS. The processed therapeutics from such sources are devoid of any toxic components. The large-scale cultivation of these transgenic plants would be possible anywhere in the world including developing countries, which lack sophisticated drug manufacturing units. A couple of such commercially generated products have already hit the market with success. Newer methods using suitable plant viruses and recombinant gene expression systems have already been devised for producing therapeutic proteins and peptides. SUMMARY Plants are promising bio-factories for therapeutic protein production because of their several advantages over the other expression systems especially the advanced mechanisms for protein synthesis and post-translational modification which are very much similar to animal cells. Plant biotechnologists are much attracted to the bio-farming because of its flexibility, scalability, low manufacturing cost, as well as the lack of risk of toxic or pathogenic contamination. A number of projects on bio-farming are designed and are at various developmental stages but have not yet become available to the pharmaceutical industry. Therefore, we need further advancement in the optimization of lab protocols for up-scaling the production of such therapeutics at commercial level with a promise to offer their best clinical use.
Collapse
Affiliation(s)
- Ankit Singh
- Department of Biosciences, Jamia Millia Islamia University, New Delhi, 110025 India
| | - Gurminder Kaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, 201303 India
| | - Sanchita Singh
- Genetics and Plant Molecular Biology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P 226001 India
| | - Neetu Singh
- Instrumentation Research Facility, Jawahar Lal Nehru University, New Delhi, 110067 India
| | - Gauri Saxena
- Department of Botany, University of Lucknow, Lucknow, 226001 India
| | - Praveen C. Verma
- Genetics and Plant Molecular Biology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P 226001 India
| |
Collapse
|
33
|
Fresquet-Corrales S, Roque E, Sarrión-Perdigones A, Rochina M, López-Gresa MP, Díaz-Mula HM, Bellés JM, Tomás-Barberán F, Beltrán JP, Cañas LA. Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp. PLoS One 2017; 12:e0184839. [PMID: 28902886 PMCID: PMC5597232 DOI: 10.1371/journal.pone.0184839] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/31/2017] [Indexed: 11/18/2022] Open
Abstract
Proanthocyanidins (PAs), or condensed tannins, are powerful antioxidants that remove harmful free oxygen radicals from cells. To engineer the anthocyanin and proanthocyanidin biosynthetic pathways to de novo produce PAs in two Nicotiana species, we incorporated four transgenes to the plant chassis. We opted to perform a simultaneous transformation of the genes linked in a multigenic construct rather than classical breeding or retransformation approaches. We generated a GoldenBraid 2.0 multigenic construct containing two Antirrhinum majus transcription factors (AmRosea1 and AmDelila) to upregulate the anthocyanin pathway in combination with two Medicago truncatula genes (MtLAR and MtANR) to produce the enzymes that will derivate the biosynthetic pathway to PAs production. Transient and stable transformation of Nicotiana benthamiana and Nicotiana tabacum with the multigenic construct were respectively performed. Transient expression experiments in N. benthamiana showed the activation of the anthocyanin pathway producing a purple color in the agroinfiltrated leaves and also the effective production of 208.5 nmol (-) catechin/g FW and 228.5 nmol (-) epicatechin/g FW measured by the p-dimethylaminocinnamaldehyde (DMACA) method. The integration capacity of the four transgenes, their respective expression levels and their heritability in the second generation were analyzed in stably transformed N. tabacum plants. DMACA and phoroglucinolysis/HPLC-MS analyses corroborated the activation of both pathways and the effective production of PAs in T0 and T1 transgenic tobacco plants up to a maximum of 3.48 mg/g DW. The possible biotechnological applications of the GB2.0 multigenic approach in forage legumes to produce "bloat-safe" plants and to improve the efficiency of conversion of plant protein into animal protein (ruminal protein bypass) are discussed.
Collapse
Affiliation(s)
| | - Edelín Roque
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - Alejandro Sarrión-Perdigones
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maricruz Rochina
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - María P. López-Gresa
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - Huertas M. Díaz-Mula
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Research Group on Quality, Safety and Bioactivity of Plant Foods, Murcia, Spain
| | - José M. Bellés
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - Francisco Tomás-Barberán
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Research Group on Quality, Safety and Bioactivity of Plant Foods, Murcia, Spain
| | - José P. Beltrán
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - Luis A. Cañas
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| |
Collapse
|
34
|
Capodicasa C, Catellani M, Moscetti I, Bromuro C, Chiani P, Torosantucci A, Benvenuto E. Comparative analysis of plant-produced, recombinant dimeric IgA against cell wall β-glucan of pathogenic fungi. Biotechnol Bioeng 2017; 114:2729-2738. [PMID: 28832951 DOI: 10.1002/bit.26403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/30/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Abstract
Immunoglobulins A (IgA) are crucially involved in protection of human mucosal surfaces from microbial pathogens. In this work, we devised and expressed in plants recombinant chimeric antifungal antibodies (Abs) of isotype A (IgA1, IgA2, and scFvFcA1), derived from a murine mAb directed to the fungal cell wall polysaccharide β-glucan which had proven able to confer protection against multiple pathogenic fungi. All recombinant IgA (rIgA) were expressed and correctly assembled in dimeric form in plants and evaluated for yield, antigen-binding efficiency and antifungal properties in vitro, in comparison with a chimeric IgG1 version. Production yields and binding efficiency to purified β-glucans showed significant variations not only between Abs of different isotypes but also between the different IgA formats. Moreover, only the dimeric IgA1 was able to strongly bind cells of the fungal pathogen Candida albicans and to restrain its adhesion to human epithelial cells. Our data indicate that IgG to IgA switch and differences in molecular structure among different rIgA formats can impact expression in plant and biological activity of anti-β-glucans Abs and provide new insights for the design of recombinant IgA as anti-infective immunotherapeutics, whose potential is still poorly investigated.
Collapse
Affiliation(s)
- Cristina Capodicasa
- Laboratory of Biotechnology, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Research Center Casaccia, Rome, Italy
| | - Marcello Catellani
- Laboratory of Biotechnology, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Research Center Casaccia, Rome, Italy
| | - Ilaria Moscetti
- Laboratory of Biotechnology, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Research Center Casaccia, Rome, Italy
| | - Carla Bromuro
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Chiani
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Torosantucci
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Eugenio Benvenuto
- Laboratory of Biotechnology, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Research Center Casaccia, Rome, Italy
| |
Collapse
|
35
|
Giritch A, Klimyuk V, Gleba Y. 125 years of virology and ascent of biotechnologies based on viral expressio. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717020037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Nakanishi K, Morikane S, Ichikawa S, Kurohane K, Niwa Y, Akimoto Y, Matsubara S, Kawakami H, Kobayashi H, Imai Y. Protection of Human Colon Cells from Shiga Toxin by Plant-based Recombinant Secretory IgA. Sci Rep 2017; 7:45843. [PMID: 28368034 PMCID: PMC5377459 DOI: 10.1038/srep45843] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/06/2017] [Indexed: 01/07/2023] Open
Abstract
Shiga toxin is a major virulence factor of food-poisoning caused by Escherichia coli such as O157:H7. Secretory immunoglobulin (Ig) A (SIgA) is supposed to prevent infection of the mucosal surface and is a candidate agent for oral immunotherapy. We previously established a recombinant monoclonal antibody (mAb) consisting of variable regions from a mouse IgG mAb specific for the binding subunit of Shiga toxin 1 (Stx1) and the Fc region of mouse IgA. Here we produced a secretory form of the recombinant IgA (S-hyIgA) with transgenic Arabidopsis thaliana plant. All the S-hyIgA cDNAs (heavy, light, J chain and secretory component) were expressed under the control of a bidirectional promoter of a chlorophyll a/b-binding protein of A. thaliana without using a viral promoter. The plant-based S-hyIgA exhibited antigen binding, and was modified with plant-specific N-linked sugar chains. The Ig heavy chain and secretory components were observed in an intracellular protein body-like structure of the transgenic leaves on immuno-electron microscopy. An extract of the transgenic leaves neutralized the cytotoxicity of Stx1 toward butyrate-treated Caco-2 cells, a human colon carcinoma cell line. These results will contribute to the development of edible therapeutic antibodies such as those for the treatment of mucosal infection.
Collapse
Affiliation(s)
- Katsuhiro Nakanishi
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526, Japan
| | - Shota Morikane
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526, Japan
| | - Shiori Ichikawa
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526, Japan
| | - Kohta Kurohane
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526, Japan
| | - Yasuo Niwa
- Laboratory of Plant Molecular Improvement, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo 181-8612, Japan
| | - Sachie Matsubara
- Laboratory for Electron Microscopy, Kyorin University School of Medicine, Mitaka, Tokyo 181-8612, Japan
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo 181-8612, Japan
| | - Hirokazu Kobayashi
- Laboratory of Plant Molecular Improvement, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526, Japan
| | - Yasuyuki Imai
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526, Japan
| |
Collapse
|
37
|
Luo K, Zavala F, Gordy J, Zhang H, Markham RB. Extended protection capabilities of an immature dendritic-cell targeting malaria sporozoite vaccine. Vaccine 2017; 35:2358-2364. [DOI: 10.1016/j.vaccine.2017.03.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/13/2016] [Accepted: 03/15/2017] [Indexed: 12/14/2022]
|
38
|
Edgue G, Twyman RM, Beiss V, Fischer R, Sack M. Antibodies from plants for bionanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [DOI: 10.1002/wnan.1462] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Gueven Edgue
- Department of Molecular Biotechnology; RWTH Aachen University; Aachen Germany
| | | | - Veronique Beiss
- Department of Molecular Biotechnology; RWTH Aachen University; Aachen Germany
| | - Rainer Fischer
- Department of Molecular Biotechnology; RWTH Aachen University; Aachen Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME; Aachen Germany
| | - Markus Sack
- Department of Molecular Biotechnology; RWTH Aachen University; Aachen Germany
| |
Collapse
|
39
|
Lomonossoff GP, D'Aoust MA. Plant-produced biopharmaceuticals: A case of technical developments driving clinical deployment. Science 2017; 353:1237-40. [PMID: 27634524 DOI: 10.1126/science.aaf6638] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to express heterologous proteins in plants has led to the concept of using plants as "bioreactors" or "biofactories" for the production of pharmaceutical proteins. Although initial studies were promising, the pathway to commercialization and deployment in a clinical setting has proven to be a somewhat rocky road. This Review examines the technical developments that have led to the current increase in interest in the use of plants for the production of pharmaceutical proteins, particularly in the context of clinical trials.
Collapse
Affiliation(s)
- George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Marc-André D'Aoust
- Medicago, 1020 Route de l'Église, Bureau 600, Quebec City, Quebec G1V 3V9, Canada
| |
Collapse
|
40
|
Sheshukova EV, Komarova TV, Dorokhov YL. Plant factories for the production of monoclonal antibodies. BIOCHEMISTRY (MOSCOW) 2016; 81:1118-1135. [DOI: 10.1134/s0006297916100102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Juarez P, Virdi V, Depicker A, Orzaez D. Biomanufacturing of protective antibodies and other therapeutics in edible plant tissues for oral applications. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1791-1799. [PMID: 26873071 PMCID: PMC5067594 DOI: 10.1111/pbi.12541] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Although plant expression systems used for production of therapeutic proteins have the advantage of being scalable at a low price, the downstream processing necessary to obtain pure therapeutic molecules is as expensive as for the traditional Chinese hamster ovary (CHO) platforms. However, when edible plant tissues (EPTs) are used, there is no need for exhaustive purification, because they can be delivered orally as partially purified formulations that are safe for consumption. This economic benefit is especially interesting when high doses of recombinant proteins are required throughout the treatment/prophylaxis period, as is the case for antibodies used for oral passive immunization (OPI). The secretory IgA (SIgA) antibodies, which are highly abundant in the digestive tract and mucosal secretions, and thus the first choice for OPI, have only been successfully produced in plant expression systems. Here, we cover most of the up-to-date examples of EPT-produced pharmaceuticals, including two examples of SIgA aimed at oral delivery. We describe the benefits and drawbacks of delivering partially purified formulations and discuss a number of practical considerations and criteria to take into account when using plant expression systems, such as subcellular targeting, protein degradation, glycosylation patterns and downstream strategies, all crucial for improved yield, high quality and low cost of the final product.
Collapse
Affiliation(s)
- Paloma Juarez
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Vikram Virdi
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Ann Depicker
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
42
|
Tschofen M, Knopp D, Hood E, Stöger E. Plant Molecular Farming: Much More than Medicines. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:271-94. [PMID: 27049632 DOI: 10.1146/annurev-anchem-071015-041706] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants have emerged as commercially relevant production systems for pharmaceutical and nonpharmaceutical products. Currently, the commercially available nonpharmaceutical products outnumber the medical products of plant molecular farming, reflecting the shorter development times and lower regulatory burden of the former. Nonpharmaceutical products benefit more from the low costs and greater scalability of plant production systems without incurring the high costs associated with downstream processing and purification of pharmaceuticals. In this review, we explore the areas where plant-based manufacturing can make the greatest impact, focusing on commercialized products such as antibodies, enzymes, and growth factors that are used as research-grade or diagnostic reagents, cosmetic ingredients, and biosensors or biocatalysts. An outlook is provided on high-volume, low-margin proteins such as industrial enzymes that can be applied as crude extracts or unprocessed plant tissues in the feed, biofuel, and papermaking industries.
Collapse
Affiliation(s)
- Marc Tschofen
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Dietmar Knopp
- Institute of Hydrochemistry, Chair for Analytical Chemistry, Technische Universität München, 80333 Munich, Germany
| | - Elizabeth Hood
- Arkansas State University Biosciences Institute, Jonesboro, Arkansas 72467
| | - Eva Stöger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
43
|
Yusibov V, Kushnir N, Streatfield SJ. Antibody Production in Plants and Green Algae. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:669-701. [PMID: 26905655 DOI: 10.1146/annurev-arplant-043015-111812] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.
Collapse
Affiliation(s)
- Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware 19711; , ,
| | - Natasha Kushnir
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware 19711; , ,
| | | |
Collapse
|
44
|
Potent In Vitro and In Vivo Activity of Plantibody Specific for Porphyromonas gingivalis FimA. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:346-52. [PMID: 26865596 DOI: 10.1128/cvi.00620-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/04/2016] [Indexed: 12/13/2022]
Abstract
Fimbrial protein fimbrillin (FimA), a major structural subunit of Porphyromonas gingivalis, has been suggested as a vaccine candidate to control P. gingivalis-induced periodontal disease. Previously, cDNAs encoding IgG monoclonal antibodies (MAbs) against purified FimA from P. gingivalis 2561 have been cloned, and the MAbs have been produced in rice cell suspension. Here we examined the biological activities of the plant-produced MAb specific for FimA (anti-FimA plantibody) of P. gingivalis in vitro and in vivo. The anti-FimA plantibody recognized oligomeric/polymeric forms of native FimA in immunoblot analysis and showed high affinity for native FimA (KD = 0.11 nM). Binding of P. gingivalis (10(8) cells) to 2 mg of saliva-coated hydroxyapatite beads was reduced by 53.8% in the presence of 1 μg/ml plantibody. Anti-FimA plantibody (10 μg/ml) reduced invasion of periodontal ligament cells by P. gingivalis (multiplicity of infection, 100) by 68.3%. Intracellular killing of P. gingivalis opsonized with the anti-FimA plantibody by mouse macrophages was significantly increased (77.1%) compared to killing of bacterial cells with irrelevant IgG (36.7%). In a mouse subcutaneous chamber model, the number of recoverable P. gingivalis cells from the chamber fluid was significantly reduced when the numbers of bacterial cells opsonized with anti-FimA plantibody were compared with the numbers of bacterial cells with irrelevant IgG, 66.7% and 37.1%, respectively. These in vitro and in vivo effects of anti-FimA plantibody were comparable to those of the parental MAb. Further studies with P. gingivalis strains with different types of fimbriae are needed to investigate the usefulness of anti-FimA plantibody for passive immunization to control P. gingivalis-induced periodontal disease.
Collapse
|
45
|
Nagatoshi Y, Ikeda M, Kishi H, Hiratsu K, Muraguchi A, Ohme-Takagi M. Induction of a dwarf phenotype with IBH1 may enable increased production of plant-made pharmaceuticals in plant factory conditions. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:887-94. [PMID: 26190496 DOI: 10.1111/pbi.12437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 06/08/2015] [Accepted: 06/16/2015] [Indexed: 05/05/2023]
Abstract
Year-round production in a contained, environmentally controlled 'plant factory' may provide a cost-effective method to produce pharmaceuticals and other high-value products. However, cost-effective production may require substantial modification of the host plant phenotype; for example, using dwarf plants can enable the growth of more plants in a given volume by allowing more plants per shelf and enabling more shelves to be stacked vertically. We show here that the expression of the chimeric repressor for Arabidopsis AtIBH1 (P35S:AtIBH1SRDX) in transgenic tobacco plants (Nicotiana tabacum) induces a dwarf phenotype, with reduced cell size. We estimate that, in a given volume of cultivation space, we can grow five times more AtIBH1SRDX plants than wild-type plants. Although, the AtIBH1SRDX plants also showed reduced biomass compared with wild-type plants, they produced about four times more biomass per unit of cultivation volume. To test whether the dwarf phenotype affects the production of recombinant proteins, we expressed the genes for anti-hepatitis B virus antibodies (anti-HBs) in tobacco plants and found that the production of anti-HBs per unit fresh weight did not significantly differ between wild-type and AtIBH1SRDX plants. These data indicate that P35S:AtIBH1SRDX plants produced about fourfold more antibody per unit of cultivation volume, compared with wild type. Our results indicate that AtIBH1SRDX provides a useful tool for the modification of plant phenotype for cost-effective production of high-value products by stably transformed plants in plant factory conditions.
Collapse
Affiliation(s)
- Yukari Nagatoshi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Miho Ikeda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | | | - Atsushi Muraguchi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Graduate school of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
46
|
Vasilev N, Smales CM, Schillberg S, Fischer R, Schiermeyer A. Developments in the production of mucosal antibodies in plants. Biotechnol Adv 2016; 34:77-87. [PMID: 26626615 DOI: 10.1016/j.biotechadv.2015.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 11/20/2022]
Abstract
Recombinant mucosal antibodies represent attractive target molecules for the development of next generation biopharmaceuticals for passive immunization against various infectious diseases and treatment of patients suffering from mucosal antibody deficiencies. As these polymeric antibodies require complex post-translational modifications and correct subunit assembly, they are considered as difficult-to-produce recombinant proteins. Beside the traditional, mammalian-based production platforms, plants are emerging as alternative expression hosts for this type of complex macromolecule. Plant cells are able to produce high-quality mucosal antibodies as shown by the successful expression of the secretory immunoglobulins A (IgA) and M (IgM) in various antibody formats in different plant species including tobacco and its close relative Nicotiana benthamiana, maize, tomato and Arabidopsis thaliana. Importantly for biotherapeutic application, transgenic plants are capable of synthesizing functional IgA and IgM molecules with biological activity and safety profiles comparable with their native mammalian counterparts. This article reviews the structure and function of mucosal IgA and IgM antibodies and summarizes the current knowledge of their production and processing in plant host systems. Specific emphasis is given to consideration of intracellular transport processes as these affect assembly of the mature immunoglobulins, their secretion rates, proteolysis/degradation and glycosylation patterns. Furthermore, this review provides an outline of glycoengineering efforts that have been undertaken so far to produce antibodies with homogenous human-like glycan decoration. We believe that the continued development of our understanding of the plant cellular machinery related to the heterologous expression of immunoglobulins will further improve the production levels, quality and control of post-translational modifications that are 'human-like' from plant systems and enhance the prospects for the regulatory approval of such molecules leading to the commercial exploitation of plant-derived mucosal antibodies.
Collapse
Affiliation(s)
- Nikolay Vasilev
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Plant Biotechnology, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - C Mark Smales
- School of Biosciences, University of Kent, CT2 7NJ Kent, UK
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Plant Biotechnology, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Plant Biotechnology, Forckenbeckstrasse 6, 52074 Aachen, Germany; RWTH Aachen University, Institute for Molecular Biotechnology, Worringerweg 1, 52074 Aachen, Germany
| | - Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Plant Biotechnology, Forckenbeckstrasse 6, 52074 Aachen, Germany.
| |
Collapse
|
47
|
Virdi V, Juarez P, Boudolf V, Depicker A. Recombinant IgA production for mucosal passive immunization, advancing beyond the hurdles. Cell Mol Life Sci 2016; 73:535-45. [PMID: 26511868 PMCID: PMC11108522 DOI: 10.1007/s00018-015-2074-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/26/2015] [Accepted: 10/14/2015] [Indexed: 01/21/2023]
Abstract
Vaccination is a successful strategy to proactively develop immunity to a certain pathogen, but most vaccines fail to trigger a specific immune response at the mucosal surfaces, which are the first port of entry for infectious agents. At the mucosal surfaces, the predominant immunoglobulin is secretory IgA (SIgA) that specifically neutralizes viruses and prevents bacterial colonization. Mucosal passive immunization, i.e. the application of pathogen-specific SIgAs at the mucosae, can be an effective alternative to achieve mucosal protection. However, this approach is not straightforward, mainly because SIgAs are difficult to obtain from convalescent sources, while recombinant SIgA production is challenging due to its complex structure. This review provides an overview of manufacturing difficulties presented by the unique structural diversity of SIgAs, and the innovative solutions being explored for SIgA production in mammalian and plant expression systems.
Collapse
Affiliation(s)
- Vikram Virdi
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Paloma Juarez
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Veronique Boudolf
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Ann Depicker
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
48
|
Dicker M, Tschofen M, Maresch D, König J, Juarez P, Orzaez D, Altmann F, Steinkellner H, Strasser R. Transient Glyco-Engineering to Produce Recombinant IgA1 with Defined N- and O-Glycans in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:18. [PMID: 26858738 PMCID: PMC4731523 DOI: 10.3389/fpls.2016.00018] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/08/2016] [Indexed: 05/19/2023]
Abstract
The production of therapeutic antibodies to combat pathogens and treat diseases, such as cancer is of great interest for the biotechnology industry. The recent development of plant-based expression systems has demonstrated that plants are well-suited for the production of recombinant monoclonal antibodies with defined glycosylation. Compared to immunoglobulin G (IgG), less effort has been undertaken to express immunoglobulin A (IgA), which is the most prevalent antibody class at mucosal sites and a promising candidate for novel recombinant biopharmaceuticals with enhanced anti-tumor activity. Here, we transiently expressed recombinant human IgA1 against the VP8* rotavirus antigen in glyco-engineered ΔXT/FT Nicotiana benthamiana plants. Mass spectrometric analysis of IgA1 glycopeptides revealed the presence of complex biantennary N-glycans with terminal N-acetylglucosamine present on the N-glycosylation site of the CH2 domain in the IgA1 alpha chain. Analysis of the peptide carrying nine potential O-glycosylation sites in the IgA1 alpha chain hinge region showed the presence of plant-specific modifications including hydroxyproline formation and the attachment of pentoses. By co-expression of enzymes required for initiation and elongation of human O-glycosylation it was possible to generate disialylated mucin-type core 1 O-glycans on plant-produced IgA1. Our data demonstrate that ΔXT/FT N. benthamiana plants can be engineered toward the production of recombinant IgA1 with defined human-type N- and O-linked glycans.
Collapse
Affiliation(s)
- Martina Dicker
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Marc Tschofen
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Daniel Maresch
- Department of Chemistry, University of Natural Resources and Life SciencesVienna, Austria
| | - Julia König
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Paloma Juarez
- Institute of Molecular and Cellular Plant Biology, Spanish Research Council Agency – Polytechnic University of ValenciaValencia, Spain
| | - Diego Orzaez
- Institute of Molecular and Cellular Plant Biology, Spanish Research Council Agency – Polytechnic University of ValenciaValencia, Spain
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life SciencesVienna, Austria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
- *Correspondence: Richard Strasser,
| |
Collapse
|
49
|
Strategies and Methodologies for the Co-expression of Multiple Proteins in Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:263-85. [DOI: 10.1007/978-3-319-27216-0_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Plant-Derived Monoclonal Antibodies for Prevention and Treatment of Infectious Disease. Microbiol Spectr 2015; 2:AID-0004-2012. [PMID: 26082108 DOI: 10.1128/microbiolspec.aid-0004-2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Numerous monoclonal antibodies (MAbs) that recognize and neutralize infectious pathogens have been isolated and developed over the years. The fact that infectious diseases can involve large populations of infected individuals is an important factor that has motivated the search for both cost-effective and scalable methods of antibody production. The current technologies for production of antibodies in plants allow for very rapid expression and evaluation that can also be readily scaled for multikilogram production runs. In addition, recent progress in manipulating glycosylation in plant production systems has allowed for the evaluation of antibodies containing glycans that are nearly homogeneous, are mammalian in structure, and have enhanced neutralizing capabilities. Among the anti-infectious disease antibodies that have been produced in plants are included those intended for prevention or treatment of anthrax, Clostridium perfringens, Ebola virus, human immunodeficiency virus, herpes simplex virus, rabies, respiratory syncytial virus, staphylococcal enterotoxin, West Nile virus, and tooth decay. Animal and human efficacy data for these MAbs are discussed.
Collapse
|