1
|
Kumari D, Grant-Bier J, Kadyrov F, Usdin K. Intersection of the fragile X-related disorders and the DNA damage response. DNA Repair (Amst) 2024; 144:103785. [PMID: 39549538 DOI: 10.1016/j.dnarep.2024.103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
The Repeat Expansion Diseases (REDs) are a large group of human genetic disorders that result from an increase in the number of repeats in a disease-specific tandem repeat or microsatellite. Emerging evidence suggests that the repeats trigger an error-prone form of DNA repair that causes the expansion mutation by exploiting a limitation in normal mismatch repair. Furthermore, while much remains to be understood about how the mutation causes pathology in different diseases in this group, there is evidence to suggest that some of the downstream consequences of repeat expansion trigger the DNA damage response in ways that contribute to disease pathology. This review will discuss these subjects in the context of the Fragile X-related disorders (aka the FMR1 disorders) that provide a particularly interesting example of the intersection between the repeats and the DNA damage response that may also be relevant for many other diseases in this group.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessalyn Grant-Bier
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Farid Kadyrov
- Division of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Broniarek I, Niewiadomska D, Sobczak K. Contribution of DNA/RNA Structures Formed by Expanded CGG/CCG Repeats Within the FMR1 Locus in the Pathogenesis of Fragile X-Associated Disorders. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1874. [PMID: 39523485 DOI: 10.1002/wrna.1874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024]
Abstract
Repeat expansion disorders (REDs) encompass over 50 inherited neurological disorders and are characterized by the expansion of short tandem nucleotide repeats beyond a specific repeat length. Particularly intriguing among these are multiple fragile X-associated disorders (FXds), which arise from an expansion of CGG repeats in the 5' untranslated region of the FMR1 gene. Despite arising from repeat expansions in the same gene, the clinical manifestations of FXds vary widely, encompassing developmental delays, parkinsonism, dementia, and an increased risk of infertility. FXds also exhibit molecular mechanisms observed in other REDs, that is, gene- and protein-loss-of-function and RNA- and protein-gain-of-function. The heterogeneity of phenotypes and pathomechanisms in FXds results from the different lengths of the CGG tract. As the number of repeats increases, the structures formed by RNA and DNA fragments containing CGG repeats change significantly, contributing to the diversity of FXd phenotypes and mechanisms. In this review, we discuss the role of RNA and DNA structures formed by expanded CGG repeats in driving FXd pathogenesis and how the genetic instability of CGG repeats is mediated by the complex interplay between transcription, DNA replication, and repair. We also discuss therapeutic strategies, including small molecules, antisense oligonucleotides, and CRISPR-Cas systems, that target toxic RNA and DNA involved in the development of FXds.
Collapse
Affiliation(s)
- Izabela Broniarek
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Daria Niewiadomska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
3
|
Randol JL, Kim K, Ponzini MD, Tassone F, Falcon AK, Hagerman RJ, Hagerman PJ. Variation of FMRP Expression in Peripheral Blood Mononuclear Cells from Individuals with Fragile X Syndrome. Genes (Basel) 2024; 15:356. [PMID: 38540415 PMCID: PMC10969917 DOI: 10.3390/genes15030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024] Open
Abstract
Fragile X syndrome (FXS) is the most common heritable cause of intellectual disability and autism spectrum disorder. The syndrome is often caused by greatly reduced or absent protein expression from the fragile X messenger ribonucleoprotein 1 (FMR1) gene due to expansion of a 5'-non-coding trinucleotide (CGG) element beyond 200 repeats (full mutation). To better understand the complex relationships among FMR1 allelotype, methylation status, mRNA expression, and FMR1 protein (FMRP) levels, FMRP was quantified in peripheral blood mononuclear cells for a large cohort of FXS (n = 154) and control (n = 139) individuals using time-resolved fluorescence resonance energy transfer. Considerable size and methylation mosaicism were observed among individuals with FXS, with FMRP detected only in the presence of such mosaicism. No sample with a minimum allele size greater than 273 CGG repeats had significant levels of FMRP. Additionally, an association was observed between FMR1 mRNA and FMRP levels in FXS samples, predominantly driven by those with the lowest FMRP values. This study underscores the complexity of FMR1 allelotypes and FMRP expression and prompts a reevaluation of FXS therapies aimed at reactivating large full mutation alleles that are likely not capable of producing sufficient FMRP to improve cognitive function.
Collapse
Affiliation(s)
- Jamie L. Randol
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Kyoungmi Kim
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA 95817, USA
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Matthew D. Ponzini
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA 95817, USA
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA 95817, USA
| | - Alexandria K. Falcon
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Randi J. Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA 95817, USA
- Department of Pediatrics, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Paul J. Hagerman
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA 95817, USA
| |
Collapse
|
4
|
Dai Z, Zhu W, Hou Y, Zhang X, Ren X, Lei K, Liao J, Liu H, Chen Z, Peng S, Li S, Lin S, Kuang M. METTL5-mediated 18S rRNA m 6A modification promotes oncogenic mRNA translation and intrahepatic cholangiocarcinoma progression. Mol Ther 2023; 31:3225-3242. [PMID: 37735874 PMCID: PMC10638452 DOI: 10.1016/j.ymthe.2023.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/14/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a deadly cancer with rapid tumor progression. While hyperactive mRNA translation caused by mis-regulated mRNA or tRNA modifications promotes ICC development, the role of rRNA modifications remains elusive. Here, we found that 18S rRNA m6A modification and its methyltransferase METTL5 were aberrantly upregulated in ICC and associated with poorer survival (log rank test, p < 0.05). We further revealed the critical role of METTL5-mediated 18S rRNA m6A modification in regulation of ICC cell growth and metastasis using loss- and gain-of function assays in vitro and in vivo. The oncogenic function of METTL5 is corroborated using liver-specific knockout and overexpression ICC mouse models. Mechanistically, METTL5 depletion impairs 18S rRNA m6A modification that hampers ribosome synthesis and inhibits translation of G-quadruplex-containing mRNAs that are enriched in the transforming growth factor (TGF)-β pathway. Our study uncovers the important role of METTL5-mediated 18S rRNA m6A modification in ICC and unravels the mechanism of rRNA m6A modification-mediated oncogenic mRNA translation control.
Collapse
Affiliation(s)
- Zihao Dai
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Wanjie Zhu
- Department of Gastroenterology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Yingdong Hou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xinyue Zhang
- Cancer Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xuxin Ren
- Cancer Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Kai Lei
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Junbin Liao
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Haining Liu
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zhihang Chen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Sui Peng
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Shaoqiang Li
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
5
|
Ruggiero-Ruff RE, Villa PA, Hijleh SA, Avalos B, DiPatrizio NV, Haga-Yamanaka S, Coss D. Increased body weight in mice with fragile X messenger ribonucleoprotein 1 (Fmr1) gene mutation is associated with hypothalamic dysfunction. Sci Rep 2023; 13:12666. [PMID: 37542065 PMCID: PMC10403586 DOI: 10.1038/s41598-023-39643-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023] Open
Abstract
Mutations in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene are linked to Fragile X Syndrome, the most common monogenic cause of intellectual disability and autism. People affected with mutations in FMR1 have higher incidence of obesity, but the mechanisms are largely unknown. In the current study, we determined that male Fmr1 knockout mice (KO, Fmr1-/y), but not female Fmr1-/-, exhibit increased weight when compared to wild-type controls, similarly to humans with FMR1 mutations. No differences in food or water intake were found between groups; however, male Fmr1-/y display lower locomotor activity, especially during their active phase. Moreover, Fmr1-/y have olfactory dysfunction determined by buried food test, although they exhibit increased compulsive behavior, determined by marble burying test. Since olfactory brain regions communicate with hypothalamic regions that regulate food intake, including POMC neurons that also regulate locomotion, we examined POMC neuron innervation and numbers in Fmr1-/y mice. POMC neurons express Fmrp, and POMC neurons in Fmr1-/y have higher inhibitory GABAergic synaptic inputs. Consistent with increased inhibitory innervation, POMC neurons in the Fmr1-/y mice exhibit lower activity, based on cFOS expression. Notably, Fmr1-/y mice have fewer POMC neurons than controls, specifically in the rostral arcuate nucleus, which could contribute to decreased locomotion and increased body weight. These results suggest a role for Fmr1 in the regulation of POMC neuron function and the etiology of Fmr1-linked obesity.
Collapse
Affiliation(s)
- Rebecca E Ruggiero-Ruff
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Pedro A Villa
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Sarah Abu Hijleh
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Bryant Avalos
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Sachiko Haga-Yamanaka
- Department of Molecular, Cell, and Systems Biology, College of Natural and Agricultural Sciences, University of California, Riverside, Riverside, USA
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
6
|
Protic D, Polli R, Hwang YH, Mendoza G, Hagerman R, Durbin-Johnson B, Hayward BE, Usdin K, Murgia A, Tassone F. Activation Ratio Correlates with IQ in Female Carriers of the FMR1 Premutation. Cells 2023; 12:1711. [PMID: 37443745 PMCID: PMC10341054 DOI: 10.3390/cells12131711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Carriers of the FMR1 premutation (PM) allele are at risk of one or more clinical conditions referred to as FX premutation-associated conditions (FXPAC). Since the FMR1 gene is on the X chromosome, the activation ratio (AR) may impact the risk, age of onset, progression, and severity of these conditions. The aim of this study was to evaluate the reliability of AR measured using different approaches and to investigate potential correlations with clinical outcomes. Molecular and clinical assessments were obtained for 30 PM female participants, and AR was assessed using both Southern blot analysis (AR-Sb) and methylation PCR (AR-mPCR). Higher ARs were associated with lower FMR1 transcript levels for any given repeat length. The higher AR-Sb was significantly associated with performance, verbal, and full-scale IQ scores, confirming previous reports. However, the AR-mPCR was not significantly associated (p > 0.05) with these measures. Similarly, the odds of depression and the number of medical conditions were correlated with higher AR-Sb but not correlated with a higher AR-mPCR. This study suggests that AR-Sb may be a more reliable measure of the AR in female carriers of PM alleles. However, further studies are warranted in a larger sample size to fully evaluate the methylation status in these participants and how it may affect the clinical phenotype.
Collapse
Affiliation(s)
- Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Roberta Polli
- Laboratory of Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, 35128 Padova, Italy; (R.P.); (A.M.)
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35128 Padova, Italy
| | - Ye Hyun Hwang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (Y.H.H.); (G.M.)
| | - Guadalupe Mendoza
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (Y.H.H.); (G.M.)
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDH, University of California Davis, Sacramento, CA 95817, USA;
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Blythe Durbin-Johnson
- Department of Public Health Sciences, Division of Biostatistics, University of California, Davis, CA 95616, USA;
| | - Bruce E. Hayward
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (B.E.H.); (K.U.)
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (B.E.H.); (K.U.)
| | - Alessandra Murgia
- Laboratory of Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, 35128 Padova, Italy; (R.P.); (A.M.)
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35128 Padova, Italy
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (Y.H.H.); (G.M.)
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDH, University of California Davis, Sacramento, CA 95817, USA;
| |
Collapse
|
7
|
Villa PA, Lainez NM, Jonak CR, Berlin SC, Ethell IM, Coss D. Altered GnRH neuron and ovarian innervation characterize reproductive dysfunction linked to the Fragile X messenger ribonucleoprotein ( Fmr1) gene mutation. Front Endocrinol (Lausanne) 2023; 14:1129534. [PMID: 36909303 PMCID: PMC9992745 DOI: 10.3389/fendo.2023.1129534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Mutations in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene cause Fragile X Syndrome, the most common monogenic cause of intellectual disability. Mutations of FMR1 are also associated with reproductive disorders, such as early cessation of reproductive function in females. While progress has been made in understanding the mechanisms of mental impairment, the causes of reproductive disorders are not clear. FMR1-associated reproductive disorders were studied exclusively from the endocrine perspective, while the FMR1 role in neurons that control reproduction was not addressed. Results Here, we demonstrate that similar to women with FMR1 mutations, female Fmr1 null mice stop reproducing early. However, young null females display larger litters, more corpora lutea in the ovaries, increased inhibin, progesterone, testosterone, and gonadotropin hormones in the circulation. Ovariectomy reveals both hypothalamic and ovarian contribution to elevated gonadotropins. Altered mRNA and protein levels of several synaptic molecules in the hypothalamus are identified, indicating reasons for hypothalamic dysregulation. Increased vascularization of corpora lutea, higher sympathetic innervation of growing follicles in the ovaries of Fmr1 nulls, and higher numbers of synaptic GABAA receptors in GnRH neurons, which are excitatory for GnRH neurons, contribute to increased FSH and LH, respectively. Unmodified and ovariectomized Fmr1 nulls have increased LH pulse frequency, suggesting that Fmr1 nulls exhibit hyperactive GnRH neurons, regardless of the ovarian feedback. Conclusion These results reveal Fmr1 function in the regulation of GnRH neuron secretion, and point to the role of GnRH neurons, in addition to the ovarian innervation, in the etiology of Fmr1-mediated reproductive disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States
| |
Collapse
|
8
|
Demirhan O, Hergüner Ö, Tunç E. A Cytogenetic Study of Turkish Children with Global Developmental Delay. J Pediatr Genet 2022. [DOI: 10.1055/s-0042-1758872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
AbstractGlobal developmental delay (GDD)/intellectual disability (ID) is common in children and its etiology is unknown in many cases. Chromosomal abnormalities are predominant genetic causes of GDD/ID. The aim of this study is to determine the genetic risk factors that may be involved in the etiology of GDD/ID. In this study, 810 children with moderate to severe, clinically unexplained GDD/ID for whom cytogenetic analysis were performed were retrospectively rescreened. The results showed that GDD/ID affected more females than males (2 girls:1 boy). A total of 54 children (6.7%) with GDD showed chromosomal aberrations (CAs): 59.3% of these CAs were structural aberrations, and the rest were numerical aberrations (40.7%). Specifically, inversions, deletions, and reciprocal and robertsonian translocations, which were detected in 1, 0.7, 0.8, and 0.4% of the children, respectively, constituted important categories of structural CAs. Among numerical CAs, classic Turner and mosaics were detected in 1.2% of all children. Trisomy 21 and mosaic trisomy 21 were detected in 1% of the children. Marker chromosomes and 47,XXY karyotypes were found in two children each. Our results suggest that female sex is more affected by CAs among GDD/ID cases, and cytogenetic analysis is useful in the etiological diagnosis of GDD/ID.
Collapse
Affiliation(s)
- Osman Demirhan
- Department of Medical Biology and Genetics, Faculty of Medicine, Çukurova University, Balcali-Adana, Turkey
| | - Özlem Hergüner
- Department of Child Neurology, Faculty of Medicine, Çukurova University, Balcali-Adana, Turkey
| | - Erdal Tunç
- Department of Medical Biology and Genetics, Faculty of Medicine, Çukurova University, Balcali-Adana, Turkey
| |
Collapse
|
9
|
Boivin M, Charlet-Berguerand N. Trinucleotide CGG Repeat Diseases: An Expanding Field of Polyglycine Proteins? Front Genet 2022; 13:843014. [PMID: 35295941 PMCID: PMC8918734 DOI: 10.3389/fgene.2022.843014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
Microsatellites are repeated DNA sequences of 3–6 nucleotides highly variable in length and sequence and that have important roles in genomes regulation and evolution. However, expansion of a subset of these microsatellites over a threshold size is responsible of more than 50 human genetic diseases. Interestingly, some of these disorders are caused by expansions of similar sequences, sizes and localizations and present striking similarities in clinical manifestations and histopathological features, which suggest a common mechanism of disease. Notably, five identical CGG repeat expansions, but located in different genes, are the causes of fragile X-associated tremor/ataxia syndrome (FXTAS), neuronal intranuclear inclusion disease (NIID), oculopharyngodistal myopathy type 1 to 3 (OPDM1-3) and oculopharyngeal myopathy with leukoencephalopathy (OPML), which are neuromuscular and neurodegenerative syndromes with overlapping symptoms and similar histopathological features, notably the presence of characteristic eosinophilic ubiquitin-positive intranuclear inclusions. In this review we summarize recent finding in neuronal intranuclear inclusion disease and FXTAS, where the causing CGG expansions were found to be embedded within small upstream ORFs (uORFs), resulting in their translation into novel proteins containing a stretch of polyglycine (polyG). Importantly, expression of these polyG proteins is toxic in animal models and is sufficient to reproduce the formation of ubiquitin-positive intranuclear inclusions. These data suggest the existence of a novel class of human genetic pathology, the polyG diseases, and question whether a similar mechanism may exist in other diseases, notably in OPDM and OPML.
Collapse
|
10
|
Dynamic FMR1 granule phase switch instructed by m6A modification contributes to maternal RNA decay. Nat Commun 2022; 13:859. [PMID: 35165263 PMCID: PMC8844045 DOI: 10.1038/s41467-022-28547-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/18/2022] [Indexed: 01/28/2023] Open
Abstract
Maternal RNA degradation is critical for embryogenesis and is tightly controlled by maternal RNA-binding proteins. Fragile X mental-retardation protein (FMR1) binds target mRNAs to form ribonucleoprotein (RNP) complexes/granules that control various biological processes, including early embryogenesis. However, how FMR1 recognizes target mRNAs and how FMR1-RNP granule assembly/disassembly regulates FMR1-associated mRNAs remain elusive. Here we show that Drosophila FMR1 preferentially binds mRNAs containing m6A-marked “AGACU” motif with high affinity to contributes to maternal RNA degradation. The high-affinity binding largely depends on a hydrophobic network within FMR1 KH2 domain. Importantly, this binding greatly induces FMR1 granule condensation to efficiently recruit unmodified mRNAs. The degradation of maternal mRNAs then causes granule de-condensation, allowing normal embryogenesis. Our findings reveal that sequence-specific mRNAs instruct FMR1-RNP granules to undergo a dynamic phase-switch, thus contributes to maternal mRNA decay. This mechanism may represent a general principle that regulated RNP-granules control RNA processing and normal development. Maternal RNA degradation is critical for embryogenesis and is tightly controlled by maternal RNA-binding proteins. Here the authors show that a subset of m6A-modified mRNAs regulates the dynamics of RNA-granules, thus contributes to maternal mRNA decay.
Collapse
|
11
|
Nelson DL, Clark J, Garber K, Glover T, Hassold T, Jin P, Orr HT, Sherman SL, Zoghbi H, Warren KL. Stephen T. Warren, Ph.D. (1953-2021): A remembrance. Am J Hum Genet 2022; 109:3-11. [PMID: 34995503 DOI: 10.1016/j.ajhg.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- David L Nelson
- Jan and Dan Duncan Neurological Research Institute, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Janelle Clark
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kathryn Garber
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Thomas Glover
- Departments of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Terry Hassold
- School of Molecular Biosciences, Washington State University, Pullman, WA 99163, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Harry T Orr
- Institute of Translational Neuroscience, Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Huda Zoghbi
- Jan and Dan Duncan Neurological Research Institute, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
12
|
Zhao X, Usdin K. (Dys)function Follows Form: Nucleic Acid Structure, Repeat Expansion, and Disease Pathology in FMR1 Disorders. Int J Mol Sci 2021; 22:ijms22179167. [PMID: 34502075 PMCID: PMC8431139 DOI: 10.3390/ijms22179167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Fragile X-related disorders (FXDs), also known as FMR1 disorders, are examples of repeat expansion diseases (REDs), clinical conditions that arise from an increase in the number of repeats in a disease-specific microsatellite. In the case of FXDs, the repeat unit is CGG/CCG and the repeat tract is located in the 5' UTR of the X-linked FMR1 gene. Expansion can result in neurodegeneration, ovarian dysfunction, or intellectual disability depending on the number of repeats in the expanded allele. A growing body of evidence suggests that the mutational mechanisms responsible for many REDs share several common features. It is also increasingly apparent that in some of these diseases the pathologic consequences of expansion may arise in similar ways. It has long been known that many of the disease-associated repeats form unusual DNA and RNA structures. This review will focus on what is known about these structures, the proteins with which they interact, and how they may be related to the causative mutation and disease pathology in the FMR1 disorders.
Collapse
Affiliation(s)
- Xiaonan Zhao
- Correspondence: (X.Z.); (K.U.); Tel.: +1-301-451-6322 (X.Z.); +1-301-496-2189 (K.U.)
| | - Karen Usdin
- Correspondence: (X.Z.); (K.U.); Tel.: +1-301-451-6322 (X.Z.); +1-301-496-2189 (K.U.)
| |
Collapse
|
13
|
Ozlu C, Bailey RM, Sinnett S, Goodspeed KD. Gene Transfer Therapy for Neurodevelopmental Disorders. Dev Neurosci 2021; 43:230-240. [PMID: 33882495 DOI: 10.1159/000515434] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/13/2021] [Indexed: 11/19/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) include a broad spectrum of disorders that disrupt normal brain development. Though some NDDs are caused by acquired insults (i.e., toxic or infectious encephalopathy) or may be cryptogenic, many NDDs are caused by variants in a single gene or groups of genes that disrupt neuronal development or function. In this review, we will focus on those NDDs with a genetic etiology. The exact mechanism, timing, and progression of the molecular pathology are seldom well known; however, the abnormalities in development typically manifest in similar patterns such as delays or regression in motor function, social skills, and language or cognitive abilities. Severity of impairment can vary widely. At present, only symptomatic treatments are available to manage seizures and behavioral problems commonly seen in NDDs. In recent years, there has been a rapid expansion of research into gene therapy using adeno-associated viruses (AAVs). Using AAVs as vectors to replace the non- or dysfunctional gene in vivo is a relatively simple model which has created an unprecedented opportunity for the future of NDD treatment. Advances in this field are of paramount importance as NDDs lead to a massive lifelong burden of disease on the affected individuals and families. In this article, we review the unique advantages and challenges of AAV gene therapies. We then look at potential applications of gene therapy for 3 of the more common NDDs (Rett syndrome, fragile X syndrome, and Angelman syndrome), as well as 2 less common NDDs (SLC13A5 deficiency disorder and SLC6A1-related disorder). We will review the available natural history of each disease and current state of preclinical studies including a discussion on the application of AAV gene therapies for each disease.
Collapse
Affiliation(s)
- Can Ozlu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rachel M Bailey
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sarah Sinnett
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kimberly D Goodspeed
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
14
|
Handal T, Eiges R. Correction of Heritable Epigenetic Defects Using Editing Tools. Int J Mol Sci 2021; 22:ijms22083966. [PMID: 33921346 PMCID: PMC8070094 DOI: 10.3390/ijms22083966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 11/21/2022] Open
Abstract
Epimutations refer to mistakes in the setting or maintenance of epigenetic marks in the chromatin. They lead to mis-expression of genes and are often secondary to germline transmitted mutations. As such, they are the cause for a considerable number of genetically inherited conditions in humans. The correction of these types of epigenetic defects constitutes a good paradigm to probe the fundamental mechanisms underlying the development of these diseases, and the molecular basis for the establishment, maintenance and regulation of epigenetic modifications in general. Here, we review the data to date, which is limited to repetitive elements, that relates to the applications of key editing tools for addressing the epigenetic aspects of various epigenetically regulated diseases. For each approach we summarize the efforts conducted to date, highlight their contribution to a better understanding of the molecular basis of epigenetic mechanisms, describe the limitations of each approach and suggest perspectives for further exploration in this field.
Collapse
Affiliation(s)
- Tayma Handal
- Stem Cell Research Laboratory, Medical Genetics Institute Shaare Zedek Medical Center, Jerusalem 91031, Israel;
- School of Medicine, The Hebrew University, Campus Ein Kerem, Jerusalem 91120, Israel
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute Shaare Zedek Medical Center, Jerusalem 91031, Israel;
- School of Medicine, The Hebrew University, Campus Ein Kerem, Jerusalem 91120, Israel
- Correspondence:
| |
Collapse
|
15
|
Mitsuhashi S, Frith MC, Matsumoto N. Genome-wide survey of tandem repeats by nanopore sequencing shows that disease-associated repeats are more polymorphic in the general population. BMC Med Genomics 2021; 14:17. [PMID: 33413375 PMCID: PMC7791882 DOI: 10.1186/s12920-020-00853-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tandem repeats are highly mutable and contribute to the development of human disease by a variety of mechanisms. It is difficult to predict which tandem repeats may cause a disease. One hypothesis is that changeable tandem repeats are the source of genetic diseases, because disease-causing repeats are polymorphic in healthy individuals. However, it is not clear whether disease-causing repeats are more polymorphic than other repeats. METHODS We performed a genome-wide survey of the millions of human tandem repeats using publicly available long read genome sequencing data from 21 humans. We measured tandem repeat copy number changes using tandem-genotypes. Length variation of known disease-associated repeats was compared to other repeat loci. RESULTS We found that known Mendelian disease-causing or disease-associated repeats, especially CAG and 5'UTR GGC repeats, are relatively long and polymorphic in the general population. We also show that repeat lengths of two disease-causing tandem repeats, in ATXN3 and GLS, are correlated with near-by GWAS SNP genotypes. CONCLUSIONS We provide a catalog of polymorphic tandem repeats across a variety of repeat unit lengths and sequences, from long read sequencing data. This method especially if used in genome wide association study, may indicate possible new candidates of pathogenic or biologically important tandem repeats in human genomes.
Collapse
Affiliation(s)
- Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan.
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, M&D Tower 24F, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Martin C Frith
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
16
|
Clifton NE, Thomas KL, Wilkinson LS, Hall J, Trent S. FMRP and CYFIP1 at the Synapse and Their Role in Psychiatric Vulnerability. Complex Psychiatry 2020; 6:5-19. [PMID: 34883502 PMCID: PMC7673588 DOI: 10.1159/000506858] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022] Open
Abstract
There is increasing awareness of the role genetic risk variants have in mediating vulnerability to psychiatric disorders such as schizophrenia and autism. Many of these risk variants encode synaptic proteins, influencing biological pathways of the postsynaptic density and, ultimately, synaptic plasticity. Fragile-X mental retardation 1 (FMR1) and cytoplasmic fragile-X mental retardation protein (FMRP)-interacting protein 1 (CYFIP1) contain 2 such examples of highly penetrant risk variants and encode synaptic proteins with shared functional significance. In this review, we discuss the biological actions of FMRP and CYFIP1, including their regulation of (i) protein synthesis and specifically FMRP targets, (ii) dendritic and spine morphology, and (iii) forms of synaptic plasticity such as long-term depression. We draw upon a range of preclinical studies that have used genetic dosage models of FMR1 and CYFIP1 to determine their biological function. In parallel, we discuss how clinical studies of fragile X syndrome or 15q11.2 deletion patients have informed our understanding of FMRP and CYFIP1, and highlight the latest psychiatric genomic findings that continue to implicate FMRP and CYFIP1. Lastly, we assess the current limitations in our understanding of FMRP and CYFIP1 biology and how they must be addressed before mechanism-led therapeutic strategies can be developed for psychiatric disorders.
Collapse
Affiliation(s)
- Nicholas E. Clifton
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kerrie L. Thomas
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Simon Trent
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Keele, United Kingdom
| |
Collapse
|
17
|
La Rosa P, Petrillo S, Bertini ES, Piemonte F. Oxidative Stress in DNA Repeat Expansion Disorders: A Focus on NRF2 Signaling Involvement. Biomolecules 2020; 10:biom10050702. [PMID: 32369911 PMCID: PMC7277112 DOI: 10.3390/biom10050702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
DNA repeat expansion disorders are a group of neuromuscular and neurodegenerative diseases that arise from the inheritance of long tracts of nucleotide repetitions, located in the regulatory region, introns, or inside the coding sequence of a gene. Although loss of protein expression and/or the gain of function of its transcribed mRNA or translated product represent the major pathogenic effect of these pathologies, mitochondrial dysfunction and imbalance in redox homeostasis are reported as common features in these disorders, deeply affecting their severity and progression. In this review, we examine the role that the redox imbalance plays in the pathological mechanisms of DNA expansion disorders and the recent advances on antioxidant treatments, particularly focusing on the expression and the activity of the transcription factor NRF2, the main cellular regulator of the antioxidant response.
Collapse
|
18
|
Kumari D, Sciascia N, Usdin K. Small Molecules Targeting H3K9 Methylation Prevent Silencing of Reactivated FMR1 Alleles in Fragile X Syndrome Patient Derived Cells. Genes (Basel) 2020; 11:genes11040356. [PMID: 32230785 PMCID: PMC7230530 DOI: 10.3390/genes11040356] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/23/2022] Open
Abstract
In fragile X syndrome (FXS), expansion of a CGG repeat tract in the 5′-untranslated region of the FMR1 gene to >200 repeats causes transcriptional silencing by inducing heterochromatin formation. Understanding the mechanism of FMR1 silencing is important as gene reactivation is a potential treatment approach for FXS. To date, only the DNA demethylating drug 5-azadeoxycytidine (AZA) has proved effective at gene reactivation; however, this drug is toxic. The repressive H3K9 methylation mark is enriched on the FMR1 gene in FXS patient cells and is thus a potential druggable target. However, its contribution to the silencing process is unclear. Here, we studied the effect of small molecule inhibitors of H3K9 methylation on FMR1 expression in FXS patient cells. Chaetocin showed a small effect on FMR1 gene reactivation and a synergistic effect on FMR1 mRNA levels when used in combination with AZA. Additionally, chaetocin, BIX01294 and 3-Deazaneplanocin A (DZNep) were able to significantly delay the re-silencing of AZA-reactivated FMR1 alleles. These data are consistent with the idea that H3K9 methylation precedes DNA methylation and that removal of DNA methylation is necessary to see the optimal effect of histone methyl-transferase (HMT) inhibitors on FMR1 gene expression. Nonetheless, our data also show that drugs targeting repressive H3K9 methylation marks are able to produce sustained reactivation of the FMR1 gene after a single dose of AZA.
Collapse
Affiliation(s)
- Daman Kumari
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892, USA; (N.S.); (K.U.)
- Correspondence: ; Tel.: +01 301-594-5260
| | - Nicholas Sciascia
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892, USA; (N.S.); (K.U.)
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, MD 20892, USA
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892, USA; (N.S.); (K.U.)
| |
Collapse
|
19
|
Rodriguez CM, Wright SE, Kearse MG, Haenfler JM, Flores BN, Liu Y, Ifrim MF, Glineburg MR, Krans A, Jafar-Nejad P, Sutton MA, Bassell GJ, Parent JM, Rigo F, Barmada SJ, Todd PK. A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis. Nat Neurosci 2020; 23:386-397. [PMID: 32066985 PMCID: PMC7668390 DOI: 10.1038/s41593-020-0590-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/10/2020] [Indexed: 02/07/2023]
Abstract
Repeat-associated non-AUG-initiated translation of expanded CGG repeats (CGG RAN) from the FMR1 5'-leader produces toxic proteins that contribute to neurodegeneration in fragile X-associated tremor/ataxia syndrome. Here we describe how unexpanded CGG repeats and their translation play conserved roles in regulating fragile X protein (FMRP) synthesis. In neurons, CGG RAN acts as an inhibitory upstream open reading frame to suppress basal FMRP production. Activation of mGluR5 receptors enhances FMRP synthesis. This enhancement requires both the CGG repeat and CGG RAN initiation sites. Using non-cleaving antisense oligonucleotides (ASOs), we selectively blocked CGG RAN. This ASO blockade enhanced endogenous FMRP expression in human neurons. In human and rodent neurons, CGG RAN-blocking ASOs suppressed repeat toxicity and prolonged survival. These findings delineate a native function for CGG repeats and RAN translation in regulating basal and activity-dependent FMRP synthesis, and they demonstrate the therapeutic potential of modulating CGG RAN translation in fragile X-associated disorders.
Collapse
Affiliation(s)
- Caitlin M Rodriguez
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Shannon E Wright
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Michael G Kearse
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, Ohio State University, Columbus, OH, USA
| | - Jill M Haenfler
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Brittany N Flores
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Yu Liu
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Marius F Ifrim
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mary R Glineburg
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | | | - Michael A Sutton
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jack M Parent
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Gonatopoulos-Pournatzis T, Niibori R, Salter EW, Weatheritt RJ, Tsang B, Farhangmehr S, Liang X, Braunschweig U, Roth J, Zhang S, Henderson T, Sharma E, Quesnel-Vallières M, Permanyer J, Maier S, Georgiou J, Irimia M, Sonenberg N, Forman-Kay JD, Gingras AC, Collingridge GL, Woodin MA, Cordes SP, Blencowe BJ. Autism-Misregulated eIF4G Microexons Control Synaptic Translation and Higher Order Cognitive Functions. Mol Cell 2020; 77:1176-1192.e16. [PMID: 31999954 DOI: 10.1016/j.molcel.2020.01.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/15/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022]
Abstract
Microexons represent the most highly conserved class of alternative splicing, yet their functions are poorly understood. Here, we focus on closely related neuronal microexons overlapping prion-like domains in the translation initiation factors, eIF4G1 and eIF4G3, the splicing of which is activity dependent and frequently disrupted in autism. CRISPR-Cas9 deletion of these microexons selectively upregulates synaptic proteins that control neuronal activity and plasticity and further triggers a gene expression program mirroring that of activated neurons. Mice lacking the Eif4g1 microexon display social behavior, learning, and memory deficits, accompanied by altered hippocampal synaptic plasticity. We provide evidence that the eIF4G microexons function as a translational brake by causing ribosome stalling, through their propensity to promote the coalescence of cytoplasmic granule components associated with translation repression, including the fragile X mental retardation protein FMRP. The results thus reveal an autism-disrupted mechanism by which alternative splicing specializes neuronal translation to control higher order cognitive functioning.
Collapse
Affiliation(s)
| | - Rieko Niibori
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Eric W Salter
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert J Weatheritt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Brian Tsang
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shaghayegh Farhangmehr
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xinyi Liang
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | | | - Jonathan Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shen Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Tyler Henderson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eesha Sharma
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mathieu Quesnel-Vallières
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jon Permanyer
- Centre for Genomic Regulation, Barcelona 08003, Spain
| | - Stefan Maier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain; ICREA, Barcelona 08010, Spain
| | - Nahum Sonenberg
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Sabine P Cordes
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
21
|
Kim K, Hessl D, Randol JL, Espinal GM, Schneider A, Protic D, Aydin EY, Hagerman RJ, Hagerman PJ. Association between IQ and FMR1 protein (FMRP) across the spectrum of CGG repeat expansions. PLoS One 2019; 14:e0226811. [PMID: 31891607 PMCID: PMC6938341 DOI: 10.1371/journal.pone.0226811] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
Fragile X syndrome, the leading heritable form of intellectual disability, is caused by hypermethylation and transcriptional silencing of large (CGG) repeat expansions (> 200 repeats) in the 5′ untranslated region of the fragile X mental retardation 1 (FMR1) gene. As a consequence of FMR1 gene silencing, there is little or no production of FMR1 protein (FMRP), an important element in normal synaptic function. Although the absence of FMRP has long been known to be responsible for the cognitive impairment in fragile X syndrome, the relationship between FMRP level and cognitive ability (IQ) is only imprecisely understood. To address this issue, a high-throughput, fluorescence resonance energy transfer (FRET) assay has been used to quantify FMRP levels in dermal fibroblasts, and the relationship between FMRP and IQ measures was assessed by statistical analysis in a cohort of 184 individuals with CGG-repeat lengths spanning normal (< 45 CGGs) to full mutation (> 200 CGGs) repeat ranges in fibroblasts. The principal findings of the current study are twofold: i) For those with normal CGG repeats, IQ is no longer sensitive to further increases in FMRP above an FMRP threshold of ~70% of the mean FMRP level; below this threshold, IQ decreases steeply with further decreases in FMRP; and ii) For the current cohort, a mean IQ of 85 (lower bound for the normal IQ range) is attained for FMRP levels that are only ~35% of the mean FMRP level among normal CGG-repeat controls. The current results should help guide expectations for efforts to induce FMR1 gene activity and for the levels of cognitive function expected for a given range of FMRP levels.
Collapse
Affiliation(s)
- Kyoungmi Kim
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, California, United States of America
| | - David Hessl
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, California, United States of America
| | - Jamie L. Randol
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, United States of America
| | - Glenda M. Espinal
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, United States of America
| | - Andrea Schneider
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
- Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, California, United States of America
| | - Dragana Protic
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
| | - Elber Yuksel Aydin
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
| | - Randi J. Hagerman
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
- Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, California, United States of America
| | - Paul J. Hagerman
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Significantly Elevated FMR1 mRNA and Mosaicism for Methylated Premutation and Full Mutation Alleles in Two Brothers with Autism Features Referred for Fragile X Testing. Int J Mol Sci 2019; 20:ijms20163907. [PMID: 31405222 PMCID: PMC6721168 DOI: 10.3390/ijms20163907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/04/2019] [Accepted: 08/07/2019] [Indexed: 11/26/2022] Open
Abstract
Although fragile X syndrome (FXS) is caused by a hypermethylated full mutation (FM) expansion with ≥200 cytosine-guanine-guanine (CGG) repeats, and a decrease in FMR1 mRNA and its protein (FMRP), incomplete silencing has been associated with more severe autism features in FXS males. This study reports on brothers (B1 and B2), aged 5 and 2 years, with autistic features and language delay, but a higher non-verbal IQ in comparison to typical FXS. CGG sizing using AmplideX PCR only identified premutation (PM: 55–199 CGGs) alleles in blood. Similarly, follow-up in B1 only revealed PM alleles in saliva and skin fibroblasts; whereas, an FM expansion was detected in both saliva and buccal DNA of B2. While Southern blot analysis of blood detected an unmethylated FM, methylation analysis with a more sensitive methodology showed that B1 had partially methylated PM alleles in blood and fibroblasts, which were completely unmethylated in buccal and saliva cells. In contrast, B2 was partially methylated in all tested tissues. Moreover, both brothers had FMR1 mRNA ~5 fold higher values than those of controls, FXS and PM cohorts. In conclusion, the presence of unmethylated FM and/or PM in both brothers may lead to an overexpression of toxic expanded mRNA in some cells, which may contribute to neurodevelopmental problems, including elevated autism features.
Collapse
|
23
|
Rodriguez CM, Todd PK. New pathologic mechanisms in nucleotide repeat expansion disorders. Neurobiol Dis 2019; 130:104515. [PMID: 31229686 DOI: 10.1016/j.nbd.2019.104515] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
Tandem microsatellite repeats are common throughout the human genome and intrinsically unstable, exhibiting expansions and contractions both somatically and across generations. Instability in a small subset of these repeats are currently linked to human disease, although recent findings suggest more disease-causing repeats await discovery. These nucleotide repeat expansion disorders (NREDs) primarily affect the nervous system and commonly lead to neurodegeneration through toxic protein gain-of-function, protein loss-of-function, and toxic RNA gain-of-function mechanisms. However, the lines between these categories have blurred with recent findings of unconventional Repeat Associated Non-AUG (RAN) translation from putatively non-coding regions of the genome. Here we review two emerging topics in NREDs: 1) The mechanisms by which RAN translation occurs and its role in disease pathogenesis and 2) How nucleotide repeats as RNA and translated proteins influence liquid-liquid phase separation, membraneless organelle dynamics, and nucleocytoplasmic transport. We examine these topics with a particular eye on two repeats: the CGG repeat expansion responsible for Fragile X syndrome and Fragile X-associated Tremor Ataxia Syndrome (FXTAS) and the intronic GGGGCC repeat expansion in C9orf72, the most common inherited cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Our thesis is that these emerging disease mechanisms can inform a broader understanding of the native roles of microsatellites in cellular function and that aberrations in these native processes provide clues to novel therapeutic strategies for these currently untreatable disorders.
Collapse
Affiliation(s)
- C M Rodriguez
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - P K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
24
|
Abstract
Individuals carrying an FMR1 expansion between 55 and 200 CGG repeats, are at risk of developing the Fragile X-associated tremor/ataxia syndrome (FXTAS), a late onset neurodegenerative disorder characterized by cerebellar gait ataxia, intentional tremor, neuropathy, parkinsonism, cognitive decline, and psychological disorders, such as anxiety and depression. In addition, brain atrophy, white matter disease, and hyperintensities of the middle cerebellar peduncles can also be present. The neuropathological distinct feature of FXTAS is represented by the presence of eosinophilic intranuclear inclusions in neurons and astrocytes throughout the brain and in other tissues. In this chapter, protocols for available diagnostic tools, in both humans and mice, the clinical features and the basic molecular mechanisms leading to FXTAS and the animal models proposed to study this disorder are discussed.
Collapse
|
25
|
Neueder A. RNA-Mediated Disease Mechanisms in Neurodegenerative Disorders. J Mol Biol 2018; 431:1780-1791. [PMID: 30597161 DOI: 10.1016/j.jmb.2018.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022]
Abstract
RNA is accurately entangled in virtually all pathways that maintain cellular homeostasis. To name but a few, RNA is the "messenger" between DNA encoded information and the resulting proteins. Furthermore, RNAs regulate diverse processes by forming DNA::RNA or RNA::RNA interactions. Finally, RNA itself can be the scaffold for ribonucleoprotein complexes, for example, ribosomes or cellular bodies. Consequently, disruption of any of these processes can lead to disease. This review describes known and emerging RNA-based disease mechanisms like interference with regular splicing, the anomalous appearance of RNA-protein complexes and uncommon RNA species, as well as non-canonical translation. Due to the complexity and entanglement of the above-mentioned pathways, only few drugs are available that target RNA-based disease mechanisms. However, advances in our understanding how RNA is involved in and modulates cellular homeostasis might pave the way to novel treatments.
Collapse
Affiliation(s)
- Andreas Neueder
- Experimental Neurology, Department of Neurology, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
26
|
Qiu S, Wu Y, Lv X, Li X, Zhuo M, Koga K. Reduced synaptic function of Kainate receptors in the insular cortex of Fmr1 Knock-out mice. Mol Brain 2018; 11:54. [PMID: 30241548 PMCID: PMC6151036 DOI: 10.1186/s13041-018-0396-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/11/2018] [Indexed: 01/26/2023] Open
Abstract
Fragile X syndrome is caused by the loss of fragile X mental retardation protein (FMRP). Kainate receptor (KAR) is a subfamily of ionotropic glutamate receptors (iGluR) that acts mainly as a neuromodulator of synaptic transmission and neuronal excitability. However, little is known about the changes of synaptic KAR in the cortical area of Fmr1 KO mice. In this study, we performed whole-cell patch-clamp recordings from layer II/III pyramidal neurons in the insular cortex of Fmr1 KO mice. We found that KARs mediated currents were reduced in Fmr1 KO mice. KARs were mainly located in the synaptosomal fraction of the insular cortex. The abundance of KAR subunit GluK1 and GluK2/3 in the synaptosome was reduced in Fmr1 KO mice, whereas the total expressions of these KARs subunits were not changed. Finally, lack of FMRP impairs subsequent internalization of surface GluK2 after KAR activation, while having no effect on the surface GluK2 expression. Our studies provide evidence indicating that loss of FMRP leads to the abnormal function and localization of KARs. This finding implies a new molecular mechanism for Fragile X syndrome.
Collapse
Affiliation(s)
- Shuang Qiu
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.,Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Yu Wu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Xinyou Lv
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Xia Li
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310003, Hangzhou, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China. .,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Kohei Koga
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China. .,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
27
|
Haenfler JM, Skariah G, Rodriguez CM, Monteiro da Rocha A, Parent JM, Smith GD, Todd PK. Targeted Reactivation of FMR1 Transcription in Fragile X Syndrome Embryonic Stem Cells. Front Mol Neurosci 2018; 11:282. [PMID: 30158855 PMCID: PMC6104480 DOI: 10.3389/fnmol.2018.00282] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022] Open
Abstract
Fragile X Syndrome (FXS) is the most common inherited cause of intellectual disability and autism. It results from expansion of a CGG nucleotide repeat in the 5′ untranslated region (UTR) of FMR1. Large expansions elicit repeat and promoter hyper-methylation, heterochromatin formation, FMR1 transcriptional silencing and loss of the Fragile X protein, FMRP. Efforts aimed at correcting the sequelae resultant from FMRP loss have thus far proven insufficient, perhaps because of FMRP’s pleiotropic functions. As the repeats do not disrupt the FMRP coding sequence, reactivation of endogenous FMR1 gene expression could correct the proximal event in FXS pathogenesis. Here we utilize the Clustered Regularly Interspaced Palindromic Repeats/deficient CRISPR associated protein 9 (CRISPR/dCas9) system to selectively re-activate transcription from the silenced FMR1 locus. Fusion of the transcriptional activator VP192 to dCas9 robustly enhances FMR1 transcription and increases FMRP levels when targeted directly to the CGG repeat in human cells. Using a previously uncharacterized FXS human embryonic stem cell (hESC) line which acquires transcriptional silencing with serial passaging, we achieved locus-specific transcriptional re-activation of FMR1 messenger RNA (mRNA) expression despite promoter and repeat methylation. However, these changes at the transcript level were not coupled with a significant elevation in FMRP protein expression in FXS cells. These studies demonstrate that directing a transcriptional activator to CGG repeats is sufficient to selectively reactivate FMR1 mRNA expression in Fragile X patient stem cells.
Collapse
Affiliation(s)
- Jill M Haenfler
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Geena Skariah
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Caitlin M Rodriguez
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Andre Monteiro da Rocha
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, United States
| | - Jack M Parent
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.,Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - Gary D Smith
- Departments of Obstetrics/Gynecology, Physiology, and Urology, University of Michigan, Ann Arbor, MI, United States
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.,Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, United States
| |
Collapse
|
28
|
Glineburg MR, Todd PK, Charlet-Berguerand N, Sellier C. Repeat-associated non-AUG (RAN) translation and other molecular mechanisms in Fragile X Tremor Ataxia Syndrome. Brain Res 2018; 1693:43-54. [PMID: 29453961 PMCID: PMC6010627 DOI: 10.1016/j.brainres.2018.02.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 11/11/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset inherited neurodegenerative disorder characterized by progressive intention tremor, gait ataxia and dementia associated with mild brain atrophy. The cause of FXTAS is a premutation expansion, of 55 to 200 CGG repeats localized within the 5'UTR of FMR1. These repeats are transcribed in the sense and antisense directions into mutants RNAs, which have increased expression in FXTAS. Furthermore, CGG sense and CCG antisense expanded repeats are translated into novel proteins despite their localization in putatively non-coding regions of the transcript. Here we focus on two proposed disease mechanisms for FXTAS: 1) RNA gain-of-function, whereby the mutant RNAs bind specific proteins and preclude their normal functions, and 2) repeat-associated non-AUG (RAN) translation, whereby translation through the CGG or CCG repeats leads to the production of toxic homopolypeptides, which in turn interfere with a variety of cellular functions. Here, we analyze the data generated to date on both of these potential molecular mechanisms and lay out a path forward for determining which factors drive FXTAS pathogenicity.
Collapse
Affiliation(s)
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Veteran's Affairs Medical Center, Ann Arbor, MI 48105, USA
| | - Nicolas Charlet-Berguerand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Chantal Sellier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
29
|
Widagdo J, Anggono V. The m6A-epitranscriptomic signature in neurobiology: from neurodevelopment to brain plasticity. J Neurochem 2018; 147:137-152. [PMID: 29873074 DOI: 10.1111/jnc.14481] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 12/27/2022]
Abstract
Research over the past decade has provided strong support for the importance of various epigenetic mechanisms, including DNA and histone modifications in regulating activity-dependent gene expression in the mammalian central nervous system. More recently, the emerging field of epitranscriptomics revealed an equally important role of post-transcriptional RNA modifications in shaping the transcriptomic landscape of the brain. This review will focus on the methylation of the adenosine base at the N6 position, termed N6 methyladenosine (m6A), which is the most abundant internal modification that decorates eukaryotic messenger RNAs. Given its prevalence and dynamic regulation in the adult brain, the m6A-epitranscriptome provides an additional layer of regulation on RNA that can be controlled in a context- and stimulus-dependent manner. Conceptually, m6A serves as a molecular switch that regulates various aspects of RNA function, including splicing, stability, localization, or translational control. The versatility of m6A function is typically determined through interaction or disengagement with specific classes of m6A-interacting proteins. Here we review recent advances in the field and provide insights into the roles of m6A in regulating brain function, from development to synaptic plasticity, learning, and memory. We also discuss how aberrant m6A signaling may contribute to neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
30
|
Jiraanont P, Kumar M, Tang HT, Espinal G, Hagerman PJ, Hagerman RJ, Chutabhakdikul N, Tassone F. Size and methylation mosaicism in males with Fragile X syndrome. Expert Rev Mol Diagn 2018; 17:1023-1032. [PMID: 28929824 DOI: 10.1080/14737159.2017.1377612] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Size and methylation mosaicism are a common phenomenon in Fragile X syndrome (FXS). Here, the authors report a study on twelve fragile X males with atypical mosaicism, seven of whom presented with autism spectrum disorder. METHODS A combination of Southern Blot and PCR analysis was used for CGG allele sizing and methylation. FMR1 mRNA and FMRP expression were measured by qRT-PCR and by Homogeneous Time Resolved Fluorescence methodology, respectively. RESULTS DNA analysis showed atypical size- or methylation-mosaicism with both, full mutation and smaller (normal to premutation) alleles, as well as a combination of methylated and unmethylated alleles. Four individuals carried a deletion of the CGG repeat and portions of the flanking regions. The extent of methylation among the participants was reflected in the lower FMR1 mRNA and FMRP expression levels detected in these subjects. CONCLUSION Decreased gene expression is likely the main contributor to the cognitive impairment observed in these subjects; although the presence of a normal allele did not appear to compensate for the presence of the full mutation, it correlated with better cognitive function in some but not all of the reported cases emphasizing the complexity of the molecular and clinical profile in FXS.
Collapse
Affiliation(s)
- Poonnada Jiraanont
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA.,b Research Center for Neuroscience, Institute of Molecular Biosciences , Mahidol University , Nakornpathom , Thailand
| | - Madhur Kumar
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA
| | - Hiu-Tung Tang
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA
| | - Glenda Espinal
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA
| | - Paul J Hagerman
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA.,c M.I.N.D. Institute , University of California Davis Medical Center , Sacramento , CA , USA
| | - Randi J Hagerman
- c M.I.N.D. Institute , University of California Davis Medical Center , Sacramento , CA , USA.,d Department of Pediatrics , University of California, Davis Medical Center , Sacramento , CA , USA
| | - Nuanchan Chutabhakdikul
- b Research Center for Neuroscience, Institute of Molecular Biosciences , Mahidol University , Nakornpathom , Thailand
| | - Flora Tassone
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA.,c M.I.N.D. Institute , University of California Davis Medical Center , Sacramento , CA , USA
| |
Collapse
|
31
|
Muslimov IA, Eom T, Iacoangeli A, Chuang SC, Hukema RK, Willemsen R, Stefanov DG, Wong RKS, Tiedge H. BC RNA Mislocalization in the Fragile X Premutation. eNeuro 2018; 5:ENEURO.0091-18.2018. [PMID: 29766042 PMCID: PMC5952321 DOI: 10.1523/eneuro.0091-18.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/27/2022] Open
Abstract
Fragile X premutation disorder is caused by CGG triplet repeat expansions in the 5' untranslated region of FMR1 mRNA. The question of how expanded CGG repeats cause disease is a subject of continuing debate. Our work indicates that CGG-repeat structures compete with regulatory BC1 RNA for access to RNA transport factor hnRNP A2. As a result, BC1 RNA is mislocalized in vivo, as its synapto-dendritic presence is severely diminished in brains of CGG-repeat knock-in animals (a premutation mouse model). Lack of BC1 RNA is known to cause seizure activity and cognitive dysfunction. Our working hypothesis thus predicted that absence, or significantly reduced presence, of BC1 RNA in synapto-dendritic domains of premutation animal neurons would engender cognate phenotypic alterations. Testing this prediction, we established epileptogenic susceptibility and cognitive impairments as major phenotypic abnormalities of CGG premutation mice. In CA3 hippocampal neurons of such animals, synaptic release of glutamate elicits neuronal hyperexcitability in the form of group I metabotropic glutamate receptor-dependent prolonged epileptiform discharges. CGG-repeat knock-in animals are susceptible to sound-induced seizures and are cognitively impaired as revealed in the Attentional Set Shift Task. These phenotypic disturbances occur in young-adult premutation animals, indicating that a neurodevelopmental deficit is an early-initial manifestation of the disorder. The data are consistent with the notion that RNA mislocalization can contribute to pathogenesis.
Collapse
Affiliation(s)
- Ilham A. Muslimov
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Taesun Eom
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Anna Iacoangeli
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Shih-Chieh Chuang
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Renate K. Hukema
- Department of Clinical Genetics, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Dimitre G. Stefanov
- Statistical Design and Analysis, Research Division, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Robert K. S. Wong
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Henri Tiedge
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| |
Collapse
|
32
|
Boivin M, Willemsen R, Hukema RK, Sellier C. Potential pathogenic mechanisms underlying Fragile X Tremor Ataxia Syndrome: RAN translation and/or RNA gain-of-function? Eur J Med Genet 2017; 61:674-679. [PMID: 29223504 DOI: 10.1016/j.ejmg.2017.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/19/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an inherited neurodegenerative disease caused by an expansion of 55-200 CGG repeats located in the FMR1 gene. The main clinical and neuropathological features of FXTAS are progressive intention tremor and gait ataxia associated with brain atrophy, neuronal cell loss and presence of ubiquitin-positive intranuclear inclusions in both neurons and astrocytes. At the molecular level, FXTAS is characterized by increased expression of FMR1 sense and antisense RNA containing expanded CGG or GGC repeats, respectively. Here, we discuss the putative molecular mechanisms underlying FXTAS and notably recent reports that expanded CGG and GGC repeats may be pathogenic through RAN translation into toxic proteins.
Collapse
Affiliation(s)
- Manon Boivin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| | - Chantal Sellier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
33
|
Eslami H, Eslami A, Favaedi R, Asadpour U, Zari Moradi S, Eftekhari-Yazdi P, Madani T, Shahhoseini M, Mohseni Meybodi A. Epigenetic Aberration of FMR1 Gene in Infertile Women with Diminished Ovarian Reserve. CELL JOURNAL 2017; 20:78-83. [PMID: 29308622 PMCID: PMC5759683 DOI: 10.22074/cellj.2018.4398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 01/15/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVES The diminished ovarian reserve (DOR) is a condition characterized by a reduction in the number and/or quality of oocytes. This primary infertility disorder is usually accompanied with an increase in the follicle-stimulating hormone (FSH) levels and regular menses. Although there are many factors contributing to the DOR situation, it is likely that many of idiopathic cases have genetic/epigenetic bases. The association between the FMR1 premutation (50-200 CGG repeats) and the premature ovarian failure (POF) suggests that epigenetic disorders of FMR1 can act as a risk factor for the DOR as well. The aim of this study was to analyze the mRNA expression and epigenetic alteration (histone acetylation/methylation) of the FMR1 gene in blood and granulosa cells of 20 infertile women. MATERIALS AND METHODS In this case-control study, these women were referred to the Royan Institute, having been clinically diagnosed as DOR patients. Our control group consisted of 20 women with normal antral follicle numbers and serum FSH level. All these women had normal karyotype and no history of genetic disorders. The number of CGG triplet repeats in the exon 1 of the FMR1 gene was analyzed in all samples. RESULTS Results clearly demonstrated significantly higher expression of the FMR1 gene in blood and granulosa cells of the DOR patients with the FMR1 premutation compared to the control group. In addition, epigenetic marks of histone 3 lysine 9 acetylation (H3K9ac) and di-metylation (H3K9me2) showed significantly higher incorporations in the regulatory regions of the FMR1 gene, including the promoter and the exon 1, whereas tri-metylation (H3K9me3) mark showed no significant difference between two groups. CONCLUSIONS Our data demonstrates, for the first time, the dynamicity of gene expression and histone modification pattern in regulation of FMR1 gene, and implies the key role played by epigenetics in the development of the ovarian function.
Collapse
Affiliation(s)
- Hossein Eslami
- Department of Biology, Faculty of Science, Science and Research Branch Islamic Azad University, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ali Eslami
- Department of Biology, Faculty of Science, Science and Research Branch Islamic Azad University, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Raha Favaedi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ummolbanin Asadpour
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Shabnam Zari Moradi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Poopak Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Tahereh Madani
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. Electronic address :
| | - Anahita Mohseni Meybodi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. Electronic address :
| |
Collapse
|
34
|
Zhang K, Li YJ, Guo Y, Zheng KY, Yang Q, Yang L, Wang XS, Song Q, Chen T, Zhuo M, Zhao MG. Elevated progranulin contributes to synaptic and learning deficit due to loss of fragile X mental retardation protein. Brain 2017; 140:3215-3232. [DOI: 10.1093/brain/awx265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/20/2017] [Indexed: 01/09/2023] Open
Affiliation(s)
- Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032l, China
| | - Yu-jiao Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032l, China
| | - Yanyan Guo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032l, China
| | - Kai-yin Zheng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032l, China
| | - Qi Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032l, China
| | - Le Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032l, China
| | - Xin-shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032l, China
| | - Qian Song
- Center for Neuron and Disease, Frontier Institutes of Life Science and of Science and Technology, Xi’an Jiaotong University, Xi’an, 710032, China
| | - Tao Chen
- Center for Neuron and Disease, Frontier Institutes of Life Science and of Science and Technology, Xi’an Jiaotong University, Xi’an, 710032, China
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Center, Fourth Military Medical University, Xi’an, 710032, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Life Science and of Science and Technology, Xi’an Jiaotong University, Xi’an, 710032, China
| | - Ming-gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032l, China
- Center for Neuron and Disease, Frontier Institutes of Life Science and of Science and Technology, Xi’an Jiaotong University, Xi’an, 710032, China
| |
Collapse
|
35
|
Cammas A, Millevoi S. RNA G-quadruplexes: emerging mechanisms in disease. Nucleic Acids Res 2017; 45:1584-1595. [PMID: 28013268 PMCID: PMC5389700 DOI: 10.1093/nar/gkw1280] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
RNA G-quadruplexes (G4s) are formed by G-rich RNA sequences in protein-coding (mRNA) and non-coding (ncRNA) transcripts that fold into a four-stranded conformation. Experimental studies and bioinformatic predictions support the view that these structures are involved in different cellular functions associated to both DNA processes (telomere elongation, recombination and transcription) and RNA post-transcriptional mechanisms (including pre-mRNA processing, mRNA turnover, targeting and translation). An increasing number of different diseases have been associated with the inappropriate regulation of RNA G4s exemplifying the potential importance of these structures on human health. Here, we review the different molecular mechanisms underlying the link between RNA G4s and human diseases by proposing several overlapping models of deregulation emerging from recent research, including (i) sequestration of RNA-binding proteins, (ii) aberrant expression or localization of RNA G4-binding proteins, (iii) repeat associated non-AUG (RAN) translation, (iv) mRNA translational blockade and (v) disabling of protein–RNA G4 complexes. This review also provides a comprehensive survey of the functional RNA G4 and their mechanisms of action. Finally, we highlight future directions for research aimed at improving our understanding on RNA G4-mediated regulatory mechanisms linked to diseases.
Collapse
Affiliation(s)
- Anne Cammas
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III-Paul Sabatier, Inserm, CRCT, Toulouse, France
| | - Stefania Millevoi
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III-Paul Sabatier, Inserm, CRCT, Toulouse, France
| |
Collapse
|
36
|
Hayward BE, Kumari D, Usdin K. Recent advances in assays for the fragile X-related disorders. Hum Genet 2017; 136:1313-1327. [PMID: 28866801 DOI: 10.1007/s00439-017-1840-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 12/17/2022]
Abstract
The fragile X-related disorders are a group of three clinical conditions resulting from the instability of a CGG-repeat tract at the 5' end of the FMR1 transcript. Fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI) are disorders seen in carriers of FMR1 alleles with 55-200 repeats. Female carriers of these premutation (PM) alleles are also at risk of having a child who has an FMR1 allele with >200 repeats. Most of these full mutation (FM) alleles are epigenetically silenced resulting in a deficit of the FMR1 gene product, FMRP. This results in fragile X Syndrome (FXS), the most common heritable cause of intellectual disability and autism. The diagnosis and study of these disorders is challenging, in part because the detection of alleles with large repeat numbers has, until recently, been either time-consuming or unreliable. This problem is compounded by the mosaicism for repeat length and/or DNA methylation that is frequently seen in PM and FM carriers. Furthermore, since AGG interruptions in the repeat tract affect the risk that a FM allele will be maternally transmitted, the ability to accurately detect these interruptions in female PM carriers is an additional challenge that must be met. This review will discuss some of the pros and cons of some recently described assays for these disorders, including those that detect FMRP levels directly, as well as emerging technologies that promise to improve the diagnosis of these conditions and to be useful in both basic and translational research settings.
Collapse
Affiliation(s)
- Bruce E Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Building 8, Room 2A19, National Institutes of Health, 8 Center Drive MSC 0830, Bethesda, MD, 20892, USA
| | - Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Building 8, Room 2A19, National Institutes of Health, 8 Center Drive MSC 0830, Bethesda, MD, 20892, USA
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Building 8, Room 2A19, National Institutes of Health, 8 Center Drive MSC 0830, Bethesda, MD, 20892, USA.
| |
Collapse
|
37
|
Rohilla KJ, Gagnon KT. RNA biology of disease-associated microsatellite repeat expansions. Acta Neuropathol Commun 2017; 5:63. [PMID: 28851463 PMCID: PMC5574247 DOI: 10.1186/s40478-017-0468-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Microsatellites, or simple tandem repeat sequences, occur naturally in the human genome and have important roles in genome evolution and function. However, the expansion of microsatellites is associated with over two dozen neurological diseases. A common denominator among the majority of these disorders is the expression of expanded tandem repeat-containing RNA, referred to as xtrRNA in this review, which can mediate molecular disease pathology in multiple ways. This review focuses on the potential impact that simple tandem repeat expansions can have on the biology and metabolism of RNA that contain them and underscores important gaps in understanding. Merging the molecular biology of repeat expansion disorders with the current understanding of RNA biology, including splicing, transcription, transport, turnover and translation, will help clarify mechanisms of disease and improve therapeutic development.
Collapse
|
38
|
Wang X, Mu Y, Sun M, Han J. Bidirectional regulation of fragile X mental retardation protein phosphorylation controls rhodopsin homoeostasis. J Mol Cell Biol 2017; 9:104-116. [PMID: 27702760 DOI: 10.1093/jmcb/mjw041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/29/2016] [Indexed: 01/03/2023] Open
Abstract
Homoeostatic regulation of the light sensor, rhodopsin, is critical for the maintenance of light sensitivity and survival of photoreceptors. The major fly rhodopsin, Rh1, undergoes light-induced endocytosis and degradation, but its protein and mRNA levels remain constant during light/dark cycles. It is not clear how translation of Rh1 is regulated. Here, we show that adult photoreceptors maintain a constant, abundant quantity of ninaE mRNA, which encodes Rh1. We demonstrate that the Fmr1 protein associates with ninaE mRNA and represses its translation. Further, light exposure triggers a calcium-dependent dephosphorylation of Fmr1, which relieves suppression of Rh1 translation. We demonstrate that Mts, the catalytic subunit of protein phosphatase 2A (PP2A), mediates light-induced Fmr1 dephosphorylation in a regulatory B subunit of PP2A (CKa)-dependent manner. Finally, we show that blocking light-induced Rh1 translation results in reduced light sensitivity. Our results reveal the molecular mechanism of Rh1 homoeostasis and physiological consequence of Rh1 dysregulation.
Collapse
Affiliation(s)
- Xiao Wang
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Yawen Mu
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Mengshi Sun
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Junhai Han
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
39
|
Kong HE, Zhao J, Xu S, Jin P, Jin Y. Fragile X-Associated Tremor/Ataxia Syndrome: From Molecular Pathogenesis to Development of Therapeutics. Front Cell Neurosci 2017; 11:128. [PMID: 28529475 PMCID: PMC5418347 DOI: 10.3389/fncel.2017.00128] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a premutation CGG repeat expansion (55-200 repeats) within the 5' UTR of the fragile X gene (FMR1). FXTAS is characterized by intension tremor, cerebellar ataxia, progressive neurodegeneration, parkinsonism and cognitive decline. The development of transgenic mouse and Drosophila melanogaster models carrying an expanded CGG repeat has yielded valuable insight into the pathophysiology of FXTAS. To date, we know of two main molecular mechanisms of this disorder: (1) a toxic gain of function of the expanded CGG-repeat FMR1 mRNA, which results in the binding/sequestration of the CGG-binding proteins; and (2) CGG repeat-associated non-AUG-initiated (RAN) translation, which generates a polyglycine peptide toxic to cells. Besides these CGG-mediated mechanisms, recent studies have shed light on additional mechanisms of pathogenesis, such as the antisense transcript ASFMR1, mitochondrial dysfunction, DNA damage from R-loop formation and 5-hydroxymethylcytosine (5hmC)-mediated epigenetic modulation. Here we summarize the recent progress towards understanding the etiology of FXTAS and provide an overview of potential treatment strategies.
Collapse
Affiliation(s)
- Ha Eun Kong
- Department of Human Genetics, School of Medicine, Emory UniversityAtlanta, GA, USA
| | - Juan Zhao
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South UniversityChangsha, China
| | - Shunliang Xu
- Department of Neurology, 2nd Hospital of Shandong UniversityJinan, China
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory UniversityAtlanta, GA, USA
| | - Yan Jin
- Department of Ophthalmology, Second Hospital, Jilin UniversityChangchun, China
| |
Collapse
|
40
|
Sellier C, Buijsen RAM, He F, Natla S, Jung L, Tropel P, Gaucherot A, Jacobs H, Meziane H, Vincent A, Champy MF, Sorg T, Pavlovic G, Wattenhofer-Donze M, Birling MC, Oulad-Abdelghani M, Eberling P, Ruffenach F, Joint M, Anheim M, Martinez-Cerdeno V, Tassone F, Willemsen R, Hukema RK, Viville S, Martinat C, Todd PK, Charlet-Berguerand N. Translation of Expanded CGG Repeats into FMRpolyG Is Pathogenic and May Contribute to Fragile X Tremor Ataxia Syndrome. Neuron 2017; 93:331-347. [PMID: 28065649 PMCID: PMC5263258 DOI: 10.1016/j.neuron.2016.12.016] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 10/06/2016] [Accepted: 12/02/2016] [Indexed: 11/26/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a limited expansion of CGG repeats in the 5′ UTR of FMR1. Two mechanisms are proposed to cause FXTAS: RNA gain-of-function, where CGG RNA sequesters specific proteins, and translation of CGG repeats into a polyglycine-containing protein, FMRpolyG. Here we developed transgenic mice expressing CGG repeat RNA with or without FMRpolyG. Expression of FMRpolyG is pathogenic, while the sole expression of CGG RNA is not. FMRpolyG interacts with the nuclear lamina protein LAP2β and disorganizes the nuclear lamina architecture in neurons differentiated from FXTAS iPS cells. Finally, expression of LAP2β rescues neuronal death induced by FMRpolyG. Overall, these results suggest that translation of expanded CGG repeats into FMRpolyG alters nuclear lamina architecture and drives pathogenesis in FXTAS. CGG repeats in the 5′ UTR of FMR1 are translated through initiation to an ACG codon Translation of CGG repeats in the polyglycine protein, FMRpolyG, is toxic in mice FMRpolyG binds and disrupts protein of the nuclear lamina
Collapse
Affiliation(s)
- Chantal Sellier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France.
| | - Ronald A M Buijsen
- Department of Clinical Genetics, Erasmus MC, 3015 Rotterdam, the Netherlands
| | - Fang He
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Veteran Association Health System, Ann Arbor, MI 48105, USA; Department of Biological and Health Sciences, Texas A&M University - Kingsville, Kingsville, TX 78363, USA
| | - Sam Natla
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laura Jung
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Philippe Tropel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Angeline Gaucherot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Hugues Jacobs
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France; PHENOMIN, Institut Clinique de la Souris (ICS), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Hamid Meziane
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France; PHENOMIN, Institut Clinique de la Souris (ICS), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Alexandre Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Marie-France Champy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France; PHENOMIN, Institut Clinique de la Souris (ICS), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Tania Sorg
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France; PHENOMIN, Institut Clinique de la Souris (ICS), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Guillaume Pavlovic
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France; PHENOMIN, Institut Clinique de la Souris (ICS), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Marie Wattenhofer-Donze
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France; PHENOMIN, Institut Clinique de la Souris (ICS), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Marie-Christine Birling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France; PHENOMIN, Institut Clinique de la Souris (ICS), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Mustapha Oulad-Abdelghani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Pascal Eberling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Frank Ruffenach
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Mathilde Joint
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Mathieu Anheim
- Department of Neurology, University Hospital of Strasbourg, Hôpital de Hautepierre, 67200 Strasbourg, France
| | - Veronica Martinez-Cerdeno
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA; M.I.N.D. Institute, University of California, Davis, Health System, Sacramento, CA 95817, USA
| | - Flora Tassone
- M.I.N.D. Institute, University of California, Davis, Health System, Sacramento, CA 95817, USA
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, 3015 Rotterdam, the Netherlands
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, 3015 Rotterdam, the Netherlands
| | - Stéphane Viville
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France; Laboratoire de Diagnostic Génétique, UF3472 - Infertilité, Nouvel Hôpital Civil, 1 place de l'Hôpital, 67091 Strasbourg, France; IPPTS, 3 rue Koeberlé, 67000 Strasbourg, France
| | | | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Veteran Association Health System, Ann Arbor, MI 48105, USA
| | - Nicolas Charlet-Berguerand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France.
| |
Collapse
|
41
|
Wang L, Wang Y, Zhou S, Yang L, Shi Q, Li Y, Zhang K, Yang L, Zhao M, Yang Q. Imbalance between Glutamate and GABA in Fmr1 Knockout Astrocytes Influences Neuronal Development. Genes (Basel) 2016; 7:genes7080045. [PMID: 27517961 PMCID: PMC4999833 DOI: 10.3390/genes7080045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/16/2016] [Accepted: 07/25/2016] [Indexed: 01/21/2023] Open
Abstract
Fragile X syndrome (FXS) is a form of inherited mental retardation that results from the absence of the fragile X mental retardation protein (FMRP), the product of the Fmr1 gene. Numerous studies have shown that FMRP expression in astrocytes is important in the development of FXS. Although astrocytes affect neuronal dendrite development in Fmr1 knockout (KO) mice, the factors released by astrocytes are still unclear. We cultured wild type (WT) cortical neurons in astrocyte-conditioned medium (ACM) from WT or Fmr1 KO mice. Immunocytochemistry and Western blotting were performed to detect the dendritic growth of both WT and KO neurons. We determined glutamate and γ-aminobutyric acid (GABA) levels using high-performance liquid chromatography (HPLC). The total neuronal dendritic length was reduced when cultured in the Fmr1 KO ACM. This neurotoxicity was triggered by an imbalanced release of glutamate and GABA from Fmr1 KO astrocytes. We found increased glutaminase and GABA transaminase (GABA-T) expression and decreased monoamine oxidase B expression in Fmr1 KO astrocytes. The elevated levels of glutamate contributed to oxidative stress in the cultured neurons. Vigabatrin (VGB), a GABA-T inhibitor, reversed the changes caused by glutamate and GABA release in Fmr1 KO astrocytes and the abnormal behaviors in Fmr1 KO mice. Our results indicate that the imbalance in the astrocytic glutamate and GABA release may be involved in the neuropathology and the underlying symptoms of FXS, and provides a therapeutic target for treatment.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Yan Wang
- Department of Gastroenterology and Endoscopy Center, No. 323 Hospital of PLA, Xi'an 710054, China.
| | - Shimeng Zhou
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Liukun Yang
- Fifth Company, Second Battalion, Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China.
| | - Qixin Shi
- Fifth Company, Second Battalion, Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China.
| | - Yujiao Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Le Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Minggao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Qi Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
42
|
Peralta F, Fuentealba C, Fiedler J, Aliaga E. Prenatal valproate treatment produces autistic-like behavior and increases metabotropic glutamate receptor 1A-immunoreactivity in the hippocampus of juvenile rats. Mol Med Rep 2016; 14:2807-14. [DOI: 10.3892/mmr.2016.5529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/13/2016] [Indexed: 11/06/2022] Open
|
43
|
Kumari D, Usdin K. Sustained expression of FMR1 mRNA from reactivated fragile X syndrome alleles after treatment with small molecules that prevent trimethylation of H3K27. Hum Mol Genet 2016; 25:3689-3698. [PMID: 27378697 DOI: 10.1093/hmg/ddw215] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/20/2016] [Accepted: 06/29/2016] [Indexed: 11/14/2022] Open
Abstract
Expansion of a CGG-repeat tract in the 5'-untranslated region of the FMR1 gene to >200 repeats results in epigenetic silencing of the gene by a mechanism that is still unknown. FMR1 gene silencing results in fragile X syndrome (FXS), the most common heritable cause of intellectual disability. We have previously shown that reactivation of the FMR1 gene in FXS cells with 5-azadeoxycytidine (AZA) leads to the transient recruitment of EZH2, the polycomb repressive complex 2 (PRC2) component responsible for H3K27 trimethylation, and that this recruitment depends on the presence of the FMR1 transcript. However, whether H3K27 trimethylation was essential for FMR1 re-silencing was not known. We show here that EZH2 inhibitors increased FMR1 expression and significantly delayed re-silencing of the FMR1 gene in AZA-treated FXS cells. This delay occurred despite the fact that EZH2 inhibition did not prevent the return of DNA methylation. Treatment with compound 1a, a small molecule that targets CGG-repeats in the FMR1 mRNA, also resulted in sustained expression of the FMR1 gene in AZA-treated cells. This effect of 1a was also associated with a decrease in the levels of H3K27 trimethylation but not DNA methylation. Thus, our data show that EZH2 plays a critical role in the FMR1 gene silencing process and that its inhibition can prolong expression of the FMR1 gene even in the presence of its transcript.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Genomic Structure and Function, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Karen Usdin
- Section on Genomic Structure and Function, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
44
|
Sohn J, Brick RM, Tuan RS. From embryonic development to human diseases: The functional role of caveolae/caveolin. ACTA ACUST UNITED AC 2016; 108:45-64. [PMID: 26991990 DOI: 10.1002/bdrc.21121] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 02/06/2023]
Abstract
Caveolae, an almost ubiquitous, structural component of the plasma membrane, play a critical role in many functions essential for proper cell function, including membrane trafficking, signal transduction, extracellular matrix remodeling, and tissue regeneration. Three main types of caveolin proteins have been identified from caveolae since the discovery of caveolin-1 in the early 1990s. All three (Cav-1, Cav-2, and Cav-3) play crucial roles in mammalian physiology, and can effect pathogenesis in a wide range of human diseases. While many biological activities of caveolins have been uncovered since its discovery, their role and regulation in embryonic develop remain largely poorly understood, although there is increasing evidence that caveolins may be linked to lung and brain birth defects. Further investigations are clearly needed to decipher how caveolae/caveolins mediate cellular functions and activities of normal embryogenesis and how their perturbations contribute to developmental disorders.
Collapse
Affiliation(s)
- Jihee Sohn
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rachel M Brick
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
45
|
Normal Performance of Fmr1 Mice on a Touchscreen Delayed Nonmatching to Position Working Memory Task. eNeuro 2016; 3:eN-CFN-0143-15. [PMID: 27022628 PMCID: PMC4800045 DOI: 10.1523/eneuro.0143-15.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 11/21/2022] Open
Abstract
Fragile X syndrome is a neurodevelopmental disorder characterized by mild-to-severe cognitive deficits. The complete absence of Fmr1 and its protein product in the mouse model of fragile X (Fmr1 KO) provides construct validity. A major conundrum in the field is the remarkably normal performance of Fmr1 mice on cognitive tests in most reports. One explanation may be insufficiently challenging cognitive testing procedures. Here we developed a delayed nonmatching to position touchscreen task to test the hypothesis that paradigms placing demands on working memory would reveal robust and replicable cognitive deficits in the Fmr1 KO mouse. We first tested Fmr1 KO mice (Fmr1) and their wild-type (WT) littermates in a simple visual discrimination task, followed by assessment of reversal learning. We then tested Fmr1 and WT mice in a new touchscreen nonmatch to position task and subsequently challenged their working memory abilities by adding delays, representing a higher cognitive load. The performance by Fmr1 KO mice was equal to WTs on both touchscreen tasks. Last, we replicated previous reports of normal performance by Fmr1 mice on Morris water maze spatial navigation and reversal. These results indicate that, while the Fmr1 mouse model effectively recapitulates many molecular and cellular aspects of fragile X syndrome, the cognitive profile of Fmr1 mice generally does not recapitulate the primary cognitive deficits in the human syndrome, even when diverse and challenging tasks are imposed.
Collapse
|
46
|
Gerhardt J. Epigenetic modifications in human fragile X pluripotent stem cells; Implications in fragile X syndrome modeling. Brain Res 2015; 1656:55-62. [PMID: 26475977 DOI: 10.1016/j.brainres.2015.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/18/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022]
Abstract
Patients with fragile X syndrome (FXS) exhibit moderate to severe intellectual disabilities. In addition, one-third of FXS patients show characteristics of autism spectrum disorder. FXS is caused by a trinucleotide repeat expansion, which leads to silencing of the fragile X mental retardation (FMR1) gene. The absence of the FMR1 gene product, FMRP, is the reason for the disease symptoms. It has been suggested that repeat instability and transcription of the FMR1 gene occur during early embryonic development, while after cell differentiation repeats become stable and the FMR1 gene is silent. Epigenetic marks, such as DNA methylation, are associated with gene silencing and repeat stability at the FMR1 locus. However, the mechanisms leading to gene silencing and repeat expansion are still ambiguous, because studies at the human genomic locus were limited until now. The FXS pluripotent stem cells, recently derived from FXS adult cells and FXS blastocysts, are new useful tools to examine these mechanisms at the human endogenous FMR1 locus. This review summarizes the epigenetic features and experimental studies of FXS human embryonic and FXS induced pluripotent stem cells, generated so far. This article is part of a Special Issue entitled SI: Exploiting human neurons.
Collapse
Affiliation(s)
- Jeannine Gerhardt
- Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx 10461, USA.
| |
Collapse
|
47
|
Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci 2015; 16:595-605. [PMID: 26350240 DOI: 10.1038/nrn4001] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fragile X syndrome (FXS), the most-frequently inherited form of intellectual disability and the most-prevalent single-gene cause of autism, results from a lack of fragile X mental retardation protein (FMRP), an RNA-binding protein that acts, in most cases, to repress translation. Multiple pharmacological and genetic manipulations that target receptors, scaffolding proteins, kinases and translational control proteins can rescue neuronal morphology, synaptic function and behavioural phenotypes in FXS model mice, presumably by reducing excessive neuronal translation to normal levels. Such rescue strategies might also be explored in the future to identify the mRNAs that are critical for FXS pathophysiology.
Collapse
Affiliation(s)
- Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01545, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York City, New York 10003, USA
| |
Collapse
|
48
|
McIntosh N, Gane LW, McConkie-Rosell A, Bennett RL. Genetic Counseling for Fragile X Syndrome: Recommendations of the National Society of Genetic Counselors. J Genet Couns 2015; 9:303-25. [PMID: 26141473 DOI: 10.1023/a:1009454112907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The National Society of Genetic Counselors' (NSGC) recommendations for fragile X syndrome (FXS) genetic counseling are intended to assist health care professionals who provide genetic counseling for individuals and families in whom the diagnosis of FXS is strongly suspected or has been made. The recommendations are the opinions of genetic counselors with expertise in FXS counseling and are based on clinical experience, a review of pertinent English language medical articles, and reports of expert committees. These recommendations should not be construed as dictating an exclusive course of management, nor does use of such recommendations guarantee a particular outcome. These recommendations do not displace a health care provider's professional judgment based on the clinical circumstances of a particular client.
Collapse
|
49
|
Increased coupling of caveolin-1 and estrogen receptor α contributes to the fragile X syndrome. Ann Neurol 2015; 77:618-36. [DOI: 10.1002/ana.24358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/04/2015] [Accepted: 01/14/2015] [Indexed: 11/07/2022]
|
50
|
Renoux AJ, Carducci NM, Ahmady AA, Todd PK. Fragile X mental retardation protein expression in Alzheimer's disease. Front Genet 2014; 5:360. [PMID: 25452762 PMCID: PMC4233940 DOI: 10.3389/fgene.2014.00360] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/27/2014] [Indexed: 12/31/2022] Open
Abstract
The FMR1 protein product, FMRP, is an mRNA binding protein associated with translational inhibition of target transcripts. One FMRP target is the amyloid precursor protein (APP) mRNA, and APP levels are elevated in Fmr1 KO mice. Given that elevated APP protein expression can elicit Alzheimer's disease (AD) in patients and model systems, we evaluated whether FMRP expression might be altered in Alzheimer's autopsy brain samples and mouse models compared to controls. In a double transgenic mouse model of AD (APP/PS1), we found no difference in FMRP expression in aged AD model mice compared to littermate controls. FMRP expression was also similar in AD and control patient frontal cortex and cerebellum samples. Fragile X-associated tremor/ataxia syndrome (FXTAS) is an age-related neurodegenerative disorder caused by expanded CGG repeats in the 5' untranslated region of the FMR1 gene. Patients experience cognitive impairment and dementia in addition to motor symptoms. In parallel studies, we measured FMRP expression in cortex and cerebellum from three FXTAS patients and found reduced expression compared to both controls and Alzheimer's patient brains, consistent with animal models. We also find increased APP levels in cerebellar, but not cortical, samples of FXTAS patients compared to controls. Taken together, these data suggest that a decrease in FMRP expression is unlikely to be a primary contributor to Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Abigail J Renoux
- Department of Molecular and Integrative Physiology, University of Michigan , Ann Arbor, MI, USA ; Department of Neurology, University of Michigan , Ann Arbor, MI, USA
| | | | - Arya A Ahmady
- Department of Neurology, University of Michigan , Ann Arbor, MI, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|