1
|
Milosevic K, Milosevic A, Stevanovic I, Zivkovic A, Laketa D, Janjic MM, Bjelobaba I, Lavrnja I, Savic D. Agmatine suppresses glycolysis via the PI3K/Akt/mTOR/HIF-1α signaling pathway and improves mitochondrial function in microglia exposed to lipopolysaccharide. Biofactors 2025; 51:e2149. [PMID: 39888089 PMCID: PMC11780571 DOI: 10.1002/biof.2149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/22/2024] [Indexed: 02/01/2025]
Abstract
Modulating metabolic pathways in activated microglia can alter their phenotype, which is relevant in uncontrolled neuroinflammation as a component of various neurodegenerative diseases. Here, we investigated how pretreatment with agmatine, an endogenous polyamine, affects metabolic changes in an in vitro model of neuroinflammation, a murine microglial BV-2 cell line exposed to lipopolysaccharide (LPS). Hence, we analyzed gene expression using qPCR and protein levels using Western blot and ELISA. Microglial metabolic status was assessed by measuring lactate release and cellular ATP by enzymatic and luminescence spectrophotometry. Mitochondrial functionality was analyzed by fluorescent probes detecting mitochondrial membrane potential (mtMP) and superoxide production. Our findings suggest that kinase pathways associated with hypoxia-inducible factor-1α (HIF-1α) regulate energy metabolism in pro-inflammatory activated microglia. We have shown that LPS induces HIF-1α and genes for glucose transporter and glycolytic rate, increases lactate production and causes mitochondrial dysfunction, suggesting a metabolic shift towards glycolysis. Agmatine inhibits the PI3K/Akt pathway and negatively regulates mammalian target of rapamycin (mTOR) phosphorylation and HIF-1α levels, reducing lactate and tumor necrosis factor (TNF) production, which is supported by pharmacological blockade of PI3K. Pretreatment with agmatine also rescues mitochondrial function by counteracting the LPS-induced decline in mtMP and increase in mitochondrial superoxide, resulting in an anti-apoptotic effect. Agmatine alone increases intracellular ATP levels and maintains this effect even under pro-inflammatory conditions. Our study emphasizes the ability of agmatine to engage in metabolic reprogramming of pro-inflammatory microglia through increased ATP production and modulation of signaling pathway involved in promoting glycolysis and cytokine release.
Collapse
Affiliation(s)
- Katarina Milosevic
- Department of NeurobiologyInstitute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of BelgradeBelgradeSerbia
| | - Ana Milosevic
- Department of NeurobiologyInstitute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of BelgradeBelgradeSerbia
| | - Ivana Stevanovic
- Medical Faculty of the Military Medical AcademyUniversity of Defense in BelgradeBelgradeSerbia
| | - Anica Zivkovic
- Department of NeurobiologyInstitute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of BelgradeBelgradeSerbia
| | - Danijela Laketa
- Department for General Physiology and BiophysicsFaculty of Biology, University of BelgradeBelgradeSerbia
| | - Marija M. Janjic
- Department of NeurobiologyInstitute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of BelgradeBelgradeSerbia
| | - Ivana Bjelobaba
- Department of NeurobiologyInstitute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of BelgradeBelgradeSerbia
| | - Irena Lavrnja
- Department of NeurobiologyInstitute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of BelgradeBelgradeSerbia
| | - Danijela Savic
- Department of NeurobiologyInstitute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of BelgradeBelgradeSerbia
| |
Collapse
|
2
|
Gilad VH, Béres E, Vértesi A, Hirka G, Gilad GM. Evidence for safety of the dietary ingredient agmatine sulfate as assessed by mutagenicity and genotoxicity studies. Toxicol Rep 2024; 13:101720. [PMID: 39286406 PMCID: PMC11403453 DOI: 10.1016/j.toxrep.2024.101720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Agmatine, 1-Amino-4-guanidinobutane, is a ubiquitous naturally occurring molecule present in low amounts in a wide variety of foodstuff. Clinical trials have demonstrated the safety of oral agmatine sulfate and have led to its development as an effective dietary ingredient for promoting resilient nerve functions. Although clearly required, the mutagenic and genotoxic effects of agmatine have not been previously reported. The present study, therefore, undertook to assess the safety profile of agmatine using currently accepted in vitro and in vivo mutagenicity and genotoxicity tests. The test item was G-Agmatine®, a proprietary brand of agmatine sulfate. Using the bacterial reverse mutation assay (Ames test), the study found that G-Agmatine® has no mutagenic effects. It had no clastogenic effects as observed by the in vitro chromosomal aberration test using Chinese Hamster lung cells. And it lacked genotoxic effects as evidenced by the lack of increased frequency of micronucleated polychromatic immature erythrocytes following oral administration in the mouse micronucleus test. Taken together with previously published data, results of the present study further support the safety of agmatine sulfate as a dietary ingredient.
Collapse
Affiliation(s)
- Varda H Gilad
- Research, Gilad&Gilad LLC, 9149 Claretta Dr., Las Vegas, NV 89129, USA
| | - Erzsébet Béres
- Toxi-Coop ZRT., Arácsi út 97, Balatonfüred 8230, Hungary
| | - Adél Vértesi
- Toxi-Coop ZRT., Arácsi út 97, Balatonfüred 8230, Hungary
| | - Gábor Hirka
- Toxi-Coop ZRT., Arácsi út 97, Balatonfüred 8230, Hungary
| | - Gad M Gilad
- Research, Gilad&Gilad LLC, 9149 Claretta Dr., Las Vegas, NV 89129, USA
| |
Collapse
|
3
|
Paliwal NP, Taksande BG, Jain SP, Borikar SP. Possible involvement of GABAergic system on central amygdala Mediated anxiolytic effect of agmatine in rats. Int J Neurosci 2024; 134:1346-1356. [PMID: 37801395 DOI: 10.1080/00207454.2023.2268262] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 08/02/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
OBJECTIVES To study the pharmacological interactions between agmatine and gamma aminobutyric acid (GABA) modulatory agents in the regulation of anxiety-like behavior in rats. MATERIALS AND METHODS Male Wistar rats were treated drugs per se or in combination and 15 min after last injection were subjected to elevated plus-maze (EPM) test. Anxiety-like behavior was evaluated by measuring behavioral conventional readout, open arm activity (duration and/or entries) for 5-minute duration. RESULTS Acute intra-central amygdala (CeA) injection of agmatine (0.1-0.6 μmol/site/rat), muscimol (0.25-1 nmol/site/rat), diazepam (5-20 μg/site/rat) and allopregnanolone (2-8 μg/site/rat) increased open arm entries of the rats in EPM suggesting anxiolytic effect in dose dependent manner. Moreover, the anxiolytic effect at subeffective dose of agmatine (0.1 μmol/site/rat) was potentiated by subeffective dose of muscimol (0.25 nmol/site/rat), diazepam (5 μg/site/rat) and allopregnanolone (4 μg/site/rat). Whereas, pretreatment with GABAA receptor antagonist, bicuculline (10 ng/site/rat) blocked the anxiolytic effect of agmatine and its synergistic effect of agmatine plus muscimol. Similarly, benzodiazepine (BZD) receptor antagonist, flumazenil (15 μg/site/rat) and GABA allosteric modulator antagonist, RO 15-45 13 (10 μg/site/rat) reduced the anxiolytic effect of agmatine, given alone and with diazepam and allopregnanolone, respectively. CONCLUSION These results indicated that anxiolytic effect of agmatine is medicated via GABAergic mechanisms, probably conciliated by the GABAA receptor subtypes. Modulation of interplay between agmatine and GABAA receptor activity might be a pertinent solution for the regulation of anxiety.
Collapse
Affiliation(s)
- Nikhilesh P Paliwal
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, Kamptee, India
| | - Brijesh G Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, Kamptee, India
| | - Shirish P Jain
- Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Buldana, India
| | - Sachin P Borikar
- Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Buldana, India
| |
Collapse
|
4
|
Han X, Yang ZF, Zhao TY, Lu GY, Wang ZY, Wu N, Li J, Li F. Regulation of I1-imidazoline receptors on the sedation effect of dexmedetomidine in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5927-5937. [PMID: 38363351 DOI: 10.1007/s00210-024-02991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Dexmedetomidine has been used as a sedative drug in the clinic for a long time. Many studies demonstrated that the sedative mechanism of dexmedetomidine might be related to the activation of α2-adrenoceptor (α2AR). In addition, it was reported that dexmedetomidine had some affinity for the I1-imidazoline receptor (I1R); however, the role of I1R in dexmedetomidine-induced sedative effects and its possible mechanism are poorly studied. In the present study, we found that agmatine, an I1R agonist, was able to enhance the sedative effect of dexmedetomidine in mice. Efaroxan, an α2AR and I1R antagonist, could prevent and rescue the sedative action of dexmedetomidine in mice, and its preventive effect was better than atipamezole, the specific α2AR antagonist. Knockout of imidazoline receptor antisera-selected (IRAS), the functional I1R candidate protein, suppressed the dexmedetomidine-induced sedation. Moreover, IRAS knockout led to the inhibition of agmatine and efaroxan in regulating dexmedetomidine-induced sedative effects in mice, but not of atipamezole. We then used CHO cell lines that stably expressed α2AR and IRAS to investigate the possible molecular mechanism of IRAS in regulating the dexmedetomidine-induced sedative effect. The results showed that IRAS expression significantly up-regulated dexmedetomidine-induced ERK phosphorylation, which was enhanced by agmatine and inhibited by efaroxan at low concentrations. Therefore, by taking advantage of pharmacological and genetic approaches, our finding revealed the evidence that IRAS plays an important role in the sedative effects of dexmedetomidine, and the ERK signal pathway may be involved in the mechanism of IRAS in regulating dexmedetomidine-induced sedation. This study may offer valuable insights for the advancement of novel anesthetic adjuvants.
Collapse
Affiliation(s)
- Xiao Han
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Zhi-Fang Yang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Tai-Yun Zhao
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Guan-Yi Lu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Zhi-Yuan Wang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Fei Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| |
Collapse
|
5
|
Rafi H, Rafiq H, Farhan M. Pharmacological profile of agmatine: An in-depth overview. Neuropeptides 2024; 105:102429. [PMID: 38608401 DOI: 10.1016/j.npep.2024.102429] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Agmatine, a naturally occurring polyamine derived from arginine via arginine decarboxylase, has been shown to play multifaceted roles in the mammalian body, impacting a wide range of physiological and pathological processes. This comprehensive review delineates the significant insights into agmatine's pharmacological profile, emphasizing its structure and metabolism, neurotransmission and regulation, and pharmacokinetics and function. Agmatine's biosynthesis is highly conserved across species, highlighting its fundamental role in cellular functions. In the brain, comparable to established neurotransmitters, agmatine acts as a neuromodulator, influencing the regulation, metabolism, and reabsorption of neurotransmitters that are key to mood disorders, learning, cognition, and the management of anxiety and depression. Beyond its neuromodulatory functions, agmatine exhibits protective effects across various cellular and systemic contexts, including neuroprotection, nephroprotection, cardioprotection, and cytoprotection, suggesting a broad therapeutic potential. The review explores agmatine's interaction with multiple receptor systems, including NMDA, α2-adrenoceptors, and imidazoline receptors, elucidating its role in enhancing cell viability, neuronal protection, and synaptic plasticity. Such interactions underpin agmatine's potential in treating neurological diseases and mood disorders, among other conditions. Furthermore, agmatine's pharmacokinetics, including its absorption, distribution, metabolism, and excretion, are discussed, underlining the complexity of its action and the potential for therapeutic application. The safety and efficacy of agmatine supplementation, demonstrated through various animal and human studies, affirm its potential as a beneficial therapeutic agent. Conclusively, the diverse physiological and therapeutic effects of agmatine, spanning neurotransmission, protection against cellular damage, and modulation of various receptor pathways, position it as a promising candidate for further research and clinical application. This review underscores the imperative for continued exploration into agmatine's mechanisms of action and its potential in pharmacology and medicine, promising advances in the treatment of numerous conditions.
Collapse
Affiliation(s)
- Hira Rafi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biochemistry, University of Karachi, Pakistan.
| | - Hamna Rafiq
- Department of Biochemistry, University of Karachi, Pakistan
| | | |
Collapse
|
6
|
He J, Hou T, Wang Q, Wang Q, Jiang Y, Chen L, Xu J, Qi Y, Jia D, Gu Y, Gao L, Yu Y, Wang L, Kang L, Si J, Wang L, Chen S. L-arginine metabolism ameliorates age-related cognitive impairment by Amuc_1100-mediated gut homeostasis maintaining. Aging Cell 2024; 23:e14081. [PMID: 38236004 PMCID: PMC11019123 DOI: 10.1111/acel.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/04/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024] Open
Abstract
Aging-induced cognitive impairment is associated with a loss of metabolic homeostasis and plasticity. An emerging idea is that targeting key metabolites is sufficient to impact the function of other organisms. Therefore, more metabolism-targeted therapeutic intervention is needed to improve cognitive impairment. We first conducted untargeted metabolomic analyses and 16S rRNA to identify the aging-associated metabolic adaption and intestinal microbiome change. Untargeted metabolomic analyses of plasma revealed L-arginine metabolic homeostasis was altered during the aging process. Impaired L-arginine metabolic homeostasis was associated with low abundance of intestinal Akkermansia muciniphila (AKK) colonization in mice. Long-term supplementation of AKK outer membranes protein-Amuc_1100, rescued the L-arginine level and restored cognitive impairment in aging mice. Mechanically, Amuc_1100 acted directly as a source of L-arginine and enriched the L-arginine-producing bacteria. In aged brain, Amuc_1100 promoted the superoxide dismutase to alleviated oxidation stress, and increased nitric oxide, derivatives of L-arginine, to improve synaptic plasticity. Meanwhile, L-arginine repaired lipopolysaccharide-induced intestinal barrier damage and promoted growth of colon organoid. Our findings indicated that aging-related cognitive impairment was closely associated with the disorders of L-arginine metabolism. AKK-derived Amuc_1100, as a potential postbiotic, targeting the L-arginine metabolism, might provide a promising therapeutic strategy to maintain the intestinal homeostasis and cognitive function in aging.
Collapse
Affiliation(s)
- Jiamin He
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Tongyao Hou
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Qiwen Wang
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Qingyi Wang
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Yao Jiang
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Luyi Chen
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
- Department of General PracticeSir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Jilei Xu
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Yadong Qi
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Dingjiacheng Jia
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Yanrou Gu
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
- Department of Gastroenterology, Wenzhou People's HospitalWenzhou Medical UniversityWenzhouChina
| | - Lidan Gao
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
- Third Affiliated Hospital of Shanghai University, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's HospitalWenzhouChina
| | - Yingcong Yu
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
- Department of Gastroenterology, Wenzhou People's HospitalWenzhou Medical UniversityWenzhouChina
| | - Lan Wang
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Lijun Kang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain‐Machine Integration, School of Brain Science and Brain MedicineZhejiang UniversityHangzhouChina
| | - Jianmin Si
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Liangjing Wang
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Shujie Chen
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
7
|
Tassoulas LJ, Wackett LP. Insights into the action of the pharmaceutical metformin: Targeted inhibition of the gut microbial enzyme agmatinase. iScience 2024; 27:108900. [PMID: 38318350 PMCID: PMC10839685 DOI: 10.1016/j.isci.2024.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Metformin is the first-line treatment for type 2 diabetes, yet its mechanism of action is not fully understood. Recent studies suggest metformin's interactions with gut microbiota are responsible for exerting therapeutic effects. In this study, we report that metformin targets the gut microbial enzyme agmatinase, as a competitive inhibitor, which may impair gut agmatine catabolism. The metformin inhibition constant (Ki) of E. coli agmatinase is 1 mM and relevant in the gut where the drug concentration is 1-10 mM. Metformin analogs phenformin, buformin, and galegine are even more potent inhibitors of E. coli agmatinase (Ki = 0.6, 0.1, and 0.007 mM, respectively) suggesting a shared mechanism. Agmatine is a known effector of human host metabolism and has been reported to augment metformin's therapeutic effects for type 2 diabetes. This gut-derived inhibition mechanism gives new insights on metformin's action in the gut and may lead to significant discoveries in improving metformin therapy.
Collapse
Affiliation(s)
- Lambros J. Tassoulas
- Department of Biochemistry, Biophysics & Molecular Biology, University of Minnesota, Minneapolis, MN 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Lawrence P. Wackett
- Department of Biochemistry, Biophysics & Molecular Biology, University of Minnesota, Minneapolis, MN 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
8
|
Churchill CC, Peterson CD, Kitto KF, Pflepsen KR, Belur LR, McIvor RS, Vulchanova L, Wilcox GL, Fairbanks CA. Adeno-associated virus-mediated gene transfer of arginine decarboxylase to the central nervous system prevents opioid analgesic tolerance. FRONTIERS IN PAIN RESEARCH 2024; 4:1269017. [PMID: 38405182 PMCID: PMC10884299 DOI: 10.3389/fpain.2023.1269017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/19/2023] [Indexed: 02/27/2024] Open
Abstract
Agmatine, a decarboxylated form of L-arginine, prevents opioid analgesic tolerance, dependence, and self-administration when given by both central and systemic routes of administration. Endogenous agmatine has been previously detected in the central nervous system. The presence of a biochemical pathway for agmatine synthesis offers the opportunity for site-specific overexpression of the presumptive synthetic enzyme for local therapeutic effects. In the present study, we evaluated the development of opioid analgesic tolerance in ICR-CD1 mice pre-treated with either vehicle control or intrathecally delivered adeno-associated viral vectors (AAV) carrying the gene for human arginine decarboxylase (hADC). Vehicle-treated or AAV-hADC-treated mice were each further divided into two groups which received repeated delivery over three days of either saline or systemically-delivered morphine intended to induce opioid analgesic tolerance. Morphine analgesic dose-response curves were constructed in all subjects on day four using the warm water tail flick assay as the dependent measure. We observed that pre-treatment with AAV-hADC prevented the development of analgesic tolerance to morphine. Peripheral and central nervous system tissues were collected and analyzed for presence of hADC mRNA. In a similar experiment, AAV-hADC pre-treatment prevented the development of analgesic tolerance to a high dose of the opioid neuropeptide endomorphin-2. Intrathecal delivery of anti-agmatine IgG (but not normal IgG) reversed the inhibition of endomorphin-2 analgesic tolerance in AAV-hADC-treated mice. To summarize, we report here the effects of AAV-mediated gene transfer of human ADC (hADC) in models of opioid-induced analgesic tolerance. This study suggests that gene therapy may contribute to reducing opioid analgesic tolerance.
Collapse
Affiliation(s)
- Caroline C. Churchill
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Cristina D. Peterson
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | - Kelley F. Kitto
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Kelsey R. Pflepsen
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | - Lalitha R. Belur
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - R. Scott McIvor
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - George L. Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
- Department of Dermatology, University of Minnesota, Minneapolis, MN, United States
| | - Carolyn A. Fairbanks
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
9
|
Guo Q, Chen X, Li B. Purification and characterization of tomato arginine decarboxylase and its inhibition by the bacterial small molecule phevamine A. Protein Expr Purif 2023; 210:106326. [PMID: 37348664 PMCID: PMC10510110 DOI: 10.1016/j.pep.2023.106326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Polyamines play essential roles in plant growth and survival. Arginine decarboxylase (ADC), which converts arginine to agmatine, catalyzes the first step in polyamine biosynthesis from arginine. However, few biochemical studies with purified plant ADCs have been conducted to evaluate their catalytic efficiency. Tomato genome encodes two arginine decarboxylases: SlADC1 and SlADC2, which are critical for growth, development, and immune responses against bacterial pathogens. We expressed and purified soluble SlADC1 as a recombinant protein fused with maltose-binding protein tag from E. coli Rosetta 2(DE3) cells. Using the purified fusion protein, we characterized the biochemical properties of SlADC1 in vitro and explored it as a target of the bacterial small molecule phevamine A. We confirmed that the activity of SlADC1 depends on the cofactor pyridoxal 5'-phosphate. SlADC1 is specific toward l-arginine and its kinetic parameters were measured using a liquid chromatography-mass spectrometry method. Phevamine A is a competitive inhibitor of SlADC1 and reduces the activity of SlADC1 at high micromolar concentrations. Our purification and biochemical characterization of SlADC1 sets the stage for inhibition studies of this enzyme.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Chemistry, The University of North Carolina at Chapel Hill, North Carolina, 27599, United States
| | - Xiaoyan Chen
- Department of Chemistry, The University of North Carolina at Chapel Hill, North Carolina, 27599, United States
| | - Bo Li
- Department of Chemistry, The University of North Carolina at Chapel Hill, North Carolina, 27599, United States; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, North Carolina, 27599, United States.
| |
Collapse
|
10
|
Lopez MF, Davis EC, Cucinello-Ragland JA, Regunathan S, Edwards S, Becker HC. Agmatine reduces alcohol drinking and produces antinociceptive effects in rodent models of alcohol use disorder. Alcohol 2023; 109:23-33. [PMID: 36709008 PMCID: PMC10175169 DOI: 10.1016/j.alcohol.2023.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing disorder characterized by an escalation of drinking and the emergence of negative affective states over time. Within this framework, alcohol may be used in excessive amounts to alleviate withdrawal-related symptoms, such as hyperalgesia. Future effective therapeutics for AUD may need to exhibit the ability to reduce drinking as well as to alleviate co-morbid conditions such as pain, and to take mechanistic sex differences into consideration. Agmatine is an endogenous neuromodulator that has been previously implicated in the regulation of reward and pain processing. In the current set of studies, we examined the ability of agmatine to reduce escalated ethanol drinking in complementary models of AUD where adult male and female mice and rats were made dependent via chronic, intermittent ethanol vapor exposure (CIE). We also examined the ability of agmatine to modify thermal and mechanical sensitivity in alcohol-dependent male and female rats. Agmatine reduced alcohol drinking in a dose-dependent fashion, with somewhat greater selectivity in alcohol-dependent female mice (versus non-dependent female mice), but equivalent efficacy across male mice and both groups of male and female rats. In mice and female rats, this efficacy did not extend to sucrose drinking, indicating some selectivity for ethanol reinforcement. Female rats made dependent on alcohol demonstrated significant hyperalgesia symptoms, and agmatine produced dose-dependent antinociceptive effects across both sexes. While additional mechanistic studies into agmatine are necessary, these findings support the broad-based efficacy of agmatine to treat co-morbid excessive drinking and pain symptoms in the context of AUD.
Collapse
Affiliation(s)
- Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Erin C Davis
- Department of Physiology, Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, United States
| | - Jessica A Cucinello-Ragland
- Department of Physiology, Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, United States
| | - Soundar Regunathan
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Scott Edwards
- Department of Physiology, Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, United States
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC, United States.
| |
Collapse
|
11
|
Zhang Z, He H, Guo J, Zhao C, Gao Z, Song YY. Water Evaporation-Driven Arginine Enantiomer Recognition on a Self-Powered Flexible Chip with High Specificity. Anal Chem 2023; 95:8128-8136. [PMID: 37163772 DOI: 10.1021/acs.analchem.3c01378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Chiral recognition is a crucial issue in the biomedical and pharmaceutical research communities. Due to the need for expensive equipment, reagents, and external energy, enantiomer identification is difficult to perform outside of a laboratory. Based on water evaporation-induced hydrovoltaic effect, a power-free sensing platform with sensitive chiral recognition capability is proposed for the discrimination of enantiomers. The chiral recognizer was bovine serum albumin (BSA), a naturally occurring protein. Using arginine (Arg) enantiomers as the sensing targets, the difference in enantioselectivity between l-Arg and d-Arg on a BSA-modified porous carbon substrate can be measured directly from the output voltage. By combining the cyclization reaction between NO and O-phenylenediamine (OPD), it has been discovered that the sensitivity and specificity of enantioselective identification can be significantly enhanced based on the surface charges. The limit of detection (LOD) could be as low as 76.0 nM. In addition, the proposed chips are extremely flexible and can function under deformation without sacrificing output performance. This self-powered chiral recognition chip paves a new path for the detection of chiral molecules at any time, any place, and it also has excellent potential for use in flexible wearable technology.
Collapse
Affiliation(s)
- Zhechen Zhang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Haoxuan He
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Junli Guo
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Chenxi Zhao
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Zhida Gao
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Yan-Yan Song
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| |
Collapse
|
12
|
Peterson CD, Waataja JJ, Kitto KF, Erb SJ, Verma H, Schuster DJ, Churchill CC, Riedl MS, Belur LR, Wolf DA, McIvor RS, Vulchanova L, Wilcox GL, Fairbanks CA. Long-term reversal of chronic pain behavior in rodents through elevation of spinal agmatine. Mol Ther 2023; 31:1123-1135. [PMID: 36710491 PMCID: PMC10124077 DOI: 10.1016/j.ymthe.2023.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/08/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Chronic pain remains a significant burden worldwide, and treatments are often limited by safety or efficacy. The decarboxylated form of L-arginine, agmatine, antagonizes N-methyl-d-aspartate receptors, inhibits nitric oxide synthase, and reverses behavioral neuroplasticity. We hypothesized that expressing the proposed synthetic enzyme for agmatine in the sensory pathway could reduce chronic pain without motor deficits. Intrathecal delivery of an adeno-associated viral (AAV) vector carrying the gene for arginine decarboxylase (ADC) prevented the development of chronic neuropathic pain as induced by spared nerve injury in mice and rats and persistently reversed established hypersensitivity 266 days post-injury. Spinal long-term potentiation was inhibited by both exogenous agmatine and AAV-human ADC (hADC) vector pre-treatment but was enhanced in rats treated with anti-agmatine immunoneutralizing antibodies. These data suggest that endogenous agmatine modulates the neuroplasticity associated with chronic pain. Development of approaches to access this inhibitory control of neuroplasticity associated with chronic pain may yield important non-opioid pain-relieving options.
Collapse
Affiliation(s)
- Cristina D Peterson
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Jonathan J Waataja
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Kelley F Kitto
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Samuel J Erb
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Harsha Verma
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Daniel J Schuster
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Caroline C Churchill
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Maureen S Riedl
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Lalitha R Belur
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Daniel A Wolf
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - R Scott McIvor
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - George L Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA; Department of Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA; Department of Dermatology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Carolyn A Fairbanks
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA; Department of Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA.
| |
Collapse
|
13
|
Shi WN, Fan F, Zhang TR, Liu JY, Wang XH, Chang S. Terahertz phase shift sensing and identification of a chiral amino acid based on a protein-modified metasurface through the isoelectric point and peptide bonding. BIOMEDICAL OPTICS EXPRESS 2023; 14:1096-1106. [PMID: 36950227 PMCID: PMC10026576 DOI: 10.1364/boe.484181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The efficient sensing of amino acids, especially the distinction of their chiral enantiomers, is important for biological, chemical, and pharmaceutical research. In this work, a THz phase shift sensing method was performed for amino acid detection based on a polarization-dependent electromagnetically induced transparency (EIT) metasurface. More importantly, a method for binding the specific amino acids to the functional proteins modified on the metasurface was developed based on the isoelectric point theory so that the specific recognition for Arginine (Arg) was achieved among the four different amino acids. The results show that via high-Q phase shift, the detection precision for L-Arg is 2.5 × 10-5 g /ml, much higher than traditional sensing parameters. Due to the specific electrostatic adsorption by the functionalized metasurface to L-Arg, its detection sensitivity and precision are 22 times higher than the other amino acids. Furthermore, by comparing nonfunctionalized and functionalized metasurfaces, the D- and L-chiral enantiomers of Arg were distinguished due to their different binding abilities to the functionalized metasurface. Therefore, this EIT metasurface sensor and its specific binding method improve both detection precision and specificity in THz sensing for amino acids, and it will promote the development of THz highly sensitive detection of chiral enantiomers.
Collapse
Affiliation(s)
- Wei-Nan Shi
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Fei Fan
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Tian-Rui Zhang
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Jia-Yue Liu
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Xiang-Hui Wang
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - ShengJiang Chang
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| |
Collapse
|
14
|
Sinn M, Stanoppi M, Hauth F, Fleming JR, Funck D, Mayans O, Hartig JS. Guanidino acid hydrolysis by the human enzyme annotated as agmatinase. Sci Rep 2022; 12:22088. [PMID: 36543883 PMCID: PMC9772407 DOI: 10.1038/s41598-022-26655-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Guanidino acids such as taurocyamine, guanidinobutyrate, guanidinopropionate, and guanidinoacetate have been detected in humans. However, except for guanidionacetate, which is a precursor of creatine, their metabolism and potential functions remain poorly understood. Agmatine has received considerable attention as a potential neurotransmitter and the human enzyme so far annotated as agmatinase (AGMAT) has been proposed as an important modulator of agmatine levels. However, conclusive evidence for the assigned enzymatic activity is lacking. Here we show that AGMAT hydrolyzed a range of linear guanidino acids but was virtually inactive with agmatine. Structural modelling and direct biochemical assays indicated that two naturally occurring variants differ in their substrate preferences. A negatively charged group in the substrate at the end opposing the guanidine moiety was essential for efficient catalysis, explaining why agmatine was not hydrolyzed. We suggest to rename AGMAT as guanidino acid hydrolase (GDAH). Additionally, we demonstrate that the GDAH substrates taurocyamine, guanidinobutyrate and guanidinopropionate were produced by human glycine amidinotransferase (GATM). The presented findings show for the first time an enzymatic activity for GDAH/AGMAT. Since agmatine has frequently been proposed as an endogenous neurotransmitter, the current findings clarify important aspects of the metabolism of agmatine and guanidino acid derivatives in humans.
Collapse
Affiliation(s)
- Malte Sinn
- grid.9811.10000 0001 0658 7699Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Marco Stanoppi
- grid.9811.10000 0001 0658 7699Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Franziskus Hauth
- grid.9811.10000 0001 0658 7699Department of Chemistry, University of Konstanz, Konstanz, Germany ,grid.9811.10000 0001 0658 7699Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Jennifer R. Fleming
- grid.9811.10000 0001 0658 7699Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dietmar Funck
- grid.9811.10000 0001 0658 7699Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Olga Mayans
- grid.9811.10000 0001 0658 7699Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany ,grid.9811.10000 0001 0658 7699Department of Biology, University of Konstanz, Konstanz, Germany
| | - Jörg S. Hartig
- grid.9811.10000 0001 0658 7699Department of Chemistry, University of Konstanz, Konstanz, Germany ,grid.9811.10000 0001 0658 7699Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| |
Collapse
|
15
|
Chang YS, Lin CY, Liu TY, Huang CM, Chung CC, Chen YC, Tsai FJ, Chang JG, Chang SJ. Polygenic risk score trend and new variants on chromosome 1 are associated with male gout in genome-wide association study. Arthritis Res Ther 2022; 24:229. [PMID: 36221101 PMCID: PMC9552457 DOI: 10.1186/s13075-022-02917-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Gout is a highly hereditary disease, but not all those carrying well-known risk variants have developing gout attack even in hyperuricemia status. We performed a genome-wide association study (GWAS) and polygenic risk score (PRS) analysis to illustrate the new genetic architectures of gout and asymptomatic hyperuricemia (AH). Methods GWAS was performed to identify variants associated with gout/AH compared with normouricemia. The participants were males, enrolled from the Taiwan Biobank and China Medical University, and divided into discovery (n=39,594) and replication (n=891) cohorts for GWAS. For PRS analysis, the discovery cohort was grouped as base (n=21,814) and target (n=17,780) cohorts, and the score was estimated by grouping the polymorphisms into protective or not for the phenotypes in the base cohort. Results The genes ABCG2 and SLC2A9 were found as the major genetic factors governing gouty and AH, and even in those carrying the rs2231142 (ABCG2) wild-genotype. Surprisingly, variants on chromosome 1, such as rs7546668 (DNAJC16), rs10927807 (AGMAT), rs9286836 (NUDT17), rs4971100 (TRIM46), rs4072037 (MUC1), and rs2974935 (MTX1), showed significant associations with gout in both discovery and replication cohorts (all p-values < 1e−8). Concerning the PRS, the rates of gout and AH increased with increased quartile PRS in those SNPs having risk effects on the phenotypes; on the contrary, gout/AH rates decreased with increased quartile PRS in those protective SNPs. Conclusions We found new variants on chromosome 1 significantly relating to gout, and PRS predicts the risk of developing gout/AH more robustly based on the SNPs’ effect types on the trait. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02917-4.
Collapse
Affiliation(s)
- Ya-Sian Chang
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chien-Yu Lin
- Graduate Institute of Clinical Medical Sciences, School of Medicine, China Medical University, Taichung, Taiwan.,Division of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City, Taiwan
| | - Ting-Yuan Liu
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chung-Ming Huang
- Graduate Institute of Integrated Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chin-Chun Chung
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chia Chen
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - Jan-Gowth Chang
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan. .,Graduate Institute of Integrated Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
| | - Shun-Jen Chang
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan. .,Department of Kinesiology, Health and Leisure Studies, National University of Kaohsiung, No. 700, Kaohsiung University Road, Nanzih District, 81148, Kaohsiung, Taiwan.
| |
Collapse
|
16
|
Zhang Y, Cao L, Xie Y, Wang C, Liu X, Zhang X, Chen J. Agmatinase facilitates the tumorigenesis of pancreatic adenocarcinoma through the TGFβ/Smad pathway. Exp Ther Med 2022; 24:490. [PMID: 35837051 PMCID: PMC9257765 DOI: 10.3892/etm.2022.11417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/19/2022] [Indexed: 11/08/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is one of the most lethal malignancies. Due to the lack of typical symptoms and difficulties in early diagnosis, PAAD has a high mortality rate. Therefore, it is essential to identify novel specific biomarkers for the application of targeted therapies. A previous study suggested that agmatinase (AGMAT) may fulfill important roles in tumor progression; however, these roles and the underlying mechanisms of AGMAT involvement in PAAD have yet to be thoroughly investigated. To address this shortcoming, in the present study the expression and prognostic significance of AGMAT were analyzed via several bioinformatics databases. Gain- and loss-of-function experiments were subsequently performed to observe the impact of AGMAT on the proliferation and metastasis of PAAD cells via Cell Counting Kit 8 (CCK-8) assay, colony formation assay, and cell migration and invasion assays in vitro. In order to probe the mechanisms involved, western blot assays were performed. AGMAT was found to be overexpressed in PAAD, and it was positively associated with a poor prognosis. Stable overexpression of AGMAT was found to lead to a marked increase in cell proliferation and metastasis through activation of the transforming growth factor-β (TGFβ)/Smad pathway, and via enhancing epithelial-mesenchymal transition (EMT). In conclusion, the results of the present study suggest that AGMAT may be an oncogene, and a pivotal mechanism has been uncovered in which AGMAT facilitates the progression of PAAD tumorigenesis through the TGFβ/Smad pathway.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, P.R. China
| | - Lijun Cao
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, P.R. China
| | - Yaya Xie
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, P.R. China
| | - Chunmei Wang
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, P.R. China
| | - Xianju Liu
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, P.R. China
| | - Xingxing Zhang
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, P.R. China
| | - Jinlian Chen
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, P.R. China
| |
Collapse
|
17
|
Rieck J, Skatchkov SN, Derst C, Eaton MJ, Veh RW. Unique Chemistry, Intake, and Metabolism of Polyamines in the Central Nervous System (CNS) and Its Body. Biomolecules 2022; 12:biom12040501. [PMID: 35454090 PMCID: PMC9025450 DOI: 10.3390/biom12040501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Polyamines (PAs) are small, versatile molecules with two or more nitrogen-containing positively charged groups and provide widespread biological functions. Most of these aspects are well known and covered by quite a number of excellent surveys. Here, the present review includes novel aspects and questions: (1) It summarizes the role of most natural and some important synthetic PAs. (2) It depicts PA uptake from nutrition and bacterial production in the intestinal system following loss of PAs via defecation. (3) It highlights the discrepancy between the high concentrations of PAs in the gut lumen and their low concentration in the blood plasma and cerebrospinal fluid, while concentrations in cellular cytoplasm are much higher. (4) The present review provides a novel and complete scheme for the biosynthesis of Pas, including glycine, glutamate, proline and others as PA precursors, and provides a hypothesis that the agmatine pathway may rescue putrescine production when ODC knockout seems to be lethal (solving the apparent contradiction in the literature). (5) It summarizes novel data on PA transport in brain glial cells explaining why these cells but not neurons preferentially accumulate PAs. (6) Finally, it provides a novel and complete scheme for PA interconversion, including hypusine, putreanine, and GABA (unique gliotransmitter) as end-products. Altogether, this review can serve as an updated contribution to understanding the PA mystery.
Collapse
Affiliation(s)
- Julian Rieck
- Institut für Zell- und Neurobiologie, Centrum 2, Charité—Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany;
| | - Serguei N. Skatchkov
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA;
- Correspondence: (S.N.S.); (R.W.V.)
| | - Christian Derst
- Institut für Integrative Neuroanatomie, Centrum 2, Charité—Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany;
| | - Misty J. Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA;
| | - Rüdiger W. Veh
- Institut für Zell- und Neurobiologie, Centrum 2, Charité—Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany;
- Correspondence: (S.N.S.); (R.W.V.)
| |
Collapse
|
18
|
Rossetti C, Cherix A, Guiraud LF, Cardinaux JR. New Insights Into the Pivotal Role of CREB-Regulated Transcription Coactivator 1 in Depression and Comorbid Obesity. Front Mol Neurosci 2022; 15:810641. [PMID: 35242012 PMCID: PMC8886117 DOI: 10.3389/fnmol.2022.810641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Depression and obesity are major public health concerns, and there is mounting evidence that they share etiopathophysiological mechanisms. The neurobiological pathways involved in both mood and energy balance regulation are complex, multifactorial and still incompletely understood. As a coactivator of the pleiotropic transcription factor cAMP response element-binding protein (CREB), CREB-regulated transcription coactivator 1 (CRTC1) has recently emerged as a novel regulator of neuronal plasticity and brain functions, while CRTC1 dysfunction has been associated with neurodegenerative and psychiatric diseases. This review focuses on recent evidence emphasizing the critical role of CRTC1 in the neurobiology of depression and comorbid obesity. We discuss the role of CRTC1 downregulation in mediating chronic stress-induced depressive-like behaviors, and antidepressant response in the light of the previously characterized Crtc1 knockout mouse model of depression. The putative role of CRTC1 in the alteration of brain energy homeostasis observed in depression is also discussed. Finally, we highlight rodent and human studies supporting the critical involvement of CRTC1 in depression-associated obesity.
Collapse
Affiliation(s)
- Clara Rossetti
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Antoine Cherix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laetitia F. Guiraud
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Jean-René Cardinaux
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Yang F, Xu J, Zhu Y, Wang Y, Xu M, Rao Z. High-level production of the agmatine in engineered Corynebacterium crenatum with the inhibition-releasing arginine decarboxylase. Microb Cell Fact 2022; 21:16. [PMID: 35101042 PMCID: PMC8805389 DOI: 10.1186/s12934-022-01742-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/12/2022] [Indexed: 01/11/2023] Open
Abstract
Abstract
Background
Agmatine is a member of biogenic amines and is an important medicine which is widely used to regulate body balance and neuroprotective effects. At present, the industrial production of agmatine mainly depends on the chemical method, but it is often accompanied by problems including cumbersome processes, harsh reaction conditions, toxic substances production and heavy environmental pollution. Therefore, to tackle the above issues, arginine decarboxylase was overexpressed heterologously and rationally designed in Corynebacterium crenatum to produce agmatine from glucose by one-step fermentation.
Results
In this study, we report the development in the Generally Regarded as Safe (GRAS) l-arginine-overproducing C. crenatum for high-titer agmatine biosynthesis through overexpressing arginine decarboxylase based on metabolic engineering. Then, arginine decarboxylase was mutated to release feedback inhibition and improve catalytic activity. Subsequently, the specific enzyme activity and half-inhibitory concentration of I534D mutant were increased 35.7% and 48.1%, respectively. The agmatine production of the whole-cell bioconversion with AGM3 was increased by 19.3% than the AGM2. Finally, 45.26 g/L agmatine with the yield of 0.31 g/g glucose was achieved by one-step fermentation of the engineered C. crenatum with overexpression of speAI534D.
Conclusions
The engineered C. crenatum strain AGM3 in this work was proved as an efficient microbial cell factory for the industrial fermentative production of agmatine. Based on the insights from this work, further producing other valuable biochemicals derived from l-arginine by Corynebacterium crenatum is feasible.
Collapse
|
20
|
Valverde AP, Camargo A, Rodrigues ALS. Agmatine as a novel candidate for rapid-onset antidepressant response. World J Psychiatry 2021; 11:981-996. [PMID: 34888168 PMCID: PMC8613765 DOI: 10.5498/wjp.v11.i11.981] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/09/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder (MDD) is a disabling and highly prevalent mood disorder as well as a common cause of suicide. Chronic stress, inflammation, and intestinal dysbiosis have all been shown to play crucial roles in the pathophysiology of MDD. Although conventional antidepressants are widely used in the clinic, they can take weeks to months to produce therapeutic effects. The discovery that ketamine promotes fast and sustaining antidepressant responses is one of the most important breakthroughs in the pharmacotherapy of MDD. However, the adverse psychomimetic/dissociative and neurotoxic effects of ketamine discourage its chronic use. Therefore, agmatine, an endogenous glutamatergic modulator, has been postulated to elicit fast behavioral and synaptogenic effects by stimulating the mechanistic target of rapamycin complex 1 signaling pathway, similar to ketamine. However, recent evidence has demonstrated that the modulation of the NLR family pyrin domain containing 3 inflammasome and gut microbiota, which have been shown to play a crucial role in the pathophysiology of MDD, may also participate in the antidepressant-like effects of both ketamine and agmatine. This review seeks to provide evidence about the mechanisms that may underlie the fast antidepressant-like responses of agmatine in preclinical studies. Considering the anti-inflammatory properties of agmatine, it may also be further investigated as a useful compound for the management of MDD associated with a pro-inflammatory state. Moreover, the fast antidepressant-like response of agmatine noted in animal models should be investigated in clinical studies.
Collapse
Affiliation(s)
- Ana Paula Valverde
- Department of Biochemistry, Campus Universitário, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Campus Universitário, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Campus Universitário, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900, Brazil
| |
Collapse
|
21
|
Bönisch H, Fink KB, Malinowska B, Molderings GJ, Schlicker E. Serotonin and beyond-a tribute to Manfred Göthert (1939-2019). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1829-1867. [PMID: 33991216 PMCID: PMC8376721 DOI: 10.1007/s00210-021-02083-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/29/2021] [Indexed: 01/13/2023]
Abstract
Manfred Göthert, who had served Naunyn-Schmiedeberg's Arch Pharmacol as Managing Editor from 1998 to 2005, deceased in June 2019. His scientific oeuvre encompasses more than 20 types of presynaptic receptors, mostly on serotoninergic and noradrenergic neurones. He was the first to identify presynaptic receptors for somatostatin and ACTH and described many presynaptic receptors, known from animal preparations, also in human tissue. In particular, he elucidated the pharmacology of presynaptic 5-HT receptors. A second field of interest included ligand-gated and voltage-dependent channels. The negative allosteric effect of anesthetics at peripheral nACh receptors is relevant for the peripheral clinical effects of these drugs and modified the Meyer-Overton hypothesis. The negative allosteric effect of ethanol at NMDA receptors in human brain tissue occurred at concentrations found in the range of clinical ethanol intoxication. Moreover, the inhibitory effect of gabapentinoids on P/Q Ca2+ channels and the subsequent decrease in AMPA-induced noradrenaline release may contribute to their clinical effect. Another ligand-gated ion channel, the 5-HT3 receptor, attracted the interest of Manfred Göthert from the whole animal via isolated preparations down to the cellular level. He contributed to that molecular study in which 5-HT3 receptor subtypes were disclosed. Finally, he found altered pharmacological properties of 5-HT receptor variants like the Arg219Leu 5-HT1A receptor (which was also shown to be associated with major depression) and the Phe124Cys 5-HT1B receptor (which may be related to sumatriptan-induced vasospasm). Manfred Göthert was a brilliant scientist and his papers have a major impact on today's pharmacology.
Collapse
Affiliation(s)
- H Bönisch
- Institute of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53105, Bonn, Germany
| | - K B Fink
- Merz Pharmaceuticals, Frankfurt/Main, Germany
| | - B Malinowska
- Department of Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - G J Molderings
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - E Schlicker
- Institute of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53105, Bonn, Germany.
| |
Collapse
|
22
|
Barua S, Sim AY, Kim JY, Shin I, Lee JE. Maintenance of the Neuroprotective Function of the Amino Group Blocked Fluorescence-Agmatine. Neurochem Res 2021; 46:1933-1940. [PMID: 33914233 PMCID: PMC8254702 DOI: 10.1007/s11064-021-03319-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/21/2021] [Accepted: 04/02/2021] [Indexed: 11/23/2022]
Abstract
Agmatine, an endogenous derivative of arginine, has been found to be effective in treating idiopathic pain, convulsion, stress-mediated behavior, and attenuate the withdrawal symptoms of drugs like morphine. In the early stages of ischemic brain injury in animals, exogenous agmatine treatment was found to be neuroprotective. Agmatine is also considered as a putative neurotransmitter and is still an experimental drug. Chemically, agmatine is called agmatine 1-(4-aminobutyl guanidine). Crystallographic study data show that positively-charged guanidine can bind to the protein containing Gly and Asp residues, and the amino group can interact with the complimentary sites of Glu and Ser. In this study, we blocked the amino end of the agmatine by conjugating it with FITC, but the guanidine end was unchanged. We compared the neuroprotective function of the agmatine and agmatine-FITC by treating them in neurons after excitotoxic stimulation. We found that even the amino end blocked neuronal viability in the excitotoxic condition, by NMDA treatment for 1 h, was increased by agmatine-FITC, which was similar to that of agmatine. We also found that the agmatine-FITC treatment reduced the expression of nitric oxide production in NMDA-treated cells. This study suggests that even if the amino end of agmatine is blocked, it can perform its neuroprotective function.
Collapse
Affiliation(s)
- Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722 Korea
| | - A Young Sim
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722 Korea
- BK21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722 Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722 Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul, 03722 Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722 Korea
- BK21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722 Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722 Korea
| |
Collapse
|
23
|
Wierońska JM, Cieślik P, Kalinowski L. Nitric Oxide-Dependent Pathways as Critical Factors in the Consequences and Recovery after Brain Ischemic Hypoxia. Biomolecules 2021; 11:biom11081097. [PMID: 34439764 PMCID: PMC8392725 DOI: 10.3390/biom11081097] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Brain ischemia is one of the leading causes of disability and mortality worldwide. Nitric oxide (NO•), a molecule that is involved in the regulation of proper blood flow, vasodilation, neuronal and glial activity constitutes the crucial factor that contributes to the development of pathological changes after stroke. One of the early consequences of a sudden interruption in the cerebral blood flow is the massive production of reactive oxygen and nitrogen species (ROS/RNS) in neurons due to NO• synthase uncoupling, which leads to neurotoxicity. Progression of apoptotic or necrotic neuronal damage activates reactive astrocytes and attracts microglia or lymphocytes to migrate to place of inflammation. Those inflammatory cells start to produce large amounts of inflammatory proteins, including pathological, inducible form of NOS (iNOS), which generates nitrosative stress that further contributes to brain tissue damage, forming vicious circle of detrimental processes in the late stage of ischemia. S-nitrosylation, hypoxia-inducible factor 1α (HIF-1α) and HIF-1α-dependent genes activated in reactive astrocytes play essential roles in this process. The review summarizes the roles of NO•-dependent pathways in the early and late aftermath of stroke and treatments based on the stimulation or inhibition of particular NO• synthases and the stabilization of HIF-1α activity.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.W.); (P.C.)
| | - Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.W.); (P.C.)
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Biobank Fahrenheit BBMRI.pl, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Debinki Street 7, 80-211 Gdansk, Poland
- BioTechMed Center/Department of Mechanics of Materials and Structures, Gdansk University of Technology, Narutowicza 11/12, 80-223 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-349-1182
| |
Collapse
|
24
|
Effects of sex and estrous cycle on the brain and plasma arginine metabolic profile in rats. Amino Acids 2021; 53:1441-1454. [PMID: 34245369 DOI: 10.1007/s00726-021-03040-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
L-arginine is a versatile amino acid with a number of bioactive metabolites. Increasing evidence implicates altered arginine metabolism in the aging and neurodegenerative processes. The present study, for the first time, determined the effects of sex and estrous cycle on the brain and blood (plasma) arginine metabolic profile in naïve rats. Female rats displayed significantly lower levels of L-arginine in the frontal cortex and three sub-regions of the hippocampus when compared to male rats. Moreover, female rats had significantly higher levels of L-arginine and γ-aminobutyric acid, but lower levels of L-ornithine, agmatine and putrescine, in plasma relative to male rats. The observed sex difference in brain L-arginine appeared to be independent of the enzymes involved in its metabolism, de novo synthesis and blood-to-brain transport (cationic acid transporter 1 protein expression at least), as well as circulating L-arginine. While the estrous cycle did not affect L-arginine and its metabolites in the brain, there were estrous cycle phase-dependent changes in plasma L-arginine. These findings demonstrate the sex difference in brain L-arginine in the estrous cycle-independent manner. Since peripheral blood has been increasingly used to identify biomarkers of brain pathology, the influences of sex and estrous cycle on blood arginine metabolic profile need attention when experimental research involves female rodents.
Collapse
|
25
|
Martí I Líndez AA, Reith W. Arginine-dependent immune responses. Cell Mol Life Sci 2021; 78:5303-5324. [PMID: 34037806 PMCID: PMC8257534 DOI: 10.1007/s00018-021-03828-4] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
A growing body of evidence indicates that, over the course of evolution of the immune system, arginine has been selected as a node for the regulation of immune responses. An appropriate supply of arginine has long been associated with the improvement of immune responses. In addition to being a building block for protein synthesis, arginine serves as a substrate for distinct metabolic pathways that profoundly affect immune cell biology; especially macrophage, dendritic cell and T cell immunobiology. Arginine availability, synthesis, and catabolism are highly interrelated aspects of immune responses and their fine-tuning can dictate divergent pro-inflammatory or anti-inflammatory immune outcomes. Here, we review the organismal pathways of arginine metabolism in humans and rodents, as essential modulators of the availability of this semi-essential amino acid for immune cells. We subsequently review well-established and novel findings on the functional impact of arginine biosynthetic and catabolic pathways on the main immune cell lineages. Finally, as arginine has emerged as a molecule impacting on a plethora of immune functions, we integrate key notions on how the disruption or perversion of arginine metabolism is implicated in pathologies ranging from infectious diseases to autoimmunity and cancer.
Collapse
Affiliation(s)
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
26
|
Peterson CD, Kitto KF, Verma H, Pflepsen K, Delpire E, Wilcox GL, Fairbanks CA. Agmatine requires GluN2B-containing NMDA receptors to inhibit the development of neuropathic pain. Mol Pain 2021; 17:17448069211029171. [PMID: 34210178 PMCID: PMC8255568 DOI: 10.1177/17448069211029171] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A decarboxylated form of L-arginine, agmatine, preferentially antagonizes NMDArs containing Glun2B subunits within the spinal cord and lacks motor side effects commonly associated with non-subunit-selective NMDAr antagonism, namely sedation and motor impairment. Spinally delivered agmatine has been previously shown to reduce the development of tactile hypersensitivity arising from spinal nerve ligation. The present study interrogated the dependence of agmatine’s alleviation of neuropathic pain (spared nerve injury (SNI) model) on GluN2B-containing NMDArs. SNI-induced hypersensitivity was induced in mice with significant reduction of levels of spinal GluN2B subunit of the NMDAr and their floxed controls. Agmatine reduced development of SNI-induced tactile hypersensitivity in controls but had no effect in subjects with reduced levels of GluN2B subunits. Ifenprodil, a known GluN2B-subunit-selective antagonist, similarly reduced tactile hypersensitivity in controls but not in the GluN2B-deficient mice. In contrast, MK-801, an NMDA receptor channel blocker, reduced hypersensitivity in both control and GluN2B-deficient mice, consistent with a pharmacological pattern expected from a NMDAr antagonist that does not have preference for GluN2B subtypes. Additionally, we observed that spinally delivered agmatine, ifenprodil and MK-801 inhibited nociceptive behaviors following intrathecal delivery of NMDA in control mice. By contrast, in GluN2B-deficient mice, MK-801 reduced NMDA-evoked nociceptive behaviors, but agmatine had a blunted effect and ifenprodil had no effect. These results demonstrate that agmatine requires the GluN2B subunit of the NMDA receptor for inhibitory pharmacological actions in pre-clinical models of NMDA receptor-dependent hypersensitivity.
Collapse
Affiliation(s)
- Cristina D Peterson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,Graduate Program in Experimental and Clinical Pharmacology, University of Minnesota, University of Minnesota, Minneapolis, MN, USA
| | - Kelley F Kitto
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Harsha Verma
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Kelsey Pflepsen
- Department of Pharmaceutics, University of Minnesota, University of Minnesota, Minneapolis, MN, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - George L Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,Graduate Program in Experimental and Clinical Pharmacology, University of Minnesota, University of Minnesota, Minneapolis, MN, USA.,Department of Pharmaceutics, University of Minnesota, University of Minnesota, Minneapolis, MN, USA
| | - Carolyn A Fairbanks
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,Graduate Program in Experimental and Clinical Pharmacology, University of Minnesota, University of Minnesota, Minneapolis, MN, USA.,Department of Pharmaceutics, University of Minnesota, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
27
|
Kosonen R, Barua S, Kim JY, Lee JE. Role of agmatine in the application of neural progenitor cell in central nervous system diseases: therapeutic potentials and effects. Anat Cell Biol 2021; 54:143-151. [PMID: 34162764 PMCID: PMC8225474 DOI: 10.5115/acb.21.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/01/2022] Open
Abstract
Agmatine, the primary decarboxylation product of L-arginine, generated from arginine decarboxylase. Since the discovery of agmatine in the mammalian brain in the 1990s, an increasing number of agmatine-mediated effects have been discovered, demonstrating the benefits of agmatine on ischemic strokes, traumatic brain injury and numerous psychological disorders such as depression, anxiety, and stress. Agmatine also has cellular protective effects and contributes to cell proliferation and differentiation in the central nervous system (CNS). Neural progenitor cells are an important component in the recovery and repair of many neurological disorders due to their ability to differentiate into functional adult neurons. Recent data has revealed that agmatine can regulate and increase proliferation and the fate of progenitor cells in the adult hippocampus. This review aims to summarise and discuss the role of agmatine in the CNS; specifically, the effects and relationship between agmatine and neural progenitor cells and how these ideas can be applied to potential therapeutic application.
Collapse
Affiliation(s)
- Renée Kosonen
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Nakanishi S, Cleveland JL. Polyamine Homeostasis in Development and Disease. MEDICAL SCIENCES (BASEL, SWITZERLAND) 2021; 9:medsci9020028. [PMID: 34068137 PMCID: PMC8162569 DOI: 10.3390/medsci9020028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
Polycationic polyamines are present in nearly all living organisms and are essential for mammalian cell growth and survival, and for development. These positively charged molecules are involved in a variety of essential biological processes, yet their underlying mechanisms of action are not fully understood. Several studies have shown both beneficial and detrimental effects of polyamines on human health. In cancer, polyamine metabolism is frequently dysregulated, and elevated polyamines have been shown to promote tumor growth and progression, suggesting that targeting polyamines is an attractive strategy for therapeutic intervention. In contrast, polyamines have also been shown to play critical roles in lifespan, cardiac health and in the development and function of the brain. Accordingly, a detailed understanding of mechanisms that control polyamine homeostasis in human health and disease is needed to develop safe and effective strategies for polyamine-targeted therapy.
Collapse
|
29
|
Maturana P, Orellana MS, Herrera SM, Martínez I, Figueroa M, Martínez-Oyanedel J, Castro-Fernandez V, Uribe E. Crystal Structure of Escherichia coli Agmatinase: Catalytic Mechanism and Residues Relevant for Substrate Specificity. Int J Mol Sci 2021; 22:ijms22094769. [PMID: 33946272 PMCID: PMC8125230 DOI: 10.3390/ijms22094769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/18/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
Agmatine is the product of the decarboxylation of L-arginine by the enzyme arginine decarboxylase. This amine has been attributed to neurotransmitter functions, anticonvulsant, anti-neurotoxic, and antidepressant in mammals and is a potential therapeutic agent for diseases such as Alzheimer's, Parkinson's, and cancer. Agmatinase enzyme hydrolyze agmatine into urea and putrescine, which belong to one of the pathways producing polyamines, essential for cell proliferation. Agmatinase from Escherichia coli (EcAGM) has been widely studied and kinetically characterized, described as highly specific for agmatine. In this study, we analyze the amino acids involved in the high specificity of EcAGM, performing a series of mutations in two loops critical to the active-site entrance. Two structures in different space groups were solved by X-ray crystallography, one at low resolution (3.2 Å), including a guanidine group; and other at high resolution (1.8 Å) which presents urea and agmatine in the active site. These structures made it possible to understand the interface interactions between subunits that allow the hexameric state and postulate a catalytic mechanism according to the Mn2+ and urea/guanidine binding site. Molecular dynamics simulations evaluated the conformational dynamics of EcAGM and residues participating in non-binding interactions. Simulations showed the high dynamics of loops of the active site entrance and evidenced the relevance of Trp68, located in the adjacent subunit, to stabilize the amino group of agmatine by cation-pi interaction. These results allow to have a structural view of the best-kinetic characterized agmatinase in literature up to now.
Collapse
Affiliation(s)
- Pablo Maturana
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa 7800003, Santiago, Chile; (P.M.); (S.M.H.)
| | - María S. Orellana
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Santiago, Chile;
| | - Sixto M. Herrera
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa 7800003, Santiago, Chile; (P.M.); (S.M.H.)
| | - Ignacio Martínez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4070386, Concepción, Chile; (I.M.); (M.F.); (J.M.-O.)
| | - Maximiliano Figueroa
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4070386, Concepción, Chile; (I.M.); (M.F.); (J.M.-O.)
| | - José Martínez-Oyanedel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4070386, Concepción, Chile; (I.M.); (M.F.); (J.M.-O.)
| | - Victor Castro-Fernandez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa 7800003, Santiago, Chile; (P.M.); (S.M.H.)
- Correspondence: (V.C.-F.); (E.U.); Tel.: +56-2-2978-7332 (V.C.-F.); +56-41-220-4428 (E.U.)
| | - Elena Uribe
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4070386, Concepción, Chile; (I.M.); (M.F.); (J.M.-O.)
- Correspondence: (V.C.-F.); (E.U.); Tel.: +56-2-2978-7332 (V.C.-F.); +56-41-220-4428 (E.U.)
| |
Collapse
|
30
|
Chitrakar I, Ahmed SF, Torelli AT, French JB. Structure of the E. coli agmatinase, SPEB. PLoS One 2021; 16:e0248991. [PMID: 33857156 PMCID: PMC8049259 DOI: 10.1371/journal.pone.0248991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/09/2021] [Indexed: 01/05/2023] Open
Abstract
Agmatine amidinohydrolase, or agmatinase, catalyzes the conversion of agmatine to putrescine and urea. This enzyme is found broadly across kingdoms of life and plays a critical role in polyamine biosynthesis and the regulation of agmatine concentrations. Here we describe the high-resolution X-ray crystal structure of the E. coli agmatinase, SPEB. The data showed a relatively high degree of pseudomerohedral twinning, was ultimately indexed in the P31 space group and led to a final model with eighteen chains, corresponding to three full hexamers in the asymmetric unit. There was a solvent content of 38.5% and refined R/Rfree values of 0.166/0.216. The protein has the conserved fold characteristic of the agmatine ureohydrolase family and displayed a high degree of structural similarity among individual protomers. Two distinct peaks of electron density were observed in the active site of most of the eighteen chains of SPEB. As the activity of this protein is known to be dependent upon manganese and the fold is similar to other dinuclear metallohydrolases, these peaks were modeled as manganese ions. The orientation of the conserved active site residues, in particular those amino acids that participate in binding the metal ions and a pair of acidic residues (D153 and E274 in SPEB) that play a role in catalysis, are similar to other agmatinase and arginase enzymes and is consistent with a hydrolytic mechanism that proceeds via a metal-activated hydroxide ion.
Collapse
Affiliation(s)
- Iva Chitrakar
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY, United States of America
| | - Syed Fardin Ahmed
- Department of Chemistry, Ithaca College, Ithaca, NY, United States of America
| | - Andrew T. Torelli
- Department of Chemistry, Ithaca College, Ithaca, NY, United States of America
| | - Jarrod B. French
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
- Chemistry Department, Stony Brook University, Stony Brook, NY, United States of America
- Hormel Institute, University of Minnesota, Austin, MN, United States of America
| |
Collapse
|
31
|
Polis B, Karasik D, Samson AO. Alzheimer's disease as a chronic maladaptive polyamine stress response. Aging (Albany NY) 2021; 13:10770-10795. [PMID: 33811757 PMCID: PMC8064158 DOI: 10.18632/aging.202928] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/27/2021] [Indexed: 12/21/2022]
Abstract
Polyamines are nitrogen-rich polycationic ubiquitous bioactive molecules with diverse evolutionary-conserved functions. Their activity interferes with numerous genes' expression resulting in cell proliferation and signaling modulation. The intracellular levels of polyamines are precisely controlled by an evolutionary-conserved machinery. Their transient synthesis is induced by heat stress, radiation, and other traumatic stimuli in a process termed the polyamine stress response (PSR). Notably, polyamine levels decline gradually with age; and external supplementation improves lifespan in model organisms. This corresponds to cytoprotective and reactive oxygen species scavenging properties of polyamines. Paradoxically, age-associated neurodegenerative disorders are characterized by upsurge in polyamines levels, indicating polyamine pleiotropic, adaptive, and pathogenic roles. Specifically, arginase overactivation and arginine brain deprivation have been shown to play an important role in Alzheimer's disease (AD) pathogenesis. Here, we assert that a universal short-term PSR associated with acute stimuli is beneficial for survival. However, it becomes detrimental and maladaptive following chronic noxious stimuli, especially in an aging organism. Furthermore, we regard cellular senescence as an adaptive response to stress and suggest that PSR plays a central role in age-related neurodegenerative diseases' pathogenesis. Our perspective on AD proposes an inclusive reassessment of the causal relationships between the classical hallmarks and clinical manifestation. Consequently, we offer a novel treatment strategy predicated upon this view and suggest fine-tuning of arginase activity with natural inhibitors to preclude or halt the development of AD-related dementia.
Collapse
Affiliation(s)
- Baruh Polis
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - David Karasik
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, USA
- Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Abraham O. Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
32
|
Valdés A, Lucio-Cazaña FJ, Castro-Puyana M, García-Pastor C, Fiehn O, Marina ML. Comprehensive metabolomic study of the response of HK-2 cells to hyperglycemic hypoxic diabetic-like milieu. Sci Rep 2021; 11:5058. [PMID: 33658594 PMCID: PMC7930035 DOI: 10.1038/s41598-021-84590-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of chronic kidney disease. Although hyperglycaemia has been determined as the most important risk factor, hypoxia also plays a relevant role in the development of this disease. In this work, a comprehensive metabolomic study of the response of HK-2 cells, a human cell line derived from normal proximal tubular epithelial cells, to hyperglycemic, hypoxic diabetic-like milieu has been performed. Cells simultaneously exposed to high glucose (25 mM) and hypoxia (1% O2) were compared to cells in control conditions (5.5 mM glucose/18.6% O2) at 48 h. The combination of advanced metabolomic platforms (GC-TOF MS, HILIC- and CSH-QExactive MS/MS), freely available metabolite annotation tools, novel databases and libraries, and stringent cut-off filters allowed the annotation of 733 metabolites intracellularly and 290 compounds in the extracellular medium. Advanced bioinformatics and statistical tools demonstrated that several pathways were significantly altered, including carbohydrate and pentose phosphate pathways, as well as arginine and proline metabolism. Other affected metabolites were found in purine and lipid metabolism, the protection against the osmotic stress and the prevention of the activation of the β-oxidation pathway. Overall, the effects of the combined exposure of HK-cells to high glucose and hypoxia are reasonably compatible with previous in vivo works.
Collapse
Affiliation(s)
- Alberto Valdés
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, España.
- West Coast Metabolomics Center, UC Davis, Davis, CA, USA.
| | - Francisco J Lucio-Cazaña
- Departamento de Biología de Sistemas, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, España
| | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, España
- Instituto de Investigación Química Andrés M del Rio, IQAR, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, España
| | - Coral García-Pastor
- Departamento de Biología de Sistemas, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, España
| | - Oliver Fiehn
- West Coast Metabolomics Center, UC Davis, Davis, CA, USA
| | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, España.
- Instituto de Investigación Química Andrés M del Rio, IQAR, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, España.
| |
Collapse
|
33
|
Suarez-Roca H, Mamoun N, Sigurdson MI, Maixner W. Baroreceptor Modulation of the Cardiovascular System, Pain, Consciousness, and Cognition. Compr Physiol 2021; 11:1373-1423. [PMID: 33577130 DOI: 10.1002/cphy.c190038] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Baroreceptors are mechanosensitive elements of the peripheral nervous system that maintain cardiovascular homeostasis by coordinating the responses to external and internal environmental stressors. While it is well known that carotid and cardiopulmonary baroreceptors modulate sympathetic vasomotor and parasympathetic cardiac neural autonomic drive, to avoid excessive fluctuations in vascular tone and maintain intravascular volume, there is increasing recognition that baroreceptors also modulate a wide range of non-cardiovascular physiological responses via projections from the nucleus of the solitary tract to regions of the central nervous system, including the spinal cord. These projections regulate pain perception, sleep, consciousness, and cognition. In this article, we summarize the physiology of baroreceptor pathways and responses to baroreceptor activation with an emphasis on the mechanisms influencing cardiovascular function, pain perception, consciousness, and cognition. Understanding baroreceptor-mediated effects on cardiac and extra-cardiac autonomic activities will further our understanding of the pathophysiology of multiple common clinical conditions, such as chronic pain, disorders of consciousness (e.g., abnormalities in sleep-wake), and cognitive impairment, which may result in the identification and implementation of novel treatment modalities. © 2021 American Physiological Society. Compr Physiol 11:1373-1423, 2021.
Collapse
Affiliation(s)
- Heberto Suarez-Roca
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University, Durham, North Carolina, USA
| | - Negmeldeen Mamoun
- Department of Anesthesiology, Division of Cardiothoracic Anesthesia and Critical Care Medicine, Duke University, Durham, North Carolina, USA
| | - Martin I Sigurdson
- Department of Anesthesiology and Critical Care Medicine, Landspitali, University Hospital, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - William Maixner
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
34
|
Zhang Y, Chung SF, Tam SY, Leung YC, Guan X. Arginine deprivation as a strategy for cancer therapy: An insight into drug design and drug combination. Cancer Lett 2021; 502:58-70. [PMID: 33429005 DOI: 10.1016/j.canlet.2020.12.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 12/27/2020] [Indexed: 12/18/2022]
Abstract
Extensive studies have shown that cancer cells have specific nutrient auxotrophy and thus have much a higher demand for certain nutrients than normal cells. Amino acid deprivation has attracted much attention in cancer therapy with positive outcomes from clinical trials. Arginine, as one of the conditionally essential amino acids, plays a pivotal role in cellular division and metabolism. Since many types of cancer cells exhibit decreased expression of argininosuccinate synthetase and/or ornithine transcarbamylase, they are auxotrophic for arginine, which makes arginine deprivation an accessible choice for cancer treatment. Arginine deiminase (ADI) and human arginase (hArg) are the two major protein drugs used for arginine deprivation and are undergoing many clinical trials. However, the clinical application of ADI and hArg is facing some common problems, including their short half-lives, immunogenicity and inconsistent production, which underlines the importance of improving these drugs using protein engineering techniques. Thus, we systematically review the latest studies of protein engineering and anti-cancer studies based on in vitro, in vivo and clinical models of ADI and hArg, and we include the latest studies on drug combinations consisting of ADI/hArg with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Yu Zhang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China; Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Center for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Shanghai Engineering Research Center for Food Rapid Detection, Shanghai, China
| | - Sai-Fung Chung
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Center for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Suet-Ying Tam
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Center for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yun-Chung Leung
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Center for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Xiao Guan
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
35
|
Mirzaei N, Mota BC, Birch AM, Davis N, Romero-Molina C, Katsouri L, Palmer EOC, Golbano A, Riggall LJ, Nagy I, Tyacke R, Nutt DJ, Sastre M. Imidazoline ligand BU224 reverses cognitive deficits, reduces microgliosis and enhances synaptic connectivity in a mouse model of Alzheimer's disease. Br J Pharmacol 2020; 178:654-671. [PMID: 33140839 DOI: 10.1111/bph.15312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Activation of type 2 imidazoline receptors has been shown to exhibit neuroprotective properties including anti-apoptotic and anti-inflammatory effects, suggesting a potential therapeutic value in Alzheimer's disease (AD). Here, we explored the effects of the imidazoline-2 ligand BU224 in a model of amyloidosis. EXPERIMENTAL APPROACH Six-month-old female transgenic 5XFAD and wild-type (WT) mice were treated intraperitoneally with 5-mg·kg-1 BU224 or vehicle twice a day for 10 days. Behavioural tests were performed for cognitive functions and neuropathological changes were investigated by immunohistochemistry, Western blot, elisa and qPCR. Effects of BU224 on amyloid precursor protein (APP) processing, spine density and calcium imaging were analysed in brain organotypic cultures and N2a cells. KEY RESULTS BU224 treatment attenuated spatial and perirhinal cortex-dependent recognition memory deficits in 5XFAD mice. Fear-conditioning testing revealed that BU224 also improved both associative learning and hippocampal- and amygdala-dependent memory in transgenic but not in WT mice. In the brain, BU224 reduced levels of the microglial marker Iba1 and pro-inflammatory cytokines IL-1β and TNF-α and increased the expression of astrocytic marker GFAP in 5XFAD mice. These beneficial effects were not associated with changes in amyloid pathology, neuronal apoptosis, mitochondrial density, oxidative stress or autophagy markers. Interestingly, ex vivo and in vitro studies suggested that BU224 treatment increased the size of dendritic spines and induced a threefold reduction in amyloid-β (Aβ)-induced functional changes in NMDA receptors. CONCLUSION AND IMPLICATIONS Sub-chronic treatment with BU224 restores memory and reduces inflammation in transgenic AD mice, at stages when animals display severe pathology.
Collapse
Affiliation(s)
- Nazanin Mirzaei
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Bibiana C Mota
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Amy M Birch
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Nicola Davis
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Carmen Romero-Molina
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Loukia Katsouri
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Emily O C Palmer
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Arantxa Golbano
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura J Riggall
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Istvan Nagy
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Robin Tyacke
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - David J Nutt
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
36
|
Sari SA, Ulger D, Ersan S, Bakir D, Uzun Cicek A, Ismailoglu F. Effects of agmatine, glutamate, arginine, and nitric oxide on executive functions in children with attention deficit hyperactivity disorder. J Neural Transm (Vienna) 2020; 127:1675-1684. [PMID: 33026491 DOI: 10.1007/s00702-020-02261-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/28/2020] [Indexed: 12/25/2022]
Abstract
In this study, we aimed to investigate the effects of agmatine, nitric oxide (NO), arginine, and glutamate, which are the metabolites in the polyamine pathway, on the performance of executive functions (EF) in attention deficit hyperactivity disorder (ADHD). The ADHD group included 35 treatment-naive children (6-14 years old) who were ewly diagnosed with ADHD. The control group consisted of 35 healthy children with the same age and sex, having no previous psychiatric disorders. In the study groups, Stroop test (ST) and trail making test (TMT) were used to monitor EF, and blood samples were collected to measure agmatine with ultra-high-performance liquid chromatography and NO, glutamate, and arginine with enzyme-linked immunosorbent assay (ELISA). The EFs were significantly impaired in the ADHD group. The agmatine and arginine levels of the ADHD group were significantly higher than their peers. The NO and glutamate levels were also higher in the ADHD group compared to the control group, but these differences did not reach statistical significance. Children with ADHD had more difficulties during EF tasks compared to healthy children. The elevated NO and glutamate levels may be related with the impairment during EF tasks. Therefore, agmatine and arginine may increase to improve EF tasks through its inhibitory effect on the synthesis of NO and glutamate. Further studies are needed about polyamine pathway molecules to shed light on the pathophysiology of ADHD.
Collapse
Affiliation(s)
- Seda Aybuke Sari
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Sivas Cumhuriyet University, Imaret Village, 58140, Sivas, Turkey.
| | - Dilara Ulger
- Department of Biochemistry, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Serpil Ersan
- Department of Biochemistry, Faculty of Medicine, Nigde Omer Halis University, Nigde, Turkey
| | - Deniz Bakir
- Department of Biochemistry, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ayla Uzun Cicek
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Sivas Cumhuriyet University, Imaret Village, 58140, Sivas, Turkey
| | - Firat Ismailoglu
- Department of Computer Engineering, Faculty of Engineering, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
37
|
Agmatine Attenuates Liver Ischemia Reperfusion Injury by Activating Wnt/β-catenin Signaling in Mice. Transplantation 2020; 104:1906-1916. [PMID: 32032294 DOI: 10.1097/tp.0000000000003161] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Liver ischemia reperfusion injury (LIRI) is a common problem during surgical procedures of the liver. It causes severe inflammatory responses and cell death, eventually leading to serious liver damage. Agmatine (AGM) is an endogenous polyamine with analgesic, anti-inflammatory, and antiapoptotic effects. However, it is still unknown whether AGM can protect the liver from damage caused by LIRI. METHODS For the in vivo experiments, a mouse model of partial warm hepatic ischemia reperfusion was established using C57BL/6J mice and then serum transaminase concentrations were analyzed. Histopathology was used to evaluate the degree of liver injury and quantitative real-time PCR was used to measure the amount of inflammatory cytokines. For the in vitro experiments, a cellular model of cobalt chloride (CoCl2)-induced hypoxia was established using AML12 cells. Flow cytometry was performed to measure the apoptosis levels. Western blotting analysis was conducted to measure the levels of proteins involved in apoptosis and Wnt/β-catenin signaling. We also chose 2 inhibitors of the Wnt/β-catenin signaling to elucidate the relationship between AGM and the Wnt/β-catenin signaling. RESULTS AGM showed protective effects against LIRI-induced liver damage, inflammatory responses, and cell apoptosis along with alleviation of CoCl2-induced hepatocyte injury. AGM activated the Wnt/β-catenin signaling pathway during LIRI and CoCl2-induced hepatocyte injury; however, when the Wnt/β-catenin pathway was inhibited, the protective effects of AGM declined. CONCLUSIONS AGM showed protective effects against LIRI by activating the Wnt/β-catenin signaling pathway.
Collapse
|
38
|
Kotagale N, Dixit M, Garmelwar H, Bhondekar S, Umekar M, Taksande B. Agmatine reverses memory deficits induced by Aβ1–42 peptide in mice: A key role of imidazoline receptors. Pharmacol Biochem Behav 2020; 196:172976. [DOI: 10.1016/j.pbb.2020.172976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
|
39
|
Three Related Enzymes in Candida albicans Achieve Arginine- and Agmatine-Dependent Metabolism That Is Essential for Growth and Fungal Virulence. mBio 2020; 11:mBio.01845-20. [PMID: 32788384 PMCID: PMC7439472 DOI: 10.1128/mbio.01845-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Amino acid metabolism is crucial for fungal growth and development. Ureohydrolases produce amines when acting on l-arginine, agmatine, and guanidinobutyrate (GB), and these enzymes generate ornithine (by arginase), putrescine (by agmatinase), or GABA (by 4-guanidinobutyrase or GBase). Candida albicans can metabolize and grow on arginine, agmatine, or guanidinobutyrate as the sole nitrogen source. Three related C. albicans genes whose sequences suggested that they were putative arginase or arginase-like genes were examined for their role in these metabolic pathways. Of these, Car1 encoded the only bona fide arginase, whereas we provide evidence that the other two open reading frames, orf19.5862 and orf19.3418, encode agmatinase and guanidinobutyrase (Gbase), respectively. Analysis of strains with single and multiple mutations suggested the presence of arginase-dependent and arginase-independent routes for polyamine production. CAR1 played a role in hyphal morphogenesis in response to arginine, and the virulence of a triple mutant was reduced in both Galleria mellonella and Mus musculus infection models. In the bloodstream, arginine is an essential amino acid that is required by phagocytes to synthesize nitric oxide (NO). However, none of the single or multiple mutants affected host NO production, suggesting that they did not influence the oxidative burst of phagocytes.IMPORTANCE We show that the C. albicans ureohydrolases arginase (Car1), agmatinase (Agt1), and guanidinobutyrase (Gbu1) can orchestrate an arginase-independent route for polyamine production and that this is important for C. albicans growth and survival in microenvironments of the mammalian host.
Collapse
|
40
|
Amelioration of BPSD-Like Phenotype and Cognitive Decline in SAMP8 Mice Model Accompanied by Molecular Changes after Treatment with I 2-Imidazoline Receptor Ligand MCR5. Pharmaceutics 2020; 12:pharmaceutics12050475. [PMID: 32456135 PMCID: PMC7285228 DOI: 10.3390/pharmaceutics12050475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Behavioural and psychological symptoms of dementia (BPSD), including fear-anxiety- and depressive-like behaviour, are present in Alzheimer's disease (AD), together with memory decline. I2-imidazoline receptors (I2-IRs) have been associated with neuropsychiatric and neurodegenerative disorders, further, I2-IR ligands have demonstrated a neuroprotective role in the central nervous system (CNS). In this study, we assessed the effect of the I2-IR ligand MCR5 on both cognitive and non-cognitive symptoms in the Senescence accelerated mice prone 8 (SAMP8) mouse model. Oral administration of I2-IR ligand MCR5 (5 mg/kg/day for four weeks) in 10-month SAMP8 mice ameliorated both BPSD-like phenotype and cognitive decline by attenuating depressive-like behaviour, reducing fear-anxiety-like behaviour and improving cognitive performance using different tasks. Interaction of I2-IR ligand MCR5 with serotoninergic system did not account for behavioural or cognitive improvement, although changes in molecular pathways underlying depression and anxiety phenotype were observed. MCR5 increased levels of p-AKT, phosphorylated glycogen synthase kinase 3 β (GSK3β) at Ser9 and phosphorylated mammalian target of rapamycin complex 1 (mTORC1) levels in SAMP8 treated mice compared to SAMP8 control. Moreover, MCR5 treatment altered N-methyl-d-aspartate receptor (NMDA) 2B phosphorylation, and decreased the protein levels of phosphorylated cyclin-dependent kinase 5 (p-CDK5) and dopamine- and cyclic adenosine monophosphate (cAMP)-regulated phosphoprotein of Mr 32 kDa phosphorylated at Thr75 (p-DARPP32), with a parallel increase in protein kinase A (PKA) and p-cAMP response element-binding (pCREB) levels. Consistent with these changes MCR5 attenuated neuroinflammation by decreasing expression of pro-inflammatory markers such as Tumor necrosis factor-alpha (Tnf-α), Interleukin 1β (Il-1β), Interleukin 6 (Il-6), and promoted synaptic plasticity by increasing levels of postsynaptic density protein 95 (PSD95) as well as ameliorating tropomyosin-related kinase B (TrkB) and nerve growth factor receptor (NGFR) signalling. Collectively, these results increase the potential of highly selective I2-IR ligands as therapeutic agents in age-related BPSD and cognitive alterations.
Collapse
|
41
|
Tang R, Wang X, Zhou J, Zhang F, Zhao S, Gan Q, Zhao L, Wang F, Zhang Q, Zhang J, Wang G, Yang C. Defective arginine metabolism impairs mitochondrial homeostasis in Caenorhabditiselegans. J Genet Genomics 2020; 47:145-156. [PMID: 32305173 DOI: 10.1016/j.jgg.2020.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/01/2020] [Accepted: 02/12/2020] [Indexed: 12/22/2022]
Abstract
Arginine catabolism involves enzyme-dependent reactions in both mitochondria and the cytosol, defects in which may lead to hyperargininemia, a devastating developmental disorder. It is largely unknown if defective arginine catabolism has any effects on mitochondria. Here we report that normal arginine catabolism is essential for mitochondrial homeostasis in Caenorhabditiselegans. Mutations of the arginase gene argn-1 lead to abnormal mitochondrial enlargement and reduced adenosine triphosphate (ATP) production in C. elegans hypodermal cells. ARGN-1 localizes to mitochondria and its loss causes arginine accumulation, which disrupts mitochondrial dynamics. Heterologous expression of human ARG1 or ARG2 rescued the mitochondrial defects of argn-1 mutants. Importantly, genetic inactivation of the mitochondrial basic amino acid transporter SLC-25A29 or the mitochondrial glutamate transporter SLC-25A18.1 fully suppressed the mitochondrial defects caused by argn-1 mutations. These findings suggest that mitochondrial damage probably contributes to the pathogenesis of hyperargininemia and provide clues for developing therapeutic treatments for hyperargininemia.
Collapse
Affiliation(s)
- Ruofeng Tang
- State Key Laboratory of Natural Resource Conservation and Utilization in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, 650021, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Wang
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junxiang Zhou
- State Key Laboratory of Natural Resource Conservation and Utilization in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, 650021, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shan Zhao
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiwen Gan
- State Key Laboratory of Natural Resource Conservation and Utilization in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, 650021, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyuan Zhao
- State Key Laboratory of Natural Resource Conservation and Utilization in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, 650021, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fengyang Wang
- State Key Laboratory of Natural Resource Conservation and Utilization in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, 650021, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Zhang
- State Key Laboratory of Natural Resource Conservation and Utilization in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, 650021, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Zhang
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chonglin Yang
- State Key Laboratory of Natural Resource Conservation and Utilization in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, 650021, China.
| |
Collapse
|
42
|
Moriyama Y, Hatano R, Moriyama S, Uehara S. Vesicular polyamine transporter as a novel player in amine-mediated chemical transmission. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183208. [PMID: 32004521 DOI: 10.1016/j.bbamem.2020.183208] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023]
Abstract
The solute carrier 18B1 (SLC18B1) is the most recently identified gene of the vesicular amine transporter family and is conserved in the animal kingdom from insects to humans. Proteoliposomes containing the purified human SLC18B1 protein transport not only monoamines, but also polyamines, such as spermidine (Spd) and spermine (Spm), using an electrochemical gradient of H+ established by vacuolar H+-ATPase (V-ATPase) as the driving force. SLC18B1 gene knockdown abolished the exocytosis of polyamines from mast cells, which affected the secretion of histamine. SLC18B1 gene knockout decreased polyamine levels by ~20% in the brain, and impaired short- and long-term memory. Thus, the SLC18B1 protein is responsible for the vesicular storage and release of polyamines, and functions as a vesicular polyamine transporter (VPAT). VPAT may define when, where, and how polyamine-mediated chemical transmission occurs, providing insights into the more versatile and complex features of amine-mediated chemical transmission than currently considered.
Collapse
Affiliation(s)
- Yoshinori Moriyama
- Department of Biochemistry, Matsumoto Dental University, Shiojiri 399-0781, Japan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; CYRIC Tohoku University, Sendai 980-8578, Japan.
| | - Ryo Hatano
- Department of Medicinal Physiology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Satomi Moriyama
- Laboratory of Bio-Molecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara 634-8521, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, Shiojiri 399-0781, Japan
| |
Collapse
|
43
|
Amatya S, Shin Y, Ha JY, Lee SJ, Kang SW, Kwon B, Kim DH. Simultaneous determination of eight arginine-related metabolites in cellular extracts using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1137:121936. [PMID: 31891857 DOI: 10.1016/j.jchromb.2019.121936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022]
Abstract
A simple, sensitive, and rapid liquid chromatography (LC)-tandem mass spectrometry (MS/MS) method was developed for the simultaneous determination of arginine and its pathway-related metabolites (ornithine, proline, citrulline, glutamate, agmatine, spermidine, and spermine) in cellular extracts. Cells were lysed and cellular proteins precipitated by the addition of acetonitrile followed by ultra-sonication. Supernatants were analyzed using a Chromolith High Resolution RP-18 endcapped column (100 × 4.6 mm, 1.15 μm, 150 Å), with mobile phases of 0.1% formic acid solution and 0.1% formic acid in acetonitrile. Detection was carried out in multiple reaction monitoring (MRM) mode. Calibration curves showed linearity (r2 > 0.99) for all metabolites over the calibration ranges used. The intra- and inter-day precision was less than 13.5%, and the accuracy was between 91.3 and 114.7%. The method developed in this study was successfully applied to measure arginine and its pathway-related metabolites, which are related to nitric oxide synthase/arginase pathways in mouse bone marrow-derived dendritic cells (BMDCs). The ability to simultaneously measure arginine and its pathway-related metabolites is valuable for better understanding local and systemic inflammatory processes.
Collapse
Affiliation(s)
- Sarmila Amatya
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Yumi Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Jeong Yeop Ha
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Su-Jun Lee
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Sang Wook Kang
- Biomedical Research Center, Ulsan University Hospitial, University of Ulsan, Ulsan, Republic of Korea
| | - Byungsuk Kwon
- Biomedical Research Center, Ulsan University Hospitial, University of Ulsan, Ulsan, Republic of Korea; School of Biological Science, University of Ulsan, Ulsan, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
44
|
Bousquet P, Hudson A, García-Sevilla JA, Li JX. Imidazoline Receptor System: The Past, the Present, and the Future. Pharmacol Rev 2020; 72:50-79. [PMID: 31819014 DOI: 10.1124/pr.118.016311] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Imidazoline receptors historically referred to a family of nonadrenergic binding sites that recognize compounds with an imidazoline moiety, although this has proven to be an oversimplification. For example, none of the proposed endogenous ligands for imidazoline receptors contain an imidazoline moiety but they are diverse in their chemical structure. Three receptor subtypes (I1, I2, and I3) have been proposed and the understanding of each has seen differing progress over the decades. I1 receptors partially mediate the central hypotensive effects of clonidine-like drugs. Moxonidine and rilmenidine have better therapeutic profiles (fewer side effects) than clonidine as antihypertensive drugs, thought to be due to their higher I1/α 2-adrenoceptor selectivity. Newer I1 receptor agonists such as LNP599 [3-chloro-2-methyl-phenyl)-(4-methyl-4,5-dihydro-3H-pyrrol-2-yl)-amine hydrochloride] have little to no activity on α 2-adrenoceptors and demonstrate promising therapeutic potential for hypertension and metabolic syndrome. I2 receptors associate with several distinct proteins, but the identities of these proteins remain elusive. I2 receptor agonists have demonstrated various centrally mediated effects including antinociception and neuroprotection. A new I2 receptor agonist, CR4056 [2-phenyl-6-(1H-imidazol-1yl) quinazoline], demonstrated clear analgesic activity in a recently completed phase II clinical trial and holds great promise as a novel I2 receptor-based first-in-class nonopioid analgesic. The understanding of I3 receptors is relatively limited. Existing data suggest that I3 receptors may represent a binding site at the Kir6.2-subtype ATP-sensitive potassium channels in pancreatic β-cells and may be involved in insulin secretion. Despite the elusive nature of their molecular identities, recent progress on drug discovery targeting imidazoline receptors (I1 and I2) demonstrates the exciting potential of these compounds to elicit neuroprotection and to treat various disorders such as hypertension, metabolic syndrome, and chronic pain.
Collapse
Affiliation(s)
- Pascal Bousquet
- Faculty of Medicine, University of Strasbourg, Strasbourg, France (P.B.); Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (A.H.); Laboratory of Neuropharmacology, University Research Institute on Health Sciences, University of the Balearic Islands, Palma de Malllorca, Spain (J.A.G.-S.); and Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.-X.L.)
| | - Alan Hudson
- Faculty of Medicine, University of Strasbourg, Strasbourg, France (P.B.); Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (A.H.); Laboratory of Neuropharmacology, University Research Institute on Health Sciences, University of the Balearic Islands, Palma de Malllorca, Spain (J.A.G.-S.); and Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.-X.L.)
| | - Jesús A García-Sevilla
- Faculty of Medicine, University of Strasbourg, Strasbourg, France (P.B.); Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (A.H.); Laboratory of Neuropharmacology, University Research Institute on Health Sciences, University of the Balearic Islands, Palma de Malllorca, Spain (J.A.G.-S.); and Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.-X.L.)
| | - Jun-Xu Li
- Faculty of Medicine, University of Strasbourg, Strasbourg, France (P.B.); Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (A.H.); Laboratory of Neuropharmacology, University Research Institute on Health Sciences, University of the Balearic Islands, Palma de Malllorca, Spain (J.A.G.-S.); and Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.-X.L.)
| |
Collapse
|
45
|
Abstract
The organic cation transporters (OCTs) OCT1, OCT2, OCT3, novel OCT (OCTN)1, OCTN2, multidrug and toxin exclusion (MATE)1, and MATE kidney-specific 2 are polyspecific transporters exhibiting broadly overlapping substrate selectivities. They transport organic cations, zwitterions, and some uncharged compounds and operate as facilitated diffusion systems and/or antiporters. OCTs are critically involved in intestinal absorption, hepatic uptake, and renal excretion of hydrophilic drugs. They modulate the distribution of endogenous compounds such as thiamine, L-carnitine, and neurotransmitters. Sites of expression and functions of OCTs have important impact on energy metabolism, pharmacokinetics, and toxicity of drugs, and on drug-drug interactions. In this work, an overview about the human OCTs is presented. Functional properties of human OCTs, including identified substrates and inhibitors of the individual transporters, are described. Sites of expression are compiled, and data on regulation of OCTs are presented. In addition, genetic variations of OCTs are listed, and data on their impact on transport, drug treatment, and diseases are reported. Moreover, recent data are summarized that indicate complex drug-drug interaction at OCTs, such as allosteric high-affinity inhibition of transport and substrate dependence of inhibitor efficacies. A hypothesis about the molecular mechanism of polyspecific substrate recognition by OCTs is presented that is based on functional studies and mutagenesis experiments in OCT1 and OCT2. This hypothesis provides a framework to imagine how observed complex drug-drug interactions at OCTs arise. Finally, preclinical in vitro tests that are performed by pharmaceutical companies to identify interaction of novel drugs with OCTs are discussed. Optimized experimental procedures are proposed that allow a gapless detection of inhibitory and transported drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute of Anatomy and Cell Biology and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
46
|
Abstract
Oral arginine supplements are popular mainly for their presumed vasodilatory benefit. Arginine is a substrate for at least four enzymes including nitric oxide synthase (NOS) and arginase, but the impact of oral supplements on its different metabolic pathways is not clear. Deficiencies of arginine-metabolising enzymes are associated with conditions such as hyperammonaemia, endothelial dysfunction, central nervous system and muscle dysfunction, which complicate the use of oral arginine supplements. We examined the effect of l-arginine (l-Arg) and d-arginine (d-Arg), each at 500 mg/kg per d in drinking water administered for 4 weeks to separate groups of 9-week-old male Sprague-Dawley rats. We quantified the expression of enzymes and plasma, urine and organ levels of various metabolites of arginine. l-Arg significantly decreased cationic transporter-1 expression in the liver and the ileum and increased endothelial NOS expression in the aorta and the kidney and plasma nitrite levels, but did not affect the mean arterial pressure. l-Arg also decreased the expression of arginase II in the ileum, arginine:glycine amidinotransferase in the liver and the kidney and glyoxalase I in the liver, ileum and brain, but increased the expression of arginine decarboxylase and polyamines levels in the liver. d-Arg, the supposedly inert isomer, also unexpectedly affected the expression of some enzymes and metabolites. In conclusion, both l- and d-Arg significantly affected enzymes and metabolites in several pathways that use arginine as a substrate and further studies with different doses and treatment durations are planned to establish their safety or adverse effects to guide their use as oral supplements.
Collapse
|
47
|
Zhu HE, Yin JY, Chen DX, He S, Chen H. Agmatinase promotes the lung adenocarcinoma tumorigenesis by activating the NO-MAPKs-PI3K/Akt pathway. Cell Death Dis 2019; 10:854. [PMID: 31699997 PMCID: PMC6838094 DOI: 10.1038/s41419-019-2082-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/13/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022]
Abstract
Lung adenocarcinoma (LUAD) is one of the leading causes of cancer-related death worldwide. There is an urgent need to uncover the pathogenic mechanism to develop new treatments. Agmatinase (AGMAT) expression and its association with clinicopathological characteristics were analyzed via GEO, Oncomine, and TCGA databases, and IHC staining in human LUAD specimens. An EdU cell proliferation kit, propidiumiodide staining, colony formation, cell migration, and invasion assays, and a xenograft tumor model were used to detect the biological function of AGMAT in LUAD. Furthermore, the expression level of nitric oxide (NO) was detected using a DAF-FMDA fluorescent probe or nitrite assay kit, and further validated with Carboxy-PTIO (a NO scavenger). The roles of three isoforms of nitric oxide synthases (nNOS, eNOS, and iNOS) were validated using L-NAME (eNOS inhibitor), SMT (iNOS inhibitor), and spermidine (nNOS inhibitor). AGMAT expression was up-regulated in LUAD tissues. LUAD patients with high AGMAT levels were associated with poorer prognoses. AGMAT promoted LUAD tumorigenesis in NO released by iNOS both in vitro and in vivo. Importantly, NO signaling up-regulated the expression of cyclin D1 via activating the MAPK and PI3K/Akt-dependent c-myc activity, ultimately promoting the malignant proliferation of tumor cells. On the whole, AGMAT promoted NO release via up-regulating the expression of iNOS. High levels of NO drove LUAD tumorigenesis via activating MAPK and PI3K/Akt cascades. AGMAT might be a potential diagnostic and therapeutic target for LUAD patients.
Collapse
Affiliation(s)
- Hui-Er Zhu
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510150, PR China
| | - Jia-Yi Yin
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510150, PR China
| | - De-Xiong Chen
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510150, PR China
| | - Sheng He
- Department of Respiratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510150, PR China
| | - Hui Chen
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510150, PR China.
| |
Collapse
|
48
|
Lv L, Liang XF, Huang K, He S. Effect of agmatine on food intake in mandarin fish (Siniperca chuatsi). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1709-1716. [PMID: 31140073 DOI: 10.1007/s10695-019-00659-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Agmatine, an endogenous biogenic amine, is considered to be a central neurotransmitter. And it plays an important role in mammal feeding behavior. However, there were few studies on the effect of agmatine on feeding behavior in fishes. Here, we investigated the impact of intracerebroventricular (ICV) injections of agmatine (1.25-20 nmol/fish) on food intake in mandarin fish (Siniperca chuatsi). At 1-h post-injection, food intake showed a significant decrease in agmatine-treated fishes compared with the saline treated. Furthermore, the food intake in agmatine treatment mostly did not differ from that in saline treatment at 4--24-h post-injection as well as the results of genes expression of neuropeptide Y (NPY), agouti-regulated peptide (AgRP), and anorexigenic melanocortin 4 receptor (MC4R). In accordance with the insulin level increasing in liver, the gene expression of insulin receptor substrate (IRS2) was significantly higher in agmatine treatment compared to saline treatment at 1-h post-injection. Thus, the anorexigenic effect of agmatine is likely to decrease NPY and AgRP expression levels and increase MC4R and IRS2 levels which was coupled with stimulation of insulin secretion. Although these initial findings are limited in dose, the data firstly provides evidence for the anorectic effects of agmatine in fish.
Collapse
Affiliation(s)
- Liyuan Lv
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
| | - Kang Huang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| |
Collapse
|
49
|
Sánchez-Jiménez F, Medina MÁ, Villalobos-Rueda L, Urdiales JL. Polyamines in mammalian pathophysiology. Cell Mol Life Sci 2019; 76:3987-4008. [PMID: 31227845 PMCID: PMC11105599 DOI: 10.1007/s00018-019-03196-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023]
Abstract
Polyamines (PAs) are essential organic polycations for cell viability along the whole phylogenetic scale. In mammals, they are involved in the most important physiological processes: cell proliferation and viability, nutrition, fertility, as well as nervous and immune systems. Consequently, altered polyamine metabolism is involved in a series of pathologies. Due to their pathophysiological importance, PA metabolism has evolved to be a very robust metabolic module, interconnected with the other essential metabolic modules for gene expression and cell proliferation/differentiation. Two different PA sources exist for animals: PA coming from diet and endogenous synthesis. In the first section of this work, the molecular characteristics of PAs are presented as determinant of their roles in living organisms. In a second section, the metabolic specificities of mammalian PA metabolism are reviewed, as well as some obscure aspects on it. This second section includes information on mammalian cell/tissue-dependent PA-related gene expression and information on crosstalk with the other mammalian metabolic modules. The third section presents a synthesis of the physiological processes described as modulated by PAs in humans and/or experimental animal models, the molecular bases of these regulatory mechanisms known so far, as well as the most important gaps of information, which explain why knowledge around the specific roles of PAs in human physiology is still considered a "mysterious" subject. In spite of its robustness, PA metabolism can be altered under different exogenous and/or endogenous circumstances so leading to the loss of homeostasis and, therefore, to the promotion of a pathology. The available information will be summarized in the fourth section of this review. The different sections of this review also point out the lesser-known aspects of the topic. Finally, future prospects to advance on these still obscure gaps of knowledge on the roles on PAs on human physiopathology are discussed.
Collapse
Affiliation(s)
- Francisca Sánchez-Jiménez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain
| | - Lorena Villalobos-Rueda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
| | - José Luis Urdiales
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain.
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain.
| |
Collapse
|
50
|
Bergin DH, Jing Y, Williams G, Mockett BG, Zhang H, Abraham WC, Liu P. Safety and neurochemical profiles of acute and sub-chronic oral treatment with agmatine sulfate. Sci Rep 2019; 9:12669. [PMID: 31481723 PMCID: PMC6722093 DOI: 10.1038/s41598-019-49078-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/19/2019] [Indexed: 01/25/2023] Open
Abstract
Agmatine (decarboxylated arginine) exerts numerous central nervous system (CNS) dependent pharmacological effects and may potentially modulate altered neurochemistry seen in neurological disorders. In preclinical studies, injection has been the predominant route of systemic administration. However, a significant translational step would be the use of oral agmatine treatment at therapeutic doses and better understanding of L-arginine metabolic profiles in the CNS post-treatment. The present study systematically investigated the tolerability, safety and brain-plasma neurochemistry following daily oral agmatine sulfate treatment (via gavage) to wild-type (WT) mice up to 900 mg/kg for one week (Experiment 1) or WT and APPswe/PS1ΔE9 transgenic (Tg) mice at 300 mg/kg for fifteen weeks (Experiment 2). Agmatine treatment in both experiments was well tolerated with no marked behavioural impairments, and gross necropsy and organ histology revealed no pathological alterations after 15-week dosing. Moreover, oral treatment increased agmatine levels in the hippocampus and plasma of WT mice (Experiment 1), and in 6 brain regions examined (but not plasma) of WT and Tg mice (Experiment 2), at 30 minutes or 24 hours post-treatment respectively. This study provides fundamental pre-clinical evidence that daily oral delivery of agmatine sulfate to both WT and Tg mice is safe and well tolerated. Exogenous agmatine passes through the blood brain barrier and accumulates in the brain to a greater extent in Tg mice. Furthermore exogenous agmatine has differential actions in the brain and periphery, and its effect on brain putrescine appears to be dependent on the time post-treatment.
Collapse
Affiliation(s)
- David H Bergin
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand.,School of Pharmacy, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Yu Jing
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Gail Williams
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Bruce G Mockett
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Hu Zhang
- School of Pharmacy, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Ping Liu
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand.
| |
Collapse
|