1
|
Eschenhagen T, Weinberger F. Challenges and perspectives of heart repair with pluripotent stem cell-derived cardiomyocytes. NATURE CARDIOVASCULAR RESEARCH 2024; 3:515-524. [PMID: 39195938 DOI: 10.1038/s44161-024-00472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/04/2024] [Indexed: 08/29/2024]
Abstract
Here we aim at providing a concise but comprehensive overview of the perspectives and challenges of heart repair with pluripotent stem cell-derived cardiomyocytes. This Review comes at a time when consensus has been reached about the lack of relevant proliferative capacity of adult mammalian cardiomyocytes and the lack of new heart muscle formation with autologous cell sources. While alternatives to cell-based approaches will be shortly summarized, the focus lies on pluripotent stem cell-derived cardiomyocyte repair, which entered first clinical trials just 2 years ago. In the view of the authors, these early trials are important but have to be viewed as early proof-of-concept trials in humans that will hopefully provide first answers on feasibility, safety and the survival of allogeneic pluripotent stem cell-derived cardiomyocyte in the human heart. Better approaches have to be developed to make this approach clinically applicable.
Collapse
Affiliation(s)
- Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Florian Weinberger
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
2
|
Soonpaa MH, Reuter SP, Castelluccio PF, Field LJ. Musings on intrinsic cardiomyocyte cell cycle activity and myocardial regeneration. J Mol Cell Cardiol 2023; 182:86-91. [PMID: 37517369 PMCID: PMC10530305 DOI: 10.1016/j.yjmcc.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
Although the myocardial renewal rate in the adult mammalian heart is quite low, recent studies have identified genetic variants which can impact the degree of cardiomyocyte cell cycle reentry. Here we use the compound interest law to model the level of regenerative growth over time in mice exhibiting different rates of cardiomyocyte cell cycle reentry following myocardial injury. The modeling suggests that the limited ability of S-phase adult cardiomyocytes to progress through cytokinesis, rather than the ability to reenter the cell cycle per se, is a major contributor to the low levels of intrinsic regenerative growth in the adult myocardium.
Collapse
Affiliation(s)
- Mark H Soonpaa
- Krannert Cardiovascular Research Center and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, USA
| | - Sean P Reuter
- Krannert Cardiovascular Research Center and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, USA
| | - Peter F Castelluccio
- Krannert Cardiovascular Research Center and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, USA
| | - Loren J Field
- Krannert Cardiovascular Research Center and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, USA.
| |
Collapse
|
3
|
Reuter SP, Soonpaa MH, Field D, Simpson E, Rubart-von der Lohe M, Lee HK, Sridhar A, Ware SM, Green N, Li X, Ofner S, Marchuk DA, Wollert KC, Field LJ. Cardiac Troponin I-Interacting Kinase Affects Cardiomyocyte S-Phase Activity but Not Cardiomyocyte Proliferation. Circulation 2023; 147:142-153. [PMID: 36382596 PMCID: PMC9839600 DOI: 10.1161/circulationaha.122.061130] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Identifying genetic variants that affect the level of cell cycle reentry and establishing the degree of cell cycle progression in those variants could help guide development of therapeutic interventions aimed at effecting cardiac regeneration. We observed that C57Bl6/NCR (B6N) mice have a marked increase in cardiomyocyte S-phase activity after permanent coronary artery ligation compared with infarcted DBA/2J (D2J) mice. METHODS Cardiomyocyte cell cycle activity after infarction was monitored in D2J, (D2J×B6N)-F1, and (D2J×B6N)-F1×D2J backcross mice by means of bromodeoxyuridine or 5-ethynyl-2'-deoxyuridine incorporation using a nuclear-localized transgenic reporter to identify cardiomyocyte nuclei. Genome-wide quantitative trait locus analysis, fine scale genetic mapping, whole exome sequencing, and RNA sequencing analyses of the backcross mice were performed to identify the gene responsible for the elevated cardiomyocyte S-phase phenotype. RESULTS (D2J×B6N)-F1 mice exhibited a 14-fold increase in cardiomyocyte S-phase activity in ventricular regions remote from infarct scar compared with D2J mice (0.798±0.09% versus 0.056±0.004%; P<0.001). Quantitative trait locus analysis of (D2J×B6N)-F1×D2J backcross mice revealed that the gene responsible for differential S-phase activity was located on the distal arm of chromosome 3 (logarithm of the odds score=6.38; P<0.001). Additional genetic and molecular analyses identified 3 potential candidates. Of these, Tnni3k (troponin I-interacting kinase) is expressed in B6N hearts but not in D2J hearts. Transgenic expression of TNNI3K in a D2J genetic background results in elevated cardiomyocyte S-phase activity after injury. Cardiomyocyte S-phase activity in both Tnni3k-expressing and Tnni3k-nonexpressing mice results in the formation of polyploid nuclei. CONCLUSIONS These data indicate that Tnni3k expression increases the level of cardiomyocyte S-phase activity after injury.
Collapse
Affiliation(s)
- Sean P. Reuter
- Krannert Cardiovascular Research Center, Indiana University School of Medicine
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Mark H. Soonpaa
- Krannert Cardiovascular Research Center, Indiana University School of Medicine
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Dorothy Field
- Krannert Cardiovascular Research Center, Indiana University School of Medicine
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Ed Simpson
- Center for Computational Biology & Bioinformatics, Indiana University School of Medicine
| | | | - Han Kyu Lee
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine
| | - Arthi Sridhar
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Stephanie M. Ware
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Nick Green
- Center for Computational Biology & Bioinformatics, Indiana University School of Medicine
| | - Xiaochun Li
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine
| | - Susan Ofner
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine
| | - Douglas A. Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine
| | - Kai C. Wollert
- Department of Cardiology and Angiology, Division of Molecular and Translational Cardiology, Hannover Medical School
| | - Loren J. Field
- Krannert Cardiovascular Research Center, Indiana University School of Medicine
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| |
Collapse
|
4
|
Ciucci G, Rahhali K, Cimmino G, Natale F, Golino P, Sinagra G, Collesi C, Loffredo FS. Engineered heart tissue maturation inhibits cardiomyocyte proliferative response to cryoinjury. J Tissue Eng 2023; 14:20417314231190147. [PMID: 37842206 PMCID: PMC10571691 DOI: 10.1177/20417314231190147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/11/2023] [Indexed: 10/17/2023] Open
Abstract
The cellular and molecular mechanisms that are responsible for the poor regenerative capacity of the adult heart after myocardial infarction (MI) are still unclear and their understanding is crucial to develop novel regenerative therapies. Considering the lack of reliable in vitro tissue-like models to evaluate the molecular mechanisms of cardiac regeneration, we used cryoinjury on rat Engineered Heart Tissues (rEHTs) as a new model which recapitulates in part the in vivo response after myocardial injury of neonatal and adult heart. When we subjected to cryoinjury immature and mature rEHTs, we observed a significant increase in cardiomyocyte (CM) DNA synthesis when compared to the controls. As expected, the number of mitotic CMs significantly increases in immature rEHTs when compared to mature rEHTs, suggesting that the extent of CM maturation plays a crucial role in their proliferative response after cryoinjury. Moreover, we show that cryoinjury induces a temporary activation of fibroblast response in mature EHTs, similar to the early response after MI, that is however incomplete in immature EHTs. Our results support the hypothesis that the endogenous maturation program in cardiac myocytes plays a major role in determining the proliferative response to injury. Therefore, we propose rEHTs as a robust, novel tool to in vitro investigate critical aspects of cardiac regeneration in a tissue-like asset free from confounding factors in response to injury, such as the immune system response or circulating inflammatory cytokines.
Collapse
Affiliation(s)
- Giulio Ciucci
- Molecular Cardiology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Friuli-Venezia Giulia, Italy
| | - Karim Rahhali
- Molecular Cardiology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Friuli-Venezia Giulia, Italy
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giovanni Cimmino
- Department of Translational Medical Sciences, Division of Cardiology, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Francesco Natale
- Department of Translational Medical Sciences, Division of Cardiology, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Paolo Golino
- Department of Translational Medical Sciences, Division of Cardiology, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Gianfranco Sinagra
- Department of Medicine, Surgery and Health Sciences, Azienda Sanitaria-Universitaria Integrata Trieste “ASUITS,” University of Trieste, Trieste, Italy
| | - Chiara Collesi
- Department of Medicine, Surgery and Health Sciences, Azienda Sanitaria-Universitaria Integrata Trieste “ASUITS,” University of Trieste, Trieste, Italy
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Francesco S Loffredo
- Molecular Cardiology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Friuli-Venezia Giulia, Italy
- Department of Translational Medical Sciences, Division of Cardiology, University of Campania “L. Vanvitelli,” Naples, Italy
| |
Collapse
|
5
|
Tarasov KV, Chakir K, Riordon DR, Lyashkov AE, Ahmet I, Perino MG, Silvester AJ, Zhang J, Wang M, Lukyanenko YO, Qu JH, Barrera MCR, Juhaszova M, Tarasova YS, Ziman B, Telljohann R, Kumar V, Ranek M, Lammons J, Bychkov R, de Cabo R, Jun S, Keceli G, Gupta A, Yang D, Aon MA, Adamo L, Morrell CH, Otu W, Carroll C, Chambers S, Paolocci N, Huynh T, Pacak K, Weiss R, Field L, Sollott SJ, Lakatta EG. A remarkable adaptive paradigm of heart performance and protection emerges in response to marked cardiac-specific overexpression of ADCY8. eLife 2022; 11:e80949. [PMID: 36515265 PMCID: PMC9822292 DOI: 10.7554/elife.80949] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Adult (3 month) mice with cardiac-specific overexpression of adenylyl cyclase (AC) type VIII (TGAC8) adapt to an increased cAMP-induced cardiac workload (~30% increases in heart rate, ejection fraction and cardiac output) for up to a year without signs of heart failure or excessive mortality. Here, we show classical cardiac hypertrophy markers were absent in TGAC8, and that total left ventricular (LV) mass was not increased: a reduced LV cavity volume in TGAC8 was encased by thicker LV walls harboring an increased number of small cardiac myocytes, and a network of small interstitial proliferative non-cardiac myocytes compared to wild type (WT) littermates; Protein synthesis, proteosome activity, and autophagy were enhanced in TGAC8 vs WT, and Nrf-2, Hsp90α, and ACC2 protein levels were increased. Despite increased energy demands in vivo LV ATP and phosphocreatine levels in TGAC8 did not differ from WT. Unbiased omics analyses identified more than 2,000 transcripts and proteins, comprising a broad array of biological processes across multiple cellular compartments, which differed by genotype; compared to WT, in TGAC8 there was a shift from fatty acid oxidation to aerobic glycolysis in the context of increased utilization of the pentose phosphate shunt and nucleotide synthesis. Thus, marked overexpression of AC8 engages complex, coordinate adaptation "circuity" that has evolved in mammalian cells to defend against stress that threatens health or life (elements of which have already been shown to be central to cardiac ischemic pre-conditioning and exercise endurance cardiac conditioning) that may be of biological significance to allow for proper healing in disease states such as infarction or failure of the heart.
Collapse
Affiliation(s)
- Kirill V Tarasov
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Khalid Chakir
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Daniel R Riordon
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Alexey E Lyashkov
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Ismayil Ahmet
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Maria Grazia Perino
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Allwin Jennifa Silvester
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Jing Zhang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Yevgeniya O Lukyanenko
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Jia-Hua Qu
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Miguel Calvo-Rubio Barrera
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Magdalena Juhaszova
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Yelena S Tarasova
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Bruce Ziman
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Richard Telljohann
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Vikas Kumar
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Mark Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - John Lammons
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Rostislav Bychkov
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Seungho Jun
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ashish Gupta
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Dongmei Yang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Luigi Adamo
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Christopher H Morrell
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Walter Otu
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Cameron Carroll
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Shane Chambers
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Thanh Huynh
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Robert Weiss
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Loren Field
- Kraennert Institute of Cardiology, Indiana University School of MedicineIdianapolisUnited States
| | - Steven J Sollott
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| |
Collapse
|
6
|
The Prescription of Oral Mucosal Mesenchymal Stem Cells post-Traumatic Brain Injury Improved the Kidney and Heart Inflammation and Oxidative Stress. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8235961. [PMID: 36408281 PMCID: PMC9671733 DOI: 10.1155/2022/8235961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022]
Abstract
Background In the last years, mesenchymal stem cells (MSCs) have been considered as a useful strategy to treat many diseases such as traumatic brain injury (TBI). The production of inflammatory agents by TBI elicits an inflammatory response directed to other systems of body, such as the heart and the kidneys. In this study, the efficacy of oral mucosal mesenchymal stem cells (OMSCs) prescription after TBI in inflammation and oxidative stress of the heart and kidneys was evaluated. Methods Twenty-four male rats were located in groups as follows: sham, TBI, vehicle (Veh), and stem cell (SC). OMSCs were injected intravenously 1 and 24 hours after TBI. Inflammatory, oxidative stress, and histopathological outcomes of the heart and kidney tissues were investigated 48 hours after TBI. Results TBI caused an increase in the level of interleukin-1β (IL-1β), interleukin-6 (IL-6), malondialdehyde (MDA), and carbonyl protein (PC) of the heart and kidney compared to the sham group. Superoxide dismutase (SOD), total antioxidant capacity (TAC), catalase (CAT), and interleukin-10 (IL-10) of the heart and kidney decreased after TBI. The use of OMSCs after TBI reduced the changes of these factors in both the heart and the kidney. Conclusion Application of OMSCs after TBI can decrease inflammation and oxidative stress of the heart and kidney tissues leading to the reduction of damage. Therefore, this method can be evaluated in the TBI patients in future studies.
Collapse
|
7
|
The negative regulation of gene expression by microRNAs as key driver of inducers and repressors of cardiomyocyte differentiation. Clin Sci (Lond) 2022; 136:1179-1203. [PMID: 35979890 PMCID: PMC9411751 DOI: 10.1042/cs20220391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Cardiac muscle damage-induced loss of cardiomyocytes (CMs) and dysfunction of the remaining ones leads to heart failure, which nowadays is the number one killer worldwide. Therapies fostering effective cardiac regeneration are the holy grail of cardiovascular research to stop the heart failure epidemic. The main goal of most myocardial regeneration protocols is the generation of new functional CMs through the differentiation of endogenous or exogenous cardiomyogenic cells. Understanding the cellular and molecular basis of cardiomyocyte commitment, specification, differentiation and maturation is needed to devise innovative approaches to replace the CMs lost after injury in the adult heart. The transcriptional regulation of CM differentiation is a highly conserved process that require sequential activation and/or repression of different genetic programs. Therefore, CM differentiation and specification have been depicted as a step-wise specific chemical and mechanical stimuli inducing complete myogenic commitment and cell-cycle exit. Yet, the demonstration that some microRNAs are sufficient to direct ESC differentiation into CMs and that four specific miRNAs reprogram fibroblasts into CMs show that CM differentiation must also involve negative regulatory instructions. Here, we review the mechanisms of CM differentiation during development and from regenerative stem cells with a focus on the involvement of microRNAs in the process, putting in perspective their negative gene regulation as a main modifier of effective CM regeneration in the adult heart.
Collapse
|
8
|
Reboll MR, Klede S, Taft MH, Cai CL, Field LJ, Lavine KJ, Koenig AL, Fleischauer J, Meyer J, Schambach A, Niessen HW, Kosanke M, van den Heuvel J, Pich A, Bauersachs J, Wu X, Zheng L, Wang Y, Korf-Klingebiel M, Polten F, Wollert KC. Meteorin-like promotes heart repair through endothelial KIT receptor tyrosine kinase. Science 2022; 376:1343-1347. [PMID: 35709278 PMCID: PMC9838878 DOI: 10.1126/science.abn3027] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Effective tissue repair after myocardial infarction entails a vigorous angiogenic response, guided by incompletely defined immune cell-endothelial cell interactions. We identify the monocyte- and macrophage-derived cytokine METRNL (meteorin-like) as a driver of postinfarction angiogenesis and high-affinity ligand for the stem cell factor receptor KIT (KIT receptor tyrosine kinase). METRNL mediated angiogenic effects in cultured human endothelial cells through KIT-dependent signaling pathways. In a mouse model of myocardial infarction, METRNL promoted infarct repair by selectively expanding the KIT-expressing endothelial cell population in the infarct border zone. Metrnl-deficient mice failed to mount this KIT-dependent angiogenic response and developed severe postinfarction heart failure. Our data establish METRNL as a KIT receptor ligand in the context of ischemic tissue repair.
Collapse
Affiliation(s)
- Marc R. Reboll
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School; 30625 Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School; 30625 Hannover, Germany
| | - Stefanie Klede
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School; 30625 Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School; 30625 Hannover, Germany
| | - Manuel H. Taft
- Institute for Biophysical Chemistry, Hannover Medical School; 30625 Hannover, Germany
| | - Chen-Leng Cai
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine; Indianapolis, IN 46202, USA
| | - Loren J. Field
- Krannert Cardiovascular Research Center and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine; Indianapolis, IN 46202, USA
| | - Kory J. Lavine
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Andrew L. Koenig
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Jenni Fleischauer
- Institute of Experimental Hematology, Hannover Medical School; 30625 Hannover, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School; 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School; 30625 Hannover, Germany
| | - Hans W. Niessen
- Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, University Medical Center; 1007 MB Amsterdam, The Netherlands
| | - Maike Kosanke
- Research Core Unit Genomics, Hannover Medical School; 30625 Hannover, Germany
| | - Joop van den Heuvel
- Technology Platform Recombinant Protein Expression, Helmholtz Center for Infection Research; 38124 Braunschweig, Germany
| | - Andreas Pich
- Core Unit Proteomics and Institute of Toxicology, Hannover Medical School; 30625 Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School; 30625 Hannover, Germany
| | - Xuekun Wu
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School; 30625 Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School; 30625 Hannover, Germany
| | - Linqun Zheng
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School; 30625 Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School; 30625 Hannover, Germany
| | - Yong Wang
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School; 30625 Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School; 30625 Hannover, Germany
| | - Mortimer Korf-Klingebiel
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School; 30625 Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School; 30625 Hannover, Germany
| | - Felix Polten
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School; 30625 Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School; 30625 Hannover, Germany
| | - Kai C. Wollert
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School; 30625 Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School; 30625 Hannover, Germany
| |
Collapse
|
9
|
Wang D, Wen JY, Wu D, Ying ZY, Wen ZM, Peng HQ, Geng C, Feng YB, Sui ZG, Lv HY, Wu J, Xu B. LPS-pretreated MSC-conditioned medium optimized with 10-kDa filter attenuates the injury of H9c2 cardiomyocytes in a model of hypoxia/reoxygenation. Can J Physiol Pharmacol 2022; 100:651-664. [PMID: 35533248 DOI: 10.1139/cjpp-2021-0745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mesenchymal stem cell-derived conditioned medium (MSC-CM) improves cardiac function, which is partly attributed to released paracrine factors. Since such cardioprotection is moderate and transient, it's essential to optimize MSC-CM effective components to alleviate myocardial injury. To optimize MSC-CM, MSCs were treated with or without lipopolysaccharides (LPSs) for 48 h (serum-free), and the supernatant was collected. Then, LPS-CM (MSC stimulated by LPS) was further treated with LPS remover (LPS Re-CM) or was concentrated with a 10-kDa cutoff filter (10 kDa-CM). ELISA showed that all pretreatments increased levels of VEGF, HGF, and IGF except LPS remover; 10 kDa-CM was superior to other-CM. CCK-8 displayed that viability of injured H9c2 cells enhanced with the increase of MSC-CM concentration. We also found 10 kDa-CM significantly alleviated H9c2 hypoxia/reoxygenation (H/R) injury, as evidenced by increased Bcl-2/Bax ratio, decreased the levels of LDH and cTn. TEM, TUNEL, and H&E staining confirmed 10 kDa-CM inhibited H/R-induced H9c2 morphological changes. Proteomic analysis identified 41 differentially expressed proteins in 10 kDa-CM, among which anti-inflammation, pro-angiogenesis, and anti-apoptosis were related to cardiac protection. This study indicates that 10 kDa-CM protects H9c2 cardiomyocytes from H/R injury by preserving most of the protective factors, such as VEGF, HGF, and IGF, in MSC-CM.
Collapse
Affiliation(s)
- Dan Wang
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China.,Ordos Central Hospital, 586048, Department of Pharmacy, Ordos, Inner Mongolia, China;
| | - Jing-Yi Wen
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China;
| | - Di Wu
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China;
| | - Zi-Yue Ying
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China;
| | - Zhi-Min Wen
- The Second Affiliated Hospital of Dalian Medical University, Department of Clinical Laboratory, Dalian, Liaoning, China;
| | - Hui-Qian Peng
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China;
| | - Cong Geng
- The Second Affiliated Hospital of Dalian Medical University, Department of Clinical Laboratory, Dalian, Liaoning, China;
| | - Yuan-Bo Feng
- KU Leuven University Hospitals Leuven, 60182, Leuven, Flanders, Belgium;
| | - Zhi-Gang Sui
- Chinese Academy of Science, Dalian, Liaoning, China;
| | - Hui-Yi Lv
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China;
| | - Jun Wu
- The Second Affiliated Hospital of Dalian Medical University, Department of Echocardiography, Dalian, Liaoning, China;
| | - Bing Xu
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China, 116023;
| |
Collapse
|
10
|
Eschenhagen T, Ridders K, Weinberger F. How to repair a broken heart with pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2021; 163:106-117. [PMID: 34687723 DOI: 10.1016/j.yjmcc.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 01/14/2023]
Abstract
Heart regeneration addresses a central problem in cardiology, the irreversibility of the loss of myocardium that eventually leads to heart failure. True restoration of heart function can only be achieved by remuscularization, i.e. replacement of lost myocardium by new, force-developing heart muscle. With the availability of principally unlimited human cardiomyocytes from pluripotent stem cells, one option to remuscularize the injured heart is to produce large numbers of cardiomyocytes plus/minus other cardiovascular cell types or progenitors ex vivo and apply them to the heart, either by injection or application as a patch. Exciting progress over the past decade has led to the first clinical applications, but important questions remain. Academic and increasingly corporate activity is ongoing to answer them and optimize the approach to finally develop a true regenerative therapy of heart failure.
Collapse
Affiliation(s)
- Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | | | - Florian Weinberger
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
11
|
Elde S, Wang H, Woo YJ. Navigating the Crossroads of Cell Therapy and Natural Heart Regeneration. Front Cell Dev Biol 2021; 9:674180. [PMID: 34046410 PMCID: PMC8148343 DOI: 10.3389/fcell.2021.674180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/15/2021] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular disease remains the leading cause of death worldwide despite significant advances in our understanding of the disease and its treatment. Consequently, the therapeutic potential of cell therapy and induction of natural myocardial regeneration have stimulated a recent surge of research and clinical trials aimed at addressing this challenge. Recent developments in the field have shed new light on the intricate relationship between inflammation and natural regeneration, an intersection that warrants further investigation.
Collapse
Affiliation(s)
- Stefan Elde
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
12
|
Wang L, Serpooshan V, Zhang J. Engineering Human Cardiac Muscle Patch Constructs for Prevention of Post-infarction LV Remodeling. Front Cardiovasc Med 2021; 8:621781. [PMID: 33718449 PMCID: PMC7952323 DOI: 10.3389/fcvm.2021.621781] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering combines principles of engineering and biology to generate living tissue equivalents for drug testing, disease modeling, and regenerative medicine. As techniques for reprogramming human somatic cells into induced pluripotent stem cells (iPSCs) and subsequently differentiating them into cardiomyocytes and other cardiac cells have become increasingly efficient, progress toward the development of engineered human cardiac muscle patch (hCMP) and heart tissue analogs has accelerated. A few pilot clinical studies in patients with post-infarction LV remodeling have been already approved. Conventional methods for hCMP fabrication include suspending cells within scaffolds, consisting of biocompatible materials, or growing two-dimensional sheets that can be stacked to form multilayered constructs. More recently, advanced technologies, such as micropatterning and three-dimensional bioprinting, have enabled fabrication of hCMP architectures at unprecedented spatiotemporal resolution. However, the studies working on various hCMP-based strategies for in vivo tissue repair face several major obstacles, including the inadequate scalability for clinical applications, poor integration and engraftment rate, and the lack of functional vasculature. Here, we review many of the recent advancements and key concerns in cardiac tissue engineering, focusing primarily on the production of hCMPs at clinical/industrial scales that are suitable for administration to patients with myocardial disease. The wide variety of cardiac cell types and sources that are applicable to hCMP biomanufacturing are elaborated. Finally, some of the key challenges remaining in the field and potential future directions to address these obstacles are discussed.
Collapse
Affiliation(s)
- Lu Wang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
Abstract
The regenerative capacity of the heart has long fascinated scientists. In contrast to other organs such as liver, skin, and skeletal muscle, the heart possesses only a minimal regenerative capacity. It lacks a progenitor cell population, and cardiomyocytes exit the cell cycle shortly after birth and do not re-enter after injury. Thus, any loss of cardiomyocytes is essentially irreversible and can lead to or exaggerate heart failure, which represents a major public health problem. New therapeutic options are urgently needed, but regenerative therapies have remained an unfulfilled promise in cardiovascular medicine until today. Yet, through a clearer comprehension of signaling pathways that regulate the cardiomyocyte cell cycle and advances in stem cell technology, strategies have evolved that demonstrate the potential to generate new myocytes and thereby fulfill an essential central criterion for heart repair.
Collapse
Affiliation(s)
- Florian Weinberger
- Institute for Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; , .,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Thomas Eschenhagen
- Institute for Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; , .,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| |
Collapse
|
14
|
Protze SI, Lee JH, Keller GM. Human Pluripotent Stem Cell-Derived Cardiovascular Cells: From Developmental Biology to Therapeutic Applications. Cell Stem Cell 2020; 25:311-327. [PMID: 31491395 DOI: 10.1016/j.stem.2019.07.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advances in our understanding of cardiovascular development have provided a roadmap for the directed differentiation of human pluripotent stem cells (hPSCs) to the major cell types found in the heart. In this Perspective, we review the state of the field in generating and maturing cardiovascular cells from hPSCs based on our fundamental understanding of heart development. We then highlight their applications for studying human heart development, modeling disease-performing drug screening, and cell replacement therapy. With the advancements highlighted here, the promise that hPSCs will deliver new treatments for degenerative and debilitating diseases may soon be fulfilled.
Collapse
Affiliation(s)
- Stephanie I Protze
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Jee Hoon Lee
- BlueRock Therapeutics ULC, Toronto, ON M5G 1L7, Canada
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
15
|
Mazzola M, Di Pasquale E. Toward Cardiac Regeneration: Combination of Pluripotent Stem Cell-Based Therapies and Bioengineering Strategies. Front Bioeng Biotechnol 2020; 8:455. [PMID: 32528940 PMCID: PMC7266938 DOI: 10.3389/fbioe.2020.00455] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases represent the major cause of morbidity and mortality worldwide. Multiple studies have been conducted so far in order to develop treatments able to prevent the progression of these pathologies. Despite progress made in the last decade, current therapies are still hampered by poor translation into actual clinical applications. The major drawback of such strategies is represented by the limited regenerative capacity of the cardiac tissue. Indeed, after an ischaemic insult, the formation of fibrotic scar takes place, interfering with mechanical and electrical functions of the heart. Hence, the ability of the heart to recover after ischaemic injury depends on several molecular and cellular pathways, and the imbalance between them results into adverse remodeling, culminating in heart failure. In this complex scenario, a new chapter of regenerative medicine has been opened over the past 20 years with the discovery of induced pluripotent stem cells (iPSCs). These cells share the same characteristic of embryonic stem cells (ESCs), but are generated from patient-specific somatic cells, overcoming the ethical limitations related to ESC use and providing an autologous source of human cells. Similarly to ESCs, iPSCs are able to efficiently differentiate into cardiomyocytes (CMs), and thus hold a real regenerative potential for future clinical applications. However, cell-based therapies are subjected to poor grafting and may cause adverse effects in the failing heart. Thus, over the last years, bioengineering technologies focused their attention on the improvement of both survival and functionality of iPSC-derived CMs. The combination of these two fields of study has burst the development of cell-based three-dimensional (3D) structures and organoids which mimic, more realistically, the in vivo cell behavior. Toward the same path, the possibility to directly induce conversion of fibroblasts into CMs has recently emerged as a promising area for in situ cardiac regeneration. In this review we provide an up-to-date overview of the latest advancements in the application of pluripotent stem cells and tissue-engineering for therapeutically relevant cardiac regenerative approaches, aiming to highlight outcomes, limitations and future perspectives for their clinical translation.
Collapse
Affiliation(s)
- Marta Mazzola
- Stem Cell Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Elisa Di Pasquale
- Stem Cell Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Institute of Genetic and Biomedical Research (IRGB) - UOS of Milan, National Research Council (CNR), Milan, Italy
| |
Collapse
|
16
|
Zhu W, Reuter S, Field LJ. Targeted expression of cyclin D2 ameliorates late stage anthracycline cardiotoxicity. Cardiovasc Res 2020; 115:960-965. [PMID: 30423020 DOI: 10.1093/cvr/cvy273] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/25/2018] [Accepted: 11/10/2018] [Indexed: 11/15/2022] Open
Abstract
AIMS Doxorubicin (DOX) is a widely used and effective anti-cancer therapeutic. DOX treatment is associated with both acute and late onset cardiotoxicity, limiting its overall efficacy. Here, the impact of cardiomyocyte cell cycle activation was examined in a juvenile model featuring aspects of acute and late onset DOX cardiotoxicity. METHODS AND RESULTS Two-week old MHC-cycD2 transgenic mice (which express cyclin D2 in postnatal cardiomyocytes and exhibit sustained cardiomyocyte cell cycle activity; D2 mice) and their wild type (WT) littermates received weekly DOX injections for 5 weeks (25 mg/kg cumulative dose). One week after the last DOX treatment (acute stage), cardiac function was suppressed in both groups. Acute DOX cardiotoxicity in D2 and WT mice was associated with similar increases in the levels of cardiomyocyte apoptosis and Ku70/Ku80 expression (markers of DNA damage and oxidative stress), as well as similar reductions in hypertrophic cardiomyocyte growth. Cardiac dysfunction persisted in WT mice for 13 weeks following the last DOX treatment (late stage) and was accompanied by increased levels of cardiomyocyte apoptosis, Ku expression, and myocardial fibrosis. In contrast, D2 mice exhibited a progressive recovery in cardiac function, which was indistinguishable from saline-treated animals by 9 weeks following the last DOX treatment. Improved cardiac function was accompanied by reductions in the levels of late stage cardiomyocyte apoptosis, Ku expression, and myocardial fibrosis. CONCLUSION These data suggest that cardiomyocyte cell cycle activity can promote recovery of cardiac function and preserve cardiac structure following DOX treatment.
Collapse
Affiliation(s)
- Wuqiang Zhu
- The Krannert Institute of Cardiology and the Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4 Building Room W376, Indianapolis, IN, USA
| | - Sean Reuter
- The Krannert Institute of Cardiology and the Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4 Building Room W376, Indianapolis, IN, USA
| | - Loren J Field
- The Krannert Institute of Cardiology and the Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4 Building Room W376, Indianapolis, IN, USA
| |
Collapse
|
17
|
Editorial commentary: Challenges to heart repair with pluripotent stem cell-derived cardiomyocytes. Trends Cardiovasc Med 2020; 31:91-92. [PMID: 32276084 DOI: 10.1016/j.tcm.2020.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/14/2023]
|
18
|
|
19
|
Song SY, Kim H, Yoo J, Kwon SP, Park BW, Kim JJ, Ban K, Char K, Park HJ, Kim BS. Prevascularized, multiple-layered cell sheets of direct cardiac reprogrammed cells for cardiac repair. Biomater Sci 2020; 8:4508-4520. [DOI: 10.1039/d0bm00701c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We developed cardiac-reprogrammed cell sheets via cardiac-mimetic cell culture system with biodegradable PLGA membrane. The prevascularized, multiple-layered cell sheets prevented heart failure after myocardial infarction.
Collapse
Affiliation(s)
- Seuk Young Song
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul
- Republic of Korea
| | - Hyeok Kim
- Department of Medical Life Science
- College of Medicine
- The Catholic University of Korea
- Seoul
- Republic of Korea
| | - Jin Yoo
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul
- Republic of Korea
| | - Sung Pil Kwon
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul
- Republic of Korea
| | - Bong Woo Park
- Department of Medical Life Science
- College of Medicine
- The Catholic University of Korea
- Seoul
- Republic of Korea
| | - Jin-ju Kim
- Department of Medical Life Science
- College of Medicine
- The Catholic University of Korea
- Seoul
- Republic of Korea
| | - Kiwon Ban
- Department of Biomedical Sciences
- City University of Hong Kong
- Kowloon Tong
- Hong Kong
| | - Kookheon Char
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul
- Republic of Korea
| | - Hun-Jun Park
- Department of Medical Life Science
- College of Medicine
- The Catholic University of Korea
- Seoul
- Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul
- Republic of Korea
- Institute of Chemical Processes
| |
Collapse
|
20
|
Zhang Y, Gago-Lopez N, Li N, Zhang Z, Alver N, Liu Y, Martinson AM, Mehri A, MacLellan WR. Single-cell imaging and transcriptomic analyses of endogenous cardiomyocyte dedifferentiation and cycling. Cell Discov 2019; 5:30. [PMID: 31231540 PMCID: PMC6547664 DOI: 10.1038/s41421-019-0095-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 11/16/2022] Open
Abstract
While it is recognized that there are low levels of new cardiomyocyte (CM) formation throughout life, the source of these new CM generates much debate. One hypothesis is that these new CMs arise from the proliferation of existing CMs potentially after dedifferentiation although direct evidence for this is lacking. Here we explore the mechanisms responsible for CM renewal in vivo using multi-reporter transgenic mouse models featuring efficient adult CM (ACM) genetic cell fate mapping and real-time cardiomyocyte lineage and dedifferentiation reporting. Our results demonstrate that non-myocytes (e.g., cardiac progenitor cells) contribute negligibly to new ACM formation at baseline or after cardiac injury. In contrast, we found a significant increase in dedifferentiated, cycling CMs in post-infarct hearts. ACM cell cycling was enhanced within the dedifferentiated CM population. Single-nucleus transcriptomic analysis demonstrated that CMs identified with dedifferentiation reporters had significant down-regulation in gene networks for cardiac hypertrophy, contractile, and electrical function, with shifts in metabolic pathways, but up-regulation in signaling pathways and gene sets for active cell cycle, proliferation, and cell survival. The results demonstrate that dedifferentiation may be an important prerequisite for CM proliferation and explain the limited but measurable cardiac myogenesis seen after myocardial infarction (MI).
Collapse
Affiliation(s)
- Yiqiang Zhang
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - Nuria Gago-Lopez
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - Ning Li
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA.,4State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenhe Zhang
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - Naima Alver
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - Yonggang Liu
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - Amy M Martinson
- 2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA.,5Department of Pathology, University of Washington, Seattle, WA USA
| | - Avin Mehri
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - William Robb MacLellan
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA.,6Department of Bioengineering, University of Washington, Seattle, WA USA
| |
Collapse
|
21
|
Abstract
Myocardial infarction leads to an irreversible loss of vital myocardial cells. The transplantation of new cardiomyocytes into the heart was first described over 20 years ago and represents a straightforward approach to remuscularize a damaged heart. Due to the lack of human cells a clinical application seemed ambitious; however, dramatic progress in stem cell biology over the last two decades has paved the way towards a clinical application. This is especially important as the prognosis for patients with terminal heart failure is still poor. The transplantation of either cardiomyocytes or engineered heart tissue derived from pluripotent stem cells (either embryonic stem cells or induced pluripotent stem cells) might represent a new regenerative approach. Transplantation of either cells or tissue constructs has now been evaluated in several preclinical models, which have demonstrated that an injured heart can be (partially) remuscularized; however, major hurdles towards a clinical application are the transplantation-related occurrence of arrhythmia, the potential tumorigenicity of pluripotent cells and the required immunosuppression. Several groups are working hard to solve these problems and we are optimistic that the first clinical studies will take place within the next few years.
Collapse
|
22
|
Yadav SK, Mishra PK. Isolation, Characterization and Differentiation of Mouse Cardiac Progenitor Cells. Methods Mol Biol 2019; 1842:183-191. [PMID: 30196409 DOI: 10.1007/978-1-4939-8697-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Despite several strategies developed for replenishing the dead myocardium after myocardial infarction (MI), stem cell therapy remains the leading method to regenerate new myocardium. Although induced pluripotent stem cells (iPS) and transdifferentiation of the differentiated cells have been used as novel approaches for myocardial regeneration, these approaches did not yield very successful results for myocardial regeneration in in vivo studies. Asynchronous contractility of newly formed cardiomyocytes with the existing cardiomyocytes is the most important issue with iPS approach, while very low yield of transdifferentiated cardiomyocytes and their less chances to beat in the same rhythm as existing cardiomyocytes in the MI heart are important caveats with transdifferentiation approach. CSCs are present in the heart and they have the potential to differentiate into myocardial cells. However, the number of resident CSCs is very low. Therefore, it is important to get maximum yield of CSCs during isolation process from the heart. Increasing the number of CSCs and initiating their differentiation ex vivo are crucial for CSC-based stem cell therapy. Here, we present a better method for isolation, characterization and differentiation of CSCs from the mouse heart. We also demonstrated morphological changes in the CSCs after 2 days, 3 days, and 7 days in maintenance medium and a separate group of CSCs cultured for 12 days in differentiation medium using Phase-Contrast microscopy. We have used different markers for identification of CSCs isolated from the mouse heart such as marker for mouse CSC, Sca-1, cardiac-specific markers NKX2-5, MEF2C, GATA4, and stemness markers OCT4 and SOX2. To characterize the differentiated CSCs, we used CSCs maintained in differentiation medium for 12 days. To evaluate differentiation of CSCs, we determined the expression of cardiomyocyte-specific markers actinin and troponin I. Overall; we described an elegant method for isolation, identification, differentiation and characterization of CSCs from the mouse heart.
Collapse
Affiliation(s)
- Santosh Kumar Yadav
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paras Kumar Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
23
|
Budash HV, Bilko NM. Embryonic and Induced Pluripotent Stem Cells and Their Differentiation in the Cardiomyocyte Direction in the Presence of Dimethyl Sulfoxide. CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719010055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Rodrigues ICP, Kaasi A, Maciel Filho R, Jardini AL, Gabriel LP. Cardiac tissue engineering: current state-of-the-art materials, cells and tissue formation. ACTA ACUST UNITED AC 2018; 16:eRB4538. [PMID: 30281764 PMCID: PMC6178861 DOI: 10.1590/s1679-45082018rb4538] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/24/2018] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases are the major cause of death worldwide. The heart has limited capacity of regeneration, therefore, transplantation is the only solution in some cases despite presenting many disadvantages. Tissue engineering has been considered the ideal strategy for regenerative medicine in cardiology. It is an interdisciplinary field combining many techniques that aim to maintain, regenerate or replace a tissue or organ. The main approach of cardiac tissue engineering is to create cardiac grafts, either whole heart substitutes or tissues that can be efficiently implanted in the organism, regenerating the tissue and giving rise to a fully functional heart, without causing side effects, such as immunogenicity. In this review, we systematically present and compare the techniques that have drawn the most attention in this field and that generally have focused on four important issues: the scaffold material selection, the scaffold material production, cellular selection and in vitro cell culture. Many studies used several techniques that are herein presented, including biopolymers, decellularization and bioreactors, and made significant advances, either seeking a graft or an entire bioartificial heart. However, much work remains to better understand and improve existing techniques, to develop robust, efficient and efficacious methods.
Collapse
Affiliation(s)
| | | | - Rubens Maciel Filho
- Instituto Nacional de Ciência e Tecnologia em Biofabricação, Campinas, SP, Brazil
| | - André Luiz Jardini
- Instituto Nacional de Ciência e Tecnologia em Biofabricação, Campinas, SP, Brazil
| | | |
Collapse
|
25
|
Abstract
Some of the most significant leaps in the history of modern civilization-the development of article in China, the steam engine, which led to the European industrial revolution, and the era of computers-have occurred when science converged with engineering. Recently, the convergence of human pluripotent stem cell technology with biomaterials and bioengineering have launched a new medical innovation: functional human engineered tissue, which promises to revolutionize the treatment of failing organs including most critically, the heart. This compendium covers recent, state-of-the-art developments in the fields of cardiovascular tissue engineering, as well as the needs and challenges associated with the clinical use of these technologies. We have not attempted to provide an exhaustive review in stem cell biology and cardiac cell therapy; many other important and influential reports are certainly merit but already been discussed in several recent reviews. Our scope is limited to the engineered tissues that have been fabricated to repair or replace components of the heart (eg, valves, vessels, contractile tissue) that have been functionally compromised by diseases or developmental abnormalities. In particular, we have focused on using an engineered myocardial tissue to mitigate deficiencies in contractile function.
Collapse
Affiliation(s)
- Jianyi Zhang
- From the Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham (J.Z., W.Z.)
| | - Wuqiang Zhu
- From the Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham (J.Z., W.Z.)
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada (M.R.)
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering and Department of Medicine, Columbia University, New York, NY (G.V.-N.)
| |
Collapse
|
26
|
|
27
|
Huang R, Lv H, Yao K, Ge L, Ye Z, Ding H, Zhang Y, Lu H, Huang Z, Zhang S, Zou Y, Ge J. Effects of different doses of granulocyte colony-stimulating factor mobilization therapy on ischemic cardiomyopathy. Sci Rep 2018; 8:5922. [PMID: 29651017 PMCID: PMC5897440 DOI: 10.1038/s41598-018-24020-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/21/2018] [Indexed: 01/14/2023] Open
Abstract
G-CSF mobilization might be beneficial to ICM, but the relationship between effect/safety and the dosage of G-CSF remains unclear. In this study, 24 pigs were used to build ICM models and were randomized into four groups. Four weeks later, different dosages of G-CSF were given daily by subcutaneous injection for 5 days. Another 4 weeks later, all the animals were sacrificed. Electrocardiography, coronary arteriography, left ventriculography, transthoracic echocardiography, cardiac MRI, and SPECT, histopathologic analysis, and immunohistochemistry techniques were used to evaluate left ventricular function and myocardial infarct size. Four weeks after G-CSF treatment, pigs in middle-dose G-CSF group exhibited obvious improvements of left ventricular remodeling and function. Moderate G-CSF mobilization ameliorated the regional contractility of ICM, preserved myocardial viability, and reduced myocardial infarct size. More neovascularization and fewer apoptotic myocardial cells were observed in the ischemic region of the heart in middle-dose group. Expression of vWF, VEGF and MCP-1 were up-regulated, and Akt1 was activated in high- and middle-dose groups. Moreover, CRP, TNF-α and S-100 were elevated after high-dose G-CSF mobilization. Middle-dose G-CSF mobilization therapy is an effective and safe treatment for ICM, and probably acts via a mechanism involving promoting neovascularization, inhibiting cardiac fibrosis and anti-apoptosis.
Collapse
Affiliation(s)
- Rongchong Huang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, China
| | - Haichen Lv
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, China
| | - Kang Yao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Lei Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Zhishuai Ye
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, China
| | - Huaiyu Ding
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, China
| | - Yiqi Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Hao Lu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Zheyong Huang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Shuning Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Yunzeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.,Institutes of Biomedical Science, Fudan University, 138 Dong'an Road, Shanghai, 200032, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China. .,Institutes of Biomedical Science, Fudan University, 138 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
28
|
González-Rosa JM, Sharpe M, Field D, Soonpaa MH, Field LJ, Burns CE, Burns CG. Myocardial Polyploidization Creates a Barrier to Heart Regeneration in Zebrafish. Dev Cell 2018; 44:433-446.e7. [PMID: 29486195 PMCID: PMC5830170 DOI: 10.1016/j.devcel.2018.01.021] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/11/2017] [Accepted: 01/26/2018] [Indexed: 01/07/2023]
Abstract
Correlative evidence suggests that polyploidization of heart muscle, which occurs naturally in post-natal mammals, creates a barrier to heart regeneration. Here, we move beyond a correlation by demonstrating that experimental polyploidization of zebrafish cardiomyocytes is sufficient to suppress their proliferative potential during regeneration. Initially, we determined that zebrafish myocardium becomes susceptible to polyploidization upon transient cytokinesis inhibition mediated by dominant-negative Ect2. Using a transgenic strategy, we generated adult animals containing mosaic hearts composed of differentially labeled diploid and polyploid-enriched cardiomyocyte populations. Diploid cardiomyocytes outcompeted their polyploid neighbors in producing regenerated heart muscle. Moreover, hearts composed of equivalent proportions of diploid and polyploid cardiomyocytes failed to regenerate altogether, demonstrating that a critical percentage of diploid cardiomyocytes is required to achieve heart regeneration. Our data identify cardiomyocyte polyploidization as a barrier to heart regeneration and suggest that mobilizing rare diploid cardiomyocytes in the human heart will improve its regenerative capacity.
Collapse
Affiliation(s)
- Juan Manuel González-Rosa
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Michka Sharpe
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Dorothy Field
- The Krannert Institute of Cardiology, the Wells Center for Pediatric Research, and Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark H Soonpaa
- The Krannert Institute of Cardiology, the Wells Center for Pediatric Research, and Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Loren J Field
- The Krannert Institute of Cardiology, the Wells Center for Pediatric Research, and Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Caroline E Burns
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - C Geoffrey Burns
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Paiva S, Agbulut O. MiRroring the Multiple Potentials of MicroRNAs in Acute Myocardial Infarction. Front Cardiovasc Med 2017; 4:73. [PMID: 29209617 PMCID: PMC5701911 DOI: 10.3389/fcvm.2017.00073] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/31/2017] [Indexed: 12/28/2022] Open
Abstract
At present, cardiovascular diseases are depicted to be the leading cause of death worldwide according to the World Health Organization. In the future, projections predict that ischemic heart disease will persist in the top main causes of illness. Within this alarming context, some tiny master regulators of gene expression programs, namely, microRNAs (miRNAs) carry three promising potentials. In fact, miRNAs can prove to be useful not only in terms of biomarkers allowing heart injury detection but also in terms of therapeutics to overcome limitations of past strategies and treat the lesions. In a more creative approach, they can even be used in the area of human engineered cardiac tissues as maturation tools for cardiomyocytes (CMs) derived from pluripotent stem cell. Very promising not only for patient-specific cell-based therapies but also to develop biomimetic microsystems for disease modeling and drug screening, these cells greatly contribute to personalized medicine. To get into the heart of the matter, the focus of this review lies primarily on miRNAs as acute myocardial infarction (AMI) biomarkers. Only large cohort studies comprising over 100 individuals to reach a potent statistical value were considered. Certain miRNAs appeared to possibly complement protein-based biomarkers and classical risk factors. Some were even described to bear potential in the discrimination of similar symptomatic pathologies. However, differences between pre-analytical and analytical approaches substantially influenced miRNA data. Further supported by meta-analysis studies, this problem had to be addressed. A detailed critical analysis of each step to define miRNAs biomarker potential is provided to inspire a future improved universal strategy. Interestingly, a recurrent set of cardiomyocyte-enriched miRNAs was found, namely, miR-1; miR-133; miR-208a/b; and miR-499a. Each member of this myomiRs group displayed promising roles either individually or in combination as AMI diagnostic or prognostic biomarkers. Furthermore, a precise combo was shown to be powerful enough to transdifferentiate human fibroblasts into CMs opening doors in the therapeutics. Following these discoveries, they also emerged as optional tools to transfect in order to mature CMs derived from pluripotent stem cells. Ultimately, the multiple potentials carried by the myomiRs miR-1; miR-133; miR-208a/b; and miR-499a still remain to be fully unveiled.
Collapse
Affiliation(s)
- Solenne Paiva
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Aging, Paris, France
| | - Onnik Agbulut
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Aging, Paris, France
| |
Collapse
|
30
|
Toischer K, Zhu W, Hünlich M, Mohamed BA, Khadjeh S, Reuter SP, Schäfer K, Ramanujam D, Engelhardt S, Field LJ, Hasenfuss G. Cardiomyocyte proliferation prevents failure in pressure overload but not volume overload. J Clin Invest 2017; 127:4285-4296. [PMID: 29083322 DOI: 10.1172/jci81870] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/26/2017] [Indexed: 12/17/2022] Open
Abstract
Induction of the cell cycle is emerging as an intervention to treat heart failure. Here, we tested the hypothesis that enhanced cardiomyocyte renewal in transgenic mice expressing cyclin D2 would be beneficial during hemodynamic overload. We induced pressure overload by transthoracic aortic constriction (TAC) or volume overload by aortocaval shunt in cyclin D2-expressing and WT mice. Although cyclin D2 expression dramatically improved survival following TAC, it did not confer a survival advantage to mice following aortocaval shunt. Cardiac function decreased following TAC in WT mice, but was preserved in cyclin D2-expressing mice. On the other hand, cardiac structure and function were compromised in response to aortocaval shunt in both WT and cyclin D2-expressing mice. The preserved function and improved survival in cyclin D2-expressing mice after TAC was associated with an approximately 50% increase in cardiomyocyte number and exaggerated cardiac hypertrophy, as indicated by increased septum thickness. Aortocaval shunt did not further impact cardiomyocyte number in mice expressing cyclin D2. Following TAC, cyclin D2 expression attenuated cardiomyocyte hypertrophy, reduced cardiomyocyte apoptosis, fibrosis, calcium/calmodulin-dependent protein kinase IIδ phosphorylation, brain natriuretic peptide expression, and sustained capillarization. Thus, we show that cyclin D2-induced cardiomyocyte renewal reduced myocardial remodeling and dysfunction after pressure overload but not after volume overload.
Collapse
Affiliation(s)
- Karl Toischer
- Department of Cardiology and Pneumology, Heart Center, Georg-August-University, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site Goettingen, Goettingen, Germany
| | - Wuqiang Zhu
- Krannert Institute of Cardiology and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark Hünlich
- Department of Cardiology and Pneumology, Heart Center, Georg-August-University, Goettingen, Germany
| | - Belal A Mohamed
- Department of Cardiology and Pneumology, Heart Center, Georg-August-University, Goettingen, Germany.,Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sara Khadjeh
- Department of Cardiology and Pneumology, Heart Center, Georg-August-University, Goettingen, Germany
| | - Sean P Reuter
- Krannert Institute of Cardiology and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Katrin Schäfer
- Department of Cardiology and Pneumology, Heart Center, Georg-August-University, Goettingen, Germany.,Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Deepak Ramanujam
- Institute of Pharmacology and Toxicology, Technical University of Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University of Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Loren J Field
- Krannert Institute of Cardiology and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, Heart Center, Georg-August-University, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site Goettingen, Goettingen, Germany
| |
Collapse
|
31
|
Zhu W, Zhao M, Mattapally S, Chen S, Zhang J. CCND2 Overexpression Enhances the Regenerative Potency of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Remuscularization of Injured Ventricle. Circ Res 2017; 122:88-96. [PMID: 29018036 DOI: 10.1161/circresaha.117.311504] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RATIONALE The effectiveness of transplanted, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for treatment of ischemic myocardial injury is limited by the exceptionally low engraftment rate. OBJECTIVE To determine whether overexpression of the cell cycle activator CCND2 (cyclin D2) in hiPSC-CMs can increase the graft size and improve myocardial recovery in a mouse model of myocardial infarction by increasing the proliferation of grafted cells. METHODS AND RESULTS Human CCND2 was delivered to hiPSCs via lentiviral-mediated gene transfection. In cultured cells, markers for cell cycle activation and proliferation were ≈3- to 7-folds higher in CCND2-overexpressing hiPSC-CMs (hiPSC-CCND2OECMs) than in hiPSC-CMs with normal levels of CCND2 (hiPSC-CCND2WTCMs; P<0.01). The pluripotent genes (Oct 4, Sox2, and Nanog) decrease to minimal levels and undetectable levels at day 1 and 10 after differentiating to CMs. In the mouse myocardial infarction model, cardiac function, infarct size, and the number of engrafted cells were similar at week 1 after treatment with hiPSC-CCND2OECMs or hiPSC-CCND2WTCMs but was about tripled in hiPSC-CCND2OECM-treated than in hiPSC-CCND2WTCM-treated animals at week 4 (P<0.01). The cardiac function and infarct size were significantly better in both cell treatment groups' hearts than in control hearts, which was most prominent in hiPSC-CCND2OECM-treated animals (P<0.05, each). No tumor formation was observed in any hearts. CONCLUSIONS CCND2 overexpression activates cell cycle progression in hiPSC-CMs that results in a significant enhanced potency for myocardial repair as evidenced by remuscularization of injured myocardium. This left ventricular muscle regeneration and increased angiogenesis in border zone are accompanied by a significant improvement of left ventricular chamber function.
Collapse
Affiliation(s)
- Wuqiang Zhu
- From the Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham (W.Z., M.Z., S.M., J.Z.); and Department of Physiology and Pathophysiology, Fudan University, Shanghai, China (M.Z., S.C.)
| | - Meng Zhao
- From the Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham (W.Z., M.Z., S.M., J.Z.); and Department of Physiology and Pathophysiology, Fudan University, Shanghai, China (M.Z., S.C.)
| | - Saidulu Mattapally
- From the Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham (W.Z., M.Z., S.M., J.Z.); and Department of Physiology and Pathophysiology, Fudan University, Shanghai, China (M.Z., S.C.)
| | - Sifeng Chen
- From the Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham (W.Z., M.Z., S.M., J.Z.); and Department of Physiology and Pathophysiology, Fudan University, Shanghai, China (M.Z., S.C.)
| | - Jianyi Zhang
- From the Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham (W.Z., M.Z., S.M., J.Z.); and Department of Physiology and Pathophysiology, Fudan University, Shanghai, China (M.Z., S.C.).
| |
Collapse
|
32
|
Yang Y, Yang G, Du H, Dong N, Yu B. Bioinformatics analysis of key genes and signaling pathways associated with myocardial infarction following telomerase activation. Mol Med Rep 2017; 16:2915-2924. [PMID: 28713962 DOI: 10.3892/mmr.2017.6938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 05/03/2017] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to identify key genes and signaling pathways associated with myocardial infarction (MI) following telomerase activation, and investigate the possible underlying molecular mechanisms involved in this process. Array data of GSE62973 was downloaded, including 11 samples from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were analyzed in infarct vs. control, infarct + telomerase vs. control, and infarct + telomerase vs. infarct with the Linear Models for Microarray and RNA‑Seq Data package. Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed for upregulated and downregulated genes by the Database for Annotation, Visualization and Integrated Discovery. Sub network modules of 3 protein‑protein interaction (PPI) networks were analyzed by Clustering with Overlapping Neighbourhood Expansion, and genes associated with telomerase were analyzed. Proto‑oncogene tyrosine‑protein kinase Src (Src) and proto‑oncogene tyrosine‑protein kinase Fyn (Fyn) were the hub nodes of the greatest degree in the PPI network for the infarct + telomerase vs. control comparison group and infarct + telomerase vs. infarct comparison group, respectively. Olfactory receptor gene family associated genes, including olfactory receptor 10 were significantly enriched in the sub network modules of the 3 comparison groups. In addition, olfactory transduction was a significantly enriched pathway by downregulation of DEGs in the infarct vs. control comparison group, and was additionally a significantly enriched pathway by upregulated DEGs in infarct + telomerase vs. infarct comparison group. Olfactory transduction was a significant pathway enriched by genes associated with telomerase. Telomerase activation may serve an important role in MI, in part, via the regulation of Src, Fyn and olfactory receptor family associated genes.
Collapse
Affiliation(s)
- Yi Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Guang Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hongwei Du
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Nana Dong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
33
|
Watanabe E, Smith DM, Delcarpio JB, Sun J, Smart FW, Van Meter CH, Claycomb WC. Cardiomyocyte Transplantation in a Porcine Myocardial Infarction Model. Cell Transplant 2017; 7:239-46. [PMID: 9647433 DOI: 10.1177/096368979800700302] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Transplantation of cardiomyocytes into the heart is a potential treatment for replacing damaged cardiac muscle. To investigate the feasibility and efficiency of this technique, either a cardiac-derived cell line (HL-1 cells), or normal fetal or neonatal pig cardiomyocytes were grafted into a porcine model of myocardial infarction. The myocardial infarction was created by the placement of an embolization coil in the distal portion of the left anterior descending artery in Yorkshire pigs (n = 9). Four to 5 wk after creation of an infarct, the three preparations of cardiomyocytes were grafted, at 1 × 106 cells/20 μL into normal and into the middle of the infarcted myocardium. The hearts were harvested and processed for histologic examinations 4 to 5 wk after the cell grafts. Histologic evaluation of the graft sites demonstrated that HL-1 cells and fetal pig cardiomyocytes formed stable grafts within the normal myocardium without any detrimental effect including arrhythmia. In addition, a marked increase in angiogenesis was observed both within the grafts and adjacent host myocardium. Electron microscopy studies demonstrated that fetal pig cardiomyocytes and the host myocardial cells were coupled with adherens-type junctions and gap junctions. Histologic examination of graft sites from infarct tissue failed to show the presence of grafted HL-1 cells, fetal, or neonatal pig cardiomyocytes. Cardiomyocyte transplantation may provide the potential means for cell-mediated gene therapy for introduction of therapeutic molecules into the heart.
Collapse
Affiliation(s)
- E Watanabe
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans 70112, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Galiñanes M, Loubani M, Davies J, Chin D, Pasi J, Bell PR. Autotransplantation of Unmanipulated Bone Marrow into Scarred Myocardium is Safe and Enhances Cardiac Function in Humans. Cell Transplant 2017; 13:7-13. [PMID: 15040600 DOI: 10.3727/000000004772664842] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stem cell transplants into damaged myocardium may have the potential to improve cardiac function. We investigated the safety of transplanting unmanipulated autologous bone marrow into infarcted myocardium of patients undergoing coronary bypass surgery and assessed its efficacy to improve cardiac function. Fourteen patients with one or more areas of transmural myocardial infarction were studied. Autologous bone marrow was obtained by sternal bone aspirate at the time of surgery, diluted in autologous serum at a ratio of 1:2, and then injected 1 cm apart into the mid-depth of the left ventricular scar. There were no deaths, no perioperative myocardial infarctions, and no significant ventricular arrhythmias. Dobutamine stress echocardiography demonstrated overall improvement in the global and regional left ventricular function 6 weeks and 10 months after surgery. Of 34 infarcted left ventricular segments, 11 were injected with bone marrow alone, 13 were revascularized with a bypass graft alone, and 10 received bone marrow transplantation and a bypass graft in combination. Only the left ventricle segmental wall motion score of the areas injected with bone marrow and receiving a bypass graft in combination improved at low dose and at peak dobutamine stress. These findings suggest that transplantation of unmanipulated autologous bone marrow into scar tissue of the human heart is safe and enhances cardiac function only when used in combination with myocardial revascularization. This benefit can be seen after 6 weeks of the bone marrow transplant and is maintained after 10 months of follow-up.
Collapse
Affiliation(s)
- Manuel Galiñanes
- Department of Integrative Human Cardiovascular Physiology and Cardiac Surgery, University of Leicester, Glenfield Hospital, Leicester, LE3 9QP, UK.
| | | | | | | | | | | |
Collapse
|
35
|
Robinson SW, Cho PW, Levitsky HI, Olson JL, Hruban RH, Acker MA, Kessler PD. Arterial Delivery of Genetically Labelled Skeletal Myoblasts to the Murine Heart: Long-Term Survival and Phenotypic Modification of Implanted Myoblasts. Cell Transplant 2017; 5:77-91. [PMID: 8665080 DOI: 10.1177/096368979600500113] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The ability to replace damaged myocardial tissue with new striated muscle would constitute a major advance in the treatment of diseases that irreversibly injure cardiac muscle cells. The creation of focal grafts of skeletal muscle has been reported following the intramural injection of skeletal myoblasts into both normal and injured myocardium. The goals of this study were to determine whether skeletal myoblast-derived cells can be engrafted into the murine heart following arterial delivery. The murine heart was seeded with genetically labeled C2C12 myoblasts introduced into the arterial circulation of the heart via a transventricular injection. A transventricular injection provided access to the coronary and systemic circulations. Implanted cells were characterized using histochemical staining for β-galactosidase, immunofluorescent staining for muscle-specific antigens, and electron microscopy. Initially the injected cells were observed entrapped in myocardial capillaries. One week after injection myoblasts were present in the myocardial interstitium and were largely absent from the myocardial capillary bed. Implanted cells underwent myogenic development, characterized by the expression of a fast-twitch skeletal muscle sarco-endoplasmic reticulum calcium ATPase (SERCA1) and formation of myofilaments. Four months following injection myoblast-derived cells began to express a slow-twitch/cardiac protein, phospholamban, that is normally not expressed by C2C12 cells in vitro. Most surprisingly, regions of close apposition between LacZ labeled cells and native cardiomyocytes contained structures that resembled desmosomes, fascia adherens junctions, and gap junctions. The cardiac gap junction protein, connexin43, was localized to some of the interfaces between implanted cells and cardiomyocytes. Collectively, these findings suggest that arterially delivered myoblasts can be engrafted into the heart, and that prolonged residence in the myocardium may alter the phenotype of these skeletal muscle-derived cells. Further studies are necessary to determine whether arterial delivery of skeletal myoblasts can be developed as treatment for myocardial dysfunction.
Collapse
Affiliation(s)
- S W Robinson
- Peter Belfer Cardiac Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Huwer H, Winning J, Vollmar B, Welter C, Löhbach C, Menger MD, Schäfers HJ. Long-Term Cell Survival and Hemodynamic Improvements after Neonatal Cardiomyocyte and Satellite Cell Transplantation into Healed Myocardial Cryoinfarcted Lesions in Rats. Cell Transplant 2017; 12:757-67. [PMID: 14653622 DOI: 10.3727/000000003108747361] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cell engraftment is a new strategy for the repair of ischemic myocardial lesions. The hemodynamic effectiveness of this strategy, however, is not completely elucidated yet. In a rat model of cryothermia-induced myocardial dysfunction, we investigated whether syngeneic transplantation of neonatal cardiomyocytes or satellite cells is able to improve left ventricular performance. Myocardial infarction was induced in female Lewis rats by a standardized cryolesion to the obtuse margin of the left ventricle. After 4 weeks, 5 × 106 genetically male neonatal cardiomyocytes (n= 16) or satellite cells (n = 16) were engrafted into the myocardial scar. Sham-transplanted animals (n = 15) received injections with cell-free medium. Sham-operated animals (n = 15) served as controls. Left ventricular performance was analyzed 4 months after cell engraftment. Chimerism after this sex-mismatched transplantation was evaluated by detection of PCR-amplified DNA of the Y chromosome. The average heart weight of the infarcted animals significantly exceeded that of controls (p < 0.05). In sham-transplanted animals, mean aortic pressure, left ventricular systolic pressure, aortic flow (indicator of cardiac output), and left ventricular systolic reserve were significantly lower (p < 0.05) compared with sham-operated controls. This was associated with deterioration of ventricular diastolic function (maximal negative dP/dt, time constants of isovolumic relaxation; p < 0.05). Transplantation of satellite cells was found more effective than transplantation of neonatal cardiomyocytes, resulting in i) normalization of mean aortic pressure compared with sham-operated controls, and ii) significantly improved left ventricular systolic pressure and aortic flow (p < 0.05) compared with sham-transplanted animals. Left ventricular systolic reserve and diastolic function, however, were improved by neither satellite cell nor neonatal cardiomyocyte transplantation. Analysis of male genomic DNA revealed 3.98 ± 2.70 ng in hearts after neonatal cardiomyocyte engraftment and 6.16 ± 4.05 ng in hearts after satellite cell engraftment, representing approximately 103 viable engrafted cells per heart. Our study demonstrates i) long-term survival of both neonatal cardiomyocytes and satellite cells after transplantation into cryoinfarcted rat hearts, ii) slight superiority of satellite cells over neonatal cardiomyocytes in improving global left ventricular pump performance, and iii) no effect of both transplant procedures on diastolic dysfunction.
Collapse
Affiliation(s)
- Hanno Huwer
- Department of Thoracic and Cardiovascular Surgery, University of Saarland, D-66421 Homburg/Saar, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Edge AS, Gosse ME, Dinsmore J. Xenogeneic Cell Therapy: Current Progress and Future Developments in Porcine Cell Transplantation. Cell Transplant 2017; 7:525-39. [PMID: 9853581 DOI: 10.1177/096368979800700603] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The multitude of distinct cell types present in mature and developing tissues display unique physiologic characteristics. Cellular therapy is a novel technology with the promise of utilizing this diversity to treat a wide range of human degenerative diseases. Intractable diseases, disorders, and injuries are characterized by cell death or aberrant cellular function. Cell transplantation can replace diseased or lost tissue to provide restorative therapy for these conditions. The limited use of cell transplants as a basis for current therapy can, in part, be attributed to the lack of available human cells suitable for transplantation. This has prevented further realization of the promise of cell transplantation as a platform technology. Accordingly, cell-based therapies such as blood transfusions, for which the cells are readily available, are a standard part of current medical practice. Despite numerous attempts to expand primary human cells in tissue culture, current technological limitations of this approach in regard to proliferative capacity and maintenance of the differentiated phenotype has prevented their use for transplantation. Further, use of human stem cells for the derivation of specific cell types for transplantation is an area of future application with great potential, but hurdles remain in regard to deriving and sufficiently expanding these multi-potential cells. Thus, it appears that primary cells are at present a superior source for transplantation. This review focuses on pigs as a source of a variety of primary cells to advance cell therapy to the clinic and implement achievement of its full potential. We outline the advantages and disadvantages of xenogeneic cell therapy while underscoring the utility of transplantable porcine cells for the treatment of human disease. © 1998 Elsevier Science Inc.
Collapse
Affiliation(s)
- A S Edge
- Diacrin Inc., Charlestown, MA 02129, USA
| | | | | |
Collapse
|
38
|
Feyen DA, Gaetani R, Doevendans PA, Sluijter JP. Stem cell-based therapy: Improving myocardial cell delivery. Adv Drug Deliv Rev 2016; 106:104-115. [PMID: 27133386 DOI: 10.1016/j.addr.2016.04.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/15/2022]
Abstract
Stem cell-based therapies form an exciting new class of medicine that attempt to provide the body with the building blocks required for the reconstruction of damaged organs. However, delivering cells to the correct location, while preserving their integrity and functional properties, is a complex undertaking. These challenges have led to the development of a highly dynamic interdisciplinary research field, wherein medical, biological, and chemical sciences have collaborated to develop strategies to overcome the physiological barriers imposed on the cellular therapeutics. In this respect, improving the acute retention and subsequent survival of stem cells is key to effectively increase the effect of the therapy, while proper tissue integration is imperative for stem cells to functionally replace lost cells in damaged organs. In this review, we will use the heart as an example to highlight the current knowledge of therapeutic stem cell utilization, the existing pitfalls and limitations, and the approaches that have been developed to overcome them.
Collapse
|
39
|
Peinkofer G, Burkert K, Urban K, Krausgrill B, Hescheler J, Saric T, Halbach M. From Early Embryonic to Adult Stage: Comparative Study of Action Potentials of Native and Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells Dev 2016; 25:1397-406. [DOI: 10.1089/scd.2016.0073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Gabriel Peinkofer
- Department of Internal Medicine III, University of Cologne, Cologne, Germany
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Karsten Burkert
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Katja Urban
- Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | - Benjamin Krausgrill
- Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Tomo Saric
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Marcel Halbach
- Department of Internal Medicine III, University of Cologne, Cologne, Germany
| |
Collapse
|
40
|
Kharaziha M, Memic A, Akbari M, Brafman DA, Nikkhah M. Nano-Enabled Approaches for Stem Cell-Based Cardiac Tissue Engineering. Adv Healthc Mater 2016; 5:1533-53. [PMID: 27199266 DOI: 10.1002/adhm.201600088] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/01/2016] [Indexed: 12/20/2022]
Abstract
Cardiac diseases are the most prevalent causes of mortality in the world, putting a major economic burden on global healthcare system. Tissue engineering strategies aim at developing efficient therapeutic approaches to overcome the current challenges in prolonging patients survival upon cardiac diseases. The integration of advanced biomaterials and stem cells has offered enormous promises for regeneration of damaged myocardium. Natural or synthetic biomaterials have been extensively used to deliver cells or bioactive molecules to the site of injury in heart. Additionally, nano-enabled approaches (e.g., nanomaterials, nanofeatured surfaces) have been instrumental in developing suitable scaffolding biomaterials and regulating stem cells microenvironment to achieve functional therapeutic outcomes. This review article explores tissue engineering strategies, which have emphasized on the use of nano-enabled approaches in combination with stem cells for regeneration and repair of injured myocardium upon myocardial infarction (MI). Primarily a wide range of biomaterials, along with different types of stem cells, which have utilized in cardiac tissue engineering will be presented. Then integration of nanomaterials and surface nanotopographies with biomaterials and stem cells for myocardial regeneration will be presented. The advantages and challenges of these approaches will be reviewed and future perspective will be discussed.
Collapse
Affiliation(s)
- Mahshid Kharaziha
- Biomaterials Research Group; Department of Materials Engineering; Isfahan University of Technology; Isfahan 8415683111 Iran
| | - Adnan Memic
- Center of Nanotechnology; King Abdulaziz University; Jeddah 21589 Saudi Arabia
| | - Mohsen Akbari
- Department of Mechanical Engineering; University of Victoria; Victoria BC Canada
| | - David A. Brafman
- School of Biological and Health Systems Engineering (SBHSE) Harington; Bioengineering Program; Arizona State University; Tempe Arizona 85287 USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE) Harington; Bioengineering Program; Arizona State University; Tempe Arizona 85287 USA
| |
Collapse
|
41
|
Aix E, Gutiérrez-Gutiérrez Ó, Sánchez-Ferrer C, Aguado T, Flores I. Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation. J Cell Biol 2016; 213:571-83. [PMID: 27241915 PMCID: PMC4896054 DOI: 10.1083/jcb.201510091] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/06/2016] [Indexed: 12/21/2022] Open
Abstract
The molecular mechanisms that drive mammalian cardiomyocytes out of the cell cycle soon after birth remain largely unknown. Here, we identify telomere dysfunction as a critical physiological signal for cardiomyocyte cell-cycle arrest. We show that telomerase activity and cardiomyocyte telomere length decrease sharply in wild-type mouse hearts after birth, resulting in cardiomyocytes with dysfunctional telomeres and anaphase bridges and positive for the cell-cycle arrest protein p21. We further show that premature telomere dysfunction pushes cardiomyocytes out of the cell cycle. Cardiomyocytes from telomerase-deficient mice with dysfunctional telomeres (G3 Terc(-/-)) show precocious development of anaphase-bridge formation, p21 up-regulation, and binucleation. In line with these findings, the cardiomyocyte proliferative response after cardiac injury was lost in G3 Terc(-/-) newborns but rescued in G3 Terc(-/-)/p21(-/-) mice. These results reveal telomere dysfunction as a crucial signal for cardiomyocyte cell-cycle arrest after birth and suggest interventions to augment the regeneration capacity of mammalian hearts.
Collapse
Affiliation(s)
- Esther Aix
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | | | | | - Tania Aguado
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Ignacio Flores
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| |
Collapse
|
42
|
Fu Q, Su D, Wang K, Zhao Y. Tumorigenesis of nuclear transfer-derived embryonic stem cells is reduced through differentiation and enrichment following transplantation in the infarcted rat heart. Mol Med Rep 2016; 13:4659-65. [PMID: 27082733 DOI: 10.3892/mmr.2016.5092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 06/26/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to evaluate the tumorigenic potential of nuclear transfer-derived (nt) mouse embryonic stem cells (mESCs) transplanted into infarcted rat hearts. The nt‑mESCs were cultured using a bioreactor system to develop embryoid bodies, which were induced with 1% ascorbic acid to differentiate into cardiomyocytes. The nt‑mESC‑derived cardiomyocytes (nt‑mESCs‑CMs) were enriched using Percoll density gradient separation to generate nt‑mESCs‑percoll‑enriched (PE)‑CMs. Ischemia was induced by ligating the left anterior descending coronary artery in female Sprague‑Dawley rats. Immunosuppressed rats (daily intraperitoneal injections of cyclosporine A and methylprednisolone) were randomly assigned to receive an injection containing 5x106 mESCs, nt‑mESCs, nt‑mESC‑CMs or nt‑mESC‑PE‑CMs. Analysis performed 8 weeks following transplantation revealed teratoma formation in 80, 86.67 and 33.33% of the rats administered with the mESCs, nt‑mESCs and nt‑mESC‑CMs, respectively, indicating no significant difference between the mESCs and nt‑mESCs; but significance (P<0.05) between the nt‑mESC‑CMs and nt‑mESCs. The mean tumor volumes were 82.72±6.52, 83.17±3.58 and 50.40±5.98 mm3, respectively (P>0.05 mESCs, vs. nt‑mESCs; P<0.05 nt‑mESC‑CMs, vs. nt‑mESCs). By contrast, no teratoma formation was detected in the rats, which received nt‑mESC‑PE‑CMs. Octamer‑binding transcription factor‑4, a specific marker of undifferentiated mESCs, was detected using polymerase chain reaction in the rats, which received nt‑mESCs and nt‑mESC‑CMs, but not in rats administered with nt‑mESC‑PE‑CMs. In conclusion, nt‑mESCs exhibited the same pluripotency as mESCs, and teratoma formation following nt‑mESC transplantation was reduced by cell differentiation and enrichment.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Dechun Su
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Ke Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yingjun Zhao
- Department of Cardiology, The People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
43
|
Soonpaa MH, Zebrowski DC, Platt C, Rosenzweig A, Engel FB, Field LJ. Cardiomyocyte Cell-Cycle Activity during Preadolescence. Cell 2016; 163:781-2. [PMID: 26544927 DOI: 10.1016/j.cell.2015.10.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mark H Soonpaa
- The Krannert Institute of Cardiology, and the Riley Heart Research Center, Wells Center for Pediatric Research, and Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, IN 46202, USA
| | - David C Zebrowski
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054, Erlangen, Germany
| | - Colin Platt
- The Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Anthony Rosenzweig
- The Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054, Erlangen, Germany
| | - Loren J Field
- The Krannert Institute of Cardiology, and the Riley Heart Research Center, Wells Center for Pediatric Research, and Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, IN 46202, USA.
| |
Collapse
|
44
|
Zuppinger C. 3D culture for cardiac cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1873-81. [PMID: 26658163 DOI: 10.1016/j.bbamcr.2015.11.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 01/26/2023]
Abstract
This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Christian Zuppinger
- Cardiology, Bern University Hospital, Department of Clinical Research, MEM G803b, Murtenstrasse 35, CH-3008, Bern, Switzerland.
| |
Collapse
|
45
|
He J, Ma C, Liu W, Wang J. On-chip monitoring of skeletal myoblast transplantation for the treatment of hypoxia-induced myocardial injury. Analyst 2015; 139:4482-90. [PMID: 25025637 DOI: 10.1039/c4an00697f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comprehensive elucidation of the unexpected adverse events that occur in skeletal myoblast transplantation is fundamental for the optimization of myocardial therapeutic effects. However, a well-defined method to study the interactions between skeletal myoblasts and cardiomyocytes during the healing process is out of reach. Here, we describe a microfluidic method for monitoring the interactions between skeletal myoblasts and hypoxia-injured cardiomyocytes in a spatiotemporally-controlled manner, mimicking the in vivo cell transplantation process. A myocardial hypoxia environment was created using an oxygen consumption blocking reagent, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone. Meanwhile, the interactions between the skeletal L6 myoblasts and hypoxia-injured myocardium H9c2 cells were investigated, and the effects of a L6 conditional medium on H9c2 cells were comparatively analyzed by quantitatively measuring the morphological and pathophysiological dynamics of H9c2 cells. The results showed that skeletal myoblasts could repair hypoxia-injured H9c2 cells mainly through direct cell-to-cell interactions. This simple on-chip assay for investigating myocardial repair processes may provide avenues for the in vitro screening of drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- Juan He
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | | | | | | |
Collapse
|
46
|
Mesenchymal Stem Cells for Cardiac Regenerative Therapy: Optimization of Cell Differentiation Strategy. Stem Cells Int 2015; 2015:524756. [PMID: 26339251 PMCID: PMC4539177 DOI: 10.1155/2015/524756] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/28/2015] [Accepted: 03/11/2015] [Indexed: 01/25/2023] Open
Abstract
With the high mortality rate, coronary heart disease (CHD) has currently become a major life-threatening disease. The main pathological change of myocardial infarction (MI) is the induction of myocardial necrosis in infarction area which finally causes heart failure. Conventional treatments cannot regenerate the functional cell efficiently. Recent researches suggest that mesenchymal stem cells (MSCs) are able to differentiate into multiple lineages, including cardiomyocyte-like cells in vitro and in vivo, and they have been used for the treatment of MI to repair the injured myocardium and improve cardiac function. In this review, we will focus on the recent progress on MSCs derived cardiomyocytes for cardiac regeneration after MI.
Collapse
|
47
|
Geuss LR, Allen ACB, Ramamoorthy D, Suggs LJ. Maintenance of HL-1 cardiomyocyte functional activity in PEGylated fibrin gels. Biotechnol Bioeng 2015; 112:1446-56. [PMID: 25657056 DOI: 10.1002/bit.25553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/13/2015] [Accepted: 01/18/2015] [Indexed: 01/16/2023]
Abstract
Successful cellular cardiomyoplasty is dependent on biocompatible materials that can retain the cells in the myocardium in order to promote host tissue repair following myocardial infarction. A variety of methods have been explored for incorporating a cell-seeded matrix into the heart, the most popular options being direct application of an injectable system or surgical implantation of a patch. Fibrin-based gels are suitable for either of these approaches, as they are biocompatible and have mechanical properties that can be tailored by adjusting the initial fibrinogen concentration. We have previously demonstrated that conjugating amine-reactive homo-bifunctional polyethylene glycol (PEG) to the fibrinogen prior to crosslinking with thrombin can increase stability both in vivo and in vitro. Similarly, when mesenchymal stem cells are combined with PEGylated fibrin and injected into the myocardium, cell retention can be significantly increased and scar tissue reduced following myocardial infarction. We hypothesized that this gel system could similarly promote cardiomyocyte viability and function in vitro, and that optimizing the mechanical properties of the hydrogel would enhance contractility. In this study, we cultured HL-1 cardiomyocytes either on top of plated PEGylated fibrin (2D) or embedded in 3D gels and evaluated cardiomyocyte function by assessing the expression of cardiomyocyte specific markers, sarcomeric α-actin, and connexin 43, as well as contractile activity. We observed that the culture method can drastically affect the functional phenotype of HL-1 cardiomyocytes, and we present data suggesting the potential use of PEGylated fibrin gel layers to prepare a sheet-like construct for myocardial regeneration.
Collapse
Affiliation(s)
- Laura R Geuss
- Institute of Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas
| | - Alicia C B Allen
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, C0800, Austin, Texas, 78712
| | - Divya Ramamoorthy
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, C0800, Austin, Texas, 78712
| | - Laura J Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, C0800, Austin, Texas, 78712.
| |
Collapse
|
48
|
Yang T, Rubart M, Soonpaa MH, Didié M, Christalla P, Zimmermann WH, Field LJ. Cardiac engraftment of genetically-selected parthenogenetic stem cell-derived cardiomyocytes. PLoS One 2015; 10:e0131511. [PMID: 26110646 PMCID: PMC4482509 DOI: 10.1371/journal.pone.0131511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/03/2015] [Indexed: 12/22/2022] Open
Abstract
Parthenogenetic stem cells (PSCs) are a promising candidate donor for cell therapy applications. Similar to embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), PSCs exhibit self-renewing capacity and clonogenic proliferation in vitro. PSCs exhibit largely haploidentical genotype, and as such may constitute an attractive population for allogenic applications. In this study, PSCs isolated from transgenic mice carrying a cardiomyocyte-restricted reporter transgene to permit tracking of donor cells were genetically modified to carry a cardiomyocyte-restricted aminoglycoside phosphotransferase expression cassette (MHC-neor/pGK-hygror) to permit the generation of highly enriched cardiomyocyte cultures from spontaneously differentiating PSCs by simple selection with the neomycin analogue G148. Following engraftment into isogenic recipient hearts, the selected cardiomyocytes formed a functional syncytium with the host myocardium as evidenced by the presence of entrained intracellular calcium transients. These cells thus constitute a potential source of therapeutic donor cells.
Collapse
Affiliation(s)
- Tao Yang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| | - Michael Rubart
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Mark H. Soonpaa
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Michael Didié
- Institute of Pharmacology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Peter Christalla
- Institute of Pharmacology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Loren J. Field
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
49
|
Raulf A, Horder H, Tarnawski L, Geisen C, Ottersbach A, Röll W, Jovinge S, Fleischmann BK, Hesse M. Transgenic systems for unequivocal identification of cardiac myocyte nuclei and analysis of cardiomyocyte cell cycle status. Basic Res Cardiol 2015; 110:33. [PMID: 25925989 PMCID: PMC4414935 DOI: 10.1007/s00395-015-0489-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/20/2015] [Accepted: 04/17/2015] [Indexed: 11/30/2022]
Abstract
Even though the mammalian heart has been investigated for many years, there are still uncertainties in the fields of cardiac cell biology and regeneration with regard to exact fractions of cardiomyocytes (CMs) at different developmental stages, their plasticity after cardiac lesion and also their basal turnover rate. A main shortcoming is the accurate identification of CM and the demonstration of CM division. Therefore, an in vivo model taking advantage of a live reporter-based identification of CM nuclei and their cell cycle status is needed. In this technical report, we describe the generation and characterization of embryonic stem cells and transgenic mice expressing a fusion protein of human histone 2B and the red fluorescence protein mCherry under control of the CM specific αMHC promoter. This fluorescence label allows unequivocal identification and quantitation of CM nuclei and nuclearity in isolated cells and native tissue slices. In ventricles of adults, we determined a fraction of <20 % CMs and binucleation of 77-90 %, while in atria a CM fraction of 30 % and a binucleation index of 14 % were found. We combined this transgenic system with the CAG-eGFP-anillin transgene, which identifies cell division and established a novel screening assay for cell cycle-modifying substances in isolated, postnatal CMs. Our transgenic live reporter-based system enables reliable identification of CM nuclei and determination of CM fractions and nuclearity in heart tissue. In combination with CAG-eGFP-anillin-mice, the cell cycle status of CMs can be monitored in detail enabling screening for proliferation-inducing substances in vitro and in vivo.
Collapse
Affiliation(s)
- Alexandra Raulf
- />Institute of Physiology I, Life and Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Hannes Horder
- />Institute of Physiology I, Life and Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Laura Tarnawski
- />Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
- />DeVos Cardiovascular Research Program, Van Andel Institute/Spectrum Health, Grand Rapids, USA
| | - Caroline Geisen
- />Institute of Physiology I, Life and Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Annika Ottersbach
- />Institute of Physiology I, Life and Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Wilhelm Röll
- />Department of Cardiac Surgery, University of Bonn, Bonn, Germany
| | - Stefan Jovinge
- />Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
- />DeVos Cardiovascular Research Program, Van Andel Institute/Spectrum Health, Grand Rapids, USA
| | - Bernd K. Fleischmann
- />Institute of Physiology I, Life and Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
- />Pharma Center Bonn, Bonn, Germany
| | - Michael Hesse
- />Institute of Physiology I, Life and Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| |
Collapse
|
50
|
Sun J, Lu Y, Huang Y, Zhang L, Ma Y. Engineered heart tissue transplantation alters electrical-conduction function in rats with myocardial infarction. Life Sci 2015; 118:34-8. [PMID: 25445439 DOI: 10.1016/j.lfs.2014.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/19/2014] [Accepted: 10/05/2014] [Indexed: 11/26/2022]
Abstract
AIMS To investigate how affects electrical-conduction function following myocardial infarction (MI) in rats. MAIN METHODS Thirty SD rats of either sex (220-250 g) were anesthetized using chlorine hydrate and were randomly divided into three groups: control group, MI group and transplantation group. The field potential (FP) morphology and activation-conduction duration were recorded with microeletrode array techniques. KEY FINDINGS The MEA recorded clear FP morphology. Activation-conduction duration was (6.5 ± 2.12) ms in the control group, (17.5 ± 3.54) ms in the MI group, and (9.13 ± 1.31) ms in the transplantation group. SIGNIFICANCE EHT transplantation can improve electrical-conduction and function of MI rats.
Collapse
|