1
|
Song C, Li Y, Yang M, Li T, Hou Y, Liu Y, Xu C, Liu J, Millar AH, Wang N, Li L. Protein aggregation in plant mitochondria lacking Lon1 inhibits translation and induces unfolded protein responses. PLANT, CELL & ENVIRONMENT 2024; 47:4383-4397. [PMID: 38988259 DOI: 10.1111/pce.15035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
Loss of Lon1 led to stunted plant growth and accumulation of nuclear-encoded mitochondrial proteins including Lon1 substrates. However, an in-depth label-free proteomics quantification of mitochondrial proteins in lon1 revealed that the majority of mitochondrial-encoded proteins decreased in abundance. Additionally, we found that lon1 mutants contained protein aggregates in the mitochondrial that were enriched in metabolic enzymes, ribosomal subunits and PPR-containing proteins of the translation apparatus. These mutants exhibited reduced general mitochondrial translation as well as deficiencies in RNA splicing and editing. These findings support the role of Lon1 in maintaining a functional translational apparatus for mitochondrial-encoded gene translation. Transcriptome analysis of lon1 revealed a mitochondrial unfolded protein response reminiscent of the mitochondrial retrograde signalling dependent on the transcription factor ANAC017. Notably, lon1 mutants exhibited transiently elevated ethylene production, and the shortened hypocotyl observed in lon1 mutants during skotomorphogenesis was partially alleviated by ethylene inhibitors. Furthermore, the short root phenotype was partially ameliorated by introducing a mutation in the ethylene receptor ETR1. Interestingly, the upregulation of only a select few target genes was linked to ETR1-mediated ethylene signalling. Together this provides multiple steps in the link between loss of Lon1 and signalling responses to restore mitochondrial protein homoeostasis in plants.
Collapse
Affiliation(s)
- Ce Song
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuanyuan Li
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mengmeng Yang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Tiantian Li
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuqi Hou
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yinyin Liu
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chang Xu
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ningning Wang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lei Li
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Carneiro FS, Katashima CK, Dodge JD, Cintra DE, Pauli JR, Da Silva ASR, Ropelle ER. Tissue-specific roles of mitochondrial unfolded protein response during obesity. Obes Rev 2024; 25:e13791. [PMID: 38880974 DOI: 10.1111/obr.13791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/20/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
Obesity is a worldwide multifactorial disease caused by an imbalance in energy metabolism, increasing adiposity, weight gain, and promoting related diseases such as diabetes, cardiovascular diseases, neurodegeneration, and cancer. Recent findings have reported that metabolic stress related to obesity induces a mitochondrial stress response called mitochondrial unfolded protein response (UPRmt), a quality control pathway that occurs in a nuclear DNA-mitochondria crosstalk, causing transduction of chaperones and proteases under stress conditions. The duality of UPRmt signaling, with both beneficial and detrimental effects, acts in different contexts depending on the tissue, cell type, and physiological states, affecting the mitochondrial function and efficiency and the metabolism homeostasis during obesity, which remains not fully clarified. Therefore, this review discusses the most recent findings regarding UPRmt signaling during obesity, bringing an overview of UPRmt across different metabolic tissues.
Collapse
Affiliation(s)
- Fernanda S Carneiro
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Carlos K Katashima
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Joshua D Dodge
- Department of Biology, The University of Texas at Arlington (UTA), Arlington, Texas, USA
| | - Dennys E Cintra
- Laboratory of Nutritional Genomic, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Adelino S R Da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
3
|
Sanyal S, Kouznetsova A, Ström L, Björkegren C. A system for inducible mitochondria-specific protein degradation in vivo. Nat Commun 2024; 15:1454. [PMID: 38365818 PMCID: PMC10873288 DOI: 10.1038/s41467-024-45819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
Targeted protein degradation systems developed for eukaryotes employ cytoplasmic machineries to perform proteolysis. This has prevented mitochondria-specific analysis of proteins that localize to multiple locations, for example, the mitochondria and the nucleus. Here, we present an inducible mitochondria-specific protein degradation system in Saccharomyces cerevisiae based on the Mesoplasma florum Lon (mf-Lon) protease and its corresponding ssrA tag (called PDT). We show that mitochondrially targeted mf-Lon protease efficiently and selectively degrades a PDT-tagged reporter protein localized to the mitochondrial matrix. The degradation can be induced by depleting adenine from the medium, and tuned by altering the promoter strength of the MF-LON gene. We furthermore demonstrate that mf-Lon specifically degrades endogenous, PDT-tagged mitochondrial proteins. Finally, we show that mf-Lon-dependent PDT degradation can also be achieved in human mitochondria. In summary, this system provides an efficient tool to selectively analyze the mitochondrial function of dually localized proteins.
Collapse
Affiliation(s)
- Swastika Sanyal
- Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83, Huddinge, Sweden.
| | - Anna Kouznetsova
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77, Stockholm, Sweden
| | - Lena Ström
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77, Stockholm, Sweden
| | - Camilla Björkegren
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77, Stockholm, Sweden.
| |
Collapse
|
4
|
Su XL, Su ZR, Xu WH. The protease Lon prolongs insect lifespan by responding to reactive oxygen species and degrading mitochondrial transcription factor A. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119648. [PMID: 38092136 DOI: 10.1016/j.bbamcr.2023.119648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Diapause is a widespread adaptation of insects that enables them to survive during unfavorable seasons and is characterized by suppressed metabolism and increased lifespan. Previous works have demonstrated that high levels of reactive oxygen species (ROS) and hypoxia-inducible factor-1α (HIF-1α) in the pupal brain of the moth Helicoverpa armigera induce diapause and extend lifespan by downregulating mitochondrial transcription factor A (TFAM). However, the molecular mechanisms of ROS-HIF-1α regulating metabolic activity to extend lifespan are still poorly understood. Here, we show that the mitochondrial abundance in diapause-type pupal brains is markedly lower than that in their nondiapause-type pupae, suggesting that ROS-HIF-1α signaling negatively regulates the number of mitochondria. The protease Lon, a major mitochondrial matrix protease, can respond to ROS signals. It is activated by transcription factor HIF-1α, which specifically binds the LON promoter to promote its expression. A high level of LON mediates the degradation of TFAM, which is a crucial factor in regulating mitochondrial abundance and metabolic activity. We believe this is the first report that a previously unrecognized regulatory pathway, ROS-HIF-1α-LON-TFAM, reduces mitochondrial activity to induce diapause, extending insect lifespan.
Collapse
Affiliation(s)
- Xiao-Long Su
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhi-Ren Su
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wei-Hua Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Schrott S, Osman C. Two mitochondrial HMG-box proteins, Cim1 and Abf2, antagonistically regulate mtDNA copy number in Saccharomyces cerevisiae. Nucleic Acids Res 2023; 51:11813-11835. [PMID: 37850632 PMCID: PMC10681731 DOI: 10.1093/nar/gkad849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 09/24/2023] [Indexed: 10/19/2023] Open
Abstract
The mitochondrial genome, mtDNA, is present in multiple copies in cells and encodes essential subunits of oxidative phosphorylation complexes. mtDNA levels have to change in response to metabolic demands and copy number alterations are implicated in various diseases. The mitochondrial HMG-box proteins Abf2 in yeast and TFAM in mammals are critical for mtDNA maintenance and packaging and have been linked to mtDNA copy number control. Here, we discover the previously unrecognized mitochondrial HMG-box protein Cim1 (copy number influence on mtDNA) in Saccharomyces cerevisiae, which exhibits metabolic state dependent mtDNA association. Surprisingly, in contrast to Abf2's supportive role in mtDNA maintenance, Cim1 negatively regulates mtDNA copy number. Cells lacking Cim1 display increased mtDNA levels and enhanced mitochondrial function, while Cim1 overexpression results in mtDNA loss. Intriguingly, Cim1 deletion alleviates mtDNA maintenance defects associated with loss of Abf2, while defects caused by Cim1 overexpression are mitigated by simultaneous overexpression of Abf2. Moreover, we find that the conserved LON protease Pim1 is essential to maintain low Cim1 levels, thereby preventing its accumulation and concomitant repressive effects on mtDNA. We propose a model in which the protein ratio of antagonistically acting Cim1 and Abf2 determines mtDNA copy number.
Collapse
Affiliation(s)
- Simon Schrott
- Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, Planegg-Martinsried 82152, Germany
| | - Christof Osman
- Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, Planegg-Martinsried 82152, Germany
| |
Collapse
|
6
|
Metzger MB, Scales JL, Grant GA, Molnar AE, Loncarek J, Weissman AM. Differential sensitivity of the yeast Lon protease Pim1p to impaired mitochondrial respiration. J Biol Chem 2023; 299:104937. [PMID: 37331598 PMCID: PMC10359500 DOI: 10.1016/j.jbc.2023.104937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023] Open
Abstract
Mitochondria are essential organelles whose proteome is well protected by regulated protein degradation and quality control. While the ubiquitin-proteasome system can monitor mitochondrial proteins that reside at the mitochondrial outer membrane or are not successfully imported, resident proteases generally act on proteins within mitochondria. Herein, we assess the degradative pathways for mutant forms of three mitochondrial matrix proteins (mas1-1HA, mas2-11HA, and tim44-8HA) in Saccharomyces cerevisiae. The degradation of these proteins is strongly impaired by loss of either the matrix AAA-ATPase (m-AAA) (Afg3p/Yta12p) or Lon (Pim1p) protease. We determine that these mutant proteins are all bona fide Pim1p substrates whose degradation is also blocked in respiratory-deficient "petite" yeast cells, such as in cells lacking m-AAA protease subunits. In contrast, matrix proteins that are substrates of the m-AAA protease are not affected by loss of respiration. The failure to efficiently remove Pim1p substrates in petite cells has no evident relationship to Pim1p maturation, localization, or assembly. However, Pim1p's autoproteolysis is intact, and its overexpression restores substrate degradation, indicating that Pim1p retains some functionality in petite cells. Interestingly, chemical perturbation of mitochondria with oligomycin similarly prevents degradation of Pim1p substrates. Our results demonstrate that Pim1p activity is highly sensitive to mitochondrial perturbations such as loss of respiration or drug treatment in a manner that we do not observe with other proteases.
Collapse
Affiliation(s)
- Meredith B Metzger
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
| | - Jessica L Scales
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Garis A Grant
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Abigail E Molnar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Jadranka Loncarek
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Allan M Weissman
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
| |
Collapse
|
7
|
Sun CL, Van Gilst M, Crowder CM. Hypoxia-induced mitochondrial stress granules. Cell Death Dis 2023; 14:448. [PMID: 37468471 PMCID: PMC10356818 DOI: 10.1038/s41419-023-05988-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Perturbations of mitochondrial proteostasis have been associated with aging, neurodegenerative diseases, and recently with hypoxic injury. While examining hypoxia-induced mitochondrial protein aggregation in C. elegans, we found that sublethal hypoxia, sodium azide, or heat shock-induced abundant ethidium bromide staining mitochondrial granules that preceded evidence of protein aggregation. Genetic manipulations that reduce cellular and organismal hypoxic death block the formation of these mitochondrial stress granules (mitoSG). Knockdown of mitochondrial nucleoid proteins also blocked the formation of mitoSG by a mechanism distinct from the mitochondrial unfolded protein response. Lack of the major mitochondrial matrix protease LONP-1 resulted in the constitutive formation of mitoSG without external stress. Ethidium bromide-staining RNA-containing mitochondrial granules were also observed in rat cardiomyocytes treated with sodium azide, a hypoxia mimetic. Mitochondrial stress granules are an early mitochondrial pathology controlled by LONP and the nucleoid, preceding hypoxia-induced protein aggregation.
Collapse
Affiliation(s)
- Chun-Ling Sun
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, 98109, USA
- Mitochondrial and Metabolism Center, University of Washington School of Medicine, Seattle, Washington, 98109, USA
| | - Marc Van Gilst
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, 98109, USA
- Mitochondrial and Metabolism Center, University of Washington School of Medicine, Seattle, Washington, 98109, USA
| | - C Michael Crowder
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, 98109, USA.
- Mitochondrial and Metabolism Center, University of Washington School of Medicine, Seattle, Washington, 98109, USA.
- Department of Genome Science, University of Washington School of Medicine, Seattle, Washington, 98109, USA.
| |
Collapse
|
8
|
Lushchak O, Strilbytska O, Koliada A, Storey KB. An orchestrating role of mitochondria in the origin and development of post-traumatic stress disorder. Front Physiol 2023; 13:1094076. [PMID: 36703926 PMCID: PMC9871262 DOI: 10.3389/fphys.2022.1094076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is one of the most discussed and actively researched areas in medicine, psychiatry, neurophysiology, biochemistry and rehabilitation over the last decades. Multiple causes can trigger post-traumatic stress disorder. Humans subjected to violence, participants in hostilities, victims of terrorist attacks, physical or psychological persecution, witnessing scenes of cruelty, survival of natural disasters, and more, can strongly affect both children and adults. Pathological features of post-traumatic stress disorder that are manifested at molecular, cellular and whole-organism levels must be clearly understood for successful diagnosis, management, and minimizing of long-term outcomes associated with post-traumatic stress disorder. This article summarizes existing data on different post-traumatic stress disorder causes and symptoms, as well as effects on homeostasis, genetic instability, behavior, neurohumoral balance, and personal psychic stability. In particular, we highlight a key role of mitochondria and oxidative stress development in the severity and treatment of post-traumatic stress disorder. Excessive or prolonged exposure to traumatic factors can cause irreversible mitochondrial damage, leading to cell death. This review underlines the exceptional importance of data integration about the mechanisms and functions of the mitochondrial stress response to develop a three-dimensional picture of post-traumatic stress disorder pathophysiology and develop a comprehensive, universal, multifaceted, and effective strategy of managing or treatment post-traumatic stress disorder.
Collapse
Affiliation(s)
- Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine,Research and Development University, Ivano-Frankivsk, Ukraine,*Correspondence: Oleh Lushchak,
| | - Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Alexander Koliada
- Institute of Food Biotechnology and Genomics, NAS of Ukraine, Kyiv, Ukraine
| | | |
Collapse
|
9
|
Song J, Steidle L, Steymans I, Singh J, Sanner A, Böttinger L, Winter D, Becker T. The mitochondrial Hsp70 controls the assembly of the F 1F O-ATP synthase. Nat Commun 2023; 14:39. [PMID: 36596815 PMCID: PMC9810599 DOI: 10.1038/s41467-022-35720-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
The mitochondrial F1FO-ATP synthase produces the bulk of cellular ATP. The soluble F1 domain contains the catalytic head that is linked via the central stalk and the peripheral stalk to the membrane embedded rotor of the FO domain. The assembly of the F1 domain and its linkage to the peripheral stalk is poorly understood. Here we show a dual function of the mitochondrial Hsp70 (mtHsp70) in the formation of the ATP synthase. First, it cooperates with the assembly factors Atp11 and Atp12 to form the F1 domain of the ATP synthase. Second, the chaperone transfers Atp5 into the assembly line to link the catalytic head with the peripheral stalk. Inactivation of mtHsp70 leads to integration of assembly-defective Atp5 variants into the mature complex, reflecting a quality control function of the chaperone. Thus, mtHsp70 acts as an assembly and quality control factor in the biogenesis of the F1FO-ATP synthase.
Collapse
Affiliation(s)
- Jiyao Song
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.,Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Liesa Steidle
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Isabelle Steymans
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Jasjot Singh
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Anne Sanner
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Lena Böttinger
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
10
|
Szczepanowska K, Trifunovic A. Mitochondrial matrix proteases: quality control and beyond. FEBS J 2022; 289:7128-7146. [PMID: 33971087 DOI: 10.1111/febs.15964] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 01/13/2023]
Abstract
To ensure correct function, mitochondria have developed several mechanisms of protein quality control (QC). Protein homeostasis highly relies on chaperones and proteases to maintain proper folding and remove damaged proteins that might otherwise form cell-toxic aggregates. Besides quality control, mitochondrial proteases modulate and regulate many essential functions, such as trafficking, processing and activation of mitochondrial proteins, mitochondrial dynamics, mitophagy and apoptosis. Therefore, the impaired function of mitochondrial proteases is associated with various pathological conditions, including cancer, metabolic syndromes and neurodegenerative disorders. This review recapitulates and discusses the emerging roles of two major proteases of the mitochondrial matrix, LON and ClpXP. Although commonly acknowledge for their protein quality control role, recent advances have uncovered several highly regulated processes controlled by the LON and ClpXP connected to mitochondrial gene expression and respiratory chain function maintenance. Furthermore, both proteases have been lately recognized as potent targets for anticancer therapies, and we summarize those findings.
Collapse
Affiliation(s)
- Karolina Szczepanowska
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Germany
| | - Aleksandra Trifunovic
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Germany
| |
Collapse
|
11
|
Taouktsi E, Kyriakou E, Smyrniotis S, Borbolis F, Bondi L, Avgeris S, Trigazis E, Rigas S, Voutsinas GE, Syntichaki P. Organismal and Cellular Stress Responses upon Disruption of Mitochondrial Lonp1 Protease. Cells 2022; 11:cells11081363. [PMID: 35456042 PMCID: PMC9025075 DOI: 10.3390/cells11081363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
Cells engage complex surveillance mechanisms to maintain mitochondrial function and protein homeostasis. LonP1 protease is a key component of mitochondrial quality control and has been implicated in human malignancies and other pathological disorders. Here, we employed two experimental systems, the worm Caenorhabditis elegans and human cancer cells, to investigate and compare the effects of LONP-1/LonP1 deficiency at the molecular, cellular, and organismal levels. Deletion of the lonp-1 gene in worms disturbed mitochondrial function, provoked reactive oxygen species accumulation, and impaired normal processes, such as growth, behavior, and lifespan. The viability of lonp-1 mutants was dependent on the activity of the ATFS-1 transcription factor, and loss of LONP-1 evoked retrograde signaling that involved both the mitochondrial and cytoplasmic unfolded protein response (UPRmt and UPRcyt) pathways and ensuing diverse organismal stress responses. Exposure of worms to triterpenoid CDDO-Me, an inhibitor of human LonP1, stimulated only UPRcyt responses. In cancer cells, CDDO-Me induced key components of the integrated stress response (ISR), the UPRmt and UPRcyt pathways, and the redox machinery. However, genetic knockdown of LonP1 revealed a genotype-specific cellular response and induced apoptosis similar to CDDO-Me treatment. Overall, the mitochondrial dysfunction ensued by disruption of LonP1 elicits adaptive cytoprotective mechanisms that can inhibit cancer cell survival but diversely modulate organismal stress response and aging.
Collapse
Affiliation(s)
- Eirini Taouktsi
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (F.B.); (L.B.); (E.T.)
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece;
| | - Eleni Kyriakou
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (F.B.); (L.B.); (E.T.)
| | - Stefanos Smyrniotis
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (S.S.); (S.A.)
| | - Fivos Borbolis
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (F.B.); (L.B.); (E.T.)
| | - Labrina Bondi
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (F.B.); (L.B.); (E.T.)
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (S.S.); (S.A.)
| | - Socratis Avgeris
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (S.S.); (S.A.)
| | - Efstathios Trigazis
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (F.B.); (L.B.); (E.T.)
| | - Stamatis Rigas
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece;
| | - Gerassimos E. Voutsinas
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (S.S.); (S.A.)
- Correspondence: (G.E.V.); (P.S.); Tel.: +30-21-0650-3579 (G.E.V.); +30-21-0659-7474 (P.S.)
| | - Popi Syntichaki
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (F.B.); (L.B.); (E.T.)
- Correspondence: (G.E.V.); (P.S.); Tel.: +30-21-0650-3579 (G.E.V.); +30-21-0659-7474 (P.S.)
| |
Collapse
|
12
|
Zhao K, Huang X, Zhao W, Lu B, Yang Z. LONP1-mediated mitochondrial quality control safeguards metabolic shifts in heart development. Development 2022; 149:274587. [DOI: 10.1242/dev.200458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/13/2022] [Indexed: 01/08/2023]
Abstract
ABSTRACT
The mitochondrial matrix AAA+ Lon protease (LONP1) degrades misfolded or unassembled proteins, which play a pivotal role in mitochondrial quality control. During heart development, a metabolic shift from anaerobic glycolysis to mitochondrial oxidative phosphorylation takes place, which relies strongly on functional mitochondria. However, the relationship between the mitochondrial quality control machinery and metabolic shifts is elusive. Here, we interfered with mitochondrial quality control by inactivating Lonp1 in murine embryonic cardiac tissue, resulting in severely impaired heart development, leading to embryonic lethality. Mitochondrial swelling, cristae loss and abnormal protein aggregates were evident in the mitochondria of Lonp1-deficient cardiomyocytes. Accordingly, the p-eIF2α-ATF4 pathway was triggered, and nuclear translocation of ATF4 was observed. We further demonstrated that ATF4 regulates the expression of Tfam negatively while promoting that of Glut1, which was responsible for the disruption of the metabolic shift to oxidative phosphorylation. In addition, elevated levels of reactive oxygen species were observed in Lonp1-deficient cardiomyocytes. This study revealed that LONP1 safeguards metabolic shifts in the developing heart by controlling mitochondrial protein quality, suggesting that disrupted mitochondrial quality control may cause prenatal cardiomyopathy.
Collapse
Affiliation(s)
- Ke Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing 210093, China
| | - Xinyi Huang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing 210093, China
| | - Wukui Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing 210093, China
| | - Bin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing 210093, China
| |
Collapse
|
13
|
Kovacs M, Geltinger F, Verwanger T, Weiss R, Richter K, Rinnerthaler M. Lipid Droplets Protect Aging Mitochondria and Thus Promote Lifespan in Yeast Cells. Front Cell Dev Biol 2021; 9:774985. [PMID: 34869375 PMCID: PMC8640092 DOI: 10.3389/fcell.2021.774985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022] Open
Abstract
Besides their role as a storage for neutral lipids and sterols, there is increasing evidence that lipid droplets (LDs) are involved in cellular detoxification. LDs are in close contact to a broad variety of organelles where protein- and lipid exchange is mediated. Mitochondria as a main driver of the aging process produce reactive oxygen species (ROS), which damage several cellular components. LDs as highly dynamic organelles mediate a potent detoxification mechanism by taking up toxic lipids and proteins. A stimulation of LDs induced by the simultaneously overexpression of Lro1p and Dga1p (both encoding acyltransferases) prolongs the chronological as well as the replicative lifespan of yeast cells. The increased number of LDs reduces mitochondrial fragmentation as well as mitochondrial ROS production, both phenotypes that are signs of aging. Strains with an altered LD content or morphology as in the sei1∆ or lro1∆ mutant lead to a reduced replicative lifespan. In a yeast strain defective for the LON protease Pim1p, which showed an enhanced ROS production, increased doubling time and an altered mitochondrial morphology, a LRO1 overexpression resulted in a partially reversion of this "premature aging" phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark Rinnerthaler
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, Austria
| |
Collapse
|
14
|
Proteomic analysis demonstrates the role of the quality control protease LONP1 in mitochondrial protein aggregation. J Biol Chem 2021; 297:101134. [PMID: 34461102 PMCID: PMC8503632 DOI: 10.1016/j.jbc.2021.101134] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial matrix protease LONP1 is an essential part of the organellar protein quality control system. LONP1 has been shown to be involved in respiration control and apoptosis. Furthermore, a reduction in LONP1 level correlates with aging. Up to now, the effects of a LONP1 defect were mostly studied by utilizing transient, siRNA-mediated knockdown approaches. We generated a new cellular model system for studying the impact of LONP1 on mitochondrial protein homeostasis by a CRISPR/Cas-mediated genetic knockdown (gKD). These cells showed a stable reduction of LONP1 along with a mild phenotype characterized by absent morphological differences and only small negative effects on mitochondrial functions under normal culture conditions. To assess the consequences of a permanent LONP1 depletion on the mitochondrial proteome, we analyzed the alterations of protein levels by quantitative mass spectrometry, demonstrating small adaptive changes, in particular with respect to mitochondrial protein biogenesis. In an additional proteomic analysis, we determined the temperature-dependent aggregation behavior of mitochondrial proteins and its dependence on a reduction of LONP1 activity, demonstrating the important role of the protease for mitochondrial protein homeostasis in mammalian cells. We identified a significant number of mitochondrial proteins that are affected by a reduced LONP1 activity especially with respect to their stress-induced solubility. Taken together, our results suggest a very good applicability of the LONP1 gKD cell line as a model system for human aging processes.
Collapse
|
15
|
Chen Z, Huang L, Tso A, Wang S, Fang X, Ouyang K, Han Z. Mitochondrial Chaperones and Proteases in Cardiomyocytes and Heart Failure. Front Mol Biosci 2021; 8:630332. [PMID: 33937324 PMCID: PMC8082175 DOI: 10.3389/fmolb.2021.630332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure is one of the leading causes of morbidity and mortality worldwide. In cardiomyocytes, mitochondria are not only essential organelles providing more than 90% of the ATP necessary for contraction, but they also play critical roles in regulating intracellular Ca2+ signaling, lipid metabolism, production of reactive oxygen species (ROS), and apoptosis. Because mitochondrial DNA only encodes 13 proteins, most mitochondrial proteins are nuclear DNA-encoded, synthesized, and transported from the cytoplasm, refolded in the matrix to function alone or as a part of a complex, and degraded if damaged or incorrectly folded. Mitochondria possess a set of endogenous chaperones and proteases to maintain mitochondrial protein homeostasis. Perturbation of mitochondrial protein homeostasis usually precedes disruption of the whole mitochondrial quality control system and is recognized as one of the hallmarks of cardiomyocyte dysfunction and death. In this review, we focus on mitochondrial chaperones and proteases and summarize recent advances in understanding how these proteins are involved in the initiation and progression of heart failure.
Collapse
Affiliation(s)
- Zee Chen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Alexandria Tso
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Shijia Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xi Fang
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zhen Han
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
16
|
Cheng AN, Cheng LC, Kuo CL, Lo YK, Chou HY, Chen CH, Wang YH, Chuang TH, Cheng SJ, Lee AYL. Mitochondrial Lon-induced mtDNA leakage contributes to PD-L1-mediated immunoescape via STING-IFN signaling and extracellular vesicles. J Immunother Cancer 2020; 8:e001372. [PMID: 33268351 PMCID: PMC7713199 DOI: 10.1136/jitc-2020-001372] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mitochondrial Lon is a chaperone and DNA-binding protein that functions in protein quality control and stress response pathways. The level of Lon regulates mitochondrial DNA (mtDNA) metabolism and the production of mitochondrial reactive oxygen species (ROS). However, there is little information in detail on how mitochondrial Lon regulates ROS-dependent cancer immunoescape through mtDNA metabolism in the tumor microenvironment (TME). METHODS We explored the understanding of the intricate interplay between mitochondria and the innate immune response in the inflammatory TME. RESULTS We found that oxidized mtDNA is released into the cytosol when Lon is overexpressed and then it induces interferon (IFN) signaling via cGAS-STING-TBK1, which upregulates PD-L1 and IDO-1 expression to inhibit T-cell activation. Unexpectedly, upregulation of Lon also induces the secretion of extracellular vehicles (EVs), which carry mtDNA and PD-L1. Lon-induced EVs further induce the production of IFN and IL-6 from macrophages, which attenuates T-cell immunity in the TME. CONCLUSIONS The levels of mtDNA and PD-L1 in EVs in patients with oral cancer function as a potential diagnostic biomarker for anti-PD-L1 immunotherapy. Our studies provide an insight into the immunosuppression on mitochondrial stress and suggest a therapeutic synergy between anti-inflammation therapy and immunotherapy in cancer.
Collapse
Affiliation(s)
- An Ning Cheng
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Li-Chun Cheng
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Cheng-Liang Kuo
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Yu Kang Lo
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Han-Yu Chou
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Yi-Hao Wang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Shih-Jung Cheng
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
17
|
Friedl J, Knopp MR, Groh C, Paz E, Gould SB, Herrmann JM, Boos F. More than just a ticket canceller: the mitochondrial processing peptidase tailors complex precursor proteins at internal cleavage sites. Mol Biol Cell 2020; 31:2657-2668. [PMID: 32997570 PMCID: PMC8734313 DOI: 10.1091/mbc.e20-08-0524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 11/11/2022] Open
Abstract
Most mitochondrial proteins are synthesized as precursors that carry N-terminal presequences. After they are imported into mitochondria, these targeting signals are cleaved off by the mitochondrial processing peptidase (MPP). Using the mitochondrial tandem protein Arg5,6 as a model substrate, we demonstrate that MPP has an additional role in preprotein maturation, beyond the removal of presequences. Arg5,6 is synthesized as a polyprotein precursor that is imported into mitochondria and subsequently separated into two distinct enzymes. This internal processing is performed by MPP, which cleaves the Arg5,6 precursor at its N-terminus and at an internal site. The peculiar organization of Arg5,6 is conserved across fungi and reflects the polycistronic arginine operon in prokaryotes. MPP cleavage sites are also present in other mitochondrial fusion proteins from fungi, plants, and animals. Hence, besides its role as a "ticket canceller" for removal of presequences, MPP exhibits a second conserved activity as an internal processing peptidase for complex mitochondrial precursor proteins.
Collapse
Affiliation(s)
- Jana Friedl
- Cell Biology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Michael R. Knopp
- Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Carina Groh
- Cell Biology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Eyal Paz
- Departments of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sven B. Gould
- Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Johannes M. Herrmann
- Cell Biology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Felix Boos
- Cell Biology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
18
|
Gong W, Song J, Liang J, Ma H, Wu W, Zhang Y, Yang L, Huang S, Jia Z, Zhang A. Reduced Lon protease 1 expression in podocytes contributes to the pathogenesis of podocytopathy. Kidney Int 2020; 99:854-869. [PMID: 33181155 DOI: 10.1016/j.kint.2020.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022]
Abstract
Emerging evidence has shown that mitochondrial dysfunction is closely related to the pathogenesis of podocytopathy, but the molecular mechanisms mediating mitochondrial dysfunction in podocytes remain unclear. Lon protease 1 is an important soluble protease localized in the mitochondrial matrix, although its exact role in podocyte injury has yet to be determined. Here we investigated the specific role of this protease in podocyte in glomerular injury and the progression of podocytopathy using podocyte-specific Lon protease 1 knockout mice, murine podocytes in culture and kidney biopsy samples from patients with focal segmental glomerular sclerosis and minimal change disease. Downregulated expression of Lon protease 1 was observed in glomeruli of kidney biopsy samples demonstrating a negative correlation with urinary protein levels and glomerular pathology of patients with focal segmental glomerular sclerosis and minimal change disease. Podocyte-specific deletion of Lon protease 1 caused severe proteinuria, impaired kidney function, severe kidney injury and even mortality in mice. Mechanistically, we found that continuous podocyte Lon protease 1 ablation induced mitochondrial homeostasis imbalance and dysfunction, which then led to podocyte injury and glomerular sclerosis. In vitro experiments implicated the kidney protective effect of Lon protease 1, which inhibited mitochondrial dysfunction and podocyte apoptosis. Thus, our findings suggest that the regulation of Lon protease 1 in podocytes may provide a novel therapeutic approach for the podocytopathy.
Collapse
Affiliation(s)
- Wei Gong
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiayu Song
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Liang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Haoyang Ma
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wenxiao Wu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Li Yang
- Renal Division, Peking University First Hospital, Beijing, China
| | - Songming Huang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
19
|
Abstract
Mitochondria contain about 1,000-1,500 proteins that fulfil multiple functions. Mitochondrial proteins originate from two genomes: mitochondrial and nuclear. Hence, proper mitochondrial function requires synchronization of gene expression in the nucleus and in mitochondria and necessitates efficient import of mitochondrial proteins into the organelle from the cytosol. Furthermore, the mitochondrial proteome displays high plasticity to allow the adaptation of mitochondrial function to cellular requirements. Maintenance of this complex and adaptable mitochondrial proteome is challenging, but is of crucial importance to cell function. Defects in mitochondrial proteostasis lead to proteotoxic insults and eventually cell death. Different quality control systems monitor the mitochondrial proteome. The cytosolic ubiquitin-proteasome system controls protein transport across the mitochondrial outer membrane and removes damaged or mislocalized proteins. Concomitantly, a number of mitochondrial chaperones and proteases govern protein folding and degrade damaged proteins inside mitochondria. The quality control factors also regulate processing and turnover of native proteins to control protein import, mitochondrial metabolism, signalling cascades, mitochondrial dynamics and lipid biogenesis, further ensuring proper function of mitochondria. Thus, mitochondrial protein quality control mechanisms are of pivotal importance to integrate mitochondria into the cellular environment.
Collapse
|
20
|
Huang S, Li L, Petereit J, Millar AH. Protein turnover rates in plant mitochondria. Mitochondrion 2020; 53:57-65. [DOI: 10.1016/j.mito.2020.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
|
21
|
Gibellini L, De Gaetano A, Mandrioli M, Van Tongeren E, Bortolotti CA, Cossarizza A, Pinti M. The biology of Lonp1: More than a mitochondrial protease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:1-61. [PMID: 32475470 DOI: 10.1016/bs.ircmb.2020.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Initially discovered as a protease responsible for degradation of misfolded or damaged proteins, the mitochondrial Lon protease (Lonp1) turned out to be a multifaceted enzyme, that displays at least three different functions (proteolysis, chaperone activity, binding of mtDNA) and that finely regulates several cellular processes, within and without mitochondria. Indeed, LONP1 in humans is ubiquitously expressed, and is involved in regulation of response to oxidative stress and, heat shock, in the maintenance of mtDNA, in the regulation of mitophagy. Furthermore, its proteolytic activity can regulate several biochemical pathways occurring totally or partially within mitochondria, such as TCA cycle, oxidative phosphorylation, steroid and heme biosynthesis and glutamine production. Because of these multiple activities, Lon protease is highly conserved throughout evolution, and mutations occurring in its gene determines severe diseases in humans, including a rare syndrome characterized by Cerebral, Ocular, Dental, Auricular and Skeletal anomalies (CODAS). Finally, alterations of LONP1 regulation in humans can favor tumor progression and aggressiveness, further highlighting the crucial role of this enzyme in mitochondrial and cellular homeostasis.
Collapse
Affiliation(s)
- Lara Gibellini
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna De Gaetano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Mauro Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elia Van Tongeren
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Andrea Cossarizza
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
22
|
The Mitochondrial Lon Protease: Novel Functions off the Beaten Track? Biomolecules 2020; 10:biom10020253. [PMID: 32046155 PMCID: PMC7072132 DOI: 10.3390/biom10020253] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
To maintain organellar function, mitochondria contain an elaborate endogenous protein quality control system. As one of the two soluble energy-dependent proteolytic enzymes in the matrix compartment, the protease Lon is a major component of this system, responsible for the degradation of misfolded proteins, in particular under oxidative stress conditions. Lon defects have been shown to negatively affect energy production by oxidative phosphorylation but also mitochondrial gene expression. In this review, recent studies on the role of Lon in mammalian cells, in particular on its protective action under diverse stress conditions and its relationship to important human diseases are summarized and commented.
Collapse
|
23
|
Venkatesh S, Suzuki CK. Cell stress management by the mitochondrial LonP1 protease - Insights into mitigating developmental, oncogenic and cardiac stress. Mitochondrion 2019; 51:46-61. [PMID: 31756517 DOI: 10.1016/j.mito.2019.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 11/15/2022]
Abstract
Mitochondrial LonP1 is an essential stress response protease that mediates mitochondrial proteostasis, metabolism and bioenergetics. Homozygous and compound heterozygous variants in the LONP1 gene encoding the LonP1 protease have recently been shown to cause a diverse spectrum of human pathologies, ranging from classical mitochondrial disease phenotypes, profound neurologic impairment and multi-organ dysfunctions, some of which are uncommon to mitochondrial disorders. In this review, we focus primarily on human LonP1 and discuss findings, which demonstrate its multidimensional roles in maintaining mitochondrial proteostasis and adapting cells to metabolic flux and stress during normal physiology and disease processes. We also discuss emerging roles of LonP1 in responding to developmental, oncogenic and cardiac stress.
Collapse
Affiliation(s)
- Sundararajan Venkatesh
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Carolyn K Suzuki
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
24
|
Lautenschäger J, Kaminski Schierle GS. Mitochondrial degradation of amyloidogenic proteins - A new perspective for neurodegenerative diseases. Prog Neurobiol 2019; 181:101660. [PMID: 31301323 DOI: 10.1016/j.pneurobio.2019.101660] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 06/02/2019] [Accepted: 07/04/2019] [Indexed: 01/09/2023]
Abstract
This perspective article outlines mechanisms of mitochondrial import and protein degradation and how these have been linked to alpha-synuclein and Amyloid beta (Aβ) homeostasis. Our aim is to underpin and stimulate the debate on the recent conception of mitochondria as protein degrading organelles, which suggests that mitochondria are more directly involved in neurodegenerative diseases than previously assumed.
Collapse
Affiliation(s)
- Janin Lautenschäger
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| | - Gabriele S Kaminski Schierle
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| |
Collapse
|
25
|
Steele TE, Glynn SE. Mitochondrial AAA proteases: A stairway to degradation. Mitochondrion 2019; 49:121-127. [PMID: 31377246 DOI: 10.1016/j.mito.2019.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial protein quality control requires the action of proteases to remove damaged or unnecessary proteins and perform key regulatory cleavage events. Important components of the quality control network are the mitochondrial AAA proteases, which capture energy from ATP hydrolysis to destabilize and degrade protein substrates on both sides of the inner membrane. Dysfunction of these proteases leads to the breakdown of mitochondrial proteostasis and is linked to the development of severe human diseases. In this review, we will describe recent insights into the structure and motions of the mitochondrial AAA proteases and related enzymes. Together, these studies have revealed the mechanics of ATP-driven protein destruction and significantly advanced our understanding of how these proteases maintain mitochondrial health.
Collapse
Affiliation(s)
- Tyler E Steele
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA; Center for Structural Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Steven E Glynn
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA; Center for Structural Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
26
|
Sampaio-Marques B, Ludovico P. Linking cellular proteostasis to yeast longevity. FEMS Yeast Res 2019; 18:4970764. [PMID: 29800380 DOI: 10.1093/femsyr/foy043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
Proteostasis is a cellular housekeeping process that refers to the healthy maintenance of the cellular proteome that governs the fate of proteins from synthesis to degradation. Perturbations of proteostasis might result in protein dysfunction with consequent deleterious effects that can culminate in cell death. To deal with the loss of proteostasis, cells are supplied with a highly sophisticated and interconnected network that integrates as major players the molecular chaperones and the protein degradation pathways. It is well recognized that the ability of cells to maintain proteostasis declines during ageing, although the precise mechanisms are still elusive. Indeed, genetic or pharmacological enhancement of the proteostasis network has been shown to extend lifespan in a variety of ageing models. Therefore, an improved understanding of the interventions/mechanisms that contribute to cellular protein quality control will have a huge impact on the ageing field. This mini-review centers on the current knowledge about the major pathways that contribute for the maintenance of Saccharomyces cerevisiae proteostasis, with particular emphasis on the developments that highlight the multidimensional nature of the proteostasis network in the maintenance of proteostasis, as well as the age-dependent changes on this network.
Collapse
Affiliation(s)
- Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
27
|
Niwa H, Miyauchi-Nanri Y, Okumoto K, Mukai S, Noi K, Ogura T, Fujiki Y. A newly isolated Pex7-binding, atypical PTS2 protein P7BP2 is a novel dynein-type AAA+ protein. J Biochem 2018; 164:437-447. [PMID: 30204880 DOI: 10.1093/jb/mvy073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
A newly isolated binding protein of peroxisomal targeting signal type 2 (PTS2) receptor Pex7, termed P7BP2, is transported into peroxisomes by binding to the longer isoform of Pex5p, Pex5pL, via Pex7p. The binding to Pex7p and peroxisomal localization of P7BP2 depends on the cleavable PTS2 in the N-terminal region, suggesting that P7BP2 is a new PTS2 protein. By search on human database, three AAA+ domains are found in the N-terminal half of P7BP2. Protein sequence alignment and motif search reveal that in the C-terminal region P7BP2 contains additional structural domains featuring weak but sufficient homology to AAA+ domain. P7BP2 behaves as a monomer in gel-filtration chromatography and the single molecule observed under atomic force microscope shapes a disc-like ring. Collectively, these results suggest that P7BP2 is a novel dynein-type AAA+ family protein, of which domains are arranged into a pseudo-hexameric ring structure.
Collapse
Affiliation(s)
- Hajime Niwa
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yasuhiro Miyauchi-Nanri
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, Japan
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, Japan
| | - Satoru Mukai
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, Japan
| | - Kentaro Noi
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
28
|
Zurita Rendón O, Shoubridge EA. LONP1 Is Required for Maturation of a Subset of Mitochondrial Proteins, and Its Loss Elicits an Integrated Stress Response. Mol Cell Biol 2018; 38:e00412-17. [PMID: 30061372 PMCID: PMC6168981 DOI: 10.1128/mcb.00412-17] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/16/2017] [Accepted: 07/12/2018] [Indexed: 01/04/2023] Open
Abstract
LONP1, an AAA+ mitochondrial protease, is implicated in protein quality control, but its precise role in this process remains poorly understood. In this study, we have investigated the role of human LONP1 in mitochondrial proteostasis and gene expression. Depletion of LONP1 resulted in partial loss of mitochondrial DNA (mtDNA) and a complete suppression of mitochondrial translation associated with impaired ribosome biogenesis. The levels of a distinct subset of mitochondrial matrix proteins (SSBP1, MTERFD3, FASTKD2, and CLPX) increased in the presence of a catalytically dead form of LONP1, suggesting that they are bona fide LONP1 substrates. Unexpectedly, the unprocessed forms of the same proteins also accumulated in an insoluble protein fraction. This subset of unprocessed matrix proteins (but not their mature forms) accumulated following depletion of the mitochondrial processing peptidase MPP, though all other MPP substrates investigated were processed normally. Prolonged depletion of LONP1 produced massive matrix protein aggregates, robustly activated the integrated stress response (ISR) pathway, and resulted in stabilization of PINK1, a mitophagy marker. These results demonstrate that LONP1 and MPPαβ are together required for the maturation of a subset of LONP1 client proteins and that LONP1 activity is essential for the maintenance of mitochondrial proteostasis and gene expression.
Collapse
Affiliation(s)
- Olga Zurita Rendón
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Eric A Shoubridge
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
29
|
Pomatto LCD, Davies KJA. Adaptive homeostasis and the free radical theory of ageing. Free Radic Biol Med 2018; 124:420-430. [PMID: 29960100 PMCID: PMC6098721 DOI: 10.1016/j.freeradbiomed.2018.06.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/01/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
Abstract
The Free Radical Theory of Ageing, was first proposed by Denham Harman in the mid-1950's, based largely on work conducted by Rebeca Gerschman and Daniel Gilbert. At its core, the Free Radical Theory of Ageing posits that free radical and related oxidants, from the environment and internal metabolism, cause damage to cellular constituents that, over time, result in an accumulation of structural and functional problems. Several variations on the original concept have been advanced over the past six decades, including the suggestion of a central role for mitochondria-derived reactive species, and the proposal of an age-related decline in the effectiveness of protein, lipid, and DNA repair systems. Such innovations have helped the Free Radical Theory of Aging to achieve widespread popularity. Nevertheless, an ever-growing number of apparent 'exceptions' to the Theory have seriously undermined its acceptance. In part, we suggest, this has resulted from a rather simplistic experimental approach of knocking-out, knocking-down, knocking-in, or overexpressing antioxidant-related genes to determine effects on lifespan. In some cases such experiments have yielded results that appear to support the Free Radical Theory of Aging, but there are just as many published papers that appear to contradict the Theory. We suggest that free radicals and related oxidants are but one subset of stressors with which all life forms must cope over their lifespans. Adaptive Homeostasis is the mechanism by which organisms dynamically expand or contract the homeostatic range of stress defense and repair systems, employing a veritable armory of signal transduction pathways (such as the Keap1-Nrf2 system) to generate a complex profile of inducible and enzymatic protection that best fits the particular need. Viewed as a component of Adaptive Homeostasis, the Free Radical Theory of Aging appears both viable and robust.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 00089-0191, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 00089-0191, USA; Molecular and Computational Biology Program of the Department of Biological Sciences, Dornsife College of Letters, Arts, and sciences, the University of Southern California, Los Angeles, CA 90089-0191, USA; Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Lon in maintaining mitochondrial and endoplasmic reticulum homeostasis. Arch Toxicol 2018; 92:1913-1923. [DOI: 10.1007/s00204-018-2210-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/25/2018] [Indexed: 01/24/2023]
|
31
|
Wang Y, Yan J, Zhang Q, Ma X, Zhang J, Su M, Wang X, Huang Y. The Schizosaccharomyces pombe PPR protein Ppr10 associates with a novel protein Mpa1 and acts as a mitochondrial translational activator. Nucleic Acids Res 2017; 45:3323-3340. [PMID: 28334955 PMCID: PMC5389468 DOI: 10.1093/nar/gkx127] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/14/2017] [Indexed: 01/15/2023] Open
Abstract
The pentatricopeptide repeat (PPR) proteins characterized by tandem repeats of a degenerate 35-amino-acid motif function in all aspects of organellar RNA metabolism, many of which are essential for organellar gene expression. In this study, we report the characterization of a fission yeast Schizosaccharomyces pombe PPR protein, Ppr10 and a novel Ppr10-associated protein, designated Mpa1. The ppr10 deletion mutant exhibits growth defects in respiratory media, and is dramatically impaired for viability during the late-stationary phase. Deletion of ppr10 affects the accumulation of specific mitochondrial mRNAs. Furthermore, deletion of ppr10 severely impairs mitochondrial protein synthesis, suggesting that Ppr10 plays a general role in mitochondrial protein synthesis. Ppr10 interacts with Mpa1 in vivo and in vitro and the two proteins colocalize in the mitochondrial matrix. The ppr10 and mpa1 deletion mutants exhibit very similar phenotypes. One of Mpa1's functions is to maintain the normal protein level of Ppr10 protein by protecting it from degradation by the mitochondrial matrix protease Lon1. Our findings suggest that Ppr10 functions as a general mitochondrial translational activator, likely through interaction with mitochondrial mRNAs and mitochondrial translation initiation factor Mti2, and that Ppr10 requires Mpa1 association for stability and function.
Collapse
Affiliation(s)
- Yirong Wang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jianhua Yan
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qingzhen Zhang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xuting Ma
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Juan Zhang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Minghui Su
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xiaojun Wang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
32
|
Sepuri NBV, Angireddy R, Srinivasan S, Guha M, Spear J, Lu B, Anandatheerthavarada HK, Suzuki CK, Avadhani NG. Mitochondrial LON protease-dependent degradation of cytochrome c oxidase subunits under hypoxia and myocardial ischemia. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2017; 1858:519-528. [PMID: 28442264 PMCID: PMC5507603 DOI: 10.1016/j.bbabio.2017.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 04/17/2017] [Accepted: 04/21/2017] [Indexed: 01/08/2023]
Abstract
The mitochondrial ATP dependent matrix protease, Lon, is involved in the maintenance of mitochondrial DNA nucleoids and degradation of abnormal or misfolded proteins. The Lon protease regulates mitochondrial Tfam (mitochondrial transcription factor A) level and thus modulates mitochondrial DNA (mtDNA) content. We have previously shown that hypoxic stress induces the PKA-dependent phosphorylation of cytochrome c oxidase (CcO) subunits I, IVi1, and Vb and a time-dependent reduction of these subunits in RAW 264.7 murine macrophages subjected to hypoxia and rabbit hearts subjected to ischemia/reperfusion. Here, we show that Lon is involved in the preferential turnover of phosphorylated CcO subunits under hypoxic/ischemic stress. Induction of Lon protease occurs at 6 to 12 h of hypoxia and this increase coincides with lower CcO subunit contents. Over-expression of flag-tagged wild type and phosphorylation site mutant Vb and IVi1 subunits (S40A and T52A, respectively) caused marked degradation of wild type protein under hypoxia while the mutant proteins were relatively resistant. Furthermore, the recombinant purified Lon protease degraded the phosphorylated IVi1 and Vb subunits, while the phosphorylation-site mutant proteins were resistant to degradation. 3D structural modeling shows that the phosphorylation sites are exposed to the matrix compartment, accessible to matrix PKA and Lon protease. Hypoxic stress did not alter CcO subunit levels in Lon depleted cells, confirming its role in CcO turnover. Our results therefore suggest that Lon preferentially degrades the phosphorylated subunits of CcO and plays a role in the regulation of CcO activity in hypoxia and ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Naresh B V Sepuri
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6009, USA
| | - Rajesh Angireddy
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6009, USA
| | - Satish Srinivasan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6009, USA
| | - Manti Guha
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6009, USA
| | - Joseph Spear
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6009, USA
| | - Bin Lu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers The State University, New Jersey Medical School, 225 Warren Street, Newark, NJ 17103-3535, USA
| | - Hindupur K Anandatheerthavarada
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6009, USA
| | - Carolyn K Suzuki
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers The State University, New Jersey Medical School, 225 Warren Street, Newark, NJ 17103-3535, USA
| | - Narayan G Avadhani
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6009, USA.
| |
Collapse
|
33
|
Protein quality control at the mitochondrion. Essays Biochem 2017; 60:213-225. [PMID: 27744337 DOI: 10.1042/ebc20160009] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022]
Abstract
Mitochondria are essential constituents of a eukaryotic cell by supplying ATP and contributing to many mayor metabolic processes. As endosymbiotic organelles, they represent a cellular subcompartment exhibiting many autonomous functions, most importantly containing a complete endogenous machinery responsible for protein expression, folding and degradation. This article summarizes the biochemical processes and the enzymatic components that are responsible for maintaining mitochondrial protein homoeostasis. As mitochondria lack a large part of the required genetic information, most proteins are synthesized in the cytosol and imported into the organelle. After reaching their destination, polypeptides must fold and assemble into active proteins. Under pathological conditions, mitochondrial proteins become misfolded or damaged and need to be repaired with the help of molecular chaperones or eventually removed by specific proteases. Failure of these protein quality control mechanisms results in loss of mitochondrial function and structural integrity. Recently, novel mechanisms have been identified that support mitochondrial quality on the organellar level. A mitochondrial unfolded protein response allows the adaptation of chaperone and protease activities. Terminally damaged mitochondria may be removed by a variation of autophagy, termed mitophagy. An understanding of the role of protein quality control in mitochondria is highly relevant for many human pathologies, in particular neurodegenerative diseases.
Collapse
|
34
|
Cui X, Wei Y, Xie XL, Chen LN, Zhang SH. Mitochondrial and peroxisomal Lon proteases play opposing roles in reproduction and growth but co-function in the normal development, stress resistance and longevity of Thermomyces lanuginosus. Fungal Genet Biol 2017; 103:42-54. [DOI: 10.1016/j.fgb.2017.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 04/09/2017] [Indexed: 01/08/2023]
|
35
|
Glynn SE. Multifunctional Mitochondrial AAA Proteases. Front Mol Biosci 2017; 4:34. [PMID: 28589125 PMCID: PMC5438985 DOI: 10.3389/fmolb.2017.00034] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/08/2017] [Indexed: 11/28/2022] Open
Abstract
Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle.
Collapse
Affiliation(s)
- Steven E Glynn
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony Brook, NY, United States
| |
Collapse
|
36
|
Cabrera M, Novarina D, Rempel IL, Veenhoff LM, Chang M. A simple microfluidic platform to study age-dependent protein abundance and localization changes in Saccharomyces cerevisiae. MICROBIAL CELL 2017; 4:169-174. [PMID: 28685142 PMCID: PMC5425278 DOI: 10.15698/mic2017.05.573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The budding yeast Saccharomyces cerevisiae divides asymmetrically, with a smaller daughter cell emerging from its larger mother cell. While the daughter lineage is immortal, mother cells age with each cell division and have a finite lifespan. The replicative ageing of the yeast mother cell has been used as a model to study the ageing of mitotically active human cells. Several microfluidic platforms, which use fluid flow to selectively remove daughter cells, have recently been developed that can monitor cell physiology as mother cells age. However, these platforms are not trivial to set up and users often require many hours of training. In this study, we have developed a simple system, which combines a commercially available microfluidic platform (the CellASIC ONIX Microfluidic Platform) and a genetic tool to prevent the proliferation of daughter cells (the Mother Enrichment Program), to monitor protein abundance and localization changes during approximately the first half of the yeast replicative lifespan. We validated our system by observing known age-dependent changes, such as decreased Sir2 abundance, and have identified a protein with a previously unknown age-dependent change in localization.
Collapse
Affiliation(s)
- Margarita Cabrera
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands
| | - Daniele Novarina
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands
| | - Irina L Rempel
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands
| |
Collapse
|
37
|
Li L, Nelson C, Fenske R, Trösch J, Pružinská A, Millar AH, Huang S. Changes in specific protein degradation rates in Arabidopsis thaliana reveal multiple roles of Lon1 in mitochondrial protein homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:458-471. [PMID: 27726214 DOI: 10.1111/tpj.13392] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 05/20/2023]
Abstract
Mitochondrial Lon1 loss impairs oxidative phosphorylation complexes and TCA enzymes and causes accumulation of specific mitochondrial proteins. Analysis of over 400 mitochondrial protein degradation rates using 15 N labelling showed that 205 were significantly different between wild type (WT) and lon1-1. Those proteins included ribosomal proteins, electron transport chain subunits and TCA enzymes. For respiratory complexes I and V, decreased protein abundance correlated with higher degradation rate of subunits in total mitochondrial extracts. After blue native separation, however, the assembled complexes had slow degradation, while smaller subcomplexes displayed rapid degradation in lon1-1. In insoluble fractions, a number of TCA enzymes were more abundant but the proteins degraded slowly in lon1-1. In soluble protein fractions, TCA enzymes were less abundant but degraded more rapidly. These observations are consistent with the reported roles of Lon1 as a chaperone aiding the proper folding of newly synthesized/imported proteins to stabilise them and as a protease to degrade mitochondrial protein aggregates. HSP70, prohibitin and enzymes of photorespiration accumulated in lon1-1 and degraded slowly in all fractions, indicating an important role of Lon1 in their clearance from the proteome.
Collapse
Affiliation(s)
- Lei Li
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Clark Nelson
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Ricarda Fenske
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Josua Trösch
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Adriana Pružinská
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Shaobai Huang
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| |
Collapse
|
38
|
Abstract
ATP-dependent Lon protease of mitochondrial matrix is encoded by nuclear DNA and highly evolutionarily conserved throughout all organisms, which is involved in the quality control of proteins by selective degradation of misfolded, oxidized, and short-lived regulatory proteins within mitochondrial matrix, maintenance of mitochondrial genome (mtDNA), and folding of mitochondria proteins. Various stimuli such as hypoxia and oxidative and ER stress lead to upregulation of Lon expression. Inhibition of protease activity or downregulation of Lon promotes cancer cell death and enhances sensitivity of cancer cells to anticancer drugs through metabolic reprogramming, thus reducing the viability of cancer cell in tumor microenvironment and epithelial to mesenchymal transition (EMT). Moreover, mitochondrial ATP-dependent Lon protease may serve as a potential biomarker for cancer diagnosis and novel target for the development of anticancer drugs and for predicting of the efficiency and effectiveness of chemotherapy of a variety of cancers.
Collapse
|
39
|
Bota DA, Davies KJA. Mitochondrial Lon protease in human disease and aging: Including an etiologic classification of Lon-related diseases and disorders. Free Radic Biol Med 2016; 100:188-198. [PMID: 27387767 PMCID: PMC5183306 DOI: 10.1016/j.freeradbiomed.2016.06.031] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/21/2016] [Accepted: 06/29/2016] [Indexed: 12/20/2022]
Abstract
The Mitochondrial Lon protease, also called LonP1 is a product of the nuclear gene LONP1. Lon is a major regulator of mitochondrial metabolism and response to free radical damage, as well as an essential factor for the maintenance and repair of mitochondrial DNA. Lon is an ATP-stimulated protease that cycles between being bound (at the inner surface of the inner mitochondrial membrane) to the mitochondrial genome, and being released into the mitochondrial matrix where it can degrade matrix proteins. At least three different roles or functions have been ascribed to Lon: 1) Proteolytic digestion of oxidized proteins and the turnover of specific essential mitochondrial enzymes such as aconitase, TFAM, and StAR; 2) Mitochondrial (mt)DNA-binding protein, involved in mtDNA replication and mitogenesis; and 3) Protein chaperone, interacting with the Hsp60-mtHsp70 complex. LONP1 orthologs have been studied in bacteria, yeast, flies, worms, and mammals, evincing the widespread importance of the gene, as well as its remarkable evolutionary conservation. In recent years, we have witnessed a significant increase in knowledge regarding Lon's involvement in physiological functions, as well as in an expanding array of human disorders, including cancer, neurodegeneration, heart disease, and stroke. In addition, Lon appears to have a significant role in the aging process. A number of mitochondrial diseases have now been identified whose mechanisms involve various degrees of Lon dysfunction. In this paper we review current knowledge of Lon's function, under normal conditions, and we propose a new classification of human diseases characterized by a either over-expression or decline or loss of function of Lon. Lon has also been implicated in human aging, and we review the data currently available as well as speculating about possible interactions of aging and disease. Finally, we also discuss Lon as potential therapeutic target in human disease.
Collapse
Affiliation(s)
- Daniela A Bota
- Department of Neurology and Chao Family Comprehensive Cancer Center, UC Irvine School of Medicine, 200 S. Manchester Ave., Suite 206, Orange, CA 92868, USA.
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, Los Angeles, CA 90089-0191, USA; Division of Molecular & Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, & Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| |
Collapse
|
40
|
Ciesielski SJ, Schilke B, Marszalek J, Craig EA. Protection of scaffold protein Isu from degradation by the Lon protease Pim1 as a component of Fe-S cluster biogenesis regulation. Mol Biol Cell 2016; 27:1060-8. [PMID: 26842892 PMCID: PMC4814215 DOI: 10.1091/mbc.e15-12-0815] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/25/2016] [Indexed: 01/04/2023] Open
Abstract
Fe–S clusters are built on and transferred from the scaffold Isu. Isu is a substrate of Lon protease. Binding Nfs1, the sulfur donor for cluster assembly, or Jac1, the protein initiating cluster transfer, protects Isu from degradation. Such protection increases Isu levels, likely serving to rapidly up-regulate cellular Fe–S cluster biogenesis capacity. Iron–sulfur (Fe–S) clusters, essential protein cofactors, are assembled on the mitochondrial scaffold protein Isu and then transferred to recipient proteins via a multistep process in which Isu interacts sequentially with multiple protein factors. This pathway is in part regulated posttranslationally by modulation of the degradation of Isu, whose abundance increases >10-fold upon perturbation of the biogenesis process. We tested a model in which direct interaction with protein partners protects Isu from degradation by the mitochondrial Lon-type protease. Using purified components, we demonstrated that Isu is indeed a substrate of the Lon-type protease and that it is protected from degradation by Nfs1, the sulfur donor for Fe–S cluster assembly, as well as by Jac1, the J-protein Hsp70 cochaperone that functions in cluster transfer from Isu. Nfs1 and Jac1 variants known to be defective in interaction with Isu were also defective in protecting Isu from degradation. Furthermore, overproduction of Jac1 protected Isu from degradation in vivo, as did Nfs1. Taken together, our results lead to a model of dynamic interplay between a protease and protein factors throughout the Fe–S cluster assembly and transfer process, leading to up-regulation of Isu levels under conditions when Fe–S cluster biogenesis does not meet cellular demands.
Collapse
Affiliation(s)
- Szymon J Ciesielski
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Brenda Schilke
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Jaroslaw Marszalek
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk 80307, Poland
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
41
|
Pinti M, Gibellini L, Liu Y, Xu S, Lu B, Cossarizza A. Mitochondrial Lon protease at the crossroads of oxidative stress, ageing and cancer. Cell Mol Life Sci 2015; 72:4807-24. [PMID: 26363553 PMCID: PMC11113732 DOI: 10.1007/s00018-015-2039-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/01/2015] [Accepted: 09/07/2015] [Indexed: 11/26/2022]
Abstract
Lon protease is a nuclear DNA-encoded mitochondrial enzyme highly conserved throughout evolution, involved in the degradation of damaged and oxidized proteins of the mitochondrial matrix, in the correct folding of proteins imported in mitochondria, and in the maintenance of mitochondrial DNA. Lon expression is induced by various stimuli, including hypoxia and reactive oxygen species, and provides protection against cell stress. Lon down-regulation is associated with ageing and with cell senescence, while up-regulation is observed in tumour cells, and is correlated with a more aggressive phenotype of cancer. Lon up-regulation contributes to metabolic reprogramming observed in cancer, favours the switch from a respiratory to a glycolytic metabolism, helping cancer cell survival in the tumour microenvironment, and contributes to epithelial to mesenchymal transition. Silencing of Lon, or pharmacological inhibition of its activity, causes cell death in various cancer cells. Thus, Lon can be included in the growing class of proteins that are not responsible for oncogenic transformation, but that are essential for survival and proliferation of cancer cells, and that can be considered as a new target for development of anticancer drugs.
Collapse
Affiliation(s)
- Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi, 287, 41125, Modena, Italy.
| | - Lara Gibellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Yongzhang Liu
- School of Life Sciences, Institute of Biophysics, Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shan Xu
- School of Life Sciences, Institute of Biophysics, Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Bin Lu
- School of Life Sciences, Institute of Biophysics, Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
42
|
Bahat A, Perlberg S, Melamed-Book N, Isaac S, Eden A, Lauria I, Langer T, Orly J. Transcriptional activation of LON Gene by a new form of mitochondrial stress: A role for the nuclear respiratory factor 2 in StAR overload response (SOR). Mol Cell Endocrinol 2015; 408:62-72. [PMID: 25724481 DOI: 10.1016/j.mce.2015.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 01/19/2023]
Abstract
High output of steroid hormone synthesis in steroidogenic cells of the adrenal cortex and the gonads requires the expression of the steroidogenic acute regulatory protein (StAR) that facilitates cholesterol mobilization to the mitochondrial inner membrane where the CYP11A1/P450scc enzyme complex converts the sterol to the first steroid. Earlier studies have shown that StAR is active while pausing on the cytosolic face of the outer mitochondrial membrane while subsequent import of the protein into the matrix terminates the cholesterol mobilization activity. Consequently, during repeated activity cycles, high level of post-active StAR accumulates in the mitochondrial matrix. To prevent functional damage due to such protein overload effect, StAR is degraded by a sequence of three to four ATP-dependent proteases of the mitochondria protein quality control system, including LON and the m-AAA membranous proteases AFG3L2 and SPG7/paraplegin. Furthermore, StAR expression in both peri-ovulatory ovarian cells, or under ectopic expression in cell line models, results in up to 3-fold enrichment of the mitochondrial proteases and their transcripts. We named this novel form of mitochondrial stress as StAR overload response (SOR). To better understand the SOR mechanism at the transcriptional level we analyzed first the unexplored properties of the proximal promoter of the LON gene. Our findings suggest that the human nuclear respiratory factor 2 (NRF-2), also known as GA binding protein (GABP), is responsible for 88% of the proximal promoter activity, including the observed increase of transcription in the presence of StAR. Further studies are expected to reveal if common transcriptional determinants coordinate the SOR induced transcription of all the genes encoding the SOR proteases.
Collapse
Affiliation(s)
- Assaf Bahat
- Department of Biological Chemistry at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shira Perlberg
- Department of Biological Chemistry at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Naomi Melamed-Book
- Bio-Imaging Unit at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sara Isaac
- Department of Cell & Developmental Biology at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Amir Eden
- Department of Cell & Developmental Biology at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ines Lauria
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Thomas Langer
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Joseph Orly
- Department of Biological Chemistry at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
43
|
Bohovych I, Chan SS, Khalimonchuk O. Mitochondrial protein quality control: the mechanisms guarding mitochondrial health. Antioxid Redox Signal 2015; 22:977-94. [PMID: 25546710 PMCID: PMC4390190 DOI: 10.1089/ars.2014.6199] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/20/2014] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Mitochondria are complex dynamic organelles pivotal for cellular physiology and human health. Failure to maintain mitochondrial health leads to numerous maladies that include late-onset neurodegenerative diseases and cardiovascular disorders. Furthermore, a decline in mitochondrial health is prevalent with aging. A set of evolutionary conserved mechanisms known as mitochondrial quality control (MQC) is involved in recognition and correction of the mitochondrial proteome. RECENT ADVANCES Here, we review current knowledge and latest developments in MQC. We particularly focus on the proteolytic aspect of MQC and its impact on health and aging. CRITICAL ISSUES While our knowledge about MQC is steadily growing, critical gaps remain in the mechanistic understanding of how MQC modules sense damage and preserve mitochondrial welfare, particularly in higher organisms. FUTURE DIRECTIONS Delineating how coordinated action of the MQC modules orchestrates physiological responses on both organellar and cellular levels will further elucidate the current picture of MQC's role and function in health, cellular stress, and degenerative diseases.
Collapse
Affiliation(s)
- Iryna Bohovych
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Sherine S.L. Chan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
44
|
Lau E, Huang D, Cao Q, Dincer TU, Black CM, Lin AJ, Lee JM, Wang D, Liem DA, Lam MP, Ping P. Spatial and temporal dynamics of the cardiac mitochondrial proteome. Expert Rev Proteomics 2015; 12:133-46. [PMID: 25752359 PMCID: PMC4721584 DOI: 10.1586/14789450.2015.1024227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mitochondrial proteins alter in their composition and quantity drastically through time and space in correspondence to changing energy demands and cellular signaling events. The integrity and permutations of this dynamism are increasingly recognized to impact the functions of the cardiac proteome in health and disease. This article provides an overview on recent advances in defining the spatial and temporal dynamics of mitochondrial proteins in the heart. Proteomics techniques to characterize dynamics on a proteome scale are reviewed and the physiological consequences of altered mitochondrial protein dynamics are discussed. Lastly, we offer our perspectives on the unmet challenges in translating mitochondrial dynamics markers into the clinic.
Collapse
Affiliation(s)
- Edward Lau
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Derrick Huang
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Quan Cao
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - T. Umut Dincer
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Caitie M. Black
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Amanda J. Lin
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Jessica M. Lee
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Ding Wang
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - David A. Liem
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Maggie P.Y. Lam
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Peipei Ping
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
- Departments of Medicine, and Bioinformatics, NIH Center of Excellence in Big Data Computing at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
45
|
Strauss KA, Jinks RN, Puffenberger EG, Venkatesh S, Singh K, Cheng I, Mikita N, Thilagavathi J, Lee J, Sarafianos S, Benkert A, Koehler A, Zhu A, Trovillion V, McGlincy M, Morlet T, Deardorff M, Innes AM, Prasad C, Chudley AE, Lee INW, Suzuki CK. CODAS syndrome is associated with mutations of LONP1, encoding mitochondrial AAA+ Lon protease. Am J Hum Genet 2015; 96:121-35. [PMID: 25574826 DOI: 10.1016/j.ajhg.2014.12.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/05/2014] [Indexed: 12/30/2022] Open
Abstract
CODAS syndrome is a multi-system developmental disorder characterized by cerebral, ocular, dental, auricular, and skeletal anomalies. Using whole-exome and Sanger sequencing, we identified four LONP1 mutations inherited as homozygous or compound-heterozygous combinations among ten individuals with CODAS syndrome. The individuals come from three different ancestral backgrounds (Amish-Swiss from United States, n = 8; Mennonite-German from Canada, n = 1; mixed European from Canada, n = 1). LONP1 encodes Lon protease, a homohexameric enzyme that mediates protein quality control, respiratory-complex assembly, gene expression, and stress responses in mitochondria. All four pathogenic amino acid substitutions cluster within the AAA(+) domain at residues near the ATP-binding pocket. In biochemical assays, pathogenic Lon proteins show substrate-specific defects in ATP-dependent proteolysis. When expressed recombinantly in cells, all altered Lon proteins localize to mitochondria. The Old Order Amish Lon variant (LONP1 c.2161C>G[p.Arg721Gly]) homo-oligomerizes poorly in vitro. Lymphoblastoid cell lines generated from affected children have (1) swollen mitochondria with electron-dense inclusions and abnormal inner-membrane morphology; (2) aggregated MT-CO2, the mtDNA-encoded subunit II of cytochrome c oxidase; and (3) reduced spare respiratory capacity, leading to impaired mitochondrial proteostasis and function. CODAS syndrome is a distinct, autosomal-recessive, developmental disorder associated with dysfunction of the mitochondrial Lon protease.
Collapse
Affiliation(s)
- Kevin A Strauss
- Clinic for Special Children, Strasburg, PA 17579, USA; Lancaster General Hospital, Lancaster, PA 17602, USA; Department of Biology and Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA 17603, USA.
| | - Robert N Jinks
- Department of Biology and Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA 17603, USA
| | - Erik G Puffenberger
- Clinic for Special Children, Strasburg, PA 17579, USA; Department of Biology and Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA 17603, USA
| | - Sundararajan Venkatesh
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Kamalendra Singh
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA; Department of Molecular Microbiology and Immunology, Christopher Bond Life Sciences Center, University of Missouri, Columbia, Columbia, MO 65201, USA
| | - Iteen Cheng
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Natalie Mikita
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jayapalraja Thilagavathi
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Jae Lee
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Stefan Sarafianos
- Department of Molecular Microbiology and Immunology, Christopher Bond Life Sciences Center, University of Missouri, Columbia, Columbia, MO 65201, USA
| | - Abigail Benkert
- Clinic for Special Children, Strasburg, PA 17579, USA; Department of Biology and Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA 17603, USA
| | - Alanna Koehler
- Department of Biology and Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA 17603, USA
| | - Anni Zhu
- Department of Biology and Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA 17603, USA
| | - Victoria Trovillion
- Department of Biology and Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA 17603, USA
| | - Madeleine McGlincy
- Department of Biology and Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA 17603, USA
| | - Thierry Morlet
- Auditory Physiology and Psychoacoustics Research Laboratory, duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Matthew Deardorff
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Chitra Prasad
- Medical Genetics Program, Department of Pediatrics, Children's Health Research Institute and Western University, London, ON N6C 2V5, Canada
| | - Albert E Chudley
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Irene Nga Wing Lee
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Carolyn K Suzuki
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
46
|
Adaptor-mediated Lon proteolysis restricts Bacillus subtilis hyperflagellation. Proc Natl Acad Sci U S A 2014; 112:250-5. [PMID: 25538299 DOI: 10.1073/pnas.1417419112] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Lon AAA+ protease is a highly conserved intracellular protease that is considered an anticancer target in eukaryotic cells and a crucial virulence regulator in bacteria. Lon degrades both damaged, misfolded proteins and specific native regulators, but how Lon discriminates among a large pool of candidate targets remains unclear. Here we report that Bacillus subtilis LonA specifically degrades the master regulator of flagellar biosynthesis SwrA governed by the adaptor protein swarming motility inhibitor A (SmiA). SmiA-dependent LonA proteolysis is abrogated upon microbe-substrate contact causing SwrA protein levels to increase and elevate flagellar density above a critical threshold for swarming motility atop solid surfaces. Surface contact-dependent cellular differentiation in bacteria is rapid, and regulated proteolysis may be a general mechanism of transducing surface stimuli.
Collapse
|
47
|
Gibellini L, Pinti M, Boraldi F, Giorgio V, Bernardi P, Bartolomeo R, Nasi M, De Biasi S, Missiroli S, Carnevale G, Losi L, Tesei A, Pinton P, Quaglino D, Cossarizza A. Silencing of mitochondrial Lon protease deeply impairs mitochondrial proteome and function in colon cancer cells. FASEB J 2014; 28:5122-35. [DOI: 10.1096/fj.14-255869] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lara Gibellini
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Marcello Pinti
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Federica Boraldi
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | | | - Paolo Bernardi
- Department of Biomedical SciencesUniversity of PadovaPaduaItaly
| | - Regina Bartolomeo
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Sara De Biasi
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Sonia Missiroli
- Department of Morphology, Surgery, and Experimental MedicineUniversity of FerraraFerraraItaly
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Lorena Losi
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Anna Tesei
- Biosciences LaboratoryIRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST)MeldolaItaly
| | - Paolo Pinton
- Department of Morphology, Surgery, and Experimental MedicineUniversity of FerraraFerraraItaly
| | - Daniela Quaglino
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
- Dipartimento Sperimentale Interaziendale, Campus San LazzaroUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
| |
Collapse
|
48
|
Daras G, Rigas S, Tsitsekian D, Zur H, Tuller T, Hatzopoulos P. Alternative transcription initiation and the AUG context configuration control dual-organellar targeting and functional competence of Arabidopsis Lon1 protease. MOLECULAR PLANT 2014; 7:989-1005. [PMID: 24646630 DOI: 10.1093/mp/ssu030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cellular homeostasis relies on components of protein quality control including chaperones and proteases. In bacteria and eukaryotic organelles, Lon proteases play a critical role in removing irreparably damaged proteins and thereby preventing the accumulation of deleterious degradation-resistant aggregates. Gene expression, live-cell imaging, immunobiochemical, and functional complementation approaches provide conclusive evidence for Lon1 dual-targeting to chloroplasts and mitochondria. Dual-organellar deposition of Lon1 isoforms depends on both transcriptional regulation and alternative translation initiation via leaky ribosome scanning from the first AUG sequence context that deviates extensively from the optimum Kozak consensus. Organelle-specific Lon1 targeting results in partial complementation of Arabidopsis lon1-1 mutants, whereas full complementation is solely accomplished by dual-organellar targeting. Both the optimal and non-optimal AUG sequence contexts are functional in yeast and facilitate leaky ribosome scanning complementing the pim1 phenotype when the mitochondrial presequence is used. Bioinformatic search identified a limited number of Arabidopsis genes with Lon1-type dual-targeting sequence organization. Lon4, the paralog of Lon1, has an ambiguous presequence likely evolved from the twin presequences of an ancestral Lon1-like gene, generating a single dual-targeted protein isoform. We postulate that Lon1 and its subfunctional paralog Lon4 evolved complementary subsets of transcriptional and posttranscriptional regulatory components responsive to environmental cues for dual-organellar targeting.
Collapse
Affiliation(s)
- Gerasimos Daras
- Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens 118 55, Greece
| | - Stamatis Rigas
- Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens 118 55, Greece
| | - Dikran Tsitsekian
- Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens 118 55, Greece
| | - Hadas Zur
- School of Computer Science, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Polydefkis Hatzopoulos
- Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens 118 55, Greece.
| |
Collapse
|
49
|
PINK1-Parkin pathway activity is regulated by degradation of PINK1 in the mitochondrial matrix. PLoS Genet 2014; 10:e1004279. [PMID: 24874806 PMCID: PMC4038460 DOI: 10.1371/journal.pgen.1004279] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
Loss-of-function mutations in PINK1, which encodes a mitochondrially targeted serine/threonine kinase, result in an early-onset heritable form of Parkinson's disease. Previous work has shown that PINK1 is constitutively degraded in healthy cells, but selectively accumulates on the surface of depolarized mitochondria, thereby initiating their autophagic degradation. Although PINK1 is known to be a cleavage target of several mitochondrial proteases, whether these proteases account for the constitutive degradation of PINK1 in healthy mitochondria remains unclear. To explore the mechanism by which PINK1 is degraded, we performed a screen for mitochondrial proteases that influence PINK1 abundance in the fruit fly Drosophila melanogaster. We found that genetic perturbations targeting the matrix-localized protease Lon caused dramatic accumulation of processed PINK1 species in several mitochondrial compartments, including the matrix. Knockdown of Lon did not decrease mitochondrial membrane potential or trigger activation of the mitochondrial unfolded protein stress response (UPRmt), indicating that PINK1 accumulation in Lon-deficient animals is not a secondary consequence of mitochondrial depolarization or the UPRmt. Moreover, the influence of Lon on PINK1 abundance was highly specific, as Lon inactivation had little or no effect on the abundance of other mitochondrial proteins. Further studies indicated that the processed forms of PINK1 that accumulate upon Lon inactivation are capable of activating the PINK1-Parkin pathway in vivo. Our findings thus suggest that Lon plays an essential role in regulating the PINK1-Parkin pathway by promoting the degradation of PINK1 in the matrix of healthy mitochondria.
Collapse
|
50
|
Smakowska E, Czarna M, Janska H. Mitochondrial ATP-dependent proteases in protection against accumulation of carbonylated proteins. Mitochondrion 2014; 19 Pt B:245-51. [PMID: 24662487 DOI: 10.1016/j.mito.2014.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
Abstract
Carbonylation is an irreversible oxidative modification of proteins induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS) or by-products of oxidative stress. Carbonylation leads to the loss of protein function and is used as a marker of oxidative stress. Recent data indicate that carbonylation is not only an unfavorable chance process but may also play a significant role in the control of diverse physiological processes. In plants, carbonylated proteins have been found in all cellular compartments; however, mitochondria, one of the major sources of reactive species, show the highest levels of oxidatively modified proteins under normal or stress conditions. Carbonylated proteins tend to misfold and have to be removed to prevent the formation of harmful insoluble aggregates. Mitochondria have developed several pathways that continuously monitor and remove oxidatively damaged polypeptides, and the mitochondrial protein quality control (mtPQC) system, comprising chaperones and ATP-dependent proteases, is the first line of defense. The Lon protease has been recognized as a key protease involved in the removal of oxidized proteins in yeast and mammalian mitochondria, but not in plants. Recently, it has been reported that the inner-membrane human i-AAA and m-AAA and Arabidopsis i-AAA proteases are crucial components of the defense against accumulation of carbonylated proteins, but the molecular basis of their action is not yet clear. Altogether, the mitochondrial AAA proteases secure the mitochondrial proteome against accumulation of carbonylated proteins.
Collapse
Affiliation(s)
- Elwira Smakowska
- Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland
| | - Malgorzata Czarna
- Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland
| | - Hanna Janska
- Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland.
| |
Collapse
|