1
|
Qiu Y, Zhang D, Long M, Zhou Z, Gao C, Ma S, Qin J, Chen K, Chen C, Zhao Z, Deng H. Coassembly of hybrid microscale biomatter for robust, water-processable, and sustainable bioplastics. SCIENCE ADVANCES 2025; 11:eadr1596. [PMID: 40173231 PMCID: PMC11963992 DOI: 10.1126/sciadv.adr1596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
Unlike conventional methods that typically involve extracting biopolymers/monomers from biomass using lots of hazardous chemicals and high energy, the direct utilization of biological matter (biomatter) without extraction offers a more sustainable alternative for bioplastic production. However, it often suffers from insufficient mechanical performances or limited processabilities. Herein, we proposed a hybrid microscale biomatter coassembly strategy that leverages the interactions between the inherent microarchitectures of waste cotton fiber and pollen particles. With minimal preprocessing, they form a castable slurry that can spontaneously organize into a dense fiber-laminate bioplastic network, exhibiting high mechanical properties (52.22 megapascals and 2.24 gigapascals) without using toxic organic chemicals or heavy machinery. The resulting bioplastic features controlled hydration-induced microstructural disassembly/reassembly, enabling water-based processability into complex, dynamic architectural systems. In addition, it demonstrates good biodegradability, closed-loop recyclability, and satisfactory environmental benefits, outperforming most common plastics. This study provides an instant nature-derived paradigm for bioplastics' sustainable production, processing, and recycling, offering a promising solution for facilitating eco-friendly advanced applications.
Collapse
Affiliation(s)
- Yijin Qiu
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Dachuan Zhang
- Institute of Environmental Engineering, ETH Zürich, Laura-Hezner-Weg 7, 8093 Zürich, Switzerland
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| | - Min Long
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Zhixuan Zhou
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Changdan Gao
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Shuai Ma
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Jinfa Qin
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Kaijuan Chen
- School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chaoji Chen
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Ze Zhao
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| |
Collapse
|
2
|
Li X, Jiao C, Zhang X, Xu X, Gul S, Liang F, Caro J, Jiang H. Zinc Coordination-Polymer-Mediated Self-Assembly of Nanoparticles into "Brick-and-Mortar" Membranes for Hydrogen Separation. Angew Chem Int Ed Engl 2025; 64:e202416919. [PMID: 39899280 DOI: 10.1002/anie.202416919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 12/16/2024] [Indexed: 02/04/2025]
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) with high stability and porosity is a promising candidate for hydrogen separation membranes. However, most ZIF-8 polycrystalline membranes exhibit low H2/CO2 (kinetic diameters of 2.9/3.3 Å) mixed gas selectivity, due to the intercrystalline defects and the unprecise molecular sieving originated from framework flexibility of ZIF-8 structure with a theoretical aperture size of 3.4 Å. Here, inspired by nacre's "brick-and-mortar" structure, we develop mixed matrix type composite membranes in which dominant crystalline ZIF-8 nanoparticles (bricks) are interconnected by ultrathin zinc coordination polymer interlayers (mortar) via self-assembling. Driven by coordination bonds between Zn2+ from precursor colloid and branched polyethyleneimine (PEI), a zinc coordination polymer network is formed to connect ZIF-8 nanoparticles through interactions between Zn2+ of coordination polymer and surface terminal groups on ZIF-8 nanoparticles, thus eliminating intercrystalline void defects and providing a highly selective H2 transport pathway. Meanwhile, the micropores and large cavities in ZIF-8 allow fast H2 transport. Benefitting from both highly selective pathway and fast H2 transport through porous ZIF-8, the optimized ZIF-8-PEI membrane exhibits a record-high H2 permeability of ~1.78×105 Barrer with a high mixed gas H2/CO2 selectivity of 176, surpassing state-of-the-art performance. This bioinspired multifunctional membrane expands the scope of molecular sieving membrane.
Collapse
Affiliation(s)
- Xinxin Li
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengli Jiao
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xiaoqian Zhang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoya Xu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Saeed Gul
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Department of Chemical Engineering, University of Engineering & Technology Peshawar, Peshawar, Pakistan
| | - Fangyi Liang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Jürgen Caro
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstrasse 3 A, 30167, Hannover, Deutschland
| | - Heqing Jiang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
3
|
Pang J, Zhang ZB, Wang ZY, Zhang SC, Wen SM, Cui C, Gao HL, Yu SH. Mechanical Robust Nacre-Mimetic Composites with Designable Cryptic Coloration and Electromagnetic Wave-Transparent Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416535. [PMID: 40159888 DOI: 10.1002/adma.202416535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/14/2025] [Indexed: 04/02/2025]
Abstract
Ceramic materials are widely used in various protective equipment owing to their excellent mechanical properties and chemical stability, while their applications are limited by monotonous color and poor toughness. Inspired by the colorful and tough natural shells, nacre-mimetic alumina (Al2O3)-based (NMA) composites are fabricated by proposing a dual-oxide interface design strategy inspired by the hierarchical structure of natural nacre. The NMA composites achieve color regulation, providing possibilities for their application in camouflage protective armor. The fracture toughness of the optimal NMA composite is more than three times that of commercial Al2O3 ceramic. Simultaneously, the NMA composites have obvious advantages in terms of impact resistance compared with Al2O3 ceramic and polymer polymethyl methacrylate (PMMA). Additionally, the hierarchical structure of the NMA composites provides favorable structural conditions for transmission of electromagnetic (EM) waves at the frequency band of 18-26.5 GHz. These characteristics make the NMA composites potential protective materials for radar and communication equipment.
Collapse
Affiliation(s)
- Jun Pang
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen-Bang Zhang
- Institute of Innovative Materials, Department of Chemistry, Department of Materials Science and Engineering, Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ze-Yu Wang
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Si-Chao Zhang
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Shao-Meng Wen
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Cui
- Institute of Innovative Materials, Department of Chemistry, Department of Materials Science and Engineering, Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huai-Ling Gao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shu-Hong Yu
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Institute of Innovative Materials, Department of Chemistry, Department of Materials Science and Engineering, Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
4
|
Zhang Z, Zhang Z, Hou J, Zhao Y, Jia J, Wang J, Zhao J, Lian C, Dong A, Zhao D, Li W. Stress-induced self-assembly of hierarchically twisted stripe arrays. Sci Bull (Beijing) 2025; 70:704-711. [PMID: 39755466 DOI: 10.1016/j.scib.2024.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/07/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Hierarchical organization is prevalent in nature, yet the artificial construction of hierarchical materials featuring asymmetric structures remains a big challenge. Herein, we report a stress-induced self-assembly strategy for the synthesis of hierarchically twisted stripe arrays (HTSAs) with mesoporous structures. A soft and thin mesostructured film assembled by micelles and TiO2 oligomers is the prerequisite. Then, the external stress coming from the exfoliation process triggers the deformation of this mesostructured film into hierarchically twisted structures. The stripe width and twist degree can be well manipulated by adjusting the cross-linking degree and thickness of the mesostructured films. Furthermore, this strategy is facile and versatile to synthesize HTSAs with diverse components, including carbon, Al2O3 and ZrO2. We find that mesoporous TiO2 HTSAs can serve as an ideal integrator for adsorption-enrichment-detection process, exhibiting a rapid and high adsorption capacity towards molecules at low concentrations and enabling the subsequent surface-enhanced Raman scattering (SERS) detection. Such twisted stripe arrays achieve 2.3-fold and 5.6-fold enhancements in SERS compared with flat surfaces and solution conditions, respectively, due to the increased Raman scattering among the hierarchical, twisted, and mesoporous structures.
Collapse
Affiliation(s)
- Zhenghao Zhang
- Department of Chemistry, Laboratory of Advance Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, China
| | - Zekai Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junyu Hou
- Department of Chemistry, Laboratory of Advance Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, China
| | - Yiyue Zhao
- Department of Chemistry, Laboratory of Advance Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, China
| | - Jia Jia
- Department of Chemistry, Laboratory of Advance Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, China
| | - Jiwei Wang
- Department of Chemistry, Laboratory of Advance Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, China
| | - Jie Zhao
- Department of Chemistry, Laboratory of Advance Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, China
| | - Cheng Lian
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Angang Dong
- Department of Chemistry, Laboratory of Advance Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advance Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, China
| | - Wei Li
- Department of Chemistry, Laboratory of Advance Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, China.
| |
Collapse
|
5
|
Tang J, Feng S, Yang M. Anisotropy-dependent chirality transfer from cellulose nanocrystals to β-FeOOH nanowhiskers. Chem Sci 2025:d4sc07747d. [PMID: 40134654 PMCID: PMC11931430 DOI: 10.1039/d4sc07747d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Chiral iron oxides and hydroxides have garnered considerable interest owing to the unique combination of chirality and magnetism. However, improving their g-factor, which is critical for optimizing the chiral magneto-optical response, remains elusive. We demonstrated that the g-factor of β-FeOOH could be boosted by enhancing the anisotropy of nanostructures during a biomimetic mineralization process. Cellulose nanocrystals were used as both mineralization templates and chiral ligands, driving oriented attachment of β-FeOOH nanoparticles and inducing the formation of highly aligned chiral nanowhiskers. Circular dichroism spectra and time-dependent density-functional theory proved that chirality transfer was induced from cellulose nanocrystals to β-FeOOH through ligand-metal charge transfer. Interestingly, chirality transfer was significantly enhanced during the elongation of nanowhiskers. A nearly 34-fold increase in the g-factor was observed when the aspect ratio of nanowhiskers increased from 2.6 to 4.4, reaching a g-factor of 5.7 × 10-3, superior to existing dispersions of chiral iron oxides and hydroxides. Semi-empirical quantum calculations revealed that such a remarkable improvement in the g-factor could be attributed to enhanced dipolar interactions. Cellulose nanocrystals exert vicinal actions on highly anisotropic β-FeOOH with a large dipole moment, increasing structural distortions in the coordination geometry. This mechanism aligns with the static coupling principle of one-electron theory, highlighting the strong interaction potential of supramolecular templates. Furthermore, paramagnetic β-FeOOH nanowhiskers alter the magnetic anisotropy of cellulose nanocrystals, leading to a reversed response of helical photonic films to magnetic fields, promising for real-time optical modulation.
Collapse
Affiliation(s)
- Jinyu Tang
- The State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 Jilin China
| | - Shouhua Feng
- The State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 Jilin China
| | - Ming Yang
- The State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 Jilin China
| |
Collapse
|
6
|
Chen W, Meng J, Wang S. Bioinspired Materials for Controlling Mineral Adhesion: From Innovation Design to Diverse Applications. ACS NANO 2025; 19:7546-7582. [PMID: 39979232 DOI: 10.1021/acsnano.4c16946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The advancement of controllable mineral adhesion materials has significantly impacted various sectors, including industrial production, energy utilization, biomedicine, construction engineering, food safety, and environmental management. Natural biological materials exhibit distinctive and controllable adhesion properties that inspire the design of artificial systems for controlling mineral adhesion. In recent decades, researchers have sought to create bioinspired materials that effectively regulate mineral adhesion, significantly accelerating the development of functional materials across various emerging fields. Herein, we review recent advances in bioinspired materials for controlling mineral adhesion, including bioinspired mineralized materials and bioinspired antiscaling materials. First, a systematic overview of biological materials that exhibit controllable mineral adhesion in nature is provided. Then, the mechanism of mineral adhesion and the latest adhesion characterization between minerals and material surfaces are introduced. Later, the latest advances in bioinspired materials designed for controlling mineral adhesion are presented, ranging from the molecular level to micro/nanostructures, including bioinspired mineralized materials and bioinspired antiscaling materials. Additionally, recent applications of these bioinspired materials in emerging fields are discussed, such as industrial production, energy utilization, biomedicine, construction engineering, and environmental management, highlighting their roles in promoting or inhibiting aspects. Finally, we summarize the ongoing challenges and offer a perspective on the future of this charming field.
Collapse
Affiliation(s)
- Wei Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingxin Meng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
7
|
Shen L, Dang M. Chiral Biomineral Structures: Synthesis and Inspiring Functional Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2402075. [PMID: 39981874 DOI: 10.1002/smll.202402075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 12/11/2024] [Indexed: 02/22/2025]
Abstract
Biominerals with complex hierarchical structures present important roles, such as defense, predation, or communication, which spurs the scientists to design biomimetic strategies and mimic this microstructure. This review mainly focuses on the synthesized strategies of chiral biominerals and the inspirations in the design of the functional materials. Additive-assisted and template-oriented strategies can control mineral growth through intermolecular interactions, which triggers the chirality transfer from the molecular level to the macroscopic scale. Gel-based limited space reduces the solute diffusion rate and prompts the chiral morphology or helical structure evolution. These strategies play a synergetic role in the mineralization process. This growth process is commonly dominated by the nonclassical routes, and understanding this evolved mechanism is significant for the materials synthesis. The superior performance of the chiral minerals provides sufficient inspiration for materials manufacturing. The twisted layered structure design enhances the rigidity and toughness significantly, which provides a new sight in the hard materials preparation. Chirality arrangement displays the optical characteristic, which is expected to be applied in the sensing. Finally, further directions from mechanisms, and design to production are given.
Collapse
Affiliation(s)
- Lixia Shen
- College of Environmental and Chemical Engineering, Shenyang Ligong University, Liaoning, 110159, P. R. China
| | - Mingyan Dang
- College of Environmental and Chemical Engineering, Shenyang Ligong University, Liaoning, 110159, P. R. China
| |
Collapse
|
8
|
Wei J, Yuan T, Ping H, Pan F, Fu Z. Bridging Biological Multiscale Structure and Biomimetic Ceramic Construction. RESEARCH (WASHINGTON, D.C.) 2025; 8:0588. [PMID: 39931294 PMCID: PMC11808196 DOI: 10.34133/research.0588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 02/13/2025]
Abstract
The brittleness of traditional ceramics severely limits their application progress in engineering. The multiscale structural design of organisms can solve this problem, but it still lacks sufficient research and attention. The underlined main feature is the multiscale hierarchical structures composed of basic nano-microstructure units arranged in order, which is currently impossible to achieve through artificial synthesis driven by high temperatures. This perspective aims to bridge the gap between biostructural materials and biomimetic ceramics, highlighting the relationship between bioinspired structures and interfacial interaction of structure densification in biomimetic ceramics. Therefore, we could accomplish densification and ceramic development at room temperature, consequently correlating the structure, properties, and functions of materials and accelerating the development of the next generation of advanced functional ceramics.
Collapse
Affiliation(s)
- Jingjiang Wei
- Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
- Hubei Longzhong Laboratory,
Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, P. R. China
| | - Tianyu Yuan
- Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Hang Ping
- Hubei Longzhong Laboratory,
Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Fei Pan
- Department of Chemistry,
University of Basel, Basel 4058, Switzerland
| | - Zhengyi Fu
- Hubei Longzhong Laboratory,
Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
9
|
Merle M, Lagarrigue P, Wang S, Duployer B, Tenailleau C, Müller WEG, Poquillon D, Combes C, Soulié J. Freeze-Cast Composites of Alginate/Pyrophosphate-Stabilized Amorphous Calcium Carbonate: From the Nanoscale Structuration to the Macroscopic Properties. ACS Biomater Sci Eng 2025; 11:1198-1211. [PMID: 39772404 DOI: 10.1021/acsbiomaterials.4c01396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Pyrophosphate-stabilized amorphous calcium carbonates (PyACC) are promising compounds for bone repair due to their ability to release calcium, carbonate, and phosphate ions following pyrophosphate hydrolysis. However, shaping these metastable and brittle materials using conventional methods remains a challenge, especially in the form of macroporous scaffolds, yet essential to promote cell colonization. To overcome these limitations, this article describes for the first time the design and multiscale characterization of freeze-cast alginate (Alg)-PyACC nanocomposite scaffolds. The study initially focused on the synthesis of Alg-PyACC powder through in situ coprecipitation. The presence of alginate chains in the vicinity of the PyACC was shown to affect both the powder reactivity and the release of calcium ions when placed in water (XRD, chemical titrations). In vitro cellular assays confirmed the biocompatibility of Alg-PyACC powder, supporting its use as a filler in scaffolds for bone substitutes. In a second step, the freeze-casting process was carried out using these precursor powders with varying rates of inorganic fillers. The resulting scaffolds were compared in terms of pore size and gradient (via SEM, X-ray microtomography, and mercury intrusion porosimetry). All scaffolds exhibited a pore size gradient oriented along the solidification axis, featuring unidirectional, lamellar, and interconnected pores. Interestingly, we found that the pore size and wall thickness could be controlled by the filler rate. This effect was attributed to the in situ cross-linking of alginate chains by released Ca2+ ions from the fillers, which increased viscosity, affecting temperature-driven segregation during the freezing step. Different multiscale organizations of the porosity and spatial distribution of fillers (FEG-SEM) were correlated with changes in the scaffold mechanical properties (tested via uniaxial compression). With such tunable porous and mechanical properties, Alg-PyACC composite scaffolds present attractive opportunities for specific bone substitute applications.
Collapse
Affiliation(s)
- Marion Merle
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 allée Emile Monso, Toulouse 31030, France
| | - Prescillia Lagarrigue
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 allée Emile Monso, Toulouse 31030, France
| | - Shunfeng Wang
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz 55128, Germany
| | - Benjamin Duployer
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, Toulouse 31062, France
| | - Christophe Tenailleau
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, Toulouse 31062, France
| | - Werner E G Müller
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz 55128, Germany
| | - Dominique Poquillon
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 allée Emile Monso, Toulouse 31030, France
| | - Christèle Combes
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 allée Emile Monso, Toulouse 31030, France
| | - Jérémy Soulié
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 allée Emile Monso, Toulouse 31030, France
| |
Collapse
|
10
|
Ma Y, Chen W, Xu S, Zou Z, Xie J, Meng J, Zhang P, Fu Z. Underwater Superoleophobic and Transparent Films with Mechanical Robustness and High Durability in Harsh Environments. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7510-7520. [PMID: 39873205 DOI: 10.1021/acsami.4c21361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Underwater superoleophobic and transparent (UST) films are promising in applications, such as advanced optical devices in marine environments. However, the mechanical robustness and durability in harsh environments of the existing UST films are still unsatisfactory. In this work, we present a free-standing nacre-inspired mineralized UST (NIM-UST) film with high aragonite content and excellent mechanical properties toward robust underwater superoleophobicity on two surfaces and transparency (94%) in harsh seawater environments. Such NIM-UST films were fabricated by using a simple and effective magnesium ion (Mg2+)-assisted dual-side mineralization strategy. The NIM-UST films exhibit high inorganic content (87 wt %), among which the aragonite fractions can reach 98 wt %. As a result, the modulus and hardness of the resulting NIM-UST films increased by 154% (from 8.17 ± 0.37 GPa to 20.78 ± 0.94 GPa) and 190% (from 0.70 ± 0.02 GPa to 2.03 ± 0.08 GPa), respectively, compared to those of the single-side NIM-UST films. And both surfaces of the resulting NIM-UST film maintain excellent underwater superoleophobicity (oil contact angle > 150°) and low oil adhesive force (<4 μN) under conditions of high-salt solutions, high temperatures, long-term immersion in seawater, and sand shock. In addition, the NIM-UST films can also be assembled into bulk materials with high hardness (2.63 ± 0.03 GPa) and flexural strength (109.55 ± 5.91 MPa) as next-generation structural materials. The feasible strategy developed in this work can promote the development and practical application of NIM-UST films.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
| | - Wei Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shiqing Xu
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhaoyong Zou
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jingjing Xie
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
| | - Jingxin Meng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengchao Zhang
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
| | - Zhengyi Fu
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
| |
Collapse
|
11
|
Xue J, Cai D, Zhang X, Qin C, Yu X, Liu H. Dry Bondable Porous Silk Fibroin Films for Embedding Micropatterned Electronics in Hierarchical Silk Nacre. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408808. [PMID: 39676385 DOI: 10.1002/smll.202408808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Future structural materials is not only be lightweight, strong, and tough, but also capable of integrating functions like sensing, adaptation, self-healing, deformation, and recovery as needed. Although bio-inspired materials are well developed, directly integrating microelectronic patterns into nacre-mimetic structures remains challenging, limiting the widespread application of electronic biomimetic materials. Here, an in situ freeze-drying method is reported for the successful preparation of porous silk fibroin materials that can achieve dry bonding. The in situ freeze-drying method preserves the structural integrity of the lyophilized membrane while reducing procedural steps, achieving control over pore gradient not feasible with traditional freeze-drying techniques. By leveraging their smooth surfaces and capacity to support heat transfer patterns, layer-by-layer assembly at a macroscopic scale is achieved. The material's excellent mechanical properties, controllable graded structure, and adjustable degradation behavior enable the construction of electronically functionalized hierarchical structures. Additionally, the dry-state, layer-by-layer bonding method for porous polymer films provides advantages in precision control, mechanical stability, functional versatility, hierarchical structuring, and scalability. It represents an innovative approach, offering multi-functional and customizable bulk materials, especially suited for biomedical applications. This work offers an effective pathway for developing high-performance and multifunctional biomimetic devices with controllable hierarchical structures.
Collapse
Affiliation(s)
- Jiajin Xue
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China
| | - Duote Cai
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China
| | - Xiaojing Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chunlian Qin
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China
| | - Xiu Yu
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China
| | - Haitao Liu
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China
| |
Collapse
|
12
|
Lin X, Chen H, Huang L, Liu S, Cai C, Li Y, Li S. Advanced chitin-based composite hydrogels enabled by quercetin-mediated assembly for multifunctional applications. Int J Biol Macromol 2025; 291:139043. [PMID: 39710027 DOI: 10.1016/j.ijbiomac.2024.139043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Natural building blocks like chitins for self-assembling into complex materials have garnered significant interest owing to the inherent and diverse functionalities. However, challenges persist in the assembly of chitin-based composites, primarily stemming from chitin's poor solubility and compatibility. Herein, a quercetin-mediated multiple crosslinking strategy was developed to enhance compatibility by quercetin-mediated interfacial interactions between chitin and inorganic materials, achieving a series of chitin-based composite hydrogels with high performances. The quercetin-mediated strategy could effectively modulate the non-covalent interactions within hydrogel, which served as the sacrificial bonds to dissipate large energy, leading to the high toughness of chitin-based composite hydrogels (0.70-1.02 MJ·m-3). Furthermore, through utilizing quercetin-assisted non-covalent interactions, effective dispersion of inorganic materials (e.g., molybdenum disulfide, carbon nanotube and calcium carbonate) within hydrogels was achieved, resulting in composite hydrogels with diverse functionalities. Our quercetin-mediated strategy conceptualized in this work paves the way for the development of a diverse array of chitin-based composite hydrogels which incorporate various functional inorganic materials.
Collapse
Affiliation(s)
- Xinghuan Lin
- Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China.
| | - Hanji Chen
- Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuang Liu
- Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China
| | - Chunsheng Cai
- Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China
| | - Yibao Li
- Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China
| | - Shanshan Li
- Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China.
| |
Collapse
|
13
|
Zhao R, Amstad E. Bio-Informed Porous Mineral-Based Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2401052. [PMID: 39221524 PMCID: PMC11840473 DOI: 10.1002/smll.202401052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Certain biominerals, such as sea sponges and echinoderm skeletons, display a fascinating combination of mechanical properties and adaptability due to the well-defined structures spanning various length scales. These materials often possess high density normalized mechanical properties because they contain well-defined pores. The density-normalized mechanical properties of synthetic minerals are often inferior because the pores are stochastically distributed, resulting in an inhomogeneous stress distribution. The mechanical properties of synthetic materials are limited by the degree of structural and compositional control currently available fabrication methods offer. In the first part of this review, examples of structural elements nature uses to impart exceptional density normalized Young's moduli to its porous biominerals are showcased. The second part highlights recent advancements in the fabrication of bio-informed mineral-based composites possessing pores with diameters that span a wide range of length scales. The influence of the processing of mineral-based composites on their structures and mechanical properties is summarized. Thereby, it is aimed at encouraging further research directed to the sustainable, energy-efficient fabrication of synthetic lightweight yet stiff mineral-based composites.
Collapse
Affiliation(s)
- Ran Zhao
- Soft Materials LaboratoryInstitute of MaterialsÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Esther Amstad
- Swiss National Center for Competence in Research (NCCR) Bio‐inspired materialsUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| |
Collapse
|
14
|
Yu D, Wang J, Wang G. Glass fiber treated with a glycine bridged silane coupling agent reinforcing polyamide 6(PA6): effect of hydrogen bonding. RSC Adv 2025; 15:3331-3338. [PMID: 39902107 PMCID: PMC11788644 DOI: 10.1039/d4ra07680j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
Silane coupling agents play an indispensable role in improving interfacial adhesion of composite materials, but their interaction mechanism is often unclear. This article combines experiments and theoretical calculations to reveal the importance of hydrogen bonds between silane coupling agents and the matrix polyamide 6 in improving the mechanical properties of composite materials. Firstly, glycine bridged silane (GBSilane) was synthesized and the structure was confirmed by FT-IR, 1H NMR and HRMS. Secondly, with glass fiber treated using GBSilane as a filler, the mechanical properties of glass fiber/PA6 composite materials were studied. Compared with untreated glass fiber/PA6 composites, under the optimal treatment concentration of 1.5%, the tensile strength of glass fiber/PA6 composites treated with 3-aminopropyl triethoxysilane (APTES) and GBSilane increased by 41% and 67%, respectively, and the notch impact strength increased by 55% and 96.5%, respectively. Lastly, density functional theory (DFT) calculations revealed that stronger hydrogen bonds have formed between GBSilane and PA6 than APTES, which have induced the stronger PA6-GBSilane binding energy of 58.20 kJ mol-1. By comparison, the binding energy of PA6-APTES is only 30.91 kJ mol-1. These results demonstrated that the as-synthesized GBSilane could improve the mechanical properties of PA6 composites through an enhanced hydrogen bonding mechanism.
Collapse
Affiliation(s)
- Dinghua Yu
- Ningbo Polytechnic China Light Industry Plastic Mold Engineering Technology Research Center Ningbo 315800 PR China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 PR China +86-25-58139386
| | - Jianqiang Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 PR China +86-25-58139386
| | - Guowei Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 PR China +86-25-58139386
| |
Collapse
|
15
|
Zhou Y, Chang R, Yang Z, Guo Q, Wang M, Jia B, Li B, Deng B, Ren Y, Zhu H, Wang X, Wang Q, Wen H, Zhang H, Yu J, Chen YX, Liu K. Dynamic Peptide Nanoframework-Guided Protein Coassembly: Advancing Adhesion Performance with Hierarchical Structures. J Am Chem Soc 2025; 147:2335-2349. [PMID: 39787294 DOI: 10.1021/jacs.4c10882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Hierarchical structures are essential in natural adhesion systems. Replicating these in synthetic adhesives is challenging due to intricate molecular mechanisms and multiscale processes. Here, we report three phosphorylated peptides featuring a hydrophobic self-assembly motif linked to a hydrophilic phosphorylated sequence (pSGSS), forming peptide fibril nanoframeworks. These nanoframeworks effectively coassemble with elastin-derived positively charged proteins (PCP), resulting in complex coacervate-based adhesives with hierarchical structures. Our method enables the controlled regulation of both cohesion and adhesion properties in the adhesives. Notably, the complex adhesives formed by the dityrosine-containing peptide and PCP demonstrate an exceptional interfacial adhesion strength of up to 30 MPa, outperforming most known supramolecular adhesives and rivaling cross-linked chemical adhesives. Additionally, these adhesives show promising biocompatibility and bioactivity, making them suitable for applications such as visceral hemostasis and tissue repair. Our findings highlight the utility of bioinspired hierarchical assembly combined with bioengineering techniques in advancing biomedical adhesives.
Collapse
Affiliation(s)
- Yusai Zhou
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Rong Chang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhenyue Yang
- Academy for Advanced Interdisciplinary Studies, Northeast Normal University, Changchun 130024, China
| | - Qi Guo
- School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 637553, Singapore
| | - Mengyao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Bo Jia
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Bo Li
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bodan Deng
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yubin Ren
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huaxia Zhu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | | | | | - Han Wen
- DP Technology, Beijing 100089, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Jiaxing, Zhejiang 314102, China
| | - Jing Yu
- Mechano-X Institute, Tsinghua University, Beijing 100084, China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Jiaxing, Zhejiang 314102, China
| |
Collapse
|
16
|
Chen J, Zhao M, Liu Z, Wang F, Hu S. Bioinspired In Situ Synthesis of High-Strength Bulk CO 2 Mineralized Ceramics at Room Temperature. ACS NANO 2025; 19:1732-1742. [PMID: 39748150 DOI: 10.1021/acsnano.4c15768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Traditional high-temperature fabrication methods for ceramics suffer from significant energy consumption and limit the development of advanced ceramics incorporating temperature-sensitive materials. While bioinspired mineralization provides an effective strategy to realize the room-temperature preparation of ceramics, scaling up production remains a challenge. Herein, we demonstrate a room-temperature procedure for the fabrication of large-scale ceramics by using the carbonation reaction of sodium alginate (SA)-doped γ-dicalcium silicate (γ-C2S) compacts. This bioinspired in situ mineralization process regulates molecular interactions and microscopic crystal alignment, resulting in the formation of CO2 mineralized ceramics with specifically oriented mesocrystals and exceptional mechanical properties rivaling those of biological materials. Through this strategy, we demonstrate that the advanced ceramic composites with compressive strength approaching 300 MPa can be fabricated at a large scale, with the additional benefits of fixing about 200 kg of CO2 per ton of CO2 mineralized ceramics. Our innovative approach shows great potential for the efficient and cost-effective fabrication of large-scale and high-performance bioceramics, aligning with the goals of sustainable development involving reducing the energy consumption and achieving carbon neutrality.
Collapse
Affiliation(s)
- Jingze Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Meicheng Zhao
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Zhichao Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
| | - Fazhou Wang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
| | - Shuguang Hu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
17
|
Xu Z, Chen H, Yang HB, Yao X, Qin H, Cong HP, Yu SH. Hierarchically aligned heterogeneous core-sheath hydrogels. Nat Commun 2025; 16:400. [PMID: 39755695 DOI: 10.1038/s41467-024-55677-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
Natural materials with highly oriented heterogeneous structures are often lightweight but strong, stiff but tough and durable. Such an integration of diverse incompatible mechanical properties is highly desired for man-made materials, especially weak hydrogels which are lack of high-precision structural design. Herein, we demonstrate the fabrication of hierarchically aligned heterogeneous hydrogels consisting of a compactly crosslinked sheath and an aligned porous core with alignments of nanofibrils at multi-scales by a sequential self-assembly assisted salting out method. The produced hydrogel offers ultrahigh mechanical properties among the reported hydrogels, elastomers and natural materials, including a toughness of 1031 MJ · m-3, strength of 55.3 MPa, strain of 3300%, stiffness of 6.8 MPa, fracture energy of 552.7 kJ · m-2 and fatigue threshold of 40.9 kJ · m-2. Furthermore, such a tough and strong hydrogel facilely achieves stable regeneration and rapid adhesion owing to the highly crystallized and aligned network structure. The regenerated specimen presents the reinforced strength, toughness and fatigue resistance over 10 regeneration cycles. This work provides a simple method to produce hydrogels with bioinspired heterostructures and combinational properties for real applications.
Collapse
Affiliation(s)
- Zhao Xu
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Hong Chen
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Huai-Bin Yang
- Institute of Innovative Materials, Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, China
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Xin Yao
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Haili Qin
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Huai-Ping Cong
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China.
| | - Shu-Hong Yu
- Institute of Innovative Materials, Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, China.
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
18
|
Yang HB, Lu YX, Yue X, Liu ZX, Sun WB, Zheng WP, Guan QF, Yu SH. Multiscale integral synchronous assembly of cuttlebone-inspired structural materials by predesigned hydrogels. Nat Commun 2025; 16:62. [PMID: 39746972 PMCID: PMC11696125 DOI: 10.1038/s41467-024-55344-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
The overall structural integrity plays a vital role in the unique performance of living organisms, but the integral synchronous preparation of different multiscale architectures remains challenging. Inspired by the cuttlebone's rigid cavity-wall structure with excellent energy absorption, we develop a robust hierarchical predesigned hydrogel assembly strategy to integrally synchronously assemble multiple organic and inorganic micro-nano building blocks to different structures. The two types of predesigned hydrogels, combined with hydrogen, covalent bonding, and electrostatic interactions, are layer-by-layer assembled into brick-and-mortar structures and close-packed rigid micro hollow structures in a cuttlebone-inspired structural material, respectively. The cuttlebone-inspired structural materials gain crack growth resistance, high strength, and energy absorption characteristics beyond typical energy-absorbing materials with similar densities. This hierarchical hydrogel integral synchronous assembly strategy is promising for the integrated fabrication guidance of bioinspired structural materials with multiple different micro-nano architectures.
Collapse
Affiliation(s)
- Huai-Bin Yang
- Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yi-Xing Lu
- Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xin Yue
- Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zhao-Xiang Liu
- Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Bin Sun
- Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Pei Zheng
- Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Qing-Fang Guan
- Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
- Institute of Innovative Materials (I2M), Department of Materials Science and Engineering, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Song X, Hou Y, Zhang X, Zhao Y, Wu Y, Liu M, Guo Z. Multiplex Biomimetic SLIPS With Super-Lubricity to Multiphase Matters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407530. [PMID: 39593244 DOI: 10.1002/smll.202407530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/11/2024] [Indexed: 11/28/2024]
Abstract
In recent years, slippery liquid infused porous surfaces (SLIPS) renowned for their exceptional liquid repellency and anti-fouling properties, have garnered considerable attention. However, the instability of both structural integrity and the oil film severely restricts their practical applications. This study is inspired by superwetting biological surfaces, such as fish scales, seashells, and Nepenthes, to design and fabricate a multiplex biomimetic and robust lubricant-infused textured surface (LITMS) using laser-coating composite processing technology. The influence of morphological structure and chemical composition on oil stability, wettability, and lubricating properties are systematically investigated. The LITMS exhibits remarkable repellency toward multiphase materials, including liquids, ice crystals, and solids, demonstrating exceptional omniphobicity, anti-icing, and anti-friction properties. Thus, this preparation strategy and construction methodology for SLIPS provide new insights into interfacial phenomena and promote advancements in applications for engineering material protection and machinery lubrication.
Collapse
Affiliation(s)
- Xiaorui Song
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Yuanyuan Hou
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Xiuli Zhang
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Yuanliang Zhao
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Yongling Wu
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Mingming Liu
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
20
|
Tang J, Gao C, Li Y, Xu J, Huang J, Xu D, Hu Z, Han F, Liu J. A Review on Multi-Scale Toughening and Regulating Methods for Modern Concrete: From Toughening Theory to Practical Engineering Application. RESEARCH (WASHINGTON, D.C.) 2024; 7:0518. [PMID: 39726918 PMCID: PMC11670900 DOI: 10.34133/research.0518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 12/28/2024]
Abstract
Concrete is the most widely used and highest-volume basic material in the word today. Enhancing its toughness, including tensile strength and deformation resistance, can boost the structural load-bearing capacity, minimize cracking, and decrease the amount of concrete and steel required in engineering projects. These advancements are crucial for the safety, durability, energy efficiency, and emission reduction of structural engineering. This paper systematically summarized the brittle characteristics of concrete and the various structural factors influencing its performance at multiple scales, including molecular, nano-micro, and meso-macro levels. It outlines the principles and impacts of concrete toughening and crack prevention from both internal and external perspectives, and discusses recent advancements and engineering applications of toughened concrete. In situ polymerization and fiber reinforcement are currently practical and highly efficient methods for enhancing concrete toughness. These techniques can boost the matrix's flexural strength by 30% and double its fracture energy, achieving an ultimate tensile strength of up to 20 MPa and a tensile strain exceeding 0.6%. In the future, achieving breakthroughs in concrete toughening will probably rely heavily on the seamless integration and effective synergy of multi-scale toughening methods.
Collapse
Affiliation(s)
- Jinhui Tang
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials,
Southeast University, Nanjing, China
| | - Chang Gao
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials,
Southeast University, Nanjing, China
| | - Yi Li
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials,
Southeast University, Nanjing, China
| | - Jie Xu
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials,
Southeast University, Nanjing, China
| | - Jiale Huang
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials,
Southeast University, Nanjing, China
| | - Disheng Xu
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials,
Southeast University, Nanjing, China
| | - Zhangli Hu
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials,
Southeast University, Nanjing, China
| | - Fangyu Han
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials,
Southeast University, Nanjing, China
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co. Ltd., Nanjing, China
| | - Jiaping Liu
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials,
Southeast University, Nanjing, China
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co. Ltd., Nanjing, China
| |
Collapse
|
21
|
Yang HB, Yue X, Liu ZX, Guan QF, Yu SH. Emerging Sustainable Structural Materials by Assembling Cellulose Nanofibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413564. [PMID: 39659095 DOI: 10.1002/adma.202413564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/21/2024] [Indexed: 12/12/2024]
Abstract
Under the guidance of the carbon peaking and carbon neutrality goals, the urgency for green ecological construction and the depletion of nonrenewable resources highlight the importance of the research and development of sustainable new materials. Cellulose nanofiber (CNF) is the most abundant natural nanoscale building block widely existing on Earth. CNF has unique intrinsic physical properties, such as low density, low coefficient of thermal expansion, high strength, and high modulus, which is an ideal candidate with outstanding potential for constructing sustainable materials. In recent years, CNF-based structural material has emerged as a sustainable lightweight material with properties very different from traditional structural materials. Here, to comprehensively introduce the assembly of structural materials based on CNF, it starts with an overview of different forms of CNF-based materials, including fibers, films, hydrogels, aerogels, and structural materials. Next, the challenges that need to be overcome in preparing CNF-based structural materials are discussed, their assembly methods are introduced, and an in-depth analysis of the advantages of the CNF-based hydrogel assembly strategy to fabricate structural materials is conducted. Finally, the unique properties of emerging CNF-based structural materials are summarized and concluded with an outlook on their design and functionalization, potentially paving the way toward new opportunities.
Collapse
Affiliation(s)
- Huai-Bin Yang
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xin Yue
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zhao-Xiang Liu
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Qing-Fang Guan
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Institute of Innovative Materials (I2M), Department of Chemistry, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
22
|
Lu J, Deng J, Wei Y, Yang X, Zhao H, Zhao Q, Liu S, Li F, Li Y, Deng X, Jiang L, Guo L. Hierarchically mimicking outer tooth enamel for restorative mechanical compatibility. Nat Commun 2024; 15:10182. [PMID: 39580511 PMCID: PMC11585591 DOI: 10.1038/s41467-024-54576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Tooth enamel, and especially the outer tooth enamel, is a load-resistant shell that benefits mastication but is easily damaged, driving the need for enamel-restorative materials with comparable properties to restore the mastication function and protect the teeth. Synthesizing an enamel analog that mimics the components and hierarchical structure of natural tooth enamel is a promising way to achieve these comparable mechanical properties, but it is still challenging to realize. Herein, we fabricate a hierarchical enamel analog with comparable stiffness, hardness, and viscoelasticity as natural enamel by incorporating three hierarchies of outer tooth enamel based on hierarchical assembly of enamel-like hydroxyapatite hybrid nanowires with polyvinyl alcohol as a matrix. This enamel analog possesses enamel-similar inorganic components and a nanowire-microbundle-macroarray hierarchical structure. It exhibits toughness of 19.80 MPa m1/2, which is 3.4 times higher than natural tooth enamel, giving it long-term fatigue durability. This hierarchical design is promising for scalable production of enamel-restorative materials and for optimizing the mechanical performance of engineering composites.
Collapse
Affiliation(s)
- Junfeng Lu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Jingjing Deng
- Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Wei
- Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiuyi Yang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Hewei Zhao
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.
| | - Qihan Zhao
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Shaojia Liu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Fengshi Li
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yangbei Li
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Lei Jiang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Lin Guo
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.
| |
Collapse
|
23
|
Yu X, Kong K, Ma X, Yu Y, Shen Y, Sang Y, Wang J, Shen S, Xu X, Liu Z, Tang R. Organic-Inorganic Copolymerization Induced Oriented Crystallization for Robust Lightweight Porous Composite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403443. [PMID: 39319512 DOI: 10.1002/smll.202403443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Indexed: 09/26/2024]
Abstract
Porous composites are important in engineering fields for their lightweight, thermal insulation, and mechanical properties. However, increased porosity commonly decreases the robustness, making a trade-off between mechanics and weight. Optimizing the strength of solid structure is a promising way to co-enhance the robustness and lightweight properties. Here, acrylamide and calcium phosphate ionic oligomers are copolymerized, revealing a pre-interaction of these precursors induced oriented crystallization of inorganic nanostructures during the linear polymerization of acrylamide, leading to the spontaneous formation of a bone-like nanostructure. The resulting solid phase shows enhanced mechanics, surpassing most biological materials. The bone-like nanostructure remains intact despite the introduction of porous structures at higher levels, resulting in a porous composite (P-APC) with high strength (yield strength of 10.5 MPa) and lightweight properties (density below 0.22 g cm-3). Notably, the density-strength property surpasses most reported porous materials. Additionally, P-APC shows ultralow thermal conductivity (45 mW m-1 k-1) due to its porous structure, making its strength and thermal insulation superior to many reported materials. This work provides a robust, lightweight, and thermal insulating composite for practical application. It emphasizes the advantage of prefunctionalization of ionic oligomers for organic-inorganic copolymerization in creating oriented nanostructure with toughened mechanics, offering an alternative strategy to produce robust lightweight materials.
Collapse
Affiliation(s)
- Xin Yu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Kangren Kong
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiaoming Ma
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yadong Yu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yinlin Shen
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yanhua Sang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jie Wang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Sudan Shen
- State Key Laboratory of Chemical Engineering, School of Chemical and Biological Engineering, Zhejiang University College of Chemistry & Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xurong Xu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
24
|
Wang D, Feng S, Yang M. Multi-Gradient Bone-Like Nanocomposites Induced by Strain Distribution. ACS NANO 2024; 18:29636-29647. [PMID: 39425938 DOI: 10.1021/acsnano.4c08442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The heterogeneity of bones is elegantly adapted to the local strain environment, which is critical for maintaining mechanical functions. Such an adaptation enables the strong correlation between strain distributions and multiple gradients, underlying a promising pathway for creating complex gradient structures. However, this potential remains largely unexplored for the synthesis of functional gradient materials. In this work, heterogeneous bone-like nanocomposites with complex structural and compositional gradients comparable to bones are synthesized by inducing strain distributions within the polymer matrix containing amorphous calcium phosphate (ACP). Uniaxial stretching of composite films exerts the highest strain in the center, which ceases gradually toward the sides, resulting in the gradual decrease of polymer alignment and crystallinity. Simultaneously, the center with high orientation traps most ACP during stretching due to the nanoconfinement effect, which in turn promotes the formation of aligned nanofibrous structures. The sides experiencing the least strain have the smallest amounts of ACP, characteristic of porous architectures. Further crystallization of ACP produces oriented apatite nanorods in the center with a larger crystalline/amorphous ratio than the sides because of template-induced crystallization. The combination of structural and compositional gradients leads to gradient mechanical properties, and the gradient span and magnitude correlate nicely with strain distributions. Accompanying bone-like mechanical gradients, the center is less adhesive and self-healable than the sides, which allows a better recovery after a complete cutting. Our work may represent a general strategy for the synthesis of biomimetic materials with complex gradients thanks to the ubiquitous presence of strain distributions in load-bearing structures.
Collapse
Affiliation(s)
- Di Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Ming Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
25
|
Wu Q, Yang N, Xiao M, Wang W, Cui C. Bicarbonate-mediated proton transfer requires cations. Nat Commun 2024; 15:9145. [PMID: 39443490 PMCID: PMC11500353 DOI: 10.1038/s41467-024-53526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Near-neutral HCO3- aqueous solution plays an essential role in respiratory, mineralization and catalysis, yet the interconversion between hydrated CO2, HCO3- and CO32- and the associated proton transfer under such proton-deficient conditions remain uncovered. Here we reveal that cation enables HCO3- to self-dissociate into OH- and CO2 through a pH-independent process, where CO2 hydration and subsequent proton transfer in acid-base reactions lead to the overall exchange of oxygen isotopes between HCO3- and H2O tracked by oxygen isotope-labeled Raman spectroscopy. Isolating HCO3- from cations with crown ether impedes HCO3- dissociation and the following reactions. Further molecular dynamics simulations demonstrate that the interplay between HCO3- and hydrated cations drives HCO3- dissociation. This study suggests a natural proton channel upon coupling HCO3- with cations.
Collapse
Affiliation(s)
- Qianbao Wu
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Na Yang
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Mengjun Xiao
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Wei Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 611731, Chengdu, China.
| |
Collapse
|
26
|
Chen W, Liu P, Sun X, Xiong B, Cui H, Zhao Z, Ning Y. Spatioselective Occlusion of Copolymer Nanoparticles within Calcite Crystals Generates Organic-Inorganic Hybrid Materials with Controlled Internal Structures. Angew Chem Int Ed Engl 2024; 63:e202410908. [PMID: 38954489 DOI: 10.1002/anie.202410908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Efficient occlusion of particulate additives into a single crystal has garnered an ever-increasing attention in materials science because it offers a counter-intuitive yet powerful platform to make crystalline nanocomposite materials with emerging properties. However, precisely controlling the spatial distribution of the guest additives within a host crystal remains highly challenging. We herein demonstrate a unique, straightforward method to engineer the spatial distribution of copolymer nanoparticles within calcite (CaCO3) single crystals by judiciously adjusting initial [Ca2+] concentration used for the calcite precipitation. More specifically, polymerization-induced self-assembly is employed to synthesize well-defined and highly anionic poly(3-sulfopropyl methacrylate potassium)41-block-poly(benzyl methacrylate)500 [PSPMA41-PBzMA500] diblock copolymer nanoparticles, which are subsequently used as model additives during the growth of calcite crystals. Impressively, such guest nanoparticles are preferentially occluded into specific regions of calcite depending on the initial [Ca2+] concentration. These unprecedented phenomena are most probably caused by dynamic change in electrostatic interaction between Ca2+ ions and PSPMA41 chains based on systematic investigations. This study not only showcases a significant advancement in controlling the spatial distribution of guest nanoparticles within host crystals, enabling the internal structure of composite crystals to be rationally tailored via a spatioselective occlusion strategy, but also provides new insights into biomineralization.
Collapse
Affiliation(s)
- Wenting Chen
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Pei Liu
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Xia Sun
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Biao Xiong
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Huahua Cui
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Zhenghong Zhao
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Yin Ning
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
27
|
Hashimoto S, Watanabe H, Iso Y, Oaki Y, Isobe T, Imai H. Assembly-promoted repeatable enhancement of photoluminescence from cesium lead tribromide nanocubes under light illumination. NANOSCALE ADVANCES 2024:d4na00665h. [PMID: 39421588 PMCID: PMC11480829 DOI: 10.1039/d4na00665h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
A repeatable enhancement of the photoluminescence (PL) from CsPbBr3 nanocubes (NCs) is promoted by the assembling of NCs. The PL quantum yield (QY) of ordered NC arrays increases with photoirradiation and decreases in the dark. The repeatable enhancement of the PLQY cannot be observed from isolated NCs. The nanospaces between NCs in the ordered arrays allow a reversible change in thermally stimulated desorption and photo-induced adsorption of surface ligands that affect the PLQY.
Collapse
Affiliation(s)
- Shota Hashimoto
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Hiroto Watanabe
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Yoshiki Iso
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Tetsuhiko Isobe
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Hiroaki Imai
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
28
|
Li W, Guan J, Fang H, Jiang Y, Zhong Y, Shi S, Cheng F. Continuously enhanced versatile nanocellulose films enabled by sustaining CO 2 capture and in-situ calcification. Carbohydr Polym 2024; 342:122362. [PMID: 39048191 DOI: 10.1016/j.carbpol.2024.122362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 07/27/2024]
Abstract
Cellulose possesses numerous favorable peculiarities to replace petroleum-based materials. Nevertheless, the extremely high hygroscopicity of cellulose severely degrades their mechanical performance, which is a major obstacle to the production of high-strength, multi-functional cellulose-based materials. In this work, a simple strategy was proposed to fabricate durable versatile nanocellulose films based on sustaining CO2 capture and in-situ calcification. In this strategy, Ca(OH)2 was in-situ formed on the films by Ca2+ crosslinking and subsequent introduction of OH-, which endowed the films with high mechanical strength and carbon sequestration ability. The following CO2 absorption process continuously improved the water resistance and durability of the films, and enabled them to maintain excellent mechanical properties and promising light management ability. After a 30-day CO2 absorption process, the water contact angle of the films can be increased from 43° to 79°, and the weight gain rate of the films in a 30 h water-absorption process can be sharply decreased from 331.2 % to 52.2 %. The films could maintain a high tensile strength of 340 MPa, and result in a CO2 absorption rate of 3.5 mmol/gcellulose after 30 days. In this study, the improvement of durability and carbon sequestration of nanocellulose films was achieved by a simple and effective method.
Collapse
Affiliation(s)
- Wenjing Li
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jilun Guan
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Huayang Fang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yuheng Jiang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yu Zhong
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Shaohong Shi
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Fangchao Cheng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
29
|
Yang Y, Yang DC, Long XY, Liu X, Lu JW, Zhang ZJ, Shi QQ, Zhou Y, Zou DH. Bioinspired triple-layered membranes for periodontal guided bone regeneration applications. J Mater Chem B 2024; 12:9938-9946. [PMID: 39267586 DOI: 10.1039/d4tb01658k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Barrier membranes have been used for the treatment of alveolar bone loss caused by periodontal diseases or trauma. However, an optimal barrier membrane must satisfy multiple requirements simultaneously, which are challenging to combine into a single material. We herein report the design of a bioinspired membrane consisting of three functional layers. The primary layer is composed of clay nanosheets and chitin, which form a nacre-inspired laminated structure. A calcium phosphate mineral layer is deposited on the inner surface of the nacre-inspired layer, while a poly(lactic acid) layer is coated on the outer surface. The composite membrane integrates good mechanical strength and deformability because of the nacre-inspired structure, facilitating operations during the implant surgery. The mineral layer induces the osteogenic differentiation of bone marrow mesenchymal stem cells and increases the stiffness of the membrane, which is an important factor for the regeneration process. The poly(lactic acid) layer can prevent unwanted mineralization on the outer surface of the membrane in oral environments. Cell experiments reveal that the membrane exhibits good biocompatibility and anti-infiltration capability toward connective tissue/epithelium cells. Furthermore, in vitro analyses show that the membrane does not degrade too fast, allowing enough time for bone regeneration. In vivo experiments prove that the membrane can effectively induce better bone regeneration and higher trabecular bone density in alveolar bone defects. This study demonstrates the potential of this bioinspired triple-layered membrane with hierarchical structures as a promising barrier material for periodontal guided tissue regeneration.
Collapse
Affiliation(s)
- Yang Yang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
- Department of Periodontology, College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China
| | - Deng-Cheng Yang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, China
| | - Xian-Yan Long
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Xiang Liu
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Jing-Wen Lu
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Zhou-Jing Zhang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Qian-Qian Shi
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Yong Zhou
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
- Department of Dental Implantology, College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China
| | - Duo-Hong Zou
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology, School of Medicine, National Clinical Research Center of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China
| |
Collapse
|
30
|
Lin R, Li G, He Q, Song J, Ma Y, Zhan Y, Yuan M, Li Q, Chao D, Li X, Wang P, Zhao T, Zhao D. Synthesis of Mesoporous Catechin Nanoparticles as Biocompatible Drug-Free Antibacterial Mesoformulation. J Am Chem Soc 2024; 146:26983-26993. [PMID: 39294849 DOI: 10.1021/jacs.4c08336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
While polyphenolic substances stand as excellent antibacterial agents, their antimicrobial properties rely on the auxiliary support of micro-/nanostructures. Despite offering a novel avenue for enhancing polymer performance, controllable fabrication of mesoporous polymeric nanomaterials encounters significant challenges due to intricate intermolecular forces. In this article, mesoporous catechin nanoparticles have been successfully fabricated using a balanced multivariate interaction approach. The harmonization of the water-ethanol ratio and ionic strength effectively balances the forces of hydrogen bonding and π-π stacking, facilitating the controlled assembly of mesostructures. The mesoporous catechin nanoparticles exhibit a uniform spherical structure (∼100 nm), open mesopores with a diameter of ∼15 nm, and a high surface area of ∼106 m2 g-1. While exhibiting a good biocompatibility and negative surface charge, the mesoporous catechins possess outstanding antibacterial ability and function as an antibiotic mesoformulation without the necessity of loading any drugs. This mesoformulation inhibits 50% in vitro Staphylococcus aureus growth with a low concentration of ∼10 μg mL-1 and achieves complete inhibition at ∼25 μg mL-1. In a mouse wound model, accelerated wound healing and complete closure within 6-8 days are achieved. Proteomics of bacteria reveals that the excellent antibacterial property is attributed to the synergetic effect of mesoformulation's mesostructure and the catechin molecule intervening in bacterial metabolism. Overall, this work may pave a novel way for the future exploration of polymer nanomaterials and antibiotic formulations.
Collapse
Affiliation(s)
- Runfeng Lin
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China
| | - Gaoyang Li
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China
| | - Qianfeng He
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Junfeng Song
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China
| | - Yanming Ma
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China
| | - Yating Zhan
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China
| | - Minjia Yuan
- Shanghai Qiran Biotechnology Co., Ltd., Shanghai 201702, P. R. China
| | - Qi Li
- Shanghai Qiran Biotechnology Co., Ltd., Shanghai 201702, P. R. China
| | - Dongliang Chao
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China
| | - Xiaomin Li
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China
| | - Peiyuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Tiancong Zhao
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
31
|
Quan G, Wu Y, Wang P, Li W, Li D, Yan Z, Ao Y, Xiao L, Liu Y. Polydopamine-induced biomimetic mineralization strategy to generate hydroxyapatite for the preparation of carbon fiber composites with excellent mechanical properties. Int J Biol Macromol 2024; 277:134529. [PMID: 39111485 DOI: 10.1016/j.ijbiomac.2024.134529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Living organisms have developed a miraculous biomineralization strategy to form multistage organic-inorganic composites through the orderly assembly of hard/soft substances, achieving mechanical enhancement of materials from the nanoscale to the macroscale. Inspired by biominerals, this study used polydopamine (PDA) coating as a template to induce the growth of hydroxyapatite (HAP) on the surface of carbon fibers (CFs) for enhancing the interfacial properties of the CF/epoxy resin composites. This polydopamine-assisted hydroxyapatite formation (pHAF) biomimetic mineralization strategy constructs soft/hard ordered structure on the CF surface, which not only improves the chemical reaction activity of the CFs but also increases the fiber surface roughness. This, in turn, enhances the interaction and loading delivery among the fibers and the matrix. Compared to the untreated carbon fiber/epoxy resin (CF/EP) composites, the prepared composites showed a substantial enhancement in interlaminar shear strength (ILSS), flexural strength, and interfacial shear strength (IFSS), with improvements of 45.2 %, 46.9 %, and 60.5 %, respectively. This can be attributed to the HAP nanolayers increasing the adhesion and mechanical interlocking with the CFs to the matrix. This study provides an interface modification method of biomimetic mineralization for the preparation of high strength CF composites.
Collapse
Affiliation(s)
- Guipeng Quan
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China; Advanced Institute of Materials Science, Jilin Provincial Laboratory of Carbon Fiber and Composites, Changchun University of Technology, Changchun 130012, China
| | - Yunhuan Wu
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Peng Wang
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Weiwen Li
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Daimei Li
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Zhen Yan
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Yuhui Ao
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Linghan Xiao
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China; Advanced Institute of Materials Science, Jilin Provincial Laboratory of Carbon Fiber and Composites, Changchun University of Technology, Changchun 130012, China.
| | - Yujing Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
32
|
Burgos-Ruiz M, Ilett M, Roncal-Herrero T, Elert K, Rubio-Domene R, Ruiz-Agudo E, Rodriguez-Navarro C. Bio-Inspired Fluorescent Calcium Sulfate for the Conservation of Gypsum Plasterwork. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402581. [PMID: 38940389 DOI: 10.1002/smll.202402581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/11/2024] [Indexed: 06/29/2024]
Abstract
In this work, the potential of bio-inspired strategies for the synthesis of calcium sulfate (CaSO4·nH2O) materials for heritage conservation is explored. For this, a nonclassical multi-step crystallization mechanism to understand the effect of calcein- a fluorescent chelating agent with a high affinity for divalent cations- on the nucleation and growth of calcium sulfate phases is proposed. Moving from the nano- to the macro-scale, this strategy sets the basis for the design and production of fluorescent nano-bassanite (NB-C; CaSO4·0.5H2O), with application as a fully compatible consolidant for the conservation of historic plasterwork. Once applied to gypsum (CaSO4·2H2O) plaster specimens, cementation upon hydration of nano-bassanite results in a significant increase in mechanical strength, while intracrystalline occlusion of calcein in newly-formed gypsum cement improves its weathering resistance. Furthermore, under UV irradiation, the luminescence produced by calcein molecules occluded in gypsum crystals formed upon nano-bassanite hydration allows the easy identification of the newly deposited consolidant within the treated gypsum plaster without altering the substrate's appearance.
Collapse
Affiliation(s)
- Miguel Burgos-Ruiz
- Department of Mineralogy and Petrology, Faculty of Sciences, University of Granada, Avenida Fuentenueva S/N, Granada, 18002, Spain
| | - Martha Ilett
- School of Chemical and Process Engineering, University of Leeds, Woodhouse, Leeds, LS2 9JT, UK
| | - Teresa Roncal-Herrero
- School of Chemical and Process Engineering, University of Leeds, Woodhouse, Leeds, LS2 9JT, UK
| | - Kerstin Elert
- Department of Mineralogy and Petrology, Faculty of Sciences, University of Granada, Avenida Fuentenueva S/N, Granada, 18002, Spain
- Escuela de Estudios Árabes, Spanish National Research Council (CSIC), Cuesta del Chapiz 22, Granada, 18010, Spain
| | - Ramon Rubio-Domene
- Conservation Department, Council of the Alhambra and Generalife, Calle Real de la Alhambra S/N, Granada, E-18009, Spain
| | - Encarnacion Ruiz-Agudo
- Department of Mineralogy and Petrology, Faculty of Sciences, University of Granada, Avenida Fuentenueva S/N, Granada, 18002, Spain
| | - Carlos Rodriguez-Navarro
- Department of Mineralogy and Petrology, Faculty of Sciences, University of Granada, Avenida Fuentenueva S/N, Granada, 18002, Spain
| |
Collapse
|
33
|
Kong L, Zhao Y, Xiong Y, Chen J, Wang S, Yan Z, Shi H, Liu Z, Wang X. Multiscale engineered artificial compact bone via bidirectional freeze-driven lamellated organization of mineralized collagen microfibrils. Bioact Mater 2024; 40:168-181. [PMID: 38910968 PMCID: PMC11192986 DOI: 10.1016/j.bioactmat.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 06/25/2024] Open
Abstract
Bone, renowned for its elegant hierarchical structure and unique mechanical properties, serves as a constant source of inspiration for the development of synthetic materials. However, achieving accurate replication of bone features in artificial materials with remarkable structural and mechanical similarity remains a significant challenge. In this study, we employed a cascade of continuous fabrication processes, including biomimetic mineralization of collagen, bidirectional freeze-casting, and pressure-driven fusion, to successfully fabricate a macroscopic bulk material known as artificial compact bone (ACB). The ACB material closely replicates the composition, hierarchical structures, and mechanical properties of natural bone. It demonstrates a lamellated alignment of mineralized collagen (MC) microfibrils, similar to those found in natural bone. Moreover, the ACB exhibits a similar high mineral content (70.9 %) and density (2.2 g/cm3) as natural cortical bone, leading to exceptional mechanical properties such as high stiffness, hardness, and flexural strength that are comparable to those of natural bone. Importantly, the ACB also demonstrates excellent mechanical properties in wet, outstanding biocompatibility, and osteogenic properties in vivo, rendering it suitable for a broad spectrum of biomedical applications, including orthopedic, stomatological, and craniofacial surgeries.
Collapse
Affiliation(s)
- Lingwenyao Kong
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yonggang Zhao
- State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, Tubular Goods Research Institute of CNPC, Xi'an, 710077, China
| | - Yang Xiong
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junlin Chen
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Shuo Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Ziming Yan
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Huibin Shi
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhanli Liu
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
34
|
Dong H, Qiu L, Zhu C, Fan W, Liu L, Deng Q, Zhang H, Yang W, Cai K. Preparation of calcium phosphate ion clusters through atomization method for biomimetic mineralization of enamel. J Biomed Mater Res A 2024; 112:1412-1423. [PMID: 38461494 DOI: 10.1002/jbm.a.37706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Dental enamel is a mineralized extracellular matrix, and enamel defect is a common oral disease. However, the self-repair capacity of enamel is limited due to the absence of cellular components and organic matter. Efficacy of biomimetic enamel mineralization using calcium phosphate ion clusters (CPICs), is an effective method to compensate for the limited self-healing ability of fully developed enamel. Preparing and stabilizing CPICs presents a significant challenge, as the addition of certain stabilizers can diminish the mechanical properties or biosafety of mineralized enamel. To efficiently and safely repair enamel damage, this study quickly prepared CPICs without stabilizers using the atomization method. The formed CPICs were evenly distributed on the enamel surface, prompting directional growth and transformation of hydroxyapatite (HA) crystals. The study revealed that the mended enamel displayed comparable morphology, chemical composition, hardness, and mechanical properties to those of the original enamel. The approach of repairing dental enamel by utilizing ultrasonic nebulization of CPICs is highly efficient and safe, therefore indicating great promise.
Collapse
Affiliation(s)
- Haide Dong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Lin Qiu
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Chen Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Wuzhe Fan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Li Liu
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Quanfu Deng
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Huan Zhang
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
35
|
Dong H, Wang D, Deng H, Yin L, Wang X, Yang W, Cai K. Application of a calcium and phosphorus biomineralization strategy in tooth repair: a systematic review. J Mater Chem B 2024; 12:8033-8047. [PMID: 39045831 DOI: 10.1039/d4tb00867g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Biomineralization is a natural process in which organisms regulate the growth of inorganic minerals to form biominerals with unique layered structures, such as bones and teeth, primarily composed of calcium and phosphorus. Tooth decay significantly impacts our daily lives, and the key to tooth regeneration lies in restoring teeth through biomimetic approaches, utilizing mineralization strategies or materials that mimic natural processes. This review delves into the types, properties, and transformations of calcium and phosphorus minerals, followed by an exploration of the mechanisms behind physiological and pathological mineralization in living organisms. It summarizes the mechanisms and commonalities of biomineralization and discusses the advancements in dental biomineralization research, guided by insights into calcium and phosphorus mineral biomineralization. This review concludes by addressing the current challenges and future directions in the field of dental biomimetic mineralization.
Collapse
Affiliation(s)
- Haide Dong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Danyang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Hanyue Deng
- Duke Kunshan University - Media Art - Creative Practice Kunshan, Jiangsu 215316, China
| | - Lijuan Yin
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Xiongying Wang
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| |
Collapse
|
36
|
Jia S, Yang B, Du J, Xie Y, Yu L, Zhang Y, Tao T, Tang W, Gong J. Uncovering the Recent Progress of CNC-Derived Chirality Nanomaterials: Structure and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401664. [PMID: 38651220 DOI: 10.1002/smll.202401664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Cellulose nanocrystal (CNC), as a renewable resource, with excellent mechanical performance, low thermal expansion coefficient, and unique optical performance, is becoming a novel candidate for the development of smart material. Herein, the recent progress of CNC-based chirality nanomaterials is uncovered, mainly covering structure regulations and function design. Undergoing a simple evaporation process, the cellulose nanorods can spontaneously assemble into chiral nematic films, accompanied by a vivid structural color. Various film structure-controlling strategies, including assembly means, physical modulation, additive engineering, surface modification, geometric structure regulation, and external field optimization, are summarized in this work. The intrinsic correlation between structure and performance is emphasized. Next, the applications of CNC-based nanomaterials is systematically reviewed. Layer-by-layer stacking structure and unique optical activity endow the nanomaterials with wide applications in the mineralization, bone regeneration, and synthesis of mesoporous materials. Besides, the vivid structural color broadens the functions in anti-counterfeiting engineering, synthesis of the shape-memory and self-healing materials. Finally, the challenges for the CNC-based nanomaterials are proposed.
Collapse
Affiliation(s)
- Shengzhe Jia
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Bingbing Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jing Du
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Yujiang Xie
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Liuyang Yu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuan Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tiantian Tao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Weiwei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
37
|
Yan J, Zhou T, Yang X, Zhang Z, Li L, Zou Z, Fu Z, Cheng Q. Strong and Tough MXene Bridging-induced Conductive Nacre. Angew Chem Int Ed Engl 2024; 63:e202405228. [PMID: 38744669 DOI: 10.1002/anie.202405228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Nacre is a classic model, providing an inspiration for fabricating high-performance bulk nanocomposites with the two-dimensional platelets. However, the "brick" of nacre, aragonite platelet, is an ideal building block for making high-performance bulk nanocomposites. Herein, we demonstrated a strong and tough conductive nacre through reassembling aragonite platelets with bridged by MXene nanosheets and hydrogen bonding, not only providing high mechanical properties but also excellent electrical conductivity. The flexural strength and fracture toughness of the obtained conductive nacre reach ~282 MPa and ~6.3 MPa m1/2, which is 1.6 and 1.6 times higher than that of natural nacre, respectively. These properties are attributed to densification and high orientation degree of the conductive nacre, which is effectively induced by the combined interactions of hydrogen bonding and MXene nanosheets bridging. The crack propagations in conductive nacre are effectively inhibited through crack deflection with hydrogen bonding, and MXene nanosheets bridging between aragonite platelets. In addition, our conductive nacre also provides a self-monitoring function for structural damage and offers exceptional electromagnetic interference shielding performance. Our strategy of reassembling the aragonite platelets exfoliated from waste nacre into high-performance artificial nacre, provides an avenue for fabricating high-performance bulk nanocomposites through the sustainable reutilization of shell resources.
Collapse
Affiliation(s)
- Jia Yan
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, 100191, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Tianzhu Zhou
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, 100191, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Xinyu Yang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, 100191, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Zejun Zhang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, 100191, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Lei Li
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, 100191, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Zhaoyong Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, 100191, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| |
Collapse
|
38
|
Zhong J, Wen Z, Wu Y, Luo H, Liu G, Hu J, Song H, Wang T, Liang X, Zhou H, Huang W, Zhou H. A Bioinspired Design of Protective Al 2O 3/Polyurethane Hierarchical Composite Film Through Layer-By-Layer Deposition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402940. [PMID: 38767181 PMCID: PMC11267295 DOI: 10.1002/advs.202402940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Structural materials such as ceramics, metals, and carbon fiber-reinforced plastics (CFRP) are frequently threatened by large compressive and impact forces. Energy absorption layers, i.e., polyurethane and silicone foams with excellent damping properties, are applied on the surfaces of different substrates to absorb energy. However, the amount of energy dissipation and penetration resistance are limited in commercial polyurethane foams. Herein, a distinctive nacre-like architecture design strategy is proposed by integrating hard porous ceramic frameworks and flexible polyurethane buffers to improve energy absorption and impact resistance. Experimental investigations reveal the bioinspired designs exhibit optimized hardness, strength, and modulus compared to that of polyurethane. Due to the multiscale energy dissipation mechanisms, the resulting normalized absorbed energy (≈8.557 MJ m-3) is ≈20 times higher than polyurethane foams under 50% quasi-static compression. The bioinspired composites provide superior protection for structural materials (CFRP, glass, and steel), surpassing polyurethane films under impact loadings. It is shown CFRP coated with the designed materials can withstand more than ten impact loadings (in energy of 10 J) without obvious damage, which otherwise delaminates after a single impact. This biomimetic design strategy holds the potential to offer valuable insights for the development of lightweight, energy-absorbent, and impact-resistant materials.
Collapse
Affiliation(s)
- Jiaming Zhong
- State Key Laboratory of Materials Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Zhixiong Wen
- State Key Laboratory of Materials Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Yibo Wu
- Luoyang Ship Material Research InstituteLuoyang471023China
| | - Hao Luo
- Luoyang Ship Material Research InstituteLuoyang471023China
| | - Guodong Liu
- Luoyang Ship Material Research InstituteLuoyang471023China
| | - Jianqiao Hu
- LNMInstitute of MechanicsChinese Academy of SciencesBeijing100190China
| | - Hengxu Song
- LNMInstitute of MechanicsChinese Academy of SciencesBeijing100190China
- School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Tao Wang
- National Key Laboratory of Explosion Science and Safety ProtectionBeijing Institute of TechnologyBeijing100081China
| | - Xudong Liang
- School of ScienceHarbin Institute of Technology (Shenzhen)Shenzhen518055China
| | - Helezi Zhou
- State Key Laboratory of Materials Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Wei Huang
- State Key Laboratory of Materials Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Huamin Zhou
- State Key Laboratory of Materials Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
39
|
Wang Z, Xiao M, Li Z, Wang X, Li F, Yang H, Chen Y, Zhu Z. Microneedle Patches-Integrated Transdermal Bioelectronics for Minimally Invasive Disease Theranostics. Adv Healthc Mater 2024; 13:e2303921. [PMID: 38341619 DOI: 10.1002/adhm.202303921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Wearable epidermal electronics with non- or minimally-invasive characteristics can collect, transduce, communicate, and interact with accessible physicochemical health indicators on the skin. However, due to the stratum corneum layer, rich information about body health is buried under the skin stratum corneum layer, for example, in the skin interstitial fluid. Microneedle patches are typically designed with arrays of special microsized needles of length within 1000 µm. Such characteristics potentially enable the access and sample of biomolecules under the skin or give therapeutical treatment painlessly and transdermally. Integrating microneedle patches with various electronics allows highly efficient transdermal bioelectronics, showing their great promise for biomedical and healthcare applications. This comprehensive review summarizes and highlights the recent progress on integrated transdermal bioelectronics based on microneedle patches. The design criteria and state-of-the-art fabrication techniques for such devices are initially discussed. Next, devices with different functions, including but not limited to health monitoring, drug delivery, and therapeutical treatment, are highlighted in detail. Finally, key issues associated with current technologies and future opportunities are elaborated to sort out the state of recent research, point out potential bottlenecks, and provide future research directions.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Fangjie Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Huayuan Yang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- Health Industry Innovation Center, Xin-Huangpu Joint Innovation Institute of Chinese Medicine, 81 Xiangxue Middle Avenue, Huangpu District, Guangzhou, Guangdong Province, 510799, China
| |
Collapse
|
40
|
Ruiz-Agudo C, Cölfen H. Exploring the Potential of Nonclassical Crystallization Pathways to Advance Cementitious Materials. Chem Rev 2024; 124:7538-7618. [PMID: 38874016 PMCID: PMC11212030 DOI: 10.1021/acs.chemrev.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Understanding the crystallization of cement-binding phases, from basic units to macroscopic structures, can enhance cement performance, reduce clinker use, and lower CO2 emissions in the construction sector. This review examines the crystallization pathways of C-S-H (the main phase in PC cement) and other alternative binding phases, particularly as cement formulations evolve toward increasing SCMs and alternative binders as clinker replacements. We adopt a nonclassical crystallization perspective, which recognizes the existence of critical intermediate steps between ions in solution and the final crystalline phases, such as solute ion associates, dense liquid phases, amorphous intermediates, and nanoparticles. These multistep pathways uncover innovative strategies for controlling the crystallization of binding phases through additive use, potentially leading to highly optimized cement matrices. An outstanding example of additive-controlled crystallization in cementitious materials is the synthetically produced mesocrystalline C-S-H, renowned for its remarkable flexural strength. This highly ordered microstructure, which intercalates soft matter between inorganic and brittle C-S-H, was obtained by controlling the assembly of individual C-S-H subunits. While large-scale production of cementitious materials by a bottom-up self-assembly method is not yet feasible, the fundamental insights into the crystallization mechanism of cement binding phases presented here provide a foundation for developing advanced cement-based materials.
Collapse
Affiliation(s)
- Cristina Ruiz-Agudo
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| |
Collapse
|
41
|
Zhang J, Jin L, Sun H, Liu X, Ji Y, Li Y, Liu W, Su D, Liu X, Zhuang Z, Hu Z, Shao Q, Huang X. An all-metallic nanovesicle for hydrogen oxidation. Natl Sci Rev 2024; 11:nwae153. [PMID: 38800666 PMCID: PMC11126156 DOI: 10.1093/nsr/nwae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Vesicle, a microscopic unit that encloses a volume with an ultrathin wall, is ubiquitous in biomaterials. However, it remains a huge challenge to create its inorganic metal-based artificial counterparts. Here, inspired by the formation of biological vesicles, we proposed a novel biomimetic strategy of curling the ultrathin nanosheets into nanovesicles, which was driven by the interfacial strain. Trapped by the interfacial strain between the initially formed substrate Rh layer and subsequently formed RhRu overlayer, the nanosheet begins to deform in order to release a certain amount of strain. Density functional theory (DFT) calculations reveal that the Ru atoms make the curling of nanosheets more favorable in thermodynamics applications. Owing to the unique vesicular structure, the RhRu nanovesicles/C displays excellent hydrogen oxidation reaction (HOR) activity and stability, which has been proven by both experiments and DFT calculations. Specifically, the HOR mass activity of RhRu nanovesicles/C are 7.52 A mg(Rh+Ru)-1 at an overpotential of 50 mV at the rotating disk electrode (RDE) level; this is 24.19 times that of commercial Pt/C (0.31 mA mgPt-1). Moreover, the hydroxide exchange membrane fuel cell (HEMFC) with RhRu nanovesicles/C displays a peak power density of 1.62 W cm-2 in the H2-O2 condition, much better than that of commercial Pt/C (1.18 W cm-2). This work creates a new biomimetic strategy to synthesize inorganic nanomaterials, paving a pathway for designing catalytic reactors.
Collapse
Affiliation(s)
- Juntao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Lujie Jin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Hao Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaozhi Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yujin Ji
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Wei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuerui Liu
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany
| | - Qi Shao
- College of Chemistry and Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
42
|
Gao X, Yang X, Lv J, Zhao L, Sui X, Zhang X, Xie Y, Tang Z. Induced Huge Optical Activity in Nanoplatelet Superlattice. J Am Chem Soc 2024; 146:14697-14704. [PMID: 38753349 DOI: 10.1021/jacs.4c02307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Chiral superstructures with unique chiroptical properties that are not inherent in the individual units are essential in applications such as 3D displays, spintronic devices, biomedical sensors, and beyond. Generally, chiral superstructures are obtained by tedious procedures exploring various physical and chemical forces to break spatial symmetry during the self-assembly of discrete nanoparticles. In contrast, we herein present a simple and efficient approach to chiral superstructures by intercalating small chiral molecules into preformed achiral superstructures. As a model system, the chiral CdSe nanoplatelet (NPL) superlattice exhibits a giant and tunable optical activity with the highest g-factor reaching 3.09 × 10-2 to the excitonic transition of the NPL superlattice, nearly 2 orders of magnitude higher than that of the corresponding separated chiral NPLs. The theoretical analysis reveals that the chiral deformation in the NPL superlattice induced by the chiral perturbation of the small chiral molecules is critical to the observed huge optical activity. We anticipate that this research lays a foundation for understanding and applying chiral inorganic nanosystems.
Collapse
Affiliation(s)
- Xiaoqing Gao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, People's Republic of China
| | - Xuekang Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Jiawei Lv
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Luyang Zhao
- National Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, People's Republic of China
| | - Xinyu Sui
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Xueyan Zhang
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, People's Republic of China
| | - Yuyu Xie
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, People's Republic of China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| |
Collapse
|
43
|
Wang S, Chen M, Hu Y, Yi Z, Lu A. Aqueous Cellulose Solution Adhesive. NANO LETTERS 2024; 24:5870-5878. [PMID: 38608135 DOI: 10.1021/acs.nanolett.4c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
In the context of sustainable development, research on a biomass-based adhesive without chemical modification as a substitute for petroleum-based adhesive is now crucial. It turns out to be challenging to guarantee a simple and sustainable method to produce high-quality adhesives and subsequently manufacture multifunctional composites. Herein, the inherent properties of cellulose were exploited to generate an adhesive based on a cellulose aqueous solution. The adhesion is simple to prepare structurally and functionally complex materials in a single process. Cellulose-based daily necessities including straws, bags, and cups were prepared by adhering cellulose films, and smart devices like actuators and supercapacitors assembled by adhering hydrogels were also demonstrated. In addition, the composite boards bonded with natural biomass wastes, such as wood chips, displayed significantly stronger mechanical properties than the natural wood or commercial composite boards. Cellulose aqueous adhesives provide a straightforward, feasible, renewable, and inventive bonding technique for material shaping and the creation of multipurpose devices.
Collapse
Affiliation(s)
- Shihao Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Minzhang Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yang Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Zhigang Yi
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, P. R. China
| | - Ang Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
44
|
Yu HP, Zhu YJ. Guidelines derived from biomineralized tissues for design and construction of high-performance biomimetic materials: from weak to strong. Chem Soc Rev 2024; 53:4490-4606. [PMID: 38502087 DOI: 10.1039/d2cs00513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.
Collapse
Affiliation(s)
- Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
45
|
Liu C, Li M, Liu Z, Shi Z, Wang X, Huang F. Chitosan thermogelation and cascade mineralization via sequential CaCO 3 incorporations for wound care. Int J Biol Macromol 2024; 266:131076. [PMID: 38531522 DOI: 10.1016/j.ijbiomac.2024.131076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Physically crosslinked hydrogels have shown great potential as excellent and eco-friendly matrices for wound management. Herein, we demonstrate the development of a thermosensitive chitosan hydrogel system using CaCO3 as a gelling agent, followed by CaCO3 mineralization to fine-tune its properties. The chitosan hydrogel effectively gelled at 37 °C and above after an incubation period of at least 2 h, facilitated by the CaCO3-mediated slow deprotonation of primary amine groups on chitosan polymers. Through synthesizing and characterizing various chitosan hydrogel compositions, we found that mineralization played a key role in enhancing the hydrogels' mechanical strength, viscosity, and thermal inertia. Moreover, thorough in vitro and in vivo assessments of the chitosan-based hydrogels, whether modified with mineralization or not, demonstrated their outstanding hemostatic activity (reducing coagulation time by >41 %), biocompatibility with minimal inflammation, and biodegradability. Importantly, in vivo evaluations using a rat burn wound model unveiled a clear wound healing promotion property of the chitosan hydrogels, and the mineralized form outperformed its precursor, with a reduction of >7 days in wound closure time. This study presents the first-time utilization of chitosan/CaCO3 as a thermogelation formulation, offering a promising prototype for a new family of thermosensitive hydrogels highly suited for wound care applications.
Collapse
Affiliation(s)
- Chengkun Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Menghan Li
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Zhiyuan Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Zhuang Shi
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| |
Collapse
|
46
|
Yin W, Yang C, Liu D, Cha S, Cai L, Ye G, Song X, Zhang J, Qiu X. Mussel shell-derived pro-regenerative scaffold with conductive porous multi-scale-patterned microenvironment for spinal cord injury repair. Biomed Mater 2024; 19:035041. [PMID: 38626779 DOI: 10.1088/1748-605x/ad3f63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
It is well-established that multi-scale porous scaffolds can guide axonal growth and facilitate functional restoration after spinal cord injury (SCI). In this study, we developed a novel mussel shell-inspired conductive scaffold for SCI repair with ease of production, multi-scale porous structure, high flexibility, and excellent biocompatibility. By utilizing the reducing properties of polydopamine, non-conductive graphene oxide (GO) was converted into conductive reduced graphene oxide (rGO) and crosslinkedin situwithin the mussel shells.In vitroexperiments confirmed that this multi-scale porous Shell@PDA-GO could serve as structural cues for enhancing cell adhesion, differentiation, and maturation, as well as promoting the electrophysiological development of hippocampal neurons. After transplantation at the injury sites, the Shell@PDA-GO provided a pro-regenerative microenvironment, promoting endogenous neurogenesis, triggering neovascularization, and relieving glial fibrosis formation. Interestingly, the Shell@PDA-GO could induce the release of endogenous growth factors (NGF and NT-3), resulting in the complete regeneration of nerve fibers at 12 weeks. This work provides a feasible strategy for the exploration of conductive multi-scale patterned scaffold to repair SCI.
Collapse
Affiliation(s)
- Wenming Yin
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Chang Yang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, People's Republic of China
| | - Dan Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Shuhan Cha
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, People's Republic of China
| | - Liu Cai
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Genlan Ye
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, People's Republic of China
| | - Xiaoping Song
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, People's Republic of China
| | - Jifeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, People's Republic of China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| |
Collapse
|
47
|
Liu B, Hu C, Huang X, Qin K, Wang L, Wang Z, Liang J, Xie F, Fan Z. 3D printing nacre powder/sodium alginate scaffold loaded with PRF promotes bone tissue repair and regeneration. Biomater Sci 2024; 12:2418-2433. [PMID: 38511973 DOI: 10.1039/d3bm01936e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Bone defects are a common complication of bone diseases, which often affect the quality of life and mental health of patients. The use of biomimetic bone scaffolds loaded with bioactive substances has become a focal point in the research on bone defect repair. In this study, composite scaffolds resembling bone tissue were created using nacre powder (NP) and sodium alginate (SA) through 3D printing. These scaffolds exhibit several physiological structural and mechanical characteristics of bone tissue, such as suitable porosity, an appropriate pore size, applicable degradation performance and satisfying the mechanical requirements of cancellous bone, etc. Then, platelet-rich fibrin (PRF), containing a mass of growth factors, was loaded on the NP/SA scaffolds. This was aimed to fully maximize the synergistic effect with NP, thereby accelerating bone tissue regeneration. Overall, this study marks the first instance of preparing a bionic bone structure scaffold containing NP by 3D printing technology, which is combined with PRF to further accelerate bone regeneration. These findings offer a new treatment strategy for bone tissue regeneration in clinical applications.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
- Department of Oral and Maxillofacial Surgery, 2nd Hospital of Lanzhou University, Lanzhou 730030, P. R. China.
| | - Cewen Hu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xinyue Huang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Kaiqi Qin
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Lei Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Zhilong Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jiachen Liang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Fuqiang Xie
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
- Department of Oral and Maxillofacial Surgery, 2nd Hospital of Lanzhou University, Lanzhou 730030, P. R. China.
| | - Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
48
|
Abdolazizi A, Wijesinghe I, Marriam I, Chathuranga H, Golberg D, Yan C. Development of Light, Strong, and Water-Resistant PVA Composite Aerogels. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:745. [PMID: 38727339 PMCID: PMC11085475 DOI: 10.3390/nano14090745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
A significant weakness of many organic and inorganic aerogels is their poor mechanical behaviour, representing a great impediment to their application. For example, polymer aerogels generally have higher ductility than silica aerogels, but their elastic modulus is considered too low. Herein, we developed extremely low loading (<1 wt%) 2D graphene oxide (GO) nanosheets modified poly (vinyl alcohol) (PVA) aerogels via a facile and environmentally friendly method. The aerogel shows a 9-fold increase in compressional modulus compared to a pure polymer aerogel. With a low density of 0.04 mg/mm3 and a thermal conductivity of only 0.035 W/m·K, it outperforms many commercial insulators and foams. As compared to a pure PVA polymer aerogel, a 170% increase in storage modulus is obtained by adding only 0.6 wt% GO nanosheets. The nanocomposite aerogel demonstrates strong fire resistance, with a 50% increase in burning time and little smoke discharge. After surface modification with 1H,1H,2H,2H-Perfluorodecyltriethoxysilane, the aerogel demonstrates water resistance, which is suitable for outdoor applications in which it would be exposed to precipitation. Our research demonstrates a new pathway for considerable improvement in the performance and application of polymer aerogels.
Collapse
Affiliation(s)
- Amir Abdolazizi
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.A.); (I.W.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Ishara Wijesinghe
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.A.); (I.W.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Ifra Marriam
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.A.); (I.W.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Hiran Chathuranga
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Dmitri Golberg
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Cheng Yan
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.A.); (I.W.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
49
|
A J A, S A. Studies on effect of failure modes on mechanical properties of staggered composites. BIOINSPIRATION & BIOMIMETICS 2024; 19:036019. [PMID: 38579743 DOI: 10.1088/1748-3190/ad3b55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/05/2024] [Indexed: 04/07/2024]
Abstract
Biological materials such as bone, nacre, antler, and teeth are gifted with excellent mechanical properties that have inspired the development of synthetic composites. These superior properties are attributed to the geometrical as well as the material properties of the constituents at a small scale. This paper is focused on the influence of failure modes over the mechanical properties including stiffness, strength, and toughness, after the failure of different interfaces in staggered bio-inspired structures such as regular and stairwise staggered arrangements where stiff platelets are embedded in a pliant matrix. In order to find these properties, this article develops a novel analytical model for stress transfer and effective Young's modulus of a stairwise staggered composite based on composite micro-mechanics principles. The results indicate that the failure sequence indeed influences mechanical characteristics such as stiffness, strength, and toughness. Also, the results from the present study is capable of quantifying the major contribution of toughness that is obtained from the vertical interface failure, which is ignored in previous studies for estimating the toughness. The results indicate that a toughness contribution as high as 56% from the inclusion of the first failure can be obtained in a stairwise staggered composite. The influence of significant parameters like Young's moduli ratio between the platelet and matrix (Ep/Em) over the strength at different modes of failure showed that the strength at first and second failures increases as theEp/Emratio increases. The findings of this study hold significant potential for predicting the failure sequences with their quantified contributions towards the mechanical properties of a bio-inspired staggered composite.
Collapse
Affiliation(s)
- Abhirami A J
- Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, India
| | - Anup S
- Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, India
| |
Collapse
|
50
|
Yan J, Zhou T, Peng J, Wang H, Jiang L, Cheng Q. Sustainable liquid metal-induced conductive nacre. Sci Bull (Beijing) 2024; 69:913-921. [PMID: 38320895 DOI: 10.1016/j.scib.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/01/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Nacre has inspired research to fabricate tough bulk composites for practical applications using inorganic nanomaterials as building blocks. However, with the considerable pressure to reduce global carbon emissions, preparing nacre-inspired composites remains a significant challenge using more economical and environmentally friendly building blocks. Here we demonstrate tough and conductive nacre by assembling aragonite platelets exfoliated from natural nacre, with liquid metal and sodium alginate used as the "mortar". The formation of GaOC coordination bonding between the gallium ions and sodium alginate molecules reduces the voids and improves compactness. The resultant conductive nacre exhibits much higher mechanical properties than natural nacre. It also shows excellent impact resistance attributed to the synergistic strengthening and toughening fracture mechanisms induced by liquid metal and sodium alginate. Furthermore, our conductive nacre exhibits exceptional self-monitoring sensitivity for maintaining structural integrity. The proposed strategy provides a novel avenue for turning natural nacre into a valuable green composite.
Collapse
Affiliation(s)
- Jia Yan
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Tianzhu Zhou
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jingsong Peng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
| | - Huagao Wang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Lei Jiang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China; Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China; Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|