1
|
Zhou H, Kim HW, Jeong WJ, Lee TW. Toward Intrinsically Stretchable OLEDs with High Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420008. [PMID: 39981776 DOI: 10.1002/adma.202420008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Wearable electronics require stretchable displays that can withstand large and repeated mechanical deformation without failure. Intrinsically stretchable organic light-emitting diodes (ISOLEDs) that operate under DC voltage provide promising candidates for wearable display applications. However, the lack of sophisticated stretchable materials and processing techniques suitable for ISOLEDs results in a significant deficit in the efficiency of state-of-the-art ISOLEDs compared to industrial standards. The design of stretchable conducting and semiconducting materials poses a significant challenge because of trade-off relationships between stretchability and properties such as conductivity and charge carrier mobility. To increase the efficiency of ISOLEDs to meet industrial standards, strategies to overcome these trade-offs must be developed. This perspective discusses recent progress and challenges in designing stretchable electrodes, light-emitting materials, transport materials, and potential applications of ISOLEDs. It provides a useful guide in this field to develop efficient ISOLEDs for system-level integration.
Collapse
Affiliation(s)
- Huanyu Zhou
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 PLUS SNU Materials Division for Educating Creative Global Leaders, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Wook Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woo Jin Jeong
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Interdisciplinary Program in Bioengineering, Research Institute of Advanced Materials, Soft Foundry, Seoul National University, Seoul, 08826, Republic of Korea
- SN Display Co., Ltd., Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Sung MJ, Kim KN, Kim C, Lee HH, Lee SW, Kim S, Seo DG, Zhou H, Lee TW. Organic Artificial Nerves: Neuromorphic Robotics and Bioelectronics. Chem Rev 2025. [PMID: 39983019 DOI: 10.1021/acs.chemrev.4c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Neuromorphic electronics are inspired by the human brain's compact, energy-efficient nature and its parallel-processing capabilities. Beyond the brain, the entire human nervous system, with its hierarchical structure, efficiently preprocesses complex sensory information to support high-level neural functions such as perception and memory. Emulating these biological processes, artificial nerve electronics have been developed to replicate the energy-efficient preprocessing observed in human nerves. These systems integrate sensors, artificial neurons, artificial synapses, and actuators to mimic sensory and motor functions, surpassing conventional circuits in sensor-integrated electronics. Organic synaptic transistors (OSTs) are key components in constructing artificial nerves, offering tunable synaptic plasticity for complex sensory processing and the mechanical flexibility required for applications in soft robotics and bioelectronics. Compared to traditional sensor-integrated electronics, early implementations of organic artificial nerves (OANs) incorporating OSTs have demonstrated a higher signal-to-noise ratio, lower power consumption, and simpler circuit designs along with on-device processing capabilities and precise control of actuators and biological limbs, driving progress in neuromorphic robotics and bioelectronics. This paper reviews the materials, device engineering, and system integration of the OAN design, highlights recent advancements in neuromorphic robotics and bioelectronics utilizing the OANs, and discusses current challenges and future research directions.
Collapse
Affiliation(s)
- Min-Jun Sung
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwan-Nyeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chunghee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Haeng Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Somin Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Gyo Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Huanyu Zhou
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- BK21 PLUS SNU Materials Division for Educating Creative Global Leaders, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Soft Foundry, Seoul National University, Seoul 08826, Republic of Korea
- SN Display Co. Ltd., Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Kurokawa H, Maki-Yonekura S, Takaba K, Higashino T, Inoue S, Hasegawa T, Yonekura K. 3D Electron Diffraction Structure of an Organic Semiconductor Reveals Conformational Polymorphism. J Am Chem Soc 2025; 147:5669-5678. [PMID: 39912546 PMCID: PMC11848827 DOI: 10.1021/jacs.4c12734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 02/07/2025]
Abstract
Crystal and conformational polymorphisms play crucial roles in the physical and chemical properties of materials, impacting their stability, solubility, and bioavailability, which are essential for various applications in pharmaceuticals, materials science, and chemistry. Despite their significance, the structural analysis of these polymorphisms, particularly conformational polymorphisms, remains challenging due to the limited methodology that provides sufficient resolution for microcrystalline variants of polymorphs. Three-dimensional electron diffraction (3D ED) is an emerging technique with significant potential for elucidating the microcrystal structures of functional organic molecules, pharmaceuticals, and biomolecules. Despite this potential, there are limited instances of 3D ED structures for small molecules exhibiting the lowest crystallographic symmetry with a preferred orientation and possibly conformational variations of constituent molecules. A novel organic semiconductor, Ph-anti-benzothieno[5,6-b]benzothieno[3,2-b]thiophene-C10 (antiC10), is one of such examples. We successfully determined the 3D ED structure of this challenging molecule. The antiC10 crystal exhibited the lowest symmetry (space group P1), and the preferred orientations against the grid resulted in a missing cone. These challenges were surmounted by employing a sequential molecular replacement approach with an ab initio-generated search model. The resulting octameric antiC10 structure reveals a two-monolayer architecture and an antiparallel alkyl-interdigitated herringbone configuration in contrast to the all-parallel associations observed in its previously reported isomer. Concurrently, the alkyl chains are intricately interdigitated with each other and positioned between the adjacent π-core strata. Detailed analysis has elucidated the conformational polymorphism in herringbone packing between the two monolayers as well as in intramolecular conformations among monomers. The structure with conformational polymorphism is presumably in a metastable intermediate state, stabilized by twinning. These findings may provide critical insights into the crystallization mechanisms and rational design of organic semiconductors. This research demonstrates that advancements in 3D ED technology and sequential phasing methodologies have enabled the study of previously unreachable structures.
Collapse
Affiliation(s)
- Hirofumi Kurokawa
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | | - Toshiki Higashino
- Research
Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Satoru Inoue
- Department
of Applied Physics, University of Tokyo, Hongo, Tokyo 113-8656, Japan
| | - Tatsuo Hasegawa
- Department
of Applied Physics, University of Tokyo, Hongo, Tokyo 113-8656, Japan
| | - Koji Yonekura
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan
- RIKEN
SPring-8 Center, Kouto, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
4
|
Zhang M, Zhou M, Sun J, Tong Y, Zhao X, Tang Q, Liu Y. Recent Progress in Intrinsically Stretchable Sensors Based on Organic Field-Effect Transistors. SENSORS (BASEL, SWITZERLAND) 2025; 25:925. [PMID: 39943564 PMCID: PMC11821018 DOI: 10.3390/s25030925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025]
Abstract
Organic field-effect transistors (OFETs) are an ideal platform for intrinsically stretchable sensors due to their diverse mechanisms and unique electrical signal amplification characteristics. The remarkable advantages of intrinsically stretchable sensors lie in their molecular tunability, lightweight design, mechanical robustness, solution processability, and low Young's modulus, which enable them to seamlessly conform to three-dimensional curved surfaces while maintaining electrical performance under significant deformations. Intrinsically stretchable sensors have been widely applied in smart wearables, electronic skin, biological detection, and environmental protection. In this review, we summarize the recent progress in intrinsically stretchable sensors based on OFETs, including advancements in functional layer materials, sensing mechanisms, and applications such as gas sensors, strain sensors, stress sensors, proximity sensors, and temperature sensors. The conclusions and future outlook discuss the challenges and future outlook for stretchable OFET-based sensors.
Collapse
Affiliation(s)
| | | | | | - Yanhong Tong
- Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China; (M.Z.); (M.Z.); (J.S.); (X.Z.); (Y.L.)
| | | | - Qingxin Tang
- Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China; (M.Z.); (M.Z.); (J.S.); (X.Z.); (Y.L.)
| | | |
Collapse
|
5
|
Gu CH, Du M, Han RY, Zhang AY, Yu HQ, Xing M. Ultrafast Water Purification by Template-Free Nanoconfined Catalysts Derived from Municipal Sludge. Angew Chem Int Ed Engl 2025:e202423629. [PMID: 39823146 DOI: 10.1002/anie.202423629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Nanoconfinement at the interface of heterogeneous Fenton-like catalysts offers promising avenues for advancing oxidation processes in water purification. Herein, we introduce a template-free strategy for synthesizing nanoconfined catalysts from municipal sludge (S-NCCs), specifically engineered to optimize reactive oxygen species (ROS) generation and utilization for rapid pollutant degradation. Using selective hydrofluoric acid corrosion, we create an architecture that confines atomically dispersed Fe centers within a micro-mesoporous carbon matrix in situ. This method maximizes the utilization of silicon and aluminum content from sludge, prevents metal agglomeration, and precisely regulates the chemical environment of Fe active sites. As a result, the S-NCCs promote a transition from nonradical to hybrid radical/nonradical reaction mechanisms, significantly enhancing ROS efficiency, stability, and pollutant degradation rates. These catalysts demonstrate exceptional pollutant removal performance, achieving a 261-fold increase in degradation efficiency for compounds such as phenol and sulfamethoxazole compared to unconfined analogs, outperforming most state-of-the-art Fenton-like systems. Our findings highlight the transformative potential of nanoconfined catalysis in environmental applications, providing an effective and scalable solution for sustainable water purification.
Collapse
Affiliation(s)
- Chao-Hai Gu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meng Du
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ru-Yi Han
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ai-Yong Zhang
- Anhui Engineering Laboratory for Rural Water Environment and Resources, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Mingyang Xing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
6
|
Zou J, Jing X, Li S, Chen Y, Liu Y, Feng PY, Peng XF. Low mechanical-hysteresis conductive hydrogel conferred by chitosan bridging and MXene nanoconfined mechanism. Carbohydr Polym 2025; 348:122849. [PMID: 39562118 DOI: 10.1016/j.carbpol.2024.122849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
Large mechanical hysteresis, stemming from the inherent viscoelasticity of the hydrogel networks, seriously affected its service life and application scope. Herein, we introduced a synergistic approach combining MXene nanoconfinement and bridging effect to produce hydrogels with low mechanical hysteresis. The introduced MXene was able to provide an effective nanoconfined effect on the polymerization of acrylamide monomers. By synergizing with the bridging effect-facilitated by strong interactions between chitosan-grafted polyacrylamide and solvent molecules to accelerate stress transfer-we successfully developed a MXene-reinforced conductive hydrogel with mechanical hysteresis as low as 3.17 %. Additionally, the strong electrostatic interactions between the chitosan and MXene further affiliate the dispersion of MXene within the hydrogel. The resulting MXene-reinforced conductive hydrogel demonstrated remarkable temperature sensitivity (TCR = -1.42 %/°C), making it suitable to be used as a health monitoring device. These findings opened up new perspectives for the further expansion of MXene and beyond.
Collapse
Affiliation(s)
- Jian Zou
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Xin Jing
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China..
| | - Shitao Li
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Yi Chen
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Yuejun Liu
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Pei-Yong Feng
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Xiang-Fang Peng
- School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China.
| |
Collapse
|
7
|
Li M, Li W, Zhou J, Tian X, Li H, Jiang Z, Liu D, Liu Y, Wang Y, Shi Y. N-oxide-Functionalized Bipyridines as Strong Electron-Deficient Units to Construct High-Performance n-Type Conjugated Polymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414059. [PMID: 39804963 DOI: 10.1002/advs.202414059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Developing low-cost unipolar n-type organic thin-film transistors (OTFTs) is necessary for logic circuits. To achieve this objective, the usage of new electron-deficient building blocks with simple structure and easy synthetic route is desirable. Among all electron-deficient building units, N-oxide-functionalized bipyridines can be prepared through a simple oxidized transformation of bipyridines. However, employing N-oxide-functionalized bipyridines as the building unit to construct efficient N-type polymers has been overlooked. This gap strongly encourages us to design and synthesize two new N-oxide building blocks, 5,5'-dibromo-[2,2'-bipyridine] 1-oxide (BPyO) and 5,5'-dibromo-[2,2'-bipyridine] 1,1'-dioxide (BPyDO), through the oxidation of sp2-N in 2,2'-bipyridine. The single-crystal X-ray diffraction shows that BPyO and BPyDO possess planar structure with strong π-stacking, which is beneficial for charge transport. Incorporation of these building blocks into acceptor-acceptor backbones leads to two new polymers, namely P(DPP-BPyO) and P(DPP-BPyDO). Both P(DPP-BPyO) and P(DPP-BPyDO) possess lower frontier molecular orbital energy levels than the non-oxide polymer P(DPP-BPy). Consequently, the transition from P(DPP-BPy) (without oxide group) to P(DPP-BPyO) (mono-oxide group) and then to P(DPP-BPyDO) (dioxide group) can decrease hole-transport performance and gradually switch the transport nature from p-type to n-type via ambipolar. These results prove that the introduction of sp2-N oxide groups in building units would be a promising strategy to approach high-performance n-type polymers.
Collapse
Affiliation(s)
- Mingwei Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui, 241002, China
| | - Wenhao Li
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
| | - Junkang Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui, 241002, China
| | - Xiaowen Tian
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui, 241002, China
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhen Jiang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
| | - Di Liu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
| | - Yunqi Liu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
| | - Yang Wang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
| | - Yongqiang Shi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui, 241002, China
| |
Collapse
|
8
|
Tang Z, Sun X, Yu F, Wang J, Wu Z, Zhao Z, Wang C, Mao J, Zhang Q, Cao F. High-Quality SnSe Thin Films for Self-Powered Devices and Multilevel Information Encryption. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2648-2655. [PMID: 39707949 DOI: 10.1021/acsami.4c18795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
As semiconductor technology advances toward miniaturization and portability, thin films with excellent thermoelectric performance have garnered increasing attention, particularly for applications in self-powered devices and temperature-responsive sensors. The high Seebeck coefficient of SnSe thin films makes them promising for temperature sensing, but their poor electrical conductivity limits their potential as thermoelectric generators. In this work, high-quality a-axis oriented SnSe thin films were deposited on quartz substrates by using magnetron sputtering. The substrate temperature was optimized to improve the crystallinity of the SnSe thin film, resulting in larger grain sizes, which subsequently contributes to the improved carrier mobility. The Seebeck coefficient is enhanced while optimizing the electrical conductivity, enabling the SnSe thin film to achieve both excellent sensing and power generation performance. The SnSe film deposited at 673 K exhibits a high power factor of approximately 346 μW m-1 K-2 at 620 K. A temperature-responsive sensing array was developed for multilevel information encryption, showing significant potential for applications in password encryption. The maximum output power density of the optimized thermoelectric generator with six SnSe legs is about 9 W m-2 at a temperature difference of 50 K.
Collapse
Affiliation(s)
- Zunqian Tang
- School of Science, and Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiaoyu Sun
- School of Science, and Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China
| | - Fangyuan Yu
- School of Science, and Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jian Wang
- School of Science, and Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zuoxu Wu
- School of Science, and Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zirui Zhao
- School of Science, and Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chong Wang
- School of Science, and Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jun Mao
- School of Materials Science and Engineering and Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Qian Zhang
- School of Materials Science and Engineering and Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen 518055, China
| | - Feng Cao
- School of Science, and Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Wang Y, Huang W, Li J, Liu S, Fu J, Wang L, Wang H, Li W, Xie L, Ling H, Huang W. Engineering Steep Subthreshold Swings in High-Performance Organic Field-Effect Transistor Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406522. [PMID: 39479740 DOI: 10.1002/smll.202406522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/18/2024] [Indexed: 01/11/2025]
Abstract
Organic field-effect transistor (OFET)-based sensors have gained considerable attention for information perception and processing in developing artificial intelligent systems owing to their amplification function and multiterminal regulation. Over the last few decades, extensive research has been conducted on developing OFETs with steep subthreshold swings (SS) to achieve high-performance sensing. In this review, based on an analysis of the critical factors that are unfavorable for a steep SS in OFETs, the corresponding representative strategies for achieving steep SS are summarized, and the advantages and limitations of these strategies are comprehensively discussed. Furthermore, a bridge between SS and OFET sensor performance is established. Subsequently, the applications of OFETs with steep SS in sensor systems, including pressure sensors, photosensors, biochemical sensors, and electrophysiological signal sensors. Lastly, the challenges faced in developing OFET sensors with steep SS are discussed. This study provides insights into the design and application of high-performance OFET sensor systems.
Collapse
Affiliation(s)
- Yiru Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Wanxin Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Jiahao Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Shanshuo Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Jingwei Fu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Le Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Haotian Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Wen Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Haifeng Ling
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| |
Collapse
|
10
|
Zheng YQ, Bao Z. Molecularly Designed and Nanoconfined Polymer Electronic Materials for Skin-like Electronics. ACS CENTRAL SCIENCE 2024; 10:2188-2199. [PMID: 39735315 PMCID: PMC11672543 DOI: 10.1021/acscentsci.4c01541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 12/31/2024]
Abstract
Stretchable electronics have seen substantial development in skin-like mechanical properties and functionality thanks to the advancements made in intrinsically stretchable polymer electronic materials. Nanoscale phase separation of polymer materials within an elastic matrix to form one-dimensional nanostructures, namely nanoconfinement, effectively reduces conformational disorders that have long impeded charge transport properties of conjugated polymers. Nanoconfinement results in enhanced charge transport and the addition of skin-like properties. In this Outlook, we highlight the current understanding of structure-property relationships for intrinsically stretchable electronic materials with a focus on the nanoconfinement strategy as a promising approach to incorporate skin-like properties and other functionalities without compromising charge transport. We outline emerging directions and challenges for intrinsically stretchable electronic materials with the aim of constructing skin-like electronic systems.
Collapse
Affiliation(s)
- Yu-Qing Zheng
- National
Key Laboratory of Advanced Micro and Nano Manufacture Technology;
Beijing Advanced Innovation Center for Integrated Circuits, School
of Integrated Circuits, Peking University, Beijing 100871, China
| | - Zhenan Bao
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
11
|
Ding G, Li H, Zhao J, Zhou K, Zhai Y, Lv Z, Zhang M, Yan Y, Han ST, Zhou Y. Nanomaterials for Flexible Neuromorphics. Chem Rev 2024; 124:12738-12843. [PMID: 39499851 DOI: 10.1021/acs.chemrev.4c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The quest to imbue machines with intelligence akin to that of humans, through the development of adaptable neuromorphic devices and the creation of artificial neural systems, has long stood as a pivotal goal in both scientific inquiry and industrial advancement. Recent advancements in flexible neuromorphic electronics primarily rely on nanomaterials and polymers owing to their inherent uniformity, superior mechanical and electrical capabilities, and versatile functionalities. However, this field is still in its nascent stage, necessitating continuous efforts in materials innovation and device/system design. Therefore, it is imperative to conduct an extensive and comprehensive analysis to summarize current progress. This review highlights the advancements and applications of flexible neuromorphics, involving inorganic nanomaterials (zero-/one-/two-dimensional, and heterostructure), carbon-based nanomaterials such as carbon nanotubes (CNTs) and graphene, and polymers. Additionally, a comprehensive comparison and summary of the structural compositions, design strategies, key performance, and significant applications of these devices are provided. Furthermore, the challenges and future directions pertaining to materials/devices/systems associated with flexible neuromorphics are also addressed. The aim of this review is to shed light on the rapidly growing field of flexible neuromorphics, attract experts from diverse disciplines (e.g., electronics, materials science, neurobiology), and foster further innovation for its accelerated development.
Collapse
Affiliation(s)
- Guanglong Ding
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Hang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- The Construction Quality Supervision and Inspection Station of Zhuhai, Zhuhai 519000, PR China
| | - Yongbiao Zhai
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ziyu Lv
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Meng Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yan Yan
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Su-Ting Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR PR China
| | - Ye Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
12
|
Zhou H, Cheng Z, Pan G, Hu L, Zhang F. Effect of Alkyl Side Chain Length on Electrical Performance of Ion-Gel-Gated OFETs Based on Difluorobenzothiadiazole-Based D-A Copolymers. Polymers (Basel) 2024; 16:3287. [PMID: 39684034 DOI: 10.3390/polym16233287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The performance of organic field-effect transistors (OFETs) is highly dependent on the dielectric-semiconductor interface, especially in ion-gel-gated OFETs, where a significantly high carrier density is induced at the interface at a low gate voltage. This study investigates how altering the alkyl side chain length of donor-acceptor (D-A) copolymers impacts the electrical performance of ion-gel-gated OFETs. Two difluorobenzothiadiazole-based D-A copolymers, PffBT4T-2OD and PffBT4T-2DT, are compared, where the latter features longer alkyl side chains. Although PffBT4T-2DT shows a 2.4-fold enhancement of charge mobility in the SiO2-gated OFETs compared to its counterpart due to higher crystallinity in the film, PffBT4T-2OD outperforms PffBT4T-2DT in the ion-gel-gated OFETs, manifested by an extraordinarily high mobility of 17.7 cm2/V s. The smoother surface morphology, as well as stronger interfacial interaction between the ion-gel dielectric and PffBT4T-2OD, enhances interfacial charge accumulation, which leads to higher mobility. Furthermore, PffBT4T-2OD is blended with a polymeric elastomer SEBS to achieve ion-gel-gated flexible OFETs. The blend devices exhibit high mobility of 8.6 cm2/V s and high stretchability, retaining 45% of initial mobility under 100% tensile strain. This study demonstrates the importance of optimizing the chain structure of polymer semiconductors and the semiconductor-dielectric interface to develop low-voltage and high-performance flexible OFETs for wearable electronics applications.
Collapse
Affiliation(s)
- Han Zhou
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Science lsland Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Zaitian Cheng
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Science lsland Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Guoxing Pan
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lin Hu
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Fapei Zhang
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
13
|
Gao L, Zhang J, Wang L, Zhang D, Li F, Shen H, Hu BL, Li RW. Highly elastic relaxor ferroelectrics for wearable energy storage. MATERIALS HORIZONS 2024; 11:6150-6157. [PMID: 39354842 DOI: 10.1039/d4mh00998c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Polymer-based relaxor ferroelectrics with high dielectric constant are pivotal in cutting-edge electronic devices, power systems, and miniaturized pulsed electronics. The surge in flexible electronics technology has intensified the demand for elastic ferroelectric materials that exhibit excellent electrical properties and mechanical resilience, particularly for wearable devices and flexible displays. However, as an indispensable component, intrinsic elastomers featuring high dielectric constant and outstanding resilience specifically tailored for elastic energy storage remain undeveloped. Elastification of relaxor ferroelectric materials presents a promising strategy to obtain high-dielectric elastomers. In this study, we present a strain-insensitive, high elastic relaxor ferroelectric material prepared via peroxide crosslinking of a poly(vinylidene fluoride) (PVDF)-based copolymer at low temperature, which exhibits an intrinsic high dielectric constant (∼20 at 100 Hz) alongside remarkable thermal, chemical, and mechanical stability. This relaxor ferroelectric elastomer maintains a stable energy density (>8 J cm-3) and energy storage efficiency (>75%) under strains ranging from 0 to 80%. This strain-insensitive, high elastic relaxor ferroelectric elastomer holds significant potential for flexible electronic applications, offering superior performance in soft robotics, smart clothing, smart textiles, and electronic skin.
Collapse
Affiliation(s)
- Liang Gao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201.
| | - Jiaqi Zhang
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, P. R. China
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - Linping Wang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201.
| | - Dongyang Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201.
| | - Fangzhou Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201.
| | - Haoyu Shen
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201.
| | - Ben-Lin Hu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201.
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201.
| |
Collapse
|
14
|
Wang L, Kong D. Stretchable and Self-Adhesive Conductors for Smart Epidermal Electronics. Macromol Rapid Commun 2024:e2400774. [PMID: 39579092 DOI: 10.1002/marc.202400774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Epidermal electronics utilize deformable devices that are seamlessly integrated into the body for various cutting-edge applications. Stretchable conductors are essential for creating electrodes in these devices, allowing them to interface with the skin for sensing and stimulation. Despite considerable progress in improved deformability, these conductors may not easily adhere to the skin for long-term use. There is a growing interest in imparting self-adhesive properties to epidermal devices to ensure secure integration with the body. This article focuses on the emerging field of stretchable and self-adhesive conductors. It explores the design strategy required to enable stretchability and conformability in these materials and discusses their pivotal applications in smart epidermal electronics. Additionally, this article also addresses the current challenges and future directions in this dynamic area of research.
Collapse
Affiliation(s)
- Lin Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210021, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210021, China
| |
Collapse
|
15
|
Lv D, Liu X, Li J, Hou S, Li Y, Wang Z, Zhang Q, Wang S, Yu X, Han Y. Improving the Uniformity and Stretchability of Inkjet-Printed Films by Adding the Surfactant Triton X. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39568366 DOI: 10.1021/acsami.4c15774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Stretchable organic light-emitting diodes (OLEDs) are a key component of stretchable electronics. Inkjet printing is a potential processing method for stretchable and flexible OLEDs. However, improving the uniformity and stretchability of the emission layer (EML) prepared by inkjet printing is challenging. Here, we propose a strategy to simultaneously improve the uniformity and stretchability of inkjet-printed films by tuning the Marangoni flow and increasing the free volume. To verify our idea, Triton X (TX) with a lipophilic alkyl end and a hydrophilic hydroxyl end was added to the Super Yellow (SY)/polystyrene-block-polybutadiene-block-polystyrene (SBS) blend film. TX played two roles. (1) To inhibit the coffee ring effect. The surface tension of the solution decreased because the hydrophilic ends of TX repelled with the nonpolar solvent toluene to decrease the cohesion of toluene molecules on the surface. Thus, the surface tension at the edges was lower than in the middle due to the high evaporation rate at the edges during solvent evaporation. This resulted in the generation of the inward Marangoni flow to drive the solute toward the middle. Therefore, the coffee ring effect was inhibited, and a uniform film was formed. (2) To improve the stretchability. With TX, the glass transition temperature decreased because TX acted as a plasticizer to insert between the polymer chains due to the attraction between the lipophilic ends of TX and the alkyl side chains of SY. This provided more free volume for the polymer chains to move and orientate under strain, which is beneficial for the stretchability. Finally, we fabricated OLEDs with the inkjet-printed stretchable EML. At 100% strain, the luminance kept 70% of the initial luminance, much higher than that without the surfactant (33%).
Collapse
Affiliation(s)
- Dong Lv
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Xuelei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Junhang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Saiyin Hou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yinghan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Zehao Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xinhong Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
16
|
Zhong D, Nishio Y, Wu C, Jiang Y, Wang W, Yuan Y, Yao Y, Tok JBH, Bao Z. Design Considerations and Fabrication Protocols of High-Performance Intrinsically Stretchable Transistors and Integrated Circuits. ACS NANO 2024. [PMID: 39563556 DOI: 10.1021/acsnano.4c14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Intrinsically stretchable electronics represent a significant advancement in wearable and implantable technologies, as they offer a unique advantage by maintaining intimate tissue contact while accommodating movements and size changes. This capability makes them exceptionally well-suited for applications in human-machine interfaces, wearables, and implantables, where seamless integration with the human body is essential. To realize this vision, it is important to develop soft integrated circuits for on-body signal processing and computing. Our previous work has focused on developing high-density, intrinsically stretchable transistors capable of delivering high drive current, high-speed performance, and facilitating large-scale integrated circuits. These breakthroughs were achieved through a comprehensive and synergistic approach that encompassed material innovation, meticulous fabrication process design, precise device engineering, and strategic circuit design. Here we provide a comprehensive yet detailed description of these protocols, including design principles, material preparation, fabrication processes, and troubleshooting. These protocols are to empower other researchers to reproduce our developed processes, thus fostering further advancements in stretchable electronics. Specifically, we present in this article an enhanced protocol with explanations, complemented by photographs and instructional videos. This resource aims to bridge the knowledge gap and provide invaluable insights for researchers interested in developing high-performance intrinsically stretchable transistors and integrated circuits. We hope this helps to enable future advancements in the field of intrinsically stretchable electronics.
Collapse
Affiliation(s)
- Donglai Zhong
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yuya Nishio
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Can Wu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Weichen Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yujia Yuan
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yating Yao
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jeffrey B-H Tok
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
17
|
Bai L, Jiang Z, Fan L, Zhou X, Xu J, Tan J, Wei F, Ye S, Wang X. Mechanism of Density Evolution of Polystyrene Adsorbed Layers on the Substrate. ACS Macro Lett 2024; 13:1539-1544. [PMID: 39471401 DOI: 10.1021/acsmacrolett.4c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The density evolution of polystyrene (PS) adsorbed layers on phenyl-modified SiO2-Si substrates was investigated. The thickness and density of flattened layer on substrates with above 75% phenyl content increased over annealing time and could approach 4.7 nm and 1.37 g/cm3 at equilibrium, respectively, which were much higher than those on SiO2-Si. The annealing time for flattened chains to reach equilibrium increased with an increasing phenyl content on the substrate. The interface sensitive sum frequency generation vibrational spectroscopy (SFG) technique revealed that both the amount and the strength of the interfacial π-π interaction between the phenyl groups of substrates and in PS chains increased with annealing time. This resulted in more stretched chains perpendicularly, leading to a denser and thicker adsorbed layer with a closest-packing structure, driven by favorable enthalpy processes. Our work provides important insight into the densification mechanism of adsorbed flattened layers.
Collapse
Affiliation(s)
- Lu Bai
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Zhenwei Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Liang Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Xianjing Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Jianquan Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Junjun Tan
- Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Feng Wei
- School of Optoelectronic Materials and Technology and Institute of Interdisciplinary Research, Jianghan University, Wuhan, 430056, P. R. China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xinping Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
18
|
Gilhooly-Finn PA, Westwood MM, Schroeder BC. Will it blend? Exploring the viscoelastic characteristics of P3HT-polyborosiloxane blends towards flexible electronic materials. RSC APPLIED POLYMERS 2024; 2:1182-1192. [PMID: 39464175 PMCID: PMC11498086 DOI: 10.1039/d4lp00163j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Blending organic semiconducting polymers with elastomeric materials has been shown to be a successful method for improving the flexibility of wearable electronics. One such elastomer that has not been readily explored in combination with an organic semiconducting polymer is polyborosiloxane (PBS). PBS shows remarkable viscoelastomeric properties, due to the borate ester groups that crosslink the siloxane backbones, demonstrating a dynamic covalent crosslinking mechanism. The detailed study presented here showcases the properties of two different PBS elastomers and the effect of blending a well-known organic semiconducting polymer, poly(3-hexylthiophene) (P3HT). Compatibility studies showed that one elastomer blends more favourably than the other due to differences in the crosslinking density leading to the formation of P3HT crystallites within the blend. The viscoelastic properties of the PBS : P3HT blends are studied through detailed rheological experiments and the relaxation processes are discussed.
Collapse
Affiliation(s)
- Peter A Gilhooly-Finn
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK of Great Britain and Northern Ireland
| | - Megan M Westwood
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK of Great Britain and Northern Ireland
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology 41296 Göteborg Sweden
| | - Bob C Schroeder
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK of Great Britain and Northern Ireland
| |
Collapse
|
19
|
Li H, Li Q, Sun T, Zhou Y, Han ST. Recent advances in artificial neuromorphic applications based on perovskite composites. MATERIALS HORIZONS 2024; 11:5499-5532. [PMID: 39140168 DOI: 10.1039/d4mh00574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
High-performance perovskite materials with excellent physical, electronic, and optical properties play a significant role in artificial neuromorphic devices. However, the development of perovskites in microelectronics is inevitably hindered by their intrinsic non-ideal properties, such as high defect density, environmental sensitivity, and toxicity. By leveraging materials engineering, integrating various materials with perovskites to leverage their mutual strengths presents great potential to enhance ion migration, energy level alignment, photoresponsivity, and surface passivation, thereby advancing optoelectronic and neuromorphic device development. This review initially provides an overview of perovskite materials across different dimensions, highlighting their physical properties and detailing their applications and metrics in two- and three-terminal devices. Subsequently, we comprehensively summarize the application of perovskites in combination with other materials, including organics, nanomaterials, oxides, ferroelectrics, and crystalline porous materials (CPMs), to develop advanced devices such as memristors, transistors, photodetectors, sensors, light-emitting diodes (LEDs), and artificial neuromorphic systems. Lastly, we outline the challenges and future research directions in synthesizing perovskite composites for neuromorphic devices. Through the review and analysis, we aim to broaden the utilization of perovskites and their composites in neuromorphic research, offering new insights and approaches for grasping the intricate physical working mechanisms and functionalities of perovskites.
Collapse
Affiliation(s)
- Huaxin Li
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qingxiu Li
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Tao Sun
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| | - Su-Ting Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, P. R. China.
| |
Collapse
|
20
|
Li T, Ding Y, Teng C, Zheng Y, Wang X, Zhou D. Spray-Coated Ultrathin and Porous Films for Physiological Sensing and Force Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60625-60632. [PMID: 39453918 DOI: 10.1021/acsami.4c11179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Epidermal electronics employed on human skin for the long term require good breathability and nonforeign wearing. In this work, we combine phase separation and spray coating to fabricate a porous and ultrathin electrode within minutes as well as micrometer-scale porous pressure sensors. The resulting electrodes show a water vapor transmission rate of 18.4 mg·cm-2·h-1, sheet resistance of 5.2 Ω/sq, and thickness below 5 μm. The introduction of the biogel further reduced the electrode-skin impedance, which is lower than that of the commercial gel electrode, indicating that the electrode can have a high degree of conformal contact with the skin. The epidermal electronics prepared by this strategy exhibit an excellent performance in force sensing. Such results strongly prove the efficiency and practicality of the strategy.
Collapse
Affiliation(s)
- Tang Li
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yichen Ding
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chao Teng
- Institute of Critical Materials for Integrated Circuits, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Yan Zheng
- Department of Polymer Science and Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xiaoliang Wang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Dongshan Zhou
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
21
|
Li F, Wang L, Gao L, Zu D, Zhang D, Xu T, Hu Q, Zhu R, Liu Y, Hu BL. Reducing Dielectric Loss of High-Dielectric-Constant Elastomer via Rigid Short-Chain Crosslinking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411082. [PMID: 39380411 DOI: 10.1002/adma.202411082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/14/2024] [Indexed: 10/10/2024]
Abstract
High-dielectric-constant elastomers have broad applications in wearable electronics, which can be achieved by the elastification of relaxor ferroelectric polymers. However, the introduction of soft long chains, with their high mobility under strong electric fields, leads to high dielectric loss. Given the relatively low modulus of relaxor ferroelectric polymers, elastification can be realized by introducing short-chain crosslinkers. In this work, a molecular engineering design is employed, utilizing a rigid short-chain crosslinker to create crosslinks with relaxor ferroelectric polymer, resulting in intrinsic elastomers characterized by a high dielectric constant but low dielectric loss. The obtained intrinsic ferroelectric elastomer possesses a high dielectric constant (35 at 1 kHz and 25 °C) and a low dielectric loss (0.09). Furthermore, this elastomer exhibits stable ferroelectric response and relaxor characteristics even under strains up to 80%. The study supplies a simple but effective method to reduce the dielectric loss of high-dielectric-constant intrinsic elastomers, thereby expanding their application fields in wearable electronics.
Collapse
Affiliation(s)
- Fangzhou Li
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linping Wang
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Liang Gao
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da Zu
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Dongyang Zhang
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Tianhua Xu
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Qiuyue Hu
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ren Zhu
- Oxford Instruments Asylum Research, Shanghai, 200233, China
| | - Yunya Liu
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Ben-Lin Hu
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Xu J, Xiao C, Zhang Z, Zhang J, Wang B, McNeill CR, Li W. Utilization of Polycyclic Aromatic Solid Additives for Morphology and Thermal Stability Enhancement in Photoactive Layers of Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405573. [PMID: 39104295 DOI: 10.1002/smll.202405573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/15/2024] [Indexed: 08/07/2024]
Abstract
Volatile solid additives have emerged as a promising strategy for enhancing film morphology and promoting the power conversion efficiency (PCE) of organic solar cells (OSCs). Herein, a series of novel polycyclic aromatic additives with analogous chemical structures, including fluorene (FL), dibenzothiophene (DBT), and dibenzofuran (DBF) derived from crude oils, are presented and incorporated into OSCs. All these additives exhibit strong interactions with the electron-deficient terminal groups of L8-BO within the bulk-heterojunction OSCs. Moreover, they demonstrate significant sublimation during thermal annealing, leading to increase free volumes for the rearrangement and recrystallization of L8-BO. This phenomenon leads to an improved film morphology and an elevated glass-transition temperature of the photoactive layers. Consequently, the PCE of the PM6:L8-BO blend has been boosted from 16.60% to 18.60% with 40 wt% DBF additives, with a champion PCE of 19.11% achieved for ternary PM6:L8-BO:BTP-eC9 OSCs. Furthermore, the prolonged shelf and thermal stability have been observed in OSCs with these additives. This study emphasizes the synergic effect of volatile solid additives on the performance and thermal stability of OSCs, highlighting their potential for advancing the field of photovoltaics.
Collapse
Affiliation(s)
- Jianing Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Zhou Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Junjie Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Bo Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Christopher R McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| |
Collapse
|
23
|
Dai Y, Wai S, Li P, Shan N, Cao Z, Li Y, Wang Y, Liu Y, Liu W, Tang K, Liu Y, Hua M, Li S, Li N, Chatterji S, Fry HC, Lee S, Zhang C, Weires M, Sutyak S, Shi J, Zhu C, Xu J, Gu X, Tian B, Wang S. Soft hydrogel semiconductors with augmented biointeractive functions. Science 2024; 386:431-439. [PMID: 39446940 DOI: 10.1126/science.adp9314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024]
Abstract
Hydrogels, known for their mechanical and chemical similarity to biological tissues, are widely used in biotechnologies, whereas semiconductors provide advanced electronic and optoelectronic functionalities such as signal amplification, sensing, and photomodulation. Combining semiconducting properties with hydrogel designs can enhance biointeractive functions and intimacy at biointerfaces, but this is challenging owing to the low hydrophilicity of polymer semiconductors. We developed a solvent affinity-induced assembly method that incorporates water-insoluble polymer semiconductors into double-network hydrogels. These semiconductors exhibited tissue-level moduli as soft as 81 kilopascals, stretchability of 150% strain, and charge-carrier mobility up to 1.4 square centimeters per volt per second. When they are interfaced with biological tissues, their tissue-level modulus enables alleviated immune reactions. The hydrogel's high porosity enhances molecular interactions at semiconductor-biofluid interfaces, resulting in photomodulation with higher response and volumetric biosensing with higher sensitivity.
Collapse
Affiliation(s)
- Yahao Dai
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Shinya Wai
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Pengju Li
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Naisong Shan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Zhiqiang Cao
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Yang Li
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Yunfei Wang
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, University of Southern Mississippi, Hattiesburg, MS 39406, USA
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Youdi Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Wei Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Kan Tang
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Muchuan Hua
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Songsong Li
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Nan Li
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Shivani Chatterji
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sean Lee
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Cheng Zhang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Max Weires
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Sean Sutyak
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jiuyun Shi
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jie Xu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Xiaodan Gu
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Bozhi Tian
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Sihong Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Nanoscience and Technology Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA
- CZ Biohub Chicago, LLC, Chicago, IL 60642, USA
| |
Collapse
|
24
|
Zhao H, Li Z, Wang Y, Hong QA, Xia W, Chiu YC, Gu X. Unveiling Strong Thin Film Confinement Effects on Semirigid Conjugated Polymers. Macromolecules 2024; 57:9121-9134. [PMID: 39399832 PMCID: PMC11468787 DOI: 10.1021/acs.macromol.4c01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024]
Abstract
Nanoconfinement has been recognized to induce significant changes in the physical properties of polymeric films when their thickness is less than 100 nm. Despite extensive research on the effect of nanoconfinement on nonconjugated polymers, studies focusing on the confinement effects on dynamics and associated electronic and mechanical properties for semiconductive and semirigid conjugated polymers remain limited. In this study, we conducted a comprehensive investigation into the nanoconfinement effects on both p- and n-type conjugated polymers having varying chain rigidity under different degrees of confinement. Using the flash differential scanning calorimetry technique, it was found that the increased molecular mobility with decreasing film thickness, as indicated by the depression of glass transition temperature (T g) from its bulk values, was directly proportional to chain rigidity. This relationship between chain rigidity and enhanced segmental mobility was further corroborated through molecular dynamics simulations. Thinner films exhibited a higher degree of crystallinity for all conjugated polymers, and a significant reduction of more than 50% in elastic modulus was observed for films with approximately 20 nm thickness compared to those of 105 nm thickness, particularly for highly rigid conjugated polymers. Interestingly, we found that the charge mobility remained independent of film thickness, with all samples demonstrating good charge mobility regardless of the different film thicknesses for devices measured here. Nanoconfined conjugated polymer thin films exhibited a combination of mechanical compliance and good charge carrier mobility properties, making them promising candidates for the next generation of flexible and portable organic electronics. From an engineering standpoint, confinement could be an effective strategy to tailor the dynamics and mechanical properties without significant loss of electronic property.
Collapse
Affiliation(s)
- Haoyu Zhao
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, 118 College Drive, Hattiesburg, Mississippi 39406, United States of America
| | - Zhaofan Li
- Department
of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States of America
| | - Yunfei Wang
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, 118 College Drive, Hattiesburg, Mississippi 39406, United States of America
| | - Qi-An Hong
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei City 10607, Taiwan
| | - Wenjie Xia
- Department
of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States of America
| | - Yu-Cheng Chiu
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei City 10607, Taiwan
| | - Xiaodan Gu
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, 118 College Drive, Hattiesburg, Mississippi 39406, United States of America
| |
Collapse
|
25
|
Siavoshani AY, Fan Z, Yang M, Liu S, Wang MC, Liu J, Xu W, Wang J, Lin S, Wang SQ. How do stretch rate, temperature, and solvent exchange affect elastic network rupture? SOFT MATTER 2024; 20:7657-7667. [PMID: 39291705 DOI: 10.1039/d4sm00794h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In this study, we investigate three different polymeric networks in terms of their tensile strength as a function of stretching rate, or temperature, or medium viscosity. Both an acrylate-based elastomer and a crosslinked poly(methyl acrylate) are stronger, more stretchable, and tougher at high rates. They are also much stronger at lower temperatures. Such phenomena systematically suggest that the kinetics of bond dissociation in backbones of those load-bearing strands dictate the rate and temperature dependencies. We apply Eyring's activation idea for chain scission to rationalize the influence of rate and temperature on rupture for both elastomers and hydrogels where hydrogels become much more stretchable and stronger when water is replaced by glycerol.
Collapse
Affiliation(s)
- Asal Y Siavoshani
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA.
| | - Zehao Fan
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA.
| | - Muxuan Yang
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA.
| | - Shan Liu
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA.
| | - Ming-Chi Wang
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA.
| | - Jiabin Liu
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA.
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Weinan Xu
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA.
| | - Junpeng Wang
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA.
| | - Shaoting Lin
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA.
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Shi-Qing Wang
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA.
| |
Collapse
|
26
|
Lee SW, Kim S, Kim KN, Sung MJ, Lee TW. Increasing the stability of electrolyte-gated organic synaptic transistors for neuromorphic implants. Biosens Bioelectron 2024; 261:116444. [PMID: 38850740 DOI: 10.1016/j.bios.2024.116444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Electrolyte-gated organic synaptic transistors (EGOSTs) can have versatile synaptic plasticity in a single device, so they are promising as components of neuromorphic implants that are intended for use in neuroprosthetic electronic nerves that are energy-efficient and have simple system structure. With the advancement in transistor properties of EGOSTs, the commercialization of neuromorphic implants for practical long-term use requires consistent operation, so they must be stable in vivo. This requirement demands strategies that maintain electronic and ionic transport in the devices while implanted in the human body, and that are mechanically, environmentally, and operationally stable. Here, we cover the structure, working mechanisms, and electrical responses of EGOSTs. We then focus on strategies to ensure their stability to maintain these characteristics and prevent adverse effects on biological tissues. We also highlight state-of-the-art neuromorphic implants that incorporate these strategies. We conclude by presenting a perspective on improvements that are needed in EGOSTs to develop practical, neuromorphic implants that are long-term useable.
Collapse
Affiliation(s)
- Seung-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Somin Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kwan-Nyeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min-Jun Sung
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Interdisciplinary Program in Bioengineering, Institute of Engineering Research, Research Institute of Advanced Materials, Soft Foundry, Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
27
|
Zhuo Z, Ni M, Yu N, Zheng Y, Lin Y, Yang J, Sun L, Wang L, Bai L, Chen W, Xu M, Huo F, Lin J, Feng Q, Huang W. Intrinsically stretchable fully π-conjugated polymer film via fluid conjugated molecular external-plasticizing for flexible light-emitting diodes. Nat Commun 2024; 15:7990. [PMID: 39266527 PMCID: PMC11393078 DOI: 10.1038/s41467-024-50358-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/08/2024] [Indexed: 09/14/2024] Open
Abstract
Fully π-conjugated polymers with rigid aromatic units are promising for flexible optoelectronic devices, but their inherent brittleness poses a challenge for achieving high-performance, intrinsically stretchable fully π-conjugated polymer. Here, we are establishing an external-plasticizing strategy using semiconductor fluid plasticizers (Z1 and Z2) to enhance the optoelectronic, morphological, and stretchable properties of fully π-conjugated polymer films for flexible light-emitting diodes. The synergistic effect of hierarchical structure and optoelectronic properties of Z1 in poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) (F8BT) films enable excellent stretchable deformability (~25%) and good conductivity. PLEDs based on F8BT/Z1 films show stable electroluminescence and efficiency under 15% stretch and 100 cycles at 10% strain, revealing outstanding stress tolerance. This strategy is also improving the stretchable properties of polymers like poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) and poly(2-methoxy-5(2'-ethyl)hexoxy-phenylenevinylene) (Super Yellow), demonstrating its general applicability. Therefore, this strategy can provide effective guidance for designing high-performance stretchable fully π-conjugated polymers films for flexible electronic devices.
Collapse
Affiliation(s)
- Zhiqiang Zhuo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Mingjian Ni
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Ningning Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Yingying Zheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Yingru Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Jing Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Lili Sun
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Shenzhen, China
| | - Lizhi Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Lubing Bai
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Wenyu Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China.
| | - Quanyou Feng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China.
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China.
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Shenzhen, China.
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China.
| |
Collapse
|
28
|
Fu X, Cheng W, Wan G, Yang Z, Tee BCK. Toward an AI Era: Advances in Electronic Skins. Chem Rev 2024; 124:9899-9948. [PMID: 39198214 PMCID: PMC11397144 DOI: 10.1021/acs.chemrev.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Electronic skins (e-skins) have seen intense research and rapid development in the past two decades. To mimic the capabilities of human skin, a multitude of flexible/stretchable sensors that detect physiological and environmental signals have been designed and integrated into functional systems. Recently, researchers have increasingly deployed machine learning and other artificial intelligence (AI) technologies to mimic the human neural system for the processing and analysis of sensory data collected by e-skins. Integrating AI has the potential to enable advanced applications in robotics, healthcare, and human-machine interfaces but also presents challenges such as data diversity and AI model robustness. In this review, we first summarize the functions and features of e-skins, followed by feature extraction of sensory data and different AI models. Next, we discuss the utilization of AI in the design of e-skin sensors and address the key topic of AI implementation in data processing and analysis of e-skins to accomplish a range of different tasks. Subsequently, we explore hardware-layer in-skin intelligence before concluding with an analysis of the challenges and opportunities in the various aspects of AI-enabled e-skins.
Collapse
Affiliation(s)
- Xuemei Fu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Wen Cheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Guanxiang Wan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Zijie Yang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Benjamin C K Tee
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore 138634, Singapore
| |
Collapse
|
29
|
Oh JY, Lee Y, Lee TW. Skin-Mountable Functional Electronic Materials for Bio-Integrated Devices. Adv Healthc Mater 2024; 13:e2303797. [PMID: 38368254 DOI: 10.1002/adhm.202303797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Skin-mountable electronic materials are being intensively evaluated for use in bio-integrated devices that can mutually interact with the human body. Over the past decade, functional electronic materials inspired by the skin are developed with new functionalities to address the limitations of traditional electronic materials for bio-integrated devices. Herein, the recent progress in skin-mountable functional electronic materials for skin-like electronics is introduced with a focus on five perspectives that entail essential functionalities: stretchability, self-healing ability, biocompatibility, breathability, and biodegradability. All functionalities are advanced with each strategy through rational material designs. The skin-mountable functional materials enable the fabrication of bio-integrated electronic devices, which can lead to new paradigms of electronics combining with the human body.
Collapse
Affiliation(s)
- Jin Young Oh
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Yeongjun Lee
- Department of Brain and Cognitive Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Molecular Foundry, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
30
|
Wan C, Pei M, Shi K, Cui H, Long H, Qiao L, Xing Q, Wan Q. Toward a Brain-Neuromorphics Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311288. [PMID: 38339866 DOI: 10.1002/adma.202311288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Brain-computer interfaces (BCIs) that enable human-machine interaction have immense potential in restoring or augmenting human capabilities. Traditional BCIs are realized based on complementary metal-oxide-semiconductor (CMOS) technologies with complex, bulky, and low biocompatible circuits, and suffer with the low energy efficiency of the von Neumann architecture. The brain-neuromorphics interface (BNI) would offer a promising solution to advance the BCI technologies and shape the interactions with machineries. Neuromorphic devices and systems are able to provide substantial computation power with extremely high energy-efficiency by implementing in-materia computing such as in situ vector-matrix multiplication (VMM) and physical reservoir computing. Recent progresses on integrating neuromorphic components with sensing and/or actuating modules, give birth to the neuromorphic afferent nerve, efferent nerve, sensorimotor loop, and so on, which has advanced the technologies for future neurorobotics by achieving sophisticated sensorimotor capabilities as the biological system. With the development on the compact artificial spiking neuron and bioelectronic interfaces, the seamless communication between a BNI and a bioentity is reasonably expectable. In this review, the upcoming BNIs are profiled by introducing the brief history of neuromorphics, reviewing the recent progresses on related areas, and discussing the future advances and challenges that lie ahead.
Collapse
Affiliation(s)
- Changjin Wan
- Yongjiang Laboratory (Y-LAB), Ningbo, Zhejiang, 315202, China
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Mengjiao Pei
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Kailu Shi
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Hangyuan Cui
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Haotian Long
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Lesheng Qiao
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Qianye Xing
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Qing Wan
- Yongjiang Laboratory (Y-LAB), Ningbo, Zhejiang, 315202, China
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
31
|
Sharma D, Rath SP, Kundu B, Korkmaz A, S H, Thompson D, Bhat N, Goswami S, Williams RS, Goswami S. Linear symmetric self-selecting 14-bit kinetic molecular memristors. Nature 2024; 633:560-566. [PMID: 39261726 DOI: 10.1038/s41586-024-07902-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
Artificial Intelligence (AI) is the domain of large resource-intensive data centres that limit access to a small community of developers1,2. Neuromorphic hardware promises greatly improved space and energy efficiency for AI but is presently only capable of low-accuracy operations, such as inferencing in neural networks3-5. Core computing tasks of signal processing, neural network training and natural language processing demand far higher computing resolution, beyond that of individual neuromorphic circuit elements6-8. Here we introduce an analog molecular memristor based on a Ru-complex of an azo-aromatic ligand with 14-bit resolution. Precise kinetic control over a transition between two thermodynamically stable molecular electronic states facilitates 16,520 distinct analog conductance levels, which can be linearly and symmetrically updated or written individually in one time step, substantially simplifying the weight update procedure over existing neuromorphic platforms3. The circuit elements are unidirectional, facilitating a selector-less 64 × 64 crossbar-based dot-product engine that enables vector-matrix multiplication, including Fourier transform, in a single time step. We achieved more than 73 dB signal-to-noise-ratio, four orders of magnitude improvement over the state-of-the-art methods9-11, while consuming 460× less energy than digital computers12,13. Accelerators leveraging these molecular crossbars could transform neuromorphic computing, extending it beyond niche applications and augmenting the core of digital electronics from the cloud to the edge12,13.
Collapse
Affiliation(s)
- Deepak Sharma
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Santi Prasad Rath
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Bidyabhusan Kundu
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Anil Korkmaz
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Harivignesh S
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Damien Thompson
- Department of Physics, University of Limerick, Limerick, Ireland
| | - Navakanta Bhat
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Sreebrata Goswami
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India
| | - R Stanley Williams
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Sreetosh Goswami
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
32
|
Choi W, Choi J, Han Y, Yoo H, Yoon HJ. Polymer Dielectric-Based Emerging Devices: Advancements in Memory, Field-Effect Transistor, and Nanogenerator Technologies. MICROMACHINES 2024; 15:1115. [PMID: 39337775 PMCID: PMC11434493 DOI: 10.3390/mi15091115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Polymer dielectric materials have recently attracted attention for their versatile applications in emerging electronic devices such as memory, field-effect transistors (FETs), and triboelectric nanogenerators (TENGs). This review highlights the advances in polymer dielectric materials and their integration into these devices, emphasizing their unique electrical, mechanical, and thermal properties that enable high performance and flexibility. By exploring their roles in self-sustaining technologies (e.g., artificial intelligence (AI) and Internet of Everything (IoE)), this review emphasizes the importance of polymer dielectric materials in enabling low-power, flexible, and sustainable electronic devices. The discussion covers design strategies to improve the dielectric constant, charge trapping, and overall device stability. Specific challenges, such as optimizing electrical properties, ensuring process scalability, and enhancing environmental stability, are also addressed. In addition, the review explores the synergistic integration of memory devices, FETs, and TENGs, focusing on their potential in flexible and wearable electronics, self-powered systems, and sustainable technologies. This review provides a comprehensive overview of the current state and prospects of polymer dielectric-based devices in advanced electronic applications by examining recent research breakthroughs and identifying future opportunities.
Collapse
Affiliation(s)
- Wangmyung Choi
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Junhwan Choi
- Department of Chemical Engineering, Dankook University, Yongin 16890, Republic of Korea
| | - Yongbin Han
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Hocheon Yoo
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Hong-Joon Yoon
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
33
|
Venkatesh R, Liu AL, Zheng Y, Zhao H, Grover MA, Meredith JC, Reichmanis E. Harnessing Compositional Gradients to Elucidate Phase Behaviors toward High Performance Polymer Semiconductor Blends. ACS APPLIED ELECTRONIC MATERIALS 2024; 6:5661-5671. [PMID: 39221137 PMCID: PMC11360374 DOI: 10.1021/acsaelm.4c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Polymer semiconductor/insulator blends offer a promising avenue to achieve desired mechanical properties, environmental stability, and high device performance in organic field-effect transistors. A comprehensive understanding of process-structure-property relationships necessitates a thorough exploration of the composition space to identify transitions in performance, morphology, and phase behavior. Hence, this study employs a high-throughput gradient thin film library, enabling rapid and continuous screening of composition-morphology-device performance relationships in conjugated polymer blends. Applied to a donor-acceptor copolymer blend, this technique efficiently surveys a broad composition range, capturing trends in device performance across the gradient. Furthermore, characterizing the gradient library using microscopy and depth profiling techniques pinpointed composition-dependent transitions in morphology. To validate the results and gain deeper insights, uniform-composition experiments were conducted on select compositions within and outside the gradient range. Depth profiling experiments on the constant composition films unveil the presence of the semiconducting polymer at the air interface, with apparent enrichment of the semiconductor at the substrate interface at low ratios of the semiconducting component, transitioning to a more even distribution within the bulk of the film at higher ratios. The generalizability of the gradient approach was further confirmed by its application to a homopolymer under different solution processing conditions.
Collapse
Affiliation(s)
- Rahul Venkatesh
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Aaron L. Liu
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Yulong Zheng
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic
Drive, Atlanta, Georgia 30332, United States
| | - Haoqun Zhao
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Martha A. Grover
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - J. Carson Meredith
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Elsa Reichmanis
- Department
of Chemical & Biomolecular Engineering, Lehigh University, 124
E. Morton Street, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
34
|
Wu B, Wu T, Huang Z, Ji S. Advancing Flexible Sensors through On-Demand Regulation of Supramolecular Nanostructures. ACS NANO 2024; 18:22664-22674. [PMID: 39152049 DOI: 10.1021/acsnano.4c08310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The evolution of flexible sensors heavily relies on advances in soft-material design and sensing mechanisms. Supramolecular chemistry offers a powerful toolbox for manipulating nanoscale and molecular structures within soft materials, thus fostering recent advancements in flexible sensors and electronics. Supramolecular interactions have been utilized to nanoengineer functional sensing materials or construct chemical sensors with lower cost and broader targets. In this perspective, we will highlight the use of supramolecular interactions to regulate and optimize nanostructures within functional soft materials and illustrate their importance in expanding the nanocavities of bioreceptors for chemical sensing. Overall, a bridge between tissue-mimicking flexible sensors and cell-mimetic supramolecular chemistry has been built, which will further advance human healthcare innovation.
Collapse
Affiliation(s)
- Bohang Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), College of Nano Science and Technology (CNST), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P.R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Tong Wu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Zehuan Huang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Shaobo Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), College of Nano Science and Technology (CNST), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
35
|
Giannotti A, Santanché R, Zinno C, Carpaneto J, Micera S, Riva ER. Characterization of a conductive hydrogel@Carbon fibers electrode as a novel intraneural interface. Bioelectron Med 2024; 10:20. [PMID: 39187894 PMCID: PMC11348655 DOI: 10.1186/s42234-024-00154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
Peripheral neural interfaces facilitate bidirectional communication between the nervous system and external devices, enabling precise control for prosthetic limbs, sensory feedback systems, and therapeutic interventions in the field of Bioelectronic Medicine. Intraneural interfaces hold great promise since they ensure high selectivity in communicating only with the desired nerve fascicles. Despite significant advancements, challenges such as chronic immune response, signal degradation over time, and lack of long-term biocompatibility remain critical considerations in the development of such devices. Here we report on the development and benchtop characterization of a novel design of an intraneural interface based on carbon fiber bundles. Carbon fibers possess low impedance, enabling enhanced signal detection and stimulation efficacy compared to traditional metal electrodes. We provided a 3D-stabilizing structure for the carbon fiber bundles made of PEDOT:PSS hydrogel, to enhance the biocompatibility between the carbon fibers and the nervous tissue. We further coated the overall bundles with a thin layer of elastomeric material to provide electrical insulation. Taken together, our results demonstrated that our electrode possesses adequate structural and electrochemical properties to ensure proper stimulation and recording of peripheral nerve fibers and a biocompatible interface with the nervous tissue.
Collapse
Affiliation(s)
- Alice Giannotti
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Department of Excellence in Robotics&AI, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
| | - Ranieri Santanché
- Dipartimento Di Ingegneria Civile E Industriale (DICI), Università Di Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Ciro Zinno
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Department of Excellence in Robotics&AI, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
| | - Jacopo Carpaneto
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Department of Excellence in Robotics&AI, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
| | - Silvestro Micera
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Bertarelli Foundation Chair in Translational Neuroengineering, ÉcolePolytechniqueFédérale de Lausanne (EPFL), 1007, Lausanne, Switzerland
| | - Eugenio Redolfi Riva
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy.
- Department of Excellence in Robotics&AI, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy.
| |
Collapse
|
36
|
Jeon J, Park JW. Stretchable Electrodes for Interconnects in Soft Electronics. NANO LETTERS 2024; 24:9553-9560. [PMID: 39041723 DOI: 10.1021/acs.nanolett.4c02107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Soft electronics have significantly enhanced user convenience and data accuracy in wearable devices, implantable devices, and human-machine interfaces. However, a persistent challenge in their development has been the disconnection between the rigid and soft components of devices due to the substantial difference in modulus and stretchability. To address this issue, establishing a durable and flexible connection that smoothly links components of varying stiffness to signal-capturing sections with a lower stiffness is essential. In this study, we developed a novel stretchable interconnect that strongly adheres to various materials, facilitating electrical connections effortlessly by applying minimal finger pressure. Capable of stretching up to 1000% while maintaining electrical integrity, this interconnect proves its applicability across multiple domains, including electrocardiogram (ECG), electromyography (EMG), and stretchable light-emitting diode (LED) circuits. Its versatility is further demonstrated through its compatibility with various manufacturing techniques such as 3D printing, painting, and spin coating, highlighting its adaptability in soft electronics.
Collapse
Affiliation(s)
- Jiwan Jeon
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jin-Woo Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
37
|
Cunin CE, Meacham RF, Lee ER, Roh H, Samal S, Li W, Matthews JR, Zhao Y, He M, Gumyusenge A. Leveraging Insulator's Tacticity in Semiconducting Polymer Blends. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39717-39727. [PMID: 39036945 DOI: 10.1021/acsami.4c06609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Blending conjugated polymers with insulating matrices is often utilized for engineering extrinsic properties in organic electronics. Semiconductor/insulator blends are typically processed to form a uniformly distributed network of conductive domains within the insulating matrix, marrying electronic and physical properties from individual components. Understanding of polymer-polymer interactions in such systems is thus crucial for property co-optimization. One of the commonly overlooked parameters is the structural configuration of the insulator on the resulting properties, especially the electronic properties. This study investigated how the tacticity of the matrix polymer, among other relevant parameters in play, impacts solid state crystallization in semiconductor/matrix blends and hence the resulting charge transport properties. We found an intricate dependence of the film morphology, aggregation behavior, electronic charge transport, and mixed ionic-electronic coupling properties on the insulator's tacticity. Our experimentally iterative approach shows that for a given application, when selecting semiconductor/insulator combinations, the tacticity of the matrix can be leveraged to optimize performance and vary solid-state structure.
Collapse
Affiliation(s)
- Camille E Cunin
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rebecca F Meacham
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Eric R Lee
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Heejung Roh
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sanket Samal
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Wenhao Li
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai 200438, China
| | - James R Matthews
- Corning Incorporated, One River Front Plaza, Corning, New York 14831, United States
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai 200438, China
| | - Mingqian He
- Corning Incorporated, One River Front Plaza, Corning, New York 14831, United States
| | - Aristide Gumyusenge
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Du B, Xiong S, Sun L, Tagawa Y, Inoue D, Hashizume D, Wang W, Guo R, Yokota T, Wang S, Ishida Y, Lee S, Fukuda K, Someya T. A water-resistant, ultrathin, conformable organic photodetector for vital sign monitoring. SCIENCE ADVANCES 2024; 10:eadp2679. [PMID: 39047100 PMCID: PMC11268404 DOI: 10.1126/sciadv.adp2679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
Ultrathin flexible photodetectors can be conformably integrated with the human body, offering promising advancements for emerging skin-interfaced sensors. However, the susceptibility to degradation in ambient and particularly in aqueous environments hinders their practical application. Here, we report a 3.2-micrometer-thick water-resistant organic photodetector capable of reliably monitoring vital sign while submerged underwater. Embedding the organic photoactive layer in an adhesive elastomer matrix induces multidimensional hybrid phase separation, enabling high adhesiveness of the photoactive layer on both the top and bottom surfaces with maintained charge transport. This improves the water-immersion stability of the photoactive layer and ensures the robust sealing of interfaces within the device, notably suppressing fluid ingression in aqueous environments. Consequently, our fabricated ultrathin organic photodetector demonstrates stability in deionized water or cell nutrient media over extended periods, high detectivity, and resilience to cyclic mechanical deformation. We also showcase its potential for vital sign monitoring while submerged underwater.
Collapse
Affiliation(s)
- Baocai Du
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Sixing Xiong
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Lulu Sun
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yusaku Tagawa
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daishi Inoue
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Wenqing Wang
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ruiqi Guo
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shuxu Wang
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Sunghoon Lee
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kenjiro Fukuda
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
39
|
Zhang F, Sun J, Liu F, Li J, Hu BL, Tang Q, Li RW. Intrinsically Elastic Semiconductors through Aldehyde-Amine Polycondensation and Its Application on Stretchable Transistor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38324-38333. [PMID: 38982664 DOI: 10.1021/acsami.4c08685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
With the increasing demand for elastic electronics, as a crucial component, elastic semiconductors have been widely studied. However, there are some issues for the current preparation of elastic semiconductors, such as harsh reaction conditions, low atomic economic utilization, and complicated product separation and purification. Aldehyde-amine polycondensation is an important chemical reaction with the advantages of mild reaction conditions, high atomic-economic efficiency, and easy separation and purification. Herein, intrinsically elastic semiconductors are developed via aldehyde-amine polycondensation, including a semiconducting segment and an elastic segment. The resulting polymer containing 42.62 wt % soft segments exhibits excellent stretchability and mechanical reversibility, especially with a lower modulus. Interestingly, the carrier mobility displays up to 0.04 cm2·V-1·s-1, in the range of the fully conjugated reference polymer (0.1 cm2·V-1·s-1). In brief, this strategy provides important guiding principles for the development of intrinsically elastic polymer semiconductors.
Collapse
Affiliation(s)
- Fengyuan Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Jing Sun
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology Northeast Normal University, Ministry of Education, Changchun 130024, P. R. China
| | - Fei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Junming Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Ben-Lin Hu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Qingxin Tang
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology Northeast Normal University, Ministry of Education, Changchun 130024, P. R. China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, PR China
| |
Collapse
|
40
|
Li X, Sabir A, Zhang X, Jiang H, Wang W, Zheng X, Yang H. Highly Stretchable and Oriented Wafer-Scale Semiconductor Films for Organic Phototransistor Arrays. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36678-36687. [PMID: 38966894 DOI: 10.1021/acsami.4c04349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Stretchable organic phototransistor arrays have potential applications in artificial visual systems due to their capacity to perceive ultraweak light across a broad spectrum. Ensuring uniform mechanical and electrical performance of individual devices within these arrays requires semiconductor films with large-area scale, well-defined orientation, and stretchability. However, the progress of stretchable phototransistors is primarily impeded by their limited electrical properties and photodetection capabilities. Herein, wafer-scale and well-oriented semiconductor films were successfully prepared using a solution shearing process. The electrical properties and photodetection capabilities were optimized by improving the polymer chain alignment. Furthermore, a stretchable 10 × 10 transistor array with high device uniformity was fabricated, demonstrating excellent mechanical robustness and photosensitive imaging ability. These arrays based on highly stretchable and well-oriented wafer-scale semiconductor films have great application potential in the field of electronic eye and artificial visual systems.
Collapse
Affiliation(s)
- Xiangxiang Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Ayesha Sabir
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Xiaoying Zhang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Hongchen Jiang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Weiyu Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Xinran Zheng
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Hui Yang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
41
|
Zhang M, Sun J, Zhao G, Tong Y, Wang X, Yu H, Xue P, Zhao X, Tang Q, Liu Y. Dielectric Design of High Dielectric Constant Poly(Urea-Urethane) Elastomer for Low-Voltage High-Mobility Intrinsically Stretchable All-Solution-Processed Organic Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311527. [PMID: 38334257 DOI: 10.1002/smll.202311527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Stretchable organic transistors for skin-like biomedical applications require low-voltage operation to accommodate limited power supply and safe concerns. However, most of the currently reported stretchable organic transistors operate at relatively high voltages. Decreasing their operational voltage while keeping the high mobility still remains a key challenge. Here, the study presents a new dielectric design to achieve high-dielectric constant poly(urea-urethane) (PUU) elastomer, by incorporating a flexible small-molecular diamine crosslinking agent 4-aminophenyl disulfide (APDS) into the main chain of (poly (propylene glycol), tolylene 2,4-diiso-cyanate terminated) (PPG-TDI). Compared with commercial elastomers, the PUU elastomer as dielectric of the stretchable organic transistors shows the outstanding advantages including lower surface roughness (0.33 nm), higher adhesion (45.18 nN), higher dielectric constant (13.5), as well as higher stretchability (896%). The PUU dielectric enables the intrinsically stretchable, all-solution-processed organic transistor to operate at a low operational voltage down to -10 V, while preserving a substantial mobility of 1.39 cm2 V-1 s-1. Impressively, the transistor also demonstrates excellent electrical stability under repeated switching of 10 000 cycles, and remarkable mechanical robustness when stretched up to 100%. The work opens up a new molecular engineering strategy to successfully realize low-voltage high-mobility stretchable all-solution-processed organic transistors.
Collapse
Affiliation(s)
- Mingxin Zhang
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Jing Sun
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guodong Zhao
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yanhong Tong
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xue Wang
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hongyan Yu
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Peng Xue
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiaoli Zhao
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Qingxin Tang
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yichun Liu
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
42
|
Koo JH, Lee YJ, Kim HJ, Matusik W, Kim DH, Jeong H. Electronic Skin: Opportunities and Challenges in Convergence with Machine Learning. Annu Rev Biomed Eng 2024; 26:331-355. [PMID: 38959390 DOI: 10.1146/annurev-bioeng-103122-032652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Recent advancements in soft electronic skin (e-skin) have led to the development of human-like devices that reproduce the skin's functions and physical attributes. These devices are being explored for applications in robotic prostheses as well as for collecting biopotentials for disease diagnosis and treatment, as exemplified by biomedical e-skins. More recently, machine learning (ML) has been utilized to enhance device control accuracy and data processing efficiency. The convergence of e-skin technologies with ML is promoting their translation into clinical practice, especially in healthcare. This review highlights the latest developments in ML-reinforced e-skin devices for robotic prostheses and biomedical instrumentations. We first describe technological breakthroughs in state-of-the-art e-skin devices, emphasizing technologies that achieve skin-like properties. We then introduce ML methods adopted for control optimization and pattern recognition, followed by practical applications that converge the two technologies. Lastly, we briefly discuss the challenges this interdisciplinary research encounters in its clinical and industrial transition.
Collapse
Affiliation(s)
- Ja Hoon Koo
- Department of Semiconductor Systems Engineering and Institute of Semiconductor and System IC, Sejong University, Seoul, Republic of Korea
| | - Young Joong Lee
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hye Jin Kim
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Wojciech Matusik
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea;
| | - Hyoyoung Jeong
- Department of Electrical and Computer Engineering, University of California, Davis, California, USA;
| |
Collapse
|
43
|
Chen W, Yu N, Gong H, Li M, Xu W, Zhuo Z, Sun Z, Ni M, Huang W, Yang J, Lin Y, Wang L, Li H, Liang X, Sun N, Sun L, Bai L, Han Y, Tao Y, Xu M, Yin C, An X, Lin J, Huang W. Elastic-Plastic Fully π-Conjugated Polymer with Excellent Energy Dissipation Capacity for Ultra-Deep-Blue Flexible Polymer Light-Emitting Diodes with CIE y = 0.04. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402708. [PMID: 38837440 DOI: 10.1002/adma.202402708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/23/2024] [Indexed: 06/07/2024]
Abstract
Emerging intrinsically flexible fully π-conjugated polymers (FπCPs) are a promising functional material for flexible optoelectronics, attributed to their potential interchain interpenetration and entanglement. However, the challenge remains in obtaining elastic-plastic FπCPs with intrinsic robust optoelectronic property and excellent long-term and cycling deformation stability simultaneously for applications in deep-blue flexible polymer light-emitting diodes (PLEDs). This study, demonstrates a series of elastic-plastic FπCPs (P1-P4) with an excellent energy dissipation capacity via side-chain internal plasticization for the ultra-deep-blue flexible PLEDs. First, the freestanding P1 film exhibited a maximum fracture strain of 34.6%. More interestingly, the elastic behavior is observed with a low strain (≤10%), and the stretched film with a high deformation (>10%) attributed to plastic processing revealed the robust capacity to realize energy absorption and release. The elastic-plastic P1 film exhibits outstanding ultra-deep-blue emission, with an efficiency of 56.38%. Subsequently, efficient PLEDs are fabricated with an ultra-deep-blue emission of CIE (0.16, 0.04) and a maximum external quantum efficiency of 1.73%. Finally, stable and efficient ultra-deep-blue electroluminescence are obtained from PLEDs based on stretchable films with different strains and cycling deformations, suggesting excellent elastic-plastic behavior and deformation stability for flexible electronics.
Collapse
Affiliation(s)
- Wenyu Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ningning Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Huaqiang Gong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Mengyuan Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Weifeng Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhiqiang Zhuo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhiyang Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Mingjian Ni
- The Institute of Flexible Electronics, (IFE Future Technologies), Xiamen University(XMU), 422 Siming South Road, Xiamen, Fujian, 361005, China
| | - Wenxin Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jing Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yingru Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Lizhi Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Hao Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xinyu Liang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ning Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Lili Sun
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 66 Gongchang Road, Shenzhen, 518107, China
| | - Lubing Bai
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yamin Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Youtian Tao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chengrong Yin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xiang An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 66 Gongchang Road, Shenzhen, 518107, China
| |
Collapse
|
44
|
Li J, Zhang F, Lyu H, Yin P, Shi L, Li Z, Zhang L, Di CA, Tang P. Evolution of Musculoskeletal Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303311. [PMID: 38561020 DOI: 10.1002/adma.202303311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 02/10/2024] [Indexed: 04/04/2024]
Abstract
The musculoskeletal system, constituting the largest human physiological system, plays a critical role in providing structural support to the body, facilitating intricate movements, and safeguarding internal organs. By virtue of advancements in revolutionized materials and devices, particularly in the realms of motion capture, health monitoring, and postoperative rehabilitation, "musculoskeletal electronics" has actually emerged as an infancy area, but has not yet been explicitly proposed. In this review, the concept of musculoskeletal electronics is elucidated, and the evolution history, representative progress, and key strategies of the involved materials and state-of-the-art devices are summarized. Therefore, the fundamentals of musculoskeletal electronics and key functionality categories are introduced. Subsequently, recent advances in musculoskeletal electronics are presented from the perspectives of "in vitro" to "in vivo" signal detection, interactive modulation, and therapeutic interventions for healing and recovery. Additionally, nine strategy avenues for the development of advanced musculoskeletal electronic materials and devices are proposed. Finally, concise summaries and perspectives are proposed to highlight the directions that deserve focused attention in this booming field.
Collapse
Affiliation(s)
- Jia Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Fengjiao Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Houchen Lyu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Lei Shi
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Zhiyi Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| |
Collapse
|
45
|
Zhang B, Xiang L, Yan C, Jiang Z, Zhao H, Li C, Zhang F. Morphology-Controlled Ion Transport in Mixed-Orientation Polymers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32456-32465. [PMID: 38862274 DOI: 10.1021/acsami.4c04485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Advancing iontronics with precisely controlled ion transport is fundamentally important to bridge external organic electronics with the biosystem. This long-standing goal, however, is thus far limited by the trade-off between the active ion electromigration and idle diffusion leakage in the (semi)crystalline film. Here, we presented a mixed-orientation strategy by blending a conjugated polymer, allowing for simultaneously high ion electromigration efficiency and low leakage. Our studies revealed that edge-on aggregation with a significant percolative pathway exhibits much higher ion permeability than that of the face-on counterpart but encounters pronounced leakage diffusion. Through carefully engineering the mixed orientations, the polymer composite demonstrated an ideal switchable ion-transport behavior, achieving a remarkably high electromigration efficiency exceeding one quadrillion ions per milliliter per minute and negligible idle leakage. This proof of concept, validated by drug release in a skin-conformable organic electronic ion pump (OEIP), offers a rational approach for the development of multifunctional iontronic devices.
Collapse
Affiliation(s)
- Boya Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Lanyi Xiang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Chaoyi Yan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Ziling Jiang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Haozhen Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Chenyang Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Fengjiao Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| |
Collapse
|
46
|
Ji D, Zhu Y, Li M, Fan X, Zhang T, Li Y. Skin Comfort Sensation with Mechanical Stimulus from Electronic Skin. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2920. [PMID: 38930289 PMCID: PMC11204911 DOI: 10.3390/ma17122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
The field of electronic skin has received considerable attention due to its extensive potential applications in areas including tactile sensing and health monitoring. With the development of electronic skin devices, electronic skin can be attached to the surface of human skin for long-term health monitoring, which makes comfort an essential factor that cannot be ignored in the design of electronic skin. Therefore, this paper proposes an assessment method for evaluating the comfort of electronic skin based on neurodynamic analysis. The holistic analysis framework encompasses the mechanical model of the skin, the modified Hodgkin-Huxley model for the transduction of stimuli, and the gate control theory for the modulation and perception of pain sensation. The complete process, from mechanical stimulus to the generation of pain perception, is demonstrated. Furthermore, the influence of different factors on pain perception is investigated. Sensation and comfort diagrams are provided to assess the mechanical comfort of electronic skin. The comfort assessment method proposed in this paper provides a theoretical basis when assessing the comfort of electronic skin.
Collapse
Affiliation(s)
- Dongcan Ji
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191, China
| | - Yunfan Zhu
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191, China
| | - Min Li
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191, China
- International Innovation Institute, Beihang University (BUAA), Yuhang District, Hangzhou 311115, China
| | - Xuanqing Fan
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191, China
- International Innovation Institute, Beihang University (BUAA), Yuhang District, Hangzhou 311115, China
| | - Taihua Zhang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Yuhang Li
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191, China
- Aircraft and Propulsion Laboratory, Ningbo Institute of Technology, Beihang University (BUAA), Ningbo 315100, China
| |
Collapse
|
47
|
Nam TU, Vo NTP, Jeong MW, Jung KH, Lee SH, Lee TI, Oh JY. Intrinsically Stretchable Floating Gate Memory Transistors for Data Storage of Electronic Skin Devices. ACS NANO 2024; 18:14558-14568. [PMID: 38761154 DOI: 10.1021/acsnano.4c02303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
To propel electronic skin (e-skin) to the next level by integrating artificial intelligence features with advanced sensory capabilities, it is imperative to develop stretchable memory device technology. A stretchable memory device for e-skin must offer, in particular, long-term data storage while ensuring the security of personal information under any type of deformation. However, despite the significance of these needs, technology related to stretchable memory devices remains in its infancy. Here, we report an intrinsically stretchable floating gate (FG) polymer memory transistor. The device features a dual-stimuli (optical and electrical) writing system to prevent easy erasure of recorded data. An FG comprising an intermixture of Ag nanoparticles and elastomer and with proper energy-band alignment between the semiconductor and dielectric facilitated sustainable memory performance, while achieving a high memory on/off ratio (>105) and a long retention time (106 s) with the ability to withstand 50% uniaxial or 30% biaxial strain. In addition, our memory transistor exhibited high mechanical durability over multiple stretching cycles (1000 times), along with excellent environmental stability with respect to factors such as temperature, moisture, air, and delamination. Finally, we fabricated a 7 × 7 active-matrix memory transistor array for personalized storage of e-skin data and successfully demonstrated its functionality.
Collapse
Affiliation(s)
- Tae Uk Nam
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, Korea
| | - Ngoc Thanh Phuong Vo
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, Korea
| | - Min Woo Jeong
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, Korea
| | - Kyu Ho Jung
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, Korea
| | - Seung Hwan Lee
- Department of Electronics Engineering, Kyung Hee University, Yongin, Gyeonggi 17104, Korea
| | - Tae Il Lee
- Department of Materials Science and Engineering, Gachon University, Seong-nam, Gyeonggi 13120, Korea
| | - Jin Young Oh
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, Korea
| |
Collapse
|
48
|
Han SI, Sunwoo SH, Park CS, Lee SP, Hyeon T, Kim DH. Next-Generation Cardiac Interfacing Technologies Using Nanomaterial-Based Soft Bioelectronics. ACS NANO 2024; 18:12025-12048. [PMID: 38706306 DOI: 10.1021/acsnano.4c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Cardiac interfacing devices are essential components for the management of cardiovascular diseases, particularly in terms of electrophysiological monitoring and implementation of therapies. However, conventional cardiac devices are typically composed of rigid and bulky materials and thus pose significant challenges for effective long-term interfacing with the curvilinear surface of a dynamically beating heart. In this regard, the recent development of intrinsically soft bioelectronic devices using nanocomposites, which are fabricated by blending conductive nanofillers in polymeric and elastomeric matrices, has shown great promise. The intrinsically soft bioelectronics not only endure the dynamic beating motion of the heart and maintain stable performance but also enable conformal, reliable, and large-area interfacing with the target cardiac tissue, allowing for high-quality electrophysiological mapping, feedback electrical stimulations, and even mechanical assistance. Here, we explore next-generation cardiac interfacing strategies based on soft bioelectronic devices that utilize elastic conductive nanocomposites. We first discuss the conventional cardiac devices used to manage cardiovascular diseases and explain their undesired limitations. Then, we introduce intrinsically soft polymeric materials and mechanical restraint devices utilizing soft polymeric materials. After the discussion of the fabrication and functionalization of conductive nanomaterials, the introduction of intrinsically soft bioelectronics using nanocomposites and their application to cardiac monitoring and feedback therapy follow. Finally, comments on the future prospects of soft bioelectronics for cardiac interfacing technologies are discussed.
Collapse
Affiliation(s)
- Sang Ihn Han
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Chan Soon Park
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Seung-Pyo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
49
|
Tateyama A, Nagura K, Yamanaka M, Nakanishi T. Alkyl-π Functional Molecular Gels: Control of Elastic Modulus and Improvement of Electret Performance. Angew Chem Int Ed Engl 2024; 63:e202402874. [PMID: 38512717 DOI: 10.1002/anie.202402874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 03/23/2024]
Abstract
The development of optoelectronically-active soft materials is drawing attention to the application of soft electronics. A room-temperature solvent-free liquid obtained by modifying a π-conjugated moiety with flexible yet bulky alkyl chains is a promising functional soft material. Tuning the elastic modulus (G') is essential for employing optoelectronically-active alkyl-π liquids in deformable devices. However, the range of G' achieved through the molecular design of alkyl-π liquids is limited. We report herein a method for controlling G' of alkyl-π liquids by gelation. Adding 1 wt % low-molecular-weight gelator formed the alkyl-π functional molecular gel (FMG) and increased G' of alkyl-π liquids by up to seven orders of magnitude while retaining the optical properties. Because alkyl-π FMGs have functional π-moieties in the gel medium, this new class of gels has a much higher content of π-moieties of up to 59 wt % compared to conventional π-gels of only a few wt %. More importantly, the gel state has a 23 % higher charge-retention capacity than the liquid, providing better performance in deformable mechanoelectric generator-electret devices. The strategy used in this study is a novel approach for developing next-generation optoelectronically-active FMG materials.
Collapse
Affiliation(s)
- Akito Tateyama
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Kazuhiko Nagura
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Masamichi Yamanaka
- Meiji Pharmaceutical University (MPU), 2-522-1 Noshio, Kiyose, 204-8588, Japan
| | - Takashi Nakanishi
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| |
Collapse
|
50
|
Shen Q, Song G, Lin H, Bai H, Huang Y, Lv F, Wang S. Sensing, Imaging, and Therapeutic Strategies Endowing by Conjugate Polymers for Precision Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310032. [PMID: 38316396 DOI: 10.1002/adma.202310032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Conjugated polymers (CPs) have promising applications in biomedical fields, such as disease monitoring, real-time imaging diagnosis, and disease treatment. As a promising luminescent material with tunable emission, high brightness and excellent stability, CPs are widely used as fluorescent probes in biological detection and imaging. Rational molecular design and structural optimization have broadened absorption/emission range of CPs, which are more conductive for disease diagnosis and precision therapy. This review provides a comprehensive overview of recent advances in the application of CPs, aiming to elucidate their structural and functional relationships. The fluorescence properties of CPs and the mechanism of detection signal amplification are first discussed, followed by an elucidation of their emerging applications in biological detection. Subsequently, CPs-based imaging systems and therapeutic strategies are illustrated systematically. Finally, recent advancements in utilizing CPs as electroactive materials for bioelectronic devices are also investigated. Moreover, the challenges and outlooks of CPs for precision medicine are discussed. Through this systematic review, it is hoped to highlight the frontier progress of CPs and promote new breakthroughs in fundamental research and clinical transformation.
Collapse
Affiliation(s)
- Qi Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Gang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongrui Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|