1
|
Upadhyay R, Dhakal A, Wheeler C, Hoyd R, Jagjit Singh M, Karivedu V, Bhateja P, Bonomi M, Valentin S, Gamez ME, Konieczkowski DJ, Baliga S, Grecula JC, Blakaj DM, Gogineni E, Mitchell DL, Denko NC, Spakowicz D, Jhawar SR. Comparative analysis of the tumor microbiome, molecular profiles, and immune cell abundances by HPV status in mucosal head and neck cancers and their impact on survival. Cancer Biol Ther 2024; 25:2350249. [PMID: 38722731 PMCID: PMC11086009 DOI: 10.1080/15384047.2024.2350249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) comprises a diverse group of tumors with variable treatment response and prognosis. The tumor microenvironment (TME), which includes microbiome and immune cells, can impact outcomes. Here, we sought to relate the presence of specific microbes, gene expression, and tumor immune infiltration using tumor transcriptomics from The Cancer Genome Atlas (TCGA) and associate these with overall survival (OS). RNA sequencing (RNAseq) from HNSCC tumors in TCGA was processed through the exogenous sequences in tumors and immune cells (exotic) pipeline to identify and quantify low-abundance microbes. The detection of the Papillomaviridae family of viruses assessed HPV status. All statistical analyses were performed using R. A total of 499 RNAseq samples from TCGA were analyzed. HPV was detected in 111 samples (22%), most commonly Alphapapillomavirus 9 (90.1%). The presence of Alphapapillomavirus 9 was associated with improved OS [HR = 0.60 (95%CI: 0.40-0.89, p = .01)]. Among other microbes, Yersinia pseudotuberculosis was associated with the worst survival (HR = 3.88; p = .008), while Pseudomonas viridiflava had the best survival (HR = 0.05; p = .036). Microbial species found more abundant in HPV- tumors included several gram-negative anaerobes. HPV- tumors had a significantly higher abundance of M0 (p < .001) and M2 macrophages (p = .035), while HPV+ tumors had more T regulatory cells (p < .001) and CD8+ T-cells (p < .001). We identified microbes in HNSCC tumor samples significantly associated with survival. A greater abundance of certain anaerobic microbes was seen in HPV tumors and pro-tumorigenic macrophages. These findings suggest that TME can be used to predict patient outcomes and may help identify mechanisms of resistance to systemic therapies.
Collapse
Affiliation(s)
- Rituraj Upadhyay
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Aastha Dhakal
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Caroline Wheeler
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Rebecca Hoyd
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Malvenderjit Jagjit Singh
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Vidhya Karivedu
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Priyanka Bhateja
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Marcelo Bonomi
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Sasha Valentin
- Department of Dentistry, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - David J. Konieczkowski
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Sujith Baliga
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - John C. Grecula
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Dukagjin M. Blakaj
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Emile Gogineni
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Darrion L. Mitchell
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Nicholas C. Denko
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Daniel Spakowicz
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, Columbus, OH, USA
| | - Sachin R. Jhawar
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
2
|
Yang L, Wang Q, He L, Sun X. The critical role of tumor microbiome in cancer immunotherapy. Cancer Biol Ther 2024; 25:2301801. [PMID: 38241173 PMCID: PMC10802201 DOI: 10.1080/15384047.2024.2301801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/01/2024] [Indexed: 01/21/2024] Open
Abstract
In recent years, the microbiome has shown an integral role in cancer immunotherapy and has become a prominent and widely studied topic. A full understanding of the interactions between the tumor microbiome and various immunotherapies offers opportunities for immunotherapy of cancer. This review scrutinizes the composition of the tumor microbiome, the mechanism of microbial immune regulation, the influence of tumor microorganisms on tumor metastasis, and the interaction between tumor microorganisms and immunotherapy. In addition, this review also summarizes the challenges and opportunities of immunotherapy through tumor microbes, as well as the prospects and directions for future related research. In conclusion, the potential of microbial immunotherapy to enhance treatment outcomes for cancer patients should not be underestimated. Through this review, it is hoped that more research on tumor microbial immunotherapy will be done to better solve the treatment problems of cancer patients.
Collapse
Affiliation(s)
- Liu Yang
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Lijuan He
- Department of Health Management Center, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xingyu Sun
- Department of Gynecology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Zhao H, Zhang L, Du D, Mai L, Liu Y, Morigen M, Fan L. The RIG-I-like receptor signaling pathway triggered by Staphylococcus aureus promotes breast cancer metastasis. Int Immunopharmacol 2024; 142:113195. [PMID: 39303544 DOI: 10.1016/j.intimp.2024.113195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Host microbes are increasingly recognized as key components in various types of cancer, although their exact impact remains unclear. This study investigated the functional significance of Staphylococcus aureus (S. aureus) in breast cancer tumorigenesis and progression. We found that S. aureus invasion resulted in a compromised DNA damage response process, as evidenced by the absence of G1-phase arrest and apoptosis in breast cells in the background of double strand breaks production and the activation of the ataxia-telangiectasia mutated (ATM)-p53 signaling pathway. The high-throughput mRNA sequencing, bioinformatics analysis and pharmacological studies revealed that S. aureus facilitates breast cell metastasis through the innate immune pathway, particularly in cancer cells. During metastasis, S. aureus initially induced the expression of RIG-I-like receptors (RIG-I in normal breast cells, RIG-I and MDA5 in breast cancer cells), which in turn activated NF-κB p65 expression. We further showed that NF-κB p65 activated the CCL5-CCR5 pathway, contributing to breast cell metastasis. Our study provides novel evidence that the innate immune system, triggered by bacterial infection, plays a role in bacterial-driven cancer metastasis.
Collapse
Affiliation(s)
- Haile Zhao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Linzhe Zhang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Dongdong Du
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Lisu Mai
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Yaping Liu
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Morigen Morigen
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China.
| | - Lifei Fan
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China.
| |
Collapse
|
4
|
Liu YH, Chen J, Chen X, Liu H. Factors of faecal microbiota transplantation applied to cancer management. J Drug Target 2024; 32:101-114. [PMID: 38174845 DOI: 10.1080/1061186x.2023.2299724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 01/05/2024]
Abstract
The homeostasis of the microbiota is essential for human health. In particular, the gut microbiota plays a critical role in the regulation of the immune system. Thus, faecal microbiota transplantation (FMT), a technology that has rapidly developed in the last decade, has specifically been utilised for the treatment of intestinal inflammation and has recently been found to be able to treat tumours in combination with immunotherapy. FMT has become a breakthrough in enhancing the response rate to immunotherapy in cancer patients by altering the composition of the patient's gut microbiota. This review discusses the mechanisms of faecal microorganism effects on tumour development, drug treatment efficacy, and adverse effects and describes the recent clinical research trials on FMT. Moreover, the factors influencing the efficacy and safety of FMT are described. We summarise the possibilities of faecal transplantation in the treatment of tumours and its complications and propose directions to explore the development of FMT.
Collapse
Affiliation(s)
- Yi-Huang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Feng S, Zhang Y, Wang Y, Gao Y, Song Y. Harnessing Gene Editing Technology for Tumor Microenvironment Modulation: An Emerging Anticancer Strategy. Chemistry 2024; 30:e202402485. [PMID: 39225329 DOI: 10.1002/chem.202402485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Cancer is a multifaceted disease influenced by both intrinsic cellular traits and extrinsic factors, with the tumor microenvironment (TME) being crucial for cancer progression. To satisfy their high proliferation and aggressiveness, cancer cells always plunder large amounts of nutrients and release various signals to their surroundings, forming a dynamic TME with special metabolic, immune, microbial and physical characteristics. Due to the neglect of interactions between tumor cells and the TME, traditional cancer therapies often struggle with challenges such as drug resistance, low efficacy, and recurrence. Importantly, the development of gene editing technologies, particularly the CRISPR-Cas system, offers promising new strategies for cancer treatment. Combined with nanomaterial strategies, CRISPR-Cas technology exhibits precision, affordability, and user-friendliness with reduced side effects, which holds great promise for profoundly altering the TME at the genetic level, potentially leading to lasting anticancer outcomes. This review will delve into how CRISPR-Cas can be leveraged to manipulate the TME, examining its potential as a transformative anticancer therapy.
Collapse
Affiliation(s)
- Shujun Feng
- College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Yanyi Wang
- College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China
| | - Yanfeng Gao
- School of Medical Imaging, Wannan Medical College, 241002, Wuhu, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China
| |
Collapse
|
6
|
Fang Y, Liu X, Ren J, Wang X, Zhou F, Huang S, You L, Zhao Y. Integrated analysis of microbiome and metabolome reveals signatures in PDAC tumorigenesis and prognosis. Microbiol Spectr 2024; 12:e0096224. [PMID: 39387592 PMCID: PMC11540152 DOI: 10.1128/spectrum.00962-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Pancreatic cancer, predominantly pancreatic ductal adenocarcinoma (PDAC), is one of the most malignant tumors of the digestive system. Emerging evidence suggests the involvement of the microbiome and metabolic substances in the development of PDAC, yet the results remain contradictory. This study aims to identify the alterations and relationships in intratumoral microbiome and metabolites in PDAC. We collected matched tumor and normal adjacent tissue (NAT) samples from 105 PDAC patients and performed a 6-year follow-up. 2bRAD-M sequencing, untargeted liquid chromatography-tandem mass spectrometry, and untargeted gas chromatography-mass spectrometry were performed. Compared with NATs, microbial α-diversity decreased in PDAC tumors. The relative abundance of Staphylococcus aureus, Cutibacterium acnes, and Cutibacterium granulosum was higher in PDAC tumor after adjusting for confounding factors body mass index and M stage, and the presence of Ralstonia pickettii_B was found associated with a worse overall survival. Metabolomic analysis revealed distinctive differences in composition between PDAC and NAT, with 553 discriminative metabolites identified. Differential metabolites were revealed to originate from the microbiota and showed significant interactions with shifted bacterial species through KO (KEGG Orthology) genes. These findings suggest that the PDAC microenvironment harbors unique microbial-derived enzymatic reactions, potentially influencing the occurrence and development of PDAC by modulating the levels of glycerol-3-phosphate, succinate, carbonate, and beta-alanine. IMPORTANCE We conducted a large sample-size pancreatic adenocarcinoma microbiome study using a novel microbiome sequencing method and two metabolomic assays. Two significant outcomes of our analysis are: (i) commensal opportunistic pathogens Staphylococcus aureus, Cutibacterium acnes, and Cutibacterium granulosum were enriched in pancreatic ductal adenocarcinoma (PDAC) tumors compared with normal adjacent tissues, and (ii) worse overall survival was found related to the presence of Ralstonia pickettii_B. Microbial species affect the tumorigenesis, metastasis, and prognosis of PDAC via unique microbe-enzyme-metabolite interaction. Thus, our study highlights the need for further investigation of the potential associations between pancreatic microbiota-derived omics signatures, which may drive the clinical transformation of microbiome-derived strategies toward therapy-targeted bacteria.
Collapse
Affiliation(s)
- Yuan Fang
- Department of General
Surgery, Peking Union Medical College Hospital, Peking Union Medical
College, Chinese Academy of Medical
Sciences, Beijing,
China
- Key Laboratory of
Research in Pancreatic Tumor, Chinese Academy of Medical
Sciences, Beijing,
China
- National Science and
Technology Key Infrastructure on Translational Medicine in Peking Union
Medical College Hospital,
Beijing, China
- State Key Laboratory
of Complex Severe and Rare Diseases, Peking Union Medical College
Hospital, Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing,
China
| | - Xiaohong Liu
- Department of General
Surgery, Peking Union Medical College Hospital, Peking Union Medical
College, Chinese Academy of Medical
Sciences, Beijing,
China
- Key Laboratory of
Research in Pancreatic Tumor, Chinese Academy of Medical
Sciences, Beijing,
China
- National Science and
Technology Key Infrastructure on Translational Medicine in Peking Union
Medical College Hospital,
Beijing, China
- State Key Laboratory
of Complex Severe and Rare Diseases, Peking Union Medical College
Hospital, Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing,
China
| | - Jie Ren
- Department of General
Surgery, Peking Union Medical College Hospital, Peking Union Medical
College, Chinese Academy of Medical
Sciences, Beijing,
China
- Key Laboratory of
Research in Pancreatic Tumor, Chinese Academy of Medical
Sciences, Beijing,
China
- National Science and
Technology Key Infrastructure on Translational Medicine in Peking Union
Medical College Hospital,
Beijing, China
- State Key Laboratory
of Complex Severe and Rare Diseases, Peking Union Medical College
Hospital, Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing,
China
| | - Xing Wang
- Department of General
Surgery, Peking Union Medical College Hospital, Peking Union Medical
College, Chinese Academy of Medical
Sciences, Beijing,
China
- Key Laboratory of
Research in Pancreatic Tumor, Chinese Academy of Medical
Sciences, Beijing,
China
- National Science and
Technology Key Infrastructure on Translational Medicine in Peking Union
Medical College Hospital,
Beijing, China
- State Key Laboratory
of Complex Severe and Rare Diseases, Peking Union Medical College
Hospital, Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing,
China
| | - Feihan Zhou
- Department of General
Surgery, Peking Union Medical College Hospital, Peking Union Medical
College, Chinese Academy of Medical
Sciences, Beijing,
China
- Key Laboratory of
Research in Pancreatic Tumor, Chinese Academy of Medical
Sciences, Beijing,
China
- National Science and
Technology Key Infrastructure on Translational Medicine in Peking Union
Medical College Hospital,
Beijing, China
- State Key Laboratory
of Complex Severe and Rare Diseases, Peking Union Medical College
Hospital, Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing,
China
| | - Shi Huang
- Faculty of Dentistry,
The University of Hong Kong, Hong
Kong SAR, China
| | - Lei You
- Department of General
Surgery, Peking Union Medical College Hospital, Peking Union Medical
College, Chinese Academy of Medical
Sciences, Beijing,
China
- Key Laboratory of
Research in Pancreatic Tumor, Chinese Academy of Medical
Sciences, Beijing,
China
- National Science and
Technology Key Infrastructure on Translational Medicine in Peking Union
Medical College Hospital,
Beijing, China
- State Key Laboratory
of Complex Severe and Rare Diseases, Peking Union Medical College
Hospital, Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing,
China
| | - Yupei Zhao
- Department of General
Surgery, Peking Union Medical College Hospital, Peking Union Medical
College, Chinese Academy of Medical
Sciences, Beijing,
China
- Key Laboratory of
Research in Pancreatic Tumor, Chinese Academy of Medical
Sciences, Beijing,
China
- National Science and
Technology Key Infrastructure on Translational Medicine in Peking Union
Medical College Hospital,
Beijing, China
- State Key Laboratory
of Complex Severe and Rare Diseases, Peking Union Medical College
Hospital, Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing,
China
| |
Collapse
|
7
|
van den Ende T, de Clercq NC, Davids M, Goedegebuure R, Doeve BH, Ebrahimi G, Buijsen J, Hoekstra R, Mohammad NH, Bijlsma MF, Nieuwdorp M, van Laarhoven HWM. Fecal, duodenal, and tumor microbiota composition of esophageal carcinoma patients, a longitudinal prospective cohort. J Natl Cancer Inst 2024; 116:1834-1844. [PMID: 38924513 PMCID: PMC11542985 DOI: 10.1093/jnci/djae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The microbiome has been associated with chemotherapy and immune checkpoint inhibitor efficacy. How this pertains to resectable esophageal carcinoma is unknown. Our aim was to identify microbial signatures in resectable esophageal carcinoma associated with response to neoadjuvant chemoradiotherapy with or without an immune checkpoint inhibitor. METHODS From 2 prospectively collected esophageal carcinoma cohorts (n = 172 in total) treated with neoadjuvant chemoradiotherapy alone (n = 132) or a combination of neoadjuvant chemoradiotherapy and an immune checkpoint inhibitor (n = 40), fecal samples were available at baseline, during treatment, and presurgery. Additionally, in the immune checkpoint inhibitor-treated patients, tumor and duodenal snap frozen biopsies were collected over time. Fecal, tumor, and duodenal DNA were extracted for 16S ribosomal RNA sequencing. Associations were investigated between microbiome composition pathological complete response and progression-free survival (PFS). RESULTS There was a statistically significant shift in the microbiota profile of the fecal, tumor, and duodenal microbiota over time. In the total cohort, patients with a pathological complete response had a stable fecal alpha diversity, while the diversity of poor responders decreased during treatment (P = .036). Presurgery, lower alpha diversity (<4.12) was related to worse PFS (log-rank P = .025). Baseline tumor biopsies of patients with short PFS had more Fusobacterium. A low baseline duodenal alpha diversity (<3.96) was associated with worse PFS (log-rank P = .012). CONCLUSIONS Lower intestinal alpha diversity was associated with worse response and survival of esophageal carcinoma patients. In tumor biopsies, Fusobacterium was more abundant in patients with poor PFS. After further mechanistic validation, these findings may aid in response prediction and the design of novel microbiome modulating treatments for esophageal carcinoma patients.
Collapse
Affiliation(s)
- Tom van den Ende
- Department of Medical Oncology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Nicolien C de Clercq
- Department of Medical Oncology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Mark Davids
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ruben Goedegebuure
- Netherlands Cancer Institute, Gastrointestinal Oncology, Amsterdam, the Netherlands
| | - Benthe H Doeve
- Department of Medical Oncology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
| | - Gati Ebrahimi
- Department of Radiotherapy, Instituut Verbeeten, Tilburg, the Netherlands
| | - Jeroen Buijsen
- Department of Radiation Oncology (MAASTRO), School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ronald Hoekstra
- Department of Medical Oncology, Ziekenhuisgroep Twente, Hengelo, the Netherlands
| | - Nadia Haj Mohammad
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten F Bijlsma
- Oncode Institute, Utrecht, the Netherlands
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Bao P, Zhang XZ. Progress of tumor-resident intracellular bacteria for cancer therapy. Adv Drug Deliv Rev 2024; 214:115458. [PMID: 39383997 DOI: 10.1016/j.addr.2024.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/12/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Emerging studies have disclosed the pivotal role of cancer-associated microbiota in supporting cancer development, progression and dissemination, with the in-depth comprehending of tumor microenvironment. In particular, certain invasive bacteria that hide in various cells within the tumor tissues can render assistance to tumor growth and invasion through intricate mechanisms implicated in multiple branches of cancer biology. Thus, tumor-resident intracellular microbes are anticipated as next-generation targets for oncotherapy. This review is intended to delve into these internalized bacteria-driven cancer-promoting mechanisms and explore diversified antimicrobial therapeutic strategies to counteract the detrimental impact caused by these intruders, thereby improving therapeutic benefit of antineoplastic therapy.
Collapse
Affiliation(s)
- Peng Bao
- Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xian-Zheng Zhang
- Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
9
|
Glorieux C, Buc Calderon P. Targeting catalase in cancer. Redox Biol 2024; 77:103404. [PMID: 39447253 PMCID: PMC11539659 DOI: 10.1016/j.redox.2024.103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Healthy cells have developed a sophisticated network of antioxidant molecules to prevent the toxic accumulation of reactive oxygen species (ROS) generated by diverse environmental stresses. On the opposite, cancer cells often exhibit high levels of ROS and an altered levels of antioxidant molecules compared to normal cells. Among them, the antioxidant enzyme catalase plays an essential role in cell defense against oxidative stress through the dismutation of hydrogen peroxide into water and molecular oxygen, and its expression is often decreased in cancer cells. The elevation of ROS in cancer cells provides them proliferative advantages, and leads to metabolic reprogramming, immune escape and metastasis. In this context, catalase is of critical importance to control these cellular processes in cancer through various mechanisms. In this review, we will discuss the major progresses and challenges in understanding the role of catalase in cancer for this last decade. This review also aims to provide important updates regarding the regulation of catalase expression, subcellular localization and discuss about the potential role of microbial catalases in tumor environment. Finally, we will describe the different catalase-based therapies and address the advantages, disadvantages, and limitations associated with modulating catalase therapeutically in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 510060, Guangzhou, China.
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de La Salud, Universidad Arturo Prat, 1100000, Iquique, Chile; Instituto de Química Medicinal, Universidad Arturo Prat, 1100000, Iquique, Chile; Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.
| |
Collapse
|
10
|
Li P, Zhang H, Dai M. Current status and prospect of gut and oral microbiome in pancreatic cancer: Clinical and translational perspectives. Cancer Lett 2024; 604:217274. [PMID: 39307411 DOI: 10.1016/j.canlet.2024.217274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Pancreatic cancer is a highly lethal malignancy, and its diagnosis and treatment continue to pose significant challenges. Despite advancements in surgical and comprehensive treatment methods, the five-year survival rate remains below 12 %. With the rapid development of microbiome science, the gut and oral microbiota, which are readily accessible and can be sampled non-invasively, have emerged as a novel area of interest in pancreatic cancer research. Dysbiosis in these microbial communities can induce persistent inflammatory responses and affect the host's immune system, promoting cancer development and impacting the efficacy of treatments like chemotherapy and immunotherapy. This review provides an up-to-date overview of the roles of both gut and oral microbiota in the onset, progression, diagnosis, and treatment of pancreatic cancer. It analyzes the potential of utilizing these microbiomes as biomarkers and therapeutic targets from a clinical application perspective. Furthermore, it discusses future research directions aimed at harnessing these insights to advance the diagnosis and treatment strategies for pancreatic cancer. By focusing on the microbiome's role in clinical and translational medicine, this review offers insights into improving pancreatic cancer diagnosis and treatment outcomes.
Collapse
Affiliation(s)
- Pengyu Li
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hanyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
11
|
Liang P, Chen Q, Chen X, Zhang X, Xiao Y, Liang G, Liu M, He J, Liang W, Liang Y, Chen B. Microbiota modulate immune repertories in lung adenocarcinoma via microbiota-immunity interactive network. Transl Lung Cancer Res 2024; 13:2683-2697. [PMID: 39507044 PMCID: PMC11535827 DOI: 10.21037/tlcr-24-393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/14/2024] [Indexed: 11/08/2024]
Abstract
Background While the resident microbiome of tumors has been shown to be associated with the occurrence and progression of non-small cell lung cancer, there remains a significant knowledge gap in understanding the correlation between the microbial spectrum and immunity response to cancer therapy. In the case of lung adenocarcinoma (LUAD), the tumor microenvironment, encompassing a diverse array of microbes and immune cells, plays a crucial role in modulating therapeutic response. Towards comprehending the underlying mechanism, we present the microbe-immunity interactive networks to delineate the microbiota and immunity repertoires for two distinct molecular subtypes in LUAD. Methods We obtained multi-omics data of LUAD patients from the publicly available database. In this study, we conducted a systematic exploration of the microbial and immunological etiology of cancer prognosis, by integrating the microbiome, genome, transcriptome, and clinic data. The mutational signature analysis, transcriptome analysis, gene set enrichment analysis, and microbiota-immunity network analysis were performed. Results Based on the transcriptome repertories, we classified the patients into two molecular subtypes and observed that the overall survival of molecular subtype 2 (MS2) was notably shortened. We identified the microbial biomarkers in patients that distinguished between these molecular subtypes. The significant up-regulation of γδT and neutrophil in MS2, suggesting the inflammation augmentation and stimulation of γδT activation. What is more, the MS2 are characterized by a correlation network between microbiota biomarkers and γδT cell, which may contribute to suppression of anti-tumor immunity and poor overall survival. Conclusions Our findings not only display the repertoires of tumor microbiota and immune cells, but also elucidate the potential contribution of the microbiota-immunity correlation network to unfavorable overall survival and therapeutic resistance, thereby exerting profound implications on future LUAD therapy.
Collapse
Affiliation(s)
- Peng Liang
- Center for Medical Research, The First People’s Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Qianxi Chen
- Center for Medical Research, The First People’s Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Xiaoping Chen
- Center for Medical Research, The First People’s Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Xiaolin Zhang
- Center for Medical Research, The First People’s Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Yizhen Xiao
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Guangni Liang
- Department of Thoracic Surgery, The First People’s Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Ming Liu
- Center for Medical Research, The First People’s Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Yufeng Liang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Bo Chen
- Department of Thoracic Surgery, The First People’s Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| |
Collapse
|
12
|
Hamada M, Nishiyama K, Nomura R, Akitomo T, Mitsuhata C, Yura Y, Nakano K, Matsumoto-Nakano M, Uzawa N, Inaba H. Clinical relationships between the intratumoral microbiome and risk factors for head and neck cancer. Heliyon 2024; 10:e39284. [PMID: 39497974 PMCID: PMC11533578 DOI: 10.1016/j.heliyon.2024.e39284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
A bioinformatic analysis is a promising approach to understand the relationship between the vast tumor microbiome and cancer development. In the present study, we studied the relationships between the intratumoral microbiome and classical clinical risk factors using bioinformatics analysis of the Cancer Genome Atlas (TCGA) and the Cancer Microbiome Atlas (TCMA) datasets. We used TCMA database and investigated the abundance of microbes at the genus level in solid normal tissue (n = 22) and the primary tumors of patients with head and neck squamous cell carcinoma (HNSCC) (n = 154) and identified three major tumor microbiomes, Fusobacterium, Prevotella, and Streptococcus. The tissue level of Fusobacterium was higher in primary tumors than in solid normal tissue. However, univariate and multivariate analyses of these 3 microbes showed no significant effects on patient survival. We then extracted 43, 55, or 59 genes that were differentially expressed between the over and under the median groups for Fusobacterium, Prevotella, or Streptococcus using the criteria of >2.5, >1.5, or >2.0 fold and p < 0.05 in the Mann-Whitney U test. The results of a pathway analysis revealed the association of Fusobacterium- and Streptococcus-related genes with the IL-17 signaling pathway and Staphylococcus aureus infection, while Prevotella-associated pathways were not extracted. A protein-protein interaction analysis revealed a dense network in the order of Fusobacterium, Streptococcus, and Prevotella. An investigation of the relationships between the intratumoral microbiome and classical clinical risk factors showed that high levels of Fusobacterium were associated with a good prognosis in the absence of alcohol consumption and smoking, while high levels of Streptococcus were associated with a poor prognosis in the absence of alcohol consumption. In conclusion, intratumoral Fusobacterium and Streptococcus may affect the prognosis of patients with HNSCC, and their effects on HNSCC are modulated by the impact of drinking and smoking.
Collapse
Affiliation(s)
- Masakazu Hamada
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kyoko Nishiyama
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tatsuya Akitomo
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Chieko Mitsuhata
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yoshiaki Yura
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Narikazu Uzawa
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroaki Inaba
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Department of Dental Hygiene, Kyoto Koka Woman's College, 38, Kuzuno-cho, Nishikyogoku, Ukyo-ku, Kyoto-shi, 615-0882, Japan
| |
Collapse
|
13
|
Ma Y, Chen T, Sun T, Dilimulati D, Xiao Y. The oncomicrobiome: New insights into microorganisms in cancer. Microb Pathog 2024; 197:107091. [PMID: 39481695 DOI: 10.1016/j.micpath.2024.107091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The discoveries of the oncomicrobiome (intratumoral microbiome) and oncomicrobiota (intratumoral microbiota) represent significant advances in tumor research and have rapidly become of key interest to the field. Within tumors, microorganisms such as bacteria, fungi, viruses, and archaea form the oncomicrobiota and are primarily found within tumor cells, immunocytes, and the intercellular matrix. The oncomicrobiome exhibits marked heterogeneity and is associated with tumor initiation, progression, metastasis, and treatment response. Interactions between the oncomicrobiome and the immune system can modulate host antitumor immunity, influencing the efficacy of immunotherapies. Oncomicrobiome research also faces numerous challenges, including overcoming methodological issues such as low target abundance, susceptibility to contamination, and biases in sample handling and analysis methods across different studies. Furthermore, studies of the oncomicrobiome may be confounded by baseline differences in microbiomes among populations driven by both environmental and genetic factors. Most studies to date have revealed associations between the oncomicrobiome and tumors, but very few have established mechanistic links between the two. This review introduces the relevant concepts, detection methods, sources, and characteristics of the oncomicrobiome. We then describe the composition of the oncomicrobiome in common tumors and its role in shaping the tumor microenvironment. We also discuss the current problems and challenges to be overcome in this rapidly progressing field.
Collapse
Affiliation(s)
- Yingying Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingting Sun
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China; Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Dilinuer Dilimulati
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China; Peking Union Medical College & Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
14
|
Liu H, Zhang J, Rao Y, Jin S, Zhang C, Bai D. Intratumoral microbiota: an emerging force in diagnosing and treating hepatocellular carcinoma. Med Oncol 2024; 41:300. [PMID: 39453562 DOI: 10.1007/s12032-024-02545-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Hepatocellular carcinoma (HCC) ranks among the most prevalent types of cancer in the world and its incidence and mortality are increasing year by year, frequently diagnosed at an advanced stage. Traditional treatments such as surgery, chemotherapy, and radiotherapy have limited efficacy, so new diagnostic and treatment strategies are urgently needed. Recent research has discovered that intratumoral microbiota significantly influences the development, progression, and metastasis of HCC by modulating inflammation, immune responses, and cellular signaling pathways. Intratumoral microbiota contributes to the pathologic process of HCC by influencing the tumor microenvironment and altering the function of immune system. This article reviews the mechanism of intratumoral microbiota in HCC and anticipates the future possibilities of intratumoral microbiota-based therapeutic strategies for HCC management. This emerging field provides fresh insights into early diagnosis and personalized approaches for HCC while holding substantial clinical application potential to improve patient outcomes and tailor interventions to individual tumor profiles.
Collapse
Affiliation(s)
- Huanxiang Liu
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Jiahao Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Yuye Rao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Shengjie Jin
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China.
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| |
Collapse
|
15
|
Li Y, Chen L, Chen Y, Shi H, Yu S, Funmilayo A, Wu C, Wang C, Deng Y. Exosome-decorated bio-heterojunctions reduce heat and ROS transfer distance for boosted antibacterial and tumor therapy. Biomaterials 2024; 315:122921. [PMID: 39467398 DOI: 10.1016/j.biomaterials.2024.122921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024]
Abstract
Photothermal and photodynamic therapies represent effective modalities for combatting bacteria and tumor cells. However, therapeutic outcomes are constrained by limitations related to the heat and reactive oxygen species (ROS) transfer distance from photosensitizers to targets. To address this issue, we have devised and developed exosome-decorated bio-heterojunctions (E-bioHJ) consisted of MXene (Ti3C2), liquid metal (LM) and exosomes sourced from CT26 cells to enhance the phototherapeutic consequences. Engineering E-bioHJ enhances phototherapeutic effect in antibacterial and anti-tumor treatment, which is ascribed to reducing transfer distance of the heat and ROS. When adorned with exosomes, E-bioHJ is targetedly delivered into the cytoplasm of tumor cells to generate amount heat and ROS under 808 nm near-infrared radiation, which further induces mitochondrial dysfunction and apoptosis/necroptosis. As envisaged, this study presents a novel tactic to enhance the antibacterial and anti-tumor efficacy of biomaterials through reducing the heat and ROS delivery travel distance.
Collapse
Affiliation(s)
- Yanni Li
- West China Hospital, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China; Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Lin Chen
- West China Hospital, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| | - Yonghao Chen
- West China Hospital, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China; Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hongxing Shi
- West China Hospital, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| | - Sheng Yu
- The School of Mechanical and Materials Engineering, Washington State University, Pullman, WA-99164, USA
| | - Adeleye Funmilayo
- The School of Mechanical and Materials Engineering, Washington State University, Pullman, WA-99164, USA
| | - Chao Wu
- Department of Orthopedics, Digital Medical Center, Zigong Fourth People's Hospital, Zigong, 643000, China
| | - Chunhui Wang
- Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, 610041, China; Pancreatitis Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Yi Deng
- West China Hospital, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China; Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China.
| |
Collapse
|
16
|
Deng J, Deng D, Wang B, Donati V, Frampton AE, Giovannetti E. Metabolites derived from gut microbiota mitigate chemoresistance in pancreatic cancer. Expert Rev Gastroenterol Hepatol 2024:1-8. [PMID: 39439262 DOI: 10.1080/17474124.2024.2412045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is the third-leading cause of tumor-related deaths. The gut microbiota has gained attention in cancer treatment, due to its influence on the immune system and drug activity. AREAS COVERED Tintelnot and collaborators highlight distinct gut microbiota composition in metastatic PDAC (mPDAC) patients responding versus non-responding to chemotherapy. In the context of chemotherapy treatment, the gut microbiota of responders can metabolize tryptophan from food into indole-3-acetic acid (3-IAA). The presence of neutrophil-derived myeloperoxidase facilitates the role of 3-IAA in promoting the accumulation of reactive oxygen species in tumor cells. This accumulation, in turn, inducing tumor cell cytotoxicity. Additionally, 3-IAA can inhibit tumor cell autophagy activity, diminishing tumor cells' ability to adapt to cell stress. This manuscript provides a comprehensive analysis of the latest research on microbiota, metabolites, and PDAC, sourced from PubMed, ScienceDirect, and Google Scholar. EXPERT OPINION The evaluated study noted an elevation of the bacterial metabolite 3-IAA in responsive PDAC patients' serum, suggesting its potential to enhance chemotherapy sensitivity. Gaining a thorough comprehension of the impact of gut microbiota metabolites on drug activity is beneficial for broadening our strategies to mitigate chemotherapy resistance in tumors and identifying markers that predict chemotherapy outcomes.
Collapse
Affiliation(s)
- Juan Deng
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Bing Wang
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Valentina Donati
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Unit of Pathological Anatomy 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Adam E Frampton
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey NHS Foundation Trust, Guildford, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Medical Science, University of Surrey, Guilford, UK
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, Pisa, Italy
| |
Collapse
|
17
|
Kim J, Park S, Kim SJ, Yoo I, Kim H, Hwang S, Sim KM, Kim I, Jun E. High-throughput drug screening using a library of antibiotics targeting cancer cell lines that are resistant and sensitive to gemcitabine. Biochem Biophys Res Commun 2024; 730:150369. [PMID: 39013264 DOI: 10.1016/j.bbrc.2024.150369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
Gemcitabine is a nucleoside analog widely used as an anticancer agent against several types of cancer. Although gemcitabine sometimes shows excellent effectiveness, cancer cells are often poorly responsive to or resistant to the drug. Recently, specific strains or dysbiosis of the human microbiome were correlated with drug reactivity and resistance acquisition. Therefore, we aimed to identify antibiotic compounds that can modulate the microbiome to enhance the responsiveness to gemcitabine. To achieve this, we confirmed the gemcitabine responsiveness based on public data and conducted drug screening on a set of 250 antibiotics compounds. Subsequently, we performed experiments to investigate whether the selected compounds could enhance the responsiveness to gemcitabine. First, we grouped a total of seven tumor cell lines into resistant and sensitive group based on the IC50 value (1 μM) of gemcitabine obtained from the public data. Second, we performed high-throughput screening with compound treatments, identifying seven compounds from the resistant group and five from the sensitive group based on dose dependency. Finally, the combination of the selected compound, puromycin dihydrochloride, with gemcitabine in gemcitabine-resistant cell lines resulted in extensive cell death and a significant increase in cytotoxic efficacy. Additionally, mRNA levels associated with cell viability and stemness were reduced. Through this study, we screened antibiotics to further improve the efficacy of existing anticancer drugs and overcome resistance. By combining existing anticancer agents and antibiotic substances, we hope to establish various drug combination therapies and ultimately improve cancer treatment efficacy.
Collapse
Affiliation(s)
- Jinju Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Sojung Park
- Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Seong-Jin Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Inha Yoo
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Heeseon Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Supyong Hwang
- Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Kyoung Mi Sim
- Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Inki Kim
- Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Pharmacology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| | - Eunsung Jun
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea.
| |
Collapse
|
18
|
Tong Y, Han F, Liu M, Xu T, Zhang A, Qin J, Zhang Y, Qian X. Characteristics of Gut Microbiome in the Murine Model of Pancreatic Cancer with Damp-Heat Syndrome. Biomedicines 2024; 12:2360. [PMID: 39457673 PMCID: PMC11504882 DOI: 10.3390/biomedicines12102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
PURPOSE Murine models of pancreatic cancer with damp-heat syndrome were established based on two methods to explore the differences in the composition of intestinal flora and to seek characteristic genera with potential for model evaluation. METHODS In our study, thirty-four C57BL/6J male mice were randomly divided into a control group (Con), a model group (Mod), a classic damp-heat syndrome group (CDHS), and a climate-chamber group (CC). CDHS and CC groups were fed with a high-fat diet and glucose water, while the CDHS group was given 2.4 g/kg alcohol by gavage for 10 days, and the CC group was placed in a climatic chamber with a set temperature of (32 ± 1) °C and humidity of (92 ± 2)% for 10 days. The Mod group, CDHS group, and CC group underwent tumor-building experiments on day 11. Tumorigenicity was then assessed twice a week. After 4 weeks, feces, colon tissue, and tumor tissue were taken from the mice and were tested, and the mice were euthanized afterwards. RESULTS Mice in the CDHS and CC groups showed symptoms similar to the clinical damp-heat syndrome observed in traditional Chinese medicine (TCM), and exhibited a worse general condition and more rapid tumor growth trend than those in the Mod group. The pathological examination indicated that inflammation was prevalent in the CDHS and CC groups. Both groups had a disrupted intestinal barrier and an overgrowth of pathogenic bacteria such as c_Gammaproteobacteria, o_Enterobacteriales, and g_Bacteroides. Their microbiota composition showed greater diversity. CONCLUSIONS Intestinal flora may have a promising future in the discovery of indicators for evaluating a model of damp-heat syndrome in pancreatic cancer.
Collapse
Affiliation(s)
- Yangbo Tong
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.T.); (M.L.); (T.X.)
| | - Fang Han
- Zhejiang Cancer Hospital, Hangzhou 310022, China; (F.H.); (A.Z.)
| | - Mengyao Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.T.); (M.L.); (T.X.)
| | - Tianyu Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.T.); (M.L.); (T.X.)
| | - Aiqin Zhang
- Zhejiang Cancer Hospital, Hangzhou 310022, China; (F.H.); (A.Z.)
| | - Jiangjiang Qin
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, China;
| | - Yuhua Zhang
- Zhejiang Cancer Hospital, Hangzhou 310022, China; (F.H.); (A.Z.)
| | - Xiang Qian
- Zhejiang Cancer Hospital, Hangzhou 310022, China; (F.H.); (A.Z.)
| |
Collapse
|
19
|
Yang L, Qiao S, Zhang G, Lu A, Li F. Inflammatory Processes: Key Mediators of Oncogenesis and Progression in Pancreatic Ductal Adenocarcinoma (PDAC). Int J Mol Sci 2024; 25:10991. [PMID: 39456771 PMCID: PMC11506938 DOI: 10.3390/ijms252010991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Associations between inflammation and cancer were first discovered approximately 160 years ago by Rudolf Virchow, who observed that tumors were infiltrated with inflammatory cells, and defined inflammation as a pathological condition. Inflammation has now emerged as one of the key mediators in oncogenesis and tumor progression, including pancreatic ductal adenocarcinoma (PDAC). However, the role of inflammatory processes in cancers is complicated and controversial, and the detailed regulatory mechanisms are still unclear. This review elucidates the dynamic interplay between inflammation and immune regulation, microenvironment alteration, metabolic reprogramming, and microbiome risk factors in PDAC, committing to exploring a deeper understanding of the role of crucial inflammatory pathways and molecules for providing insights into therapeutic strategies.
Collapse
Affiliation(s)
- Liu Yang
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (L.Y.); (S.Q.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China;
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shuangying Qiao
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (L.Y.); (S.Q.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China;
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ge Zhang
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China;
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lu
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (L.Y.); (S.Q.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China;
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfei Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (L.Y.); (S.Q.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China;
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
20
|
Dorobisz K, Dorobisz T, Pazdro-Zastawny K. Assessment of Prognostic Factors, Clinical Features Including the Microbiome, and Treatment Outcomes in Patients with Cancer of Unknown Primary Site. Cancers (Basel) 2024; 16:3416. [PMID: 39410035 PMCID: PMC11475148 DOI: 10.3390/cancers16193416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
INTRODUCTIONS cancer of unknown primary site (CUP) is a heterogeneous group of cancers in which metastases are found, and the primary tumor is not detected with available diagnostic methods. CUP is a disease that has not been fully researched, and its biology is unclear. The clinical characteristics of CUP are variable, but the prognosis of patients is usually unfavorable, and the possibilities of radical treatment are limited. The microbiome is the genes and gene products of microorganisms residing in a human body. In recent years, thanks to the use of next-generation sequencing, it is possible to assess the impact of the microbiome on human body functions. Head and neck cancers, due to the rich microbiome of this area, are influenced by it, and dysbiosis may be a risk factor for the development of cancer. Objective of this work: the aim of this study was to evaluate prognostic factors, clinical features including the microbiome, and treatment outcomes in patients with cancer of unknown primary site. RESULTS in the study group, increased numbers of bacteria of the phyla Bacteroides, Fusobacteria, Bacillota, Actinomycetota, Actinobacteria, and Candidatus were detected, while Firmicutes and Proteobacteria were detected in smaller numbers. Independent predictors of CUP occurrence were the following: leukocyte count of at most 6.49 × 103/mm, bacteria from the Proteobacteria phylum in the microbiome below 11.6%, Firmicutes below 22.1%, and Actinobacteria at least 11.0%. Increased numbers of Porphyromonas and Fusobacterium bacteria were associated with the risk of radiotherapy complications and shortened survival rate. CONCLUSIONS clinical diagnosis and treatment of patients with CUP is complicated and difficult due to the lack of consensus on this issue. Treatment and prognosis of patients with CUP is unsatisfactory. The clinical value of the influence of the microbiome on the development, course, and treatment of cancer is becoming increasingly important. The microbiome may become a marker of response to anticancer treatment and the risk of its complications. Immunity modulation with the microbiome provides opportunities for further research on improving the effectiveness of oncological treatment. Fusobacterium and Porphyromonas seem to be the bacteria most important for the development of cancer, also worsening the prognosis of patients by increasing the risk of complications of radiotherapy and shortening the survival rate of patients. Streptococcus and Lactobacillus seem to be bacteria that reduce the risk of cancer, reduce the risk of complications, and improve the prognosis of patients. Total protein deficiency and elevated inflammatory markers are also important predictors of cancer risk.
Collapse
Affiliation(s)
- Karolina Dorobisz
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Tadeusz Dorobisz
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Katarzyna Pazdro-Zastawny
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
21
|
Kolahi Sadeghi L, Vahidian F, Eterafi M, Safarzadeh E. Gastrointestinal cancer resistance to treatment: the role of microbiota. Infect Agent Cancer 2024; 19:50. [PMID: 39369252 PMCID: PMC11453072 DOI: 10.1186/s13027-024-00605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/20/2024] [Indexed: 10/07/2024] Open
Abstract
The most common illnesses that adversely influence human health globally are gastrointestinal malignancies. The prevalence of gastrointestinal cancers (GICs) is relatively high, and the majority of patients receive ineffective care since they are discovered at an advanced stage of the disease. A major component of the human body is thought to be the microbiota of the gastrointestinal tract and the genes that make up the microbiome. The gut microbiota includes more than 3000 diverse species and billions of microbes. Each of them has benefits and drawbacks and been demonstrated to alter anticancer medication efficacy. Treatment of GIC with the help of the gut bacteria is effective while changes in the gut microbiome which is linked to resistance immunotherapy or chemotherapy. Despite significant studies and findings in this field, more research on the interactions between microbiota and response to treatment in GIC are needed to help researchers provide more effective therapeutic strategies with fewer treatment complication. In this review, we examine the effect of the human microbiota on anti-cancer management, including chemotherapy, immunotherapy, and radiotherapy.
Collapse
Affiliation(s)
- Leila Kolahi Sadeghi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fatemeh Vahidian
- Faculty of Medicine, Laval University, Quebec, Canada
- Centre de Recherche de I'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec, Canada
| | - Majid Eterafi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students' Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Microbiology, Parasitology, and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
22
|
Zhang H, Fu L, Leiliang X, Qu C, Wu W, Wen R, Huang N, He Q, Cheng Q, Liu G, Cheng Y. Beyond the Gut: The intratumoral microbiome's influence on tumorigenesis and treatment response. Cancer Commun (Lond) 2024; 44:1130-1167. [PMID: 39087354 PMCID: PMC11483591 DOI: 10.1002/cac2.12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024] Open
Abstract
The intratumoral microbiome (TM) refers to the microorganisms in the tumor tissues, including bacteria, fungi, viruses, and so on, and is distinct from the gut microbiome and circulating microbiota. TM is strongly associated with tumorigenesis, progression, metastasis, and response to therapy. This paper highlights the current status of TM. Tract sources, adjacent normal tissue, circulatory system, and concomitant tumor co-metastasis are the main origin of TM. The advanced techniques in TM analysis are comprehensively summarized. Besides, TM is involved in tumor progression through several mechanisms, including DNA damage, activation of oncogenic signaling pathways (phosphoinositide 3-kinase [PI3K], signal transducer and activator of transcription [STAT], WNT/β-catenin, and extracellular regulated protein kinases [ERK]), influence of cytokines and induce inflammatory responses, and interaction with the tumor microenvironment (anti-tumor immunity, pro-tumor immunity, and microbial-derived metabolites). Moreover, promising directions of TM in tumor therapy include immunotherapy, chemotherapy, radiotherapy, the application of probiotics/prebiotics/synbiotics, fecal microbiome transplantation, engineered microbiota, phage therapy, and oncolytic virus therapy. The inherent challenges of clinical application are also summarized. This review provides a comprehensive landscape for analyzing TM, especially the TM-related mechanisms and TM-based treatment in cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Li Fu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
- Department of GastroenterologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Xinwen Leiliang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Chunrun Qu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Wantao Wu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Rong Wen
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Ning Huang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Qiuguang He
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Quan Cheng
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Yuan Cheng
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| |
Collapse
|
23
|
Guo C, An Q, Zhang L, Wei X, Xu J, Yu J, Wu G, Ma J. Intratumoral microbiota as cancer therapeutic target. Aging Med (Milton) 2024; 7:636-644. [PMID: 39507228 PMCID: PMC11535161 DOI: 10.1002/agm2.12359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Intratumoral microbiota, which affects the physiological and pathological processes of the host, has attracted increasing attention from researchers. Microbials have been found in normal as well as tumor tissues that were originally thought to be sterile. Intratumoral microbiota is considered to play a significant role in the development of tumors and the reduction of clinical benefits. In addition, intratumoral microbiota are heterogeneous, which have different distribution in various types of tumors, and can influence tumor development through different mechanisms, including genome mutations, inflammatory responses, activated cancer pathways, and immunosuppressive microenvironments. Therefore, eliminating the intratumoral microbiota is considered one of the most promising ways to slow down the tumor progression and improve therapeutic outcomes. In this review, we systematically categorized the intratumoral microbiota and elucidated its role in the pathogenesis and therapeutic response of cancer. We have also described the novel strategies to mitigate the impact of tumor progression. We hope this review will provide new insights for the anti-tumor treatment, particularly for the elderly population, where such insights could significantly enhance treatment outcomes.
Collapse
Affiliation(s)
- Chang Guo
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
- Medical SchoolUniversity of Chinese Academy of SciencesBeijingPeople's Republic of China
| | - Qi An
- General Surgery Department, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Lu‐yao Zhang
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Xun‐dong Wei
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Jing Xu
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Jiang‐yong Yu
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Guo‐ju Wu
- General Surgery Department, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| |
Collapse
|
24
|
Li S, Zhu S, Yu J. The role of gut microbiota and metabolites in cancer chemotherapy. J Adv Res 2024; 64:223-235. [PMID: 38013112 PMCID: PMC11464465 DOI: 10.1016/j.jare.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The microbiota inhabits the epithelial surfaces of hosts, which influences physiological functions from helping digest food and acquiring nutrition to regulate metabolism and shaping host immunity. With the deep insight into the microbiota, an increasing amount of research reveals that it is also involved in the initiation and progression of cancer. Intriguingly, gut microbiota can mediate the biotransformation of drugs, thereby altering their bioavailability, bioactivity, or toxicity. AIM OF REVIEW The review aims to elaborate on the role of gut microbiota and microbial metabolites in the efficacy and adverse effects of chemotherapeutics. Furthermore, we discuss the clinical potential of various ways to harness gut microbiota for cancer chemotherapy. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent evidence shows that gut microbiota modulates the efficacy and toxicity of chemotherapy agents, leading to diverse host responses to chemotherapy. Thereinto, targeting the microbiota to improve efficacy and diminish the toxicity of chemotherapeutic drugs may be a promising strategy in tumor treatment.
Collapse
Affiliation(s)
- Shiyu Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
25
|
Lim ESY, Ong Y, Chou Y, Then CK. Interconnected influences of tumour and host microbiota on treatment response and side effects in nasopharyngeal cancer. Crit Rev Oncol Hematol 2024; 202:104468. [PMID: 39103130 DOI: 10.1016/j.critrevonc.2024.104468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024] Open
Abstract
This study elucidates the intricate relationship between nasopharyngeal carcinoma (NPC), a significant malignancy predominant in Asia with notable global incidence and mortality rates, and the host microbiota, including those of tumour, nasal, nasopharyngeal, oral, oropharyngeal, and gut communities. It underscores how the composition and diversity of microbiota are altered in NPC, delving into their implications for disease pathogenesis, treatment response, and the side effects of therapies. A consistent reduction in alpha diversity across oral, nasal, and gut microbiomes in NPC patients compared to healthy individuals signals a distinct microbial signature indicative of the diseased state. The study also shows unique microbial changes tied to different NPC stages, indicating a dynamic interplay between disease progression and microbiota composition. Patients with specific microbial profiles exhibit varied responses to chemotherapy and immunotherapy, underscoring the potential for treatment personalisation based on microbiota analysis. Furthermore, the side effects of NPC treatments, such as oral mucositis, are intensified by shifts in microbial communities, suggesting a direct link between microbiota composition and treatment tolerance. This nexus offers opportunities for interventions aimed at modulating the microbiota to alleviate side effects, improve quality of life, and potentially enhance treatment efficacy. Highlighting the dual potential of microbiota as both a therapeutic target and a biomarker for NPC, this review emphasises its significance in influencing treatment outcomes and side effects, heralding a new era in NPC management through personalised treatment strategies and innovative approaches.
Collapse
Affiliation(s)
- Eugene Sheng Yao Lim
- Jeffery Cheah School of Medicine and Health Sciences, Monash University, Malaysia
| | - Yenyi Ong
- Jeffery Cheah School of Medicine and Health Sciences, Monash University, Malaysia
| | - Yang Chou
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Chee Kin Then
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
26
|
Laplane L, Maley CC. The evolutionary theory of cancer: challenges and potential solutions. Nat Rev Cancer 2024; 24:718-733. [PMID: 39256635 DOI: 10.1038/s41568-024-00734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/12/2024]
Abstract
The clonal evolution model of cancer was developed in the 1950s-1970s and became central to cancer biology in the twenty-first century, largely through studies of cancer genetics. Although it has proven its worth, its structure has been challenged by observations of phenotypic plasticity, non-genetic forms of inheritance, non-genetic determinants of clone fitness and non-tree-like transmission of genes. There is even confusion about the definition of a clone, which we aim to resolve. The performance and value of the clonal evolution model depends on the empirical extent to which evolutionary processes are involved in cancer, and on its theoretical ability to account for those evolutionary processes. Here, we identify limits in the theoretical performance of the clonal evolution model and provide solutions to overcome those limits. Although we do not claim that clonal evolution can explain everything about cancer, we show how many of the complexities that have been identified in the dynamics of cancer can be integrated into the model to improve our current understanding of cancer.
Collapse
Affiliation(s)
- Lucie Laplane
- UMR 8590 Institut d'Histoire et Philosophie des Sciences et des Techniques, CNRS, University Paris I Pantheon-Sorbonne, Paris, France
- UMR 1287 Hematopoietic Tissue Aging, Gustave Roussy Cancer Campus, Villejuif, France
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA.
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
27
|
Jiang H, Li L, Bao Y, Cao X, Ma L. Microbiota in tumors: new factor influencing cancer development. Cancer Gene Ther 2024:10.1038/s41417-024-00833-0. [PMID: 39342031 DOI: 10.1038/s41417-024-00833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Tumor microbiota research is a new field in oncology. With the advancement of high-throughput sequencing, there is growing evidence that a microbial community exists within tumor tissue. How these bacteria access tumor cells varies, including through the invasion of mucous membranes, the bloodstream, or the gut-organ axis. Previous literature has shown that microbes promote the development and progression of cancer through various mechanisms, such as affecting the host's immune system, promoting inflammation, regulating metabolism, and activating invasion and transfer. The study of the tumor microbiota offers a new perspective for the diagnosis and treatment of cancer, and it holds the potential for the development of new diagnostic tools and therapies. The role of the tumor microbiota in the pathogenesis of cancer is becoming increasingly evident, and future research will continue to uncover the specific mechanisms of action of these microbes, potentially shedding light on new strategies and methods for cancer prevention and therapy. This article reviews the latest advancements in this field, including how intratumor microbes migrate, their carcinogenic mechanisms, and the characteristics of different types of tumor microbes as well as the application of relevant methods in tumor microbiota research and the clinical values of targeting tumor microbes in cancer therapy.
Collapse
Affiliation(s)
- Haixia Jiang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Li
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunxia Bao
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiongyue Cao
- Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Lifang Ma
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
28
|
Zhang Y, Lin H, Liang L, Jin S, Lv J, Zhou Y, Xu F, Liu F, Feng N. Intratumoral microbiota as a novel prognostic indicator in bladder cancer. Sci Rep 2024; 14:22198. [PMID: 39333148 PMCID: PMC11437234 DOI: 10.1038/s41598-024-72918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Microbes are important components of the tumor microenvironment and have a close relationship with tumors. However, there is still a lack of research on the intratumoral microbiota in bladder cancer and its impact on the tumor immune microenvironment. In this study, we used fluorescence in situ hybridization (FISH) and observed a substantial presence of microbiota in bladder cancer tissues, with greater abundance compared to that in normal bladder tissues. Based on the BIC database, we found that the microbiome of bladder cancer is highly diverse and its structure is significantly different from that of other tumors. To investigate the relationships among the intratumoral microbiota, tumor immunity, and prognosis in bladder cancer patients, we analyzed bladder cancer-specific differentially expressed immune- and antimicrobial-related genes from the ImmPort, TISIDB, and TCGA databases. We identified 11 hub genes and constructed a prognostic risk model. Further analysis revealed differences at the family and genus levels between distinct groups. Using LEfSe analysis, we identified six hub biomarkers and developed a novel microbial-based scoring system. The scoring system allows subgrouping of bladder cancer patients, with significant differences in prognosis, immune cell infiltration, tumor mutation burden, and immune checkpoints among different groups. Further FISH and immunofluorescence co-staining experiments initially verified that the specific distribution of microorganisms and M2 macrophages in bladder cancer may be closely related to the poor prognosis of patients. In conclusion, this study revealed the characteristics of the intratumoral microbiota in bladder cancer and identified potential prognostic targets for clinical application.
Collapse
Affiliation(s)
- Yuwei Zhang
- Medical School of Nantong University, 9 Qiangyuan Road, Nantong, 226019, China
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Hao Lin
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China
- Department of Urology, Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
| | - Linghui Liang
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China
- Department of Urology, Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
| | - Shengkai Jin
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Jing Lv
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Yuhua Zhou
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Feng Xu
- Department of Urology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China.
| | - Fengping Liu
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China.
| | - Ninghan Feng
- Medical School of Nantong University, 9 Qiangyuan Road, Nantong, 226019, China.
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China.
- Department of Urology, Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
29
|
González A, Badiola I, Fullaondo A, Rodríguez J, Odriozola A. Personalised medicine based on host genetics and microbiota applied to colorectal cancer. ADVANCES IN GENETICS 2024; 112:411-485. [PMID: 39396842 DOI: 10.1016/bs.adgen.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) ranks second in incidence and third in cancer mortality worldwide. This situation, together with the understanding of the heterogeneity of the disease, has highlighted the need to develop a more individualised approach to its prevention, diagnosis and treatment through personalised medicine. This approach aims to stratify patients according to risk, predict disease progression and determine the most appropriate treatment. It is essential to identify patients who may respond adequately to treatment and those who may be resistant to treatment to avoid unnecessary therapies and minimise adverse side effects. Current research is focused on identifying biomarkers such as specific mutated genes, the type of mutations and molecular profiles critical for the individualisation of CRC diagnosis, prognosis and treatment guidance. In addition, the study of the intestinal microbiota as biomarkers is being incorporated due to the growing scientific evidence supporting its influence on this disease. This article comprehensively addresses the use of current and emerging diagnostic, prognostic and predictive biomarkers in precision medicine against CRC. The effects of host genetics and gut microbiota composition on new approaches to treating this disease are discussed. How the gut microbiota could mitigate the side effects of treatment is reviewed. In addition, strategies to modulate the gut microbiota, such as dietary interventions, antibiotics, and transplantation of faecal microbiota and phages, are discussed to improve CRC prevention and treatment. These findings provide a solid foundation for future research and improving the care of CRC patients.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | | | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
30
|
Long J, Wang J, Xiao C, You F, Jiang Y, Li X. Intratumoral microbiota in colorectal cancer: focus on specific distribution and potential mechanisms. Cell Commun Signal 2024; 22:455. [PMID: 39327582 PMCID: PMC11426098 DOI: 10.1186/s12964-024-01831-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and lethal malignant tumors globally, posing significant health risks and societal burdens. Recently, advancements in next-generation sequencing technology have identified CRC intratumoral microbiota, thereby opening up novel avenues for further research. This review synthesizes the current advancements in CRC intratumoral microbiota and their impact on CRC progression and discusses the disparities in the relative abundance and community composition of CRC intratumoral microbiota across various colorectal tumors based on their anatomical location and molecular subtypes, as well as the tumor stages, and spatial tumor distribution. Intratumoral microbiota predominantly influence CRC development by modulating colonic epithelial cells, tumor cells, and the tumor microenvironment. Mechanistically, they can cause DNA damage, apoptosis and epithelial-mesenchymal transition. The effects of different intratumoral microbiota on CRC have been shown to be two-fold. In the future, to address the limitations of existing studies, it is important to develop comprehensive experimental protocols and suitable in vitro models for elucidating more mechanisms of intratumoral microbiota on CRC, which will facilitate the clinical application of microbe-related therapeutic strategies in CRC and potentially other tumors.
Collapse
Affiliation(s)
- Jing Long
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
| | - Jiamei Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
| | - Chong Xiao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
- Oncology Teaching and Research Department, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
| | - Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China.
| | - Xueke Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China.
- Oncology Teaching and Research Department, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China.
| |
Collapse
|
31
|
Lu J, Tong Q. From pathogenesis to treatment: the impact of bacteria on cancer. Front Microbiol 2024; 15:1462749. [PMID: 39360320 PMCID: PMC11445166 DOI: 10.3389/fmicb.2024.1462749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
The intricate relationship between cancer and bacteria has garnered increasing attention in recent years. While traditional cancer research has primarily focused on tumor cells and genetic mutations, emerging evidence highlights the significant role of microbial communities within the tumor microenvironment in cancer development and progression. This review aims to provide a comprehensive overview of the current understanding of the complex interplay between cancer and bacteria. We explore the diverse ways in which bacteria influence tumorigenesis and tumor behavior, discussing direct interactions between bacteria and tumor cells, their impact on tumor immunity, and the potential modulation of the tumor microenvironment. Additionally, we delve into the mechanisms through which bacterial metabolites and extracellular products May affect cancer pathways. By conducting a thorough analysis of the existing literature, we underscore the multifaceted and intricate relationship between bacteria and cancer. Understanding this complex interplay could pave the way for novel therapeutic approaches and preventive strategies in cancer treatment.
Collapse
Affiliation(s)
| | - Qiang Tong
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
32
|
Quinn G, Maggiore G, Li B. Genomic investigation of innate sensing pathways in the tumor microenvironment. BMC Cancer 2024; 24:1157. [PMID: 39289651 PMCID: PMC11409789 DOI: 10.1186/s12885-024-12944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
The innate immune system is the first responder to infectious agents, cellular debris, and cancerous growths. This system plays critical roles in the antitumor immune responses by boosting and priming T cell-mediated cytotoxicity but is understudied due to the complexity and redundancy of its various downstream signaling cascades. We utilized a mathematical tool to holistically quantify innate immune signaling cascades and immunophenotype over 8,000 tumors from The Cancer Genome Atlas (TCGA). We found that innate immune activation was predictive of patient mortality in a subset of cancers. Further analysis identified PHF genes as transcripts that were associated with genomic stability and innate activation. Knockdown of PHF gene transcripts in vitro led to an increase in cell death and IFNB1 expression in a cGAS-dependent manner, validating PHF genes as potential anti-tumor targets. We also found an association between innate immune activation and both tumor immunogenicity and intratumor microbes, which highlights the versatility of this model. In conclusion, interrogating activation of innate immune signaling cascades demonstrated the importance of studying innate signaling in cancer and broadened the search for new therapeutic adjuvants.
Collapse
Affiliation(s)
- Gabriella Quinn
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gianna Maggiore
- Children's Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bo Li
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA.
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
33
|
Leng J, Xu H, Liu X, Yang Y, Ning C, Sun L, Qu J, Ke X, Lan X. Intratumoral microbiota of pancreatic ductal adenocarcinoma impact patient prognosis by influencing tumor microenvironment. Discov Oncol 2024; 15:443. [PMID: 39271584 PMCID: PMC11399525 DOI: 10.1007/s12672-024-01320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is characterized by a highly metastatic potential and a heterogeneous tumor microenvironment. It exhibits limited sensitivity to conventional therapies, necessitating a deeper understanding of its pathogenesis. The role of the intratumoral microbiome in regulating cancer development in PDAC has been the subject of debate. Previous investigations into intra-tumor microbiomes have yielded uncertain results due to sample size limitations and insufficient decontamination procedures. Further research is imperative to elucidate the intricate relationship between intra-tumor microbiomes, the immune landscape of PDAC, and overall prognosis. RESULTS Our findings revealed that the intratumor microbiota in PDAC tissue exhibited lower diversity and distinct communities compared to non-tumor tissues. The top microorganisms distinguishing between patients with long or short survival were used to construct the risk signature. We found that Stenotrophomonas is implicated in short survival of PDAC patients, while Neorickettia and Mediterraneibacter are correlated with long survival. This microbiome-based PDAC subtyping, grounded in prognosis-related signatures, exhibited significant correlations with distinct clinical prognoses and immune microenvironments. Microorganisms associated with negative prognoses were linked to pro-tumor immune activation, while those associated with positive prognoses were linked to anti-tumor immune response activation and a more favorable prognosis. CONCLUSIONS Our PDAC subtyping approach, based on a microbiome-derived prognostic risk signature, unveiled compelling associations between the PDAC microbiota and disparities in both clinical prognosis and the tumor microenvironment. These findings suggest that microbiota may serve as a promising biomarker for predicting the prognosis of PDAC.
Collapse
Affiliation(s)
- Jingze Leng
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Hengyi Xu
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xiaoyu Liu
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yufan Yang
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Chun Ning
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Lejia Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiangming Qu
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, China.
| | - Xindi Ke
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, China.
| | - Xun Lan
- School of Medicine, Tsinghua University, Beijing, 100084, China.
- Peking-Tsinghua-NIBS Joint Graduate Program, Tsinghua University, Beijing, 100084, China.
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
34
|
Zitvogel L, Fidelle M, Kroemer G. Long-distance microbial mechanisms impacting cancer immunosurveillance. Immunity 2024; 57:2013-2029. [PMID: 39151425 DOI: 10.1016/j.immuni.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 08/19/2024]
Abstract
The intestinal microbiota determines immune responses against extraintestinal antigens, including tumor-associated antigens. Indeed, depletion or gross perturbation of the microbiota undermines the efficacy of cancer immunotherapy, thereby compromising the clinical outcome of cancer patients. In this review, we discuss the long-distance effects of the gut microbiota and the mechanisms governing antitumor immunity, such as the translocation of intestinal microbes into tumors, migration of leukocyte populations from the gut to the rest of the body, including tumors, as well as immunomodulatory microbial products and metabolites. The relationship between these pathways is incompletely understood, in particular the significance of the tumor microbiota with respect to the identification of host and/or microbial products that regulate the egress of bacteria and immunocytes toward tumor beds.
Collapse
Affiliation(s)
- Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Équipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Université Paris-Saclay, Ile-de-France, France; Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS), Villejuif, France.
| | - Marine Fidelle
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Équipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Université Paris-Saclay, Ile-de-France, France
| | - Guido Kroemer
- Gustave Roussy Cancer Campus, Villejuif, France; Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
35
|
Xing J, Shan J, Xue H, Zhang H, Cheng L, Hao J, Wang X. Multifunctional Adaptable Injectable TiN-Based Hydrogels for Antitumor and Antidrug-Resistant Bacterial Therapy. Adv Healthc Mater 2024; 13:e2400297. [PMID: 38877613 DOI: 10.1002/adhm.202400297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/04/2024] [Indexed: 06/16/2024]
Abstract
The close relationship between bacteria and tumors has recently attracted increasing attention, and an increasing number of resources are being invested in the research and development of biomedical materials designed for the treatment of both. In this study, prefabricated TiN nanodots (NDs) and Fe(CO)5 nanoparticles are combined into sodium alginate (ALG) hydrogels to create a biomedical material for the topical treatment of breast cancer and subcutaneous abscesses, and a pseudocatalytic hydrogel with intrinsic photothermal and antibacterial activities is synthesized. TiN+Fe(CO)5+ALG hydrogels are used to determine the ability of Fe(CO)5 to promote CO production. Moreover, TiN NDs catalyze the production of reactive oxygen species (ROS) from hydrogen peroxide in tumor microenvironments and exhibit excellent photothermal conversion properties. After local injection of the TiN+Fe(CO)5+ALG hydrogel into subcutaneous tumors and subcutaneous abscesses, and two-zone near-infrared (NIR-II) irradiation, tumor cells and methicillin-resistant Staphylococcus aureus are effectively removed by the hydrogel, the mouse epidermis exhibiting complete recovery within 8 d, indicating that this hydrogel exhibits better antibacterial efficacy than the small-molecule antibiotic penicillin. This study demonstrates the potential of novel hydrogels for antitumor and antimicrobial combination therapy and aims to provide design ideas for the research and development of multifunctional antitumor and antimicrobial drug combinations.
Collapse
Affiliation(s)
- Jianghao Xing
- Research Center for Translational Ledicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Jie Shan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Haowei Xue
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Hengguo Zhang
- College and Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Jiqing Hao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xianwen Wang
- Research Center for Translational Ledicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
36
|
Hu J, Ran S, Huang Z, Liu Y, Hu H, Zhou Y, Ding X, Yin J, Zhang Y. Antibacterial tellurium-containing polycarbonate drug carriers to eliminate intratumor bacteria for synergetic chemotherapy against colorectal cancer. Acta Biomater 2024; 185:323-335. [PMID: 38964527 DOI: 10.1016/j.actbio.2024.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Intratumor microbes have attracted great attention in cancer research due to its influence on the tumorigenesis, progression and metastasis of cancer. However, the therapeutic strategies targeting intratumoral microbes are still in their infancy. Specific microorganisms, such as Fusobacterium nucleatum (F. nucleatum), are abundant in various cancer and always result in the CRC progression and chemotherapy resistance. Here, a combined anticancer and antibacterial therapeutic strategy is proposed to deliver antitumor drug to the tumors containing intratumor microbiota by the antibacerial polymeric drug carriers. We construct oral tellurium-containing drug carriers using a complex of tellurium-containing polycarbonate with cisplatin (PTE@CDDP). The results show that the particle size of the prepared nanoparticles could be maintained at about 105 nm in the digestive system environment, which is in line with the optimal particle size of oral nanomedicine. In vitro mechanism study indicates that the tellurium-containing polymers are highly effective in killing F.nucleatum through a membrane disruption mechanism. The pharmacokinetic experiments confirmed that PTE@CDDP has the potential function of enhancing the oral bioavailability of cisplatin. Both in vitro and in vivo studies show that PTE@CDDP could inhibit intratumor F.nucleatum and lead to a reduction in cell proliferation and inflammation in the tumor site. Together, the study identifies that the CDDP-loaded tellurium-containing nanoparticles have great potential for treating the F.nucleatum-promoted colorectal cancer (CRC) by combining intratumor microbiota modulation and chemotherapy. The synergistic therapeutic strategy provide new insight into treating various cancers combined with bacterial infection. STATEMENT OF SIGNIFICANCE: The synthesized antibacterial polymer was first employed to remodel the intratumor microbes in tumor microenvironment (TME). Moreover, it was the first report of tellurium-containing polymers against F.nucleatum and employed for treatment of the CRC. A convenient oral dosage form of cisplatin (CDDP)-loaded tellurium-containing nanoparticles (PTE@CDDP) was adopted here, and the synergistic antibacterial/chemotherapy effect occurred. The PTE@CDDP could quickly and completely eliminate F.nucleatum in a safe dose. In the CRC model, PTE@CDDP effectively reversed the inflammation level and even restored the intestinal barrier damaged by F.nucleatum. The ultrasensitive ROS-responsiveness of PTE@CDDP triggered the fast oxidation and efficient drug release of CDDP and thus a highly efficient apoptosis of the tumors. Therefore, the tellurium-containing polymers are expected to serve as novel antibacterial agents in vivo and have great potential in the F.nucleatum-associated cancers. The achievements provided new insight into treating CRC and other cancers combined with bacterial infection.
Collapse
Affiliation(s)
- Jieni Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shujun Ran
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Zhengwei Huang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yanyuan Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haiyan Hu
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China.
| | - Yan Zhou
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China
| | - Xiaomin Ding
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China
| | - Junyi Yin
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China
| | - Yan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
37
|
Cao C, Yue S, Lu A, Liang C. Host-Gut Microbiota Metabolic Interactions and Their Role in Precision Diagnosis and Treatment of Gastrointestinal Cancers. Pharmacol Res 2024; 207:107321. [PMID: 39038631 DOI: 10.1016/j.phrs.2024.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
The critical role of the gut microbiome in gastrointestinal cancers is becoming increasingly clear. Imbalances in the gut microbial community, referred to as dysbiosis, are linked to increased risks for various forms of gastrointestinal cancers. Pathogens like Fusobacterium and Helicobacter pylori relate to the onset of esophageal and gastric cancers, respectively, while microbes such as Porphyromonas gingivalis and Clostridium species have been associated with a higher risk of pancreatic cancer. In colorectal cancer, bacteria such as Fusobacterium nucleatum are known to stimulate the growth of tumor cells and trigger cancer-promoting pathways. On the other hand, beneficial microbes like Bifidobacteria offer a protective effect, potentially inhibiting the development of gastrointestinal cancers. The potential for therapeutic interventions that manipulate the gut microbiome is substantial, including strategies to engineer anti-tumor metabolites and employ microbiota-based treatments. Despite the progress in understanding the influence of the microbiome on gastrointestinal cancers, significant challenges remain in identifying and understanding the precise contributions of specific microbial species and their metabolic products. This knowledge is essential for leveraging the role of the gut microbiome in the development of precise diagnostics and targeted therapies for gastrointestinal cancers.
Collapse
Affiliation(s)
- Chunhao Cao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Siran Yue
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510006, China; Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| |
Collapse
|
38
|
Mishra V, Mishra Y. Role of Gut Microbiome in Cancer Treatment. Indian J Microbiol 2024; 64:1310-1325. [PMID: 39282183 PMCID: PMC11399371 DOI: 10.1007/s12088-024-01340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/17/2024] [Indexed: 09/18/2024] Open
Abstract
The gut microbiota influences the effectiveness and side effects of cancer treatments, particularly immunotherapy and associated immune-related complications. This important involvement of the microbiome is supported by the patients receiving antibiotics responding poorly to immunotherapy. Relatively few research has examined the underlying processes, and until recently, data regarding the detection of the microbial organisms that trigger these effects were inconsistent. Since then, a deeper comprehension of the processes of action and taxonomic classification of the relevant species has been attained. It's been demonstrated that certain bacterial species can enhance the body's reaction to immune checkpoint inhibitors through the release of distinct metabolites or products. Nonetheless, in certain patients who are not responding, Gram-negative bacteria may have a dominating suppressive impact. Patients' propensity to react to immunotherapy can be somewhat accurately predicted by machine learning techniques based on their microbiome makeup. Consequently, there has been an increase in interest in modifying the microbiome makeup to enhance patient reaction to medication. Clinical proof-of-concept studies demonstrate that dietary modifications or fecal microbiota transplantation (FMT) might be used therapeutically to increase the efficacy of immunotherapy in cancer patients. Current developments and new approaches for microbiota-based cancer treatments have been emphasized. In conclusion, preclinical research on animals and human clinical trials has made tremendous progress in our understanding of the function of the gut microbiome in health and illness. These investigations have shed light on the effects of food, FMT, probiotics, prebiotics, and microbiome-disease connections. However, there are still a lot of issues and restrictions that must be resolved before this research can be used in real-world clinical settings. Graphical Abstract
Collapse
Affiliation(s)
- Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411 India
| |
Collapse
|
39
|
Peng F, Hu M, Su Z, Hu L, Guo L, Yang K. Intratumoral Microbiota as a Target for Advanced Cancer Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405331. [PMID: 39054925 DOI: 10.1002/adma.202405331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Indexed: 07/27/2024]
Abstract
In recent years, advancements in microbial sequencing technology have sparked an increasing interest in the bacteria residing within solid tumors and its distribution and functions in various tumors. Intratumoral bacteria critically modulate tumor oncogenesis and development through DNA damage induction, chronic inflammation, epigenetic alterations, and metabolic and immune regulation, while also influencing cancer treatment efficacy by affecting drug metabolism. In response to these discoveries, a variety of anti-cancer therapies targeting these microorganisms have emerged. These approaches encompass oncolytic therapy utilizing tumor-associated bacteria, the design of biomaterials based on intratumoral bacteria, the use of intratumoral bacterial components for drug delivery systems, and comprehensive strategies aimed at the eradication of tumor-promoting bacteria. Herein, this review article summarizes the distribution patterns of bacteria in different solid tumors, examines their impact on tumors, and evaluates current therapeutic strategies centered on tumor-associated bacteria. Furthermore, the challenges and prospects for developing drugs that target these bacterial communities are also explored, promising new directions for cancer treatment.
Collapse
Affiliation(s)
- Fei Peng
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Mengyuan Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiyue Su
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lingchuan Guo
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Kai Yang
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
- Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
40
|
Liu J, Li B, Li L, Ming X, Xu ZP. Advances in Nanomaterials for Immunotherapeutic Improvement of Cancer Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403024. [PMID: 38773882 DOI: 10.1002/smll.202403024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Indexed: 05/24/2024]
Abstract
Immuno-stimulative effect of chemotherapy (ISECT) is recognized as a potential alternative to conventional immunotherapies, however, the clinical application is constrained by its inefficiency. Metronomic chemotherapy, though designed to overcome these limitations, offers inconsistent results, with effectiveness varying based on cancer types, stages, and patient-specific factors. In parallel, a wealth of preclinical nanomaterials holds considerable promise for ISECT improvement by modulating the cancer-immunity cycle. In the area of biomedical nanomaterials, current literature reviews mainly concentrate on a specific category of nanomaterials and nanotechnological perspectives, while two essential issues are still lacking, i.e., a comprehensive analysis addressing the causes for ISECT inefficiency and a thorough summary elaborating the nanomaterials for ISECT improvement. This review thus aims to fill these gaps and catalyze further development in this field. For the first time, this review comprehensively discusses the causes of ISECT inefficiency. It then meticulously categorizes six types of nanomaterials for improving ISECT. Subsequently, practical strategies are further proposed for addressing inefficient ISECT, along with a detailed discussion on exemplary nanomedicines. Finally, this review provides insights into the challenges and perspectives for improving chemo-immunotherapy by innovations in nanomaterials.
Collapse
Affiliation(s)
- Jie Liu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, QLD, 4072, Australia
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 000000, China
- GoodMedX Tech Limited Company, Hong Kong SAR, 000000, China
| | - Bei Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xin Ming
- Departments of Cancer Biology and Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157, USA
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, QLD, 4072, Australia
- Institute of Biomedical Health Technology and Engineering, and Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, 518107, China
| |
Collapse
|
41
|
Endale HT, Tesfaye W, Hassen FS, Asrat WB, Temesgen EY, Shibabaw YY, Asefa T. Harmony unveiled: Intricate the interplay of dietary factor, gut microbiota, and colorectal cancer-A narrative review. SAGE Open Med 2024; 12:20503121241274724. [PMID: 39224896 PMCID: PMC11367611 DOI: 10.1177/20503121241274724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Diet plays a critical role in shaping the gut microbiome, which in turn regulates molecular activities in the colonic mucosa. The state and composition of the gut microbiome are key factors in the development of colorectal cancer. An altered gut microbiome, linked to weakened immune responses and the production of carcinogenic substances, is a significant contributor to colorectal cancer pathogenesis. Dietary changes that involve low-fiber and phytomolecule intake, coupled with higher consumption of red meat, can raise the risk of colorectal cancer. Salutary filaments, which reach the colon undigested, are metabolized by the gut microbiome, producing short-chain fatty acids. Short-chain fatty acids possess beneficial anti-inflammatory and antiproliferative properties that promote colon health. A well-balanced microbiome, supported by beneficial fibers and phytochemicals, can regulate the activation of proto-oncogenes and oncogenic pathways, thereby reducing cell proliferation. Recent research suggests that an overabundance of specific microbes, such as Fusobacterium nucleatum, may contribute to adverse changes in the colonic mucosa. Positive lifestyle adjustments have been demonstrated to effectively inhibit the growth of harmful opportunistic organisms. Synbiotics, which combine probiotics and prebiotics, can protect the intestinal mucosa by enhancing immune responses and decreasing the production of harmful metabolites, oxidative stress, and cell proliferation. This narrative review provides a concise understanding of evolving evidence regarding how diet influences the gut microbiome, leading to the restoration of the colonic epithelium. It underscores the importance of a healthy, plant-based diet and associated supplements in preventing colorectal cancer by enhancing gut microbiome health.
Collapse
Affiliation(s)
- Hiwot Tezera Endale
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Winta Tesfaye
- Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Fethiya Seid Hassen
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Wastina Bitewlign Asrat
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | | | - Yadelew Yimer Shibabaw
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tseganesh Asefa
- Department of Medical Nursing, School of Nursing, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
42
|
Furuta S. Microbiome-Stealth Regulator of Breast Homeostasis and Cancer Metastasis. Cancers (Basel) 2024; 16:3040. [PMID: 39272898 PMCID: PMC11394247 DOI: 10.3390/cancers16173040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cumulative evidence attests to the essential roles of commensal microbes in the physiology of hosts. Although the microbiome has been a major research subject since the time of Luis Pasteur and William Russell over 140 years ago, recent findings that certain intracellular bacteria contribute to the pathophysiology of healthy vs. diseased tissues have brought the field of the microbiome to a new era of investigation. Particularly, in the field of breast cancer research, breast-tumor-resident bacteria are now deemed to be essential players in tumor initiation and progression. This is a resurrection of Russel's bacterial cause of cancer theory, which was in fact abandoned over 100 years ago. This review will introduce some of the recent findings that exemplify the roles of breast-tumor-resident microbes in breast carcinogenesis and metastasis and provide mechanistic explanations for these phenomena. Such information would be able to justify the utility of breast-tumor-resident microbes as biomarkers for disease progression and therapeutic targets.
Collapse
Affiliation(s)
- Saori Furuta
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
43
|
Frances A, Lumeau A, Bery N, Gayral M, Stuani L, Sorbara M, Saland E, Pagan D, Hanoun N, Torrisani J, Lemarié A, Portais JC, Buscail L, Dusetti N, Sarry JE, Cordelier P. Cytidine deaminase-dependent mitochondrial biogenesis as a potential vulnerability in pancreatic cancer cells. Commun Biol 2024; 7:1065. [PMID: 39215188 PMCID: PMC11364846 DOI: 10.1038/s42003-024-06760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Cytidine deaminase (CDA) converts cytidine and deoxycytidine into uridine and deoxyuridine as part of the pyrimidine salvage pathway. Elevated levels of CDA are found in pancreatic tumors and associated with chemoresistance. Recent evidence suggests that CDA has additional functions in cancer cell biology. In this work, we uncover a novel role of CDA in pancreatic cancer cell metabolism. CDA silencing impairs mitochondrial metabolite production, respiration, and ATP production in pancreatic cancer cells, leading to a so-called Pasteur effect metabolic shift towards glycolysis. Conversely, we find that CDA expression promotes mitochondrial biogenesis and oxidative phosphorylation, independently of CDA deaminase activity. Furthermore, we observe that patient primary cells overexpressing CDA are more sensitive to mitochondria-targeting drugs. Collectively, this work shows that CDA plays a non-canonical role in pancreatic cancer biology by promoting mitochondrial function, which could be translated into novel therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Audrey Frances
- Team Therapeutic Innovation in Pancreatic Cancer, Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Audrey Lumeau
- Team Therapeutic Innovation in Pancreatic Cancer, Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Nicolas Bery
- Team Therapeutic Innovation in Pancreatic Cancer, Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Marion Gayral
- Team Therapeutic Innovation in Pancreatic Cancer, Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Lucille Stuani
- Team METAML-METabolism and Drug Resistance in Acute Myeloid Leukemia, Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
- Equipe de Recherche Labélisée Ligue Nationale Contre le Cancer en 2023, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Toulouse, France
| | - Marie Sorbara
- Team Therapeutic Innovation in Pancreatic Cancer, Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Estelle Saland
- Team METAML-METabolism and Drug Resistance in Acute Myeloid Leukemia, Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
- Equipe de Recherche Labélisée Ligue Nationale Contre le Cancer en 2023, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Toulouse, France
| | - Delphine Pagan
- Team Therapeutic Innovation in Pancreatic Cancer, Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Naïma Hanoun
- Team Therapeutic Innovation in Pancreatic Cancer, Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Jérôme Torrisani
- Team Therapeutic Innovation in Pancreatic Cancer, Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Anthony Lemarié
- Team Radiotherapy Optimising: From Molecular Signalling Pathways to Clinical Trials, Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Jean-Charles Portais
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Toulouse Biotechnology Institute-INSA de Toulouse INSA/CNRS 5504-UMR INSA/INRA 792, Toulouse, France
| | - Louis Buscail
- Team Therapeutic Innovation in Pancreatic Cancer, Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
- Service de Gastroentérologie et de pancréatologir, CHU Rangueil, Université de Toulouse, Toulouse, France
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Université Aix-Marseille, Marseille, France
| | - Jean-Emmanuel Sarry
- Team METAML-METabolism and Drug Resistance in Acute Myeloid Leukemia, Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
- Equipe de Recherche Labélisée Ligue Nationale Contre le Cancer en 2023, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Toulouse, France
| | - Pierre Cordelier
- Team Therapeutic Innovation in Pancreatic Cancer, Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France.
| |
Collapse
|
44
|
Sheng D, Jin C, Yue K, Yue M, Liang Y, Xue X, Li P, Zhao G, Zhang L. Pan-cancer atlas of tumor-resident microbiome, immunity and prognosis. Cancer Lett 2024; 598:217077. [PMID: 38908541 DOI: 10.1016/j.canlet.2024.217077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
The existence of microbiome in human tumors has been determined widely, but evaluating the contribution of intratumoral bacteria and fungi to tumor immunity and prognosis from a pan-cancer perspective remains absent. We designed an improved microbial analysis pipeline to reduce interference from host sequences, complemented with integration analysis of intratumoral microbiota at species level with clinical indicators, tumor microenvironment, and prognosis across cancer types. We found that intratumoral microbiota is associated with immunophenotyping, with high-immunity subtypes showing greater bacterial and fungal richness compared to low-immunity groups. We also noted that the combination of fungi and bacteria demonstrated promising prognostic value across cancer types. We, thus, present The Cancer Microbiota (TCMbio), an interactive platform that provides the intratumoral bacteria and fungi data, and a comprehensive analysis module for 33 types of cancers. This led to the discovery of clinical and prognostic significance of intratumoral microbes.
Collapse
Affiliation(s)
- Dashuang Sheng
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chuandi Jin
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kaile Yue
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Yue
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yijia Liang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinxin Xue
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Pingfu Li
- Shandong Huxley Medical Technology Co.,Ltd., Jinan, China
| | - Guoping Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
45
|
Yang K, Wang S, Ding Z, Zhang K, Zhu W, Wang H, Pan M, Li X, Wang H, Yu Z. Unveiling microbial dynamics in lung adenocarcinoma and adjacent nontumor tissues: insights from nicotine exposure and diverse clinical stages via nanopore sequencing technology. Front Cell Infect Microbiol 2024; 14:1397989. [PMID: 39258251 PMCID: PMC11385298 DOI: 10.3389/fcimb.2024.1397989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024] Open
Abstract
Background Lung is the largest mucosal area of the human body and directly connected to the external environment, facing microbial exposure and environmental stimuli. Therefore, studying the internal microorganisms of the lung is crucial for a deeper understanding of the relationship between microorganisms and the occurrence and progression of lung cancer. Methods Tumor and adjacent nontumor tissues were collected from 38 lung adenocarcinoma patients and used nanopore sequencing technology to sequence the 16s full-length sequence of bacteria, and combining bioinformatics methods to identify and quantitatively analyze microorganisms in tissues, as well as to enrich the metabolic pathways of microorganisms. Results the microbial composition in lung adenocarcinoma tissues is highly similar to that in adjacent tissues, but the alpha diversity is significantly lower than that in adjacent tissues. The difference analysis results show that the bacterial communities of Streptococcaceae, Lactobacillaceae, and Neisseriales were significantly enriched in cancer tissues. The results of metabolic pathway analysis indicate that pathways related to cellular communication, transcription, and protein synthesis were significantly enriched in cancer tissue. In addition, clinical staging analysis of nicotine exposure and lung cancer found that Haemophilus, paralinfluenzae, Streptococcus gordonii were significantly enriched in the nicotine exposure group, while the microbiota of Cardiobactereae and Cardiobacterales were significantly enriched in stage II tumors. The microbiota significantly enriched in IA-II stages were Neisseriaeae, Enterobacteriales, and Cardiobacterales, respectively. Conclusion Nanopore sequencing technology was performed on the full length 16s sequence, which preliminarily depicted the microbial changes and enrichment of microbial metabolic pathways in tumor and adjacent nontumor tissues. The relationship between nicotine exposure, tumor progression, and microorganisms was explored, providing a theoretical basis for the treatment of lung cancer through microbial targets.
Collapse
Affiliation(s)
- Kangli Yang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuaifeng Wang
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Zhang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huifen Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengshu Pan
- Department of Grassroots Medical, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiangnan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongmin Wang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
46
|
Herrera-Quintana L, Vázquez-Lorente H, Lopez-Garzon M, Cortés-Martín A, Plaza-Diaz J. Cancer and the Microbiome of the Human Body. Nutrients 2024; 16:2790. [PMID: 39203926 PMCID: PMC11357655 DOI: 10.3390/nu16162790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer remains a public health concern worldwide, with its incidence increasing worldwide and expected to continue growing during the next decades. The microbiome has emerged as a central factor in human health and disease, demonstrating an intricate relationship between the microbiome and cancer. Although some microbiomes present within local tissues have been shown to restrict cancer development, mainly by interacting with cancer cells or the host immune system, some microorganisms are harmful to human health and risk factors for cancer development. This review summarizes the recent evidence concerning the microbiome and some of the most common cancer types (i.e., lung, head and neck, breast, gastric, colorectal, prostate, and cervix cancers), providing a general overview of future clinical approaches and perspectives.
Collapse
Affiliation(s)
- Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Maria Lopez-Garzon
- Biomedical Group (BIO277), Department of Physical Therapy, Health Sciences Faculty, University of Granada, 18171 Granada, Spain;
| | - Adrián Cortés-Martín
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, 18016 Granada, Spain;
- APC Microbiome Ireland, School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
47
|
Han ZY, Fu ZJ, Wang YZ, Zhang C, Chen QW, An JX, Zhang XZ. Probiotics functionalized with a gallium-polyphenol network modulate the intratumor microbiota and promote anti-tumor immune responses in pancreatic cancer. Nat Commun 2024; 15:7096. [PMID: 39154092 PMCID: PMC11330462 DOI: 10.1038/s41467-024-51534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
The intratumor microbiome imbalance in pancreatic cancer promotes a tolerogenic immune response and triggers immunotherapy resistance. Here we show that Lactobacillus rhamnosus GG probiotics, outfitted with a gallium-polyphenol network (LGG@Ga-poly), bolster immunotherapy in pancreatic cancer by modulating microbiota-immune interactions. Upon oral administration, LGG@Ga-poly targets pancreatic tumors specifically, and selectively eradicates tumor-promoting Proteobacteria and microbiota-derived lipopolysaccharides through a gallium-facilitated disruption of bacterial iron respiration. This elimination of intratumor microbiota impedes the activation of tumoral Toll-like receptors, thus reducing immunosuppressive PD-L1 and interleukin-1β expression by tumor cells, diminishing immunotolerant myeloid populations, and improving the infiltration of cytotoxic T lymphocytes in tumors. Moreover, LGG@Ga-poly hampers pancreatic tumor growth in both preventive and therapeutic contexts, and amplifies the antitumor efficacy of immune checkpoint blockade in preclinical cancer models in female mice. Overall, we offer evidence that thoughtfully designed biomaterials targeting intratumor microbiota can efficaciously augment immunotherapy for the challenging pancreatic cancer.
Collapse
Affiliation(s)
- Zi-Yi Han
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhuang-Jiong Fu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Yu-Zhang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Cheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jia-Xin An
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China.
| |
Collapse
|
48
|
Zheng L, Zhan Y, Wang C, Fan Q, Sun D, Li Y, Xiong Y. Technological advances and challenges in constructing complex gut organoid systems. Front Cell Dev Biol 2024; 12:1432744. [PMID: 39206092 PMCID: PMC11349554 DOI: 10.3389/fcell.2024.1432744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Recent advancements in organoid technology have heralded a transformative era in biomedical research, characterized by the emergence of gut organoids that replicate the structural and functional complexity of the human intestines. These stem cell-derived structures provide a dynamic platform for investigating intestinal physiology, disease pathogenesis, and therapeutic interventions. This model outperforms traditional two-dimensional cell cultures in replicating cell interactions and tissue dynamics. Gut organoids represent a significant leap towards personalized medicine. They provide a predictive model for human drug responses, thereby minimizing reliance on animal models and paving the path for more ethical and relevant research approaches. However, the transition from basic organoid models to more sophisticated, biomimetic systems that encapsulate the gut's multifaceted environment-including its interactions with microbial communities, immune cells, and neural networks-presents significant scientific challenges. This review concentrates on recent technological strides in overcoming these barriers, emphasizing innovative engineering approaches for integrating diverse cell types to replicate the gut's immune and neural components. It also explores the application of advanced fabrication techniques, such as 3D bioprinting and microfluidics, to construct organoids that more accurately replicate human tissue architecture. They provide insights into the intricate workings of the human gut, fostering the development of targeted, effective treatments. These advancements hold promise in revolutionizing disease modeling and drug discovery. Future research directions aim at refining these models further, making them more accessible and scalable for wider applications in scientific inquiry and clinical practice, thus heralding a new era of personalized and predictive medicine.
Collapse
Affiliation(s)
- Longjin Zheng
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Yang Zhan
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Chenxuan Wang
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Qigui Fan
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Denglong Sun
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Yingmeng Li
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Yanxia Xiong
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| |
Collapse
|
49
|
Qiu J, Jiang Y, Ye N, Jin G, Shi H, Qian D. Leveraging the intratumoral microbiota to treat human cancer: are engineered exosomes an effective strategy? J Transl Med 2024; 22:728. [PMID: 39103887 DOI: 10.1186/s12967-024-05531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Cancer remains a leading cause of global mortality. The tumor microbiota has increasingly been recognized as a key regulator of cancer onset and progression, in addition to shaping tumor responses to immunotherapy. Microbes, including viruses, bacteria, fungi, and other eukaryotic species can impact the internal homeostasis and health of humans. Research focused on the gut microflora and the intratumoral microbiome has revolutionized the current understanding of how tumors grow, progress, and resist therapeutic interventions. Even with this research, however, there remains relatively little that is known with respect to the abundance of microbes and their effects on tumors and the tumor microenvironment. Engineered exosomes are a class of artificial extracellular nanovesicles that can actively transport small molecule drugs and nucleic acids, which have the broad prospects of tumor cell therapy. The present review offers an overview of recent progress and challenges associated with the intratumoral microbiome and engineered exosomes in the context of cancer research. These discussions are used to inform the construction of a novel framework for engineered exosome-mediated targeted drug delivery, taking advantage of intratumoral microbiota diversity as a strategic asset and thereby providing new opportunities to more effectively treat and manage cancer in the clinic.
Collapse
Affiliation(s)
- Jie Qiu
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Yuancong Jiang
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Nanwei Ye
- Department of Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Gan Jin
- Department of Vascular Hernia Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Hao Shi
- Department of Radiotherapy, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu, Jiangsu Province, 215500, China
- Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People ' s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang Province, 310014, China
| |
Collapse
|
50
|
Grigorescu RR, Husar-Sburlan IA, Gheorghe C. Pancreatic Cancer: A Review of Risk Factors. Life (Basel) 2024; 14:980. [PMID: 39202722 PMCID: PMC11355429 DOI: 10.3390/life14080980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Pancreatic adenocarcinoma is one of the most lethal types of gastrointestinal cancer despite the latest medical advances. Its incidence has continuously increased in recent years in developed countries. The location of the pancreas can result in the initial symptoms of neoplasia being overlooked, which can lead to a delayed diagnosis and a subsequent reduction in the spectrum of available therapeutic options. The role of modifiable risk factors in pancreatic cancer has been extensively studied in recent years, with smoking and alcohol consumption identified as key contributors. However, the few screening programs that have been developed focus exclusively on genetic factors, without considering the potential impact of modifiable factors on disease occurrence. Thus, fully understanding and detecting the risk factors for pancreatic cancer represents an important step in the prevention and early diagnosis of this type of neoplasia. This review reports the available evidence on different risk factors and identifies the areas that could benefit the most from additional studies.
Collapse
Affiliation(s)
- Raluca Roxana Grigorescu
- Gastroenterology Department, “Sfanta Maria” Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | | | - Cristian Gheorghe
- Center for Digestive Disease and Liver Transplantation, Fundeni Clinical Institute, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|