1
|
Qian L, Sun R, Aebersold R, Bühlmann P, Sander C, Guo T. AI-empowered perturbation proteomics for complex biological systems. CELL GENOMICS 2024; 4:100691. [PMID: 39488205 DOI: 10.1016/j.xgen.2024.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/02/2024] [Accepted: 10/06/2024] [Indexed: 11/04/2024]
Abstract
The insufficient availability of comprehensive protein-level perturbation data is impeding the widespread adoption of systems biology. In this perspective, we introduce the rationale, essentiality, and practicality of perturbation proteomics. Biological systems are perturbed with diverse biological, chemical, and/or physical factors, followed by proteomic measurements at various levels, including changes in protein expression and turnover, post-translational modifications, protein interactions, transport, and localization, along with phenotypic data. Computational models, employing traditional machine learning or deep learning, identify or predict perturbation responses, mechanisms of action, and protein functions, aiding in therapy selection, compound design, and efficient experiment design. We propose to outline a generic PMMP (perturbation, measurement, modeling to prediction) pipeline and build foundation models or other suitable mathematical models based on large-scale perturbation proteomic data. Finally, we contrast modeling between artificially and naturally perturbed systems and highlight the importance of perturbation proteomics for advancing our understanding and predictive modeling of biological systems.
Collapse
Affiliation(s)
- Liujia Qian
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Rui Sun
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | | | - Chris Sander
- Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Boston, MA, USA; Ludwig Center at Harvard, Boston, MA, USA.
| | - Tiannan Guo
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
2
|
Curley M, Rai M, Chuang CL, Pagala V, Stephan A, Coleman Z, Robles-Murguia M, Wang YD, Peng J, Demontis F. Transgenic sensors reveal compartment-specific effects of aggregation-prone proteins on subcellular proteostasis during aging. CELL REPORTS METHODS 2024; 4:100875. [PMID: 39383859 DOI: 10.1016/j.crmeth.2024.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
Loss of proteostasis is a hallmark of aging that underlies many age-related diseases. Different cell compartments experience distinctive challenges in maintaining protein quality control, but how aging regulates subcellular proteostasis remains underexplored. Here, by targeting the misfolding-prone FlucDM luciferase to the cytoplasm, mitochondria, and nucleus, we established transgenic sensors to examine subcellular proteostasis in Drosophila. Analysis of detergent-insoluble and -soluble levels of compartment-targeted FlucDM variants indicates that thermal stress, cold shock, and pro-longevity inter-organ signaling differentially affect subcellular proteostasis during aging. Moreover, aggregation-prone proteins that cause different neurodegenerative diseases induce a diverse range of outcomes on FlucDM insolubility, suggesting that subcellular proteostasis is impaired in a disease-specific manner. Further analyses with FlucDM and mass spectrometry indicate that pathogenic tauV337M produces an unexpectedly complex regulation of solubility for different FlucDM variants and protein subsets. Altogether, compartment-targeted FlucDM sensors pinpoint a diverse modulation of subcellular proteostasis by aging regulators.
Collapse
Affiliation(s)
- Michelle Curley
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mamta Rai
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Chia-Lung Chuang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Zane Coleman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Maricela Robles-Murguia
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
3
|
Pollak R, Koch L, König B, Ribeiro SS, Samanta N, Huber K, Ebbinghaus S. Cell stress and phase separation stabilize the monomeric state of pseudoisocyanine chloride employed as a self-assembly crowding sensor. Commun Chem 2024; 7:230. [PMID: 39375435 PMCID: PMC11458801 DOI: 10.1038/s42004-024-01315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
Cellular stress and ageing involve an increase in crowding and aggregation of amylogenic proteins. We here investigate if crowding is the intrinsic cause of aggregation and utilise a previously established non-protein aggregation sensor, namely pseudoisocyanine chloride (PIC). PIC shows fibrillization in cells into a highly fluorescent J-aggregated state and is sensitive to crowding. Surprisingly, cell stress conditions stabilise the monomeric rather than the aggregated state of PIC both in the cytoplasm and in stress granules. Regarding the different physiochemical changes of the cytoplasm occurring upon cell stress, involving volume reduction, phase separation and solidification, the intrinsic crowding effect is not the key factor to drive associated self-assembly processes.
Collapse
Affiliation(s)
- Roland Pollak
- Lehrstuhl für Biophysikalische Chemie, Ruhr-Universität Bochum, Bochum, Germany
- Institut für Physikalische und Theoretische Chemie, TU Braunschweig, Braunschweig, Germany
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, Bochum, Germany
| | - Leon Koch
- Institute of Physical Chemistry, University Paderborn, Paderborn, Germany
| | - Benedikt König
- Lehrstuhl für Biophysikalische Chemie, Ruhr-Universität Bochum, Bochum, Germany
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, Bochum, Germany
| | - Sara S Ribeiro
- Lehrstuhl für Biophysikalische Chemie, Ruhr-Universität Bochum, Bochum, Germany
- Institut für Physikalische und Theoretische Chemie, TU Braunschweig, Braunschweig, Germany
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, Bochum, Germany
| | - Nirnay Samanta
- Institut für Physikalische und Theoretische Chemie, TU Braunschweig, Braunschweig, Germany
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, Saint Louis, MO, USA
| | - Klaus Huber
- Institute of Physical Chemistry, University Paderborn, Paderborn, Germany.
| | - Simon Ebbinghaus
- Lehrstuhl für Biophysikalische Chemie, Ruhr-Universität Bochum, Bochum, Germany.
- Institut für Physikalische und Theoretische Chemie, TU Braunschweig, Braunschweig, Germany.
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, Bochum, Germany.
| |
Collapse
|
4
|
Song J. Molecular Mechanisms of Phase Separation and Amyloidosis of ALS/FTD-linked FUS and TDP-43. Aging Dis 2024; 15:2084-2112. [PMID: 38029395 PMCID: PMC11346406 DOI: 10.14336/ad.2023.1118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023] Open
Abstract
FUS and TDP-43, two RNA-binding proteins from the heterogeneous nuclear ribonucleoprotein family, have gained significant attention in the field of neurodegenerative diseases due to their association with amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). They possess folded domains for binding ATP and various nucleic acids including DNA and RNA, as well as substantial intrinsically disordered regions (IDRs) including prion-like domains (PLDs) and RG-/RGG-rich regions. They play vital roles in various cellular processes, including transcription, splicing, microRNA maturation, RNA stability and transport and DNA repair. In particular, they are key components for forming ribonucleoprotein granules and stress granules (SGs) through homotypic or heterotypic liquid-liquid phase separation (LLPS). Strikingly, liquid-like droplets formed by FUS and TDP-43 may undergo aging to transform into less dynamic assemblies such as hydrogels, inclusions, and amyloid fibrils, which are the pathological hallmarks of ALS and FTD. This review aims to synthesize and consolidate the biophysical knowledge of the sequences, structures, stability, dynamics, and inter-domain interactions of FUS and TDP-43 domains, so as to shed light on the molecular mechanisms underlying their liquid-liquid phase separation (LLPS) and amyloidosis. The review further delves into the mechanisms through which ALS-causing mutants of the well-folded hPFN1 disrupt the dynamics of LLPS of FUS prion-like domain, providing key insights into a potential mechanism for misfolding/aggregation-prone proteins to cause neurodegenerative diseases and aging by gain of functions. With better understanding of different biophysical aspects of FUS and TDP-43, the ultimate goal is to develop drugs targeting LLPS and amyloidosis, which could mediate protein homeostasis within cells and lead to new treatments for currently intractable diseases, particularly neurodegenerative diseases such as ALS, FTD and aging. However, the study of membrane-less organelles and condensates is still in its infancy and therefore the review also highlights key questions that require future investigation.
Collapse
|
5
|
Shea E, Toniato J, Simmons C. Inactivation kinetics for surrogates of common foodborne pathogens during food residue drying. J Food Sci 2024; 89:5788-5798. [PMID: 39086068 DOI: 10.1111/1750-3841.17241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 08/02/2024]
Abstract
Postconsumer household food residues can act as useful substrates for other industries, but transporting high-moisture material corresponds to high fuel use and associated greenhouse gas production. Drying food residues at the household level reduces transportation weight, increases stability, and preserves the nutritional quality of recovered material. Mitigating foodborne microbiological safety risks is crucial to encourage the development of novel methods to rapidly dry and stabilize food residues. The objective of this study was to improve the prediction of bacterial pathogen inactivation under various thermal and drying processes in a synthetic mixture of residual food material (RFM). The log reduction rate was measured for Escherichia coli, Enterococcus faecium, and Listeria innocua (surrogates of common foodborne pathogens) in RFM under different moisture contents (12% and 25% by fresh weight) and temperatures (50, 55, and 60°C). Inactivation data were used to determine D- and z-values and to fit a multiple regression model to predict log(D-values) in response to temperature and moisture content. Across conditions, D-values were measured to be 5.1-120, 4.6-123, and 32-545 min for E. coli, L. innocua, and E. faecium, respectively. Temperature sensitivities were significantly higher in lower moisture RFM for E. coli and L. innocua. Applying E. coli inactivation models during RFM at 55°C yielded inactivation rates that aligned with experimental values after 5 min (0.1 vs. 0-0.1 logs), 30 min (2.1 vs. 1.3-2.3 logs), and 90 min (7.2 vs. 7.1-8.9 logs). These results can inform the design of RFM drying and stabilization processes to promote pathogen inactivation and safety in downstream applications of dried material.
Collapse
Affiliation(s)
- Emily Shea
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| | - Juliano Toniato
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| | - Christopher Simmons
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| |
Collapse
|
6
|
Pepelnjak M, Velten B, Näpflin N, von Rosen T, Palmiero UC, Ko JH, Maynard HD, Arosio P, Weber-Ban E, de Souza N, Huber W, Picotti P. In situ analysis of osmolyte mechanisms of proteome thermal stabilization. Nat Chem Biol 2024; 20:1053-1065. [PMID: 38424171 PMCID: PMC11288892 DOI: 10.1038/s41589-024-01568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/03/2024] [Indexed: 03/02/2024]
Abstract
Organisms use organic molecules called osmolytes to adapt to environmental conditions. In vitro studies indicate that osmolytes thermally stabilize proteins, but mechanisms are controversial, and systematic studies within the cellular milieu are lacking. We analyzed Escherichia coli and human protein thermal stabilization by osmolytes in situ and across the proteome. Using structural proteomics, we probed osmolyte effects on protein thermal stability, structure and aggregation, revealing common mechanisms but also osmolyte- and protein-specific effects. All tested osmolytes (trimethylamine N-oxide, betaine, glycerol, proline, trehalose and glucose) stabilized many proteins, predominantly via a preferential exclusion mechanism, and caused an upward shift in temperatures at which most proteins aggregated. Thermal profiling of the human proteome provided evidence for intrinsic disorder in situ but also identified potential structure in predicted disordered regions. Our analysis provides mechanistic insight into osmolyte function within a complex biological matrix and sheds light on the in situ prevalence of intrinsically disordered regions.
Collapse
Affiliation(s)
- Monika Pepelnjak
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Britta Velten
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Centre for Organismal Studies (COS) & Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Nicolas Näpflin
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Tatjana von Rosen
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zurich, Zurich, Switzerland
| | - Umberto Capasso Palmiero
- Department of Chemistry and Applied Biosciences, Institute of Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Jeong Hoon Ko
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute of Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Eilika Weber-Ban
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zurich, Zurich, Switzerland
| | - Natalie de Souza
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biological Laboratory, Heidelberg, Germany
| | - Paola Picotti
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Montoya MR, Quanrud GM, Mei L, Moñtano JL, Hong C, Genereux JC. Factors affecting protein recovery during Hsp40 affinity profiling. Anal Bioanal Chem 2024; 416:4249-4260. [PMID: 38850318 PMCID: PMC11271386 DOI: 10.1007/s00216-024-05362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024]
Abstract
The identification and quantification of misfolded proteins from complex mixtures is important for biological characterization and disease diagnosis, but remains a major bioanalytical challenge. We have developed Hsp40 Affinity Profiling as a bioanalytical approach to profile protein stability in response to cellular stress. In this assay, we ectopically introduce the Hsp40 FlagDNAJB8H31Q into cells and use quantitative proteomics to determine how protein affinity for DNAJB8 changes in the presence of cellular stress, without regard for native clients. Herein, we evaluate potential approaches to improve the performance of this bioanalytical assay. We find that although intracellular crosslinking increases recovery of protein interactors, this is not enough to overcome the relative drop in DNAJB8 recovery. While the J-domain promotes Hsp70 association, it does not affect the yield of protein association with DNAJB8 under basal conditions. By contrast, crosslinking and J-domain ablation both substantially increase relative protein interactor recovery with the structurally distinct Class B Hsp40 DNAJB1 but are completely compensated by poorer yield of DNAJB1 itself. Cellular thermal stress promotes increased affinity between DNAJB8H31Q and interacting proteins, as expected for interactions driven by recognition of misfolded proteins. DNAJB8WT does not demonstrate such a property, suggesting that under stress misfolded proteins are handed off to Hsp70. Hence, we find that DNAJB8H31Q is still our most effective recognition element for the recovery of destabilized client proteins following cellular stress.
Collapse
Affiliation(s)
- Maureen R Montoya
- Department of Chemistry, University of California, 501 Big Springs Rd, Riverside, CA, 92521, USA
| | - Guy M Quanrud
- Department of Chemistry, University of California, 501 Big Springs Rd, Riverside, CA, 92521, USA
| | - Liangyong Mei
- Department of Chemistry, University of North Florida, Jacksonville, FL, USA
| | - José L Moñtano
- Department of Chemistry, University of California, 501 Big Springs Rd, Riverside, CA, 92521, USA
| | - Caleb Hong
- Department of Chemistry, University of California, 501 Big Springs Rd, Riverside, CA, 92521, USA
| | - Joseph C Genereux
- Department of Chemistry, University of California, 501 Big Springs Rd, Riverside, CA, 92521, USA.
| |
Collapse
|
8
|
Rodella C, Lazaridi S, Lemmin T. TemBERTure: advancing protein thermostability prediction with deep learning and attention mechanisms. BIOINFORMATICS ADVANCES 2024; 4:vbae103. [PMID: 39040220 PMCID: PMC11262459 DOI: 10.1093/bioadv/vbae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Motivation Understanding protein thermostability is essential for numerous biotechnological applications, but traditional experimental methods are time-consuming, expensive, and error-prone. Recently, deep learning (DL) techniques from natural language processing (NLP) was extended to the field of biology, since the primary sequence of proteins can be viewed as a string of amino acids that follow a physicochemical grammar. Results In this study, we developed TemBERTure, a DL framework that predicts thermostability class and melting temperature from protein sequences. Our findings emphasize the importance of data diversity for training robust models, especially by including sequences from a wider range of organisms. Additionally, we suggest using attention scores from Deep Learning models to gain deeper insights into protein thermostability. Analyzing these scores in conjunction with the 3D protein structure can enhance understanding of the complex interactions among amino acid properties, their positioning, and the surrounding microenvironment. By addressing the limitations of current prediction methods and introducing new exploration avenues, this research paves the way for more accurate and informative protein thermostability predictions, ultimately accelerating advancements in protein engineering. Availability and implementation TemBERTure model and the data are available at: https://github.com/ibmm-unibe-ch/TemBERTure.
Collapse
Affiliation(s)
- Chiara Rodella
- Institute of Biochemistry and Molecular Medicine (IBMM), University of Bern, Bern CH-3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern CH-3012, Switzerland
| | - Symela Lazaridi
- Institute of Biochemistry and Molecular Medicine (IBMM), University of Bern, Bern CH-3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern CH-3012, Switzerland
| | - Thomas Lemmin
- Institute of Biochemistry and Molecular Medicine (IBMM), University of Bern, Bern CH-3012, Switzerland
| |
Collapse
|
9
|
Yang L, Guo CW, Luo QM, Guo ZF, Chen L, Ishihama Y, Li P, Yang H, Gao W. Thermostability-assisted limited proteolysis-coupled mass spectrometry for capturing drug target proteins and sites. Anal Chim Acta 2024; 1312:342755. [PMID: 38834267 DOI: 10.1016/j.aca.2024.342755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Identifying drug-binding targets and their corresponding sites is crucial for drug discovery and mechanism studies. Limited proteolysis-coupled mass spectrometry (LiP-MS) is a sophisticated method used for the detection of compound and protein interactions. However, in some cases, LiP-MS cannot identify the target proteins due to the small structure changes or the lack of enrichment of low-abundant protein. To overcome this drawback, we developed a thermostability-assisted limited proteolysis-coupled mass spectrometry (TALiP-MS) approach for efficient drug target discovery. RESULTS We proved that the novel strategy, TALiP-MS, could efficiently identify target proteins of various ligands, including cyclosporin A (a calcineurin inhibitor), geldanamycin (an HSP90 inhibitor), and staurosporine (a kinase inhibitor), with accurately recognizing drug-binding domains. The TALiP protocol increased the number of target peptides detected in LiP-MS experiments by 2- to 8-fold. Meanwhile, the TALiP-MS approach can not only identify both ligand-binding stability and destabilization proteins but also shows high complementarity with the thermal proteome profiling (TPP) and machine learning-based limited proteolysis (LiP-Quant) methods. The developed TALiP-MS approach was applied to identify the target proteins of celastrol (CEL), a natural product known for its strong antioxidant and anti-cancer angiogenesis effect. Among them, four proteins, MTHFD1, UBA1, ACLY, and SND1 were further validated for their strong affinity to CEL by using cellular thermal shift assay. Additionally, the destabilized proteins induced by CEL such as TAGLN2 and CFL1 were also validated. SIGNIFICANCE Collectively, these findings underscore the efficacy of the TALiP-MS method for identifying drug targets, elucidating binding sites, and even detecting drug-induced conformational changes in target proteins in complex proteomes.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Chen-Wan Guo
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qi-Ming Luo
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zi-Fan Guo
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Ling Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
10
|
Manriquez-Sandoval E, Brewer J, Lule G, Lopez S, Fried SD. FLiPPR: A Processor for Limited Proteolysis (LiP) Mass Spectrometry Data Sets Built on FragPipe. J Proteome Res 2024; 23:2332-2342. [PMID: 38787630 DOI: 10.1021/acs.jproteome.3c00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Here, we present FLiPPR, or FragPipe LiP (limited proteolysis) Processor, a tool that facilitates the analysis of data from limited proteolysis mass spectrometry (LiP-MS) experiments following primary search and quantification in FragPipe. LiP-MS has emerged as a method that can provide proteome-wide information on protein structure and has been applied to a range of biological and biophysical questions. Although LiP-MS can be carried out with standard laboratory reagents and mass spectrometers, analyzing the data can be slow and poses unique challenges compared to typical quantitative proteomics workflows. To address this, we leverage FragPipe and then process its output in FLiPPR. FLiPPR formalizes a specific data imputation heuristic that carefully uses missing data in LiP-MS experiments to report on the most significant structural changes. Moreover, FLiPPR introduces a data merging scheme and a protein-centric multiple hypothesis correction scheme, enabling processed LiP-MS data sets to be more robust and less redundant. These improvements strengthen statistical trends when previously published data are reanalyzed with the FragPipe/FLiPPR workflow. We hope that FLiPPR will lower the barrier for more users to adopt LiP-MS, standardize statistical procedures for LiP-MS data analysis, and systematize output to facilitate eventual larger-scale integration of LiP-MS data.
Collapse
Affiliation(s)
- Edgar Manriquez-Sandoval
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Joy Brewer
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Gabriela Lule
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Samanta Lopez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Stephen D Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
11
|
Basu S, Subedi U, Tonelli M, Afshinpour M, Tiwari N, Fuentes EJ, Chakravarty S. Assessing the functional roles of coevolving PHD finger residues. Protein Sci 2024; 33:e5065. [PMID: 38923615 PMCID: PMC11201814 DOI: 10.1002/pro.5065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/21/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
Although in silico folding based on coevolving residue constraints in the deep-learning era has transformed protein structure prediction, the contributions of coevolving residues to protein folding, stability, and other functions in physical contexts remain to be clarified and experimentally validated. Herein, the PHD finger module, a well-known histone reader with distinct subtypes containing subtype-specific coevolving residues, was used as a model to experimentally assess the contributions of coevolving residues and to clarify their specific roles. The results of the assessment, including proteolysis and thermal unfolding of wildtype and mutant proteins, suggested that coevolving residues have varying contributions, despite their large in silico constraints. Residue positions with large constraints were found to contribute to stability in one subtype but not others. Computational sequence design and generative model-based energy estimates of individual structures were also implemented to complement the experimental assessment. Sequence design and energy estimates distinguish coevolving residues that contribute to folding from those that do not. The results of proteolytic analysis of mutations at positions contributing to folding were consistent with those suggested by sequence design and energy estimation. Thus, we report a comprehensive assessment of the contributions of coevolving residues, as well as a strategy based on a combination of approaches that should enable detailed understanding of the residue contributions in other large protein families.
Collapse
Affiliation(s)
- Shraddha Basu
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Ujwal Subedi
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Maral Afshinpour
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Nitija Tiwari
- Department of Biochemistry & Molecular BiologyUniversity of IowaIowa CityIowaUSA
| | - Ernesto J. Fuentes
- Department of Biochemistry & Molecular BiologyUniversity of IowaIowa CityIowaUSA
| | - Suvobrata Chakravarty
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| |
Collapse
|
12
|
Hua Y, Qin Z, Gao L, Zhou M, Xue Y, Li Y, Xie J. Protein nanoparticles as drug delivery systems for cancer theranostics. J Control Release 2024; 371:429-444. [PMID: 38849096 DOI: 10.1016/j.jconrel.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/18/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Protein-based nanoparticles have garnered significant attention in theranostic applications due to their superior biocompatibility, exceptional biodegradability and ease of functionality. Compared to other nanocarriers, protein-based nanoparticles offer additional advantages, including biofunctionality and precise molecular recognition abilities, which make them highly effective in navigating complex biological environments. Moreover, proteins can serve as powerful tools with self-assembling structures and reagents that enhance cell penetration. And their derivation from abundant renewable sources and ability to degrade into harmless amino acids further enhance their suitability for biomedical applications. However, protein-based nanoparticles have so far not realized their full potential. In this review, we summarize recent advances in the use of protein nanoparticles in tumor diagnosis and treatment and outline typical methods for preparing protein nanoparticles. The review of protein nanoparticles may provide useful new insights into the development of biomaterial fabrication.
Collapse
Affiliation(s)
- Yue Hua
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Zibo Qin
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education; Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Lin Gao
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education; Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Mei Zhou
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education; Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yonger Xue
- Center for BioDelivery Sciences, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, PR China.
| | - Yue Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau SAR, China.
| | - Jinbing Xie
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education; Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China.
| |
Collapse
|
13
|
Li M, Tang H, Qing R, Wang Y, Liu J, Wang R, Lyu S, Ma L, Xu P, Zhang S, Tao F. Design of a water-soluble transmembrane receptor kinase with intact molecular function by QTY code. Nat Commun 2024; 15:4293. [PMID: 38858360 PMCID: PMC11164701 DOI: 10.1038/s41467-024-48513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/03/2024] [Indexed: 06/12/2024] Open
Abstract
Membrane proteins are critical to biological processes and central to life sciences and modern medicine. However, membrane proteins are notoriously challenging to study, mainly owing to difficulties dictated by their highly hydrophobic nature. Previously, we reported QTY code, which is a simple method for designing water-soluble membrane proteins. Here, we apply QTY code to a transmembrane receptor, histidine kinase CpxA, to render it completely water-soluble. The designed CpxAQTY exhibits expected biophysical properties and highly preserved native molecular function, including the activities of (i) autokinase, (ii) phosphotransferase, (iii) phosphatase, and (iv) signaling receptor, involving a water-solubilized transmembrane domain. We probe the principles underlying the balance of structural stability and activity in the water-solubilized transmembrane domain. Computational approaches suggest that an extensive and dynamic hydrogen-bond network introduced by QTY code and its flexibility may play an important role. Our successful functional preservation further substantiates the robustness and comprehensiveness of QTY code.
Collapse
Affiliation(s)
- Mengke Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui Qing
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanze Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiongqin Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shan Lyu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lina Ma
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
14
|
Qiu Y, Huang T, Cai YD. Review of predicting protein stability changes upon variations. Proteomics 2024; 24:e2300371. [PMID: 38643379 DOI: 10.1002/pmic.202300371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
Forecasting alterations in protein stability caused by variations holds immense importance. Improving the thermal stability of proteins is important for biomedical and industrial applications. This review discusses the latest methods for predicting the effects of mutations on protein stability, databases containing protein mutations and thermodynamic parameters, and experimental techniques for efficiently assessing protein stability in high-throughput settings. Various publicly available databases for protein stability prediction are introduced. Furthermore, state-of-the-art computational approaches for anticipating protein stability changes due to variants are reviewed. Each method's types of features, base algorithm, and prediction results are also detailed. Additionally, some experimental approaches for verifying the prediction results of computational methods are introduced. Finally, the review summarizes the progress and challenges of protein stability prediction and discusses potential models for future research directions.
Collapse
Affiliation(s)
- Yiling Qiu
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
15
|
Brytan W, Shortall K, Duarte F, Soulimane T, Padrela L. Contribution of a C-Terminal Extension to the Substrate Affinity and Oligomeric Stability of Aldehyde Dehydrogenase from Thermus thermophilus HB27. Biochemistry 2024; 63:1075-1088. [PMID: 38602394 PMCID: PMC11080044 DOI: 10.1021/acs.biochem.3c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
Aldehyde dehydrogenase enzymes (ALDHs) are widely studied for their roles in disease propagation and cell metabolism. Their use in biocatalysis applications, for the conversion of aldehydes to carboxylic acids, has also been recognized. Understanding the structural features and functions of both prokaryotic and eukaryotic ALDHs is key to uncovering novel applications of the enzyme and probing its role in disease propagation. The thermostable enzyme ALDHTt originating fromThermus thermophilus, strain HB27, possesses a unique extension of its C-terminus, which has been evolutionarily excluded from mesophilic counterparts and other thermophilic enzymes in the same genus. In this work, the thermophilic adaptation is studied by the expression and optimized purification of mutant ALDHTt-508, with a 22-amino acid truncation of the C-terminus. The mutant shows increased activity throughout production compared to native ALDHTt, indicating an opening of the active site upon C-terminus truncation and giving rationale into the evolutionary exclusion of the C-terminal extension from similar thermophilic and mesophilic ALDH proteins. Additionally, the C-terminus is shown to play a role in controlling substrate specificity of native ALDH, particularly in excluding catalysis of certain large and certain aromatic ortho-substituted aldehydes, as well as modulating the protein's pH tolerance by increasing surface charge. Dynamic light scattering and size-exclusion HPLC methods are used to show the role of the C-terminus in ALDHTt oligomeric stability at the cost of catalytic efficiency. Studying the aggregation rate of ALDHTt with and without a C-terminal extension leads to the conclusion that ALDHTt follows a monomolecular reaction aggregation mechanism.
Collapse
Affiliation(s)
- Wiktoria Brytan
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Ireland
| | - Kim Shortall
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Ireland
| | - Francisco Duarte
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Ireland
| | - Tewfik Soulimane
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Ireland
- SSPC
− The Science Foundation Ireland Research Centre for Pharmaceuticals, Limerick V94 T9PX,Ireland
| | - Luis Padrela
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Ireland
- SSPC
− The Science Foundation Ireland Research Centre for Pharmaceuticals, Limerick V94 T9PX,Ireland
| |
Collapse
|
16
|
Mouysset B, Le Grand M, Camoin L, Pasquier E. Poly-pharmacology of existing drugs: How to crack the code? Cancer Lett 2024; 588:216800. [PMID: 38492768 DOI: 10.1016/j.canlet.2024.216800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/15/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Drug development in oncology is highly challenging, with less than 5% success rate in clinical trials. This alarming figure points out the need to study in more details the multiple biological effects of drugs in specific contexts. Indeed, the comprehensive assessment of drug poly-pharmacology can provide insights into their therapeutic and adverse effects, to optimize their utilization and maximize the success rate of clinical trials. Recent technological advances have made possible in-depth investigation of drug poly-pharmacology. This review first highlights high-throughput methodologies that have been used to unveil new mechanisms of action of existing drugs. Then, we discuss how emerging chemo-proteomics strategies allow effectively dissecting the poly-pharmacology of drugs in an unsupervised manner.
Collapse
Affiliation(s)
- Baptiste Mouysset
- Centre de Recherche en Cancérologie de Marseille Inserm U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France.
| | - Marion Le Grand
- Centre de Recherche en Cancérologie de Marseille Inserm U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France.
| | - Luc Camoin
- Centre de Recherche en Cancérologie de Marseille Inserm U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France.
| | - Eddy Pasquier
- Centre de Recherche en Cancérologie de Marseille Inserm U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France.
| |
Collapse
|
17
|
Moawad G, Youssef Y, Fruscalzo A, Faysal H, Merida M, Pirtea P, Guani B, Ayoubi JM, Feki A. The Impact of Conservative Surgical Treatment of Adenomyosis on Fertility and Perinatal Outcomes. J Clin Med 2024; 13:2531. [PMID: 38731060 PMCID: PMC11084146 DOI: 10.3390/jcm13092531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/13/2024] Open
Abstract
Adenomyosis is a benign condition commonly encountered in patients with infertility. While the definitive surgical management is hysterectomy, conservative surgical management is gaining attention in patients desiring future fertility. This review explores whether the surgical treatment of adenomyosis affects fertility outcomes for patients trying to conceive. The PubMed and Medline databases were searched using the keywords: "adenomyosis", "surgery", "radiofrequency", "infertility", "pregnancy", "sterility", "conception", "miscarriage", and "endometrial receptivity". Abstracts were screened, and relevant articles were selected for review. This review reveals that surgery appears to improve fertility outcomes with or without medical therapy; however, the risk of uterine rupture remains high and the best technique to reduce this risk is still not known. More studies are needed to formulate the best surgical approach for preserving fertility in treating adenomyosis and to establish standardized guidelines.
Collapse
Affiliation(s)
- Gaby Moawad
- Department of Obstetrics and Gynecology, The George Washington University Hospital, Washington, DC 20037, USA
- The Center for Endometriosis and Advanced Pelvic Surgery, Washington, DC 22101, USA
| | - Youssef Youssef
- Division of Minimally Invasive Gynecology, Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, NY 11219, USA
| | - Arrigo Fruscalzo
- Department of Obstetrics and Gynecology, HFR—Hòpital Fribourgeois, Chemin des Pensionnats 2-6, 1708 Fribourg, Switzerland
| | - Hani Faysal
- Department of Obstetrics and Gynecology, Indiana University, Indianapolis, IN 46204, USA
| | - Manuel Merida
- Department of Obstetrics and Gynecology, Hurley Medical Center, Michigan State University, Flint, MI 48503, USA
| | - Paul Pirtea
- Department of Obstetrics and Gynecology and Reproductive Medicine, Faculté de Médecine Paris, Hopital Foch, 92150 Suresnes, France
| | - Benedetta Guani
- Department of Obstetrics and Gynecology, HFR—Hòpital Fribourgeois, Chemin des Pensionnats 2-6, 1708 Fribourg, Switzerland
| | - Jean Marc Ayoubi
- Department of Obstetrics and Gynecology and Reproductive Medicine, Faculté de Médecine Paris, Hopital Foch, 92150 Suresnes, France
| | - Anis Feki
- Department of Obstetrics and Gynecology, HFR—Hòpital Fribourgeois, Chemin des Pensionnats 2-6, 1708 Fribourg, Switzerland
| |
Collapse
|
18
|
Dasmeh P, Zheng J, Erdoğan AN, Tokuriki N, Wagner A. Rapid evolutionary change in trait correlations of single proteins. Nat Commun 2024; 15:3327. [PMID: 38637501 PMCID: PMC11026499 DOI: 10.1038/s41467-024-46658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/06/2024] [Indexed: 04/20/2024] Open
Abstract
Many organismal traits are genetically determined and covary in evolving populations. The resulting trait correlations can either help or hinder evolvability - the ability to bring forth new and adaptive phenotypes. The evolution of evolvability requires that trait correlations themselves must be able to evolve, but we know little about this ability. To learn more about it, we here study two evolvable systems, a yellow fluorescent protein and the antibiotic resistance protein VIM-2 metallo beta-lactamase. We consider two traits in the fluorescent protein, namely the ability to emit yellow and green light, and three traits in our enzyme, namely the resistance against ampicillin, cefotaxime, and meropenem. We show that correlations between these traits can evolve rapidly through both mutation and selection on short evolutionary time scales. In addition, we show that these correlations are driven by a protein's ability to fold, because single mutations that alter foldability can dramatically change trait correlations. Since foldability is important for most proteins and their traits, mutations affecting protein folding may alter trait correlations mediated by many other proteins. Thus, mutations that affect protein foldability may also help shape the correlations of complex traits that are affected by hundreds of proteins.
Collapse
Affiliation(s)
- Pouria Dasmeh
- Center for Human Genetics, Marburg University, Marburg, 35043, Germany.
- Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, 8057, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, 1015, Switzerland.
| | - Jia Zheng
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310030, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, 310030, Hangzhou, China
| | - Ayşe Nisan Erdoğan
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Andreas Wagner
- Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, 8057, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, 1015, Switzerland.
- The Santa Fe Institute, Santa Fe, New Mexico, 87501, US.
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
19
|
Jordan JS, Lee KJ, Williams ER. Overcoming aggregation with laser heated nanoelectrospray mass spectrometry: thermal stability and pathways for loss of bicarbonate from carbonic anhydrase II. Analyst 2024; 149:2281-2290. [PMID: 38497240 DOI: 10.1039/d4an00229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Variable temperature electrospray mass spectrometry is useful for multiplexed measurements of the thermal stabilities of biomolecules, but the ionization process can be disrupted by aggregation-prone proteins/complexes that have irreversible unfolding transitions. Resistively heating solutions containing a mixture of bovine carbonic anhydrase II (BCAII), a CO2 fixing enzyme involved in many biochemical pathways, and cytochrome c leads to complete loss of carbonic anhydrase signal and a significant reduction in cytochrome c signal above ∼72 °C due to aggregation. In contrast, when the tips of borosilicate glass nanoelectrospray emitters are heated with a laser, complete thermal denaturation curves for both proteins are obtained in <1 minute. The simultaneous measurements of the melting temperature of BCAII and BCAII bound to bicarbonate reveal that the bicarbonate stabilizes the folded form of this protein by ∼6.4 °C. Moreover, the temperature dependences of different bicarbonate loss pathways are obtained. Although protein analytes are directly heated by the laser for only 140 ms, heat conduction further up the emitter leads to a total analyte heating time of ∼41 s. Pulsed laser heating experiments could reduce this time to ∼0.5 s for protein aggregation that occurs on a faster time scale. Laser heating provides a powerful method for studying the detailed mechanisms of cofactor/ligand loss with increasing temperature and promises a new tool for studying the effect of ligands, drugs, growth conditions, buffer additives, or other treatments on the stabilities of aggregation-prone biomolecules.
Collapse
Affiliation(s)
- Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| | - Katherine J Lee
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| |
Collapse
|
20
|
Zheng J, Guo N, Huang Y, Guo X, Wagner A. High temperature delays and low temperature accelerates evolution of a new protein phenotype. Nat Commun 2024; 15:2495. [PMID: 38553445 PMCID: PMC10980763 DOI: 10.1038/s41467-024-46332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/19/2024] [Indexed: 04/02/2024] Open
Abstract
Since the origin of life, temperatures on earth have fluctuated both on short and long time scales. How such changes affect the rate at which Darwinian evolution can bring forth new phenotypes remains unclear. On the one hand, high temperature may accelerate phenotypic evolution because it accelerates most biological processes. On the other hand, it may slow phenotypic evolution, because proteins are usually less stable at high temperatures and therefore less evolvable. Here, to test these hypotheses experimentally, we evolved a green fluorescent protein in E. coli towards the new phenotype of yellow fluorescence at different temperatures. Yellow fluorescence evolved most slowly at high temperature and most rapidly at low temperature, in contradiction to the first hypothesis. Using high-throughput population sequencing, protein engineering, and biochemical assays, we determined that this is due to the protein-destabilizing effect of neofunctionalizing mutations. Destabilization is highly detrimental at high temperature, where neofunctionalizing mutations cannot be tolerated. Their detrimental effects can be mitigated through excess stability at low temperature, leading to accelerated adaptive evolution. By modifying protein folding stability, temperature alters the accessibility of mutational paths towards high-fitness genotypes. Our observations have broad implications for our understanding of how temperature changes affect evolutionary adaptations and innovations.
Collapse
Affiliation(s)
- Jia Zheng
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Ning Guo
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuxiang Huang
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiang Guo
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- The Santa Fe Institute, Santa Fe, USA.
| |
Collapse
|
21
|
Moon J, Hu G, Hayashi T. Application of Machine Learning in the Quantitative Analysis of the Surface Characteristics of Highly Abundant Cytoplasmic Proteins: Toward AI-Based Biomimetics. Biomimetics (Basel) 2024; 9:162. [PMID: 38534847 DOI: 10.3390/biomimetics9030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Proteins in the crowded environment of human cells have often been studied regarding nonspecific interactions, misfolding, and aggregation, which may cause cellular malfunction and disease. Specifically, proteins with high abundance are more susceptible to these issues due to the law of mass action. Therefore, the surfaces of highly abundant cytoplasmic (HAC) proteins directly exposed to the environment can exhibit specific physicochemical, structural, and geometrical characteristics that reduce nonspecific interactions and adapt to the environment. However, the quantitative relationships between the overall surface descriptors still need clarification. Here, we used machine learning to identify HAC proteins using hydrophobicity, charge, roughness, secondary structures, and B-factor from the protein surfaces and quantified the contribution of each descriptor. First, several supervised learning algorithms were compared to solve binary classification problems for the surfaces of HAC and extracellular proteins. Then, logistic regression was used for the feature importance analysis of descriptors considering model performance (80.2% accuracy and 87.6% AUC) and interpretability. The HAC proteins showed positive correlations with negatively and positively charged areas but negative correlations with hydrophobicity, the B-factor, the proportion of beta structures, roughness, and the proportion of disordered regions. Finally, the details of each descriptor could be explained concerning adaptative surface strategies of HAC proteins to regulate nonspecific interactions, protein folding, flexibility, stability, and adsorption. This study presented a novel approach using various surface descriptors to identify HAC proteins and provided quantitative design rules for the surfaces well-suited to human cellular crowded environments.
Collapse
Affiliation(s)
- Jooa Moon
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Guanghao Hu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-0882, Japan
| |
Collapse
|
22
|
Bai L, Deng Z, Xu M, Zhang Z, Guo G, Xue X, Wang S, Yang J, Xia Z. CETSA-MS-based target profiling of anti-aging natural compound quercetin. Eur J Med Chem 2024; 267:116203. [PMID: 38342014 DOI: 10.1016/j.ejmech.2024.116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Quercetin is widely distributed in nature and abundant in the human diet, which exhibits diverse biological activities and potential medical benefits. However, there remains a lack of comprehensive understanding about its cellular targets, impeding its in-depth mechanistic studies and clinical applications. PURPOSE This study aimed to profile protein targets of quercetin at the proteome level. METHODS A label-free CETSA-MS proteomics technique was employed for target enrichment and identification. The R package Inflect was used for melting curve fitting and target selection. D3Pocket and LiBiSco tools were used for binding pocket prediction and binding pocket analysis. Western blotting, molecular docking, site-directed mutagenesis and pull-down assays were used for target verification and validation. RESULTS We curated a library of direct binding targets of quercetin in cells. This library comprises 37 proteins that show increased thermal stability upon quercetin binding and 33 proteins that display decreased thermal stability. Through Western blotting, molecular docking, site-directed mutagenesis and pull-down assays, we validated CBR1 and GSK3A from the stabilized protein group and MAPK1 from the destabilized group as direct binding targets of quercetin. Moreover, we characterized the shared chemical properties of the binding pockets of quercetin with targets. CONCLUSION Our findings deepen our understanding of the proteins pivotal to the bioactivity of quercetin and lay the groundwork for further exploration into its mechanisms of action and potential clinical applications.
Collapse
Affiliation(s)
- Lin Bai
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhifen Deng
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Mengfei Xu
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhehao Zhang
- Department of Biochemistry, Faculty of Life Science, Faculty of Natural Science, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Guangyu Guo
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinli Xue
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shaochi Wang
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinghua Yang
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zongping Xia
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
23
|
Sarsani V, Aldikacti B, Zhao T, He S, Chien P, Flaherty P. Discovering Genetic Modulators of the Protein Homeostasis System through Multilevel Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582154. [PMID: 38464212 PMCID: PMC10925187 DOI: 10.1101/2024.02.26.582154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Every protein progresses through a natural lifecycle from birth to maturation to death; this process is coordinated by the protein homeostasis system. Environmental or physiological conditions trigger pathways that maintain the homeostasis of the proteome. An open question is how these pathways are modulated to respond to the many stresses that an organism encounters during its lifetime. To address this question, we tested how the fitness landscape changes in response to environmental and genetic perturbations using directed and massively parallel transposon mutagenesis in Caulobacter crescentus. We developed a general computational pipeline for the analysis of gene-by-environment interactions in transposon mutagenesis experiments. This pipeline uses a combination of general linear models (GLMs), statistical knockoffs, and a nonparametric Bayesian statistical model to identify essential genetic network components that are shared across environmental perturbations. This analysis allows us to quantify the similarity of proteotoxic environmental perturbations from the perspective of the fitness landscape. We find that essential genes vary more by genetic background than by environmental conditions, with limited overlap among mutant strains targeting different facets of the protein homeostasis system. We also identified 146 unique fitness determinants across different strains, with 19 genes common to at least two strains, showing varying resilience to proteotoxic stresses. Experiments exposing cells to a combination of genetic perturbations and dual environmental stressors show that perturbations that are quantitatively dissimilar from the perspective of the fitness landscape are likely to have a synergistic effect on the growth defect.
Collapse
Affiliation(s)
- Vishal Sarsani
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, 01002, Massachusetts, USA
| | - Berent Aldikacti
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, 01002, Massachusetts, USA
| | - Tingting Zhao
- Department of Information Systems and Analytics, Bryant University, Smithfield, 02917, RI, USA
- School of Health and Behavioral Sciences, Bryant University, Smithfield, 02917, RI, USA
| | - Shai He
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, 01002, Massachusetts, USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, 01002, Massachusetts, USA
| | - Patrick Flaherty
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, 01002, Massachusetts, USA
| |
Collapse
|
24
|
Monterroso B, Margolin W, Boersma AJ, Rivas G, Poolman B, Zorrilla S. Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions. Chem Rev 2024; 124:1899-1949. [PMID: 38331392 PMCID: PMC10906006 DOI: 10.1021/acs.chemrev.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
Macromolecular crowding affects the activity of proteins and functional macromolecular complexes in all cells, including bacteria. Crowding, together with physicochemical parameters such as pH, ionic strength, and the energy status, influences the structure of the cytoplasm and thereby indirectly macromolecular function. Notably, crowding also promotes the formation of biomolecular condensates by phase separation, initially identified in eukaryotic cells but more recently discovered to play key functions in bacteria. Bacterial cells require a variety of mechanisms to maintain physicochemical homeostasis, in particular in environments with fluctuating conditions, and the formation of biomolecular condensates is emerging as one such mechanism. In this work, we connect physicochemical homeostasis and macromolecular crowding with the formation and function of biomolecular condensates in the bacterial cell and compare the supramolecular structures found in bacteria with those of eukaryotic cells. We focus on the effects of crowding and phase separation on the control of bacterial chromosome replication, segregation, and cell division, and we discuss the contribution of biomolecular condensates to bacterial cell fitness and adaptation to environmental stress.
Collapse
Affiliation(s)
- Begoña Monterroso
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - William Margolin
- Department
of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth-Houston, Houston, Texas 77030, United States
| | - Arnold J. Boersma
- Cellular
Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty
of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Germán Rivas
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - Bert Poolman
- Department
of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Silvia Zorrilla
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
25
|
Cai E, Zeng R, Feng R, Zhang L, Li L, Jia H, Zheng W, Chen S, Yan M, Chang C. Discovery of N-Benzyl-4-(1-bromonaphthalen-2-yl)oxybutan-1-amine as a Potential Antifungal Agent against Sporidia Growth and Teliospore Germination of Sporisorium scitamineum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3325-3333. [PMID: 38329286 DOI: 10.1021/acs.jafc.3c04589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The cultivation of sugar cane using perennial roots is the primary planting method, which is one of the reasons for the serious occurrence of sugar cane smut disease caused by the basidiomycetous fungus Sporisorium scitamineum in the sugar cane perennial root planting area. Consequently, it is crucial to eliminate pathogens from perennial sugar cane buds. In this study, we found that MAP kinase Hog1 is necessary for heat stress resistance. Subsequent investigations revealed a significant reduction in the expression of the heat shock protein 104-encoding gene, SsHSP104, in the ss1hog1Δ mutant. Additionally, the overexpression of SsHSP104 partially restored colony growth in the ss1hog1Δ strain following heat stress treatment, demonstrating the crucial role of SsHsp104 in SsHog1-mediated heat stress tolerance. Hence, we constructed the ss1hsp104:eGFP fusion strain in the wild type of S. scitamineum to identify small-molecule compounds that could inhibit the heat stress response, leading to the discovery of N-benzyl-4-(1-bromonaphthalen-2-yl)oxybutan-1-amine as a potential compound that targets the SsHog1 mediation SsHsp104 pathway during heat treatment. Furthermore, the combination of N-benzyl-4-(1-bromonaphthalen-2-yl)oxybutan-1-amine and warm water treatment (45 °C for 15 min) inhibits the growth of S. scitamineum and teliospore germination, thereby reducing the occurrence of sugar cane smut diseases and indicating its potential for eliminating pathogens from perennial sugar cane buds. In conclusion, these findings suggest that N-benzyl-4-(1-bromonaphthalen-2-yl)oxybutan-1-amine is promising as a targeted compound for the SsHog1-mediated SsHsp104 pathway and may enable the reduction of hot water treatment duration and/or temperature, thereby limiting the occurrence of sugar cane smut diseases caused by S. scitamineum.
Collapse
Affiliation(s)
- Enping Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Rong Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ruqing Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Li Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lei Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Huan Jia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wenqiang Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shaofang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Meixin Yan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530000, China
| | - Changqing Chang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
26
|
Caviglia B, Di Bari D, Timr S, Guiral M, Giudici-Orticoni MT, Petrillo C, Peters J, Sterpone F, Paciaroni A. Decoding the Role of the Global Proteome Dynamics for Cellular Thermal Stability. J Phys Chem Lett 2024; 15:1435-1441. [PMID: 38291814 DOI: 10.1021/acs.jpclett.3c03351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Molecular mechanisms underlying the thermal response of cells remain elusive. On the basis of the recent result that the short-time diffusive dynamics of the Escherichia coli proteome is an excellent indicator of temperature-dependent bacterial metabolism and death, we used neutron scattering (NS) spectroscopy and molecular dynamics (MD) simulations to investigate the sub-nanosecond proteome mobility in psychro-, meso-, and hyperthermophilic bacteria over a wide temperature range. The magnitude of thermal fluctuations, measured by atomic mean square displacements, is similar among all studied bacteria at their respective thermal cell death. Global roto-translational motions turn out to be the main factor distinguishing the bacterial dynamical properties. We ascribe this behavior to the difference in the average proteome net charge, which becomes less negative for increasing bacterial thermal stability. We propose that the chemical-physical properties of the cytoplasm and the global dynamics of the resulting proteome are fine-tuned by evolution to uphold optimal thermal stability conditions.
Collapse
Affiliation(s)
- Beatrice Caviglia
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
- Laboratoire de Biochimie Théorique (UPR 9080), Centre National de la Recherche Scientifique (CNRS), Université de Paris Cité, 75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Daniele Di Bari
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Stepan Timr
- Laboratoire de Biochimie Théorique (UPR 9080), Centre National de la Recherche Scientifique (CNRS), Université de Paris Cité, 75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic
| | - Marianne Guiral
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, 13400 Marseille, France
| | - Marie-Thérèse Giudici-Orticoni
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, 13400 Marseille, France
| | - Caterina Petrillo
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Judith Peters
- Laboratoire Interdisciplinaire de Physique, Centre National de la Recherche Scientifique (CNRS), Univ. Grenoble Alpes, 140 Rue de la Physique, 38402 Saint-Martin-d'Hères, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble, France
- Institut Universitaire de France, 75231 Paris, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique (UPR 9080), Centre National de la Recherche Scientifique (CNRS), Université de Paris Cité, 75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Alessandro Paciaroni
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| |
Collapse
|
27
|
Chen Y, Lin S, Xie X, Yi J, Liu X, Guo SW. Systematic review and meta-analysis of reproductive outcomes after high-intensity focused ultrasound (HIFU) treatment of adenomyosis. Best Pract Res Clin Obstet Gynaecol 2024; 92:102433. [PMID: 38065008 DOI: 10.1016/j.bpobgyn.2023.102433] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 02/06/2024]
Abstract
High-intensity focused ultrasound (HIFU) has emerged as a promising uterus-sparing and possibly fertility-sparing treatment modality for women with adenomyosis, especially those who desire to conceive. We conducted this systematic review and performed a meta-analysis on clinical studies aimed to improve reproduction in women with adenomyosis. After extensive search of PubMed and CNKI, we identified 10 studies published in English and Chinese involving a total of 557 patients with adenomyosis who desired to conceive after HIFU treatment. We found a pooled estimate of pregnancy rate of 53.4% and of the live birth rate of 35.2%, and there was a substantial heterogeneity among these studies. While there is a potential for HIFU treatment to improve fertility for patients with adenomyosis who desired to conceive, such evidence is very weak as of now. Comparative studies with much higher methodological rigor, preferably randomized clinical trials, are badly needed to further illuminate this issue.
Collapse
Affiliation(s)
- Yishan Chen
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Shunhe Lin
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Xi Xie
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Jingsong Yi
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Xishi Liu
- Dept. of Gynecology, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China; Research Institute, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
28
|
Gao Y, Ma M, Li W, Lei X. Chemoproteomics, A Broad Avenue to Target Deconvolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305608. [PMID: 38095542 PMCID: PMC10885659 DOI: 10.1002/advs.202305608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/29/2023] [Indexed: 12/22/2023]
Abstract
As a vital project of forward chemical genetic research, target deconvolution aims to identify the molecular targets of an active hit compound. Chemoproteomics, either with chemical probe-facilitated target enrichment or probe-free, provides a straightforward and effective approach to profile the target landscape and unravel the mechanisms of action. Canonical methods rely on chemical probes to enable target engagement, enrichment, and identification, whereas click chemistry and photoaffinity labeling techniques improve the efficiency, sensitivity, and spatial accuracy of target recognition. In comparison, recently developed probe-free methods detect protein-ligand interactions without the need to modify the ligand molecule. This review provides a comprehensive overview of different approaches and recent advancements for target identification and highlights the significance of chemoproteomics in investigating biological processes and advancing drug discovery processes.
Collapse
Affiliation(s)
- Yihui Gao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Mingzhe Ma
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
| | - Wenyang Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
- Institute for Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
| |
Collapse
|
29
|
Hu N, Xiao X, Yao L, Chen X, Li X. The Protein Response of Salt-Tolerant Zygosaccharomyces rouxii to High-Temperature Stress during the Lag Phase. J Fungi (Basel) 2024; 10:48. [PMID: 38248957 PMCID: PMC10817685 DOI: 10.3390/jof10010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Zygosaccharomyces rouxii used in soy sauce brewing is an osmotolerant and halotolerant yeast, but it is not tolerant to high temperatures and the underlying mechanisms remain poorly understood. Using a synthetic medium containing only Pro as a nitrogen source, the response of Z. rouxii in protein level to high-temperature stress (40 °C, HTS) during the lag phase was investigated. Within the first two h, the total intracellular protein concentration was significantly decreased from 220.99 ± 6.58 μg/mg DCW to 152.63 ± 10.49 μg/mg DCW. The analysis of the amino acid composition of the total protein through vacuum proteolysis technology and HPLC showed that new amino acids (Thr, Tyr, Ser, and His) were added to newborn protein over time during the lag phase under HTS. The nutritional conditions used in this study determined that the main source of amino acid supply for protein synthesis was through amino acid biosynthesis and ubiquitination-mediated protein degradation. Differential expression analysis of the amino acid biosynthesis-related genes in the transcriptome showed that most genes were upregulated under HTS, excluding ARO8, which was consistently repressed during the lag phase. RT-qPCR results showed that high-temperature stress significantly increased the upregulation of proteolysis genes, especially PSH1 (E3 ubiquitin ligase) by 13.23 ± 1.44 fold (p < 0.0001) within 4 h. Overall, these results indicated that Z. rouxii adapt to prolonged high temperatures stress by altering its basal protein composition. This protein renewal was related to the regulation of proteolysis and the biosynthesis of amino acids.
Collapse
Affiliation(s)
| | | | | | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China; (N.H.); (X.X.); (L.Y.)
| | - Xin Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China; (N.H.); (X.X.); (L.Y.)
| |
Collapse
|
30
|
Peters J, Oliva R, Caliò A, Oger P, Winter R. Effects of Crowding and Cosolutes on Biomolecular Function at Extreme Environmental Conditions. Chem Rev 2023; 123:13441-13488. [PMID: 37943516 DOI: 10.1021/acs.chemrev.3c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The extent of the effect of cellular crowding and cosolutes on the functioning of proteins and cells is manifold and includes the stabilization of the biomolecular systems, the excluded volume effect, and the modulation of molecular dynamics. Simultaneously, it is becoming increasingly clear how important it is to take the environment into account if we are to shed light on biological function under various external conditions. Many biosystems thrive under extreme conditions, including the deep sea and subseafloor crust, and can take advantage of some of the effects of crowding. These relationships have been studied in recent years using various biophysical techniques, including neutron and X-ray scattering, calorimetry, FTIR, UV-vis and fluorescence spectroscopies. Combining knowledge of the structure and conformational dynamics of biomolecules under extreme conditions, such as temperature, high hydrostatic pressure, and high salinity, we highlight the importance of considering all results in the context of the environment. Here we discuss crowding and cosolute effects on proteins, nucleic acids, membranes, and live cells and explain how it is possible to experimentally separate crowding-induced effects from other influences. Such findings will contribute to a better understanding of the homeoviscous adaptation of organisms and the limits of life in general.
Collapse
Affiliation(s)
- Judith Peters
- Univ. Grenoble Alpes, CNRS, LiPhy, 140 rue de la physique, 38400 St Martin d'Hères, France
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France
- Institut Universitaire de France, 75005 Paris, France
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Antonino Caliò
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Philippe Oger
- INSA Lyon, Universite Claude Bernard Lyon1, CNRS, UMR5240, 69621 Villeurbanne, France
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Dortmund, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| |
Collapse
|
31
|
Manriquez-Sandoval E, Brewer J, Lule G, Lopez S, Fried SD. FLiPPR: A Processor for Limited Proteolysis (LiP) Mass Spectrometry Datasets Built on FragPipe. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569947. [PMID: 38106106 PMCID: PMC10723326 DOI: 10.1101/2023.12.04.569947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Here, we present FLiPPR, or FragPipe LiP (limited proteolysis) Processor, a tool that facilitates the analysis of data from limited proteolysis mass spectrometry (LiP-MS) experiments following primary search and quantification in FragPipe. LiP-MS has emerged as a method that can provide proteome-wide information on protein structure and has been applied to a range of biological and biophysical questions. Although LiP-MS can be carried out with standard laboratory reagents and mass spectrometers, analyzing the data can be slow and poses unique challenges compared to typical quantitative proteomics workflows. To address this, we leverage the fast, sensitive, and accurate search and label-free quantification algorithms in FragPipe and then process its output in FLiPPR. FLiPPR formalizes a specific data imputation heuristic that carefully uses missing data in LiP-MS experiments to report on the most significant structural changes. Moreover, FLiPPR introduces a new data merging scheme (from ions to cut-sites) and a protein-centric multiple hypothesis correction scheme, collectively enabling processed LiP-MS datasets to be more robust and less redundant. These improvements substantially strengthen statistical trends when previously published data are reanalyzed with the FragPipe/FLiPPR workflow. As a final feature, FLiPPR facilitates the collection of structural metadata to identify correlations between experiments and structural features. We hope that FLiPPR will lower the barrier for more users to adopt LiP-MS, standardize statistical procedures for LiP-MS data analysis, and systematize output to facilitate eventual larger-scale integration of LiP-MS data.
Collapse
Affiliation(s)
- Edgar Manriquez-Sandoval
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joy Brewer
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529, USA
| | - Gabriela Lule
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Samanta Lopez
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Stephen D. Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
32
|
Bai Y, Zhang S, Dong H, Liu Y, Liu C, Zhang X. Advanced Techniques for Detecting Protein Misfolding and Aggregation in Cellular Environments. Chem Rev 2023; 123:12254-12311. [PMID: 37874548 DOI: 10.1021/acs.chemrev.3c00494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Protein misfolding and aggregation, a key contributor to the progression of numerous neurodegenerative diseases, results in functional deficiencies and the creation of harmful intermediates. Detailed visualization of this misfolding process is of paramount importance for improving our understanding of disease mechanisms and for the development of potential therapeutic strategies. While in vitro studies using purified proteins have been instrumental in delivering significant insights into protein misfolding, the behavior of these proteins in the complex milieu of living cells often diverges significantly from such simplified environments. Biomedical imaging performed in cell provides cellular-level information with high physiological and pathological relevance, often surpassing the depth of information attainable through in vitro methods. This review highlights a variety of methodologies used to scrutinize protein misfolding within biological systems. This includes optical-based methods, strategies leaning on mass spectrometry, in-cell nuclear magnetic resonance, and cryo-electron microscopy. Recent advancements in these techniques have notably deepened our understanding of protein misfolding processes and the features of the resulting misfolded species within living cells. The progression in these fields promises to catalyze further breakthroughs in our comprehension of neurodegenerative disease mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yulong Bai
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hui Dong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin Zhang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
33
|
Molzahn C, Kuechler ER, Zemlyankina I, Nierves L, Ali T, Cole G, Wang J, Albu RF, Zhu M, Cashman NR, Gilch S, Karsan A, Lange PF, Gsponer J, Mayor T. Shift of the insoluble content of the proteome in the aging mouse brain. Proc Natl Acad Sci U S A 2023; 120:e2310057120. [PMID: 37906643 PMCID: PMC10636323 DOI: 10.1073/pnas.2310057120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/24/2023] [Indexed: 11/02/2023] Open
Abstract
During aging, the cellular response to unfolded proteins is believed to decline, resulting in diminished proteostasis. In model organisms, such as Caenorhabditis elegans, proteostatic decline with age has been linked to proteome solubility shifts and the onset of protein aggregation. However, this correlation has not been extensively characterized in aging mammals. To uncover age-dependent changes in the insoluble portion of a mammalian proteome, we analyzed the detergent-insoluble fraction of mouse brain tissue by mass spectrometry. We identified a group of 171 proteins, including the small heat shock protein α-crystallin, that become enriched in the detergent-insoluble fraction obtained from old mice. To enhance our ability to detect features associated with proteins in that fraction, we complemented our data with a meta-analysis of studies reporting the detergent-insoluble proteins in various mouse models of aging and neurodegeneration. Strikingly, insoluble proteins from young and old mice are distinct in several features in our study and across the collected literature data. In younger mice, proteins are more likely to be disordered, part of membraneless organelles, and involved in RNA binding. These traits become less prominent with age, as an increased number of structured proteins enter the pellet fraction. This analysis suggests that age-related changes to proteome organization lead a group of proteins with specific features to become detergent-insoluble. Importantly, these features are not consistent with those associated with proteins driving membraneless organelle formation. We see no evidence in our system of a general increase of condensate proteins in the detergent-insoluble fraction with age.
Collapse
Affiliation(s)
- Cristen Molzahn
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Edward Leong Center for Healthy Aging, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Erich R. Kuechler
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Irina Zemlyankina
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Lorenz Nierves
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital Research Institute, Vancouver, BCV5Z 4H4, Canada
| | - Tahir Ali
- Faculty of Veterinary Medicine and Hotchkiss Brain Institute, University of Calgary, Calgary, ABT2N 4Z6, Canada
| | - Grace Cole
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- British Columbia Cancer Research Institute, Vancouver, BCV5Z 1L3, Canada
| | - Jing Wang
- Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Razvan F. Albu
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Mang Zhu
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Neil R. Cashman
- Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Sabine Gilch
- Faculty of Veterinary Medicine and Hotchkiss Brain Institute, University of Calgary, Calgary, ABT2N 4Z6, Canada
| | - Aly Karsan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- British Columbia Cancer Research Institute, Vancouver, BCV5Z 1L3, Canada
| | - Philipp F. Lange
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital Research Institute, Vancouver, BCV5Z 4H4, Canada
- British Columbia Cancer Research Institute, Vancouver, BCV5Z 1L3, Canada
| | - Jörg Gsponer
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Edward Leong Center for Healthy Aging, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| |
Collapse
|
34
|
Henderson MJ, Grandou C, Chrismas BCR, Coutts AJ, Impellizzeri FM, Taylor L. Core Body Temperatures in Intermittent Sports: A Systematic Review. Sports Med 2023; 53:2147-2170. [PMID: 37526813 PMCID: PMC10587327 DOI: 10.1007/s40279-023-01892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Hyperthermia (and associated health and performance implications) can be a significant problem for athletes and teams involved in intermittent sports. Quantifying the highest thermal strain (i.e. peak core body temperature [peak Tc]) from a range of intermittent sports would enhance our understanding of the thermal requirements of sport and assist in making informed decisions about training or match-day interventions to reduce thermally induced harm and/or performance decline. OBJECTIVE The objective of this systematic review was to synthesise and characterise the available thermal strain data collected in competition from intermittent sport athletes. METHODS A systematic literature search was performed on Web of Science, MEDLINE, and SPORTDiscus to identify studies up to 17 April 2023. Electronic databases were searched using a text mining method to provide a partially automated and systematic search strategy retrieving terms related to core body temperature measurement and intermittent sport. Records were eligible if they included core body temperature measurement during competition, without experimental intervention that may influence thermal strain (e.g. cooling), in healthy, adult, intermittent sport athletes at any level. Due to the lack of an available tool that specifically includes potential sources of bias for physiological responses in descriptive studies, a methodological evaluation checklist was developed and used to document important methodological considerations. Data were not meta-analysed given the methodological heterogeneity between studies and therefore were presented descriptively in tabular and graphical format. RESULTS A total of 34 studies were selected for review; 27 were observational, 5 were experimental (2 parallel group and 3 repeated measures randomised controlled trials), and 2 were quasi-experimental (1 parallel group and 1 repeated measures non-randomised controlled trial). Across all included studies, 386 participants (plus participant numbers not reported in two studies) were recruited after accounting for shared data between studies. A total of 4 studies (~ 12%) found no evidence of hyperthermia, 24 (~ 71%) found evidence of 'modest' hyperthermia (peak Tc between 38.5 and 39.5 °C), and 6 (~ 18%) found evidence of 'marked' hyperthermia (peak Tc of 39.5 °C or greater) during intermittent sports competition. CONCLUSIONS Practitioners and coaches supporting intermittent sport athletes are justified to seek interventions aimed at mitigating the high heat strain observed in competition. More research is required to determine the most effective interventions for this population that are practically viable in intermittent sports settings (often constrained by many competing demands). Greater statistical power and homogeneity among studies are required to quantify the independent effects of wet bulb globe temperature, competition duration, sport and level of competition on peak Tc, all of which are likely to be key modulators of the thermal strain experienced by competing athletes. REGISTRATION This systematic review was registered on the Open Science Framework ( https://osf.io/vfb4s ; https://doi.org/10.17605/OSF.IO/EZYFA , 4 January 2021).
Collapse
Affiliation(s)
- Mitchell J Henderson
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia.
- Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, Australia.
| | - Clementine Grandou
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia
- Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, Australia
| | - Bryna C R Chrismas
- Department of Physical Education, College of Education, Qatar University, Doha, Qatar
| | - Aaron J Coutts
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia
- Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, Australia
| | - Franco M Impellizzeri
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia
- Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, Australia
| | - Lee Taylor
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia
- Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, Australia
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
35
|
Mouton SN, Boersma AJ, Veenhoff LM. A physicochemical perspective on cellular ageing. Trends Biochem Sci 2023; 48:949-962. [PMID: 37716870 DOI: 10.1016/j.tibs.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/18/2023]
Abstract
Cellular ageing described at the molecular level is a multifactorial process that leads to a spectrum of ageing trajectories. There has been recent discussion about whether a decline in physicochemical homeostasis causes aberrant phase transitions, which are a driver of ageing. Indeed, the function of all biological macromolecules, regardless of their participation in biomolecular condensates, depends on parameters such as pH, crowding, and redox state. We expand on the physicochemical homeostasis hypothesis and summarise recent evidence that the intracellular milieu influences molecular processes involved in ageing.
Collapse
Affiliation(s)
- Sara N Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Arnold J Boersma
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
36
|
Lyu HN, Fu C, Chai X, Gong Z, Zhang J, Wang J, Wang J, Dai L, Xu C. Systematic thermal analysis of the Arabidopsis proteome: Thermal tolerance, organization, and evolution. Cell Syst 2023; 14:883-894.e4. [PMID: 37734376 DOI: 10.1016/j.cels.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 05/29/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023]
Abstract
Understanding the thermal stability of the plant proteome in the context of the native cellular environment would aid the design of crops with high thermal tolerance, but only limited such data are available. Here, we applied quantitative mass spectrometry to profile the thermal stability of the Arabidopsis proteome and identify thermo-sensitive and thermo-resilient protein networks in Arabidopsis, providing a basis for understanding heat-induced damage. We also show that the similarities of the protein-melting curves can be used as a proxy to evaluate system-wide protein-protein interactions in non-engineered plants and enable the identification of transient interactions exhibited by metabolons in the context of the cellular environment. Finally, we report a systematic comparison of the thermal stability of paralogs in Arabidopsis to aid the investigation and understanding of gene duplication and protein evolution. Taken together, our results could have broad implications for the fields of plant thermal tolerance, plant protein assemblies, and evolution.
Collapse
Affiliation(s)
- Hai-Ning Lyu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chunjin Fu
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Xin Chai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiaqi Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China; School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Lingyun Dai
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China.
| | - Chengchao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China.
| |
Collapse
|
37
|
Komp E, Alanzi HN, Francis R, Vuong C, Roberts L, Mosallanejad A, Beck DAC. Homologous Pairs of Low and High Temperature Originating Proteins Spanning the Known Prokaryotic Universe. Sci Data 2023; 10:682. [PMID: 37805601 PMCID: PMC10560248 DOI: 10.1038/s41597-023-02553-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023] Open
Abstract
Stability of proteins at high temperature has been a topic of interest for many years, as this attribute is favourable for applications ranging from therapeutics to industrial chemical manufacturing. Our current understanding and methods for designing high-temperature stability into target proteins are inadequate. To drive innovation in this space, we have curated a large dataset, learn2thermDB, of protein-temperature examples, totalling 24 million instances, and paired proteins across temperatures based on homology, yielding 69 million protein pairs - orders of magnitude larger than the current largest. This important step of pairing allows for study of high-temperature stability in a sequence-dependent manner in the big data era. The data pipeline is parameterized and open, allowing it to be tuned by downstream users. We further show that the data contains signal for deep learning. This data offers a new doorway towards thermal stability design models.
Collapse
Affiliation(s)
- Evan Komp
- Department of Chemical Engineering, University of Washington, Seattle, USA.
| | - Humood N Alanzi
- Department of Chemical Engineering, University of Washington, Seattle, USA
| | - Ryan Francis
- Department of Chemical Engineering, University of Washington, Seattle, USA
| | - Chau Vuong
- Department of Biochemistry, University of Washington, Seattle, USA
| | - Logan Roberts
- Department of Chemical Engineering, University of Washington, Seattle, USA
| | - Amin Mosallanejad
- Department of Chemical Engineering, University of Washington, Seattle, USA
| | - David A C Beck
- Department of Chemical Engineering, University of Washington, Seattle, USA.
- eScience Institute, University of Washington, Seattle, USA.
- Paul G. Allen School of Computer Science, University of Washington, Seattle, USA.
| |
Collapse
|
38
|
Velten B, Stegle O. Principles and challenges of modeling temporal and spatial omics data. Nat Methods 2023; 20:1462-1474. [PMID: 37710019 DOI: 10.1038/s41592-023-01992-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/31/2023] [Indexed: 09/16/2023]
Abstract
Studies with temporal or spatial resolution are crucial to understand the molecular dynamics and spatial dependencies underlying a biological process or system. With advances in high-throughput omic technologies, time- and space-resolved molecular measurements at scale are increasingly accessible, providing new opportunities to study the role of timing or structure in a wide range of biological questions. At the same time, analyses of the data being generated in the context of spatiotemporal studies entail new challenges that need to be considered, including the need to account for temporal and spatial dependencies and compare them across different scales, biological samples or conditions. In this Review, we provide an overview of common principles and challenges in the analysis of temporal and spatial omics data. We discuss statistical concepts to model temporal and spatial dependencies and highlight opportunities for adapting existing analysis methods to data with temporal and spatial dimensions.
Collapse
Affiliation(s)
- Britta Velten
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Cellular Genetics Programme, Wellcome Sanger Institute, Hinxton, Cambridge, UK.
- Centre for Organismal Studies (COS) and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.
| | - Oliver Stegle
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Cellular Genetics Programme, Wellcome Sanger Institute, Hinxton, Cambridge, UK.
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
39
|
Paukštytė J, López Cabezas RM, Feng Y, Tong K, Schnyder D, Elomaa E, Gregorova P, Doudin M, Särkkä M, Sarameri J, Lippi A, Vihinen H, Juutila J, Nieminen A, Törönen P, Holm L, Jokitalo E, Krisko A, Huiskonen J, Sarin LP, Hietakangas V, Picotti P, Barral Y, Saarikangas J. Global analysis of aging-related protein structural changes uncovers enzyme-polymerization-based control of longevity. Mol Cell 2023; 83:3360-3376.e11. [PMID: 37699397 DOI: 10.1016/j.molcel.2023.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/18/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023]
Abstract
Aging is associated with progressive phenotypic changes. Virtually all cellular phenotypes are produced by proteins, and their structural alterations can lead to age-related diseases. However, we still lack comprehensive knowledge of proteins undergoing structural-functional changes during cellular aging and their contributions to age-related phenotypes. Here, we conducted proteome-wide analysis of early age-related protein structural changes in budding yeast using limited proteolysis-mass spectrometry (LiP-MS). The results, compiled in online ProtAge catalog, unraveled age-related functional changes in regulators of translation, protein folding, and amino acid metabolism. Mechanistically, we found that folded glutamate synthase Glt1 polymerizes into supramolecular self-assemblies during aging, causing breakdown of cellular amino acid homeostasis. Inhibiting Glt1 polymerization by mutating the polymerization interface restored amino acid levels in aged cells, attenuated mitochondrial dysfunction, and led to lifespan extension. Altogether, this comprehensive map of protein structural changes enables identifying mechanisms of age-related phenotypes and offers opportunities for their reversal.
Collapse
Affiliation(s)
- Jurgita Paukštytė
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Rosa María López Cabezas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Yuehan Feng
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Kai Tong
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Ellinoora Elomaa
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Pavlina Gregorova
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Matteo Doudin
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Meeri Särkkä
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Jesse Sarameri
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Alice Lippi
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Helena Vihinen
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Juhana Juutila
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Anni Nieminen
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Petri Törönen
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Liisa Holm
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Eija Jokitalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Anita Krisko
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Juha Huiskonen
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - L Peter Sarin
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Ville Hietakangas
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Paola Picotti
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland; Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Yves Barral
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Juha Saarikangas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.
| |
Collapse
|
40
|
Brites CDS, Marin R, Suta M, Carneiro Neto AN, Ximendes E, Jaque D, Carlos LD. Spotlight on Luminescence Thermometry: Basics, Challenges, and Cutting-Edge Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302749. [PMID: 37480170 DOI: 10.1002/adma.202302749] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Indexed: 07/23/2023]
Abstract
Luminescence (nano)thermometry is a remote sensing technique that relies on the temperature dependency of the luminescence features (e.g., bandshape, peak energy or intensity, and excited state lifetimes and risetimes) of a phosphor to measure temperature. This technique provides precise thermal readouts with superior spatial resolution in short acquisition times. Although luminescence thermometry is just starting to become a more mature subject, it exhibits enormous potential in several areas, e.g., optoelectronics, photonics, micro- and nanofluidics, and nanomedicine. This work reviews the latest trends in the field, including the establishment of a comprehensive theoretical background and standardized practices. The reliability, repeatability, and reproducibility of the technique are also discussed, along with the use of multiparametric analysis and artificial-intelligence algorithms to enhance thermal readouts. In addition, examples are provided to underscore the challenges that luminescence thermometry faces, alongside the need for a continuous search and design of new materials, experimental techniques, and analysis procedures to improve the competitiveness, accessibility, and popularity of the technology.
Collapse
Affiliation(s)
- Carlos D S Brites
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| | - Riccardo Marin
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Markus Suta
- Inorganic Photoactive Materials, Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Albano N Carneiro Neto
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| | - Erving Ximendes
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Daniel Jaque
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Luís D Carlos
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
41
|
Fang J. Predicting thermostability difference between cellular protein orthologs. Bioinformatics 2023; 39:btad504. [PMID: 37572303 PMCID: PMC10457660 DOI: 10.1093/bioinformatics/btad504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/02/2023] [Accepted: 08/11/2023] [Indexed: 08/14/2023] Open
Abstract
MOTIVATION Protein thermostability is of great interest, both in theory and in practice. RESULTS This study compared orthologous proteins with different cellular thermostability. A large number of physicochemical properties of protein were calculated and used to develop a series of machine learning models for predicting cellular thermostability differences between orthologous proteins. Most of the important features in these models are also highly correlated to relative cellular thermostability. A comparison between the present study with previous comparison of orthologous proteins from thermophilic and mesophilic organisms found that most highly correlated features are consistent in these studies, suggesting they may be important to protein thermostability. AVAILABILITY AND IMPLEMENTATION Data freely available for download at https://github.com/fangj3/cellular-protein-thermostability-dataset.
Collapse
Affiliation(s)
- Jianwen Fang
- Computational & Systems Biology Branch, Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD 20850, United States
| |
Collapse
|
42
|
Liu Q, Fong B, Yoo S, Unruh JR, Guo F, Yu Z, Chen J, Si K, Li R, Zhou C. Nascent mitochondrial proteins initiate the localized condensation of cytosolic protein aggregates on the mitochondrial surface. Proc Natl Acad Sci U S A 2023; 120:e2300475120. [PMID: 37494397 PMCID: PMC10401023 DOI: 10.1073/pnas.2300475120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Eukaryotes organize cellular contents into membrane-bound organelles and membrane-less condensates, for example, protein aggregates. An unsolved question is why the ubiquitously distributed proteins throughout the cytosol give rise to spatially localized protein aggregates on the organellar surface, like mitochondria. We report that the mitochondrial import receptor Tom70 is involved in the localized condensation of protein aggregates in budding yeast and human cells. This is because misfolded cytosolic proteins do not autonomously aggregate in vivo; instead, they are recruited to the condensation sites initiated by Tom70's substrates (nascent mitochondrial proteins) on the organellar membrane using multivalent hydrophobic interactions. Knocking out Tom70 partially impairs, while overexpressing Tom70 increases the formation and association between cytosolic protein aggregates and mitochondria. In addition, ectopic targeting Tom70 and its substrates to the vacuole surface is able to redirect the localized aggregation from mitochondria to the vacuolar surface. Although other redundant mechanisms may exist, this nascent mitochondrial proteins-based initiation of protein aggregation likely explains the localized condensation of otherwise ubiquitously distributed molecules on the mitochondria. Disrupting the mitochondrial association of aggregates impairs their asymmetric retention during mitosis and reduces the mitochondrial import of misfolded proteins, suggesting a proteostasis role of the organelle-condensate interactions.
Collapse
Affiliation(s)
- Qingqing Liu
- Buck Institute for Research on Aging, Novato, CA94945
| | - Benjamin Fong
- Buck Institute for Research on Aging, Novato, CA94945
| | - Seungmin Yoo
- Buck Institute for Research on Aging, Novato, CA94945
| | - Jay R. Unruh
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Jingjing Chen
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Kausik Si
- Stowers Institute for Medical Research, Kansas City, MO64110
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS66160
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD21218
- Mechanobiology Institute and Department of Biological Science, National University of Singapore, Singapore117411, Singapore
| | - Chuankai Zhou
- Buck Institute for Research on Aging, Novato, CA94945
| |
Collapse
|
43
|
Quanrud GM, Lyu Z, Balamurugan SV, Canizal C, Wu HT, Genereux JC. Cellular Exposure to Chloroacetanilide Herbicides Induces Distinct Protein Destabilization Profiles. ACS Chem Biol 2023; 18:1661-1676. [PMID: 37427419 PMCID: PMC10367052 DOI: 10.1021/acschembio.3c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Herbicides in the widely used chloroacetanilide class harbor a potent electrophilic moiety, which can damage proteins through nucleophilic substitution. In general, damaged proteins are subject to misfolding. Accumulation of misfolded proteins compromises cellular integrity by disrupting cellular proteostasis networks, which can further destabilize the cellular proteome. While direct conjugation targets can be discovered through affinity-based protein profiling, there are few approaches to probe how cellular exposure to toxicants impacts the stability of the proteome. We apply a quantitative proteomics methodology to identify chloroacetanilide-destabilized proteins in HEK293T cells based on their binding to the H31Q mutant of the human Hsp40 chaperone DNAJB8. We find that a brief cellular exposure to the chloroacetanilides acetochlor, alachlor, and propachlor induces misfolding of dozens of cellular proteins. These herbicides feature distinct but overlapping profiles of protein destabilization, highly concentrated in proteins with reactive cysteine residues. Consistent with the recent literature from the pharmacology field, reactivity is driven by neither inherent nucleophilic nor electrophilic reactivity but is idiosyncratic. We discover that propachlor induces a general increase in protein aggregation and selectively targets GAPDH and PARK7, leading to a decrease in their cellular activities. Hsp40 affinity profiling identifies a majority of propachlor targets identified by competitive activity-based protein profiling (ABPP), but ABPP can only identify about 10% of protein targets identified by Hsp40 affinity profiling. GAPDH is primarily modified by the direct conjugation of propachlor at a catalytic cysteine residue, leading to global destabilization of the protein. The Hsp40 affinity strategy is an effective technique to profile cellular proteins that are destabilized by cellular toxin exposure. Raw proteomics data is available through the PRIDE Archive at PXD030635.
Collapse
Affiliation(s)
- Guy M. Quanrud
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ziqi Lyu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Sunil V. Balamurugan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Carolina Canizal
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Hoi-Ting Wu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Joseph C. Genereux
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
44
|
Lu H, Wang B, Liu Y, Wang D, Fields L, Zhang H, Li M, Shi X, Zetterberg H, Li L. DiLeu Isobaric Labeling Coupled with Limited Proteolysis Mass Spectrometry for High-Throughput Profiling of Protein Structural Changes in Alzheimer's Disease. Anal Chem 2023; 95:9746-9753. [PMID: 37307028 PMCID: PMC10330787 DOI: 10.1021/acs.analchem.2c05731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-throughput quantitative analysis of protein conformational changes has a profound impact on our understanding of the pathological mechanisms of Alzheimer's disease (AD). To establish an effective workflow enabling quantitative analysis of changes in protein conformation within multiple samples simultaneously, here we report the combination of N,N-dimethyl leucine (DiLeu) isobaric tag labeling with limited proteolysis mass spectrometry (DiLeu-LiP-MS) for high-throughput structural protein quantitation in serum samples collected from AD patients and control donors. Twenty-three proteins were discovered to undergo structural changes, mapping to 35 unique conformotypic peptides with significant changes between the AD group and the control group. Seven out of 23 proteins, including CO3, CO9, C4BPA, APOA1, APOA4, C1R, and APOA, exhibited a potential correlation with AD. Moreover, we found that complement proteins (e.g., CO3, CO9, and C4BPA) related to AD exhibited elevated levels in the AD group compared to those in the control group. These results provide evidence that the established DiLeu-LiP-MS method can be used for high-throughput structural protein quantitation, which also showed great potential in achieving large-scale and in-depth quantitative analysis of protein conformational changes in other biological systems.
Collapse
Affiliation(s)
- Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Bin Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yuan Liu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Danqing Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Miyang Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xudong Shi
- Division of Otolaryngology, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 43141, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 43130, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1N 3BG, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, 999077, China
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
45
|
Luzuriaga-Neira AR, Ritchie AM, Payne BL, Carrillo-Parramon O, Liberles DA, Alvarez-Ponce D. Highly Abundant Proteins Are Highly Thermostable. Genome Biol Evol 2023; 15:evad112. [PMID: 37399326 DOI: 10.1093/gbe/evad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/05/2023] Open
Abstract
Highly abundant proteins tend to evolve slowly (a trend called E-R anticorrelation), and a number of hypotheses have been proposed to explain this phenomenon. The misfolding avoidance hypothesis attributes the E-R anticorrelation to the abundance-dependent toxic effects of protein misfolding. To avoid these toxic effects, protein sequences (particularly those of highly expressed proteins) would be under selection to fold properly. One prediction of the misfolding avoidance hypothesis is that highly abundant proteins should exhibit high thermostability (i.e., a highly negative free energy of folding, ΔG). Thus far, only a handful of analyses have tested for a relationship between protein abundance and thermostability, producing contradictory results. These analyses have been limited by 1) the scarcity of ΔG data, 2) the fact that these data have been obtained by different laboratories and under different experimental conditions, 3) the problems associated with using proteins' melting energy (Tm) as a proxy for ΔG, and 4) the difficulty of controlling for potentially confounding variables. Here, we use computational methods to compare the free energy of folding of pairs of human-mouse orthologous proteins with different expression levels. Even though the effect size is limited, the most highly expressed ortholog is often the one with a more negative ΔG of folding, indicating that highly expressed proteins are often more thermostable.
Collapse
Affiliation(s)
| | - Andrew M Ritchie
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, Pennsylvania, USA
| | | | | | - David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
46
|
Kang J, Seshadri M, Cupp-Sutton KA, Wu S. Toward the analysis of functional proteoforms using mass spectrometry-based stability proteomics. FRONTIERS IN ANALYTICAL SCIENCE 2023; 3:1186623. [PMID: 39072225 PMCID: PMC11281393 DOI: 10.3389/frans.2023.1186623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional proteomics aims to elucidate biological functions, mechanisms, and pathways of proteins and proteoforms at the molecular level to examine complex cellular systems and disease states. A series of stability proteomics methods have been developed to examine protein functionality by measuring the resistance of a protein to chemical or thermal denaturation or proteolysis. These methods can be applied to measure the thermal stability of thousands of proteins in complex biological samples such as cell lysate, intact cells, tissues, and other biological fluids to measure proteome stability. Stability proteomics methods have been popularly applied to observe stability shifts upon ligand binding for drug target identification. More recently, these methods have been applied to characterize the effect of structural changes in proteins such as those caused by post-translational modifications (PTMs) and mutations, which can affect protein structures or interactions and diversify protein functions. Here, we discussed the current application of a suite of stability proteomics methods, including thermal proteome profiling (TPP), stability of proteomics from rates of oxidation (SPROX), and limited proteolysis (LiP) methods, to observe PTM-induced structural changes on protein stability. We also discuss future perspectives highlighting the integration of top-down mass spectrometry and stability proteomics methods to characterize intact proteoform stability and understand the function of variable protein modifications.
Collapse
Affiliation(s)
- Ji Kang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Meena Seshadri
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Kellye A. Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
47
|
Robb C, Dao TP, Ujma J, Castañeda CA, Beveridge R. Ion Mobility Mass Spectrometry Unveils Global Protein Conformations in Response to Conditions that Promote and Reverse Liquid-Liquid Phase Separation. J Am Chem Soc 2023; 145:12541-12549. [PMID: 37276246 PMCID: PMC10273310 DOI: 10.1021/jacs.3c00756] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Indexed: 06/07/2023]
Abstract
Liquid-liquid phase separation (LLPS) is a process by which biomacromolecules, particularly proteins, condense into a dense phase that resembles liquid droplets. Dysregulation of LLPS is implicated in disease, yet the relationship between protein conformational changes and LLPS remains difficult to discern. This is due to the high flexibility and disordered nature of many proteins that phase separate under physiological conditions and their tendency to oligomerize. Here, we demonstrate that ion mobility mass spectrometry (IM-MS) overcomes these limitations. We used IM-MS to investigate the conformational states of full-length ubiquilin-2 (UBQLN2) protein, LLPS of which is driven by high-salt concentration and reversed by noncovalent interactions with ubiquitin (Ub). IM-MS revealed that UBQLN2 exists as a mixture of monomers and dimers and that increasing salt concentration causes the UBQLN2 dimers to undergo a subtle shift toward extended conformations. UBQLN2 binds to Ub in 2:1 and 2:2 UBQLN2/Ub complexes, which have compact geometries compared to free UBQLN2 dimers. Together, these results suggest that extended conformations of UBQLN2 are correlated with UBQLN2's ability to phase separate. Overall, delineating protein conformations that are implicit in LLPS will greatly increase understanding of the phase separation process, both in normal cell physiology and disease states.
Collapse
Affiliation(s)
- Christina
Glen Robb
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Glasgow G1 1XL, U.K.
| | - Thuy P. Dao
- Departments
of Biology and Chemistry, BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Jakub Ujma
- Waters
Corporation, Stamford
Avenue, Altrincham Road, Wilmslow SK9 4AX, U.K.
| | - Carlos A. Castañeda
- Departments
of Biology and Chemistry, BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Rebecca Beveridge
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Glasgow G1 1XL, U.K.
| |
Collapse
|
48
|
Serebryany E, Zhao VY, Park K, Bitran A, Trauger SA, Budnik B, Shakhnovich EI. Systematic conformation-to-phenotype mapping via limited deep sequencing of proteins. Mol Cell 2023; 83:1936-1952.e7. [PMID: 37267908 PMCID: PMC10281453 DOI: 10.1016/j.molcel.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/29/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023]
Abstract
Non-native conformations drive protein-misfolding diseases, complicate bioengineering efforts, and fuel molecular evolution. No current experimental technique is well suited for elucidating them and their phenotypic effects. Especially intractable are the transient conformations populated by intrinsically disordered proteins. We describe an approach to systematically discover, stabilize, and purify native and non-native conformations, generated in vitro or in vivo, and directly link conformations to molecular, organismal, or evolutionary phenotypes. This approach involves high-throughput disulfide scanning (HTDS) of the entire protein. To reveal which disulfides trap which chromatographically resolvable conformers, we devised a deep-sequencing method for double-Cys variant libraries of proteins that precisely and simultaneously locates both Cys residues within each polypeptide. HTDS of the abundant E. coli periplasmic chaperone HdeA revealed distinct classes of disordered hydrophobic conformers with variable cytotoxicity depending on where the backbone was cross-linked. HTDS can bridge conformational and phenotypic landscapes for many proteins that function in disulfide-permissive environments.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Victor Y Zhao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kibum Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Amir Bitran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sunia A Trauger
- Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Bogdan Budnik
- Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
49
|
Linghu KG, Zhao GD, Zhang DY, Xiong SH, Wu GP, Shen LY, Cui WQ, Zhang T, Hu YJ, Guo B, Shen XC, Yu H. Leocarpinolide B Attenuates Collagen Type II-Induced Arthritis by Inhibiting DNA Binding Activity of NF-κB. Molecules 2023; 28:molecules28104241. [PMID: 37241980 DOI: 10.3390/molecules28104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease triggered by a cascading inflammatory response. Sigesbeckia Herba (SH) has long been utilized as a traditional remedy to alleviate symptoms associated with rheumatism. Our previous study found that leocarpinolide B (LB), a sesquiterpene lactone isolated from the whole plant of SH, possesses potent a anti-inflammatory effect on macrophages. This study was designed to evaluate the therapeutic effects of LB on RA, and further investigate the underlying mechanisms. In collagen type II-induced arthritic mice, LB was demonstrated to decrease the production of autoimmune antibodies in serum and inflammatory cytokines in the joint muscles and recover the decreased regulatory T lymphocytes in spleen. Moreover, LB significantly suppressed the inflammatory infiltration, formation of pannus and bone erosion in the paw joints. In vitro testing showed that LB inhibited the proliferation, migration, invasion, and secretion of inflammatory cytokines in IL-1β-induced human synovial SW982 cells. Network pharmacology and molecular docking suggested NF-κB p65 could be the potential target of LB on RA treatment, subsequent experimental investigation confirmed that LB directly interacted with NF-κB p65 and reduced the DNA binding activity of NF-κB in synovial cells. In conclusion, LB significantly attenuated the collagen type II-induced arthritis, which was at least involved in the inhibition of DNA binding activity of NF-κB through a direct binding to NF-κB p65. These findings suggest that LB could be a valuable lead compound for developing anti-RA drugs.
Collapse
Affiliation(s)
- Ke-Gang Linghu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Guan-Ding Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Dai-Yan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Shi-Hang Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Guo-Ping Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Li-Yu Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wen-Qing Cui
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Tian Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, China
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, China
| | - Xiang-Chun Shen
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
50
|
Jung F, Frey K, Zimmer D, Mühlhaus T. DeepSTABp: A Deep Learning Approach for the Prediction of Thermal Protein Stability. Int J Mol Sci 2023; 24:ijms24087444. [PMID: 37108605 PMCID: PMC10138888 DOI: 10.3390/ijms24087444] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Proteins are essential macromolecules that carry out a plethora of biological functions. The thermal stability of proteins is an important property that affects their function and determines their suitability for various applications. However, current experimental approaches, primarily thermal proteome profiling, are expensive, labor-intensive, and have limited proteome and species coverage. To close the gap between available experimental data and sequence information, a novel protein thermal stability predictor called DeepSTABp has been developed. DeepSTABp uses a transformer-based protein language model for sequence embedding and state-of-the-art feature extraction in combination with other deep learning techniques for end-to-end protein melting temperature prediction. DeepSTABp can predict the thermal stability of a wide range of proteins, making it a powerful and efficient tool for large-scale prediction. The model captures the structural and biological properties that impact protein stability, and it allows for the identification of the structural features that contribute to protein stability. DeepSTABp is available to the public via a user-friendly web interface, making it accessible to researchers in various fields.
Collapse
Affiliation(s)
- Felix Jung
- Computational Systems Biology, RPTU University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Kevin Frey
- Computational Systems Biology, RPTU University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - David Zimmer
- Computational Systems Biology, RPTU University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, RPTU University of Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|