1
|
Verboom GA, Slingsby JA, Cramer MD. Fire-modulated fluctuations in nutrient availability stimulate biome-scale floristic turnover in time, and elevated species richness, in low-nutrient fynbos heathland. ANNALS OF BOTANY 2024; 133:819-832. [PMID: 38150535 PMCID: PMC11082518 DOI: 10.1093/aob/mcad199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/26/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND AND AIMS In many systems, postfire vegetation recovery is characterized by temporal changes in plant species composition and richness. We attribute this to changes in resource availability with time since fire, with the magnitude of species turnover determined by the degree of resource limitation. Here, we test the hypothesis that postfire species turnover in South African fynbos heathland is powered by fire-modulated changes in nutrient availability, with the magnitude of turnover in nutrient-constrained fynbos being greater than in fertile renosterveld shrubland. We also test the hypothesis that floristic overlaps between fynbos and renosterveld are attributable to nutritional augmentation of fynbos soils immediately after fire. METHODS We use vegetation survey data from two sites on the Cape Peninsula to compare changes in species richness and composition with time since fire. KEY RESULTS Fynbos communities display a clear decline in species richness with time since fire, whereas no such decline is apparent in renosterveld. In fynbos, declining species richness is associated with declines in the richness of plant families having high foliar concentrations of nitrogen, phosphorus and potassium and possessing attributes that are nutritionally costly. In contrast, families that dominate late-succession fynbos possess adaptations for the acquisition and retention of sparse nutrients. At the family level, recently burnt fynbos is compositionally more similar to renosterveld than is mature fynbos. CONCLUSIONS Our data suggest that nutritionally driven species turnover contributes significantly to fynbos community richness. We propose that the extremely low baseline fertility of fynbos soils serves to lengthen the nutritional resource axis along which species can differentiate and coexist, thereby providing the opportunity for low-nutrient extremophiles to coexist spatially with species adapted to more fertile soil. This mechanism has the potential to operate in any resource-constrained system in which episodic disturbance affects resource availability.
Collapse
Affiliation(s)
- G Anthony Verboom
- Bolus Herbarium, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Jasper A Slingsby
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
- Centre for Statistics in Ecology, Environment and Conservation, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
- Fynbos Node, South African Environmental Observation Network (SAEON), Cape Town, South Africa
| | - Michael D Cramer
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| |
Collapse
|
2
|
Ochoa C, Bar-Massada A, Chuvieco E. A European-scale analysis reveals the complex roles of anthropogenic and climatic factors in driving the initiation of large wildfires. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170443. [PMID: 38296061 DOI: 10.1016/j.scitotenv.2024.170443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
Analysing wildfire initiation patterns and identifying their primary drivers is essential for the development of more efficient fire prevention strategies. However, such analyses have traditionally been conducted at local or national scales, hindering cross-border comparisons and the formulation of broad-scale policy initiatives. In this study, we present an analysis of the spatial variability of wildfire initiations across Europe, focusing specifically on moderate to large fires (> 100 ha), and examining the influence of both human and climatic factors on initiation areas. We estimated drivers of fire initiation using machine learning algorithms, specifically Random Forest (RF), covering the majority of the European territory (referred to as the "ET scale"). The models were trained using data on fire initiations extracted from a satellite burned area product, comprising fires occurring from 2001 to 2019. We developed six RF models: three considering all fires larger than 100 ha, and three focused solely on the largest events (> 1000 ha). Models were developed using climatic and human predictors separately, as well as both types of predictors mixed together. We found that both climatic and mixed models demonstrated moderate predictive capacity, with AUC values ranging from 79 % to 81 %; while models based only on human variables have had poor predictive capacity (AUC of 60 %). Feature importance analysis, using Shapley Additive Explanations (SHAP), allowed us to assess the primary drivers of wildfire initiations across the European Territory. Aridity and evapotranspiration had the strongest effect on fire initiation. Among human variables, population density and aging had considerable effects on fire initiation, the former with a strong effect in mixed models estimating large fires, while the latter had a more important role in the prediction of very large fires. Distance to roads and forest-agriculture interfaces were also relevant in some initiation models. A better understanding of drivers of main fire events should help designing European forest fire management strategies, particularly in the light of growing importance of climate change, as it would affect both fire severity and areas at risk. Factors of fire initiation should also be part of a comprehensive approach for fire risk assessment, reduction and adaption, contributing to more effective wildfire management and mitigation across the continent.
Collapse
Affiliation(s)
- Clara Ochoa
- Universidad de Alcalá, Environmental Remote Sensing Research Group, Department of Geology, Geography and the Environment, Calle Colegios 2, Alcalá de Henares 28801, Spain.
| | - Avi Bar-Massada
- Department of Biology and Environment, University of Haifa at Oranim, Kiryat Tivon, Israel
| | - Emilio Chuvieco
- Universidad de Alcalá, Environmental Remote Sensing Research Group, Department of Geology, Geography and the Environment, Calle Colegios 2, Alcalá de Henares 28801, Spain
| |
Collapse
|
3
|
Schuck LK, Neely WJ, Buttimer SM, Moser CF, Barth PC, Liskoski PE, Caberlon CDA, Valiati VH, Tozetti AM, Becker CG. Effects of grassland controlled burning on symbiotic skin microbes in Neotropical amphibians. Sci Rep 2024; 14:959. [PMID: 38200064 PMCID: PMC10781984 DOI: 10.1038/s41598-023-50394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Climate change has led to an alarming increase in the frequency and severity of wildfires worldwide. While it is known that amphibians have physiological characteristics that make them highly susceptible to fire, the specific impacts of wildfires on their symbiotic skin bacterial communities (i.e., bacteriomes) and infection by the deadly chytrid fungus, Batrachochytrium dendrobatidis, remain poorly understood. Here, we address this research gap by evaluating the effects of fire on the amphibian skin bacteriome and the subsequent risk of chytridiomycosis. We sampled the skin bacteriome of the Neotropical species Scinax squalirostris and Boana leptolineata in fire and control plots before and after experimental burnings. Fire was linked with a marked increase in bacteriome beta dispersion, a proxy for skin microbial dysbiosis, alongside a trend of increased pathogen loads. By shedding light on the effects of fire on amphibian skin bacteriomes, this study contributes to our broader understanding of the impacts of wildfires on vulnerable vertebrate species.
Collapse
Affiliation(s)
- Laura K Schuck
- Programa de Pós-Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022-750, Brazil.
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Wesley J Neely
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA
| | - Shannon M Buttimer
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Infectious Disease Dynamics and One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Camila F Moser
- Programa de Pos-Graduacão em Zoologia, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Priscila C Barth
- Programa de Pós-Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022-750, Brazil
| | - Paulo E Liskoski
- Programa de Pós-Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022-750, Brazil
| | - Carolina de A Caberlon
- Programa de Pós-Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022-750, Brazil
| | - Victor Hugo Valiati
- Programa de Pós-Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022-750, Brazil
| | - Alexandro M Tozetti
- Programa de Pós-Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022-750, Brazil.
| | - C Guilherme Becker
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Infectious Disease Dynamics and One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
4
|
Younger SE, Cannon JB, Brantley ST. Impacts of longleaf pine (Pinus palustris Mill.) on long-term hydrology at the watershed scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165999. [PMID: 37558074 DOI: 10.1016/j.scitotenv.2023.165999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Threats from climate change and growing populations require innovative solutions for restoring streamflow in many regions. In the arid western U.S., attempts to increase streamflow (Q) through forest management have had mixed results, but these approaches may be more successful in the eastern U.S. where greater precipitation (P) and lower evapotranspiration (ET) offer greater potential to increase Q by reducing ET. Longleaf pine (Pinus palustris Mill.) (LLP) woodlands, once the dominant land cover in the southeastern United States, often have lower ET than other forest types but it is unclear how longleaf pine cover impacts watershed-scale hydrology. To address this question, we analyzed 21 gaged rural watersheds. We estimated annual water balance ET (ETwb) as the difference between precipitation (P) and streamflow (Q) between 1989 and 2021 and quantified low flow rates (7Q10) among watersheds with high and low LLP cover. To control for climate variability among watersheds, we compared variation in hydrology metrics with biotic and abiotic variables using the Budyko equation (ETBudyko) to understand the differences between the two ET estimates (∆ET). Watersheds with 15-72 % LLP cover had 17 % greater mean annual Q, 7 % lower annual ETwb, and 92 % greater 7Q10 low flow rates than watersheds with <3 % LLP. LLP cover decreased ET and increased Q by 2.4 mm or 0.15 % Q/P per 1 % of watershed area, but only when LLP was managed as open woodlands. Our results demonstrate that ecological forest restoration in these systems, which entails mechanical thinning and re-introduction of low-intensity prescribed fire to maintain open woodlands, and enhance understory diversity, can contribute to decreases in ET and increases in Q in eastern forests.
Collapse
Affiliation(s)
- Seth E Younger
- The Jones Center at Ichauway, Newton, GA, United States of America.
| | - Jeffery B Cannon
- The Jones Center at Ichauway, Newton, GA, United States of America
| | | |
Collapse
|
5
|
Brassard F, Pettit MJ, Murphy BP, Andersen AN. Fire influences ant diversity by modifying vegetation structure in an Australian tropical savanna. Ecology 2023; 104:e4143. [PMID: 37471112 DOI: 10.1002/ecy.4143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023]
Abstract
Fire is a dominant ecological force shaping many faunal communities globally. Fire affects fauna either directly, such as by killing individuals, or indirectly, such as by modifying vegetation structure. Vegetation structure itself also modulates fire frequency and intensity. As such, faunal responses to fire need to be seen through the lens of variable fire activity and vegetation structure. Here, we incorporate information on fire activity and vegetation structure to enhance an understanding of the response of ants to long-term (17-year) experimental fire treatments in an extremely fire-prone tropical savanna in northern Australia. Previous analysis revealed limited divergence in ant communities after 5 years of experimental fire treatment. Hence, we first investigated the extent to which ant communities diverged over a subsequent 12 years of treatment. We then assessed the relative contribution of fire treatment, cumulative fire intensity (fire activity), and woody cover to responses of ant species frequency of occurrence, richness, and composition. We found that, even after 17 years, fire treatments explained little variation in any ant response variable. In contrast, woody cover was a strong predictor for all of them, while fire activity was a moderate predictor for abundance and richness. Ant species occurrence and richness increased in open habitats receiving higher levels of fire activity, compared with plots with higher vegetation cover experiencing low (or no) fire activity. Moreover, species composition differed between plots with high and low vegetation cover. Our findings provide experimental support to the principle that the effects of fire on fauna are primarily indirect, via its effect on vegetation structure. Furthermore, our results show that a "uniform" fire regime does not have uniform impacts on the ant fauna, because of variability imposed by interactions between vegetation structure and fire activity. This helps to explain why there is often a weak relationship between pyrodiversity and biodiversity, and it lessens the need for active management of pyrodiversity to maintain biodiversity.
Collapse
Affiliation(s)
- François Brassard
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Magen J Pettit
- Commonwealth Scientific and Industrial Research Organisation, Berrimah, Northern Territory, Australia
| | - Brett P Murphy
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Alan N Andersen
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
6
|
Moritz MA, Batllori E, Bolker BM. The role of fire in terrestrial vertebrate richness patterns. Ecol Lett 2023; 26:563-574. [PMID: 36773965 DOI: 10.1111/ele.14177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 02/13/2023]
Abstract
Productivity is strongly associated with terrestrial species richness patterns, although the mechanisms underpinning such patterns have long been debated. Despite considerable consumption of primary productivity by fire, its influence on global diversity has received relatively little study. Here we examine the sensitivity of terrestrial vertebrate biodiversity (amphibians, birds and mammals) to fire, while accounting for other drivers. We analyse global data on terrestrial vertebrate richness, net primary productivity, fire occurrence (fraction of productivity consumed) and additional influences unrelated to productivity (i.e., historical phylogenetic and area effects) on species richness. For birds, fire is associated with higher diversity, rivalling the effects of productivity on richness, and for mammals, fire's positive association with diversity is even stronger than productivity; for amphibians, in contrast, there are few clear associations. Our findings suggest an underappreciated role for fire in the generation of animal species richness and the conservation of global biodiversity.
Collapse
Affiliation(s)
- Max A Moritz
- University of California Cooperative Extension, Oakland, California, USA
- Bren School of Environmental Science & Management, University of California, Santa Barbara, California, USA
| | - Enric Batllori
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Benjamin M Bolker
- Departments of Mathematics & Statistics and Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Chuvieco E, Roteta E, Sali M, Stroppiana D, Boettcher M, Kirches G, Storm T, Khairoun A, Pettinari ML, Franquesa M, Albergel C. Building a small fire database for Sub-Saharan Africa from Sentinel-2 high-resolution images. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157139. [PMID: 35817109 DOI: 10.1016/j.scitotenv.2022.157139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Coarse resolution sensors are not very sensitive at detecting small fire patches, making current estimations of global burned areas (BA) very conservative. Using medium or high-resolution sensors to generate BA products becomes then a priority, particularly in areas where fires tend to be small and frequent. Building on previous work that developed a small fire dataset (SFD) for Sub-Saharan Africa for 2016, this paper presents a new version of the dataset for 2019 using the two Sentinel-2 satellites (A and B) and VIIRS active fires. Total estimated BA was 4.8 Mkm2. This value was much higher than estimations from two global, coarser-spatial resolution BA products based on MODIS data for the same area and period: 80 % greater than estimates from FireCCI51 (based on MODIS 250 m bands) and 120 % larger than MCD64A1 (based on MODIS 500 m bands). The main differences were observed in those months with higher fire occurrence (November to January for the Northern Hemisphere regions and June to September for the Southern Hemisphere ones). Accuracy assessment of the SFD product was based on a novel sampling strategy designed to obtain independent fire reference perimeters. Validation results showed remarkable high accuracy values comparing to existing global BA products. Overall omission errors (OE) were estimated as 8.5 %, commission errors (CE) as 15.0 %, with a Dice Coefficient of 87.7 %. All of these estimations implied significant improvements over the global, coarser spatial resolution BA products (OE > 50 % and CE > 20 % for the same area and period), as well as over the previous SFD product for 2016 of the same area, generated from a single Sentinel-2 satellite and MODIS active fires (OE = 26.5 % and CE = 19.3 %). Temporal accuracies greatly increased as well with the new product, with 92.5 % of fires detected within the first 10 days of occurrence.
Collapse
Affiliation(s)
- Emilio Chuvieco
- Universidad de Alcalá, Department of Geology, Geography and the Environment, Environmental Remote Sensing Research Group, C/Colegios 2, 28801 Alcalá de Henares, Spain.
| | - Ekhi Roteta
- University of the Basque Country UPV/EHU, Department of Geography, Prehistory and Archaeology, Tomás y Valiente s/n, 01006 Vitoria-Gasteiz, Spain
| | - Matteo Sali
- Consiglio Nazionale delle Ricerche, Istituto per il Rilevamento Elettromagnetico dell'Ambiente (CNR-IREA), Via Bassini 15, 20133 Milano, Italy
| | - Daniela Stroppiana
- Consiglio Nazionale delle Ricerche, Istituto per il Rilevamento Elettromagnetico dell'Ambiente (CNR-IREA), Via Bassini 15, 20133 Milano, Italy
| | - Martin Boettcher
- Brockmann Consult GmbH, Chrysanderstraße 1, 21029 Hamburg, Germany
| | - Grit Kirches
- Brockmann Consult GmbH, Chrysanderstraße 1, 21029 Hamburg, Germany
| | - Thomas Storm
- Brockmann Consult GmbH, Chrysanderstraße 1, 21029 Hamburg, Germany
| | - Amin Khairoun
- Universidad de Alcalá, Department of Geology, Geography and the Environment, Environmental Remote Sensing Research Group, C/Colegios 2, 28801 Alcalá de Henares, Spain
| | - M Lucrecia Pettinari
- Universidad de Alcalá, Department of Geology, Geography and the Environment, Environmental Remote Sensing Research Group, C/Colegios 2, 28801 Alcalá de Henares, Spain
| | - Magí Franquesa
- Universidad de Alcalá, Department of Geology, Geography and the Environment, Environmental Remote Sensing Research Group, C/Colegios 2, 28801 Alcalá de Henares, Spain
| | - Clément Albergel
- European Space Agency Climate Office, ECSAT, Harwell Campus, Oxfordshire, Didcot OX11 0FD, UK
| |
Collapse
|
8
|
Anjos AG, Alvarado ST, Solé M, Benchimol M. Patch and landscape features drive fire regime in a Brazilian flammable ecosystem. J Nat Conserv 2022. [DOI: 10.1016/j.jnc.2022.126261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Torres I, Parra A, Moreno JM. Effects of spatial distance and woody plant cover on beta diversity point to dispersal limitation as a driver of community assembly during postfire succession in a Mediterranean shrubland. Ecol Evol 2022; 12:e9130. [PMID: 35898419 PMCID: PMC9309027 DOI: 10.1002/ece3.9130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 11/06/2022] Open
Abstract
Beta diversity, and its components of turnover and nestedness, reflects the processes governing community assembly, such as dispersal limitation or biotic interactions, but it is unclear how they operate at the local scale and how their role changes along postfire succession. Here, we analyzed the patterns of beta diversity and its components in a herbaceous plant community after fire, and in relation to dispersal ability, in Central Spain. We calculated multiple-site beta diversity (βSOR) and its components of turnover (βSIM) and nestedness (βSNE) of all herbaceous plants, or grouped by dispersal syndrome (autochory, anemochory, and zoochory), during the first 3 years after wildfire. We evaluated the relationship between pairwise beta diversity (βsor), and its components (βsim, βsne), and spatial distance or differences in woody plant cover, a proxy of biotic interactions. We found high multiple-site beta diversity dominated by the turnover component. Community dissimilarity increased with spatial distance, driven mostly by the turnover component. Species with less dispersal ability (i.e., autochory) showed a stronger spatial pattern of dissimilarity. Biotic interactions with woody plants contributed less to community dissimilarity, which tended to occur through the nestedness component. These results suggest that dispersal limitation prevails over biotic interactions with woody plants as a driver of local community assembly, even for species with high dispersal ability. These results contribute to our understanding of postfire community assembly and vegetation dynamics.
Collapse
Affiliation(s)
- Iván Torres
- Departamento de Ciencias AmbientalesUniversidad de Castilla‐La ManchaToledoSpain
| | - Antonio Parra
- Departamento de Ciencias AmbientalesUniversidad de Castilla‐La ManchaToledoSpain
| | - José M. Moreno
- Departamento de Ciencias AmbientalesUniversidad de Castilla‐La ManchaToledoSpain
| |
Collapse
|
10
|
Afira N, Wijayanto AW. Mono-temporal and multi-temporal approaches for burnt area detection using Sentinel-2 satellite imagery (a case study of Rokan Hilir Regency, Indonesia). ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Oliveira MR, Ferreira BHS, Souza EB, Lopes AA, Bolzan FP, Roque FO, Pott A, Pereira AMM, Garcia LC, Damasceno‐Jr GA, Costa A, Rocha M, Xavier S, Ferraz RA, Ribeiro DB. Indigenous brigades changes the spatial patterns of wildfires and the influence of climate on fire regimes. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Maxwell R. Oliveira
- Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, UFMS Brazil
| | - Bruno H. S. Ferreira
- Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, UFMS Brazil
| | - Evaldo B. Souza
- Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, UFMS Brazil
| | | | - Fábio P. Bolzan
- Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, UFMS Brazil
| | - Fábio O. Roque
- Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, UFMS Brazil
| | - Arnildo Pott
- Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, UFMS Brazil
| | - Alexandre M. M. Pereira
- Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, Campo Grande Mato Grosso do Sul Brazil
| | - Letícia C. Garcia
- Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, UFMS Brazil
| | | | | | - Mesaque Rocha
- Associação dos Brigadistas Indígenas da Nação Kadwéu
| | - Silvio Xavier
- Associação dos Brigadistas Indígenas da Nação Kadwéu
| | | | - Danilo B. Ribeiro
- Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, UFMS Brazil
| |
Collapse
|
12
|
Theron KJ, Pryke JS, Samways MJ. Identifying managerial legacies within conservation corridors using remote sensing and grasshoppers as bioindicators. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02496. [PMID: 34783414 DOI: 10.1002/eap.2496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/22/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Biodiversity conservation under global change requires effective management of key biodiversity areas, even areas not under formal protection. Natural grassland conservation corridors between plantation forests are such areas, as they improve landscape connectivity, mitigate the impact of landscape fragmentation, and conserve biodiversity. However, empirical evidence is required to identify the extent to which past management actions promote effectiveness of conservation corridors into the future. We address this issue using grasshoppers, which are well-established indicators of habitat quality. In particular, we assess grasshopper response within corridors to historic grassland photosynthetic activity using a 25-yr normalized difference vegetation index (NDVI) time series. We then use vegetation characteristics measured in the field to understand the potential mechanisms driving grasshopper response. Furthermore, we explore the efficacy of satellite remote sensing for monitoring grasshopper habitat using additive models. We found that grasshopper evenness responded positively to deviation in NDVI within a 3-yr period, whereas assemblage composition responded positively over a shorter time of two years. Grasshopper richness and evenness responded strongly to the local vegetation height and bare ground, whereas grasshopper assemblage composition also responded to plant species richness. We found a major negative impact of the invasive alien bramble (Rubus cuneifolius) on large-sized grasshoppers and species of conservation concern. Overall, the results illustrate the importance of maintaining primary high-quality habitat for maintaining grasshopper diversity, alongside removal of invasive bramble. We recommend prescribed burning to maintain high-quality habitat heterogeneity, with sites burned within three years. Furthermore, high-resolution satellite imagery is effective for monitoring grasshopper richness and assemblage composition response to changes in vegetation within the corridors. Grassland conservation corridors do conserve biodiversity, although effective management and monitoring needs to be in place to ensure biodiversity resembles that of neighbouring protected areas.
Collapse
Affiliation(s)
- K Jurie Theron
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - James S Pryke
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Michael J Samways
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
13
|
Barton AM, Poulos H. Wildfire and topography drive woody plant diversity in a Sky Island mountain range in the Southwest USA. Ecol Evol 2021; 11:14715-14732. [PMID: 34765136 PMCID: PMC8571633 DOI: 10.1002/ece3.8158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 11/15/2022] Open
Abstract
AIM Drastic changes in fire regimes are altering plant communities, inspiring ecologists to better understand the relationship between fire and plant species diversity. We examined the impact of a 90,000-ha wildfire on woody plant species diversity in an arid mountain range in southern Arizona, USA. We tested recent fire-diversity hypotheses by addressing the impacts on diversity of fire severity, fire variability, historical fire regimes, and topography. LOCATION Chiricahua National Monument, Chiricahua Mountains, Arizona, USA, part of the Sky Islands of the US-Mexico borderlands. TAXON Woody plant species. METHODS We sampled woody plant diversity in 138 plots before (2002-2003) and after (2017-2018) the 2011 Horseshoe Two Fire in three vegetation types and across fire severity and topographic gradients. We calculated gamma, alpha, and beta diversity and examined changes over time in burned versus unburned plots and the shapes of the relationships of diversity with fire severity and topography. RESULTS Alpha species richness declined, and beta and gamma diversity increased in burned but not unburned plots. Fire-induced enhancement of gamma diversity was confined to low fire severity plots. Alpha diversity did not exhibit a clear continuous relationship with fire severity. Beta diversity was enhanced by variation in fire severity among plots and increased with fire severity up to very high severity, where it declined slightly. MAIN CONCLUSIONS The results reject the intermediate disturbance hypothesis for alpha diversity but weakly support it for gamma diversity. Spatial variation in fire severity promoted variation among plant assemblages, supporting the pyrodiversity hypothesis. Long-term drought probably amplified fire-driven diversity changes. Despite the apparent benign impact of the fire on diversity, the replacement of two large conifer species with a suite of drought-tolerant shrubs signals the potential loss of functional diversity, a pattern that may warrant restoration efforts to retain these important compositional elements.
Collapse
Affiliation(s)
- Andrew M. Barton
- Department of BiologyUniversity of Maine at FarmingtonFarmingtonMEUSA
| | - Helen Poulos
- College of the EnvironmentWesleyan UniversityMiddletownCTUSA
| |
Collapse
|
14
|
Implementation of the Burned Area Component of the Copernicus Climate Change Service: From MODIS to OLCI Data. REMOTE SENSING 2021. [DOI: 10.3390/rs13214295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article presents the burned area (BA) product of the Copernicus Climate Change Service (C3S) of the European Commission. This product, named C3SBA10, is based on the adaptation to Sentinel-3 OLCI images of a BA algorithm developed within the Fire Climate Change Initiative (FireCCI) project, which used MODIS data. We first reviewed the adaptation process and then analysed the results of both products for common years (2017–2019). Comparisons were performed using four different grid sizes (0.05°, 0.10°, 0.25°, and 0.50°). Annual correlations between the two products ranged from 0.94 to 0.99. Global BA estimates were found to be more similar when the two Sentinel-3 satellites were active (2019), as the temporal resolution was closer to that of the MODIS sensor. Global validation was performed using reference data derived from Landsat-8 images, following a stratified random sampling design. The C3SBA10 showed commission errors between 16 and 21% and omission errors from 48 to 50%, similar to those found in the FireCCI product. The temporal reporting accuracy was also validated using 19 million active fires. In total, 87% of the detections were made within 10 days after the fire by both products. The high consistency between both products ensures global BA data provision from 2001 to the present. The datasets are freely available through the Copernicus Climate Data Store (CDS) repository.
Collapse
|
15
|
COVID-19 lockdowns drive decline in active fires in southeastern United States. Proc Natl Acad Sci U S A 2021; 118:2105666118. [PMID: 34663728 PMCID: PMC8639348 DOI: 10.1073/pnas.2105666118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 12/26/2022] Open
Abstract
The coronavirus pandemic, COVID-19, led to strict social-distancing guidelines that severely impacted human livelihood and economic activity. Workplace closures reduced travel, and early in spring 2020, improvements in air and water quality, reduced seismic activity, and reductions in greenhouse gas emissions were observed. COVID-19–related shutdowns emerged at the beginning of the prescribed fire season in the southeastern United States, where 80% of fires are human caused. Using active fire satellite observations and fuel treatment statistics, we estimated a 21% reduction in active fires from March to December 2020 (up to 40% on federal lands). This reduction in active fire may increase fire risk in the future and is detrimental to biodiversity and other ecosystem services inherent to fire-dependent ecosystems. Fire is a common ecosystem process in forests and grasslands worldwide. Increasingly, ignitions are controlled by human activities either through suppression of wildfires or intentional ignition of prescribed fires. The southeastern United States leads the nation in prescribed fire, burning ca. 80% of the country’s extent annually. The COVID-19 pandemic radically changed human behavior as workplaces implemented social-distancing guidelines and provided an opportunity to evaluate relationships between humans and fire as fire management plans were postponed or cancelled. Using active fire data from satellite-based observations, we found that in the southeastern United States, COVID-19 led to a 21% reduction in fire activity compared to the 2003 to 2019 average. The reduction was more pronounced for federally managed lands, up to 41% below average compared to the past 20 y (38% below average compared to the past decade). Declines in fire activity were partly affected by an unusually wet February before the COVID-19 shutdown began in mid-March 2020. Despite the wet spring, the predicted number of active fire detections was still lower than expected, confirming a COVID-19 signal on ignitions. In addition, prescribed fire management statistics reported by US federal agencies confirmed the satellite observations and showed that, following the wet February and before the mid-March COVID-19 shutdown, cumulative burned area was approaching record highs across the region. With fire return intervals in the southeastern United States as frequent as 1 to 2 y, COVID-19 fire impacts will contribute to an increasing backlog in necessary fire management activities, affecting biodiversity and future fire danger.
Collapse
|
16
|
Abstract
Prescribed fires are a forest management tool used to improve natural areas for a variety of benefits including increased plant diversity, reduced competition for desired species, decreased fuel loads, and improved wildlife habitat. The post-fire results in landscapes have shown positive benefits for bat populations. However, prescribed fires set in the winter may cause direct mortality of eastern red bat (Lasiurus borealis) populations that use leaf litter for roosting during periods of colder (<10 °C) temperatures. Therefore, we used controlled laboratory techniques to explore if eastern red bats arouse from torpor when exposed to cues associated with fire (i.e., smoke and the sound of fire). Through subsequent field trials, we confirmed latencies of first response (i.e., movement or increased respiration), arousal, and flight behaviors to the stimuli of fire. We provide evidence of smoke influencing eastern red bat first response and arousal through laboratory and field trial results. Latencies of all behaviors were negatively correlated with temperatures and wind speeds prior to and during field trials. We recommend prescribing winter fires on days when temperatures are >10 °C to provide eastern red bats with a better chance to passively rewarm and react to an approaching fire.
Collapse
|
17
|
Nalliah R, Sitters H, Smith A, Di Stefano J. Untangling the influences of fire, habitat and introduced predators on the endangered heath mouse. Anim Conserv 2021. [DOI: 10.1111/acv.12731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rachel Nalliah
- School of Ecosystem and Forest Sciences The University of Melbourne Creswick VIC Australia
| | - Holly Sitters
- School of Ecosystem and Forest Sciences The University of Melbourne Creswick VIC Australia
| | - Amy Smith
- School of Ecosystem and Forest Sciences The University of Melbourne Creswick VIC Australia
| | - Julian Di Stefano
- School of Ecosystem and Forest Sciences The University of Melbourne Creswick VIC Australia
| |
Collapse
|
18
|
Calhoun KL, Chapman M, Tubbesing C, McInturff A, Gaynor KM, Van Scoyoc A, Wilkinson CE, Parker‐Shames P, Kurz D, Brashares J. Spatial overlap of wildfire and biodiversity in California highlights gap in non‐conifer fire research and management. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Kendall L. Calhoun
- Department of Environmental Science, Policy & Management University of California Berkeley Berkeley California USA
| | - Melissa Chapman
- Department of Environmental Science, Policy & Management University of California Berkeley Berkeley California USA
| | - Carmen Tubbesing
- Department of Environmental Science, Policy & Management University of California Berkeley Berkeley California USA
| | - Alex McInturff
- Department of Environmental Science, Policy & Management University of California Berkeley Berkeley California USA
| | - Kaitlyn M. Gaynor
- National Center for Ecological Analysis and Synthesis University of California Santa Barbara Santa Barbara California USA
| | - Amy Van Scoyoc
- Department of Environmental Science, Policy & Management University of California Berkeley Berkeley California USA
| | - Christine E. Wilkinson
- Department of Environmental Science, Policy & Management University of California Berkeley Berkeley California USA
| | - Phoebe Parker‐Shames
- Department of Environmental Science, Policy & Management University of California Berkeley Berkeley California USA
| | - David Kurz
- Department of Environmental Science, Policy & Management University of California Berkeley Berkeley California USA
| | - Justin Brashares
- Department of Environmental Science, Policy & Management University of California Berkeley Berkeley California USA
| |
Collapse
|
19
|
Chuvieco E, Pettinari ML, Koutsias N, Forkel M, Hantson S, Turco M. Human and climate drivers of global biomass burning variability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146361. [PMID: 34030254 DOI: 10.1016/j.scitotenv.2021.146361] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Biomass burning is one of the most critical factors impacting vegetation and atmospheric trends, with important societal implications, particularly when extreme weather conditions occur. Trends and factors of burned area (BA) have been analysed at regional and global scales, but little effort has been dedicated to study the interannual variability. This paper aimed to better understand factors explaining this variation, under the assumption that the more human control of fires the more frequently they occur, as burnings will be less dependent of weather cycles. Interannual variability of BA was estimated from the coefficient of variation of the annual BA (BA_CV) estimated from satellite data at 250 m, covering the period from 2001 to 2018. These data and the explanatory variables were resampled at 0.25-degree resolution for global analysis. Relations between this variable and explanatory factors, including human and climate drivers, were estimated using Random Forest (RF) and generalized additive models (GAM). BA_CV was negatively related to BA_Mean, implying that areas with higher average BA have lower variability as well. Interannual BA variability decreased when maximum temperature (TMAX) and actual and potential evapotranspiration (AET, PET) increased, cropland and livestock density increased and the human development index (HDI) values decreased. GAM models indicated interesting links with AET, PET and precipitation, with negative relation with BA_CV for the lower ranges and positive for the higher ones, the former indicating fuel limitations of fire activity, and the latter climate constrains. For the global RF model, TMAX, AET and HDI were the main drivers of interannual variability. As originally hypothesised, BA_CV was more dependent on human factors (HDI) in those areas with medium to large BA occurrence, particularly in tropical Africa and Central Asia, while climatic factors were more important in boreal regions, but also in the tropical regions of Australia and South America.
Collapse
Affiliation(s)
- Emilio Chuvieco
- Department of Geology, Geography and the Environment, University of Alcala, Calle Colegios 2, 28801 Alcalá de Henares, Spain.
| | - M Lucrecia Pettinari
- Department of Geology, Geography and the Environment, University of Alcala, Calle Colegios 2, 28801 Alcalá de Henares, Spain
| | - Nikos Koutsias
- Department of Environmental Engineering, University of Patras, 2 Georgiou Seferi St., Agrinio, Greece
| | - Matthias Forkel
- Faculty of Environmental Sciences, Institute for Photogrammetry and Remote Sensing, TU Dresden, Helmholtzstr. 10, 01069 Dresden, Germany
| | - Stijn Hantson
- Geospatial Data Solutions Center, 3212 Croul Hall, University of California, Irvine, Irvine, CA 92697, USA
| | - Marco Turco
- Regional Atmospheric Modelling (MAR) Group, Department of Physics, University of Murcia, Espinardo campus, 30100 Murcia, Spain
| |
Collapse
|
20
|
Jones GM, Tingley MW. Pyrodiversity and biodiversity: A history, synthesis, and outlook. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13280] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Gavin M. Jones
- USDA Forest ServiceRocky Mountain Research Station Albuquerque NM USA
| | - Morgan W. Tingley
- Department of Ecology and Evolutionary Biology University of California Los Angeles CA USA
| |
Collapse
|
21
|
Gallagher RV, Allen S, Mackenzie BDE, Yates CJ, Gosper CR, Keith DA, Merow C, White MD, Wenk E, Maitner BS, He K, Adams VM, Auld TD. High fire frequency and the impact of the 2019–2020 megafires on Australian plant diversity. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13265] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Stuart Allen
- Department of Biological Sciences Macquarie University North Ryde NSW Australia
| | - Berin D. E. Mackenzie
- Science, Economics and Insights Division NSW Department of Planning, Industry and Environment Parramatta NSW Australia
- Centre for Ecosystem Science University of New South Wales Kensington NSW Australia
| | - Colin J. Yates
- Department of Biodiversity, Conservation and Attractions Biodiversity and Conservation Science Kensington WA Australia
| | - Carl R. Gosper
- Department of Biodiversity, Conservation and Attractions Biodiversity and Conservation Science Kensington WA Australia
| | - David A. Keith
- Science, Economics and Insights Division NSW Department of Planning, Industry and Environment Parramatta NSW Australia
- Centre for Ecosystem Science University of New South Wales Kensington NSW Australia
| | - Cory Merow
- Eversource Energy Center University of Connecticut Storrs CT USA
- Department of Ecology & Evolutionary Biology University of Connecticut Storrs CT USA
- Department of Environmental Engineering University of Connecticut Storrs CT USA
| | - Matthew D. White
- Department of Environment, Land, Water and Planning Arthur Rylah Institute for Environmental Research Heidelberg Vic. Australia
| | - Elizabeth Wenk
- School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| | - Brian S. Maitner
- Department of Ecology & Evolutionary Biology University of Connecticut Storrs CT USA
| | - Kang He
- Department of Environmental Engineering University of Connecticut Storrs CT USA
| | - Vanessa M. Adams
- School of Geography, Planning, and Spatial Sciences University of Tasmania Hobart TAS Australia
| | - Tony D. Auld
- Science, Economics and Insights Division NSW Department of Planning, Industry and Environment Parramatta NSW Australia
- Centre for Ecosystem Science University of New South Wales Kensington NSW Australia
- School of Earth, Atmospheric and Life Sciences University of Wollongong Wollongong NSW Australia
| |
Collapse
|
22
|
Mobilizing the past to shape a better Anthropocene. Nat Ecol Evol 2021; 5:273-284. [PMID: 33462488 DOI: 10.1038/s41559-020-01361-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/08/2020] [Indexed: 01/29/2023]
Abstract
As our planet emerges into a new epoch in which humans dominate the Earth system, it is imperative that societies initiate a new phase of responsible environmental stewardship. Here we argue that information from the past has a valuable role to play in enhancing the sustainability and resilience of our societies. We highlight the ways that past data can be mobilized for a variety of efforts, from supporting conservation to increasing agricultural sustainability and food security. At a practical level, solutions from the past often do not require fossil fuels, can be locally run and managed, and have been tested over the long term. Past failures reveal non-viable solutions and expose vulnerabilities. To more effectively leverage increasing knowledge about the past, we advocate greater cross-disciplinary collaboration, systematic engagement with stakeholders and policymakers, and approaches that bring together the best of the past with the cutting-edge technologies and solutions of tomorrow.
Collapse
|
23
|
Stillman AN, Lorenz TJ, Fischer PC, Siegel RB, Wilkerson RL, Johnson M, Tingley MW. Juvenile survival of a burned forest specialist in response to variation in fire characteristics. J Anim Ecol 2021; 90:1317-1327. [PMID: 33638165 DOI: 10.1111/1365-2656.13456] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/01/2021] [Indexed: 11/28/2022]
Abstract
Pyrodiversity, defined as variation in fire history and characteristics, has been shown to catalyse post-fire biodiversity in a variety of systems. However, the demographic and behavioural mechanisms driving the responses of individual species to pyrodiversity remain largely unexplored. We used a model post-fire specialist, the black-backed woodpecker (Picoides arcticus), to examine the relationship between fire characteristics and juvenile survival while controlling for confounding factors. We radio-tracked fledgling black-backed woodpeckers in burned forests of California and Washington, USA, and derived information on habitat characteristics using ground surveys and satellite data. We used hierarchical Bayesian mixed-effects models to determine the factors that influence both fledgling and annual juvenile survival, and we tested for effects of fledgling age on movement rates. Burn severity strongly affected fledgling survival, with lower survival in patches created by high-severity fire compared to patches burned at medium to low severity or left unburned. Time since leaving the nest was also a strong predictor of fledgling survival, annual juvenile survival and fledgling movement rates. Our results support the role of habitat complementation in generating species-specific benefits from variation in spatial fire characteristics-one axis of pyrodiversity-and highlight the importance of this variation under shifting fire regimes. High-severity fire provides foraging and nesting sites that support the needs of adult black-backed woodpeckers, but fledgling survival is greater in areas burned at lower severity. By linking breeding and foraging habitat with neighbouring areas of reduced predation risk, pyrodiversity may enhance the survival and persistence of animals that thrive in post-fire habitat.
Collapse
Affiliation(s)
- Andrew N Stillman
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Teresa J Lorenz
- USDA Forest Service, Pacific Northwest Research Station, Olympia, WA, USA
| | - Philip C Fischer
- USDA Forest Service, Pacific Northwest Research Station, Olympia, WA, USA
| | | | | | - Matthew Johnson
- U.S. National Park Service, Southern Colorado Plateau Network - Inventory & Monitoring Division, Flagstaff, AZ, USA
| | - Morgan W Tingley
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA.,Ecology and Evolutionary Biology, University of California - Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
24
|
Quantifying Forest Fire and Post-Fire Vegetation Recovery in the Daxin’anling Area of Northeastern China Using Landsat Time-Series Data and Machine Learning. REMOTE SENSING 2021. [DOI: 10.3390/rs13040792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many post-fire on-site factors, including fire severity, management strategies, topography, and local climate, are concerns for forest managers and recovery ecologists to formulate forest vegetation recovery plans in response to climate change. We used the Vegetation Change Tracker (VCT) algorithm to map forest disturbance in the Daxing’anling area, Northeastern China, from 1987 to 2016. A support vector machine (SVM) classifier and historical fire records were used to separate burned patches from disturbance patches obtained from VCT. Afterward, stepwise multiple linear regression (SMLR), SVM, and random forest (RF) were applied to assess the statistical relationships between vegetation recovery characteristics and various influential factors. The results indicated that the forest disturbance events obtained from VCT had high spatial accuracy, ranging from 70% to 86% for most years. The overall accuracy of the annual fire patches extracted from the proposed VCT-SVM algorithm was over 92%. The modeling accuracy of post-fire vegetation recovery was excellent, and the validation results confirmed that the RF algorithm provided better prediction accuracy than SVM and SMLR. In conclusion, topographic variables (e.g., elevation) and meteorological variables (e.g., the post-fire annual precipitation in the second year, the post-fire average relative humidity in the fifth year, and the post-fire extreme maximum temperature in the third year) jointly affect vegetation recovery in this cold temperate continental monsoon climate region.
Collapse
|
25
|
Marinho AAR, Gois GD, Oliveira-Júnior JFD, Correia Filho WLF, Santiago DDB, Silva Junior CAD, Teodoro PE, de Souza A, Capristo-Silva GF, Freitas WKD, Rogério JP. Temporal record and spatial distribution of fire foci in State of Minas Gerais, Brazil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111707. [PMID: 33349512 DOI: 10.1016/j.jenvman.2020.111707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/05/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The objectives of this study are: (i) to evaluate the space-temporal variability of fire foci by environmental satellites, CHIRPS and remote sensing products based on applied statistics, and (ii) to identify the relational pattern between the distribution of fire foci and the environmental, meteorological, and socioeconomic variables in the mesoregions of Minas Gerais (MG) - Brazil. This study used a time series of fire foci from 1998 to 2015 via BDQueimadas. The temporal record of fire foci was evaluated by Mann-Kendall (MK), Pettitt (P), Shapiro-Wilk (SW), and Bartlett (B) tests. The spatial distribution by burned area (MCD64A1-MODIS) and the Kernel density - (radius 20 km) were estimated. The environmental variables analyzed were: rainfall (mm) and maximum temperature (°C), besides proxies to vegetation canopy: NDVI, SAVI, and EVI. PCA was applied to explain the interaction between fire foci and demographic, environmental, and geographical variables for MG. The MK test indicated a significant increasing trend in fire foci in MG. The SW and B tests were significant for non-normality and homogeneity of data. The P test pointed to abrupt changes in the 2001 and 2002 cycles (El Niño and La Niña moderated), which contributes to the annual increase and in winter and spring, which is identified by the Kernel density maps. Burned areas highlighted the northern and northwestern regions of MG, Triângulo Mineiro, Jequitinhonha, and South/Southwest MG, in the 3rd quarter (increased 17%) and the 4th quarter (increased 88%). The PCA resulted in three PCs that explained 71.49% of the total variation. The SAVI was the variable that stood out, with 11.12% of the total variation, followed by Belo Horizonte, the most representative in MG. We emphasize that the applied conceptual theoretical model defined here can act in the environmental management of fire risk. However, public policies should follow the technical-scientific guidelines in the mitigation of the resulting socioeconomic - environmental damages.
Collapse
Affiliation(s)
- Ana Aguiar Real Marinho
- Department of Engineering Surveying and Cartography, Federal Rural University of Rio de Janeiro (UFRRJ), 23897-000, Seropédica, Rio de Janeiro, Brazil
| | - Givanildo de Gois
- Postgraduate Program in Environmental Technology - PGTA, Federal Fluminense University (UFF), 27255-250, Volta Redonda, Rio de Janeiro, Brazil
| | - José Francisco de Oliveira-Júnior
- Institute of Atmospheric Sciences (ICAT), Federal University of Alagoas (UFAL), 57072-260, Maceió, Alagoas, Brazil; Postgraduate Program in Biosystems Engineering (PGEB), Federal Fluminense University (UFF), Niterói, Rio de Janeiro, 24220-900, Brazil
| | | | - Dimas de Barros Santiago
- Postgraduate Program in Meteorology, Unidade Acadêmica de Ciências Atmosféricas (UACA), Federal University of Campina Grande (UFCG), 58429-140, Campina Grande, Paraíba, Brazil
| | | | - Paulo Eduardo Teodoro
- Federal University of Mato Grosso do Sul (UFMS), 79560-000, Chapadão do Sul, Mato Grosso do Sul, Brazil
| | - Amaury de Souza
- Federal University of Mato Grosso do Sul (UFMS), Mato Grosso do Sul, Brazil
| | | | - Welington Kiffer de Freitas
- Postgraduate Program in Environmental Technology - PGTA, Federal Fluminense University (UFF), 27255-250, Volta Redonda, Rio de Janeiro, Brazil
| | | |
Collapse
|
26
|
Driscoll DA, Armenteras D, Bennett AF, Brotons L, Clarke MF, Doherty TS, Haslem A, Kelly LT, Sato CF, Sitters H, Aquilué N, Bell K, Chadid M, Duane A, Meza-Elizalde MC, Giljohann KM, González TM, Jambhekar R, Lazzari J, Morán-Ordóñez A, Wevill T. How fire interacts with habitat loss and fragmentation. Biol Rev Camb Philos Soc 2021; 96:976-998. [PMID: 33561321 DOI: 10.1111/brv.12687] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Biodiversity faces many threats and these can interact to produce outcomes that may not be predicted by considering their effects in isolation. Habitat loss and fragmentation (hereafter 'fragmentation') and altered fire regimes are important threats to biodiversity, but their interactions have not been systematically evaluated across the globe. In this comprehensive synthesis, including 162 papers which provided 274 cases, we offer a framework for understanding how fire interacts with fragmentation. Fire and fragmentation interact in three main ways: (i) fire influences fragmentation (59% of 274 cases), where fire either destroys and fragments habitat or creates and connects habitat; (ii) fragmentation influences fire (25% of cases) where, after habitat is reduced in area and fragmented, fire in the landscape is subsequently altered because people suppress or ignite fires, or there is increased edge flammability or increased obstruction to fire spread; and (iii) where the two do not influence each other, but fire interacts with fragmentation to affect responses like species richness, abundance and extinction risk (16% of cases). Where fire and fragmentation do influence each other, feedback loops are possible that can lead to ecosystem conversion (e.g. forest to grassland). This is a well-documented threat in the tropics but with potential also to be important elsewhere. Fire interacts with fragmentation through scale-specific mechanisms: fire creates edges and drives edge effects; fire alters patch quality; and fire alters landscape-scale connectivity. We found only 12 cases in which studies reported the four essential strata for testing a full interaction, which were fragmented and unfragmented landscapes that both span contrasting fire histories, such as recently burnt and long unburnt vegetation. Simulation and empirical studies show that fire and fragmentation can interact synergistically, multiplicatively, antagonistically or additively. These cases highlight a key reason why understanding interactions is so important: when fire and fragmentation act together they can cause local extinctions, even when their separate effects are neutral. Whether fire-fragmentation interactions benefit or disadvantage species is often determined by the species' preferred successional stage. Adding fire to landscapes generally benefits early-successional plant and animal species, whereas it is detrimental to late-successional species. However, when fire interacts with fragmentation, the direction of effect of fire on a species could be reversed from the effect expected by successional preferences. Adding fire to fragmented landscapes can be detrimental for species that would normally co-exist with fire, because species may no longer be able to disperse to their preferred successional stage. Further, animals may be attracted to particular successional stages leading to unexpected responses to fragmentation, such as higher abundance in more isolated unburnt patches. Growing human populations and increasing resource consumption suggest that fragmentation trends will worsen over coming years. Combined with increasing alteration of fire regimes due to climate change and human-caused ignitions, interactions of fire with fragmentation are likely to become more common. Our new framework paves the way for developing a better understanding of how fire interacts with fragmentation, and for conserving biodiversity in the face of these emerging challenges.
Collapse
Affiliation(s)
- Don A Driscoll
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Dolors Armenteras
- Laboratorio de Ecología del Paisaje y Modelación de Ecosistemas ECOLMOD, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Edificio 421, Oficina 223, Cra. 30 # 45-03, Bogotá, 111321, Colombia
| | - Andrew F Bennett
- Research Centre for Future Landscapes, Department Ecology, Environment & Evolution, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Lluís Brotons
- InForest JRU (CTFC-CREAF), Carretera vella de Sant Llorenç de Morunys km. 2, Solsona, 25280, Spain.,CREAF, Bellaterra, Barcelona, 08193, Spain.,CSIC, Bellaterra, Barcelona, 08193, Spain
| | - Michael F Clarke
- Research Centre for Future Landscapes, Department Ecology, Environment & Evolution, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Tim S Doherty
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Angie Haslem
- Research Centre for Future Landscapes, Department Ecology, Environment & Evolution, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Luke T Kelly
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Chloe F Sato
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Holly Sitters
- School of Ecosystem and Forest Sciences, University of Melbourne, 4 Water Street, Creswick, VIC, 3363, Australia
| | - Núria Aquilué
- InForest JRU (CTFC-CREAF), Carretera vella de Sant Llorenç de Morunys km. 2, Solsona, 25280, Spain
| | - Kristian Bell
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Maria Chadid
- Laboratorio de Ecología del Paisaje y Modelación de Ecosistemas ECOLMOD, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Edificio 421, Oficina 223, Cra. 30 # 45-03, Bogotá, 111321, Colombia
| | - Andrea Duane
- InForest JRU (CTFC-CREAF), Carretera vella de Sant Llorenç de Morunys km. 2, Solsona, 25280, Spain
| | - María C Meza-Elizalde
- Laboratorio de Ecología del Paisaje y Modelación de Ecosistemas ECOLMOD, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Edificio 421, Oficina 223, Cra. 30 # 45-03, Bogotá, 111321, Colombia
| | | | - Tania Marisol González
- Laboratorio de Ecología del Paisaje y Modelación de Ecosistemas ECOLMOD, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Edificio 421, Oficina 223, Cra. 30 # 45-03, Bogotá, 111321, Colombia
| | - Ravi Jambhekar
- Azim Premji University, PES Campus, Pixel Park, B Block, Hosur Road, beside NICE Road, Electronic City, Bengaluru, Karnataka, 560100, India
| | - Juliana Lazzari
- Fenner School of Environment and Society, Australian National University, Building 141, Linnaeus Way, Canberra, ACT, 2601, Australia
| | - Alejandra Morán-Ordóñez
- InForest JRU (CTFC-CREAF), Carretera vella de Sant Llorenç de Morunys km. 2, Solsona, 25280, Spain
| | - Tricia Wevill
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| |
Collapse
|
27
|
Campos JC, Bernhardt J, Aquilué N, Brotons L, Domínguez J, Lomba Â, Marcos B, Martínez-Freiría F, Moreira F, Pais S, Honrado JP, Regos A. Using fire to enhance rewilding when agricultural policies fail. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142897. [PMID: 33348480 DOI: 10.1016/j.scitotenv.2020.142897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/13/2020] [Accepted: 10/02/2020] [Indexed: 06/12/2023]
Abstract
Rewilding has been proposed as an opportunity for biodiversity conservation in abandoned landscapes. However, rewilding is challenged by the increasing fire risk associated with more flammable landscapes, and the loss of open-habitat specialist species. Contrastingly, supporting High Nature Value farmlands (HNVf) has been also highlighted as a valuable option, but the effective implementation of agricultural policies often fails leading to uncertain scenarios wherein the effects of wildfire management remain largely unexplored. Herein, we simulated fire-landscape dynamics to evaluate how fire suppression scenarios affect fire regime and biodiversity (102 species of vertebrates) under rewilding and HNVf policies in the future (2050), in a transnational biosphere reserve (Gerês-Xurés Mountains, Portugal-Spain). Rewilding and HNVf scenarios were modulated by three different levels of fire suppression effectiveness. Then, we quantified scenario effects on fire regime (burned and suppressed areas) and biodiversity (habitat suitability change for 2050). Simulations confirm HNVf as a long-term opportunity for fire suppression (up to 30,000 ha of additional suppressed areas between 2031 and 2050 in comparison to rewilding scenario) and for conservation (benefiting around 60% of species). Rewilding benefits some species (20%), including critically endangered, vulnerable and endemic taxa, while several species (33%) also profit from open habitats created by fire. Although HNVf remains the best scenario, rewilding reinforced by low fire suppression management may provide a nature-based solution when societal support through agricultural policies fails.
Collapse
Affiliation(s)
- João C Campos
- InBIO/CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Rua Padre Armando Quintas, n° 7, 4485-661 Vairão, Portugal.
| | - Julia Bernhardt
- Universität Leipzig, Ritterstraße 30, 36 04109 Leipzig, Germany
| | - Núria Aquilué
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, Canada; InForest Jru (CTFC-CREAF), Crta. Antiga St Llorenç de Morunys km. 2, 25280 Solsona, Spain.
| | - Lluís Brotons
- InForest Jru (CTFC-CREAF), Crta. Antiga St Llorenç de Morunys km. 2, 25280 Solsona, Spain; CREAF, 08193 Cerdanyola del Vallès, Spain; CSIC, 08193 Cerdanyola del Vallès, Spain.
| | - Jesús Domínguez
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Ângela Lomba
- InBIO/CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Rua Padre Armando Quintas, n° 7, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, S/N, Edifício FC4, 4169-007 Porto, Portugal.
| | - Bruno Marcos
- InBIO/CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Rua Padre Armando Quintas, n° 7, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, S/N, Edifício FC4, 4169-007 Porto, Portugal.
| | - Fernando Martínez-Freiría
- InBIO/CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Rua Padre Armando Quintas, n° 7, 4485-661 Vairão, Portugal.
| | - Francisco Moreira
- InBIO/CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Rua Padre Armando Quintas, n° 7, 4485-661 Vairão, Portugal; InBIO/CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| | - Silvana Pais
- InBIO/CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Rua Padre Armando Quintas, n° 7, 4485-661 Vairão, Portugal; proMetheus, Research Unit in Materials, Energy and Environment for Sustainability, Instituto Politécnico of Viana do Castelo, 4990-706 Ponte de Lima, Portugal
| | - João P Honrado
- InBIO/CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Rua Padre Armando Quintas, n° 7, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, S/N, Edifício FC4, 4169-007 Porto, Portugal.
| | - Adrián Regos
- InBIO/CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Rua Padre Armando Quintas, n° 7, 4485-661 Vairão, Portugal; Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
28
|
Abrahamson WG, Abrahamson CR, Keller MA. Lessons from four decades of monitoring vegetation and fire: maintaining diversity and resilience in Florida’s uplands. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Warren G. Abrahamson
- Department of Biology Bucknell University Lewisburg Pennsylvania17837USA
- Archbold Biological Station 123 Main Drive Venus Florida33960USA
- 3833 Stein Lane Lewisburg Pennsylvania17837USA
| | | | - Matthew A. Keller
- Department of Biology Bucknell University Lewisburg Pennsylvania17837USA
- 503 Byler Circle Lebanon Pennsylvania17042USA
| |
Collapse
|
29
|
Kelly LT, Giljohann KM, Duane A, Aquilué N, Archibald S, Batllori E, Bennett AF, Buckland ST, Canelles Q, Clarke MF, Fortin MJ, Hermoso V, Herrando S, Keane RE, Lake FK, McCarthy MA, Morán-Ordóñez A, Parr CL, Pausas JG, Penman TD, Regos A, Rumpff L, Santos JL, Smith AL, Syphard AD, Tingley MW, Brotons L. Fire and biodiversity in the Anthropocene. Science 2021; 370:370/6519/eabb0355. [PMID: 33214246 DOI: 10.1126/science.abb0355] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Fire has been a source of global biodiversity for millions of years. However, interactions with anthropogenic drivers such as climate change, land use, and invasive species are changing the nature of fire activity and its impacts. We review how such changes are threatening species with extinction and transforming terrestrial ecosystems. Conservation of Earth's biological diversity will be achieved only by recognizing and responding to the critical role of fire. In the Anthropocene, this requires that conservation planning explicitly includes the combined effects of human activities and fire regimes. Improved forecasts for biodiversity must also integrate the connections among people, fire, and ecosystems. Such integration provides an opportunity for new actions that could revolutionize how society sustains biodiversity in a time of changing fire activity.
Collapse
Affiliation(s)
- Luke T Kelly
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | - Andrea Duane
- InForest JRU (CTFC-CREAF), 25280 Solsona, Lleida, Spain
| | - Núria Aquilué
- InForest JRU (CTFC-CREAF), 25280 Solsona, Lleida, Spain.,Centre d'Étude de la Forêt, Université du Québec à Montréal, Montreal, Quebec H3C 3P8, Canada
| | - Sally Archibald
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Natural Resources and the Environment, CSIR, Pretoria, South Africa
| | - Enric Batllori
- CREAF, Edifici C. Autonomous, University of Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Andrew F Bennett
- Department of Ecology, Environment and Evolution, Centre for Future Landscapes, La Trobe University, Bundoora, Australia
| | - Stephen T Buckland
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, Fife KY16 9LZ, UK
| | - Quim Canelles
- InForest JRU (CTFC-CREAF), 25280 Solsona, Lleida, Spain
| | - Michael F Clarke
- Department of Ecology, Environment and Evolution, Centre for Future Landscapes, La Trobe University, Bundoora, Australia
| | - Marie-Josée Fortin
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | | | - Sergi Herrando
- Catalan Ornithological Institute, Natural History Museum of Barcelona, 08019 Barcelona, Catalonia, Spain
| | - Robert E Keane
- U.S. Department of Agriculture Forest Service Rocky Mountain Research Station, Missoula Fire Sciences Laboratory, Missoula, MT 59808, USA
| | - Frank K Lake
- U.S. Department of Agriculture Forest Service Pacific Southwest Research Station, Albany, CA 94710, USA
| | - Michael A McCarthy
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Catherine L Parr
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Earth, Ocean & Ecological Sciences, University of Liverpool, Liverpool, UK.,Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| | - Juli G Pausas
- Centro de Investigaciones sobre Desertificación (CIDE-CSIC), 46113 Montcada, Valencia, Spain
| | - Trent D Penman
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Adrián Regos
- Departamento de Zooloxía, Xenética e Antropoloxía Fisica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, ECOCHANGE Group, Vairão, Portugal
| | - Libby Rumpff
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Julianna L Santos
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Annabel L Smith
- School of Agriculture and Food Science, University of Queensland, Gatton 4343, Australia.,Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Alexandra D Syphard
- Vertus Wildfire, San Francisco, CA 94108, USA.,San Diego State University, San Diego, CA 92182, USA.,Conservation Biology Institute, Corvallis, OR 97333, USA
| | - Morgan W Tingley
- Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Lluís Brotons
- InForest JRU (CTFC-CREAF), 25280 Solsona, Lleida, Spain.,CREAF, Edifici C. Autonomous, University of Barcelona, 08193 Bellaterra, Barcelona, Spain.,Spanish Research Council (CSIC), 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
30
|
Davies HF, Visintin C, Gillespie GR, Murphy BP. Investigating the effects of fire management on savanna biodiversity with grid‐based spatially explicit population simulations. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Hugh F. Davies
- NESP Threatened Species Recovery Hub Research Institute for the Environment and LivelihoodsCharles Darwin University Casuarina NT Australia
| | - Casey Visintin
- Quantitative and Applied Ecology Group School of BioSciences University of Melbourne Parkville Vic. Australia
| | - Graeme R. Gillespie
- Department of Environment and Natural Resources Northern Territory Government Berrimah NT Australia
| | - Brett P. Murphy
- NESP Threatened Species Recovery Hub Research Institute for the Environment and LivelihoodsCharles Darwin University Casuarina NT Australia
| |
Collapse
|
31
|
Furniss TJ, Larson AJ, Kane VR, Lutz JA. Wildfire and drought moderate the spatial elements of tree mortality. Ecosphere 2020. [DOI: 10.1002/ecs2.3214] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Tucker J. Furniss
- Wildland Resources Department and Ecology Center Utah State University Logan Utah84322USA
| | - Andrew J. Larson
- Wilderness Institute and Department of Forest Management University of Montana Missoula Montana59812USA
| | - Van R. Kane
- School of Environmental and Forest Sciences University of Washington Seattle Washington98195USA
| | - James A. Lutz
- Wildland Resources Department and Ecology Center Utah State University Logan Utah84322USA
| |
Collapse
|
32
|
Haddad T, Viani R, Cava M, Durigan G, Veldman J. Savannas after afforestation: Assessment of herbaceous community responses to wildfire versus native tree planting. Biotropica 2020. [DOI: 10.1111/btp.12827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thaís Haddad
- Departamento de Ciências Biológicas Escola Superior de Agricultura ‘Luiz de Queiroz’ Universidade de São Paulo Piracicaba Brasil
| | - Ricardo Viani
- Departamento de Biotecnologia e Produção Vegetal e Animal Universidade Federal de São Carlos Araras Brasil
| | - Mário Cava
- Departamento de Ciência Florestal Faculdade de Ciências Agronômicas Universidade Estadual Paulista ‘Júlio de Mesquita Filho’ Botucatu Brasil
| | - Giselda Durigan
- Floresta Estadual de Assis Instituto Florestal do Estado de São Paulo Assis Brasil
| | - Joseph Veldman
- Department of Ecology and Conservation Biology Texas A&M University College Station TX USA
| |
Collapse
|
33
|
A Deep Learning Approach for Burned Area Segmentation with Sentinel-2 Data. REMOTE SENSING 2020. [DOI: 10.3390/rs12152422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wildfires have major ecological, social and economic consequences. Information about the extent of burned areas is essential to assess these consequences and can be derived from remote sensing data. Over the last years, several methods have been developed to segment burned areas with satellite imagery. However, these methods mostly require extensive preprocessing, while deep learning techniques—which have successfully been applied to other segmentation tasks—have yet to be fully explored. In this work, we combine sensor-specific and methodological developments from the past few years and suggest an automatic processing chain, based on deep learning, for burned area segmentation using mono-temporal Sentinel-2 imagery. In particular, we created a new training and validation dataset, which is used to train a convolutional neural network based on a U-Net architecture. We performed several tests on the input data and reached optimal network performance using the spectral bands of the visual, near infrared and shortwave infrared domains. The final segmentation model achieved an overall accuracy of 0.98 and a kappa coefficient of 0.94.
Collapse
|
34
|
Docherty TDS, Hethcoat MG, MacTavish LM, MacTavish D, Dell S, Stephens PA, Willis SG. Burning savanna for avian species richness and functional diversity. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02091. [PMID: 32043665 DOI: 10.1002/eap.2091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 11/17/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Prescribed fire is used throughout fire-prone landscapes to conserve biodiversity. Current best practice in managing savanna systems advocates methods based on the assumption that increased fire-mediated landscape heterogeneity (pyrodiversity) will promote biodiversity. However, considerable knowledge gaps remain in our understanding of how savanna wildlife responds to the composition and configuration of pyrodiverse landscapes. The effects of pyrodiversity on functional diversity have rarely been quantified and assessing this relationship at a landscape scale that is commensurate with fire management is important for understanding mechanisms underlying ecosystem resilience. Here, we assess the impact of spatiotemporal variation in a long-term fire regime on avian diversity in North West Province, South Africa. We examined the relationship between (1) species richness, (2) three indices of functional diversity (i.e., functional richness, functional evenness, and functional dispersion) and four measures of pyrodiversity, the spatial extents of fire age classes, and habitat type at the landscape scale. We then used null models to assess differences between observed and expected functional diversity. We found that the proportion of newly burned (<1-yr post-fire), old, unburned (≥10 yr post-fire), and woodland habitat on the landscape predicted species and functional richness. Species richness also increased with the degree of edge contrast between patches of varying fire age, while functional dispersion increased with the degree of patch shape complexity. Lower than expected levels of functional richness suggest that habitat filtering is occurring, resulting in functional redundancy across our study sites. We demonstrate that evaluating functional diversity and redundancy is an important component of conservation planning as they may contribute to previously reported fire resilience. Our findings suggest that it is the type and configuration, rather than the diversity, of fire patches on the landscape that promote avian diversity and conserve ecological functions. A management approach is needed that includes significant coverage of adjacent newly burned and older, unburned savanna habitat; the latter, in particular, is inadequately represented under current burning practices.
Collapse
Affiliation(s)
- Teegan D S Docherty
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Matthew G Hethcoat
- School of Mathematics and Statistics, University of Sheffield, Hounsfield Rd, Sheffield, S3 7RH, United Kingdom
| | - Lynne M MacTavish
- Mankwe Wildlife Reserve, P.O. Box 20784 Protea Park 0305, Mogwase, Northwest Province, South Africa
| | - Dougal MacTavish
- Mankwe Wildlife Reserve, P.O. Box 20784 Protea Park 0305, Mogwase, Northwest Province, South Africa
| | - Stephen Dell
- Pilanesberg National Park, North West Parks Board, Mogwase, South Africa
| | - Philip A Stephens
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Stephen G Willis
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
35
|
Ponisio LC. Pyrodiversity promotes interaction complementarity and population resistance. Ecol Evol 2020; 10:4431-4447. [PMID: 32489608 PMCID: PMC7246207 DOI: 10.1002/ece3.6210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/21/2020] [Accepted: 02/28/2020] [Indexed: 11/06/2022] Open
Abstract
Theory predicts that network characteristics may help anticipate how populations and communities respond to extreme climatic events, but local environmental context may also influence responses to extreme events. For example, altered fire regimes in many ecosystems may significantly affect the context for how species and communities respond to changing climate. In this study, I tested whether the responses of a pollinator community to extreme drought were influenced by the surrounding diversity of fire histories (pyrodiversity) which can influence their interaction networks via changing partner availability. I found that at the community level, pyrodiverse landscapes promote functional complementarity and generalization, but did not consistently enhance functional redundancy or resistance to simulated co-extinction cascades. Pyrodiversity instead supported flexible behaviors that enable populations to resist perturbations. Specifically, pollinators that can shift partners and network niches are better able to take advantage of the heterogeneity generated by pyrodiversity, thereby buffering pollinator populations against changes in plant abundances. These findings suggest that pyrodiversity is unlikely to improve community-level resistance to droughts, but instead promotes population resistance and community functionality. This study provides unique evidence that resistance to extreme climatic events depends on both network properties and historical environmental context.
Collapse
Affiliation(s)
- Lauren C. Ponisio
- Department of EntomologyUniversity of California, RiversideRiversideCAUSA
| |
Collapse
|
36
|
Foster CN, Banks SC, Cary GJ, Johnson CN, Lindenmayer DB, Valentine LE. Animals as Agents in Fire Regimes. Trends Ecol Evol 2020; 35:346-356. [DOI: 10.1016/j.tree.2020.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/17/2019] [Accepted: 01/15/2020] [Indexed: 01/08/2023]
|
37
|
Khatib S, Pomyen Y, Dang H, Wang XW. Understanding the Cause and Consequence of Tumor Heterogeneity. Trends Cancer 2020; 6:267-271. [DOI: 10.1016/j.trecan.2020.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 12/26/2022]
|
38
|
Fire Behavior, Fuel Consumption, and Turbulence and Energy Exchange during Prescribed Fires in Pitch Pine Forests. ATMOSPHERE 2020. [DOI: 10.3390/atmos11030242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prescribed fires are conducted extensively in pine-dominated forests throughout the Eastern USA to reduce the risk of wildfires and maintain fire-adapted ecosystems. We asked how fire behavior and fuel consumption during prescribed fires are associated with turbulence and energy fluxes, which affect the dispersion of smoke and transport of firebrands, potentially impacting local communities and transportation corridors. We estimated fuel consumption and measured above-canopy turbulence and energy fluxes using eddy covariance during eight prescribed fires ranging in behavior from low-intensity backing fires to high-intensity head fires in pine-dominated forests of the New Jersey Pinelands, USA. Consumption was greatest for fine litter, intermediate for understory vegetation, and least for 1 + 10 hour wood, and was significantly correlated with pre-burn loading for all fuel types. Crown torching and canopy fuel consumption occurred only during high-intensity fires. Above-canopy air temperature, vertical wind velocity, and turbulent kinetic energy (TKE) in buoyant plumes above fires were enhanced up to 20.0, 3.9 and 4.1 times, respectively, compared to values measured simultaneously on control towers in unburned areas. When all prescribed fires were considered together, differences between above-canopy measurements in burn and control areas (Δ values) for maximum Δ air temperatures were significantly correlated with maximum Δ vertical wind velocities at all (10 Hz to 1 minute) integration times, and with Δ TKE. Maximum 10 minute averaged sensible heat fluxes measured above canopy were lower during low-intensity backing fires than for high-intensity head fires, averaging 1.8 MJ m−2 vs. 10.6 MJ m−2, respectively. Summed Δ sensible heat values averaged 70 ± 17%, and 112 ± 42% of convective heat flux estimated from fuel consumption for low-intensity and high-intensity fires, respectively. Surprisingly, there were only weak relationships between the consumption of surface and understory fuels and Δ air temperature, Δ wind velocities, or Δ TKE values in buoyant plumes. Overall, low-intensity fires were effective at reducing fuels on the forest floor, but less effective at consuming understory vegetation and ladder fuels, while high-intensity head fires resulted in greater consumption of ladder and canopy fuels but were also associated with large increases in turbulence and heat flux above the canopy. Our research quantifies some of the tradeoffs involved between fire behavior and turbulent transfer of smoke and firebrands during effective fuel reduction treatments and can assist wildland fire managers when planning and conducting prescribed fires.
Collapse
|
39
|
Slingsby JA, Moncrieff GR, Rogers AJ, February EC. Altered ignition catchments threaten a hyperdiverse fire-dependent ecosystem. GLOBAL CHANGE BIOLOGY 2020; 26:616-628. [PMID: 31587449 DOI: 10.1111/gcb.14861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/07/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Human activities affect fire in many ways, often unintentionally or with considerable time-lags before they manifest themselves. Anticipating these changes is critical, so that insidious impacts on ecosystems, their biodiversity and associated goods and services can be avoided, mitigated or managed. Here we explore the impact of anthropogenic land cover change on fire and biodiversity in adjacent ecosystems on the hyperdiverse Cape Peninsula, South Africa. We develop a conceptual framework based on the notion of an ignition catchment, or the spatial extent and temporal range where an ignition is likely to result in a site burning. We apply this concept using fire models to estimate spatial changes in burn probability between historical and current land cover. This change layer was used to predict the observed record of fires and forest encroachment into fire-dependent Fynbos ecosystems in Table Mountain National Park. Urban expansion has created anthropogenic fire shadows that are modifying fire return intervals, facilitating a state shift to low-diversity, non-flammable forest at the expense of hyperdiverse, flammable Fynbos ecosystems. Despite occurring in a conservation area, these ecosystems are undergoing a hidden collapse and desperately require management intervention. Anthropogenic fire shadows can be caused by many human activities and are likely to be a universal phenomenon, not only contributing to the observed global decline in fire activity but also causing extreme fires in ecosystems where there is no shift to a less flammable state and flammable fuels accumulate. The ignition catchment framework is highly flexible and allows detection or prediction of changes in the fire regime, the threat this poses for ecosystems or fire risk and areas where management interventions and/or monitoring are required. Identifying anthropogenic impacts on ignition catchments is key for both understanding global impacts of humans on fire and guiding management of human-altered landscapes for desirable outcomes.
Collapse
Affiliation(s)
- Jasper A Slingsby
- Fynbos Node, South African Environmental Observation Network (SAEON), Cape Town, South Africa
- Centre for Statistics in Ecology, Environment and Conservation, Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Glenn R Moncrieff
- Fynbos Node, South African Environmental Observation Network (SAEON), Cape Town, South Africa
- Centre for Statistics in Ecology, Environment and Conservation, Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Annabelle J Rogers
- Fynbos Node, South African Environmental Observation Network (SAEON), Cape Town, South Africa
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Edmund C February
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
40
|
Soyumert A, Ertürk A, Tavşanoğlu Ç. Fire-created habitats support large mammal community in a Mediterranean landscape. MAMMAL RES 2019. [DOI: 10.1007/s13364-019-00473-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
James Verdon S, Watson SJ, Clarke MF. Modeling variability in the fire response of an endangered bird to improve fire-management. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01980. [PMID: 31330069 DOI: 10.1002/eap.1980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/07/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Conservation managers regularly burn vegetation to regenerate habitat for fire-dependent species. When determining the time since fire at which to burn, managers model change in a species' occurrence over time, post-fire (fire-response curve) and identify the time since fire associated with decline in occurrence. However, where species exhibit variability in their fire response across space, using a single fire-response curve to determine the timing of burns may lead to burning habitat at an inappropriate time since fire. We tested if elevation, local topography, soil properties, vegetation type or evapotranspiration affect the fire response of the endangered Mallee Emu-wren Stipiturus mallee and its hummock-grass habitat Triodia scariosa in southeastern Australia (n = 217). Previous work on the Mallee Emu-wren found a unimodal fire response with decline in occurrence at ~30-50 yr since fire and a time window of occurrence of ~30 yr. We found that time since fire and elevation interact to affect the Mallee Emu-wren fire response. At high elevations (55-98 m), Mallee Emu-wrens declined in occurrence at ~50 yr since fire, with a time window of occurrence of 20-40 yr. However, at low elevations (28-55 m), Mallee Emu-wrens showed no decline in occurrence with increasing time since fire with a time window of occurrence of up to 107 yr. Extent cover of Tall T. scariosa showed similar patterns to the Mallee Emu-wren, indicating that vegetation structure is a likely driver of variability in the Mallee Emu-wren fire response. We speculate that the effect of low elevation is mediated by increased soil nutrient and water availability for key plants. We used our findings to map the appropriate time since fire at which to burn to regenerate habitat for the Mallee Emu-wren across the study region. We recommend no burning for regeneration across one-third of potential habitat, because the Mallee Emu-wren showed no decline in occurrence in these areas. We recommend managers model variability in species' fire responses across space to improve the timing of burns for regeneration.
Collapse
Affiliation(s)
- Simon James Verdon
- Research Centre for Future Landscapes, La Trobe University, Melbourne, Victoria, 3086, Australia
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Simon J Watson
- Research Centre for Future Landscapes, La Trobe University, Melbourne, Victoria, 3086, Australia
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Michael F Clarke
- Research Centre for Future Landscapes, La Trobe University, Melbourne, Victoria, 3086, Australia
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, 3086, Australia
| |
Collapse
|
42
|
Assessing Spatio-Temporal Variability of Wildfires and their Impact on Sub-Saharan Ecosystems and Air Quality Using Multisource Remotely Sensed Data and Trend Analysis. SUSTAINABILITY 2019. [DOI: 10.3390/su11236811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Globally, wildfires are considered the most commonly occurring disasters, resulting from natural and anthropogenic ignition sources. Wildfires consist of burning standing biomass at erratic degrees of intensity, severity, and frequency. Consequently, wildfires generate large amounts of smoke and other toxic pollutants that have devastating impacts on ambient air quality and human health. There is, therefore, a need for a comprehensive study that characterizes land–atmosphere interactions with regard to wildfires, critical for understanding the interrelated and multidimensional impacts of wildfires. Current studies have a limited scope and a narrow focus, usually only focusing on one aspect of wildfire impacts, such as air quality without simultaneously considering the impacts on land surface changes and vice versa. In this study, we use several multisource data to determine the spatial distribution, frequency, disturbance characteristics of and variability and distribution of pollutants emitted by wildfires. The specific objectives were to (1) study the sources of wildfires and the period they are prevalent in sub-Saharan Africa over a 9 year period, i.e., 2007–2016, (2) estimate the seasonal disturbance of wildfires on various vegetation types, (3) determine the spatial distribution of black carbon (BC), carbon monoxide (CO) and smoke, and (4) determine the vertical height distribution of smoke. The results show largest burned areas in December–January–February (DJF), June–July–August (JJA) and September–October–November (SON) seasons, and reciprocal high emissions of BC, CO, and smoke, as observed by Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). In addition, the results reveal an increasing trend in the magnitude of BC, and CO concentration driven by meteorological conditions such as low precipitation, low relative humidity, and low latent heat flux. Overall, this study demonstrates the value of multisource remotely sensed data in characterising long-term wildfire patterns and associated emissions. The results in this study are critical for informing better regional fire management and air quality control strategies to preserve endangered species and habitats, promote sustainable land management, and reduce greenhouse gases (GHG) emissions.
Collapse
|
43
|
Burns PA, Phillips BL. Time since fire is an over-simplified measure of habitat suitability for the New Holland mouse. J Mammal 2019. [DOI: 10.1093/jmammal/gyz157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Fire has shaped much of the Australian landscape, and alterations to natural or historical fire regimes are implicated in the decline of many native mammal species. Time since fire (TSF) is a common metric used to understand vegetation and faunal responses to fire but is unlikely to capture the complexity of successional changes following fire. The New Holland mouse (Pseudomys novaehollandiae), a threatened and declining rodent species native to southeastern Australia, is traditionally considered an early post-fire successional species. Here, we use a 48-year dataset to test whether this posited association with early TSF is upheld, and whether the species’ occurrence and abundance are governed by TSF. We find support for a minimal influence of TSF on the species’ occurrence, and that while abundance of P. novaehollandiae is partly explained by TSF, considerable uncertainty and variation among fire events and locations limit the usefulness of TSF in informing conservation management strategies. We suggest that it is not helpful to consider the species as early successional and that fire planning for P. novaehollandiae conservation is best considered at a local scale. Additionally, we provide guidelines for maximizing individual survival and persistence during and after planned burns.
Collapse
Affiliation(s)
- Phoebe A Burns
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ben L Phillips
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
44
|
Ecke F, Nematollahi Mahani SA, Evander M, Hörnfeldt B, Khalil H. Wildfire-induced short-term changes in a small mammal community increase prevalence of a zoonotic pathogen? Ecol Evol 2019; 9:12459-12470. [PMID: 31788190 PMCID: PMC6875567 DOI: 10.1002/ece3.5688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/06/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Natural disturbances like droughts and fires are important determinants of wildlife community structure and are suggested to have important implications for prevalence of wildlife-borne pathogens. After a major wildfire affecting >1,600 ha of boreal forest in Sweden in 2006, we took the rare opportunity to study the short-term response (2007-2010 and 2015) of small mammal community structure, population dynamics, and prevalence of the Puumala orthohantavirus (PUUV) hosted by bank voles (Myodes glareolus). We performed snap-trapping in permanent trapping plots in clear-cuts (n = 3), unburnt reference forests (n = 7), and the fire area (n = 7) and surveyed vegetation and habitat structure. Small mammal species richness was low in all habitats (at maximum three species per trapping session), and the bank vole was the only small mammal species encountered in the fire area after the first postfire year. In autumns of years of peak rodent densities, the trapping index of bank voles was lowest in the fire area, and in two of three peak-density years, it was highest in clear-cuts. Age structure of bank voles varied among forest types with dominance of overwintered breeders in the fire area in the first postfire spring. PUUV infection probability in bank voles was positively related to vole age. Infection probability was highest in the fire area due to low habitat complexity in burnt forests, which possibly increased encounter rate among bank voles. Our results suggest that forest fires induce cascading effects, including fast recovery/recolonization of fire areas by generalists like bank voles, impoverished species richness of small mammals, and altered prevalence of a rodent-borne zoonotic pathogen. Our pilot study suggests high human infection risk upon encountering a bank vole in the fire area, however, with even higher overall risk in unburnt forests due to their higher vole numbers. OPEN RESEARCH BADGES This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://osf.io/6fsy3/.
Collapse
Affiliation(s)
- Frauke Ecke
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
| | | | - Magnus Evander
- Department of Clinical Microbiology, VirologyUmeå UniversityUmeåSweden
| | - Birger Hörnfeldt
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
| | - Hussein Khalil
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
45
|
He T, Lamont BB, Pausas JG. Fire as a key driver of Earth's biodiversity. Biol Rev Camb Philos Soc 2019; 94:1983-2010. [PMID: 31298472 DOI: 10.1111/brv.12544] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022]
Abstract
Many terrestrial ecosystems are fire prone, such that their composition and structure are largely due to their fire regime. Regions subject to regular fire have exceptionally high levels of species richness and endemism, and fire has been proposed as a major driver of their diversity, within the context of climate, resource availability and environmental heterogeneity. However, current fire-management practices rarely take into account the ecological and evolutionary roles of fire in maintaining biodiversity. Here, we focus on the mechanisms that enable fire to act as a major ecological and evolutionary force that promotes and maintains biodiversity over numerous spatiotemporal scales. From an ecological perspective, the vegetation, topography and local weather conditions during a fire generate a landscape with spatial and temporal variation in fire-related patches (pyrodiversity), and these produce the biotic and environmental heterogeneity that drives biodiversity across local and regional scales. There have been few empirical tests of the proposition that 'pyrodiversity begets biodiversity' but we show that biodiversity should peak at moderately high levels of pyrodiversity. Overall species richness is greatest immediately after fire and declines monotonically over time, with postfire successional pathways dictated by animal habitat preferences and varying lifespans among resident plants. Theory and data support the 'intermediate disturbance hypothesis' when mean patch species diversity is correlated with mean fire intervals. Postfire persistence, recruitment and immigration allow species with different life histories to coexist. From an evolutionary perspective, fire drives population turnover and diversification by promoting a wide range of adaptive responses to particular fire regimes. Among 39 comparisons, the number of species in 26 fire-prone lineages is much higher than that in their non-fire-prone sister lineages. Fire and its byproducts may have direct mutagenic effects, producing novel genotypes that can lead to trait innovation and even speciation. A paradigm shift aimed at restoring biodiversity-maintaining fire regimes across broad landscapes is required among the fire research and management communities. This will require ecologists and other professionals to spread the burgeoning fire-science knowledge beyond scientific publications to the broader public, politicians and media.
Collapse
Affiliation(s)
- Tianhua He
- School of Molecular and Life Sciences, Curtin University, Perth, Australia.,College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Australia
| | - Byron B Lamont
- School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | | |
Collapse
|
46
|
Banza P, Macgregor CJ, Belo ADF, Fox R, Pocock MJO, Evans DM. Wildfire alters the structure and seasonal dynamics of nocturnal pollen‐transport networks. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13388] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Paula Banza
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada Universidade de Évora Évora Portugal
- A Rocha Portugal Mexilhoeira Grande Portugal
| | - Callum J. Macgregor
- School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
- Centre for Ecology and Hydrology Wallingford UK
- Butterfly Conservation Wareham UK
- Department of Biology University of York York UK
| | - Anabela D. F. Belo
- Departamento de Biologia, Escola de Ciências e Tecnologia, Instituto de Ciências Agrárias e Ambientais Mediterrânicas Universidade de Évora Évora Portugal
| | | | | | - Darren M. Evans
- School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
| |
Collapse
|
47
|
McGlinn DJ, Palmer MW. Examining the assumptions of heterogeneity-based management for promoting plant diversity in a disturbance-prone ecosystem. PeerJ 2019; 7:e6738. [PMID: 31110916 PMCID: PMC6503835 DOI: 10.7717/peerj.6738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 03/06/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Patch-burn management approaches attempt to increase overall landscape biodiversity by creating a mosaic of habitats using a patchy application of fire and grazing. We tested two assumptions of the patch-burn approach, namely that: (1) fire and grazing drive spatial patch differentiation in community structure and (2) species composition of patches change through time in response to disturbance. METHODS We analyzed species cover data on 100 m2 square quadrats from 128 sites located on a 1 × 1 km UTM grid in the grassland habitats of the Tallgrass Prairie Preserve. A total of 20 of these sites were annually sampled for 12 years. We examined how strongly changes in species richness and species composition correlated with changes in management variables relative to independent spatial and temporal drivers using multiple regression and direct ordination, respectively. RESULTS Site effects, probably due to edaphic differences, explained the majority of variation in richness and composition. Interannual variation in fire and grazing management was relatively unimportant relative to inherent site and year drivers with respect to both richness and composition; however, the effects of fire and grazing variables were statistically significant and interpretable, and bison management was positively correlated with plant richness. CONCLUSIONS There was some support for the two assumptions of patch-burn management we examined; however, in situ spatial and temporal environmental heterogeneity played a much larger role than management in shaping both plant richness and composition. Our results suggest that fine-tuning the application of fire and grazing may not be critical for maintaining landscape scale plant diversity in disturbance-prone ecosystems.
Collapse
Affiliation(s)
| | - Michael W. Palmer
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
48
|
Blakey RV, Webb EB, Kesler DC, Siegel RB, Corcoran D, Johnson M. Bats in a changing landscape: Linking occupancy and traits of a diverse montane bat community to fire regime. Ecol Evol 2019; 9:5324-5337. [PMID: 31110682 PMCID: PMC6509396 DOI: 10.1002/ece3.5121] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/13/2019] [Accepted: 02/28/2019] [Indexed: 11/18/2022] Open
Abstract
Wildfires are increasing in incidence and severity across coniferous forests of the western United States, leading to changes in forest structure and wildlife habitats. Knowledge of how species respond to fire-driven habitat changes in these landscapes is limited and generally disconnected from our understanding of adaptations that underpin responses to fire.We aimed to investigate drivers of occupancy of a diverse bat community in a fire-altered landscape, while identifying functional traits that underpinned these relationships.We recorded bats acoustically at 83 sites (n = 249 recording nights) across the Plumas National Forest in the northern Sierra Nevada over 3 summers (2015-2017). We investigated relationships between fire regime, physiographic variables, forest structure and probability of bat occupancy for nine frequently detected species. We used fourth-corner regression and RLQ analysis to identify ecomorphological traits driving species-environment relationships across 17 bat species. Traits included body mass; call frequency, bandwidth, and duration; and foraging strategy based on vegetation structure (open, edge, or clutter).Relationships between bat traits and fire regime were underpinned by adaptations to diverse forest structure. Bats with traits adapting them to foraging in open habitats, including emitting longer duration and narrow bandwidth calls, were associated with higher severity and more frequent fires, whereas bats with traits consistent with clutter tolerance were negatively associated with fire frequency and burn severity. Relationships between edge-adapted bat species and fire were variable and may be influenced by prey preference or habitat configuration at a landscape scale.Predicted increases in fire frequency and severity in western US coniferous forests are likely to shift dominance in the bat community to open-adapted species and those able to exploit postfire resource pulses (aquatic insects, beetles, and snags). Managing for pyrodiversity within the western United States is likely important for maintaining bat community diversity, as well as diversity of other biotic communities.
Collapse
Affiliation(s)
- Rachel V. Blakey
- Missouri Cooperative Fish and Wildlife Research Unit, School of Natural ResourcesUniversity of MissouriColumbiaMissouri
- The Institute for Bird PopulationsPoint ReyesCalifornia
| | - Elisabeth B. Webb
- US Geological Survey, Missouri Cooperative Fish and Wildlife Research Unit, School of Natural ResourcesUniversity of MissouriColumbiaMissouri
| | | | | | - Derek Corcoran
- Missouri Cooperative Fish and Wildlife Research Unit, School of Natural ResourcesUniversity of MissouriColumbiaMissouri
| | | |
Collapse
|
49
|
Galbraith SM, Cane JH, Moldenke AR, Rivers JW. Wild bee diversity increases with local fire severity in a fire‐prone landscape. Ecosphere 2019. [DOI: 10.1002/ecs2.2668] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sara M. Galbraith
- Department of Forest Ecosystems and Society, 321 Richardson Hall Oregon State University Corvallis Oregon 97331 USA
| | - James H. Cane
- USDA‐ARS Pollinating Insects Research Unit BNR 257 Old Main Hill, Utah State University Logan Utah 84322 USA
| | - Andrew R. Moldenke
- Department of Botany and Plant Pathology 2082 Cordley Hall, Oregon State University Corvallis Oregon 97331 USA
| | - James W. Rivers
- Department of Forest Ecosystems and Society, 321 Richardson Hall Oregon State University Corvallis Oregon 97331 USA
| |
Collapse
|
50
|
|