1
|
Wagner A, Hill A, Lemcoff T, Livne E, Avtalion N, Casati N, Kariuki BM, Graber ER, Harris KDM, Cruz-Cabeza AJ, Palmer BA. Rationalizing the Influence of Small-Molecule Dopants on Guanine Crystal Morphology. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:8910-8919. [PMID: 39347467 PMCID: PMC11428123 DOI: 10.1021/acs.chemmater.4c01771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 10/01/2024]
Abstract
Many spectacular optical phenomena in animals are produced by reflective assemblies of guanine crystals. The crystals comprise planar H-bonded layers of π-stacked molecules with a high in-plane refractive index. By preferentially expressing the highly reflective π-stacked (100) crystal face and controlling its cross-sectional shape, organisms generate a diverse array of photonic superstructures. How is this precise control over crystal morphology achieved? Recently, it was found that biogenic guanine crystals are composites, containing high quantities of hypoxanthine and xanthine in a molecular alloy. Here, we crystallized guanine in the presence of these dopants and used computations to rationalize their influence on the crystal morphology and energy. Exceptional quantities of hypoxanthine are incorporated into kinetically favored solid solutions, indicating that fast crystallization kinetics underlies the heterogeneous compositions of biogenic guanine crystals. We find that weakening of H-bonding interactions by additive incorporation elongates guanine crystals along the stacking direction-the opposite morphology of biogenic crystals. However, by modulation of the strength of competing in-plane H-bonding interactions, additive incorporation strongly influences the cross-sectional shape of the crystals. Our results suggest that small-molecule H-bond disrupting additives may be simultaneously employed with π-stack blocking additives to generate reflective platelet crystal morphologies exhibited by organisms.
Collapse
Affiliation(s)
- Avital Wagner
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheba 8410501, Israel
| | - Adam Hill
- Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, U.K
- Department of Chemistry, University of Durham, Lower Mount Joy, South Road, Durham DH1 3LE, U.K
| | - Tali Lemcoff
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheba 8410501, Israel
| | - Eynav Livne
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheba 8410501, Israel
| | - Noam Avtalion
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheba 8410501, Israel
| | - Nicola Casati
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Benson M Kariuki
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales, U.K
| | - Ellen R Graber
- Institute of Soil, Water and Environmental Sciences, The Volcani Institute, Agricultural Research Organization, Rishon Letzion 7528809, Israel
| | | | - Aurora J Cruz-Cabeza
- Department of Chemistry, University of Durham, Lower Mount Joy, South Road, Durham DH1 3LE, U.K
| | - Benjamin A Palmer
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheba 8410501, Israel
| |
Collapse
|
2
|
Zhang Y, Ren Y, Hao J, Gao J, Ma Y. Synthesis of Chlorophylls-Doped Guanine Crystals with High Reflection and Depolarization for Green Camouflage Coating. Chem Asian J 2024; 19:e202400529. [PMID: 38872616 DOI: 10.1002/asia.202400529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Hyperspectral imaging technology can record the spatial and spectral information of the targets and significantly enhance the levels of military reconnaissance and target detection. It has scientific importance to mimic "homochromatic and homospectral" camouflage materials that have hyperspectral similarity with the green vegetation, one of the most common natural backgrounds. It is a big challenge to exquisitely simulate the spectral of green vegetation in visible and near-infrared windows because of the slight differences between the artificial green dyes and vegetation, the instability of chlorophylls, and the easy loss of hydroxide bands due to the loss of water from the camouflage materials. Herein, a novel kind of biomimetic material of green vegetation was designed through the incorporation of chlorophylls into the crystal lattices of single-crystalline anhydrous guanine microplates for the first time. The synthesized chlorophylls-doped anhydrous guanine crystals exhibit high reflectance intensity and depolarization effect, thus can be applied as biomimetic camouflage materials that mimic green vegetation with high reflectivity and low polarization in the visible and near-infrared regions. The factors influencing the formation of dye-doped organic crystals under mild conditions were thoroughly investigated and the characterizations using electron microscopies and fluorescence confocal laser scanning microscopy clearly confirm the occlusion of chlorophylls into the crystal lattices of guanine crystals. The thermal stability experiments clearly indicate that the chlorophylls-doped guanine crystals possess long-term stability at high temperature. This study provides a new strategy for the synthesis of multifunctional materials comprised of organic crystals.
Collapse
Affiliation(s)
- Ying Zhang
- MOE Key Laboratory of Cluster Science, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian, Beijing, 100081, China
| | - Yujing Ren
- MOE Key Laboratory of Cluster Science, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian, Beijing, 100081, China
| | - Jingyan Hao
- MOE Key Laboratory of Cluster Science, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian, Beijing, 100081, China
| | - Juan Gao
- MOE Key Laboratory of Cluster Science, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian, Beijing, 100081, China
| | - Yurong Ma
- MOE Key Laboratory of Cluster Science, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian, Beijing, 100081, China
| |
Collapse
|
3
|
Addadi L, Kronik L, Leiserowitz L, Oron D, Weiner S. Organic Crystals and Optical Functions in Biology: Knowns and Unknowns. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408060. [PMID: 39087402 DOI: 10.1002/adma.202408060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Organic crystals are widely used by animals to manipulate light for producing structural colors and for improving vision. To date only seven crystal types are known to be used, and among them β-guanine crystals are by far the most widespread. The fact that almost all these crystals have unusually high refractive indices (RIs) is consistent with their light manipulation function. Here, the physical, structural, and optical principles of how light interacts with the polarizable free-electron-rich environment of these quasiaromatic molecules are addressed. How the organization of these molecules into crystalline arrays introduces optical anisotropy and finally how organisms control crystal morphology and superstructural organization to optimize functions in light reflection and scattering are also discussed. Many open questions remain in this fascinating field, some of which arise out of this in-depth analysis of the interaction of light with crystal arrays. More types of organic crystals will probably be discovered, as well as other organisms that use these crystals to manipulate light. The insights gained from biological systems can also be harnessed for improving synthetic light-manipulating materials.
Collapse
Affiliation(s)
- Lia Addadi
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Leeor Kronik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Leslie Leiserowitz
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Dan Oron
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Stephen Weiner
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
4
|
Deis R, Lerer-Goldshtein T, Baiko O, Eyal Z, Brenman-Begin D, Goldsmith M, Kaufmann S, Heinig U, Dong Y, Lushchekina S, Varsano N, Olender T, Kupervaser M, Porat Z, Levin-Zaidman S, Pinkas I, Mateus R, Gur D. Genetic control over biogenic crystal morphogenesis in zebrafish. Nat Chem Biol 2024:10.1038/s41589-024-01722-1. [PMID: 39215102 DOI: 10.1038/s41589-024-01722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Organisms evolve mechanisms that regulate the properties of biogenic crystals to support a wide range of functions, from vision and camouflage to communication and thermal regulation. Yet, the mechanism underlying the formation of diverse intracellular crystals remains enigmatic. Here we unravel the biochemical control over crystal morphogenesis in zebrafish iridophores. We show that the chemical composition of the crystals determines their shape, particularly through the ratio between the nucleobases guanine and hypoxanthine. We reveal that these variations in composition are genetically controlled through tissue-specific expression of specialized paralogs, which exhibit remarkable substrate selectivity. This orchestrated combination grants the organism with the capacity to generate a broad spectrum of crystal morphologies. Overall, our findings suggest a mechanism for the morphological and functional diversity of biogenic crystals and may, thus, inspire the development of genetically designed biomaterials and medical therapeutics.
Collapse
Affiliation(s)
- Rachael Deis
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Olha Baiko
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Zohar Eyal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dolev Brenman-Begin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Goldsmith
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sylvia Kaufmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Uwe Heinig
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yonghui Dong
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sofya Lushchekina
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Varsano
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Kupervaser
- The De Botton Protein Profiling institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Smadar Levin-Zaidman
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Iddo Pinkas
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Rita Mateus
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Dvir Gur
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Alus L, Houben L, Shaked N, Niazov-Elkan A, Pinkas I, Oron D, Addadi L. Bio-Inspired Crystalline Core-Shell Guanine Spherulites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308832. [PMID: 38722270 DOI: 10.1002/adma.202308832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/03/2024] [Indexed: 05/18/2024]
Abstract
Spherical particles with diameters within the wavelength of visible light, known as spherulites, manipulate light uniquely due to their spatial organization and their structural birefringence. Most of the known crystalline spherulites are branched, and composed of metals, alloys, and semi-crystalline polymers. Recently, a different spherulite architecture is discovered in the vision systems of decapod crustaceans - core-shell spherulites composed of highly birefringent (Δ n ≈ 30 % $\Delta n \approx \ 30\%$ ) organic single-crystal platelets, with exceptional optical properties. These metastructures, which efficiently scatter light even in dense aqueous environments, have no synthetic equivalence and serve as a natural proof-of-concept as well as synthetic inspiration for thin scattering media. Here, the synthesis of core-shell spherulites composed of guanine crystal platelets ((Δ n ≈ 25 % $\Delta n \approx 25\%$ ) is presented in a two-step emulsification process in which a water/oil/water emulsion and induced pH changes are used to promote interfacial crystallization. Carboxylic acids neutralize the dissolved guanine salts to form spherulites composed of single, radially stacked, β-guanine platelets, which are oriented tangentially to the spherulite surface. Using Mie theory calculations and forward scattering measurements from single spherulites, it is found that due to the single-crystal properties and orientation, the synthetic spherulites possess a high tangential refractive index, similarly to biogenic particles.
Collapse
Affiliation(s)
- Lotem Alus
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Lothar Houben
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Noy Shaked
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Angelica Niazov-Elkan
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Iddo Pinkas
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dan Oron
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Lia Addadi
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
6
|
Hou X, Wang Y, Song X, Gao J, Ma Y. Biomimetic synthesis of single-crystalline anhydrous xanthine nanoplates in an aqueous solution with high reflectivity. SOFT MATTER 2024; 20:4422-4433. [PMID: 38775112 DOI: 10.1039/d4sm00165f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Biogenic purine crystals can function in vision as light scatters, mirrors, and multilayer reflectors and produce structural colors or depolarization for camouflage. Xanthine crystals form irregular multifocal mirrors in the median ocellus of Archaeognatha. It is important to broaden the study of crystallization strategies to obtain organic crystals with purine rings in the laboratory. In this work, a facile one-step synthesis route to fabricate bio-inspired xanthine crystals is reported for the first time. The obtained rhomboidal xanthine nanoplates have similar morphology and size to biogenic xanthine crystals. Their length and thickness are about 2-4 μm and 50 nm, respectively. Lattice parameters, crystal structure, formation mechanism and optical properties of synthetic single-crystalline xanthine nanoplates were investigated in detail in this work. The obtained xanthine nanoplate crystals are proposed to be anhydrous xanthine with monoclinic symmetry, and the xanthine nanoplates mainly expose the (100) plane. It is proposed that the anhydrous xanthine nanoplates are formed via an amorphous xanthine intermediate precursor. The synthetic anhydrous xanthine nanoplates exhibit excellent optical properties, including high diffuse reflectivity, strong depolarization and pearlescent luster. This work provides a new design to synthesize bio-inspired organic molecular crystals with excellent optical properties.
Collapse
Affiliation(s)
- Xiubin Hou
- MOE Key Laboratory of Cluster Science, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Yingxia Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinbing Song
- School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Juan Gao
- MOE Key Laboratory of Cluster Science, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Yurong Ma
- MOE Key Laboratory of Cluster Science, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
7
|
Gur D, Moore AS, Deis R, Song P, Wu X, Pinkas I, Deo C, Iyer N, Hess HF, Hammer JA, Lippincott-Schwartz J. The physical and cellular mechanism of structural color change in zebrafish. Proc Natl Acad Sci U S A 2024; 121:e2308531121. [PMID: 38805288 PMCID: PMC11161791 DOI: 10.1073/pnas.2308531121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 04/02/2024] [Indexed: 05/30/2024] Open
Abstract
Many animals exhibit remarkable colors that are produced by the constructive interference of light reflected from arrays of intracellular guanine crystals. These animals can fine-tune their crystal-based structural colors to communicate with each other, regulate body temperature, and create camouflage. While it is known that these changes in color are caused by changes in the angle of the crystal arrays relative to incident light, the cellular machinery that drives color change is not understood. Here, using a combination of 3D focused ion beam scanning electron microscopy (FIB-SEM), micro-focused X-ray diffraction, superresolution fluorescence light microscopy, and pharmacological perturbations, we characterized the dynamics and 3D cellular reorganization of crystal arrays within zebrafish iridophores during norepinephrine (NE)-induced color change. We found that color change results from a coordinated 20° tilting of the intracellular crystals, which alters both crystal packing and the angle at which impinging light hits the crystals. Importantly, addition of the dynein inhibitor dynapyrazole-a completely blocked this NE-induced red shift by hindering crystal dynamics upon NE addition. FIB-SEM and microtubule organizing center (MTOC) mapping showed that microtubules arise from two MTOCs located near the poles of the iridophore and run parallel to, and in between, individual crystals. This suggests that dynein drives crystal angle change in response to NE by binding to the limiting membrane surrounding individual crystals and walking toward microtubule minus ends. Finally, we found that intracellular cAMP regulates the color change process. Together, our results provide mechanistic insight into the cellular machinery that drives structural color change.
Collapse
Affiliation(s)
- Dvir Gur
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot7610001, Israel
| | | | - Rachael Deis
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot7610001, Israel
| | - Pang Song
- HHMI, Janelia Research Campus, Ashburn, VA20147
| | - Xufeng Wu
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Iddo Pinkas
- Weizmann Institute of Science, Department of Chemical Research Support, Rehovot7610001, Israel
| | - Claire Deo
- HHMI, Janelia Research Campus, Ashburn, VA20147
| | | | | | - John A. Hammer
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | | |
Collapse
|
8
|
Voigt FF, Reuss AM, Naert T, Hildebrand S, Schaettin M, Hotz AL, Whitehead L, Bahl A, Neuhauss SCF, Roebroeck A, Stoeckli ET, Lienkamp SS, Aguzzi A, Helmchen F. Reflective multi-immersion microscope objectives inspired by the Schmidt telescope. Nat Biotechnol 2024; 42:65-71. [PMID: 36997681 PMCID: PMC10791577 DOI: 10.1038/s41587-023-01717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/20/2023] [Indexed: 04/03/2023]
Abstract
Imaging large, cleared samples requires microscope objectives that combine a large field of view (FOV) with a long working distance (WD) and a high numerical aperture (NA). Ideally, such objectives should be compatible with a wide range of immersion media, which is challenging to achieve with conventional lens-based objective designs. Here we introduce the multi-immersion 'Schmidt objective' consisting of a spherical mirror and an aspherical correction plate as a solution to this problem. We demonstrate that a multi-photon variant of the Schmidt objective is compatible with all homogeneous immersion media and achieves an NA of 1.08 at a refractive index of 1.56, 1.1-mm FOV and 11-mm WD. We highlight its versatility by imaging cleared samples in various media ranging from air and water to benzyl alcohol/benzyl benzoate, dibenzyl ether and ethyl cinnamate and by imaging of neuronal activity in larval zebrafish in vivo. In principle, the concept can be extended to any imaging modality, including wide-field, confocal and light-sheet microscopy.
Collapse
Affiliation(s)
- Fabian F Voigt
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | - Anna Maria Reuss
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Naert
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Sven Hildebrand
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Martina Schaettin
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Adriana L Hotz
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Lachlan Whitehead
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Armin Bahl
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Stephan C F Neuhauss
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Esther T Stoeckli
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zürich, Zurich, Switzerland
| | | | - Adriano Aguzzi
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zürich, Zurich, Switzerland
| |
Collapse
|
9
|
Brodrick E, Jékely G. Photobehaviours guided by simple photoreceptor systems. Anim Cogn 2023; 26:1817-1835. [PMID: 37650997 PMCID: PMC10770211 DOI: 10.1007/s10071-023-01818-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Light provides a widely abundant energy source and valuable sensory cue in nature. Most animals exposed to light have photoreceptor cells and in addition to eyes, there are many extraocular strategies for light sensing. Here, we review how these simpler forms of detecting light can mediate rapid behavioural responses in animals. Examples of these behaviours include photophobic (light avoidance) or scotophobic (shadow) responses, photokinesis, phototaxis and wavelength discrimination. We review the cells and response mechanisms in these forms of elementary light detection, focusing on aquatic invertebrates with some protist and terrestrial examples to illustrate the general principles. Light cues can be used very efficiently by these simple photosensitive systems to effectively guide animal behaviours without investment in complex and energetically expensive visual structures.
Collapse
Affiliation(s)
- Emelie Brodrick
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
10
|
Hu H, Xue R, Chen F. Biomineralization and Properties of Guanine Crystals. Molecules 2023; 28:6138. [PMID: 37630390 PMCID: PMC10459440 DOI: 10.3390/molecules28166138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/12/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Guanine crystals with unique optical properties in organisms have been extensively studied and the biomineralization principles of guanine are being established. This review summarizes the fundamental physicochemical properties (solubility, tautomers, bands, and refractivity), polymorphs, morphology of biological and synthetic forms, and the reported biomineralization principles of guanine (selective recrystallization of amorphous precursor, preassembled scaffolds, additives, twinning, hypoxanthine doping, fluorescence, and assembly). The biomineralization principles of guanine will be helpful for the synthesis of guanine crystals with excellent properties and the design of functional organic materials for drugs, dyes, organic semiconductors, etc.
Collapse
Affiliation(s)
- Haoxin Hu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China;
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China
| | - Rongrong Xue
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China
| | - Fenghua Chen
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China
| |
Collapse
|
11
|
Pavan ME, Movilla F, Pavan EE, Di Salvo F, López NI, Pettinari MJ. Guanine crystal formation by bacteria. BMC Biol 2023; 21:66. [PMID: 37013555 PMCID: PMC10071637 DOI: 10.1186/s12915-023-01572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Guanine crystals are organic biogenic crystals found in many organisms. Due to their exceptionally high refractive index, they contribute to structural color and are responsible for the reflective effect in the skin and visual organs in animals such as fish, reptiles, and spiders. Occurrence of these crystals in animals has been known for many years, and they have also been observed in eukaryotic microorganisms, but not in prokaryotes. RESULTS In this work, we report the discovery of extracellular crystals formed by bacteria and reveal that they are composed of guanine monohydrate. This composition differs from that of biogenic guanine crystals found in other organisms, mostly composed of β anhydrous guanine. We demonstrate the formation of these crystals by Aeromonas and other bacteria and investigate the metabolic traits related to their synthesis. In all cases studied, the presence of the bacterial guanine crystals correlates with the absence of guanine deaminase, which could lead to guanine accumulation providing the substrate for crystal formation. CONCLUSIONS Our finding of the hitherto unknown guanine crystal occurrence in prokaryotes extends the range of organisms that produce these crystals to a new domain of life. Bacteria constitute a novel and more accessible model to study the process of guanine crystal formation and assembly. This discovery opens countless chemical and biological questions, including those about the functional and adaptive significance of their production in these microorganisms. It also paves the road for the development of simple and convenient processes to obtain biogenic guanine crystals for diverse applications.
Collapse
Affiliation(s)
- María Elisa Pavan
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Movilla
- Departamento de Química Inorgánica, Analítica y Química Física e INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Esteban E Pavan
- Biomedical Technologies Laboratory, Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milan, Italy
| | - Florencia Di Salvo
- Departamento de Química Inorgánica, Analítica y Química Física e INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nancy I López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Julia Pettinari
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Shavit K, Wagner A, Schertel L, Farstey V, Akkaynak D, Zhang G, Upcher A, Sagi A, Yallapragada VJ, Haataja J, Palmer BA. A tunable reflector enabling crustaceans to see but not be seen. Science 2023; 379:695-700. [PMID: 36795838 DOI: 10.1126/science.add4099] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Many oceanic prey animals use transparent bodies to avoid detection. However, conspicuous eye pigments, required for vision, compromise the organisms' ability to remain unseen. We report the discovery of a reflector overlying the eye pigments in larval decapod crustaceans and show how it is tuned to render the organisms inconspicuous against the background. The ultracompact reflector is constructed from a photonic glass of crystalline isoxanthopterin nanospheres. The nanospheres' size and ordering are modulated to tune the reflectance from deep blue to yellow, enabling concealment in different habitats. The reflector may also function to enhance the acuity or sensitivity of the minute eyes by acting as an optical screen between photoreceptors. This multifunctional reflector offers inspiration for constructing tunable artificial photonic materials from biocompatible organic molecules.
Collapse
Affiliation(s)
- Keshet Shavit
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Avital Wagner
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Lukas Schertel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.,Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Viviana Farstey
- The Interuniversity Institute for Marine Sciences, Eilat 8810302, Israel
| | - Derya Akkaynak
- The Interuniversity Institute for Marine Sciences, Eilat 8810302, Israel.,Hatter Department of Marine Technologies, University of Haifa, Haifa 3498838, Israel
| | - Gan Zhang
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Alexander Upcher
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheba 8410501, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | | | - Johannes Haataja
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Benjamin A Palmer
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
13
|
Wagner A, Upcher A, Maria R, Magnesen T, Zelinger E, Raposo G, Palmer BA. Macromolecular sheets direct the morphology and orientation of plate-like biogenic guanine crystals. Nat Commun 2023; 14:589. [PMID: 36737617 PMCID: PMC9898273 DOI: 10.1038/s41467-023-35894-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Animals precisely control the morphology and assembly of guanine crystals to produce diverse optical phenomena in coloration and vision. However, little is known about how organisms regulate crystallization to produce optically useful morphologies which express highly reflective crystal faces. Guanine crystals form inside iridosome vesicles within chromatophore cells called iridophores. By following iridosome formation in developing scallop eyes, we show that pre-assembled, fibrillar sheets provide an interface for nucleation and direct the orientation of the guanine crystals. The macromolecular sheets cap the (100) faces of immature guanine crystals, inhibiting growth along the π-stacking growth direction. Crystal growth then occurs preferentially along the sheets to generate highly reflective plates. Despite their different physical properties, the morphogenesis of iridosomes bears a striking resemblance to melanosome morphogenesis in vertebrates, where amyloid sheets template melanin deposition. The common control mechanisms for melanin and guanine formation inspire new approaches for manipulating the morphologies and properties of molecular materials.
Collapse
Affiliation(s)
- Avital Wagner
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Alexander Upcher
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Raquel Maria
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Thorolf Magnesen
- Department of Biological Sciences, University of Bergen, Postbox 7803, Bergen, N-5020, Norway
| | - Einat Zelinger
- The CSI Center for Scientific Imaging, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot, 7610001, Israel
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005, Paris, France.,Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005, Paris, France
| | - Benjamin A Palmer
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel.
| |
Collapse
|
14
|
Katz PS, Lyons DC. Cephalopod vision: How to build a better eye. Curr Biol 2023; 33:R27-R30. [PMID: 36626860 DOI: 10.1016/j.cub.2022.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cephalopods' eyes superficially resemble our own, but because of their evolutionary and developmental history, the photoreceptors face forward, with the downstream neural circuitry in the brain, not the retina. Two new papers uncover molecular and developmental mechanisms underlying cephalopod visual development.
Collapse
Affiliation(s)
- Paul S Katz
- Department of Biology, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Deirdre C Lyons
- Center for Marine Biotechnology and Biomedicine, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
15
|
Spaeker O, Taylor GJ, Wilts BD, Slabý T, Abdel‐Rahman MAK, Scoppola E, Schmitt CNZ, Sztucki M, Liu J, Bertinetti L, Wagermaier W, Scholtz G, Fratzl P, Politi Y. Gradients of Orientation, Composition, and Hydration of Proteins for Efficient Light Collection by the Cornea of the Horseshoe Crab. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203371. [PMID: 36251923 PMCID: PMC9685478 DOI: 10.1002/advs.202203371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/30/2022] [Indexed: 06/16/2023]
Abstract
The lateral eyes of the horseshoe crab, Limulus polyphemus, are the largest compound eyes within recent Arthropoda. The cornea of these eyes contains hundreds of inward projecting elongated cuticular cones and concentrate light onto proximal photoreceptor cells. Although this visual system has been extensively studied before, the precise mechanism allowing vision has remained controversial. Correlating high-resolution quantitative refractive index (RI) mapping and structural analysis, it is demonstrated how gradients of RI in the cornea stem from structural and compositional gradients in the cornea. In particular, these RI variations result from the chitin-protein fibers architecture, heterogeneity in protein composition, and bromine doping, as well as spatial variation in water content resulting from matrix cross-linking on the one hand and cuticle porosity on the other hand. Combining the realistic cornea structure and measured RI gradients with full-wave optical modeling and ray tracing, it is revealed that the light collection mechanism switches from refraction-based graded index (GRIN) optics at normal light incidence to combined GRIN and total internal reflection mechanism at high incident angles. The optical properties of the cornea are governed by different mechanisms at different hierarchical levels, demonstrating the remarkable versatility of arthropod cuticle.
Collapse
Affiliation(s)
- Oliver Spaeker
- Department of BiomaterialsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Gavin J. Taylor
- Institute for Globally Distributed Open Research and Education (IGDORE)Ribeirão Preto14091‐310Brazil
| | - Bodo D. Wilts
- Chemistry and Physics of MaterialsUniversity of SalzburgJakob‐Haringer‐Str. 2aSalzburg5020Austria
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| | - Tomáš Slabý
- TELIGHTLibušina třída 21Brno623 00Czech Republic
| | | | - Ernesto Scoppola
- Department of BiomaterialsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Clemens N. Z. Schmitt
- Department of BiomaterialsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Michael Sztucki
- European Synchrotron Radiation Facility (ESRF)71 avenue des Martyrs, CS 40220Grenoble Cedex 938043France
| | - Jiliang Liu
- European Synchrotron Radiation Facility (ESRF)71 avenue des Martyrs, CS 40220Grenoble Cedex 938043France
| | - Luca Bertinetti
- B CUBE – Center for Molecular BioengineeringTechnische Universität Dresden01307DresdenGermany
| | - Wolfgang Wagermaier
- Department of BiomaterialsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Gerhard Scholtz
- Humboldt‐University BerlinInstitute of BiologyPhilippstraße 1310115BerlinGermany
| | - Peter Fratzl
- Department of BiomaterialsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Yael Politi
- B CUBE – Center for Molecular BioengineeringTechnische Universität Dresden01307DresdenGermany
| |
Collapse
|
16
|
Mollusc Crystallins: Physical and Chemical Properties and Phylogenetic Analysis. DIVERSITY 2022. [DOI: 10.3390/d14100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The purpose of the present study was to perform bioinformatic analysis of crystallin diversity in aquatic molluscs based on the sequences in the NCBI Protein database. The objectives were as follows: (1) analysis of some physical and chemical properties of mollusc crystallins, (2) comparison of mollusc crystallins with zebrafish and cubomedusa Tripedalia cystophora crystallins, and (3) determination of the most probable candidates for the role of gastropod eye crystallins. The calculated average GRAVY values revealed that the majority of the seven crystallin groups, except for μ- and ζ-crystallins, were hydrophilic proteins. The predominant predicted secondary structures of the crystallins in most cases were α-helices and coils. The highest values of refractive index increment (dn/dc) were typical for crystallins of aquatic organisms with known lens protein composition (zebrafish, cubomedusa, and octopuses) and for S-crystallin of Pomacea canaliculata. The evolutionary relationships between the studied crystallins, obtained from multiple sequence alignments using Clustal Omega and MUSCLE, and the normalized conservation index, calculated by Mirny, showed that the most conservative proteins were Ω-crystallins but the most diverse were S-crystallins. The phylogenetic analysis of crystallin was generally consistent with modern mollusc taxonomy. Thus, α- and S-, and, possibly, J1A-crystallins, can be assumed to be the most likely candidates for the role of gastropod lens crystallins.
Collapse
|
17
|
Jézéquel Y, Cones S, Jensen FH, Brewer H, Collins J, Mooney TA. Pile driving repeatedly impacts the giant scallop (Placopecten magellanicus). Sci Rep 2022; 12:15380. [PMID: 36100686 PMCID: PMC9470578 DOI: 10.1038/s41598-022-19838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Large-scale offshore wind farms are a critical component of the worldwide climate strategy. However, their developments have been opposed by the fishing industry because of concerns regarding the impacts of pile driving vibrations during constructions on commercially important marine invertebrates, including bivalves. Using field-based daily exposure, we showed that pile driving induced repeated valve closures in different scallop life stages, with particularly stronger effects for juveniles. Scallops showed no acclimatization to repetitive pile driving across and within days, yet quickly returned to their initial behavioral baselines after vibration-cessation. While vibration sensitivity was consistent, daily pile driving did not disrupt scallop circadian rhythm, but suggests serious impacts at night when valve openings are greater. Overall, our results show distance and temporal patterns can support future mitigation strategies but also highlight concerns regarding the larger impact ranges of impending widespread offshore wind farm constructions on scallop populations.
Collapse
Affiliation(s)
- Youenn Jézéquel
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Seth Cones
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.,MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge, Woods Hole, MA, USA
| | - Frants H Jensen
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.,Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Hannah Brewer
- Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - John Collins
- Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - T Aran Mooney
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
18
|
Pilátová J, Pánek T, Oborník M, Čepička I, Mojzeš P. Revisiting biocrystallization: purine crystalline inclusions are widespread in eukaryotes. THE ISME JOURNAL 2022; 16:2290-2294. [PMID: 35672454 PMCID: PMC9381591 DOI: 10.1038/s41396-022-01264-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022]
Abstract
Despite the widespread occurrence of intracellular crystalline inclusions in unicellular eukaryotes, scant attention has been paid to their composition, functions, and evolutionary origins. Using Raman microscopy, we examined >200 species from all major eukaryotic supergroups. We detected cellular crystalline inclusions in 77% species out of which 80% is composed of purines, such as anhydrous guanine (62%), guanine monohydrate (2%), uric acid (12%) and xanthine (4%). Our findings shifts the paradigm assuming predominance of calcite and oxalates. Purine crystals emerge in microorganisms in all habitats, e.g., in freshwater algae, endosymbionts of reef-building corals, deadly parasites, anaerobes in termite guts, or slime molds. Hence, purine biocrystallization is a general and ancestral eukaryotic process likely present in the last eukaryotic common ancestor (LECA) and here we propose two proteins omnipresent in eukaryotes that are likely in charge of their metabolism: hypoxanthine-guanine phosphoribosyl transferase and equilibrative nucleoside transporter. Purine crystalline inclusions are multifunctional structures representing high-capacity and rapid-turnover reserves of nitrogen and optically active elements, e.g., used in light sensing. Thus, we anticipate our work to be a starting point for further studies spanning from cell biology to global ecology, with potential applications in biotechnologies, bio-optics, or in human medicine.
Collapse
Affiliation(s)
- Jana Pilátová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic.
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague 2, Czech Republic.
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Miroslav Oborník
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague 2, Czech Republic
| |
Collapse
|
19
|
Aït-Ali N, Léveillard T. The Emergence of Rod-Cone Cellular Interaction. Front Genet 2022; 13:900849. [PMID: 36017494 PMCID: PMC9396122 DOI: 10.3389/fgene.2022.900849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022] Open
Abstract
We studied the origin of rod-derived cone viability factor (RdCVF) during evolution. In mammals, the nucleoredoxin-like 1 gene (NXNL1) produces a truncated thioredoxin-like protein, RdCVF, by intron retention in rod photoreceptors of the retina. This protein prevents the secondary cone degeneration in animal models of rod-cone degeneration. Extracellular RdCVF binds to a complex at the surface of the cones, composed of the basigin-1, a photoreceptor specific alternative splicing product of the basigin gene, and GLUT1, the glucose transporter. RdCVF accelerates glucose uptake allosterically. Glucose is either metabolized by aerobic glycolysis to sustain cone outer segment renewal or by the pentose phosphate pathway to support redox power to the thioredoxin RdCVFL. RdCVF signaling predates the appearance of the eye and evolved through two alternative splicing events. RdCVF signaling is observed first in hydra where it regulates an unknown signaling. A scallop RdCVF protein is produced by ciliated photoreceptors of the retina and binds its receptor, BSG1, the first occurrence of RdCVF/BSG1 signaling. In the lamprey, RdCVF metabolic signaling between rod and cones is fully operational. In the mouse, the production of BSG1 is regulated through alternative splicing. This signaling was extended to other regions of the brain, via its paralogue NXNL2.
Collapse
|
20
|
Measuring Photonics in Photosynthesis: Combined Micro-Fourier Image Spectroscopy and Pulse Amplitude Modulated Chlorophyll Fluorimetry at the Micrometre-Scale. Biomimetics (Basel) 2022; 7:biomimetics7030107. [PMID: 35997427 PMCID: PMC9397104 DOI: 10.3390/biomimetics7030107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Natural photonic structures are common across the biological kingdoms, serving a diversity of functionalities. The study of implications of photonic structures in plants and other phototrophic organisms is still hampered by missing methodologies for determining in situ photonic properties, particularly in the context of constantly adapting photosynthetic systems controlled by acclimation mechanisms on the cellular scale. We describe an innovative approach to determining spatial and spectral photonic properties and photosynthesis activity, employing micro-Fourier Image Spectroscopy and Pulse Amplitude Modulated Chlorophyll Fluorimetry in a combined microscope setup. Using two examples from the photosynthetic realm, the dynamic Bragg-stack-like thylakoid structures of Begonia sp. and complex 2.5 D photonic crystal slabs from the diatom Coscinodiscus granii, we demonstrate how the setup can be used for measuring self-adapting photonic-photosynthetic systems and photonic properties on single-cell scales. We suggest that the setup is well-suited for the determination of photonic–photosynthetic systems in a diversity of organisms, facilitating the cellular, temporal, spectral and angular resolution of both light distribution and combined chlorophyll fluorescence determination. As the catalogue of photonic structure from photosynthetic organisms is rich and diverse in examples, a deepened study could inspire the design of novel optical- and light-harvesting technologies.
Collapse
|
21
|
Wagner A, Ezersky V, Maria R, Upcher A, Lemcoff T, Aflalo ED, Lubin Y, Palmer BA. The Non-Classical Crystallization Mechanism of a Composite Biogenic Guanine Crystal. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202242. [PMID: 35608485 DOI: 10.1002/adma.202202242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Spectacular colors and visual phenomena in animals are produced by light interference from highly reflective guanine crystals. Little is known about how organisms regulate crystal morphology to tune the optics of these systems. By following guanine crystal formation in developing spiders, a crystallization mechanism is elucidated. Guanine crystallization is a "non-classical," multistep process involving a progressive ordering of states. Crystallization begins with nucleation of partially ordered nanogranules from a disordered precursor phase. Growth proceeds by orientated attachment of the nanogranules into platelets which coalesce into single crystals, via progressive relaxation of structural defects. Despite their prismatic morphology, the platelet texture is retained in the final crystals, which are composites of crystal lamellae and interlamellar sheets. Interactions between the macromolecular sheets and the planar face of guanine appear to direct nucleation, favoring platelet formation. These findings provide insights on how organisms control the morphology and optical properties of molecular crystals.
Collapse
Affiliation(s)
- Avital Wagner
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Vladimir Ezersky
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Raquel Maria
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Alexander Upcher
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Tali Lemcoff
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Eliahu D Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Department of Life Sciences, Achva Academic College, Mobile Post Shikmim, Beer-Sheba, 79800, Israel
| | - Yael Lubin
- Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Southern Israel, 8499000, Israel
| | - Benjamin A Palmer
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| |
Collapse
|
22
|
Zhang J, Wang Y, Rodriguez BJ, Yang R, Yu B, Mei D, Li J, Tao K, Gazit E. Microfabrication of peptide self-assemblies: inspired by nature towards applications. Chem Soc Rev 2022; 51:6936-6947. [PMID: 35861374 DOI: 10.1039/d2cs00122e] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peptide self-assemblies show intriguing and tunable physicochemical properties, and thus have been attracting increasing interest over the last two decades. However, the micro/nano-scale dimensions of the self-assemblies severely restrict their extensive applications. Inspired by nature, to genuinely realize the practical utilization of the bio-organic super-architectures, it is beneficial to further organize the peptide self-assemblies to integrate the properties of the individual supermolecules and fabricate higher-level organizations for smart functional devices. Therefore, cumulative studies have been reported on peptide microfabrication giving rise to diverse properties. This review summarizes the recent development of the microfabrication of peptide self-assemblies, discussing each methodology along with the diverse properties and practical applications of the engineered peptide large-scale, highly-ordered organizations. Finally, the current limitations of the state-of-the-art microfabrication strategies are critically assessed and alternative solutions are suggested.
Collapse
Affiliation(s)
- Jiahao Zhang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China. .,Future Science Research Institute, Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou 311200, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China. .,Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Brian J Rodriguez
- School of Physics and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Bin Yu
- Future Science Research Institute, Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou 311200, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China. .,Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China. .,Future Science Research Institute, Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou 311200, China.,Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel. .,School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| |
Collapse
|
23
|
Zhong J, Song Z, Zhang L, Li X, He Q, Lu Y, Kariko S, Shaw P, Liu L, Ye F, Li L, Shuai J. Assembly of Guanine Crystals as a Low-Polarizing Broadband Multilayer Reflector in a Spider, Phoroncidia rubroargentea. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32982-32993. [PMID: 35834638 DOI: 10.1021/acsami.2c09546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The diminishing of the polarization effect is important in the applications of dielectric multilayer reflectors in many optical systems, such as low-loss broadband waveguides, optical fibers, and LEDs. Low-polarizing broadband reflections were identified from birefringent-guanine-crystal-based multilayer reflectors in the skins of some fish. Previous models for these intriguing natural optical phenomena suggested the combined action of two populations of guanine crystals with an orthogonal low-refractive-index optic axis. Here we report a novel realization of polarization-insensitive broadband reflectivity in a spider, Phoroncidia rubroargentea, based solely on the type of guanine crystals with the low-refractive-index optic axis normal to the crystal plates. We examined the three-dimensional structure of the guanine assembly in the spider and performed finite-difference time-domain (FDTD) optical modeling of the guanine-based multilayer reflector. Comparative modeling studies reveal that the biological selection of the guanine crystal type and specific spatial arrangement work synergistically to optimize the polarization-insensitive broadband reflection. This study demonstrates the importance of both crystallographic characteristics and 3D arrangement of guanine crystals in understanding relevant natural optical effects and also provides new insights into similar broadband, low-polarizing reflections in biological optical systems. Learning from relevant biofunctional assembly of guanine crystals could promote the bioinspired design of nonpolarizing dielectric multilayer reflectors.
Collapse
Affiliation(s)
- Jinjin Zhong
- Department of Physics, Xiamen University, Xiamen, Fujian 361005, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), and Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Zhengyong Song
- Department of Electronic Science, Xiamen University, Xiamen, Fujian 361005, China
| | - Long Zhang
- Department of Physics, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiang Li
- Department of Physics, Xiamen University, Xiamen, Fujian 361005, China
| | - Qingzu He
- Department of Physics, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuer Lu
- Department of Physics, Xiamen University, Xiamen, Fujian 361005, China
| | - Sarah Kariko
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02318, United States
| | - Peter Shaw
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), and Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Liyu Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), and Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Fangfu Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), and Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Ling Li
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen, Fujian 361005, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), and Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, Fujian 361005, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, and National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
24
|
Audino JA, Adams DC, Serb JM. Variation in eye abundance among scallops reveals ontogenetic and evolutionary convergence associated with life habits. Evolution 2022; 76:1607-1618. [PMID: 35709485 DOI: 10.1111/evo.14541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 01/22/2023]
Abstract
Eyes are remarkable systems to investigate the complex interaction between ecological drivers and phenotypic outcomes. Some animals, such as scallops, have many eyes for visual perception, but to date, the evolution of multiple-eye systems remains obscure. For instance, it is unclear whether eye number changes over a lifetime or varies among species. Scallops are a suitable model group to investigate these questions considering the interspecific variation of adult size and ecological diversity. We tested whether eye abundance scales with body size among individuals and species and whether it varies with life habits. We performed comparative analyses, including a phylogenetic ANCOVA and evolutionary model comparisons, based on eye count and shell height (as a proxy of body size) across 31 scallop species. Our analyses reveal that patterns of increasing relationship with body size are not concordant among taxa and suggest ontogenetic convergence caused by similar ecologies. Accordingly, selective optima in eye numbers are associated with shifts in life habits. For instance, species with increased mobility have significantly more eyes than less mobile species. The convergent evolution of greater eye abundance in more mobile scallops likely indicates a visual improvement based on increased levels of oversampling of the surrounding environment.
Collapse
Affiliation(s)
- Jorge A Audino
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011
| | - Dean C Adams
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011
| | - Jeanne M Serb
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011
| |
Collapse
|
25
|
Molecular allocation of PC4s provides implications for deciphering thermal response in Zhikong scallop (Chlamys farreri). Gene 2022; 818:146216. [PMID: 35093447 DOI: 10.1016/j.gene.2022.146216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/04/2021] [Accepted: 01/13/2022] [Indexed: 12/15/2022]
Abstract
The increasing sea temperature caused by global warming has led to serious death of Zhikong scallop (Chlamys farreri) and improving its thermal tolerance has become an active research area in scallop aquaculture industry. Gene transcriptional coactivator p15 (PC4) plays pivotally multi-faced roles in most vertebrates and some invertebrates, but the systematic identification and characterization of PC4 genes have less been reported in scallops. In this study, 15 PC4 genes (CfPC4s) were identified in Zhikong scallop through whole-genome scanning, including two pairs of tandem duplicate genes located in the same scaffold (CF-19495.9 and CF-19495.10, CF-6819.1 and CF-6819.2). Protein structural and phylogenetic analyses were performed to verify identities and evolutionary relationships of these genes. Spatiotemporal expression patterns were determined at different development stages and in healthy adult tissues, as well as expression regulations in selected tissues (mantles, gills, hemocytes and hearts) after high temperatures challenge (27 °C) with different durations (3 h, 6 h, 12 h, 24 h, 3 d, 6 d, 15 d and 30 d). Spatiotemporal expressions of CfPC4s were ubiquitous but exhibited different patterns, suggesting the functional roles of CfPC4s in all stages of growth and development of the scallop. Expression regulations of CfPC4s and their functional related factors (TFIIA, TFIID, TFIIH and RNAPII) in pre-initiation complex (PIC) in various tissues displayed up- and/or down-regulated responses at different time points, showing time- and/or tissue-dependent expression patterns with function allocation upon different thermal durations. Collectively, this study demonstrated that gene allocation of CfPC4s provided implications for deciphering thermal response in Zhikong scallop and potentially helped in developing strategies for long-term healthy sustainable Zhikong scallop culture.
Collapse
|
26
|
Pinsk N, Wagner A, Cohen L, Smalley CJ, Hughes CE, Zhang G, Pavan MJ, Casati N, Jantschke A, Goobes G, Harris KDM, Palmer BA. Biogenic Guanine Crystals Are Solid Solutions of Guanine and Other Purine Metabolites. J Am Chem Soc 2022; 144:5180-5189. [PMID: 35255213 PMCID: PMC8949762 DOI: 10.1021/jacs.2c00724] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/28/2022]
Abstract
Highly reflective crystals of the nucleotide base guanine are widely distributed in animal coloration and visual systems. Organisms precisely control the morphology and organization of the crystals to optimize different optical effects, but little is known about how this is achieved. Here we examine a fundamental question that has remained unanswered after over 100 years of research on guanine: what are the crystals made of? Using solution-state and solid-state chemical techniques coupled with structural analysis by powder XRD and solid-state NMR, we compare the purine compositions and the structures of seven biogenic guanine crystals with different crystal morphologies, testing the hypothesis that intracrystalline dopants influence the crystal shape. We find that biogenic "guanine" crystals are not pure crystals but molecular alloys (aka solid solutions and mixed crystals) of guanine, hypoxanthine, and sometimes xanthine. Guanine host crystals occlude homogeneous mixtures of other purines, sometimes in remarkably large amounts (up to 20% of hypoxanthine), without significantly altering the crystal structure of the guanine host. We find no correlation between the biogenic crystal morphology and dopant content and conclude that dopants do not dictate the crystal morphology of the guanine host. The ability of guanine crystals to host other molecules enables animals to build physiologically "cheaper" crystals from mixtures of metabolically available purines, without impeding optical functionality. The exceptional levels of doping in biogenic guanine offer inspiration for the design of mixed molecular crystals that incorporate multiple functionalities in a single material.
Collapse
Affiliation(s)
- Noam Pinsk
- Department
of Chemistry, Ben-Gurion University of the
Negev, Be’er
Sheba 8410501, Israel
| | - Avital Wagner
- Department
of Chemistry, Ben-Gurion University of the
Negev, Be’er
Sheba 8410501, Israel
| | - Lilian Cohen
- Department
of Chemistry, Bar-Ilan University, 5290002 Ramat Gan, Israel
| | | | - Colan E. Hughes
- School
of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales United Kingdom
| | - Gan Zhang
- Department
of Chemistry, Ben-Gurion University of the
Negev, Be’er
Sheba 8410501, Israel
| | - Mariela J. Pavan
- Ilse
Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be’er Sheba 8410501, Israel
| | - Nicola Casati
- Paul
Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Anne Jantschke
- Institute
of Geosciences, Johannes-Gutenberg-Universität 55128 Mainz, Germany
| | - Gil Goobes
- Department
of Chemistry, Bar-Ilan University, 5290002 Ramat Gan, Israel
| | | | - Benjamin A. Palmer
- Department
of Chemistry, Ben-Gurion University of the
Negev, Be’er
Sheba 8410501, Israel
| |
Collapse
|
27
|
Friedman O, Böhm A, Rechav K, Pinkas I, Brumfeld V, Pass G, Weiner S, Addadi L. Structural Organization of Xanthine Crystals in the Median Ocellus of a Member of the Ancestral Insect Group Archaeognatha. J Struct Biol 2022; 214:107834. [DOI: 10.1016/j.jsb.2022.107834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
|
28
|
Xue R, Liang C, Li Y, Chen X, Li F, Ren S, Chen F. Solid-state separation of hypoxanthine tautomers through a doping strategy. CrystEngComm 2022. [DOI: 10.1039/d2ce00146b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solid-state separation of hypoxanthine tautomers was realized by a doping strategy. The doping forms of hypoxanthine in HAmG, AG β and AG α are N7-hypoxanthine, and in GM and dehydrated-GM are N9-hypoxanthine.
Collapse
Affiliation(s)
- Rongrong Xue
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, Fujian, China
| | - Chengfeng Liang
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, Fujian, China
| | - Yanping Li
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, Fujian, China
| | - Xiuzhi Chen
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, Fujian, China
| | - Fuying Li
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, Fujian, China
| | - Shizhao Ren
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, Fujian, China
| | - Fenghua Chen
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, Fujian, China
| |
Collapse
|
29
|
Abstract
Biological guanine crystals in organisms exhibit excellent optical properties and functions, including broad-band and narrow-band reflectors, band-tunable reflectors, mirrors, and stimuli-responsive structural colors, attributed to the high refractive index of guanine (1.85) and the exquisite control of the polymorphs, morphologies, sizes, exposed planes, and the hierarchically ordered assembly of biological guanine crystals in the organisms. Herein, the controlled synthesis of guanine crystals with defined polymorphs and morphologies and their formation processes in organic and aqueous solutions are summarized in detail. In particular, the controlled synthesis of microplatelets or nanoplatelets of the thermodynamically metastable β form of anhydrous guanine (β-AG) exposing the (100) plane in the presence of additives, twinned crystals, and the occlusion of hypoxanthine in β-AG were investigated to mimic biological guanine crystals with superior optical properties. One-dimensional assembly of β-AG microrods was studied as a preliminary work to mimic the highly ordered assembly of guanine crystals with superior optical properties.
Collapse
Affiliation(s)
- Fenghua Chen
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, Fujian, China
| | - Dongmei Guo
- MOE Key laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Gao
- MOE Key laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yurong Ma
- MOE Key laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
30
|
Chappell DR, Horan TM, Speiser DI. Panoramic spatial vision in the bay scallop Argopecten irradians. Proc Biol Sci 2021; 288:20211730. [PMID: 34753355 PMCID: PMC8580434 DOI: 10.1098/rspb.2021.1730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 11/12/2022] Open
Abstract
We have a growing understanding of the light-sensing organs and light-influenced behaviours of animals with distributed visual systems, but we have yet to learn how these animals convert visual input into behavioural output. It has been suggested they consolidate visual information early in their sensory-motor pathways, resulting in them being able to detect visual cues (spatial resolution) without being able to locate them (spatial vision). To explore how an animal with dozens of eyes processes visual information, we analysed the responses of the bay scallop Argopecten irradians to both static and rotating visual stimuli. We found A. irradians distinguish between static visual stimuli in different locations by directing their sensory tentacles towards them and were more likely to point their extended tentacles towards larger visual stimuli. We also found that scallops track rotating stimuli with individual tentacles and with rotating waves of tentacle extension. Our results show, to our knowledge for the first time that scallops have both spatial resolution and spatial vision, indicating their sensory-motor circuits include neural representations of their visual surroundings. Exploring a wide range of animals with distributed visual systems will help us learn the different ways non-cephalized animals convert sensory input into behavioural output.
Collapse
Affiliation(s)
- Daniel R. Chappell
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Tyler M. Horan
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Daniel I. Speiser
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| |
Collapse
|
31
|
McCoy DE, Shneidman AV, Davis AL, Aizenberg J. Finite-difference Time-domain (FDTD) Optical Simulations: A Primer for the Life Sciences and Bio-Inspired Engineering. Micron 2021; 151:103160. [PMID: 34678583 DOI: 10.1016/j.micron.2021.103160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Light influences most ecosystems on earth, from sun-dappled forests to bioluminescent creatures in the ocean deep. Biologists have long studied nano- and micro-scale organismal adaptations to manipulate light using ever-more sophisticated microscopy, spectroscopy, and other analytical equipment. In combination with experimental tools, simulations of light interacting with objects can help researchers determine the impact of observed structures and explore how variations affect optical function. In particular, the finite-difference time-domain (FDTD) method is widely used throughout the nanophotonics community to efficiently simulate light interacting with a variety of materials and optical devices. More recently, FDTD has been used to characterize optical adaptations in nature, such as camouflage in fish and other organisms, colors in sexually-selected birds and spiders, and photosynthetic efficiency in plants. FDTD is also common in bioengineering, as the design of biologically-inspired engineered structures can be guided and optimized through FDTD simulations. Parameter sweeps are a particularly useful application of FDTD, which allows researchers to explore a range of variables and modifications in natural and synthetic systems (e.g., to investigate the optical effects of changing the sizes, shape, or refractive indices of a structure). Here, we review the use of FDTD simulations in biology and present a brief methods primer tailored for life scientists, with a focus on the commercially available software Lumerical FDTD. We give special attention to whether FDTD is the right tool to use, how experimental techniques are used to acquire and import the structures of interest, and how their optical properties such as refractive index and absorption are obtained. This primer is intended to help researchers understand FDTD, implement the method to model optical effects, and learn about the benefits and limitations of this tool. Altogether, FDTD is well-suited to (i) characterize optical adaptations and (ii) provide mechanistic explanations; by doing so, it helps (iii) make conclusions about evolutionary theory and (iv) inspire new technologies based on natural structures.
Collapse
Affiliation(s)
- Dakota E McCoy
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA; Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Anna V Shneidman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, MA, 02138, USA.
| | - Alexander L Davis
- Department of Biology, Duke University, Campus Box 90338, Durham, NC, 27708, USA
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, MA, 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
32
|
Paz-Sedano S, Díaz-Agras G, Gosliner TM, Pola M. Revealing morphological characteristics of Goniodorididae genera (Mollusca: Nudibranchia). ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00508-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractDetailed knowledge of the anatomy of the species is an essential element in taxonomic studies, since it allows the comparison and differentiation of separate groups of taxa. It becomes especially important when considering type species, as the subsequent identification of the species that compose the taxa is based on its characteristics, considered common in the group. However, despite its relevance, there are still numerous species without detailed descriptions, being especially significant among invertebrates. The family Goniodorididae is a little-known group of nudibranchs that includes eight recognized genera: Okenia, Goniodoris, Ancula, Lophodoris, Spahria, Trapania, Goniodoridella and Murphydoris. Several of their species are not completely described, including type species, and the systematics of the family is still unclear. Here we study in detail the external morphology and internal anatomy of the type species of five of the eight Goniodorididae genera using microcomputed tomography and scanning electron microscopy. We include the species Okenia elegans, Goniodoris nodosa, Ancula gibbosa, Goniodoridella savignyi and Murphydoris singaporensis as well as one species of Trapania, T. graeffei. We describe for the first time the detailed internal anatomy of the type species Goniodoridella savignyi. The diagnostic features of each genus are compared, and a preliminary framework is shown to clarify their systematics and identifications.
Collapse
|
33
|
Affiliation(s)
- Avital Wagner
- Department of Chemistry Ben-Gurion University of the Negev P.O.B 653 Beer-Sheva 84105 Israel
| | - Qiang Wen
- Department of Chemistry Ben-Gurion University of the Negev P.O.B 653 Beer-Sheva 84105 Israel
| | - Noam Pinsk
- Department of Chemistry Ben-Gurion University of the Negev P.O.B 653 Beer-Sheva 84105 Israel
| | - Benjamin A. Palmer
- Department of Chemistry Ben-Gurion University of the Negev P.O.B 653 Beer-Sheva 84105 Israel
| |
Collapse
|
34
|
Sun X, Li L, Wu B, Ge J, Zheng Y, Yu T, Zhou L, Zhang T, Yang A, Liu Z. Cell type diversity in scallop adductor muscles revealed by single-cell RNA-Seq. Genomics 2021; 113:3582-3598. [PMID: 34425225 DOI: 10.1016/j.ygeno.2021.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022]
Abstract
Studies on cell atlas in marine invertebrates provide a better understanding of cell types, stem cell maintenance, and lineages of cell differentiation. To investigate the molecular features of various cell types in molluscan muscles, we performed single-cell RNA sequencing (scRNA-seq) to map cell types in scallop adductor muscles. We uncovered the cell type-specific features of 20 cell clusters defined by the expression of multiple specific molecular markers. These cell clusters are mainly classified into four broad classes, including mesenchymal stem cells, muscle cells, neurons, and haemolymph cells. In particular, we identified a diverse repertoire of neurons in the striated adductor muscle, but not in the smooth muscle. We further reconstructed the cell differentiation events using all the cell clusters by single-cell pseudotemporal trajectories. By integrating dual BrdU-PCNA immunodetection, neuron-specific staining and electron microscopy observation, we showed the spatial distribution of mesenchymal stem cells and neurons in striated adductor muscle of scallops. The present findings will not only be useful to address the cell type-specific gene expression profiles in scallop muscles, but also provide valuable resources for cross-species comparison of marine organisms.
Collapse
Affiliation(s)
- Xiujun Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Li Li
- Marine Biology Institute of Shandong Province, Qingdao 266104, China
| | - Biao Wu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Jianlong Ge
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai 265800, China
| | - Tao Yu
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai 265800, China
| | - Liqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Tianshi Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Aiguo Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Zhihong Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| |
Collapse
|
35
|
Tran Doan Trung H, Lee D, Nguyen TL, Lee H. Image formation by a biological curved mirror array of the fisheye in the deep-sea environment. APPLIED OPTICS 2021; 60:5227-5235. [PMID: 34143092 DOI: 10.1364/ao.424812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
In this paper, we present the imaging formation process of the piecewise mirror eyes of the deep-sea spookfish, which has a strange combination of refractive and reflective eyes. The biological reflective eye structure is formulated to the curved surface's flat mirror array. Zemax is utilized to evaluate optical features such as the modulation transfer function, distortion, and imaging performances. However, the natural images are highly distorted, and the resolution is lower than expected. Therefore, we increase the number of piecewise mirrors of the fisheye to see higher quality images, which can be improved entirely by the mirror shapes. Finally, the fisheye's imaging analysis reveals the deep-sea creature's resolution limit and also shows the possibility of artificial and biomimetic camera applications.
Collapse
|
36
|
Iwasaka M. Flashing spots on the dorsal trunk of hardyhead silverside fish. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201578. [PMID: 33868693 PMCID: PMC8025298 DOI: 10.1098/rsos.201578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
A large number of living creatures are able to use ambient light effectively in biological signalling. Atherinomorus lacunosus, a teleost fish has alignments of circular spots on its dorsal trunk. The spot consists of iridophores, whose diameters are approximately 7-10 µm. The iridophore contains guanine crystals with diameters of 1-3 µm. Here, it is found that more than one spot with a diameter of approximately 0.1 mm causes a rhythmic flashing of light when viewed under white light. The typical light flash has a pulse width of approximately one second. When a pulsed train of flashes appears, the flash repeats at a typical frequency of 0.5-1 Hz. The observed phenomenon is one example of the evidence for the existence of rapid colour changing teleost fish.
Collapse
Affiliation(s)
- Masakazu Iwasaka
- Hiroshima University, Kagamiyama 1-4-2, Higashihiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
37
|
Xing Q, Liao H, Peng C, Zheng G, Yang Z, Wang J, Lu W, Huang X, Bao Z. Identification, characterization and expression analyses of cholinesterases genes in Yesso scallop (Patinopecten yessoensis) reveal molecular function allocation in responses to ocean acidification. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105736. [PMID: 33422860 DOI: 10.1016/j.aquatox.2020.105736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/02/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Cholinesterases are key enzymes in central and peripheral cholinergic nerve system functioning on nerve impulse transmission in animals. Though cholinesterases have been identified in most vertebrates, the knowledge about the variable numbers and multiple functions of the genes is still quite meagre in invertebrates, especially in scallops. In this study, the complete cholinesterase (ChE) family members have been systematically characterized in Yesso scallop (Patinopecten yessoensis) via whole-genome scanning through in silico analysis. Ten ChE family members in the genome of Yesso scallop (designated PyChEs) were identified and potentially acted to be the largest number of ChE in the reported species to date. Phylogenetic and protein structural analyses were performed to determine the identities and evolutionary relationships of these genes. The expression profiles of PyChEs were determined in all developmental stages, in healthy adult tissues, and in mantles under low pH stress (pH 6.5 and 7.5). Spatiotemporal expression suggested the ubiquitous functional roles of PyChEs in all stages of development, as well as general and tissue-specific functions in scallop tissues. Regulation expressions revealed diverse up- and down-regulated expression patterns at most time points, suggesting different functional specialization of gene superfamily members in response to ocean acidification (OA). Evidences in gene number, phylogenetic relationships and expression patterns of PyChEs revealed that functional innovations and differentiations after gene duplication may result in altered functional constraints among PyChEs gene clusters. Collectively, our results provide the potential clues that the selection pressures coming from the environment were the potential inducement leading to function allocation of ChE family members in scallop.
Collapse
Affiliation(s)
- Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; College of Animal Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Cheng Peng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Guiliang Zheng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wei Lu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
38
|
Wu B, Liu Y, Chen F, Li J, Yu Y, Zhou Y, Li L, Xiao J, Ma Y. Investigation on the formation mechanism of twinned crystals of hypoxanthine-doped beta-phase anhydrous guanine microplatelets. CrystEngComm 2021. [DOI: 10.1039/d1ce00148e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Herein, hypoxanthine-doped β phase anhydrous guanine (I-doped β-AG) twinned crystals with varying hypoxanthine contents were obtained in formamide. The occlusion of hypoxanthine in β-AG might be a key factor for formation of twinned β-AG crystals.
Collapse
Affiliation(s)
- Bianbian Wu
- MOE Key Laboratory of Cluster Science
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- China
| | - Yanan Liu
- MOE Key Laboratory of Cluster Science
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- China
| | - Fenghua Chen
- MOE Key Laboratory of Cluster Science
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- China
| | - Jiangfeng Li
- MOE Key Laboratory of Cluster Science
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- China
| | - Yue Yu
- College of Chemistry
- Peking University
- Beijing
- China
| | - Yinglin Zhou
- College of Chemistry
- Peking University
- Beijing
- China
| | - Ling Li
- Department of Mechanical Engineering
- Virginia Polytechnic Institute and State University
- Blacksburg
- 24061 USA
| | - Jie Xiao
- Department of Highly Sensitive X-ray Spectroscopy
- Helmholtz-Zentrum Berlin für Materialien und Energie
- Berlin
- Germany
| | - Yurong Ma
- MOE Key Laboratory of Cluster Science
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- China
| |
Collapse
|
39
|
Schiffmann N, Wormser EM, Brumfeld V, Addadi Y, Pinkas I, Yallapragada VJ, Aflalo ED, Sagi A, Palmer BA, Weiner S, Addadi L. Characterization and possible function of an enigmatic reflector in the eye of the shrimp Litopenaeus vannamei. Faraday Discuss 2020; 223:278-294. [PMID: 32748932 DOI: 10.1039/d0fd00044b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Reflective assemblies of high refractive index organic crystals are used to produce striking optical phenomena in organisms based on light reflection and scattering. In aquatic animals, organic crystal-based reflectors are used both for image-formation and to increase photon capture. Here we report the characterization of a poorly-documented reflector in the eye of the shrimp L. vannamei lying 150 μm below the retina, which we term the proximal reflective layer (PR-layer). The PR-layer is made from a dense but disordered array of polycrystalline isoxanthopterin nanoparticles, similar to those recently reported in the tapetum of the same animal. Each spherical nanoparticle is composed of numerous isoxanthopterin single crystal plates arranged in concentric lamellae around an aqueous core. The highly reflective plate faces of the crystals are all aligned tangentially to the particle surface with the optical axes projecting radially outwards, forming a birefringent spherulite which efficiently scatters light. The nanoparticle assemblies form a broadband reflective sheath around the screening pigments of the eye, resulting in pronounced eye-shine when the animal is viewed from a dorsal-posterior direction, rendering the eye pigments inconspicuous. We assess possible functions of the PR-layer and conclude that it likely functions as a camouflage device to conceal the dark eye pigments in an otherwise largely transparent animal.
Collapse
Affiliation(s)
- Nathan Schiffmann
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Eyal Merary Wormser
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Vlad Brumfeld
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yoseph Addadi
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Iddo Pinkas
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | | | - Eliahu D Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel and Department of Life Sciences, Achva Academic College, Arugot, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Benjamin A Palmer
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Lia Addadi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
40
|
Chen F, Liu Y, Li L, Qi L, Ma Y. Synthesis of Bio-Inspired Guanine Microplatelets: Morphological and Crystallographic Control. Chemistry 2020; 26:16228-16235. [PMID: 32888220 DOI: 10.1002/chem.202003156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/18/2020] [Indexed: 12/15/2022]
Abstract
β-Phase anhydrous guanine (β-AG) crystals are one of the most widespread organic crystals to construct optical structures in organisms. Currently, no synthetic method is available that allows for producing guanine crystals with similar control in size, morphology, and crystallography as in biological ones. Herein, a facile one-step synthesis route to fabricate bio-inspired guanine microplatelets with (100) exposing planes in almost pure β-phase is reported. The synthesis is based on a precipitation process of a guanine sodium hydroxide solution in formamide with poly(1-vinylpyrrolidone-co-vinyl acetate) as a morphological additive. Due to their uniform size (ca. 20 μm) and thickness (ca. 110 nm), the crystals represent the first synthetic guanine microplatelets that exhibit strong structural coloration and pearlescent lusters. Moreover, this synthesis route was utilized as a model system to investigate the effects of guanine analogues, including uric acid, hypoxanthine, xanthine, adenine, and guanosine, during the crystallization process. Our results indicate that the introduction of guanine analogues not only can reduce the required synthesis temperature but also provide a versatile control in crystal morphology and polymorph selection between the α-phase AG (α-AG) and β-AG. Turbidity experiments show that the β-AG microplatelets are formed with a fast precipitation rate in comparison to α-AG, suggesting that the formation of β-AG crystals follows a kinetically driven process.
Collapse
Affiliation(s)
- Fenghua Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, P.R. China.,Beijing National Laboratory for Molecular Sciences, College of Chemistry, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, P.R. China.,School of Resources and Chemical Engineering, Sanming University, Jingdong Road 25, Sanming, 365004, P.R. China
| | - Yanan Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, P.R. China
| | - Ling Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Rd, Blacksburg, VA, 24061, USA
| | - Limin Qi
- Beijing National Laboratory for Molecular Sciences, College of Chemistry, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, P.R. China
| | - Yurong Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, P.R. China
| |
Collapse
|
41
|
Abstract
For centuries, the eye has fascinated scientists and philosophers alike, and as a result the visual system has always been at the forefront of integrating cutting-edge technology in research. We are again at a turning point at which technical advances have expanded the range of organisms we can study developmentally and deepened what we can learn. In this new era, we are finally able to understand eye development in animals across the phylogenetic tree. In this Review, we highlight six areas in comparative visual system development that address questions that are important for understanding the developmental basis of evolutionary change. We focus on the opportunities now available to biologists to study the developmental genetics, cell biology and morphogenesis that underlie the incredible variation of visual organs found across the Metazoa. Although decades of important work focused on gene expression has suggested homologies and potential evolutionary relationships between the eyes of diverse animals, it is time for developmental biologists to move away from this reductive approach. We now have the opportunity to celebrate the differences and diversity in visual organs found across animal development, and to learn what it can teach us about the fundamental principles of biological systems and how they are built.
Collapse
Affiliation(s)
- Kristen M Koenig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey M Gross
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
42
|
Audino JA, Serb JM, Marian JEAR. Hard to get, easy to lose: Evolution of mantle photoreceptor organs in bivalves (Bivalvia, Pteriomorphia). Evolution 2020; 74:2105-2120. [PMID: 32716056 DOI: 10.1111/evo.14050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 12/25/2022]
Abstract
Morphologically diverse eyes have evolved numerous times, yet little is known about how eye gain and loss is related to photic environment. The pteriomorphian bivalves (e.g., oysters, scallops, and ark clams), with a remarkable range of photoreceptor organs and ecologies, are a suitable system to investigate the association between eye evolution and ecological shifts. The present phylogenetic framework was based on amino acid sequences from transcriptome datasets and nucleotide sequences of five additional genes. In total, 197 species comprising 22 families from all five pteriomorphian orders were examined, representing the greatest taxonomic sampling to date. Morphological data were acquired for 162 species and lifestyles were compiled from the literature for all 197 species. Photoreceptor organs occur in 11 families and have arisen exclusively in epifaunal lineages, that is, living above the substrate, at least five times independently. Models for trait evolution consistently recovered higher rates of loss over gain. Transitions to crevice-dwelling habit appear associated with convergent gains of eyespots in epifaunal lineages. Once photoreceptor organs have arisen, multiple losses occurred in lineages that shift to burrowing lifestyles and deep-sea habitats. The observed patterns suggest that eye evolution in pteriomorphians might have evolved in association with light-guided behaviors, such as phototaxis, body posture, and alarm responses.
Collapse
Affiliation(s)
- Jorge Alves Audino
- Department of Zoology, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Jeanne Marie Serb
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011
| | | |
Collapse
|
43
|
Guanine crystals regulated by chitin-based honeycomb frameworks for tunable structural colors of sapphirinid copepod, Sapphirina nigromaculata. Sci Rep 2020; 10:2266. [PMID: 32042000 PMCID: PMC7010661 DOI: 10.1038/s41598-020-59090-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/10/2020] [Indexed: 02/03/2023] Open
Abstract
Sapphirinid copepods, which are marine zooplankton, exhibit tunable structural colors originating from a layered structure of guanine crystal plates. In the present study, the coloring portion of adult male of a sapphirinid copepod, Sapphirina nigromaculata, under the dorsal body surface was characterized to clarify the regulation and actuation mechanism of the layered guanine crystals for spectral control. The coloring portions are separated into small domains 70–100 µm wide consisting of an ordered array of stacked hexagonal plates ~1.5 µm wide and ~80 nm thick. We found the presence of chitin-based honeycomb frameworks that are composed of flat compartments regulating the guanine crystal plates. The structural color is deduced to be tuned from blue to achromatic via yellow and purple by changing the interplate distance according to vital observation and optical simulation using a photonic array model. The framework structures are essential for the organization and actuation of the particular photonic arrays for the exhibition of the tunable structural color.
Collapse
|
44
|
Schertel L, Vignolini S. Nanotechnology in a shrimp eye's view. NATURE NANOTECHNOLOGY 2020; 15:87-88. [PMID: 32042173 DOI: 10.1038/s41565-020-0645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Lukas Schertel
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
45
|
Palmer BA, Yallapragada VJ, Schiffmann N, Wormser EM, Elad N, Aflalo ED, Sagi A, Weiner S, Addadi L, Oron D. A highly reflective biogenic photonic material from core-shell birefringent nanoparticles. NATURE NANOTECHNOLOGY 2020; 15:138-144. [PMID: 31932761 DOI: 10.1038/s41565-019-0609-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/02/2019] [Indexed: 05/24/2023]
Abstract
Spectacular natural optical phenomena are produced by highly reflective assemblies of organic crystals. Here we show how the tapetum reflector in a shrimp eye is constructed from arrays of spherical isoxanthopterin nanoparticles and relate the particle properties to their optical function. The nanoparticles are composed of single-crystal isoxanthopterin nanoplates arranged in concentric lamellae around a hollow core. The spherulitic birefringence of the nanoparticles, which originates from the radial alignment of the plates, results in a significant enhancement of the back-scattering. This enables the organism to maximize the reflectivity of the ultrathin tapetum, which functions to increase the eye's sensitivity and preserve visual acuity. The particle size, core/shell ratio and packing are also controlled to optimize the intensity and spectral properties of the tapetum back-scattering. This system offers inspiration for the design of photonic crystals constructed from spherically symmetric birefringent particles for use in ultrathin reflectors and as non-iridescent pigments.
Collapse
Affiliation(s)
- Benjamin A Palmer
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | - Nathan Schiffmann
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Merary Wormser
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nadav Elad
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Eliahu D Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Life Sciences, Achva Academic College, Arugot, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lia Addadi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dan Oron
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
46
|
Ren J, Wang Y, Yao Y, Wang Y, Fei X, Qi P, Lin S, Kaplan DL, Buehler MJ, Ling S. Biological Material Interfaces as Inspiration for Mechanical and Optical Material Designs. Chem Rev 2019; 119:12279-12336. [DOI: 10.1021/acs.chemrev.9b00416] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yu Wang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Yuan Yao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yang Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Xiang Fei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ping Qi
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Shihui Lin
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
47
|
Xing Q, Wang J, Zhao Q, Liao H, Xun X, Yang Z, Huang X, Bao Z. Alternative splicing, spatiotemporal expression of TEP family genes in Yesso scallop (Patinopecten yessoensis) and their disparity in responses to ocean acidification. FISH & SHELLFISH IMMUNOLOGY 2019; 95:203-212. [PMID: 31610293 DOI: 10.1016/j.fsi.2019.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
The complement system constitutes a highly sophisticated and powerful body defense machinery acting in the innate immunity of both vertebrates and invertebrates. As central components of the complement system, significant effects of thioester-containing protein (TEP) family members on immunity have been reported in most vertebrates and in some invertebrates, but the spatiotemporal expression and regulatory patterns of TEP family genes under environmental stress have been less widely investigated in scallops. In this study, expression profiling of TEP family members in the Yesso scallop Patinopecten yessoensis (designated PyTEPs) was performed at all developmental stages, in different healthy adult tissues, and in mantles during exposure to different levels of acidification (pH = 6.5 and 7.5) for different time points (3, 6, 12 and 24 h); this profiling was accomplished through in silico analysis of transcriptome and genome databases. Spatiotemporal expression patterns revealed that PyTEPs had specific functional differentiation in all stages of growth and development of the scallop. Expression analysis confirmed the inducible expression patterns of PyTEPs during exposure to acidification. Gene duplication and alternative splicing events simultaneously occurred in PyTEP1. Seven different cDNA variants of PyTEP1 (designated PyTEP1-A-PyTEP1-G) were identified in the scallop mantle transcriptome during acidic stress. These variants were produced by the alternative splicing of seven differentially transcribed exons (exons 18-24), which encode the highly variable central region. The responses to immune stress may have arisen through the gene duplication and alternative splicing of PyTEP1. The sequence diversity of PyTEP1 isoforms and their different expression profiles in response to ocean acidification (OA) suggested a mechanism used by scallops to differentiate and regulate PyTEP1 gene expression. Collectively, these results demonstrate the gene duplication and alternative splicing of TEP family genes and provide valuable resources for elucidating their versatile roles in bivalve innate immune responses to OA challenge.
Collapse
Affiliation(s)
- Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qiang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Yantai Marine Economic Research Institute, Yantai, 264000, China
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaogang Xun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
48
|
Zhang G, Hirsch A, Shmul G, Avram L, Elad N, Brumfeld V, Pinkas I, Feldman Y, Ben Asher R, Palmer BA, Kronik L, Leiserowitz L, Weiner S, Addadi L. Guanine and 7,8-Dihydroxanthopterin Reflecting Crystals in the Zander Fish Eye: Crystal Locations, Compositions, and Structures. J Am Chem Soc 2019; 141:19736-19745. [DOI: 10.1021/jacs.9b08849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Gan Zhang
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anna Hirsch
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Guy Shmul
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nadav Elad
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vlad Brumfeld
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Iddo Pinkas
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yishay Feldman
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raz Ben Asher
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Benjamin A. Palmer
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Leeor Kronik
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Leslie Leiserowitz
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lia Addadi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
49
|
Harris OK, Kingston ACN, Wolfe CS, Ghoshroy S, Johnsen S, Speiser DI. Core-shell nanospheres behind the blue eyes of the bay scallop Argopecten irradians. J R Soc Interface 2019; 16:20190383. [PMID: 31640501 PMCID: PMC6833330 DOI: 10.1098/rsif.2019.0383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The bay scallop Argopecten irradians (Mollusca: Bivalvia) has dozens of iridescent blue eyes that focus light using mirror-based optics. Here, we test the hypothesis that these eyes appear blue because of photonic nanostructures that preferentially scatter short-wavelength light. Using transmission electron microscopy, we found that the epithelial cells covering the eyes of A. irradians have three distinct layers: an outer layer of microvilli, a middle layer of random close-packed nanospheres and an inner layer of pigment granules. The nanospheres are approximately 180 nm in diameter and consist of electron-dense cores approximately 140 nm in diameter surrounded by less electron-dense shells 20 nm thick. They are packed at a volume density of approximately 60% and energy-dispersive X-ray spectroscopy indicates that they are not mineralized. Optical modelling revealed that the nanospheres are an ideal size for producing angle-weighted scattering that is bright and blue. A comparative perspective supports our hypothesis: epithelial cells from the black eyes of the sea scallop Placopecten magellanicus have an outer layer of microvilli and an inner layer of pigment granules but lack a layer of nanospheres between them. We speculate that light-scattering nanospheres help to prevent UV wavelengths from damaging the internal structures of the eyes of A. irradians and other blue-eyed scallops.
Collapse
Affiliation(s)
- Olivia K Harris
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Alexandra C N Kingston
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Caitlin S Wolfe
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Soumitra Ghoshroy
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Electron Microscopy Center, University of South Carolina, Columbia, SC 29208, USA
| | - Sönke Johnsen
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Daniel I Speiser
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
50
|
Animal Eyes: Filtering Out the Background. Curr Biol 2019; 29:R938-R941. [DOI: 10.1016/j.cub.2019.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|