1
|
Liu X, Gu L, Hao C, Xu W, Leng F, Zhang P, Li W. Systematic assessment of structural variant annotation tools for genomic interpretation. Life Sci Alliance 2025; 8:e202402949. [PMID: 39658089 PMCID: PMC11632063 DOI: 10.26508/lsa.202402949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024] Open
Abstract
Structural variants (SVs) over 50 base pairs play a significant role in phenotypic diversity and are associated with various diseases, but their analysis is complex and resource-intensive. Numerous computational tools have been developed for SV prioritization, yet their effectiveness in biomedicine remains unclear. Here we benchmarked eight widely used SV prioritization tools, categorized into knowledge-driven (AnnotSV, ClassifyCNV) and data-driven (CADD-SV, dbCNV, StrVCTVRE, SVScore, TADA, XCNV) groups in accordance with the ACMG guidelines. We assessed their accuracy, robustness, and usability across diverse genomic contexts, biological mechanisms and computational efficiency using seven carefully curated independent datasets. Our results revealed that both groups of methods exhibit comparable effectiveness in predicting SV pathogenicity, although performance varies among tools, emphasizing the importance of selecting the appropriate tool based on specific research purposes. Furthermore, we pinpointed the potential improvement of expanding these tools for future applications. Our benchmarking framework provides a crucial evaluation method for SV analysis tools, offering practical guidance for biomedical research and facilitating the advancement of better genomic research tools.
Collapse
Affiliation(s)
- Xuanshi Liu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Lei Gu
- Epigenetics Laboratory, Max-Planck Institute for Heart and Lung Research, Cardiopulmonary Institute, Bad Nauheim, Germany
| | - Chanjuan Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wenjian Xu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Fei Leng
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Collins RL, Talkowski ME. Diversity and consequences of structural variation in the human genome. Nat Rev Genet 2025:10.1038/s41576-024-00808-9. [PMID: 39838028 DOI: 10.1038/s41576-024-00808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/23/2025]
Abstract
The biomedical community is increasingly invested in capturing all genetic variants across human genomes, interpreting their functional consequences and translating these findings to the clinic. A crucial component of this endeavour is the discovery and characterization of structural variants (SVs), which are ubiquitous in the human population, heterogeneous in their mutational processes, key substrates for evolution and adaptation, and profound drivers of human disease. The recent emergence of new technologies and the remarkable scale of sequence-based population studies have begun to crystalize our understanding of SVs as a mutational class and their widespread influence across phenotypes. In this Review, we summarize recent discoveries and new insights into SVs in the human genome in terms of their mutational patterns, population genetics, functional consequences, and impact on human traits and disease. We conclude by outlining three frontiers to be explored by the field over the next decade.
Collapse
Affiliation(s)
- Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Hurtado EC, Wotton JM, Gulka A, Burke C, Ng JK, Bah I, Manuel J, Heins H, Murray SA, Gorkin DU, White JK, Peterson KA, Turner TN. Generation and Characterization of a Knockout Mouse of an Enhancer of EBF3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.631762. [PMID: 39829799 PMCID: PMC11741297 DOI: 10.1101/2025.01.09.631762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Genomic studies of autism and other neurodevelopmental disorders have identified several relevant protein-coding and noncoding variants. One gene with an excess of protein-coding de novo variants is EBF3 that also is the gene underlying the Hypotonia, Ataxia, and Delayed Development Syndrome (HADDS). In previous work, we have identified noncoding de novo variants in an enhancer of EBF3 called hs737 and further showed that there was an enrichment of deletions of this enhancer in individuals with neurodevelopmental disorders. In this present study, we generated a novel mouse line that deletes the highly conserved, orthologous mouse region of hs737 within the Rr169617 regulatory region, and characterized the molecular and phenotypic aspects of this mouse model. This line contains a 1,160 bp deletion within Rr169617 and through heterozygous crosses we found a deviation from Mendelian expectation (p = 0.02) with a significant depletion of the deletion allele (p = 5.8 × 10-4). Rr169617 +/- mice had a reduction of Ebf3 expression by 10% and Rr169617 -/- mice had a reduction of Ebf3 expression by 20%. Differential expression analyses in E12.5 forebrain, midbrain, and hindbrain in Rr169617 +/+ versus Rr169617 -/- mice identified dysregulated genes including histone genes (i.e., Hist1h1e, Hist1h2bk, Hist1h3i, Hist1h2ao) and other brain development related genes (e.g., Chd5, Ntng1). A priori phenotyping analysis (open field, hole board and light/dark transition) identified sex-specific differences in behavioral traits when comparing Rr169617 -/- males versus females; whereby, males were observed to be less mobile, move slower, and spend more time in the dark. Furthermore, both sexes when homozygous for the enhancer deletion displayed body composition differences when compared to wild-type mice. Overall, we show that deletion within Rr169617 reduces the expression of Ebf3 and results in phenotypic outcomes consistent with potential sex specific behavioral differences. This enhancer deletion line provides a valuable resource for others interested in noncoding regions in neurodevelopmental disorders and/or those interested in the gene regulatory network downstream of Ebf3.
Collapse
Affiliation(s)
- Emily Cordova Hurtado
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Alexander Gulka
- Department of Biology, Emory University. Atlanta, GA 30322, USA
| | | | - Jeffrey K. Ng
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ibrahim Bah
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Juana Manuel
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hillary Heins
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - David U. Gorkin
- Department of Biology, Emory University. Atlanta, GA 30322, USA
| | | | | | - Tychele N. Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Lee KS, Lee T, Kim M, Ignatova E, Ban HJ, Sung MK, Kim Y, Kim YJ, Han JH, Choi JK. Shared rare genetic variants in multiplex autism families suggest a social memory gene under selection. Sci Rep 2025; 15:696. [PMID: 39753649 PMCID: PMC11698849 DOI: 10.1038/s41598-024-83839-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/17/2024] [Indexed: 01/06/2025] Open
Abstract
Autism spectrum disorder (ASD) affects up to 1 in 59 children, and is one of the most common neurodevelopmental disorders. Recent genomic studies have highlighted the role of rare variants in ASD. This study aimed to identify genes affected by rare variants shared by siblings with ASD and validate the function of a candidate gene FRRS1L. By integrating the whole genome sequencing data of 866 multiplex families from the Hartwell Foundation's Autism Research and Technology Initiative and Autism Speaks MSSNG project, we identified rare variants shared by two or more siblings with ASD. Using shared rare variants (SRVs), we selected candidate genes for ASD. Gene prioritization by evolutionary features and expression alterations on autism identified FRRS1L in two families, including one with impaired social behaviors. One variant in this family was 6 bp away from human-specific trinucleotide fixation. Additionally, CRISPR/Cas9 experiments demonstrated downregulation by a family variant and upregulation by a fixed site. Population genetics further demonstrated that upregulation of this gene has been favored during human evolution. Various mouse behavioral tests showed that Frrs1l knockout specifically impairs social novelty recognition without altering other behavioral phenotypes. Furthermore, we constructed humanized mice by introducing human sequences into a mouse genome. These knockin mice showed improved abilities to retain social memory over time. The results of our population genetic and evolutionary analyses, behavior experiments, and genome editing propose a molecular mechanism that may confer a selective advantage through social memory enhancement and may cause autism-related social impairment when disrupted in humans. These findings highlight the role of FRRS1L, the AMPA receptor subunit, in social behavior and evolution.
Collapse
Affiliation(s)
- Kang Seon Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Taeyeop Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
- Translational Biomedical Research Group, Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Mujun Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Elizaveta Ignatova
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Hyo-Jeong Ban
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Min Kyung Sung
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Younghoon Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Youn-Jae Kim
- Specific Organs Cancer Branch, National Cancer Center, Gyeonggi, 10408, Republic of Korea
| | - Jin-Hee Han
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Vorstman J, Sebat J, Bourque VR, Jacquemont S. Integrative genetic analysis: cornerstone of precision psychiatry. Mol Psychiatry 2025; 30:229-236. [PMID: 39215185 DOI: 10.1038/s41380-024-02706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The role of genetic testing in the domain of neurodevelopmental and psychiatric disorders (NPDs) is gradually changing from providing etiological explanation for the presence of NPD phenotypes to also identifying young individuals at high risk of developing NPDs before their clinical manifestation. In clinical practice, the latter implies a shift towards the availability of individual genetic information predicting a certain liability to develop an NPD (e.g., autism, intellectual disability, psychosis etc.). The shift from mostly a posteriori explanation to increasingly a priori risk prediction is the by-product of the systematic implementation of whole exome or genome sequencing as part of routine diagnostic work-ups during the neonatal and prenatal periods. This rapid uptake of genetic testing early in development has far-reaching consequences for psychiatry: Whereas until recently individuals would come to medical attention because of signs of abnormal developmental and/or behavioral symptoms, increasingly, individuals are presented based on genetic liability for NPD outcomes before NPD symptoms emerge. This novel clinical scenario, while challenging, also creates opportunities for research on prevention interventions and precision medicine approaches. Here, we review why optimization of individual risk prediction is a key prerequisite for precision medicine in the sphere of NPDs, as well as the technological and statistical methods required to achieve this ambition.
Collapse
Affiliation(s)
- Jacob Vorstman
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Jonathan Sebat
- Department of Psychiatry, Department of Cellular & Molecular Medicine, Beyster Center of Psychiatric Genomics, University of California San Diego, San Diego, CA, USA
| | - Vincent-Raphaël Bourque
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
- Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Sébastien Jacquemont
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
- Département de Pédiatrie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
6
|
Gupta V, Ben-Mahmoud A, Idris AB, Hottenga JJ, Habbab W, Alsayegh A, Kim HG, AL-Mamari W, Stanton LW. Genetic Variant Analyses Identify Novel Candidate Autism Risk Genes from a Highly Consanguineous Cohort of 104 Families from Oman. Int J Mol Sci 2024; 25:13700. [PMID: 39769462 PMCID: PMC11679916 DOI: 10.3390/ijms252413700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Deficits in social communication, restricted interests, and repetitive behaviours are hallmarks of autism spectrum disorder (ASD). Despite high genetic heritability, the majority of clinically diagnosed ASD cases have unknown genetic origins. We performed genome sequencing on mothers, fathers, and affected individuals from 104 families with ASD in Oman, a Middle Eastern country underrepresented in international genetic studies. This approach identified 48 novel candidate genes significantly associated with ASD in Oman. In particular, 35 of these genes have been previously implicated in neurodevelopmental disorders (NDDs) in other populations, underscoring the conserved genetic basis of ASD across ethnicities. Genetic variants within these candidate genes that would impact the encoded protein included 1 insertion, 4 frameshift, 6 splicing, 12 nonsense, and 67 missense changes. Notably, 61% of the SNVs were homozygous, suggesting a prominent recessive genetic architecture for ASD in this unique population. The scarcity of genetic studies on ASD in the Arabian Peninsula has impeded the understanding of the unique genetic landscape of ASD in this region. These findings help bridge this knowledge gap and provide valuable insights into the complex genetic basis of ASD in Oman.
Collapse
Affiliation(s)
- Vijay Gupta
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar; (V.G.); (A.B.-M.); (J.-J.H.); (W.H.); (H.-G.K.)
| | - Afif Ben-Mahmoud
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar; (V.G.); (A.B.-M.); (J.-J.H.); (W.H.); (H.-G.K.)
| | - Ahmed B. Idris
- Developmental Paediatric Unit, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat 123, Oman;
| | - Jouke-Jan Hottenga
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar; (V.G.); (A.B.-M.); (J.-J.H.); (W.H.); (H.-G.K.)
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Wesal Habbab
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar; (V.G.); (A.B.-M.); (J.-J.H.); (W.H.); (H.-G.K.)
| | - Abeer Alsayegh
- Genomics Department, Sultan Qaboos Comprehensive Cancer Care and Research Center, University Medical City, Muscat 123, Oman;
| | - Hyung-Goo Kim
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar; (V.G.); (A.B.-M.); (J.-J.H.); (W.H.); (H.-G.K.)
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Watfa AL-Mamari
- Developmental Paediatric Unit, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat 123, Oman;
| | - Lawrence W. Stanton
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar; (V.G.); (A.B.-M.); (J.-J.H.); (W.H.); (H.-G.K.)
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar
| |
Collapse
|
7
|
Richards-Steed R, Wan N, Bakian A, Medina RM, Brewer SC, Smith KR, VanDerslice JA. Observational methods for human studies of transgenerational effects. Epigenetics 2024; 19:2366065. [PMID: 38870389 PMCID: PMC11178273 DOI: 10.1080/15592294.2024.2366065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
There are substantial challenges in studying human transgenerational epigenetic outcomes resulting from environmental conditions. The task requires specialized methods and tools that incorporate specific knowledge of multigenerational relationship combinations of probands and their ancestors, phenotype data for individuals, environmental information of ancestors and their descendants, which can span historical to present datasets, and informative environmental data that chronologically aligns with ancestors and descendants over space and time. As a result, there are few epidemiologic studies of potential transgenerational effects in human populations, thus limiting the knowledge of ancestral environmental conditions and the potential impacts we face with modern human health outcomes. In an effort to overcome some of the challenges in studying human transgenerational effects, we present two transgenerational study designs: transgenerational space-time cluster detection and transgenerational case-control study design. Like other epidemiological methods, these methods determine whether there are statistical associations between phenotypic outcomes (e.g., adverse health outcomes) among probands and the shared environments and environmental factors facing their ancestors. When the ancestor is a paternal grandparent, a statistically significant association provides some evidence that a transgenerational inheritable factor may be involved. Such results may generate useful hypotheses that can be explored using epigenomic data to establish conclusive evidence of transgenerational heritable effects. Both methods are proband-centric: They are designed around the phenotype of interest in the proband generation for case selection and family pedigree creation. In the examples provided, we incorporate at least three generations of paternal lineage in both methods to observe a potential transgenerational effect.
Collapse
Affiliation(s)
| | - Neng Wan
- Geography, University of Utah Department of Geography, Salt Lake City, UT, USA
| | - Amanda Bakian
- Psychiatry, University of Utah Health, Salt Lake City, UT, USA
| | - Richard M. Medina
- Geography, University of Utah Department of Geography, Salt Lake City, UT, USA
| | - Simon C. Brewer
- Geography, University of Utah Department of Geography, Salt Lake City, UT, USA
| | - Ken R. Smith
- Child and Consumer Studies, University of Utah Health, Salt Lake City, UT, USA
| | | |
Collapse
|
8
|
Smal N, Majdoub F, Janssens K, Reyniers E, Meuwissen MEC, Ceulemans B, Northrup H, Hill JB, Liu L, Errichiello E, Gana S, Strong A, Rohena L, Franciskovich R, Murali CN, Huybrechs A, Sulem T, Fridriksdottir R, Sulem P, Stefansson K, Bai Y, Rosenfeld JA, Lalani SR, Streff H, Kooy RF, Weckhuysen S. Burden re-analysis of neurodevelopmental disorder cohorts for prioritization of candidate genes. Eur J Hum Genet 2024; 32:1378-1386. [PMID: 38965372 DOI: 10.1038/s41431-024-01661-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/12/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
This study aimed to uncover novel genes associated with neurodevelopmental disorders (NDD) by leveraging recent large-scale de novo burden analysis studies to enhance a virtual gene panel used in a diagnostic setting. We re-analyzed historical trio-exome sequencing data from 745 individuals with NDD according to the most recent diagnostic standards, resulting in a cohort of 567 unsolved individuals. Next, we designed a virtual gene panel containing candidate genes from three large de novo burden analysis studies in NDD and prioritized candidate genes by stringent filtering for ultra-rare de novo variants with high pathogenicity scores. Our analysis revealed an increased burden of de novo variants in our selected candidate genes within the unsolved NDD cohort and identified qualifying de novo variants in seven candidate genes: RIF1, CAMK2D, RAB11FIP4, AGO3, PCBP2, LEO1, and VCP. Clinical data were collected from six new individuals with de novo or inherited LEO1 variants and three new individuals with de novo PCBP2 variants. Our findings add additional evidence for LEO1 as a risk gene for autism and intellectual disability. Furthermore, we prioritize PCBP2 as a candidate gene for NDD associated with motor and language delay. In summary, by leveraging de novo burden analysis studies, employing a stringent variant filtering pipeline, and engaging in targeted patient recruitment, our study contributes to the identification of novel genes implicated in NDDs.
Collapse
Affiliation(s)
- Noor Smal
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Fatma Majdoub
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Medical Genetics Department, University Hedi Chaker Hospital of Sfax, University of Sfax, Sfax, Tunisia
| | - Katrien Janssens
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
- Center of Medical Genetics, University Hospital Antwerp, Drie Eikenstraat 655, Edegem, 2650, Belgium
| | - Edwin Reyniers
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
- Center of Medical Genetics, University Hospital Antwerp, Drie Eikenstraat 655, Edegem, 2650, Belgium
| | - Marije E C Meuwissen
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
- Center of Medical Genetics, University Hospital Antwerp, Drie Eikenstraat 655, Edegem, 2650, Belgium
| | - Berten Ceulemans
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Jeremy B Hill
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Lingying Liu
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Edoardo Errichiello
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Simone Gana
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Alanna Strong
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Luis Rohena
- Division of Medical Genetics, Department of Pediatrics, San Antonio Military Medical Center, San Antonio, TX, USA
- Department of Pediatrics, Long School of Medicine-UT Health San Antonio, San Antonio, TX, USA
| | - Rachel Franciskovich
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Chaya N Murali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - An Huybrechs
- Department of Pediatrics, Heilig Hart Ziekenhuis, Lier, Belgium
| | - Telma Sulem
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | | | | | | | - Yan Bai
- GeneDx, Gaithersburg, MD, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Sarah Weckhuysen
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium.
- Department of Neurology, University Hospital Antwerp, Antwerp, Belgium.
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
9
|
Chang S, Liu JJ, Zhao Y, Pang T, Zheng X, Song Z, Zhang A, Gao X, Luo L, Guo Y, Liu J, Yang L, Lu L. Whole-genome sequencing identifies novel genes for autism in Chinese trios. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2368-2381. [PMID: 39126614 DOI: 10.1007/s11427-023-2564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/16/2024] [Indexed: 08/12/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with high genetic heritability but heterogeneity. Fully understanding its genetics requires whole-genome sequencing (WGS), but the ASD studies utilizing WGS data in Chinese population are limited. In this study, we present a WGS study for 334 individuals, including 112 ASD patients and their non-ASD parents. We identified 146 de novo variants in coding regions in 85 cases and 60 inherited variants in coding regions. By integrating these variants with an association model, we identified 33 potential risk genes (P<0.001) enriched in neuron and regulation related biological process. Besides the well-known ASD genes (SCN2A, NF1, SHANK3, CHD8 etc.), several high confidence genes were highlighted by a series of functional analyses, including CTNND1, DGKZ, LRP1, DDN, ZNF483, NR4A2, SMAD6, INTS1, and MRPL12, with more supported evidence from GO enrichment, expression and network analysis. We also integrated RNA-seq data to analyze the effect of the variants on the gene expression and found 12 genes in the individuals with the related variants had relatively biased expression. We further presented the clinical phenotypes of the proband carrying the risk genes in both our samples and Caucasian samples to show the effect of the risk genes on phenotype. Regarding variants in non-coding regions, a total of 74 de novo variants and 30 inherited variants were predicted as pathogenic with high confidence, which were mapped to specific genes or regulatory features. The number of de novo variants found in patient was significantly associated with the parents' ages at the birth of the child, and gender with trend. We also identified small de novo structural variants in ASD trios. The results in this study provided important evidence for understanding the genetic mechanism of ASD.
Collapse
Affiliation(s)
- Suhua Chang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
- Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, 100191, China
| | - Jia Jia Liu
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
- School of Nursing, Peking University, Beijing, 100191, China
| | - Yilu Zhao
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | - Tao Pang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | - Xiangyu Zheng
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | | | - Anyi Zhang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | - Xuping Gao
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | - Lingxue Luo
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | - Yanqing Guo
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China.
| | - Jing Liu
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China.
| | - Li Yang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China.
| | - Lin Lu
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China.
- Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, 100191, China.
- National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
| |
Collapse
|
10
|
Leblond CS, Rolland T, Barthome E, Mougin Z, Fleury M, Ecker C, Bonnot-Briey S, Cliquet F, Tabet AC, Maruani A, Chaumette B, Green J, Delorme R, Bourgeron T. A Genetic Bridge Between Medicine and Neurodiversity for Autism. Annu Rev Genet 2024; 58:487-512. [PMID: 39585908 DOI: 10.1146/annurev-genet-111523-102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Autism represents a large spectrum of diverse individuals with varying underlying genetic architectures and needs. For some individuals, a single de novo or ultrarare genetic variant has a large effect on the intensity of specific dimensions of the phenotype, while, for others, a combination of thousands of variants commonly found in the general population are involved. The variants with large impact are found in up to 30% of autistic individuals presenting with intellectual disability, significant speech delay, motor delay, and/or seizures. The common variants are shared with those found in individuals with attention-deficit/hyperactivity disorder, major depressive disorders, greater educational attainment, and higher cognitive performance, suggesting overlapping genetic architectures. The genetic variants modulate the function of chromatin remodeling and synaptic proteins that influence the connectivity of neuronal circuits and, in interaction with the environment of each individual, the subsequent cognitive and personal trajectory of the child. Overall, this genetic heterogeneity mirrors the phenotypic diversity of autistic individuals and provides a helpful bridge between biomedical and neurodiversity perspectives. We propose that participative and multidisciplinary research should use this information to understand better the assessment, treatments, and accommodations that individuals with autism and families need.
Collapse
Affiliation(s)
- Claire S Leblond
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
| | - Thomas Rolland
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
| | - Eli Barthome
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
| | - Zakaria Mougin
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
| | - Mathis Fleury
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, University Hospital of the Goethe University, Frankfurt am Main, Germany
| | | | - Freddy Cliquet
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
| | - Anne-Claude Tabet
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
- Department of Genetics, Cytogenetics Unit, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anna Maruani
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Boris Chaumette
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Groupe Hospitalier Universitaire-Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, Paris, France
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université Paris Cité, Paris, France
| | - Jonathan Green
- Division of Psychology and Mental Health, University of Manchester and Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Richard Delorme
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
| |
Collapse
|
11
|
Jensen M, Smolen C, Tyryshkina A, Pizzo L, Banerjee D, Oetjens M, Shimelis H, Taylor CM, Pounraja VK, Song H, Rohan L, Huber E, El Khattabi L, van de Laar I, Tadros R, Bezzina C, van Slegtenhorst M, Kammeraad J, Prontera P, Caberg JH, Fraser H, Banka S, Van Dijck A, Schwartz C, Voorhoeve E, Callier P, Mosca-Boidron AL, Marle N, Lefebvre M, Pope K, Snell P, Boys A, Lockhart PJ, Ashfaq M, McCready E, Nowacyzk M, Castiglia L, Galesi O, Avola E, Mattina T, Fichera M, Bruccheri MG, Mandarà GML, Mari F, Privitera F, Longo I, Curró A, Renieri A, Keren B, Charles P, Cuinat S, Nizon M, Pichon O, Bénéteau C, Stoeva R, Martin-Coignard D, Blesson S, Le Caignec C, Mercier S, Vincent M, Martin C, Mannik K, Reymond A, Faivre L, Sistermans E, Kooy RF, Amor DJ, Romano C, Andrieux J, Girirajan S. Genetic modifiers and ascertainment drive variable expressivity of complex disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.27.24312158. [PMID: 39252907 PMCID: PMC11383473 DOI: 10.1101/2024.08.27.24312158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Variable expressivity of disease-associated variants implies a role for secondary variants that modify clinical features. We assessed the effects of modifier variants towards clinical outcomes of 2,252 individuals with primary variants. Among 132 families with the 16p12.1 deletion, distinct rare and common variant classes conferred risk for specific developmental features, including short tandem repeats for neurological defects and SNVs for microcephaly, while additional disease-associated variants conferred multiple genetic diagnoses. Within disease and population cohorts of 773 individuals with the 16p12.1 deletion, we found opposing effects of secondary variants towards clinical features across ascertainments. Additional analysis of 1,479 probands with other primary variants, such as 16p11.2 deletion and CHD8 variants, and 1,084 without primary variants, showed that phenotypic associations differed by primary variant context and were influenced by synergistic interactions between primary and secondary variants. Our study provides a paradigm to dissect the genomic architecture of complex disorders towards personalized treatment.
Collapse
Affiliation(s)
- Matthew Jensen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Corrine Smolen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Anastasia Tyryshkina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Lucilla Pizzo
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Deepro Banerjee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew Oetjens
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA 17837, USA
| | - Hermela Shimelis
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA 17837, USA
| | - Cora M. Taylor
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA 17837, USA
| | - Vijay Kumar Pounraja
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Hyebin Song
- Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA
| | - Laura Rohan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Emily Huber
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Laila El Khattabi
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Ingrid van de Laar
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rafik Tadros
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Connie Bezzina
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janneke Kammeraad
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Paolo Prontera
- Medical Genetics Unit, Hospital Santa Maria della Misericordia, Perugia, Italy
| | - Jean-Hubert Caberg
- Centre Hospitalier Universitaire de Liège. Domaine Universitaire du Sart Tilman, Liège, Belgium
| | - Harry Fraser
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Siddhartha Banka
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Central Manchester University Hospitals, NHS Foundation Trust Manchester Academic Health Sciences Centre, Manchester, UK
| | - Anke Van Dijck
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | | | - Els Voorhoeve
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Patrick Callier
- Center for Rare Diseases and Reference Developmental Anomalies and Malformation Syndromes, CHU Dijon, Dijon, France
| | - Anne-Laure Mosca-Boidron
- Center for Rare Diseases and Reference Developmental Anomalies and Malformation Syndromes, CHU Dijon, Dijon, France
| | - Nathalie Marle
- Center for Rare Diseases and Reference Developmental Anomalies and Malformation Syndromes, CHU Dijon, Dijon, France
| | - Mathilde Lefebvre
- Laboratoire de Genetique Chromosomique et Moleculaire, CHU Dijon, France
| | - Kate Pope
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Penny Snell
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Amber Boys
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Paul J. Lockhart
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Myla Ashfaq
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Elizabeth McCready
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Margaret Nowacyzk
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lucia Castiglia
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Ornella Galesi
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Emanuela Avola
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Teresa Mattina
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Marco Fichera
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
- Section of Clinical Biochemistry and Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania School of Medicine, Catania, Italy
| | - Maria Grazia Bruccheri
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | | | - Francesca Mari
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Flavia Privitera
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Longo
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Aurora Curró
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Renieri
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Boris Keren
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, 75019 Paris, France
| | - Perrine Charles
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, 75019 Paris, France
| | | | | | | | | | - Radka Stoeva
- CHU Nantes, Medical Genetics Department, Nantes, France
| | | | - Sophia Blesson
- Department of Genetics, Bretonneau University Hospital, Tours, France
| | - Cedric Le Caignec
- CHU Toulouse, Department of Medical Genetics, Toulouse, France
- Toulouse Neuro Imaging, Center, Inserm, UPS, Université de Toulouse, Toulouse, France
| | - Sandra Mercier
- Department of Genetics, Bretonneau University Hospital, Tours, France
| | - Marie Vincent
- Department of Genetics, Bretonneau University Hospital, Tours, France
| | - Christa Martin
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA 17837, USA
| | - Katrin Mannik
- Institute of Genomics, University of Tartu, Estonia
- Health2030 Genome Center, Fondation Campus Biotech, Geneva, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Laurence Faivre
- Center for Rare Diseases and Reference Developmental Anomalies and Malformation Syndromes, CHU Dijon, Dijon, France
- Laboratoire de Genetique Chromosomique et Moleculaire, CHU Dijon, France
| | - Erik Sistermans
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - R. Frank Kooy
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | - David J. Amor
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Corrado Romano
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
- Section of Clinical Biochemistry and Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania School of Medicine, Catania, Italy
| | - Joris Andrieux
- Institut de Genetique Medicale, Hopital Jeanne de Flandre, CHRU de Lille, Lille, France
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
12
|
Lewis SA, Ruttenberg A, Iyiyol T, Kong N, Jin SC, Kruer MC. Potential clinical applications of advanced genomic analysis in cerebral palsy. EBioMedicine 2024; 106:105229. [PMID: 38970919 PMCID: PMC11282942 DOI: 10.1016/j.ebiom.2024.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/26/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
Cerebral palsy (CP) has historically been attributed to acquired insults, but emerging research suggests that genetic variations are also important causes of CP. While microarray and whole-exome sequencing based studies have been the primary methods for establishing new CP-gene relationships and providing a genetic etiology for individual patients, the cause of their condition remains unknown for many patients with CP. Recent advancements in genomic technologies offer additional opportunities to uncover variations in human genomes, transcriptomes, and epigenomes that have previously escaped detection. In this review, we outline the use of these state-of-the-art technologies to address the molecular diagnostic challenges experienced by individuals with CP. We also explore the importance of identifying a molecular etiology whenever possible, given the potential for genomic medicine to provide opportunities to treat patients with CP in new and more precise ways.
Collapse
Affiliation(s)
- Sara A Lewis
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States; Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Andrew Ruttenberg
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Tuğçe Iyiyol
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Nahyun Kong
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States.
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States; Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States; Programs in Neuroscience and Molecular & Cellular Biology, School of Life Sciences, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
13
|
Nóbrega IDS, Teles e Silva AL, Yokota-Moreno BY, Sertié AL. The Importance of Large-Scale Genomic Studies to Unravel Genetic Risk Factors for Autism. Int J Mol Sci 2024; 25:5816. [PMID: 38892002 PMCID: PMC11172008 DOI: 10.3390/ijms25115816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Autism spectrum disorder (ASD) is a common and highly heritable neurodevelopmental disorder. During the last 15 years, advances in genomic technologies and the availability of increasingly large patient cohorts have greatly expanded our knowledge of the genetic architecture of ASD and its neurobiological mechanisms. Over two hundred risk regions and genes carrying rare de novo and transmitted high-impact variants have been identified. Additionally, common variants with small individual effect size are also important, and a number of loci are now being uncovered. At the same time, these new insights have highlighted ongoing challenges. In this perspective article, we summarize developments in ASD genetic research and address the enormous impact of large-scale genomic initiatives on ASD gene discovery.
Collapse
Affiliation(s)
| | | | | | - Andréa Laurato Sertié
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, Rua Comendador Elias Jafet, 755. Morumbi, São Paulo 05653-000, Brazil; (I.d.S.N.); (A.L.T.e.S.); (B.Y.Y.-M.)
| |
Collapse
|
14
|
Schloissnig S, Pani S, Rodriguez-Martin B, Ebler J, Hain C, Tsapalou V, Söylev A, Hüther P, Ashraf H, Prodanov T, Asparuhova M, Hunt S, Rausch T, Marschall T, Korbel JO. Long-read sequencing and structural variant characterization in 1,019 samples from the 1000 Genomes Project. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590093. [PMID: 38659906 PMCID: PMC11042266 DOI: 10.1101/2024.04.18.590093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Structural variants (SVs) contribute significantly to human genetic diversity and disease 1-4 . Previously, SVs have remained incompletely resolved by population genomics, with short-read sequencing facing limitations in capturing the whole spectrum of SVs at nucleotide resolution 5-7 . Here we leveraged nanopore sequencing 8 to construct an intermediate coverage resource of 1,019 long-read genomes sampled within 26 human populations from the 1000 Genomes Project. By integrating linear and graph-based approaches for SV analysis via pangenome graph-augmentation, we uncover 167,291 sequence-resolved SVs in these samples, considerably advancing SV characterization compared to population-wide short-read sequencing studies 3,4 . Our analysis details diverse SV classes-deletions, duplications, insertions, and inversions-at population-scale. LINE-1 and SVA retrotransposition activities frequently mediate transductions 9,10 of unique sequences, with both mobile element classes transducing sequences at either the 3'- or 5'-end, depending on the source element locus. Furthermore, analyses of SV breakpoint junctions suggest a continuum of homology-mediated rearrangement processes are integral to SV formation, and highlight evidence for SV recurrence involving repeat sequences. Our open-access dataset underscores the transformative impact of long-read sequencing in advancing the characterisation of polymorphic genomic architectures, and provides a resource for guiding variant prioritisation in future long-read sequencing-based disease studies.
Collapse
|
15
|
Chu C, Ljungström V, Tran A, Jin H, Park PJ. Contribution of de novo retroelements to birth defects and childhood cancers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.15.24305733. [PMID: 38699361 PMCID: PMC11065029 DOI: 10.1101/2024.04.15.24305733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Insertion of active retroelements-L1s, Alus, and SVAs-can disrupt proper genome function and lead to various disorders including cancer. However, the role of de novo retroelements (DNRTs) in birth defects and childhood cancers has not been well characterized due to the lack of adequate data and efficient computational tools. Here, we examine whole-genome sequencing data of 3,244 trios from 12 birth defect and childhood cancer cohorts in the Gabriella Miller Kids First Pediatric Research Program. Using an improved version of our tool xTea (x-Transposable element analyzer) that incorporates a deep-learning module, we identified 162 DNRTs, as well as 2 pseudogene insertions. Several variants are likely to be causal, such as a de novo Alu insertion that led to the ablation of a whole exon in the NF1 gene in a proband with brain tumor. We observe a high de novo SVA insertion burden in both high-intolerance loss-of-function genes and exons as well as more frequent de novo Alu insertions of paternal origin. We also identify potential mosaic DNRTs from embryonic stages. Our study reveals the important roles of DNRTs in causing birth defects and predisposition to childhood cancers.
Collapse
Affiliation(s)
- Chong Chu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Viktor Ljungström
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Antuan Tran
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Hu Jin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Peter J. Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Sun J, Noss S, Banerjee D, Das M, Girirajan S. Strategies for dissecting the complexity of neurodevelopmental disorders. Trends Genet 2024; 40:187-202. [PMID: 37949722 PMCID: PMC10872993 DOI: 10.1016/j.tig.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Neurodevelopmental disorders (NDDs) are associated with a wide range of clinical features, affecting multiple pathways involved in brain development and function. Recent advances in high-throughput sequencing have unveiled numerous genetic variants associated with NDDs, which further contribute to disease complexity and make it challenging to infer disease causation and underlying mechanisms. Herein, we review current strategies for dissecting the complexity of NDDs using model organisms, induced pluripotent stem cells, single-cell sequencing technologies, and massively parallel reporter assays. We further highlight single-cell CRISPR-based screening techniques that allow genomic investigation of cellular transcriptomes with high efficiency, accuracy, and throughput. Overall, we provide an integrated review of experimental approaches that can be applicable for investigating a broad range of complex disorders.
Collapse
Affiliation(s)
- Jiawan Sun
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA
| | - Serena Noss
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA
| | - Deepro Banerjee
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA
| | - Maitreya Das
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA
| | - Santhosh Girirajan
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA; Bioinformatics and Genomics Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
17
|
Xu Z, Li Q, Marchionni L, Wang K. PhenoSV: interpretable phenotype-aware model for the prioritization of genes affected by structural variants. Nat Commun 2023; 14:7805. [PMID: 38016949 PMCID: PMC10684511 DOI: 10.1038/s41467-023-43651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023] Open
Abstract
Structural variants (SVs) represent a major source of genetic variation associated with phenotypic diversity and disease susceptibility. While long-read sequencing can discover over 20,000 SVs per human genome, interpreting their functional consequences remains challenging. Existing methods for identifying disease-related SVs focus on deletion/duplication only and cannot prioritize individual genes affected by SVs, especially for noncoding SVs. Here, we introduce PhenoSV, a phenotype-aware machine-learning model that interprets all major types of SVs and genes affected. PhenoSV segments and annotates SVs with diverse genomic features and employs a transformer-based architecture to predict their impacts under a multiple-instance learning framework. With phenotype information, PhenoSV further utilizes gene-phenotype associations to prioritize phenotype-related SVs. Evaluation on extensive human SV datasets covering all SV types demonstrates PhenoSV's superior performance over competing methods. Applications in diseases suggest that PhenoSV can determine disease-related genes from SVs. A web server and a command-line tool for PhenoSV are available at https://phenosv.wglab.org .
Collapse
Affiliation(s)
- Zhuoran Xu
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Quan Li
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, M5G2C1, Canada
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Thaler H, Falter-Wagner C. [Autism spectrum disorder in adulthood]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2023; 91:466-478. [PMID: 37944552 DOI: 10.1055/a-1898-5347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Autism is a neurodevelopmental disorder that starts in early childhood and persists over the lifespan. A combination of genetic factors and environmental factors around birth contribute to its etiology. Autistic individuals show differences and difficulties in social interaction and communication as well as repetitive, stereotypical behavior and interests. The diagnostic procedure is complex and should be carried out in a specialized assessment unit. Diagnostic assessment is based on behavioral observation and a careful evaluation of developmental history. A wide range of potential differential diagnoses should be considered. Autistic adults have a higher risk of developing psychiatric disorders such as anxiety and depression. Psychotherapeutic treatment that is adapted to autism-related difficulties can be helpful. Co-occurring conditions should be treated in accordance with disorder-specific guidelines. Psychopharmacological treatment of co-occurring conditions is, in most cases, only recommended as an addition to behavioral interventions. Autistic people often experience difficulties in social participation, which can be targeted with sociotherapeutic interventions.
Collapse
|
19
|
Costa CIS, da Silva Campos G, da Silva Montenegro EM, Wang JYT, Scliar M, Monfardini F, Zachi EC, Lourenço NCV, Chan AJS, Pereira SL, Engchuan W, Thiruvahindrapuram B, Zarrei M, Scherer SW, Passos-Bueno MR. Three generation families: Analysis of de novo variants in autism. Eur J Hum Genet 2023; 31:1017-1022. [PMID: 37280359 PMCID: PMC10474020 DOI: 10.1038/s41431-023-01398-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023] Open
Abstract
De novo variants (DNVs) analysis has proven to be a powerful approach to gene discovery in Autism Spectrum Disorder (ASD), which has not yet been shown in a Brazilian ASD cohort. The relevance of inherited rare variants has also been suggested, particularly in oligogenic models. We hypothesized that three-generation analyses of DNVs could provide new insights into the relevance of de novo and inherited variants across generations. To accomplish this goal, we performed whole-exome sequencing of 33 septet families composed of probands, parents, and grandparents (n = 231 individuals) and compared DNV rates (DNVr) between generations and those from two control cohorts. The DNVr in the probands (DNVr = 1.16) was marginally higher than in parents (DNVr = 0.60; p = 0.054), and in controls (DNVr = 0.68; p = 0.035, congenital heart disorder and DNVr = 0.70; p = 0.047, unaffected ASD siblings from Simons Simplex Collection). Moreover, most of the DNVs were found to have paternal origin in both generations (84.6%). Finally, we observed that 40% (6/15) of the DNVs in parents transmitted for probands are in ASD or ASD candidate genes, representing recently emerged risk variants to ASD in their families and suggest ZNF536, MSL2 and HDAC9 as ASD candidate genes. We did not observe an enrichment of risk variants nor sex bias of transmitted variants in the three generations, that can be due to sample size. These results further reinforce the relevance of de novo variants in ASD.
Collapse
Affiliation(s)
- Claudia I Samogy Costa
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Gabriele da Silva Campos
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Eduarda Morgana da Silva Montenegro
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Jaqueline Yu Ting Wang
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marília Scliar
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Frederico Monfardini
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Elaine Cristina Zachi
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Naila C V Lourenço
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ada J S Chan
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sergio L Pereira
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Worrawat Engchuan
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bhooma Thiruvahindrapuram
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mehdi Zarrei
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - Maria Rita Passos-Bueno
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil.
| |
Collapse
|
20
|
Lee YL, Bouwman AC, Harland C, Bosse M, Costa Monteiro Moreira G, Veerkamp RF, Mullaart E, Cambisano N, Groenen MAM, Karim L, Coppieters W, Georges M, Charlier C. The rate of de novo structural variation is increased in in vitro-produced offspring and preferentially affects the paternal genome. Genome Res 2023; 33:1455-1464. [PMID: 37793781 PMCID: PMC10620045 DOI: 10.1101/gr.277884.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/08/2023] [Indexed: 10/06/2023]
Abstract
Assisted reproductive technologies (ARTs), including in vitro maturation and fertilization (IVF), are increasingly used in human and animal reproduction. Whether these technologies directly affect the rate of de novo mutation (DNM), and to what extent, has been a matter of debate. Here we take advantage of domestic cattle, characterized by complex pedigrees that are ideally suited to detect DNMs and by the systematic use of ART, to study the rate of de novo structural variation (dnSV) in this species and how it is impacted by IVF. By exploiting features of associated de novo point mutations (dnPMs) and dnSVs in clustered DNMs, we provide strong evidence that (1) IVF increases the rate of dnSV approximately fivefold, and (2) the corresponding mutations occur during the very early stages of embryonic development (one- and two-cell stage), yet primarily affect the paternal genome.
Collapse
Affiliation(s)
- Young-Lim Lee
- Unit of Animal Genomics, GIGA-R, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium;
- Wageningen University and Research, Animal Breeding, and Genomics, 6708 WG Wageningen, The Netherlands
| | - Aniek C Bouwman
- Wageningen University and Research, Animal Breeding, and Genomics, 6708 WG Wageningen, The Netherlands
| | - Chad Harland
- Unit of Animal Genomics, GIGA-R, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
- Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - Mirte Bosse
- Wageningen University and Research, Animal Breeding, and Genomics, 6708 WG Wageningen, The Netherlands
| | | | - Roel F Veerkamp
- Wageningen University and Research, Animal Breeding, and Genomics, 6708 WG Wageningen, The Netherlands
| | | | - Nadine Cambisano
- GIGA Genomics Platform, GIGA Institute, University of Liège, B-4000 Liège, Belgium
| | - Martien A M Groenen
- Wageningen University and Research, Animal Breeding, and Genomics, 6708 WG Wageningen, The Netherlands
| | - Latifa Karim
- GIGA Genomics Platform, GIGA Institute, University of Liège, B-4000 Liège, Belgium
| | - Wouter Coppieters
- Unit of Animal Genomics, GIGA-R, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
- GIGA Genomics Platform, GIGA Institute, University of Liège, B-4000 Liège, Belgium
| | - Michel Georges
- Unit of Animal Genomics, GIGA-R, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium;
| | - Carole Charlier
- Unit of Animal Genomics, GIGA-R, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium;
| |
Collapse
|
21
|
Alibutud R, Hansali S, Cao X, Zhou A, Mahaganapathy V, Azaro M, Gwin C, Wilson S, Buyske S, Bartlett CW, Flax JF, Brzustowicz LM, Xing J. Structural Variations Contribute to the Genetic Etiology of Autism Spectrum Disorder and Language Impairments. Int J Mol Sci 2023; 24:13248. [PMID: 37686052 PMCID: PMC10487745 DOI: 10.3390/ijms241713248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by restrictive interests and/or repetitive behaviors and deficits in social interaction and communication. ASD is a multifactorial disease with a complex polygenic genetic architecture. Its genetic contributing factors are not yet fully understood, especially large structural variations (SVs). In this study, we aimed to assess the contribution of SVs, including copy number variants (CNVs), insertions, deletions, duplications, and mobile element insertions, to ASD and related language impairments in the New Jersey Language and Autism Genetics Study (NJLAGS) cohort. Within the cohort, ~77% of the families contain SVs that followed expected segregation or de novo patterns and passed our filtering criteria. These SVs affected 344 brain-expressed genes and can potentially contribute to the genetic etiology of the disorders. Gene Ontology and protein-protein interaction network analysis suggested several clusters of genes in different functional categories, such as neuronal development and histone modification machinery. Genes and biological processes identified in this study contribute to the understanding of ASD and related neurodevelopment disorders.
Collapse
Affiliation(s)
- Rohan Alibutud
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Sammy Hansali
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Xiaolong Cao
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Anbo Zhou
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Vaidhyanathan Mahaganapathy
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Marco Azaro
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Christine Gwin
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Sherri Wilson
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Steven Buyske
- Department of Statistics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Christopher W. Bartlett
- The Steve Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Judy F. Flax
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Linda M. Brzustowicz
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
- The Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
- The Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
22
|
Liu X, Xu W, Leng F, Zhang P, Guo R, Zhang Y, Hao C, Ni X, Li W. NeuroCNVscore: a tissue-specific framework to prioritise the pathogenicity of CNVs in neurodevelopmental disorders. BMJ Paediatr Open 2023; 7:e001966. [PMID: 37407247 DOI: 10.1136/bmjpo-2023-001966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) are associated with altered development of the brain especially in childhood. Copy number variants (CNVs) play a crucial role in the genetic aetiology of NDDs by disturbing gene expression directly at linear sequence or remotely at three-dimensional genome level in a tissue-specific manner. Despite the substantial increase in NDD studies employing whole-genome sequencing, there is no specific tool for prioritising the pathogenicity of CNVs in the context of NDDs. METHODS Using an XGBoost classifier, we integrated 189 features that represent genomic sequences, gene information and functional/genomic segments for evaluating genome-wide CNVs in a neuro/brain-specific manner, to develop a new tool, neuroCNVscore. We used Human Phenotype Ontology to construct an independent NDD-related set. RESULTS Our neuroCNVscore framework (https://github.com/lxsbch/neuroCNVscore) achieved high predictive performance (precision recall=0.82; area under curve=0.85) and outperformed an existing reference method SVScore. Notably, the predicted pathogenic CNVs showed enrichment in known genes associated with autism. CONCLUSIONS NeuroCNVscore prioritises functional, deleterious and pathogenic CNVs in NDDs at whole genome-wide level, which is important for genetic studies and clinical genomic screening of NDDs as well as for providing novel biological insights into NDDs.
Collapse
Affiliation(s)
- Xuanshi Liu
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Wenjian Xu
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Fei Leng
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Peng Zhang
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Ruolan Guo
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Yue Zhang
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Chanjuan Hao
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Xin Ni
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- National Centre for Children's Health, Beijing, China
| | - Wei Li
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| |
Collapse
|
23
|
Stott J, Wright T, Holmes J, Wilson J, Griffiths-Jones S, Foster D, Wright B. A systematic review of non-coding RNA genes with differential expression profiles associated with autism spectrum disorders. PLoS One 2023; 18:e0287131. [PMID: 37319303 PMCID: PMC10270643 DOI: 10.1371/journal.pone.0287131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
AIMS To identify differential expression of shorter non-coding RNA (ncRNA) genes associated with autism spectrum disorders (ASD). BACKGROUND ncRNA are functional molecules that derive from non-translated DNA sequence. The HUGO Gene Nomenclature Committee (HGNC) have approved ncRNA gene classes with alignment to the reference human genome. One subset is microRNA (miRNA), which are highly conserved, short RNA molecules that regulate gene expression by direct post-transcriptional repression of messenger RNA. Several miRNA genes are implicated in the development and regulation of the nervous system. Expression of miRNA genes in ASD cohorts have been examined by multiple research groups. Other shorter classes of ncRNA have been examined less. A comprehensive systematic review examining expression of shorter ncRNA gene classes in ASD is timely to inform the direction of research. METHODS We extracted data from studies examining ncRNA gene expression in ASD compared with non-ASD controls. We included studies on miRNA, piwi-interacting RNA (piRNA), small NF90 (ILF3) associated RNA (snaR), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), transfer RNA (tRNA), vault RNA (vtRNA) and Y RNA. The following electronic databases were searched: Cochrane Library, EMBASE, PubMed, Web of Science, PsycINFO, ERIC, AMED and CINAHL for papers published from January 2000 to May 2022. Studies were screened by two independent investigators with a third resolving discrepancies. Data was extracted from eligible papers. RESULTS Forty-eight eligible studies were included in our systematic review with the majority examining miRNA gene expression alone. Sixty-four miRNA genes had differential expression in ASD compared to controls as reported in two or more studies, but often in opposing directions. Four miRNA genes had differential expression in the same direction in the same tissue type in at least 3 separate studies. Increased expression was reported in miR-106b-5p, miR-155-5p and miR-146a-5p in blood, post-mortem brain, and across several tissue types, respectively. Decreased expression was reported in miR-328-3p in bloods samples. Seven studies examined differential expression from other classes of ncRNA, including piRNA, snRNA, snoRNA and Y RNA. No individual ncRNA genes were reported in more than one study. Six studies reported differentially expressed snoRNA genes in ASD. A meta-analysis was not possible because of inconsistent methodologies, disparate tissue types examined, and varying forms of data presented. CONCLUSION There is limited but promising evidence associating the expression of certain miRNA genes and ASD, although the studies are of variable methodological quality and the results are largely inconsistent. There is emerging evidence associating differential expression of snoRNA genes in ASD. It is not currently possible to say whether the reports of differential expression in ncRNA may relate to ASD aetiology, a response to shared environmental factors linked to ASD such as sleep and nutrition, other molecular functions, human diversity, or chance findings. To improve our understanding of any potential association, we recommend improved and standardised methodologies and reporting of raw data. Further high-quality research is required to shine a light on possible associations, which may yet yield important information.
Collapse
Affiliation(s)
- Jon Stott
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Tees, Esk & Wear Valleys NHS Foundation Trust, Foss Park Hospital, York, United Kingdom
| | - Thomas Wright
- Manchester Centre for Genomic Medicine, Clinical Genetics Service, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jannah Holmes
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Hull York Medical School, University of York, Heslington, York, United Kingdom
| | - Julie Wilson
- Department of Mathematics, University of York, Heslington, York, United Kingdom
| | - Sam Griffiths-Jones
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Deborah Foster
- Tees, Esk & Wear Valleys NHS Foundation Trust, Foss Park Hospital, York, United Kingdom
| | - Barry Wright
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Hull York Medical School, University of York, Heslington, York, United Kingdom
| |
Collapse
|
24
|
Fu C, Ngo J, Zhang S, Lu L, Miron A, Schafer S, Gage FH, Jin F, Schumacher FR, Wynshaw-Boris A. Novel correlative analysis identifies multiple genomic variations impacting ASD with macrocephaly. Hum Mol Genet 2023; 32:1589-1606. [PMID: 36519762 PMCID: PMC10162433 DOI: 10.1093/hmg/ddac300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorders (ASD) display both phenotypic and genetic heterogeneity, impeding the understanding of ASD and development of effective means of diagnosis and potential treatments. Genes affected by genomic variations for ASD converge in dozens of gene ontologies (GOs), but the relationship between the variations at the GO level have not been well elucidated. In the current study, multiple types of genomic variations were mapped to GOs and correlations among GOs were measured in ASD and control samples. Several ASD-unique GO correlations were found, suggesting the importance of co-occurrence of genomic variations in genes from different functional categories in ASD etiology. Combined with experimental data, several variations related to WNT signaling, neuron development, synapse morphology/function and organ morphogenesis were found to be important for ASD with macrocephaly, and novel co-occurrence patterns of them in ASD patients were found. Furthermore, we applied this gene ontology correlation analysis method to find genomic variations that contribute to ASD etiology in combination with changes in gene expression and transcription factor binding, providing novel insights into ASD with macrocephaly and a new methodology for the analysis of genomic variation.
Collapse
Affiliation(s)
- Chen Fu
- Department of Genetics and Genomic Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Justine Ngo
- Department of Genetics and Genomic Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Shanshan Zhang
- Department of Genetics and Genomic Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Leina Lu
- Department of Genetics and Genomic Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Alexander Miron
- Department of Genetics and Genomic Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Simon Schafer
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Fred H Gage
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Fulai Jin
- Department of Genetics and Genomic Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genomic Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
25
|
Billingsley KJ, Ding J, Jerez PA, Illarionova A, Levine K, Grenn FP, Makarious MB, Moore A, Vitale D, Reed X, Hernandez D, Torkamani A, Ryten M, Hardy J, Chia R, Scholz SW, Traynor BJ, Dalgard CL, Ehrlich DJ, Tanaka T, Ferrucci L, Beach T, Serrano GE, Quinn JP, Bubb VJ, Collins RL, Zhao X, Walker M, Pierce-Hoffman E, Brand H, Talkowski ME, Casey B, Cookson MR, Markham A, Nalls MA, Mahmoud M, Sedlazeck FJ, Blauwendraat C, Gibbs JR, Singleton AB. Genome-Wide Analysis of Structural Variants in Parkinson Disease. Ann Neurol 2023; 93:1012-1022. [PMID: 36695634 PMCID: PMC10192042 DOI: 10.1002/ana.26608] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Identification of genetic risk factors for Parkinson disease (PD) has to date been primarily limited to the study of single nucleotide variants, which only represent a small fraction of the genetic variation in the human genome. Consequently, causal variants for most PD risk are not known. Here we focused on structural variants (SVs), which represent a major source of genetic variation in the human genome. We aimed to discover SVs associated with PD risk by performing the first large-scale characterization of SVs in PD. METHODS We leveraged a recently developed computational pipeline to detect and genotype SVs from 7,772 Illumina short-read whole genome sequencing samples. Using this set of SV variants, we performed a genome-wide association study using 2,585 cases and 2,779 controls and identified SVs associated with PD risk. Furthermore, to validate the presence of these variants, we generated a subset of matched whole-genome long-read sequencing data. RESULTS We genotyped and tested 3,154 common SVs, representing over 412 million nucleotides of previously uncatalogued genetic variation. Using long-read sequencing data, we validated the presence of three novel deletion SVs that are associated with risk of PD from our initial association analysis, including a 2 kb intronic deletion within the gene LRRN4. INTERPRETATION We identified three SVs associated with genetic risk of PD. This study represents the most comprehensive assessment of the contribution of SVs to the genetic risk of PD to date. ANN NEUROL 2023;93:1012-1022.
Collapse
Affiliation(s)
- Kimberley J. Billingsley
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, Maryland, USA
| | - Jinhui Ding
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Pilar Alvarez Jerez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, Maryland, USA
| | | | | | - Francis P. Grenn
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Mary B. Makarious
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Anni Moore
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Daniel Vitale
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, Maryland, USA
- Data Tecnica International, Washington, DC, USA
| | - Xylena Reed
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, Maryland, USA
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Ali Torkamani
- The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Mina Ryten
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - John Hardy
- UK Dementia Research Institute and Department of Neurodegenerative Disease and Reta Lila Weston Institute, UCL Queen Square Institute of Neurology and UCL Movement Disorders Centre, University College London, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | - Ruth Chia
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Sonja W. Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, Maryland, USA
| | - Bryan J. Traynor
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, Maryland, USA
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Clifton L. Dalgard
- Department of Anatomy Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Debra J. Ehrlich
- Parkinson’s Disease Clinic, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Thomas.G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ
| | - Geidy E. Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Vivien J. Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T) and Harvard USA Cambridge, MA 02142, USA
- Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Xuefang Zhao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T) and Harvard USA Cambridge, MA 02142, USA
| | - Mark Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T) and Harvard USA Cambridge, MA 02142, USA
- Data Sciences Platform, Broad Institute of Massachusetts Institute of Technology (M.I.T) and Harvard USA Cambridge, MA 02142, USA
| | - Emma Pierce-Hoffman
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T) and Harvard USA Cambridge, MA 02142, USA
- Data Sciences Platform, Broad Institute of Massachusetts Institute of Technology (M.I.T) and Harvard USA Cambridge, MA 02142, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T) and Harvard USA Cambridge, MA 02142, USA
- Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Michael E. Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T) and Harvard USA Cambridge, MA 02142, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Bradford Casey
- The Michael J. Fox Foundation for Parkinson’s Research, New York, NY 10001
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | | | - Mike A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, Maryland, USA
- Data Tecnica International, Washington, DC, USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, 77005, US
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, Maryland, USA
| | - J. Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Andrew B. Singleton
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Comaills V, Castellano-Pozo M. Chromosomal Instability in Genome Evolution: From Cancer to Macroevolution. BIOLOGY 2023; 12:671. [PMID: 37237485 PMCID: PMC10215859 DOI: 10.3390/biology12050671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
The integrity of the genome is crucial for the survival of all living organisms. However, genomes need to adapt to survive certain pressures, and for this purpose use several mechanisms to diversify. Chromosomal instability (CIN) is one of the main mechanisms leading to the creation of genomic heterogeneity by altering the number of chromosomes and changing their structures. In this review, we will discuss the different chromosomal patterns and changes observed in speciation, in evolutional biology as well as during tumor progression. By nature, the human genome shows an induction of diversity during gametogenesis but as well during tumorigenesis that can conclude in drastic changes such as the whole genome doubling to more discrete changes as the complex chromosomal rearrangement chromothripsis. More importantly, changes observed during speciation are strikingly similar to the genomic evolution observed during tumor progression and resistance to therapy. The different origins of CIN will be treated as the importance of double-strand breaks (DSBs) or the consequences of micronuclei. We will also explain the mechanisms behind the controlled DSBs, and recombination of homologous chromosomes observed during meiosis, to explain how errors lead to similar patterns observed during tumorigenesis. Then, we will also list several diseases associated with CIN, resulting in fertility issues, miscarriage, rare genetic diseases, and cancer. Understanding better chromosomal instability as a whole is primordial for the understanding of mechanisms leading to tumor progression.
Collapse
Affiliation(s)
- Valentine Comaills
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
| | - Maikel Castellano-Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
- Genetic Department, Faculty of Biology, University of Seville, 41080 Seville, Spain
| |
Collapse
|
27
|
Dominguez-Alonso S, Carracedo A, Rodriguez-Fontenla C. The non-coding genome in Autism Spectrum Disorders. Eur J Med Genet 2023; 66:104752. [PMID: 37023975 DOI: 10.1016/j.ejmg.2023.104752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 04/08/2023]
Abstract
Autism Spectrum Disorders (ASD) are a group of neurodevelopmental disorders (NDDs) characterized by difficulties in social interaction and communication, repetitive behavior, and restricted interests. While ASD have been proven to have a strong genetic component, current research largely focuses on coding regions of the genome. However, non-coding DNA, which makes up for ∼99% of the human genome, has recently been recognized as an important contributor to the high heritability of ASD, and novel sequencing technologies have been a milestone in opening up new directions for the study of the gene regulatory networks embedded within the non-coding regions. Here, we summarize current progress on the contribution of non-coding alterations to the pathogenesis of ASD and provide an overview of existing methods allowing for the study of their functional relevance, discussing potential ways of unraveling ASD's "missing heritability".
Collapse
Affiliation(s)
- S Dominguez-Alonso
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Carracedo
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - C Rodriguez-Fontenla
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
28
|
Whole Genome Analysis of Dizygotic Twins With Autism Reveals Prevalent Transposon Insertion Within Neuronal Regulatory Elements: Potential Implications for Disease Etiology and Clinical Assessment. J Autism Dev Disord 2023; 53:1091-1106. [PMID: 35759154 DOI: 10.1007/s10803-022-05636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/17/2022]
Abstract
Transposable elements (TEs) have been implicated in autism spectrum disorder (ASD). However, our understanding of their roles is far from complete. Herein, we explored de novo TE insertions (dnTEIs) and de novo variants (DNVs) across the genomes of dizygotic twins with ASD and their parents. The neuronal regulatory elements had a tendency to harbor dnTEIs that were shared between twins, but ASD-risk genes had dnTEIs that were unique to each twin. The dnTEIs were 4.6-fold enriched in enhancers that are active in embryonic stem cell (ESC)-neurons (p < 0.001), but DNVs were 1.5-fold enriched in active enhancers of astrocytes (p = 0.0051). Our findings suggest that dnTEIs and DNVs play a role in ASD etiology by disrupting enhancers of neurons and astrocytes.
Collapse
|
29
|
Kirsche M, Prabhu G, Sherman R, Ni B, Battle A, Aganezov S, Schatz MC. Jasmine and Iris: population-scale structural variant comparison and analysis. Nat Methods 2023; 20:408-417. [PMID: 36658279 PMCID: PMC10006329 DOI: 10.1038/s41592-022-01753-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/15/2022] [Indexed: 01/21/2023]
Abstract
The availability of long reads is revolutionizing studies of structural variants (SVs). However, because SVs vary across individuals and are discovered through imprecise read technologies and methods, they can be difficult to compare. Addressing this, we present Jasmine and Iris ( https://github.com/mkirsche/Jasmine/ ), for fast and accurate SV refinement, comparison and population analysis. Using an SV proximity graph, Jasmine outperforms six widely used comparison methods, including reducing the rate of Mendelian discordance in trio datasets by more than fivefold, and reveals a set of high-confidence de novo SVs confirmed by multiple technologies. We also present a unified callset of 122,813 SVs and 82,379 indels from 31 samples of diverse ancestry sequenced with long reads. We genotype these variants in 1,317 samples from the 1000 Genomes Project and the Genotype-Tissue Expression project with DNA and RNA-sequencing data and assess their widespread impact on gene expression, including within medically relevant genes.
Collapse
Affiliation(s)
- Melanie Kirsche
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Gautam Prabhu
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Rachel Sherman
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Bohan Ni
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sergey Aganezov
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
30
|
Sun YH, Cui H, Song C, Shen JT, Zhuo X, Wang RH, Yu X, Ndamba R, Mu Q, Gu H, Wang D, Murthy GG, Li P, Liang F, Liu L, Tao Q, Wang Y, Orlowski S, Xu Q, Zhou H, Jagne J, Gokcumen O, Anthony N, Zhao X, Li XZ. Amniotes co-opt intrinsic genetic instability to protect germ-line genome integrity. Nat Commun 2023; 14:812. [PMID: 36781861 PMCID: PMC9925758 DOI: 10.1038/s41467-023-36354-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023] Open
Abstract
Unlike PIWI-interacting RNA (piRNA) in other species that mostly target transposable elements (TEs), >80% of piRNAs in adult mammalian testes lack obvious targets. However, mammalian piRNA sequences and piRNA-producing loci evolve more rapidly than the rest of the genome for unknown reasons. Here, through comparative studies of chickens, ducks, mice, and humans, as well as long-read nanopore sequencing on diverse chicken breeds, we find that piRNA loci across amniotes experience: (1) a high local mutation rate of structural variations (SVs, mutations ≥ 50 bp in size); (2) positive selection to suppress young and actively mobilizing TEs commencing at the pachytene stage of meiosis during germ cell development; and (3) negative selection to purge deleterious SV hotspots. Our results indicate that genetic instability at pachytene piRNA loci, while producing certain pathogenic SVs, also protects genome integrity against TE mobilization by driving the formation of rapid-evolving piRNA sequences.
Collapse
Affiliation(s)
- Yu H Sun
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Hongxiao Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chi Song
- College of Public Health, Division of Biostatistics, The Ohio State University, Columbus, OH, 43210, USA
| | - Jiafei Teng Shen
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Xiaoyu Zhuo
- Department of Genetics, The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ruoqiao Huiyi Wang
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaohui Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rudo Ndamba
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Qian Mu
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Hanwen Gu
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Duolin Wang
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Gayathri Guru Murthy
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Pidong Li
- Grandomics Biosciences Co., Ltd, Beijing, 102206, China
| | - Fan Liang
- Grandomics Biosciences Co., Ltd, Beijing, 102206, China
| | - Lei Liu
- Grandomics Biosciences Co., Ltd, Beijing, 102206, China
| | - Qing Tao
- Grandomics Biosciences Co., Ltd, Beijing, 102206, China
| | - Ying Wang
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Sara Orlowski
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Qi Xu
- Department of Animal Science, McGill University, Quebec, H9X 3V9, Canada
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Jarra Jagne
- Animal Health Diagnostic Center, Cornell University College of Veterinary Medicine, Ithaca, NY, 14850, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Nick Anthony
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Xin Zhao
- Department of Animal Science, McGill University, Quebec, H9X 3V9, Canada.
| | - Xin Zhiguo Li
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
31
|
Park J, Park S, Lee JS. Role of the Paf1 complex in the maintenance of stem cell pluripotency and development. FEBS J 2023; 290:951-961. [PMID: 35869661 DOI: 10.1111/febs.16582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/26/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
Cell identity is determined by the transcriptional regulation of a cell-type-specific gene group. The Paf1 complex (Paf1C), an RNA polymerase II-associating factor, is an important transcriptional regulator that not only participates in transcription elongation and termination but also affects transcription-coupled histone modifications and chromatin organisation. Recent studies have shown that Paf1C is involved in the expression of genes required for self-renewal and pluripotency in stem cells and tumorigenesis. In this review, we focused on the role of Paf1C as a critical transcriptional regulator in cell fate decisions. Paf1C affects the pluripotency of stem cells by regulating the expression of core transcription factors such as Oct4 and Nanog. In addition, Paf1C directly binds to the promoters or distant elements of target genes, thereby maintaining the pluripotency in embryonic stem cells derived from an early stage of the mammalian embryo. Paf1C is upregulated in cancer stem cells, as compared with that in cancer cells, suggesting that Paf1C may be a target for cancer therapy. Interestingly, Paf1C is involved in multiple developmental stages in Drosophila, zebrafish, mice and even humans, thereby displaying a trend for the correlation between Paf1C and cell fate. Thus, we propose that Paf1C is a critical contributor to cell differentiation, cell specification and its characteristics and could be employed as a therapeutic target in developmental diseases.
Collapse
Affiliation(s)
- Jiyeon Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon-si, Korea
| | - Shinae Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon-si, Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon-si, Korea
| |
Collapse
|
32
|
The post-diagnostics world: charting a path for pediatric genomic medicine in the twenty-first century. Pediatr Res 2023; 93:457-459. [PMID: 35690684 PMCID: PMC9187847 DOI: 10.1038/s41390-022-02144-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 11/08/2022]
|
33
|
Wang H, Wu X, Chen Y, Hou F, Zhu K, Jiang Q, Xiao P, Zhang Q, Xiang Z, Fan Y, Xie X, Li L, Song R. Combining multi-omics approaches to prioritize the variant-regulated functional long non-coding RNAs in autism spectrum disorder. Asian J Psychiatr 2023; 80:103357. [PMID: 36462391 DOI: 10.1016/j.ajp.2022.103357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Rising evidence has indicated that long non-coding RNA (lncRNA) may play an essential role in the development of autism spectrum disorder (ASD). However, identifying the lncRNAs associated with ASD and the risk loci on them remains a major challenge. This study aims to identify potential causative variants and explore the related mechanisms. METHODS By leveraging differential expression analysis, WGCNA analysis and cis-expression quantitative analysis, our study mined functional SNPs with the regulated long non-coding RNA genes in brain tissues. We recruited 611 ASD children and 645 healthy children in the case-control study. RESULTS Total 68 different expressed lncRNAs were validated by calculating the brain tissue-specific expression using RNA-seq data. By the WGCNA method, 9 functional lncRNAs classified as e-lncRNA were found to interact with 976 ASD risk genes. Furthermore, we mined functional SNPs regulated long non-coding RNAs in brain tissues. We analyzed the association between candidate SNPs and ASD risks in Chinese children, which showed BDNF-AS rs1565228 allele G to C reduced the risk of ASD (OR = 0.81, 95%CI: 0.66-0.98). Further bioinformatics analysis showed that the variant rs1565228 C>G with the low binding affinity of transcription factor SRF caused the decreased expression of lncRNA BDNF-AS. Our study revealed that rs2295412 in the non-coding sequence of the lncRNA gene region was significantly associated with the risk of ASD. DISCUSSION These findings suggested that the SNPs in the non-coding region of lncRNA may play important roles in the genetic susceptibility of ASD, which may facilitate the early screening of ASD.
Collapse
Affiliation(s)
- Haoxue Wang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xvfang Wu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanlin Chen
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen 518019, China
| | - Fang Hou
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen 518019, China
| | - Kaiheng Zhu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Jiang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pei Xiao
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Quan Zhang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhen Xiang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yixi Fan
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinyan Xie
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Li
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen 518019, China.
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
34
|
Ryan NM, Heron EA. Evidence for parent-of-origin effects in autism spectrum disorder: a narrative review. J Appl Genet 2023; 64:303-317. [PMID: 36710277 PMCID: PMC10076404 DOI: 10.1007/s13353-022-00742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 01/31/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of early-onset neurodevelopmental disorders known to be highly heritable with a complex genetic architecture. Abnormal brain developmental trajectories that impact synaptic functioning, excitation-inhibition balance and brain connectivity are now understood to play a central role in ASD. Ongoing efforts to identify the genetic underpinnings still prove challenging, in part due to phenotypic and genetic heterogeneity.This review focuses on parent-of-origin effects (POEs), where the phenotypic effect of an allele depends on its parental origin. POEs include genomic imprinting, transgenerational effects, mitochondrial DNA, sex chromosomes and mutational transmission bias. The motivation for investigating these mechanisms in ASD has been driven by their known impacts on early brain development and brain functioning, in particular for the most well-documented POE, genomic imprinting. Moreover, imprinting is implicated in syndromes such as Angelman and Prader-Willi, which frequently share comorbid symptoms with ASD. In addition to other regions in the genome, this comprehensive review highlights the 15q11-q13 and 7q chromosomal regions as well as the mitochondrial DNA as harbouring the majority of currently identified POEs in ASD.
Collapse
Affiliation(s)
- Niamh M Ryan
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Elizabeth A Heron
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
35
|
Wang W, Fu P. Gut Microbiota Analysis and In Silico Biomarker Detection of Children with Autism Spectrum Disorder across Cohorts. Microorganisms 2023; 11:microorganisms11020291. [PMID: 36838256 PMCID: PMC9958793 DOI: 10.3390/microorganisms11020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
The study of human gut microbiota has attracted increasing interest in the fields of life science and healthcare. However, the complicated and interconnected associations between gut microbiota and human diseases are still difficult to determine in a predictive fashion. Artificial intelligence such as machine learning (ML) and deep learning can assist in processing and interpreting biological datasets. In this study, we aggregated data from different studies based on the species composition and relative abundance of gut microbiota in children with autism spectrum disorder (ASD) and typically developed (TD) individuals and analyzed the commonalities and differences of ASD-associated microbiota across cohorts. We established a predictive model using an ML algorithm to explore the diagnostic value of the gut microbiome for the children with ASD and identify potential biomarkers for ASD diagnosis. The results indicated that the Shenzhen cohort achieved a higher area under the receiver operating characteristic curve (AUROC) value of 0.984 with 97% accuracy, while the Moscow cohort achieved an AUROC value of 0.81 with 67% accuracy. For the combination of the two cohorts, the average prediction results had an AUROC of 0.86 and 80% accuracy. The results of our cross-cohort analysis suggested that a variety of influencing factors, such as population characteristics, geographical region, and dietary habits, should be taken into consideration in microbial transplantation or dietary therapy. Collectively, our prediction strategy based on gut microbiota can serve as an enhanced strategy for the clinical diagnosis of ASD and assist in providing a more complete method to assess the risk of the disorder.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Life and Pharmaceutical Sciences, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Avenue, Haikou 570228, China
- Correspondence:
| |
Collapse
|
36
|
Liang D, Aygün N, Matoba N, Ideraabdullah FY, Love MI, Stein JL. Inference of putative cell-type-specific imprinted regulatory elements and genes during human neuronal differentiation. Hum Mol Genet 2023; 32:402-416. [PMID: 35994039 PMCID: PMC9851749 DOI: 10.1093/hmg/ddac207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023] Open
Abstract
Genomic imprinting results in gene expression bias caused by parental chromosome of origin and occurs in genes with important roles during human brain development. However, the cell-type and temporal specificity of imprinting during human neurogenesis is generally unknown. By detecting within-donor allelic biases in chromatin accessibility and gene expression that are unrelated to cross-donor genotype, we inferred imprinting in both primary human neural progenitor cells and their differentiated neuronal progeny from up to 85 donors. We identified 43/20 putatively imprinted regulatory elements (IREs) in neurons/progenitors, and 133/79 putatively imprinted genes in neurons/progenitors. Although 10 IREs and 42 genes were shared between neurons and progenitors, most putative imprinting was only detected within specific cell types. In addition to well-known imprinted genes and their promoters, we inferred novel putative IREs and imprinted genes. Consistent with both DNA methylation-based and H3K27me3-based regulation of imprinted expression, some putative IREs also overlapped with differentially methylated or histone-marked regions. Finally, we identified a progenitor-specific putatively imprinted gene overlapping with copy number variation that is associated with uniparental disomy-like phenotypes. Our results can therefore be useful in interpreting the function of variants identified in future parent-of-origin association studies.
Collapse
Affiliation(s)
- Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Folami Y Ideraabdullah
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
37
|
Gallego-Martinez A, Escalera-Balsera A, Trpchevska N, Robles-Bolivar P, Roman-Naranjo P, Frejo L, Perez-Carpena P, Bulla J, Gallus S, Canlon B, Cederroth CR, Lopez-Escamez JA. Using coding and non-coding rare variants to target candidate genes in patients with severe tinnitus. NPJ Genom Med 2022; 7:70. [PMID: 36450758 PMCID: PMC9712652 DOI: 10.1038/s41525-022-00341-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Tinnitus is the phantom percept of an internal non-verbal set of noises and tones. It is reported by 15% of the population and it is usually associated with hearing and/or brain disorders. The role of structural variants (SVs) in coding and non-coding regions has not been investigated in patients with severe tinnitus. In this study, we performed whole-genome sequencing in 97 unrelated Swedish individuals with chronic tinnitus (TIGER cohort). Rare single nucleotide variants (SNV), large structural variants (LSV), and copy number variations (CNV) were retrieved to perform a gene enrichment analysis in TIGER and in a subgroup of patients with severe tinnitus (SEVTIN, n = 34), according to the tinnitus handicap inventory (THI) scores. An independent exome sequencing dataset of 147 Swedish tinnitus patients was used as a replication cohort (JAGUAR cohort) and population-specific datasets from Sweden (SweGen) and Non-Finish Europeans (NFE) from gnomAD were used as control groups. SEVTIN patients showed a higher prevalence of hyperacusis, hearing loss, and anxiety when they were compared to individuals in the TIGER cohort. We found an enrichment of rare missense variants in 6 and 8 high-constraint genes in SEVTIN and TIGER cohorts, respectively. Of note, an enrichment of missense variants was found in the CACNA1E gene in both SEVTIN and TIGER. We replicated the burden of missense variants in 9 high-constrained genes in the JAGUAR cohort, including the gene NAV2, when data were compared with NFE. Moreover, LSVs in constrained regions overlapping CACNA1E, NAV2, and TMEM132D genes were observed in TIGER and SEVTIN.
Collapse
Affiliation(s)
- Alvaro Gallego-Martinez
- grid.470860.d0000 0004 4677 7069Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain ,grid.411380.f0000 0000 8771 3783Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain ,grid.452372.50000 0004 1791 1185Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
| | - Alba Escalera-Balsera
- grid.470860.d0000 0004 4677 7069Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain ,grid.411380.f0000 0000 8771 3783Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain ,grid.452372.50000 0004 1791 1185Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
| | - Natalia Trpchevska
- grid.4714.60000 0004 1937 0626Section of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Paula Robles-Bolivar
- grid.470860.d0000 0004 4677 7069Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain ,grid.411380.f0000 0000 8771 3783Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain ,grid.452372.50000 0004 1791 1185Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
| | - Pablo Roman-Naranjo
- grid.470860.d0000 0004 4677 7069Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain ,grid.411380.f0000 0000 8771 3783Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain ,grid.452372.50000 0004 1791 1185Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
| | - Lidia Frejo
- grid.470860.d0000 0004 4677 7069Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain ,grid.411380.f0000 0000 8771 3783Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain ,grid.452372.50000 0004 1791 1185Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
| | - Patricia Perez-Carpena
- grid.470860.d0000 0004 4677 7069Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain ,grid.411380.f0000 0000 8771 3783Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain ,grid.452372.50000 0004 1791 1185Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain ,grid.4489.10000000121678994Department of Surgery, Division of Otolaryngology, University of Granada, 18016 Granada, Spain
| | - Jan Bulla
- grid.7914.b0000 0004 1936 7443Department of Mathematics, University of Bergen, 5020 Bergen, Norway ,grid.7727.50000 0001 2190 5763Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Silvano Gallus
- grid.4527.40000000106678902Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Barbara Canlon
- grid.4714.60000 0004 1937 0626Section of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Christopher R. Cederroth
- grid.4714.60000 0004 1937 0626Section of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden ,grid.240404.60000 0001 0440 1889National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Ropewalk House, Nottingham, NG1 5DU UK ,grid.4563.40000 0004 1936 8868Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH UK
| | - Jose A. Lopez-Escamez
- grid.470860.d0000 0004 4677 7069Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain ,grid.411380.f0000 0000 8771 3783Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain ,grid.452372.50000 0004 1791 1185Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain ,grid.4489.10000000121678994Department of Surgery, Division of Otolaryngology, University of Granada, 18016 Granada, Spain
| |
Collapse
|
38
|
Genome-wide rare variant score associates with morphological subtypes of autism spectrum disorder. Nat Commun 2022; 13:6463. [PMID: 36309498 PMCID: PMC9617891 DOI: 10.1038/s41467-022-34112-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 10/13/2022] [Indexed: 02/06/2023] Open
Abstract
Defining different genetic subtypes of autism spectrum disorder (ASD) can enable the prediction of developmental outcomes. Based on minor physical and major congenital anomalies, we categorize 325 Canadian children with ASD into dysmorphic and nondysmorphic subgroups. We develop a method for calculating a patient-level, genome-wide rare variant score (GRVS) from whole-genome sequencing (WGS) data. GRVS is a sum of the number of variants in morphology-associated coding and non-coding regions, weighted by their effect sizes. Probands with dysmorphic ASD have a significantly higher GRVS compared to those with nondysmorphic ASD (P = 0.03). Using the polygenic transmission disequilibrium test, we observe an over-transmission of ASD-associated common variants in nondysmorphic ASD probands (P = 2.9 × 10-3). These findings replicate using WGS data from 442 ASD probands with accompanying morphology data from the Simons Simplex Collection. Our results provide support for an alternative genomic classification of ASD subgroups using morphology data, which may inform intervention protocols.
Collapse
|
39
|
Wang C, Dai J, Qin N, Fan J, Ma H, Chen C, An M, Zhang J, Yan C, Gu Y, Xie Y, He Y, Jiang Y, Zhu M, Song C, Jiang T, Liu J, Zhou J, Wang N, Hua T, Liang S, Wang L, Xu J, Yin R, Chen L, Xu L, Jin G, Lin D, Hu Z, Shen H. Analyses of rare predisposing variants of lung cancer in 6,004 whole genomes in Chinese. Cancer Cell 2022; 40:1223-1239.e6. [PMID: 36113475 DOI: 10.1016/j.ccell.2022.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
We present the largest whole-genome sequencing (WGS) study of non-small cell lung cancer (NSCLC) to date among 6,004 individuals of Chinese ancestry, coupled with 23,049 individuals genotyped by SNP array. We construct a high-quality haplotype reference panel for imputation and identify 20 common and low-frequency loci (minor allele frequency [MAF] ≥ 0.5%), including five loci that have never been reported before. For rare loss-of-function (LoF) variants (MAF < 0.5%), we identify BRCA2 and 18 other cancer predisposition genes that affect 5.29% of individuals with NSCLC, and 98.91% (181 of 183) of LoF variants have not been linked previously to NSCLC risk. Promoter variants of BRCA2 also have a substantial effect on NSCLC risk, and their prevalence is comparable with BRCA2 LoF variants. The associations are validated in an independent case-control study including 4,410 individuals and a prospective cohort study including 23,826 individuals. Our findings not only provide a high-quality reference panel for future array-based association studies but depict the whole picture of rare pathogenic variants for NSCLC.
Collapse
Affiliation(s)
- Cheng Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Juncheng Dai
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Na Qin
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jingyi Fan
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Hongxia Ma
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Congcong Chen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Mingxing An
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jing Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Caiwang Yan
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yayun Gu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yuan Xie
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yuanlin He
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yue Jiang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Meng Zhu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Ci Song
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tao Jiang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jia Liu
- Department of Health Promotion & Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention, Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi 214145, Jiangsu, China
| | - Jun Zhou
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Nanxi Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tingting Hua
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shuang Liang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Lu Wang
- Department of Health Promotion & Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention, Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi 214145, Jiangsu, China
| | - Jing Xu
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Rong Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210029, Jiangsu, China
| | - Liang Chen
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lin Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210029, Jiangsu, China
| | - Guangfu Jin
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhibin Hu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China.
| | - Hongbing Shen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
40
|
Evidence of transgenerational effects on autism spectrum disorder using multigenerational space-time cluster detection. Int J Health Geogr 2022; 21:13. [PMID: 36192740 PMCID: PMC9531495 DOI: 10.1186/s12942-022-00313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
Abstract
Background Transgenerational epigenetic risks associated with complex health outcomes, such as autism spectrum disorder (ASD), have attracted increasing attention. Transgenerational environmental risk exposures with potential for epigenetic effects can be effectively identified using space-time clustering. Specifically applied to ancestors of individuals with disease outcomes, space-time clustering characterized for vulnerable developmental stages of growth can provide a measure of relative risk for disease outcomes in descendants. Objectives (1) Identify space-time clusters of ancestors with a descendent with a clinical ASD diagnosis and matched controls. (2) Identify developmental windows of ancestors with the highest relative risk for ASD in descendants. (3) Identify how the relative risk may vary through the maternal or paternal line. Methods Family pedigrees linked to residential locations of ASD cases in Utah have been used to identify space-time clusters of ancestors. Control family pedigrees of none-cases based on age and sex have been matched to cases 2:1. The data have been categorized by maternal or paternal lineage at birth, childhood, and adolescence. A total of 3957 children, both parents, and maternal and paternal grandparents were identified. Bernoulli space-time binomial relative risk (RR) scan statistic was used to identify clusters. Monte Carlo simulation was used for statistical significance testing. Results Twenty statistically significant clusters were identified. Thirteen increased RR (> 1.0) space-time clusters were identified from the maternal and paternal lines at a p-value < 0.05. The paternal grandparents carry the greatest RR (2.86–2.96) during birth and childhood in the 1950’s–1960, which represent the smallest size clusters, and occur in urban areas. Additionally, seven statistically significant clusters with RR < 1 were relatively large in area, covering more rural areas of the state. Conclusion This study has identified statistically significant space-time clusters during critical developmental windows that are associated with ASD risk in descendants. The geographic space and time clusters family pedigrees with over 3 + generations, which we refer to as a person’s geographic legacy, is a powerful tool for studying transgenerational effects that may be epigenetic in nature. Our novel use of space-time clustering can be applied to any disease where family pedigree data is available. Supplementary Information The online version contains supplementary material available at 10.1186/s12942-022-00313-4.
Collapse
|
41
|
Antaki D, Guevara J, Maihofer AX, Klein M, Gujral M, Grove J, Carey CE, Hong O, Arranz MJ, Hervas A, Corsello C, Vaux KK, Muotri AR, Iakoucheva LM, Courchesne E, Pierce K, Gleeson JG, Robinson EB, Nievergelt CM, Sebat J. A phenotypic spectrum of autism is attributable to the combined effects of rare variants, polygenic risk and sex. Nat Genet 2022; 54:1284-1292. [PMID: 35654974 PMCID: PMC9474668 DOI: 10.1038/s41588-022-01064-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/28/2022] [Indexed: 01/21/2023]
Abstract
The genetic etiology of autism spectrum disorder (ASD) is multifactorial, but how combinations of genetic factors determine risk is unclear. In a large family sample, we show that genetic loads of rare and polygenic risk are inversely correlated in cases and greater in females than in males, consistent with a liability threshold that differs by sex. De novo mutations (DNMs), rare inherited variants and polygenic scores were associated with various dimensions of symptom severity in children and parents. Parental age effects on risk for ASD in offspring were attributable to a combination of genetic mechanisms, including DNMs that accumulate in the paternal germline and inherited risk that influences behavior in parents. Genes implicated by rare variants were enriched in excitatory and inhibitory neurons compared with genes implicated by common variants. Our results suggest that a phenotypic spectrum of ASD is attributable to a spectrum of genetic factors that impact different neurodevelopmental processes.
Collapse
Affiliation(s)
- Danny Antaki
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - James Guevara
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Marieke Klein
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Madhusudan Gujral
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine and Center for Integrative Sequencing, iSEQ, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Caitlin E Carey
- Harvard T.H. Chan School of Public Health, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Oanh Hong
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Maria J Arranz
- Research Laboratory Unit, Fundacio Docencia i Recerca Mutua, Terrassa, Spain
| | - Amaia Hervas
- Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
| | - Christina Corsello
- TEACCH Autism Program, University of North Carolina, Chapel Hill, NC, USA
| | | | - Alysson R Muotri
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics and Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, Center for Academic Research and Training in Anthropogeny, Archealization Center, Kavli Institute for Brain and Mind, La Jolla, CA, USA
| | - Lilia M Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eric Courchesne
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Autism Center of Excellence, University of California San Diego, La Jolla, CA, USA
| | - Karen Pierce
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Autism Center of Excellence, University of California San Diego, La Jolla, CA, USA
| | - Joseph G Gleeson
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Elise B Robinson
- Harvard T.H. Chan School of Public Health, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Jonathan Sebat
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
42
|
Fu JM, Satterstrom FK, Peng M, Brand H, Collins RL, Dong S, Wamsley B, Klei L, Wang L, Hao SP, Stevens CR, Cusick C, Babadi M, Banks E, Collins B, Dodge S, Gabriel SB, Gauthier L, Lee SK, Liang L, Ljungdahl A, Mahjani B, Sloofman L, Smirnov AN, Barbosa M, Betancur C, Brusco A, Chung BHY, Cook EH, Cuccaro ML, Domenici E, Ferrero GB, Gargus JJ, Herman GE, Hertz-Picciotto I, Maciel P, Manoach DS, Passos-Bueno MR, Persico AM, Renieri A, Sutcliffe JS, Tassone F, Trabetti E, Campos G, Cardaropoli S, Carli D, Chan MCY, Fallerini C, Giorgio E, Girardi AC, Hansen-Kiss E, Lee SL, Lintas C, Ludena Y, Nguyen R, Pavinato L, Pericak-Vance M, Pessah IN, Schmidt RJ, Smith M, Costa CIS, Trajkova S, Wang JYT, Yu MHC, Cutler DJ, De Rubeis S, Buxbaum JD, Daly MJ, Devlin B, Roeder K, Sanders SJ, Talkowski ME. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat Genet 2022; 54:1320-1331. [PMID: 35982160 PMCID: PMC9653013 DOI: 10.1038/s41588-022-01104-0] [Citation(s) in RCA: 248] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/24/2022] [Indexed: 01/11/2023]
Abstract
Some individuals with autism spectrum disorder (ASD) carry functional mutations rarely observed in the general population. We explored the genes disrupted by these variants from joint analysis of protein-truncating variants (PTVs), missense variants and copy number variants (CNVs) in a cohort of 63,237 individuals. We discovered 72 genes associated with ASD at false discovery rate (FDR) ≤ 0.001 (185 at FDR ≤ 0.05). De novo PTVs, damaging missense variants and CNVs represented 57.5%, 21.1% and 8.44% of association evidence, while CNVs conferred greatest relative risk. Meta-analysis with cohorts ascertained for developmental delay (DD) (n = 91,605) yielded 373 genes associated with ASD/DD at FDR ≤ 0.001 (664 at FDR ≤ 0.05), some of which differed in relative frequency of mutation between ASD and DD cohorts. The DD-associated genes were enriched in transcriptomes of progenitor and immature neuronal cells, whereas genes showing stronger evidence in ASD were more enriched in maturing neurons and overlapped with schizophrenia-associated genes, emphasizing that these neuropsychiatric disorders may share common pathways to risk.
Collapse
Affiliation(s)
- Jack M Fu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - F Kyle Satterstrom
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Minshi Peng
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, USA
| | - Shan Dong
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Brie Wamsley
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lily Wang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, USA
| | - Stephanie P Hao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Christine R Stevens
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Caroline Cusick
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mehrtash Babadi
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric Banks
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brett Collins
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sheila Dodge
- Genomics Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stacey B Gabriel
- Genomics Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Laura Gauthier
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuel K Lee
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lindsay Liang
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Alicia Ljungdahl
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Behrang Mahjani
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Laura Sloofman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrey N Smirnov
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mafalda Barbosa
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catalina Betancur
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Turin, Italy
- Medical Genetics Unit, 'Città della Salute e della Scienza' University Hospital, Turin, Italy
| | - Brian H Y Chung
- Department of Pediatrics and Adolescent Medicine, Duchess of Kent Children's Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Edwin H Cook
- Institute for Juvenile Research, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael L Cuccaro
- The John P Hussman Institute for Human Genomics, The University of Miami Miller School of Medicine, Miami, FL, USA
| | - Enrico Domenici
- Department of Cellular, Computational and Integrative Biology, , University of Trento, Trento, Italy
| | | | - J Jay Gargus
- Center for Autism Research and Translation, University of California Irvine, Irvine, CA, USA
| | - Gail E Herman
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Irva Hertz-Picciotto
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis, Davis, CA, USA
| | - Patricia Maciel
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Rita Passos-Bueno
- Centro de Pesquisas sobre o Genoma Humano e Células tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Antonio M Persico
- Interdepartmental Program 'Autism 0-90', 'Gaetano Martino' University Hospital, University of Messina, Messina, Italy
| | - Alessandra Renieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, , University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - James S Sutcliffe
- Department of Molecular Physiology & Biophysics and Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Flora Tassone
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, USA
| | - Elisabetta Trabetti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Gabriele Campos
- Centro de Pesquisas sobre o Genoma Humano e Células tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Simona Cardaropoli
- Department of Public Health and Pediatrics, University of Torino, Turin, Italy
| | - Diana Carli
- Department of Public Health and Pediatrics, University of Torino, Turin, Italy
| | - Marcus C Y Chan
- Department of Pediatrics and Adolescent Medicine, Duchess of Kent Children's Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chiara Fallerini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, , University of Siena, Siena, Italy
| | - Elisa Giorgio
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Ana Cristina Girardi
- Centro de Pesquisas sobre o Genoma Humano e Células tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Emily Hansen-Kiss
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - So Lun Lee
- Department of Pediatrics and Adolescent Medicine, Duchess of Kent Children's Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Carla Lintas
- Service for Neurodevelopmental Disorders, University Campus Bio-medico of Rome, Rome, Italy
| | - Yunin Ludena
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis, Davis, CA, USA
| | - Rachel Nguyen
- Center for Autism Research and Translation, University of California Irvine, Irvine, CA, USA
| | - Lisa Pavinato
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Margaret Pericak-Vance
- The John P Hussman Institute for Human Genomics, The University of Miami Miller School of Medicine, Miami, FL, USA
| | - Isaac N Pessah
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis, Davis, CA, USA
- Department of Molecular Biosciences, University of California Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Rebecca J Schmidt
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis, Davis, CA, USA
| | - Moyra Smith
- Center for Autism Research and Translation, University of California Irvine, Irvine, CA, USA
| | - Claudia I S Costa
- Centro de Pesquisas sobre o Genoma Humano e Células tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Slavica Trajkova
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Jaqueline Y T Wang
- Centro de Pesquisas sobre o Genoma Humano e Células tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Mullin H C Yu
- Department of Pediatrics and Adolescent Medicine, Duchess of Kent Children's Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Mark J Daly
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Kathryn Roeder
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA.
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
43
|
Wang T, Zhao PA, Eichler EE. Rare variants and the oligogenic architecture of autism. Trends Genet 2022; 38:895-903. [PMID: 35410794 PMCID: PMC9378350 DOI: 10.1016/j.tig.2022.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
Most large-scale genetic studies of autism have focused on the discovery of genes by proving an enrichment of de novo mutations (DNMs) in autism probands or characterizing polygenic risk based on the association of common variants. We present evidence in support of an oligogenic model where two or more ultrarare mutations of more modest effect are preferentially transmitted to children with autism. Such private gene-disruptive mutations are enriched in families where there are multiple affected individuals, emerged two or three generations ago, and map to genes not previously associated with autism. Although no single gene has reached statistical significance, this class of variation should be considered along with genetic and nongenetic factors to better explain the etiology of this complex trait.
Collapse
Affiliation(s)
- Tianyun Wang
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Peiyao A Zhao
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
44
|
Breuss MW, Yang X, Stanley V, McEvoy-Venneri J, Xu X, Morales AJ, Gleeson JG. Unbiased mosaic variant assessment in sperm: a cohort study to test predictability of transmission. eLife 2022; 11:78459. [PMID: 35787314 PMCID: PMC9255958 DOI: 10.7554/elife.78459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/19/2022] [Indexed: 01/23/2023] Open
Abstract
Background: De novo mutations underlie individually rare but collectively common pediatric congenital disorders. Some of these mutations can also be detected in tissues and from cells in a parent, where their abundance and tissue distribution can be measured. We previously reported that a subset of these mutations is detectable in sperm from the father, predicted to impact the health of offspring. Methods: As a cohort study, in three independent couples undergoing in vitro fertilization, we first identified male gonadal mosaicism through deep whole genome sequencing. We then confirmed variants and assessed their transmission to preimplantation blastocysts (32 total) through targeted ultra-deep genotyping. Results: Across 55 gonadal mosaic variants, 15 were transmitted to blastocysts for a total of 19 transmission events. This represented an overall predictable but slight undertransmission based upon the measured mutational abundance in sperm. We replicated this conclusion in an independent, previously published family-based cohort. Conclusions: Unbiased preimplantation genetic testing for gonadal mosaicism may represent a feasible approach to reduce the transmission of potentially harmful de novo mutations. This—in turn—could help to reduce their impact on miscarriages and pediatric disease. Funding: No external funding was received for this work.
Collapse
Affiliation(s)
- Martin W Breuss
- Rady Children's Institute for Genomic Medicine, San Diego, United States.,Department of Neurosciences, University of California, San Diego, La Jolla, United States.,Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, United States
| | - Xiaoxu Yang
- Rady Children's Institute for Genomic Medicine, San Diego, United States.,Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Valentina Stanley
- Rady Children's Institute for Genomic Medicine, San Diego, United States.,Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Jennifer McEvoy-Venneri
- Rady Children's Institute for Genomic Medicine, San Diego, United States.,Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Xin Xu
- Rady Children's Institute for Genomic Medicine, San Diego, United States.,Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | | | - Joseph G Gleeson
- Rady Children's Institute for Genomic Medicine, San Diego, United States.,Department of Neurosciences, University of California, San Diego, La Jolla, United States
| |
Collapse
|
45
|
Eigenhuis KN, Somsen HB, van den Berg DLC. Transcription Pause and Escape in Neurodevelopmental Disorders. Front Neurosci 2022; 16:846272. [PMID: 35615272 PMCID: PMC9125161 DOI: 10.3389/fnins.2022.846272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription pause-release is an important, highly regulated step in the control of gene expression. Modulated by various factors, it enables signal integration and fine-tuning of transcriptional responses. Mutations in regulators of pause-release have been identified in a range of neurodevelopmental disorders that have several common features affecting multiple organ systems. This review summarizes current knowledge on this novel subclass of disorders, including an overview of clinical features, mechanistic details, and insight into the relevant neurodevelopmental processes.
Collapse
|
46
|
McQuerry JA, Mclaird M, Hartin SN, Means JC, Johnston J, Pastinen T, Younger ST. Massively parallel identification of functionally consequential noncoding genetic variants in undiagnosed rare disease patients. Sci Rep 2022; 12:7576. [PMID: 35534523 PMCID: PMC9085742 DOI: 10.1038/s41598-022-11589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Clinical whole genome sequencing has enabled the discovery of potentially pathogenic noncoding variants in the genomes of rare disease patients with a prior history of negative genetic testing. However, interpreting the functional consequences of noncoding variants and distinguishing those that contribute to disease etiology remains a challenge. Here we address this challenge by experimentally profiling the functional consequences of rare noncoding variants detected in a cohort of undiagnosed rare disease patients at scale using a massively parallel reporter assay. We demonstrate that this approach successfully identifies rare noncoding variants that alter the regulatory capacity of genomic sequences. In addition, we describe an integrative analysis that utilizes genomic features alongside patient clinical data to further prioritize candidate variants with an increased likelihood of pathogenicity. This work represents an important step towards establishing a framework for the functional interpretation of clinically detected noncoding variants.
Collapse
Affiliation(s)
- Jasmine A McQuerry
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Merry Mclaird
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Samantha N Hartin
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - John C Means
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Jeffrey Johnston
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, 64110, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Scott T Younger
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, 64110, USA.
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
47
|
Gunter C, Harris RA, Kovacs-Balint Z, Raveendran M, Michopoulos V, Bachevalier J, Raper J, Sanchez MM, Rogers J. Heritability of social behavioral phenotypes and preliminary associations with autism spectrum disorder risk genes in rhesus macaques: A whole exome sequencing study. Autism Res 2022; 15:447-463. [PMID: 35092647 PMCID: PMC8930433 DOI: 10.1002/aur.2675] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/15/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022]
Abstract
Nonhuman primates and especially rhesus macaques (Macaca mulatta) have been indispensable animal models for studies of various aspects of neurobiology, developmental psychology, and other aspects of neuroscience. While remarkable progress has been made in our understanding of influences on atypical human social behavior, such as that observed in autism spectrum disorders (ASD), many significant questions remain. Improved understanding of the relationships among variation in specific genes and variation in expressed social behavior in a nonhuman primate would benefit efforts to investigate risk factors, developmental mechanisms, and potential therapies for behavioral disorders including ASD. To study genetic influences on key aspects of social behavior and interactions-individual competence and/or motivation for specific aspects of social behavior-we quantified individual variation in social interactions among juvenile rhesus macaques using both a standard macaque ethogram and a macaque-relevant modification of the human Social Responsiveness Scale. Our analyses demonstrate that various aspects of juvenile social behavior exhibit significant genetic heritability, with estimated quantitative genetic effects similar to that described for ASD in human children. We also performed exome sequencing and analyzed variants in 143 genes previously suggested to influence risk for human ASD. We find preliminary evidence for genetic association between specific variants and both individual behaviors and multi-behavioral factor scores. To our knowledge, this is the first demonstration that spontaneous social behaviors performed by free-ranging juvenile rhesus macaques display significant genetic heritability and then to use exome sequencing data to examine potential macaque genetic associations in genes associated with human ASD.
Collapse
Affiliation(s)
- Chris Gunter
- Marcus Autism Center, Children’s Healthcare of Atlanta, Atlanta, GA, USA,Departments of Pediatrics Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - R. Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Vasiliki Michopoulos
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA,Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jocelyne Bachevalier
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA,Department of Psychology, Emory University, Atlanta, GA, USA
| | - Jessica Raper
- Departments of Pediatrics Human Genetics, Emory University School of Medicine, Atlanta, GA, USA,Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Mar M. Sanchez
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA,Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
48
|
Valls-Margarit J, Galván-Femenía I, Matías-Sánchez D, Blay N, Puiggròs M, Carreras A, Salvoro C, Cortés B, Amela R, Farre X, Lerga-Jaso J, Puig M, Sánchez-Herrero J, Moreno V, Perucho M, Sumoy L, Armengol L, Delaneau O, Cáceres M, de Cid R, Torrents D. GCAT|Panel, a comprehensive structural variant haplotype map of the Iberian population from high-coverage whole-genome sequencing. Nucleic Acids Res 2022; 50:2464-2479. [PMID: 35176773 PMCID: PMC8934637 DOI: 10.1093/nar/gkac076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/24/2021] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
The combined analysis of haplotype panels with phenotype clinical cohorts is a common approach to explore the genetic architecture of human diseases. However, genetic studies are mainly based on single nucleotide variants (SNVs) and small insertions and deletions (indels). Here, we contribute to fill this gap by generating a dense haplotype map focused on the identification, characterization, and phasing of structural variants (SVs). By integrating multiple variant identification methods and Logistic Regression Models (LRMs), we present a catalogue of 35 431 441 variants, including 89 178 SVs (≥50 bp), 30 325 064 SNVs and 5 017 199 indels, across 785 Illumina high coverage (30x) whole-genomes from the Iberian GCAT Cohort, containing a median of 3.52M SNVs, 606 336 indels and 6393 SVs per individual. The haplotype panel is able to impute up to 14 360 728 SNVs/indels and 23 179 SVs, showing a 2.7-fold increase for SVs compared with available genetic variation panels. The value of this panel for SVs analysis is shown through an imputed rare Alu element located in a new locus associated with Mononeuritis of lower limb, a rare neuromuscular disease. This study represents the first deep characterization of genetic variation within the Iberian population and the first operational haplotype panel to systematically include the SVs into genome-wide genetic studies.
Collapse
Affiliation(s)
| | | | | | - Natalia Blay
- Genomes for Life-GCAT lab Group, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona 08916, Spain
| | - Montserrat Puiggròs
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Anna Carreras
- Genomes for Life-GCAT lab Group, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona 08916, Spain
| | - Cecilia Salvoro
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Beatriz Cortés
- Genomes for Life-GCAT lab Group, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona 08916, Spain
| | - Ramon Amela
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Xavier Farre
- Genomes for Life-GCAT lab Group, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona 08916, Spain
| | - Jon Lerga-Jaso
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Marta Puig
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Jose Francisco Sánchez-Herrero
- High Content Genomics and Bioinformatics Unit, Institute for Health Science Research Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| | - Victor Moreno
- Catalan Institute of Oncology, Hospitalet del Llobregat, 08908, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet del Llobregat, 08908, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain
- Universitat de Barcelona (UB), Barcelona 08007, Spain
| | - Manuel Perucho
- Sanford Burnham Prebys Medical Discovery Institute (SBP), La Jolla, CA 92037, USA
- Cancer Genetics and Epigenetics, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona 08916, Spain
| | - Lauro Sumoy
- High Content Genomics and Bioinformatics Unit, Institute for Health Science Research Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| | - Lluís Armengol
- Quantitative Genomic Medicine Laboratories (qGenomics), Esplugues del Llobregat, 08950, Spain
| | - Olivier Delaneau
- Department of Computational Biology, University of Lausanne, Génopode, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), University of Lausanne, Quartier Sorge – Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Mario Cáceres
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- ICREA, Barcelona 08010, Spain
| | - Rafael de Cid
- Correspondence may also be addressed to Rafael de Cid. Tel: +34 930330542;
| | - David Torrents
- To whom correspondence should be addressed. Tel: +34 934134074;
| |
Collapse
|
49
|
AIM in Genomic Basis of Medicine: Applications. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Mutations in trpγ, the homologue of TRPC6 autism candidate gene, causes autism-like behavioral deficits in Drosophila. Mol Psychiatry 2022; 27:3328-3342. [PMID: 35501408 PMCID: PMC9708601 DOI: 10.1038/s41380-022-01555-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Autism Spectrum Disorder (ASD) is characterized by impaired social communication, restricted interests, and repetitive and stereotyped behaviors. The TRPC6 (transient receptor potential channel 6) represents an ASD candidate gene under an oligogenic/multifactorial model based on the initial description and cellular characterization of an individual with ASD bearing a de novo heterozygous mutation disrupting TRPC6, together with the enrichment of disruptive TRPC6 variants in ASD cases as compared to controls. Here, we perform a clinical re-evaluation of the initial non-verbal patient, and also present eight newly reported individuals ascertained for ASD and bearing predicted loss-of-function mutations in TRPC6. In order to understand the consequences of mutations in TRPC6 on nervous system function, we used the fruit fly, Drosophila melanogaster, to show that null mutations in transient receptor gamma (trpγ; the fly gene most similar to TRPC6), cause a number of behavioral defects that mirror features seen in ASD patients, including deficits in social interactions (based on courtship behavior), impaired sleep homeostasis (without affecting the circadian control of sleep), hyperactivity in both young and old flies, and defects in learning and memory. Some defects, most notably in sleep, differed in severity between males and females and became normal with age. Interestingly, hyperforin, a TRPC6 agonist and the primary active component of the St. John's wort antidepressant, attenuated many of the deficits expressed by trpγ mutant flies. In summary, our results provide further evidence that the TRPC6 gene is a risk factor for ASD. In addition, they show that the behavioral defects caused by mutations in TRPC6 can be modeled in Drosophila, thereby establishing a paradigm to examine the impact of mutations in other candidate genes.
Collapse
|