1
|
Karkali K, Martín-Blanco E. The evolutionary and mechanical principles shaping the Drosophila embryonic ventral nerve cord. Cells Dev 2024; 180:203973. [PMID: 39490740 DOI: 10.1016/j.cdev.2024.203973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/19/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The establishment of communication circuits requires bringing sources and targets into contact, either directly or indirectly. The Central Nervous System (CNS)'s ability to interpret the environment and generate precise responses depends on the functional efficiency of its neural network, which in turn relies on the 3D spatial organization of its constituents, mainly neurons and glia. Throughout evolution, sensory integration and motor response coordination became linked with the merging of the brain and nerve cord (NC) in the urbilaterian CNS. In most arthropods, the NC follows a specific topological plan and consists of a fixed number of neuromeres (thoracic and abdominal ganglia with commissural interconnections and a single terminal ganglion). The number, spacing, and fusion of neuromeres are species-specific and can change during embryogenesis or post-embryonic life. During Drosophila embryogenesis, the NC condenses along the Anterior-Posterior (AP) axis in a stereotypical manner, bringing neuromeres closer together. This process has revealed several key parameters, including its morphogenetic mechanics, the roles of various cellular, molecular, and structural components, and the functional purpose of its balanced design. The embryonic NC serves as a valuable model for investigating the ancient mechanisms underlying the structural organization, sensory integration, and motor coordination of the CNS. While many aspects of ganglionic fusion remain unknown, ongoing research promises to provide a more comprehensive understanding of the mechanical and evolutionary principles that govern it.
Collapse
Affiliation(s)
- Katerina Karkali
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| | - Enrique Martín-Blanco
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Ruan X, Mueller M, Liu G, Görlitz F, Fu TM, Milkie DE, Lillvis JL, Kuhn A, Gan Chong J, Hong JL, Herr CYA, Hercule W, Nienhaus M, Killilea AN, Betzig E, Upadhyayula S. Image processing tools for petabyte-scale light sheet microscopy data. Nat Methods 2024:10.1038/s41592-024-02475-4. [PMID: 39420143 DOI: 10.1038/s41592-024-02475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Light sheet microscopy is a powerful technique for high-speed three-dimensional imaging of subcellular dynamics and large biological specimens. However, it often generates datasets ranging from hundreds of gigabytes to petabytes in size for a single experiment. Conventional computational tools process such images far slower than the time to acquire them and often fail outright due to memory limitations. To address these challenges, we present PetaKit5D, a scalable software solution for efficient petabyte-scale light sheet image processing. This software incorporates a suite of commonly used processing tools that are optimized for memory and performance. Notable advancements include rapid image readers and writers, fast and memory-efficient geometric transformations, high-performance Richardson-Lucy deconvolution and scalable Zarr-based stitching. These features outperform state-of-the-art methods by over one order of magnitude, enabling the processing of petabyte-scale image data at the full teravoxel rates of modern imaging cameras. The software opens new avenues for biological discoveries through large-scale imaging experiments.
Collapse
Affiliation(s)
- Xiongtao Ruan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US.
| | - Matthew Mueller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US
- Howard Hughes Medical Institute, Berkeley, CA, US
| | - Gaoxiang Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US
| | - Frederik Görlitz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US
- Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Tian-Ming Fu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, US
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, US
| | - Daniel E Milkie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, US
| | - Joshua L Lillvis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, US
| | | | - Johnny Gan Chong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US
| | - Jason Li Hong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US
| | - Chu Yi Aaron Herr
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US
| | - Wilmene Hercule
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US
| | | | - Alison N Killilea
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US
| | - Eric Betzig
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US.
- Howard Hughes Medical Institute, Berkeley, CA, US.
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, US.
- Department of Physics, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, US.
| | - Srigokul Upadhyayula
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, US.
- Chan Zuckerberg Biohub, San Francisco, CA, US.
| |
Collapse
|
3
|
Liu W, Yao Y, Meng J, Qian S, Han Y, Zhou L, Wang T, Chen Y, Chen L, Ye Z, Xu L, Zhang M, Qiu J, Han T, Liu X, Kuang C, Ding Z, Liu Z. Architecture-driven quantitative nanoscopy maps cytoskeleton remodeling. Proc Natl Acad Sci U S A 2024; 121:e2410688121. [PMID: 39374388 PMCID: PMC11494298 DOI: 10.1073/pnas.2410688121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/01/2024] [Indexed: 10/09/2024] Open
Abstract
Cytoskeleton remodeling which generates force and orchestrates signaling and trafficking to govern cell migration remains poorly understood, partly due to a lack of an investigation tool with high system flexibility, spatiotemporal resolution, and computational sensitivity. Herein, we developed a multimodal superresolution imaging system-based architecture-driven quantitative (ADQ) framework in spatiotemporal-angular hyperspace to enable both identification of the optimal imaging mode with well-balanced fidelity and phototoxicity and accurate postcharacterization of microtubule remodeling. In the ADQ framework, a pixel/voxel-wise metric reflecting heterogeneous intertubule alignment was proposed with improved sensitivity over previous efforts and further incorporated with temporal features to map dynamic microtubule rearrangements. The ADQ framework was verified by assessing microtubule remodeling in drug-induced (de)polymerization, lysosome transport, and migration. Different remodeling patterns from two migration modes were successfully revealed by the ADQ framework, with a front-rear polarization for individual directed migration and a contact site-centered polarization for cell-cell interaction-induced migration in an immune response model. Meanwhile, these migration modes were found to have consistent orientation changes, which exhibited the potential of predicting migration trajectory.
Collapse
Affiliation(s)
- Wenjie Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang310027, China
- Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang311200, China
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Yushi Yao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
| | - Jia Meng
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Shuhao Qian
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Yubing Han
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Lingxi Zhou
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Tao Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
| | - Youhua Chen
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Lingmei Chen
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Zitong Ye
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Liang Xu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Meng Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei430074, China
| | - Jianrong Qiu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Tao Han
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Xu Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang310027, China
- Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang311200, China
| | - Cuifang Kuang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang310027, China
- Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang311200, China
| | - Zhihua Ding
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang310027, China
- Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang311200, China
| | - Zhiyi Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang310027, China
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing314000, China
| |
Collapse
|
4
|
Holst MR, Richner M, Arenshøj PO, Alam P, Hyldig K, Nielsen MS. Ex vivo nanoscale abluminal mapping of putative cargo receptors at the blood-brain barrier of expanded brain capillaries. Fluids Barriers CNS 2024; 21:80. [PMID: 39402596 PMCID: PMC11475543 DOI: 10.1186/s12987-024-00585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Receptor mediated transport of therapeutic antibodies through the blood-brain barrier (BBB) give promise for drug delivery to alleviate brain diseases. We developed a low-cost method to obtain nanoscale localization data of putative cargo receptors. We combine existing ex vivo isolation methods with expansion microscopy (ExM) to analyze receptor localizations in brain microcapillaries. Using this approach, we show how to analyze receptor localizations in endothelial cells of brain microcapillaries in relation to the abluminal marker collagen IV. By choosing the thinnest capillaries, microcapillaries for analysis, we ensure the validity of collagen IV as an abluminal marker. With this tool, we confirm transferrin receptors as well as sortilin to be both luminally and abluminally localized. Furthermore, we identify basigin to be an abluminal receptor. Our methodology can be adapted to analyze different types of isolated brain capillaries and we anticipate that this approach will be very useful for the research community to gain new insight into cargo receptor trafficking in the slim brain endothelial cells to elucidate novel paths for future drug design.
Collapse
Affiliation(s)
| | - Mette Richner
- Department of Biomedicine, Aarhus University, Aarhus C, 8000, Denmark
| | | | - Parvez Alam
- Department of Biomedicine, Aarhus University, Aarhus C, 8000, Denmark
- Laboratory of Neurological Infection and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Kathrine Hyldig
- Department of Biomedicine, Aarhus University, Aarhus C, 8000, Denmark
- Biotherapeutic Discovery, H. Lundbeck A/S, Valby, Copenhagen, 2500, Denmark
| | | |
Collapse
|
5
|
Mazzella L, Mangeat T, Giroussens G, Rogez B, Li H, Creff J, Saadaoui M, Martins C, Bouzignac R, Labouesse S, Idier J, Galland F, Allain M, Sentenac A, LeGoff L. Extended-depth of field random illumination microscopy, EDF-RIM, provides super-resolved projective imaging. LIGHT, SCIENCE & APPLICATIONS 2024; 13:285. [PMID: 39384765 PMCID: PMC11479626 DOI: 10.1038/s41377-024-01612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
The ultimate aim of fluorescence microscopy is to achieve high-resolution imaging of increasingly larger biological samples. Extended depth of field presents a potential solution to accelerate imaging of large samples when compression of information along the optical axis is not detrimental to the interpretation of images. We have implemented an extended depth of field (EDF) approach in a random illumination microscope (RIM). RIM uses multiple speckled illuminations and variance data processing to double the resolution. It is particularly adapted to the imaging of thick samples as it does not require the knowledge of illumination patterns. We demonstrate highly-resolved projective images of biological tissues and cells. Compared to a sequential scan of the imaged volume with conventional 2D-RIM, EDF-RIM allows an order of magnitude improvement in speed and light dose reduction, with comparable resolution. As the axial information is lost in an EDF modality, we propose a method to retrieve the sample topography for samples that are organized in cell sheets.
Collapse
Affiliation(s)
- Lorry Mazzella
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Thomas Mangeat
- LITC Core Facility, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Guillaume Giroussens
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Benoit Rogez
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Hao Li
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Justine Creff
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Mehdi Saadaoui
- Aix Marseille University, CNRS, IBDM UMR7288, Turing Centre for Living Systems, Marseille, France
| | - Carla Martins
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Ronan Bouzignac
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Simon Labouesse
- LITC Core Facility, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Jérome Idier
- LS2N, CNRS UMR 6004, F44321, Nantes Cedex 3, France
| | - Frédéric Galland
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Marc Allain
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Anne Sentenac
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France.
| | - Loïc LeGoff
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
6
|
Shih CP, Tang WC, Chen P, Chen BC. Applications of Lightsheet Fluorescence Microscopy by High Numerical Aperture Detection Lens. J Phys Chem B 2024; 128:8273-8289. [PMID: 39177503 PMCID: PMC11382282 DOI: 10.1021/acs.jpcb.4c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
This Review explores the evolution, improvements, and recent applications of Light Sheet Fluorescence Microscopy (LSFM) in biological research using a high numerical aperture detection objective (lens) for imaging subcellular structures. The Review begins with an overview of the development of LSFM, tracing its evolution from its inception to its current state and emphasizing key milestones and technological advancements over the years. Subsequently, we will discuss various improvements of LSFM techniques, covering advancements in hardware such as illumination strategies, optical designs, and sample preparation methods that have enhanced imaging capabilities and resolution. The advancements in data acquisition and processing are also included, which provides a brief overview of the recent development of artificial intelligence. Fluorescence probes that were commonly used in LSFM will be highlighted, together with some insights regarding the selection of potential probe candidates for future LSFM development. Furthermore, we also discuss recent advances in the application of LSFM with a focus on high numerical aperture detection objectives for various biological studies. For sample preparation techniques, there are discussions regarding fluorescence probe selection, tissue clearing protocols, and some insights into expansion microscopy. Integrated setups such as adaptive optics, single objective modification, and microfluidics will also be some of the key discussion points in this Review. We hope that this comprehensive Review will provide a holistic perspective on the historical development, technical enhancements, and cutting-edge applications of LSFM, showcasing its pivotal role and future potential in advancing biological research.
Collapse
Affiliation(s)
- Chun-Pei Shih
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106319, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei 11529, Taiwan
| | - Wei-Chun Tang
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Peilin Chen
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
7
|
Lin J, Mehra D, Marin Z, Wang X, Borges HM, Shen Q, Gałecki S, Haug J, Abbott DH, Dean KM. Mechanically sheared axially swept light-sheet microscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:5314-5327. [PMID: 39296406 PMCID: PMC11407235 DOI: 10.1364/boe.526145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 09/21/2024]
Abstract
We present a mechanically sheared image acquisition format for upright and open-top light-sheet microscopes that automatically places data in its proper spatial context. This approach, which reduces computational post-processing and eliminates unnecessary interpolation or duplication of the data, is demonstrated on an upright variant of axially swept light-sheet microscopy (ASLM) that achieves a field of view, measuring 774 × 435 microns, that is 3.2-fold larger than previous models and a raw and isotropic resolution of ∼460 nm. Combined, we demonstrate the power of this approach by imaging sub-diffraction beads, cleared biological tissues, and expanded specimens.
Collapse
Affiliation(s)
- Jinlong Lin
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Dushyant Mehra
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Zach Marin
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Max Perutz Labs, Department of Structural and Computational Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Xiaoding Wang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Hazel M. Borges
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Qionghua Shen
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Seweryn Gałecki
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - John Haug
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Derek H. Abbott
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Kevin M. Dean
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Wang W, Ruan X, Liu G, Milkie DE, Li W, Betzig E, Upadhyayula S, Gao R. Nanoscale volumetric fluorescence imaging via photochemical sectioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.605857. [PMID: 39149407 PMCID: PMC11326139 DOI: 10.1101/2024.08.01.605857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Optical nanoscopy of intact biological specimens has been transformed by recent advancements in hydrogel-based tissue clearing and expansion, enabling the imaging of cellular and subcellular structures with molecular contrast. However, existing high-resolution fluorescence microscopes have limited imaging depth, which prevents the study of whole-mount specimens without physical sectioning. To address this challenge, we developed "photochemical sectioning," a spatially precise, light-based sample sectioning process. By combining photochemical sectioning with volumetric lattice light-sheet imaging and petabyte-scale computation, we imaged and reconstructed axons and myelination sheaths across entire mouse olfactory bulbs at nanoscale resolution. An olfactory-bulb-wide analysis of myelinated and unmyelinated axons revealed distinctive patterns of axon degeneration and de-/dysmyelination in the neurodegenerative mouse, highlighting the potential for peta- to exabyte-scale super-resolution studies using this approach.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry, University of Illinois Chicago; Chicago, IL 60607, USA
| | - Xiongtao Ruan
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94720, USA
| | - Gaoxiang Liu
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94720, USA
| | - Daniel E. Milkie
- Howard Hughes Medical Institute, Janelia Research Campus; Ashburn, VA 20417, USA
| | - Wenping Li
- Department of Chemistry, University of Illinois Chicago; Chicago, IL 60607, USA
| | - Eric Betzig
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Janelia Research Campus; Ashburn, VA 20417, USA
- Department of Physics, Howard Hughes Medical Institute, Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94720, USA
| | - Srigokul Upadhyayula
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub; San Francisco, CA 94158, USA
| | - Ruixuan Gao
- Department of Chemistry, University of Illinois Chicago; Chicago, IL 60607, USA
- Department of Biological Sciences, University of Illinois Chicago; Chicago, IL 60607, USA
| |
Collapse
|
9
|
Glaser A, Chandrashekar J, Vasquez S, Arshadi C, Ouellette N, Jiang X, Baka J, Kovacs G, Woodard M, Seshamani S, Cao K, Clack N, Recknagel A, Grim A, Balaram P, Turschak E, Hooper M, Liddell A, Rohde J, Hellevik A, Takasaki K, Erion Barner L, Logsdon M, Chronopoulos C, de Vries S, Ting J, Perlmutter S, Kalmbach B, Dembrow N, Tasic B, Reid RC, Feng D, Svoboda K. Expansion-assisted selective plane illumination microscopy for nanoscale imaging of centimeter-scale tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.08.544277. [PMID: 37425699 PMCID: PMC10327101 DOI: 10.1101/2023.06.08.544277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Recent advances in tissue processing, labeling, and fluorescence microscopy are providing unprecedented views of the structure of cells and tissues at sub-diffraction resolutions and near single molecule sensitivity, driving discoveries in diverse fields of biology, including neuroscience. Biological tissue is organized over scales of nanometers to centimeters. Harnessing molecular imaging across intact, three-dimensional samples on this scale requires new types of microscopes with larger fields of view and working distance, as well as higher throughput. We present a new expansion-assisted selective plane illumination microscope (ExA-SPIM) with aberration-free 1×1×3 μm optical resolution over a large field of view (10.6×8.0 mm 2 ) and working distance (35 mm) at speeds up to 946 megavoxels/sec. Combined with new tissue clearing and expansion methods, the microscope allows imaging centimeter-scale samples with 250×250×750 nm optical resolution (4× expansion), including entire mouse brains, with high contrast and without sectioning. We illustrate ExA-SPIM by reconstructing individual neurons across the mouse brain, imaging cortico-spinal neurons in the macaque motor cortex, and visualizing axons in human white matter.
Collapse
|
10
|
Tang X, Li W, Chen T, Zhang R, Yan Y, Liu C, Gou H, Zhang F, Pan Q, Mao D, Zhu X. Orthogonal DNA Self-Assembly-Based Expansion Microscopy Platform for Amplified, Multiplexed Biomarker Imaging. SMALL METHODS 2024:e2400505. [PMID: 39030815 DOI: 10.1002/smtd.202400505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Indexed: 07/22/2024]
Abstract
Expansion microscopy (ExM) facilitates nanoscale imaging under conventional microscopes, but it frequently encounters challenges such as fluorescence losses, low signal-to-noise ratio (SNR), and limited detection throughput. To address these issues, a method of orthogonal DNA self-assembly-based ExM (o-DAExM) platform is developed, which employs hybridization chain reaction instead of conventional fluorescence labeling units, showcasing signal amplification efficacy, enhancement of SNR, and expandable multiplexing capability at any stage of the ExM process. In this work, o-DAExM has been applied to compare with immunofluorescence-based ExM for cellular cytoskeleton imaging, and the resolved nanoscale spatial distributions of cytoskeleton show outstanding performance and reliability of o-DAExM. Furthermore, the study demonstrates the utility of o-DAExM in accurately revealing exosome heterogeneous information and multiplexed analysis of protein targets in single cells, which provides infinite possibilities in super-resolution imaging of cells and other samples. Therefore, o-DAExM offers a straightforward expansion and signal labeling method, highlighting future prospects to study nanoscale structures and functional networks in biological systems.
Collapse
Affiliation(s)
- Xiaochen Tang
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200127, P. R. China
| | - Wenxing Li
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Tianshu Chen
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200127, P. R. China
| | - Runchi Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Yilin Yan
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Chenbin Liu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Hongquan Gou
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Fanping Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China
| | - Qiuhui Pan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200127, P. R. China
| | - Dongsheng Mao
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| |
Collapse
|
11
|
Di Bella DJ, Domínguez-Iturza N, Brown JR, Arlotta P. Making Ramón y Cajal proud: Development of cell identity and diversity in the cerebral cortex. Neuron 2024; 112:2091-2111. [PMID: 38754415 DOI: 10.1016/j.neuron.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Since the beautiful images of Santiago Ramón y Cajal provided a first glimpse into the immense diversity and complexity of cell types found in the cerebral cortex, neuroscience has been challenged and inspired to understand how these diverse cells are generated and how they interact with each other to orchestrate the development of this remarkable tissue. Some fundamental questions drive the field's quest to understand cortical development: what are the mechanistic principles that govern the emergence of neuronal diversity? How do extrinsic and intrinsic signals integrate with physical forces and activity to shape cell identity? How do the diverse populations of neurons and glia influence each other during development to guarantee proper integration and function? The advent of powerful new technologies to profile and perturb cortical development at unprecedented resolution and across a variety of modalities has offered a new opportunity to integrate past knowledge with brand new data. Here, we review some of this progress using cortical excitatory projection neurons as a system to draw out general principles of cell diversification and the role of cell-cell interactions during cortical development.
Collapse
Affiliation(s)
- Daniela J Di Bella
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Nuria Domínguez-Iturza
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Juliana R Brown
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
12
|
Michalska JM, Lyudchik J, Velicky P, Štefaničková H, Watson JF, Cenameri A, Sommer C, Amberg N, Venturino A, Roessler K, Czech T, Höftberger R, Siegert S, Novarino G, Jonas P, Danzl JG. Imaging brain tissue architecture across millimeter to nanometer scales. Nat Biotechnol 2024; 42:1051-1064. [PMID: 37653226 PMCID: PMC11252008 DOI: 10.1038/s41587-023-01911-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 07/20/2023] [Indexed: 09/02/2023]
Abstract
Mapping the complex and dense arrangement of cells and their connectivity in brain tissue demands nanoscale spatial resolution imaging. Super-resolution optical microscopy excels at visualizing specific molecules and individual cells but fails to provide tissue context. Here we developed Comprehensive Analysis of Tissues across Scales (CATS), a technology to densely map brain tissue architecture from millimeter regional to nanometer synaptic scales in diverse chemically fixed brain preparations, including rodent and human. CATS uses fixation-compatible extracellular labeling and optical imaging, including stimulated emission depletion or expansion microscopy, to comprehensively delineate cellular structures. It enables three-dimensional reconstruction of single synapses and mapping of synaptic connectivity by identification and analysis of putative synaptic cleft regions. Applying CATS to the mouse hippocampal mossy fiber circuitry, we reconstructed and quantified the synaptic input and output structure of identified neurons. We furthermore demonstrate applicability to clinically derived human tissue samples, including formalin-fixed paraffin-embedded routine diagnostic specimens, for visualizing the cellular architecture of brain tissue in health and disease.
Collapse
Affiliation(s)
- Julia M Michalska
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Julia Lyudchik
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Philipp Velicky
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Core Facility Imaging, Medical University of Vienna, Vienna, Austria
| | - Hana Štefaničková
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jake F Watson
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Alban Cenameri
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Christoph Sommer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Nicole Amberg
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | | | - Karl Roessler
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Czech
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Sandra Siegert
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Gaia Novarino
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Peter Jonas
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Johann G Danzl
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
13
|
Ertürk A. Deep 3D histology powered by tissue clearing, omics and AI. Nat Methods 2024; 21:1153-1165. [PMID: 38997593 DOI: 10.1038/s41592-024-02327-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/28/2024] [Indexed: 07/14/2024]
Abstract
To comprehensively understand tissue and organism physiology and pathophysiology, it is essential to create complete three-dimensional (3D) cellular maps. These maps require structural data, such as the 3D configuration and positioning of tissues and cells, and molecular data on the constitution of each cell, spanning from the DNA sequence to protein expression. While single-cell transcriptomics is illuminating the cellular and molecular diversity across species and tissues, the 3D spatial context of these molecular data is often overlooked. Here, I discuss emerging 3D tissue histology techniques that add the missing third spatial dimension to biomedical research. Through innovations in tissue-clearing chemistry, labeling and volumetric imaging that enhance 3D reconstructions and their synergy with molecular techniques, these technologies will provide detailed blueprints of entire organs or organisms at the cellular level. Machine learning, especially deep learning, will be essential for extracting meaningful insights from the vast data. Further development of integrated structural, molecular and computational methods will unlock the full potential of next-generation 3D histology.
Collapse
Affiliation(s)
- Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University, Munich, Germany.
- School of Medicine, Koç University, İstanbul, Turkey.
- Deep Piction GmbH, Munich, Germany.
| |
Collapse
|
14
|
Kim JW, Yong AJH, Aisenberg EE, Lobel JH, Wang W, Dawson TM, Dawson VL, Gao R, Jan YN, Bateup HS, Ingolia NT. Molecular recording of calcium signals via calcium-dependent proximity labeling. Nat Chem Biol 2024; 20:894-905. [PMID: 38658655 DOI: 10.1038/s41589-024-01603-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 03/08/2024] [Indexed: 04/26/2024]
Abstract
Calcium ions serve as key intracellular signals. Local, transient increases in calcium concentrations can activate calcium sensor proteins that in turn trigger downstream effectors. In neurons, calcium transients play a central role in regulating neurotransmitter release and synaptic plasticity. However, it is challenging to capture the molecular events associated with these localized and ephemeral calcium signals. Here we present an engineered biotin ligase that generates permanent molecular traces in a calcium-dependent manner. The enzyme, calcium-dependent BioID (Cal-ID), biotinylates nearby proteins within minutes in response to elevated local calcium levels. The biotinylated proteins can be identified via mass spectrometry and visualized using microscopy. In neurons, Cal-ID labeling is triggered by neuronal activity, leading to prominent protein biotinylation that enables transcription-independent activity labeling in the brain. In summary, Cal-ID produces a biochemical record of calcium signals and neuronal activity with high spatial resolution and molecular specificity.
Collapse
Affiliation(s)
- J Wren Kim
- Department of Molecular and Cell Biology at the University of California, Berkeley, Berkeley, CA, USA
| | - Adeline J H Yong
- Department of Physiology at the University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute at the University of California, San Francisco, San Francisco, CA, USA
| | - Erin E Aisenberg
- Helen Wills Neuroscience Institute at the University of California, Berkeley, Berkeley, CA, USA
| | - Joseph H Lobel
- Department of Molecular and Cell Biology at the University of California, Berkeley, Berkeley, CA, USA
| | - Wei Wang
- Department of Chemistry at the University of Illinois, Chicago, Chicago, IL, USA
| | - Ted M Dawson
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruixuan Gao
- Department of Chemistry at the University of Illinois, Chicago, Chicago, IL, USA
| | - Yuh Nung Jan
- Department of Physiology at the University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute at the University of California, San Francisco, San Francisco, CA, USA
| | - Helen S Bateup
- Department of Molecular and Cell Biology at the University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute at the University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology at the University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
15
|
Chen H, Yan G, Wen MH, Brooks KN, Zhang Y, Huang PS, Chen TY. Advancements and Practical Considerations for Biophysical Research: Navigating the Challenges and Future of Super-resolution Microscopy. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:331-344. [PMID: 38817319 PMCID: PMC11134610 DOI: 10.1021/cbmi.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 06/01/2024]
Abstract
The introduction of super-resolution microscopy (SRM) has significantly advanced our understanding of cellular and molecular dynamics, offering a detailed view previously beyond our reach. Implementing SRM in biophysical research, however, presents numerous challenges. This review addresses the crucial aspects of utilizing SRM effectively, from selecting appropriate fluorophores and preparing samples to analyzing complex data sets. We explore recent technological advancements and methodological improvements that enhance the capabilities of SRM. Emphasizing the integration of SRM with other analytical methods, we aim to overcome inherent limitations and expand the scope of biological insights achievable. By providing a comprehensive guide for choosing the most suitable SRM methods based on specific research objectives, we aim to empower researchers to explore complex biological processes with enhanced precision and clarity, thereby advancing the frontiers of biophysical research.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Guangjie Yan
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Meng-Hsuan Wen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Kameron N. Brooks
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Yuteng Zhang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Pei-San Huang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
16
|
Hoffman LJ, Foley JM, Leong JK, Sullivan-Toole H, Elliott BL, Olson IR. An in vivo Dissection, and Analysis of Socio-Affective Symptoms related to Cerebellum-Midbrain Reward Circuitry in Humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.29.560239. [PMID: 38798382 PMCID: PMC11118266 DOI: 10.1101/2023.09.29.560239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Emerging research in non-human animals implicates cerebellar projections to the ventral tegmental area (VTA) in appetitive behaviors, but these circuits have not been characterized in humans. Here, we mapped cerebello-VTA white-matter connectivity in humans using probabilistic tractography on diffusion imaging data from the Human Connectome Project. We uncovered the topographical organization of these connections by separately tracking from parcels of cerebellar lobule VI, crus I/II, vermis, paravermis, and cerebrocerebellum. Results revealed that connections from the cerebellum to the VTA predominantly originate in the right hemisphere, interposed nucleus, and paravermal cortex, and terminate mostly ipsilaterally. Paravermal crus I sends the most connections to the VTA compared to other lobules. We discovered a medial-to-lateral gradient of connectivity, such that the medial cerebellum has the highest connectivity with the VTA. Individual differences in microstructure were associated with measures of negative affect and social functioning. By splitting the tracts into quarters, we found that the socio-affective effects were driven by the third quarter of the tract, corresponding to the point at which the fibers leave the deep nuclei. Taken together, we produced detailed maps of cerebello-VTA structural connectivity for the first time in humans and established their relevance for trait differences in socio-affective regulation.
Collapse
Affiliation(s)
- Linda J. Hoffman
- Temple University, Department of Psychology and Neuroscience, Philadelphia, PA, USA
| | - Julia M. Foley
- Temple University, Department of Psychology and Neuroscience, Philadelphia, PA, USA
| | - Josiah K. Leong
- University of Arkansas, Department of Psychological Science, Fayetteville, AR, USA
| | - Holly Sullivan-Toole
- Temple University, Department of Psychology and Neuroscience, Philadelphia, PA, USA
| | - Blake L. Elliott
- Temple University, Department of Psychology and Neuroscience, Philadelphia, PA, USA
| | - Ingrid R. Olson
- Temple University, Department of Psychology and Neuroscience, Philadelphia, PA, USA
| |
Collapse
|
17
|
Delhaye M, LeDue J, Robinson K, Xu Q, Zhang Q, Oku S, Zhang P, Craig AM. Adaptation of Magnified Analysis of the Proteome for Excitatory Synaptic Proteins in Varied Samples and Evaluation of Cell Type-Specific Distributions. J Neurosci 2024; 44:e1291232024. [PMID: 38360747 PMCID: PMC10993037 DOI: 10.1523/jneurosci.1291-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
Growing evidence suggests a remarkable diversity and complexity in the molecular composition of synapses, forming the basis for the brain to execute complex behaviors. Hence, there is considerable interest in visualizing the spatial distribution of such molecular diversity at individual synapses within intact brain circuits. Yet this task presents significant technical challenges. Expansion microscopy approaches have revolutionized our view of molecular anatomy. However, their use to study synapse-related questions outside of the labs developing them has been limited. Here we independently adapted a version of Magnified Analysis of the Proteome (MAP) and present a step-by-step protocol for visualizing over 40 synaptic proteins in brain circuits. Surprisingly, our findings show that the advantage of MAP over conventional immunolabeling was primarily due to improved antigen recognition and secondarily physical expansion. Furthermore, we demonstrated the versatile use of MAP in brains perfused with paraformaldehyde or fresh-fixed with formalin and in formalin-fixed paraffin-embedded tissue. These tests expand the potential applications of MAP to combinations with slice electrophysiology or clinical pathology specimens. Using male and female mice expressing YFP-ChR2 exclusively in interneurons, we revealed a distinct composition of AMPA and NMDA receptors and Shank family members at synapses on hippocampal interneurons versus on pyramidal neurons. Quantitative single synapse analyses yielded comprehensive cell type distributions of synaptic proteins and their relationships. These findings exemplify the value of the versatile adapted MAP procedure presented here as an accessible tool for the broad neuroscience community to unravel the complexity of the "synaptome" across brain circuits and disease states.
Collapse
Affiliation(s)
- Mathias Delhaye
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Jeffrey LeDue
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Kaylie Robinson
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Qin Xu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Qian Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Shinichiro Oku
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Peng Zhang
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
18
|
Hümpfer N, Thielhorn R, Ewers H. Expanding boundaries - a cell biologist's guide to expansion microscopy. J Cell Sci 2024; 137:jcs260765. [PMID: 38629499 PMCID: PMC11058692 DOI: 10.1242/jcs.260765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Expansion microscopy (ExM) is a revolutionary novel approach to increase resolution in light microscopy. In contrast to super-resolution microscopy methods that rely on sophisticated technological advances, including novel instrumentation, ExM instead is entirely based on sample preparation. In ExM, labeled target molecules in fixed cells are anchored in a hydrogel, which is then physically enlarged by osmotic swelling. The isotropic swelling of the hydrogel pulls the labels apart from one another, and their relative organization can thus be resolved using conventional microscopes even if it was below the diffraction limit of light beforehand. As ExM can additionally benefit from the technical resolution enhancements achieved by super-resolution microscopy, it can reach into the nanometer range of resolution with an astoundingly low degree of error induced by distortion during the physical expansion process. Because the underlying chemistry is well understood and the technique is based on a relatively simple procedure, ExM is easily reproducible in non-expert laboratories and has quickly been adopted to address an ever-expanding spectrum of problems across the life sciences. In this Review, we provide an overview of this rapidly expanding new field, summarize the most important insights gained so far and attempt to offer an outlook on future developments.
Collapse
Affiliation(s)
- Nadja Hümpfer
- Department of Biology, Chemistry and Pharmacy, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ria Thielhorn
- Department of Biology, Chemistry and Pharmacy, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Helge Ewers
- Department of Biology, Chemistry and Pharmacy, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
19
|
Wang J, Xu X, Ye H, Zhang X, Shi G. Interferometric modulation for generating extended light sheet: improving field of view. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:046501. [PMID: 38629030 PMCID: PMC11020319 DOI: 10.1117/1.jbo.29.4.046501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Significance Light-sheet fluorescence microscopy (LSFM) has emerged as a powerful and versatile imaging technique renowned for its remarkable features, including high-speed 3D tomography, minimal photobleaching, and low phototoxicity. The interference light-sheet fluorescence microscope, with its larger field of view (FOV) and more uniform axial resolution, possesses significant potential for a wide range of applications in biology and medicine. Aim The aim of this study is to investigate the interference behavior among multiple light sheets (LSs) in LSFM and optimize the FOV and resolution of the light-sheet fluorescence microscope. Approach We conducted a detailed investigation of the interference effects among LSs through theoretical derivation and numerical simulations, aiming to find optimal parameters. Subsequently, we constructed a customized system of multi-LSFM that incorporates both interference light sheets (ILS) and noninterference light-sheet configurations. We performed beam imaging and microsphere imaging tests to evaluate the FOV and axial resolution of these systems. Results Using our custom-designed light-sheet fluorescence microscope, we captured the intensity distribution profiles of both interference and noninterference light sheets (NILS). Additionally, we conducted imaging tests on microspheres to assess their imaging outcomes. The ILS not only exhibits a larger FOV compared to the NILS but also demonstrates a more uniform axial resolution. Conclusions By effectively modulating the interference among multiple LSs, it is possible to optimize the intensity distribution of the LSs, expand the FOV, and achieve a more uniform axial resolution.
Collapse
Affiliation(s)
- Jixiang Wang
- University of Science and Technology of China, School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, Hefei, China
- Chinese Academy of Science, Suzhou Institute of Biomedical Engineering and Technology, Jiangsu Key Laboratory of Medical Optics, Suzhou, China
| | - Xin Xu
- University of Science and Technology of China, School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, Hefei, China
- Chinese Academy of Science, Suzhou Institute of Biomedical Engineering and Technology, Jiangsu Key Laboratory of Medical Optics, Suzhou, China
| | - Hong Ye
- Chinese Academy of Science, Suzhou Institute of Biomedical Engineering and Technology, Jiangsu Key Laboratory of Medical Optics, Suzhou, China
| | - Xin Zhang
- Chinese Academy of Science, Suzhou Institute of Biomedical Engineering and Technology, Jiangsu Key Laboratory of Medical Optics, Suzhou, China
| | - Guohua Shi
- University of Science and Technology of China, School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, Hefei, China
- Chinese Academy of Science, Suzhou Institute of Biomedical Engineering and Technology, Jiangsu Key Laboratory of Medical Optics, Suzhou, China
| |
Collapse
|
20
|
Sanfilippo P, Kim AJ, Bhukel A, Yoo J, Mirshahidi PS, Pandey V, Bevir H, Yuen A, Mirshahidi PS, Guo P, Li HS, Wohlschlegel JA, Aso Y, Zipursky SL. Mapping of multiple neurotransmitter receptor subtypes and distinct protein complexes to the connectome. Neuron 2024; 112:942-958.e13. [PMID: 38262414 PMCID: PMC10957333 DOI: 10.1016/j.neuron.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/03/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Neurons express various combinations of neurotransmitter receptor (NR) subunits and receive inputs from multiple neuron types expressing different neurotransmitters. Localizing NR subunits to specific synaptic inputs has been challenging. Here, we use epitope-tagged endogenous NR subunits, expansion light-sheet microscopy, and electron microscopy (EM) connectomics to molecularly characterize synapses in Drosophila. We show that in directionally selective motion-sensitive neurons, different multiple NRs elaborated a highly stereotyped molecular topography with NR localized to specific domains receiving cell-type-specific inputs. Developmental studies suggested that NRs or complexes of them with other membrane proteins determine patterns of synaptic inputs. In support of this model, we identify a transmembrane protein selectively associated with a subset of spatially restricted synapses and demonstrate its requirement for synapse formation through genetic analysis. We propose that mechanisms that regulate the precise spatial distribution of NRs provide a molecular cartography specifying the patterns of synaptic connections onto dendrites.
Collapse
Affiliation(s)
- Piero Sanfilippo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alexander J Kim
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anuradha Bhukel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Juyoun Yoo
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pegah S Mirshahidi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Vijaya Pandey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Harry Bevir
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ashley Yuen
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Parmis S Mirshahidi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peiyi Guo
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hong-Sheng Li
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
21
|
Sachs S, Reinhard S, Eilts J, Sauer M, Werner C. Visualizing the trans-synaptic arrangement of synaptic proteins by expansion microscopy. Front Cell Neurosci 2024; 18:1328726. [PMID: 38486709 PMCID: PMC10937466 DOI: 10.3389/fncel.2024.1328726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
High fidelity synaptic neurotransmission in the millisecond range is provided by a defined structural arrangement of synaptic proteins. At the presynapse multi-epitope scaffolding proteins are organized spatially at release sites to guarantee optimal binding of neurotransmitters at receptor clusters. The organization of pre- and postsynaptic proteins in trans-synaptic nanocolumns would thus intuitively support efficient information transfer at the synapse. Visualization of these protein-dense regions as well as the minute size of protein-packed synaptic clefts remains, however, challenging. To enable efficient labeling of these protein complexes, we developed post-gelation immunolabeling expansion microscopy combined with Airyscan super-resolution microscopy. Using ~8-fold expanded samples, Airyscan enables multicolor fluorescence imaging with 20-40 nm spatial resolution. Post-immunolabeling of decrowded (expanded) samples provides increased labeling efficiency and allows the visualization of trans-synaptic nanocolumns. Our approach is ideally suited to investigate the pathological impact on nanocolumn arrangement e.g., in limbic encephalitis with autoantibodies targeting trans-synaptic leucine-rich glioma inactivated 1 protein (LGI1).
Collapse
Affiliation(s)
| | | | | | | | - Christian Werner
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
22
|
Cornean J, Molina-Obando S, Gür B, Bast A, Ramos-Traslosheros G, Chojetzki J, Lörsch L, Ioannidou M, Taneja R, Schnaitmann C, Silies M. Heterogeneity of synaptic connectivity in the fly visual system. Nat Commun 2024; 15:1570. [PMID: 38383614 PMCID: PMC10882054 DOI: 10.1038/s41467-024-45971-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
Visual systems are homogeneous structures, where repeating columnar units retinotopically cover the visual field. Each of these columns contain many of the same neuron types that are distinguished by anatomic, genetic and - generally - by functional properties. However, there are exceptions to this rule. In the 800 columns of the Drosophila eye, there is an anatomically and genetically identifiable cell type with variable functional properties, Tm9. Since anatomical connectivity shapes functional neuronal properties, we identified the presynaptic inputs of several hundred Tm9s across both optic lobes using the full adult female fly brain (FAFB) electron microscopic dataset and FlyWire connectome. Our work shows that Tm9 has three major and many sparsely distributed inputs. This differs from the presynaptic connectivity of other Tm neurons, which have only one major, and more stereotypic inputs than Tm9. Genetic synapse labeling showed that the heterogeneous wiring exists across individuals. Together, our data argue that the visual system uses heterogeneous, distributed circuit properties to achieve robust visual processing.
Collapse
Affiliation(s)
- Jacqueline Cornean
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Sebastian Molina-Obando
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Burak Gür
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Annika Bast
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Giordano Ramos-Traslosheros
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jonas Chojetzki
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Lena Lörsch
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Maria Ioannidou
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Rachita Taneja
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Christopher Schnaitmann
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Marion Silies
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany.
| |
Collapse
|
23
|
Valdes PA, Yu CC(J, Aronson J, Ghosh D, Zhao Y, An B, Bernstock JD, Bhere D, Felicella MM, Viapiano MS, Shah K, Chiocca EA, Boyden ES. Improved immunostaining of nanostructures and cells in human brain specimens through expansion-mediated protein decrowding. Sci Transl Med 2024; 16:eabo0049. [PMID: 38295184 PMCID: PMC10911838 DOI: 10.1126/scitranslmed.abo0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Proteins are densely packed in cells and tissues, where they form complex nanostructures. Expansion microscopy (ExM) variants have been used to separate proteins from each other in preserved biospecimens, improving antibody access to epitopes. Here, we present an ExM variant, decrowding expansion pathology (dExPath), that can expand proteins away from each other in human brain pathology specimens, including formalin-fixed paraffin-embedded (FFPE) clinical specimens. Immunostaining of dExPath-expanded specimens reveals, with nanoscale precision, previously unobserved cellular structures, as well as more continuous patterns of staining. This enhanced molecular staining results in observation of previously invisible disease marker-positive cell populations in human glioma specimens, with potential implications for tumor aggressiveness. dExPath results in improved fluorescence signals even as it eliminates lipofuscin-associated autofluorescence. Thus, this form of expansion-mediated protein decrowding may, through improved epitope access for antibodies, render immunohistochemistry more powerful in clinical science and, perhaps, diagnosis.
Collapse
Affiliation(s)
- Pablo A. Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, 77555
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
| | - Chih-Chieh (Jay) Yu
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- Department of Biological Engineering, MIT, MA, USA, 02139
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- RIKEN Center for Brain Science, Saitama, Japan, 351-0198
| | - Jenna Aronson
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- RIKEN Center for Brain Science, Saitama, Japan, 351-0198
| | - Debarati Ghosh
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA, 02139
| | - Yongxin Zhao
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA, 15213
| | - Bobae An
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Koch Institute, MIT, Cambridge, MA, USA, 02139
| | - Deepak Bhere
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC, USA, 29209
- Center for Stem Cell and Translational Immunotherapy, Harvard Medical School/Brigham and Women’s Hospital, Boston, MA, USA, 02115
| | - Michelle M. Felicella
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA, 77555
| | - Mariano S. Viapiano
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA, 13210
| | - Khalid Shah
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Center for Stem Cell and Translational Immunotherapy, Harvard Medical School/Brigham and Women’s Hospital, Boston, MA, USA, 02115
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
| | - Edward S. Boyden
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- Department of Biological Engineering, MIT, MA, USA, 02139
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA, 02139
- Koch Institute, MIT, Cambridge, MA, USA, 02139
- MIT Center for Neurobiological Engineering and K. Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA, 02139
- Howard Hughes Medical Institute, Cambridge, MA, USA, 02139
| |
Collapse
|
24
|
Knobloch JA, Laurent G, Lauterbach MA. STED microscopy reveals dendrite-specificity of spines in turtle cortex. Prog Neurobiol 2023; 231:102541. [PMID: 37898315 DOI: 10.1016/j.pneurobio.2023.102541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Dendritic spines are key structures for neural communication, learning and memory. Spine size and shape probably reflect synaptic strength and learning. Imaging with superresolution STED microscopy the detailed shape of the majority of the spines of individual neurons in turtle cortex (Trachemys scripta elegans) revealed several distinguishable shape classes. Dendritic spines of a given class were not distributed randomly, but rather decorated significantly more often some dendrites than others. The individuality of dendrites was corroborated by significant inter-dendrite differences in other parameters such as spine density and length. In addition, many spines were branched or possessed spinules. These findings may have implications for the role of individual dendrites in this cortex.
Collapse
Affiliation(s)
- Jan A Knobloch
- Department of Molecular Imaging, Center for Integrative Physiology and Molecular Medicine, Saarland University, Building 48, 66421 Homburg, Germany
| | - Gilles Laurent
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
| | - Marcel A Lauterbach
- Department of Molecular Imaging, Center for Integrative Physiology and Molecular Medicine, Saarland University, Building 48, 66421 Homburg, Germany; Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
25
|
Aberra AS, Wang R, Grill WM, Peterchev AV. Multi-scale model of axonal and dendritic polarization by transcranial direct current stimulation in realistic head geometry. Brain Stimul 2023; 16:1776-1791. [PMID: 38056825 PMCID: PMC10842743 DOI: 10.1016/j.brs.2023.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/06/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation modality that can alter cortical excitability. However, it remains unclear how the subcellular elements of different neuron types are polarized by specific electric field (E-field) distributions. OBJECTIVE To quantify neuronal polarization generated by tDCS in a multi-scale computational model. METHODS We embedded layer-specific, morphologically-realistic cortical neuron models in a finite element model of the E-field in a human head and simulated steady-state polarization generated by conventional primary-motor-cortex-supraorbital (M1-SO) and 4 × 1 high-definition (HD) tDCS. We quantified somatic, axonal, and dendritic polarization of excitatory pyramidal cells in layers 2/3, 5, and 6, as well as inhibitory interneurons in layers 1 and 4 of the hand knob. RESULTS Axonal and dendritic terminals were polarized more than the soma in all neurons, with peak axonal and dendritic polarization of 0.92 mV and 0.21 mV, respectively, compared to peak somatic polarization of 0.07 mV for 1.8 mA M1-SO stimulation. Both montages generated regions of depolarization and hyperpolarization beneath the M1 anode; M1-SO produced slightly stronger, more diffuse polarization peaking in the central sulcus, while 4 × 1 HD produced higher peak polarization in the gyral crown. The E-field component normal to the cortical surface correlated strongly with pyramidal neuron somatic polarization (R2>0.9), but exhibited weaker correlations with peak pyramidal axonal and dendritic polarization (R2:0.5-0.9) and peak polarization in all subcellular regions of interneurons (R2:0.3-0.6). Simulating polarization by uniform local E-field extracted at the soma approximated the spatial distribution of tDCS polarization but produced large errors in some regions (median absolute percent error: 7.9 %). CONCLUSIONS Polarization of pre- and postsynaptic compartments of excitatory and inhibitory cortical neurons may play a significant role in tDCS neuromodulation. These effects cannot be predicted from the E-field distribution alone but rather require calculation of the neuronal response.
Collapse
Affiliation(s)
- Aman S Aberra
- Dept. of Biomedical Engineering, Pratt School of Engineering, Duke University, NC, USA.
| | - Ruochen Wang
- Dept. of Biomedical Engineering, Pratt School of Engineering, Duke University, NC, USA; Dept. of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, NC, USA.
| | - Warren M Grill
- Dept. of Biomedical Engineering, Pratt School of Engineering, Duke University, NC, USA; Dept. of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, NC, USA; Dept. of Neurobiology, School of Medicine, Duke University, NC, USA; Dept. of Neurosurgery, School of Medicine, Duke University, NC, USA.
| | - Angel V Peterchev
- Dept. of Biomedical Engineering, Pratt School of Engineering, Duke University, NC, USA; Dept. of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, NC, USA; Dept. of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, NC, USA; Dept. of Neurosurgery, School of Medicine, Duke University, NC, USA.
| |
Collapse
|
26
|
Sanfilippo P, Kim AJ, Bhukel A, Yoo J, Mirshahidi PS, Pandey V, Bevir H, Yuen A, Mirshahidi PS, Guo P, Li HS, Wohlschlegel JA, Aso Y, Zipursky SL. Mapping of multiple neurotransmitter receptor subtypes and distinct protein complexes to the connectome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560011. [PMID: 37873314 PMCID: PMC10592863 DOI: 10.1101/2023.10.02.560011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Neurons express different combinations of neurotransmitter receptor (NR) subunits and receive inputs from multiple neuron types expressing different neurotransmitters. Localizing NR subunits to specific synaptic inputs has been challenging. Here we use epitope tagged endogenous NR subunits, expansion light-sheet microscopy, and EM connectomics to molecularly characterize synapses in Drosophila. We show that in directionally selective motion sensitive neurons, different multiple NRs elaborated a highly stereotyped molecular topography with NR localized to specific domains receiving cell-type specific inputs. Developmental studies suggested that NRs or complexes of them with other membrane proteins determines patterns of synaptic inputs. In support of this model, we identify a transmembrane protein associated selectively with a subset of spatially restricted synapses and demonstrate through genetic analysis its requirement for synapse formation. We propose that mechanisms which regulate the precise spatial distribution of NRs provide a molecular cartography specifying the patterns of synaptic connections onto dendrites.
Collapse
Affiliation(s)
- Piero Sanfilippo
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Alexander J Kim
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Anuradha Bhukel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Juyoun Yoo
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Pegah S Mirshahidi
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Vijaya Pandey
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Harry Bevir
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Ashley Yuen
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Parmis S Mirshahidi
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Peiyi Guo
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hong-Sheng Li
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Lead Contact
| |
Collapse
|
27
|
Aberra AS, Wang R, Grill WM, Peterchev AV. Multi-scale model of axonal and dendritic polarization by transcranial direct current stimulation in realistic head geometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554447. [PMID: 37767087 PMCID: PMC10522328 DOI: 10.1101/2023.08.23.554447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Background Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation modality that can alter cortical excitability. However, it remains unclear how the subcellular elements of different neuron types are polarized by specific electric field (E-field) distributions. Objective To quantify neuronal polarization generated by tDCS in a multi-scale computational model. Methods We embedded layer-specific, morphologically-realistic cortical neuron models in a finite element model of the E-field in a human head and simulated steady-state polarization generated by conventional primary-motor-cortex-supraorbital (M1-SO) and 4×1 high-definition (HD) tDCS. We quantified somatic, axonal, and dendritic polarization of excitatory pyramidal cells in layers 2/3, 5, and 6, as well as inhibitory interneurons in layers 1 and 4 of the hand knob. Results Axonal and dendritic terminals were polarized more than the soma in all neurons, with peak axonal and dendritic polarization of 0.92 mV and 0.21 mV, respectively, compared to peak somatic polarization of 0.07 mV for 1.8 mA M1-SO stimulation. Both montages generated regions of depolarization and hyperpolarization beneath the M1 anode; M1-SO produced slightly stronger, more diffuse polarization peaking in the central sulcus, while 4×1 HD produced higher peak polarization in the gyral crown. Simulating polarization by uniform local E-field approximated the spatial distribution of tDCS polarization but produced large errors in some regions. Conclusions Polarization of pre- and postsynaptic compartments of excitatory and inhibitory cortical neurons may play a significant role in tDCS neuromodulation. These effects cannot be predicted from the E-field distribution alone but rather require calculation of the neuronal response.
Collapse
|
28
|
Zhuang Y, Shi X. Expansion microscopy: A chemical approach for super-resolution microscopy. Curr Opin Struct Biol 2023; 81:102614. [PMID: 37253290 PMCID: PMC11103276 DOI: 10.1016/j.sbi.2023.102614] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/13/2023] [Accepted: 05/01/2023] [Indexed: 06/01/2023]
Abstract
Super-resolution microscopy is a series of imaging techniques that bypass the diffraction limit of resolution. Since the 1990s, optical approaches, such as single-molecular localization microscopy, have allowed us to visualize biological samples from the sub-organelle to the molecular level. Recently, a chemical approach called expansion microscopy emerged as a new trend in super-resolution microscopy. It physically enlarges cells and tissues, which leads to an increase in the effective resolution of any microscope by the length expansion factor. Compared with optical approaches, expansion microscopy has a lower cost and higher imaging depth but requires a more complex procedure. The integration of expansion microscopy and advanced microscopes significantly pushed forward the boundary of super-resolution microscopy. This review covers the current state of the art in expansion microscopy, including the latest methods and their applications, as well as challenges and opportunities for future research.
Collapse
Affiliation(s)
- Yinyin Zhuang
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA. https://twitter.com/YinyinZhuang
| | - Xiaoyu Shi
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
29
|
Abruzzi KC, Ratner C, Rosbash M. Comparison of TRIBE and STAMP for identifying targets of RNA binding proteins in human and Drosophila cells. RNA (NEW YORK, N.Y.) 2023; 29:1230-1242. [PMID: 37169395 PMCID: PMC10351885 DOI: 10.1261/rna.079608.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
RNA binding proteins (RBPs) perform a myriad of functions and are implicated in numerous neurological diseases. To identify the targets of RBPs in small numbers of cells, we developed TRIBE, in which the catalytic domain of the RNA editing enzyme ADAR (ADARcd) is fused to an RBP. When the RBP binds to an mRNA, ADAR catalyzes A to G modifications in the target mRNA that can be easily identified in standard RNA sequencing. In STAMP, the concept is the same except the ADARcd is replaced by the RNA editing enzyme APOBEC. Here we compared TRIBE and STAMP side-by-side in human and Drosophila cells. The goal is to learn the pros and cons of each method so that researchers can choose the method best suited to their RBP and system. In human cells, TRIBE and STAMP were performed using the RBP TDP-43. Although they both identified TDP-43 target mRNAs, combining the two methods more successfully identified high-confidence targets. In Drosophila cells, RBP-APOBEC fusions generated only low numbers of editing sites, comparable to the level of control editing. This was true for two different RBPs, Hrp48 and Thor (Drosophila EIF4E-BP), indicating that STAMP does not work well in Drosophila.
Collapse
Affiliation(s)
- Katharine C Abruzzi
- Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Corrie Ratner
- Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
30
|
Velicky P, Miguel E, Michalska JM, Lyudchik J, Wei D, Lin Z, Watson JF, Troidl J, Beyer J, Ben-Simon Y, Sommer C, Jahr W, Cenameri A, Broichhagen J, Grant SGN, Jonas P, Novarino G, Pfister H, Bickel B, Danzl JG. Dense 4D nanoscale reconstruction of living brain tissue. Nat Methods 2023; 20:1256-1265. [PMID: 37429995 PMCID: PMC10406607 DOI: 10.1038/s41592-023-01936-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/22/2023] [Indexed: 07/12/2023]
Abstract
Three-dimensional (3D) reconstruction of living brain tissue down to an individual synapse level would create opportunities for decoding the dynamics and structure-function relationships of the brain's complex and dense information processing network; however, this has been hindered by insufficient 3D resolution, inadequate signal-to-noise ratio and prohibitive light burden in optical imaging, whereas electron microscopy is inherently static. Here we solved these challenges by developing an integrated optical/machine-learning technology, LIONESS (live information-optimized nanoscopy enabling saturated segmentation). This leverages optical modifications to stimulated emission depletion microscopy in comprehensively, extracellularly labeled tissue and previous information on sample structure via machine learning to simultaneously achieve isotropic super-resolution, high signal-to-noise ratio and compatibility with living tissue. This allows dense deep-learning-based instance segmentation and 3D reconstruction at a synapse level, incorporating molecular, activity and morphodynamic information. LIONESS opens up avenues for studying the dynamic functional (nano-)architecture of living brain tissue.
Collapse
Affiliation(s)
- Philipp Velicky
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Core Facility Imaging, Medical University of Vienna, Vienna, Austria
| | - Eder Miguel
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Julia M Michalska
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Julia Lyudchik
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Donglai Wei
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Computer Science, Boston College, Boston, MA, USA
| | - Zudi Lin
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Jake F Watson
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jakob Troidl
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Johanna Beyer
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Yoav Ben-Simon
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Christoph Sommer
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Wiebke Jahr
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- In-Vision Technologies, Guntramsdorf, Austria
| | - Alban Cenameri
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Seth G N Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Peter Jonas
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Gaia Novarino
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Hanspeter Pfister
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Bernd Bickel
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Johann G Danzl
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
31
|
Chen Y, Chauhan S, Gong C, Dayton H, Xu C, De La Cruz ED, Datta MS, Leong KW, Dietrich LE, Tomer R. Scalable projected Light Sheet Microscopy for high-resolution imaging of living and cleared samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543173. [PMID: 37333196 PMCID: PMC10274708 DOI: 10.1101/2023.05.31.543173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Light sheet fluorescence microscopy (LSFM) is a widely used imaging technique for living and large cleared samples. However, high-performance LSFM systems are often prohibitively expensive and not easily scalable for high-throughput applications. Here, we introduce a cost-effective, scalable, and versatile high-resolution imaging framework, called projected Light Sheet Microscopy (pLSM), which repurposes readily available off-the-shelf consumer-grade components and an over-the-network control architecture to achieve high-resolution imaging of living and cleared samples. We extensively characterize the pLSM framework and showcase its capabilities through high-resolution, multi-color imaging and quantitative analysis of mouse and post-mortem human brain samples cleared using various techniques. Moreover, we show the applicability of pLSM for high-throughput molecular phenotyping of human induced pluripotent cells (iPSC)-derived brain and vessel organoids. Additionally, we utilized pLSM for comprehensive live imaging of bacterial pellicle biofilms at the air-liquid interface, uncovering their intricate layered architecture and diverse cellular dynamics across different depths. Overall, the pLSM framework has the potential to further democratize LSFM by making high-resolution light sheet microscopy more accessible and scalable.
Collapse
Affiliation(s)
- Yannan Chen
- Department of Biological Sciences
- Department of Biomedical Engineering
| | | | - Cheng Gong
- Department of Biological Sciences
- Department of Biomedical Engineering
| | | | - Cong Xu
- Department of Biomedical Engineering
| | | | - Malika S. Datta
- Department of Biological Sciences
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University
| | | | | | - Raju Tomer
- Department of Biological Sciences
- Department of Biomedical Engineering
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University
| |
Collapse
|
32
|
Wang Z, Zhao T, Cai Y, Zhang J, Hao H, Liang Y, Wang S, Sun Y, Chen T, Bianco PR, Oh K, Lei M. Rapid, artifact-reduced, image reconstruction for super-resolution structured illumination microscopy. Innovation (N Y) 2023; 4:100425. [PMID: 37181226 PMCID: PMC10173768 DOI: 10.1016/j.xinn.2023.100425] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Super-resolution structured illumination microscopy (SR-SIM) is finding increasing application in biomedical research due to its superior ability to visualize subcellular dynamics in living cells. However, during image reconstruction artifacts can be introduced and when coupled with time-consuming postprocessing procedures, limits this technique from becoming a routine imaging tool for biologists. To address these issues, an accelerated, artifact-reduced reconstruction algorithm termed joint space frequency reconstruction-based artifact reduction algorithm (JSFR-AR-SIM) was developed by integrating a high-speed reconstruction framework with a high-fidelity optimization approach designed to suppress the sidelobe artifact. Consequently, JSFR-AR-SIM produces high-quality, super-resolution images with minimal artifacts, and the reconstruction speed is increased. We anticipate this algorithm to facilitate SR-SIM becoming a routine tool in biomedical laboratories.
Collapse
Affiliation(s)
- Zhaojun Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Tianyu Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yanan Cai
- College of Science, Northwest A&F University, Yangling 712100, China
| | - Jingxiang Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Huiwen Hao
- State Key Laboratory of Membrane Biology & Biomedical Pioneer Innovation Center (BIOPIC) & School of Life Sciences, Peking University, Beijing 100871, China
| | - Yansheng Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Shaowei Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology & Biomedical Pioneer Innovation Center (BIOPIC) & School of Life Sciences, Peking University, Beijing 100871, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Piero R. Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Kwangsung Oh
- Department of Computer Science, College of Information Science & Technology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Ming Lei
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
- Corresponding author
| |
Collapse
|
33
|
Daetwyler S, Fiolka RP. Light-sheets and smart microscopy, an exciting future is dawning. Commun Biol 2023; 6:502. [PMID: 37161000 PMCID: PMC10169780 DOI: 10.1038/s42003-023-04857-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
Light-sheet fluorescence microscopy has transformed our ability to visualize and quantitatively measure biological processes rapidly and over long time periods. In this review, we discuss current and future developments in light-sheet fluorescence microscopy that we expect to further expand its capabilities. This includes smart and adaptive imaging schemes to overcome traditional imaging trade-offs, i.e., spatiotemporal resolution, field of view and sample health. In smart microscopy, a microscope will autonomously decide where, when, what and how to image. We further assess how image restoration techniques provide avenues to overcome these tradeoffs and how "open top" light-sheet microscopes may enable multi-modal imaging with high throughput. As such, we predict that light-sheet microscopy will fulfill an important role in biomedical and clinical imaging in the future.
Collapse
Affiliation(s)
- Stephan Daetwyler
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Reto Paul Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
34
|
Linghu C, An B, Shpokayte M, Celiker OT, Shmoel N, Zhang R, Zhang C, Park D, Park WM, Ramirez S, Boyden ES. Recording of cellular physiological histories along optically readable self-assembling protein chains. Nat Biotechnol 2023; 41:640-651. [PMID: 36593405 PMCID: PMC10188365 DOI: 10.1038/s41587-022-01586-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/21/2022] [Indexed: 01/03/2023]
Abstract
Observing cellular physiological histories is key to understanding normal and disease-related processes. Here we describe expression recording islands-a fully genetically encoded approach that enables both continual digital recording of biological information within cells and subsequent high-throughput readout in fixed cells. The information is stored in growing intracellular protein chains made of self-assembling subunits, human-designed filament-forming proteins bearing different epitope tags that each correspond to a different cellular state or function (for example, gene expression downstream of neural activity or pharmacological exposure), allowing the physiological history to be read out along the ordered subunits of protein chains with conventional optical microscopy. We use expression recording islands to record gene expression timecourse downstream of specific pharmacological and physiological stimuli in cultured neurons and in living mouse brain, with a time resolution of a fraction of a day, over periods of days to weeks.
Collapse
Affiliation(s)
- Changyang Linghu
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Cell and Developmental Biology, Program in Single Cell Spatial Analysis, and Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bobae An
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Monika Shpokayte
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Orhan T Celiker
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Nava Shmoel
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Ruihan Zhang
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Chi Zhang
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Demian Park
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Won Min Park
- Chemical Engineering, Kansas State University, Manhattan, KS, USA
| | - Steve Ramirez
- Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Edward S Boyden
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
- Biological Engineering, MIT, Cambridge, MA, USA.
- Media Arts and Sciences, MIT, Cambridge, MA, USA.
- McGovern Institute, MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA.
- K Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA.
- Center for Neurobiological Engineering, MIT, Cambridge, MA, USA.
- Koch Institute, MIT, Cambridge, MA, USA.
| |
Collapse
|
35
|
Wang T, Shi P, Luo D, Guo J, Liu H, Yuan J, Jin H, Wu X, Zhang Y, Xiong Z, Zhu J, Zhou R, Zhang R. A Convenient All-Cell Optical Imaging Method Compatible with Serial SEM for Brain Mapping. Brain Sci 2023; 13:711. [PMID: 37239183 PMCID: PMC10216590 DOI: 10.3390/brainsci13050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
The mammalian brain, with its complexity and intricacy, poses significant challenges for researchers aiming to understand its inner workings. Optical multilayer interference tomography (OMLIT) is a novel, promising imaging technique that enables the mapping and reconstruction of mesoscale all-cell brain atlases and is seamlessly compatible with tape-based serial scanning electron microscopy (SEM) for microscale mapping in the same tissue. However, currently, OMLIT suffers from imperfect coatings, leading to background noise and image contamination. In this study, we introduced a new imaging configuration using carbon spraying to eliminate the tape-coating step, resulting in reduced noise and enhanced imaging quality. We demonstrated the improved imaging quality and validated its applicability through a correlative light-electron imaging workflow. Our method successfully reconstructed all cells and vasculature within a large OMLIT dataset, enabling basic morphological classification and analysis. We also show that this approach can perform effectively on thicker sections, extending its applicability to sub-micron scale slices, saving sample preparation and imaging time, and increasing imaging throughput. Consequently, this method emerges as a promising candidate for high-speed, high-throughput brain tissue reconstruction and analysis. Our findings open new avenues for exploring the structure and function of the brain using OMLIT images.
Collapse
Affiliation(s)
- Tianyi Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou 215163, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Peiyao Shi
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Dingsan Luo
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jun Guo
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Hui Liu
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jinyun Yuan
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Haiqun Jin
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Xiaolong Wu
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Yueyi Zhang
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Zhiwei Xiong
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Jinlong Zhu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Renjie Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Ruobing Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou 215163, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| |
Collapse
|
36
|
Zhuo Y, Fu B, Peng R, Ma C, Xie S, Qiu L. Aptamer-based expansion microscopy platform enables signal-amplified imaging of dendritic spines. Talanta 2023; 260:124541. [PMID: 37087946 DOI: 10.1016/j.talanta.2023.124541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/25/2023]
Abstract
Super-resolution imaging of dendritic spines (DS) can provide valuable information for mechanistic studies related to synaptic physiology and neural plasticity, but challenged by their small dimension (50-200 nm) below the spatial resolution of conventional optical microscopes. In this work, by combining the molecular recognition specificity of aptamer with high programmability of DNA nanotechnology, we developed an expansion microscopy (ExM) platform for imaging DS with enhanced spatial resolution and amplified signal output. Our results demonstrated that the aptamer probe could specifically bind to DS of primary hippocampal neurons. With physical expansion, the DS structure could be effectively enlarged by 4-5 folds, leading to the generation of more structural information. Meantime, the aptamer binding signal could be readily amplified by the introduction of DNA signal amplification strategy, overcoming the drawback of fluorescence dilution during the ExM treatment. This platform enabled evaluation of ischemia-induced early stroke based on the morphological change of DS, highlighting a promising avenue for studying nanoscale structures in biological systems.
Collapse
Affiliation(s)
- Yuting Zhuo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Bo Fu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Ruizi Peng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Changbei Ma
- School of Life Sciences, Central South University, China
| | - Sitao Xie
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
37
|
Kylies D, Zimmermann M, Haas F, Schwerk M, Kuehl M, Brehler M, Czogalla J, Hernandez LC, Konczalla L, Okabayashi Y, Menzel J, Edenhofer I, Mezher S, Aypek H, Dumoulin B, Wu H, Hofmann S, Kretz O, Wanner N, Tomas NM, Krasemann S, Glatzel M, Kuppe C, Kramann R, Banjanin B, Schneider RK, Urbschat C, Arck P, Gagliani N, van Zandvoort M, Wiech T, Grahammer F, Sáez PJ, Wong MN, Bonn S, Huber TB, Puelles VG. Expansion-enhanced super-resolution radial fluctuations enable nanoscale molecular profiling of pathology specimens. NATURE NANOTECHNOLOGY 2023; 18:336-342. [PMID: 37037895 PMCID: PMC10115634 DOI: 10.1038/s41565-023-01328-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/13/2023] [Indexed: 06/19/2023]
Abstract
Expansion microscopy physically enlarges biological specimens to achieve nanoscale resolution using diffraction-limited microscopy systems1. However, optimal performance is usually reached using laser-based systems (for example, confocal microscopy), restricting its broad applicability in clinical pathology, as most centres have access only to light-emitting diode (LED)-based widefield systems. As a possible alternative, a computational method for image resolution enhancement, namely, super-resolution radial fluctuations (SRRF)2,3, has recently been developed. However, this method has not been explored in pathology specimens to date, because on its own, it does not achieve sufficient resolution for routine clinical use. Here, we report expansion-enhanced super-resolution radial fluctuations (ExSRRF), a simple, robust, scalable and accessible workflow that provides a resolution of up to 25 nm using LED-based widefield microscopy. ExSRRF enables molecular profiling of subcellular structures from archival formalin-fixed paraffin-embedded tissues in complex clinical and experimental specimens, including ischaemic, degenerative, neoplastic, genetic and immune-mediated disorders. Furthermore, as examples of its potential application to experimental and clinical pathology, we show that ExSRRF can be used to identify and quantify classical features of endoplasmic reticulum stress in the murine ischaemic kidney and diagnostic ultrastructural features in human kidney biopsies.
Collapse
Affiliation(s)
- Dominik Kylies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, Erlangen, Germany
| | - Marina Zimmermann
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Haas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Schwerk
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Kuehl
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Brehler
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Czogalla
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lola C Hernandez
- Cell Communication and Migration Laboratory, Department of Biochemistry and Molecular Cell Biology (IBMZ), Center for Experimental Medicine, Hamburg, Germany
| | - Leonie Konczalla
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yusuke Okabayashi
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Ilka Edenhofer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sam Mezher
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hande Aypek
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernhard Dumoulin
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hui Wu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Smilla Hofmann
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology and Division of Nephrology and Clinical Immunology, RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology and Division of Nephrology and Clinical Immunology, RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Bella Banjanin
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Rebekka K Schneider
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
- Institute for Cell and Tumor Biology, RWTH Aachen University, Aachen, Germany
| | - Christopher Urbschat
- Department of Obstetrics and Fetal Medicine, Division of Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Arck
- Department of Obstetrics and Fetal Medicine, Division of Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc van Zandvoort
- Department of Genetics and Cell Biology, Maastricht University, School for Oncology and Reproduction GROW, School for Mental Health and Neuroscience MHeNS, and School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Thorsten Wiech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pablo J Sáez
- Cell Communication and Migration Laboratory, Department of Biochemistry and Molecular Cell Biology (IBMZ), Center for Experimental Medicine, Hamburg, Germany
| | - Milagros N Wong
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
38
|
Chang TJB, Hsu JCC, Yang TT. Single-molecule localization microscopy reveals the ultrastructural constitution of distal appendages in expanded mammalian centrioles. Nat Commun 2023; 14:1688. [PMID: 36973278 PMCID: PMC10043031 DOI: 10.1038/s41467-023-37342-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Distal appendages (DAPs) are vital in cilia formation, mediating vesicular and ciliary docking to the plasma membrane during early ciliogenesis. Although numerous DAP proteins arranging a nine-fold symmetry have been studied using superresolution microscopy analyses, the extensive ultrastructural understanding of the DAP structure developing from the centriole wall remains elusive owing to insufficient resolution. Here, we proposed a pragmatic imaging strategy for two-color single-molecule localization microscopy of expanded mammalian DAP. Importantly, our imaging workflow enables us to push the resolution limit of a light microscope well close to a molecular level, thus achieving an unprecedented mapping resolution inside intact cells. Upon this workflow, we unravel the ultra-resolved higher-order protein complexes of the DAP and its associated proteins. Intriguingly, our images show that C2CD3, microtubule triplet, MNR, CEP90, OFD1, and ODF2 jointly constitute a unique molecular configuration at the DAP base. Moreover, our finding suggests that ODF2 plays an auxiliary role in coordinating and maintaining DAP nine-fold symmetry. Together, we develop an organelle-based drift correction protocol and a two-color solution with minimum crosstalk, allowing a robust localization microscopy imaging of expanded DAP structures deep into the gel-specimen composites.
Collapse
Affiliation(s)
- Ting-Jui Ben Chang
- Department of Physics, National Taiwan University, Taipei, Taiwan
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | | | - T Tony Yang
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
39
|
Wen G, Leen V, Rohand T, Sauer M, Hofkens J. Current Progress in Expansion Microscopy: Chemical Strategies and Applications. Chem Rev 2023; 123:3299-3323. [PMID: 36881995 DOI: 10.1021/acs.chemrev.2c00711] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Expansion microscopy (ExM) is a newly developed super-resolution technique, allowing visualization of biological targets at nanoscale resolution on conventional fluorescence microscopes. Since its introduction in 2015, many efforts have been dedicated to broaden its application range or increase the resolution that can be achieved. As a consequence, recent years have witnessed remarkable advances in ExM. This review summarizes recent progress in ExM, with the focus on the chemical aspects of the method, from chemistries for biomolecule grafting to polymer synthesis and the impact on biological analysis. The combination of ExM with other microscopy techniques, in search of additional resolution improvement, is also discussed. In addition, we compare pre- and postexpansion labeling strategies and discuss the impact of fixation methods on ultrastructure preservation. We conclude this review with a perspective on existing challenges and future directions. We believe that this review will provide a comprehensive understanding of ExM and facilitate its usage and further development.
Collapse
Affiliation(s)
- Gang Wen
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
| | - Volker Leen
- Chrometra Scientific, Kortenaken 3470, Belgium
| | - Taoufik Rohand
- Laboratory of Analytical and Molecular Chemistry, Faculty Polydisciplinaire of Safi, University Cadi Ayyad Marrakech, BP 4162, 46000 Safi, Morocco
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
40
|
Song DH, Song CW, Chung J, Jang EH, Kim H, Hur Y, Hur EM, Kim D, Chang JB. In situ silver nanoparticle development for molecular-specific biological imaging via highly accessible microscopies. NANOSCALE ADVANCES 2023; 5:1636-1650. [PMID: 36926569 PMCID: PMC10012848 DOI: 10.1039/d2na00449f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
In biological studies and diagnoses, brightfield (BF), fluorescence, and electron microscopy (EM) are used to image biomolecules inside cells. When compared, their relative advantages and disadvantages are obvious. BF microscopy is the most accessible of the three, but its resolution is limited to a few microns. EM provides a nanoscale resolution, but sample preparation is time-consuming. In this study, we present a new imaging technique, which we termed decoration microscopy (DecoM), and quantitative investigations to address the aforementioned issues in EM and BF microscopy. For molecular-specific EM imaging, DecoM labels proteins inside cells using antibodies bearing 1.4 nm gold nanoparticles (AuNPs) and grows silver layers on the AuNPs' surfaces. The cells are then dried without buffer exchange and imaged using scanning electron microscopy (SEM). Structures labeled with silver-grown AuNPs are clearly visible on SEM, even they are covered with lipid membranes. Using stochastic optical reconstruction microscopy, we show that the drying process causes negligible distortion of structures and that less structural deformation could be achieved through simple buffer exchange to hexamethyldisilazane. Using DecoM, we visualize the nanoscale alterations in microtubules by microtubule-severing proteins that cannot be observed with diffraction-limited fluorescence microscopy. We then combine DecoM with expansion microscopy to enable sub-micron resolution BF microscopy imaging. We first show that silver-grown AuNPs strongly absorb white light, and the structures labeled with them are clearly visible on BF microscopy. We then show that the application of AuNPs and silver development must follow expansion to visualize the labeled proteins clearly with sub-micron resolution.
Collapse
Affiliation(s)
- Dae-Hyeon Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology Daejeon Korea
| | - Chang Woo Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology Daejeon Korea
| | | | - Eun-Hae Jang
- Laboratory of Neuroscience, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University Seoul Korea
| | - Hyunwoo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology Daejeon Korea
| | - Yongsuk Hur
- BioMedical Research Center, Korea Advanced Institute of Science and Technology Daejeon Korea
| | - Eun-Mi Hur
- Laboratory of Neuroscience, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University Seoul Korea
- BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University Seoul Korea
| | - Doory Kim
- Department of Chemistry, Hanyang University Seoul Korea
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology Daejeon Korea
| |
Collapse
|
41
|
Cui Y, Zhang X, Li X, Lin J. Multiscale microscopy to decipher plant cell structure and dynamics. THE NEW PHYTOLOGIST 2023; 237:1980-1997. [PMID: 36477856 DOI: 10.1111/nph.18641] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
New imaging methodologies with high contrast and molecular specificity allow researchers to analyze dynamic processes in plant cells at multiple scales, from single protein and RNA molecules to organelles and cells, to whole organs and tissues. These techniques produce informative images and quantitative data on molecular dynamics to address questions that cannot be answered by conventional biochemical assays. Here, we review selected microscopy techniques, focusing on their basic principles and applications in plant science, discussing the pros and cons of each technique, and introducing methods for quantitative analysis. This review thus provides guidance for plant scientists in selecting the most appropriate techniques to decipher structures and dynamic processes at different levels, from protein dynamics to morphogenesis.
Collapse
Affiliation(s)
- Yaning Cui
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xi Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaojuan Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
42
|
Gallusser B, Maltese G, Di Caprio G, Vadakkan TJ, Sanyal A, Somerville E, Sahasrabudhe M, O’Connor J, Weigert M, Kirchhausen T. Deep neural network automated segmentation of cellular structures in volume electron microscopy. J Cell Biol 2023; 222:e202208005. [PMID: 36469001 PMCID: PMC9728137 DOI: 10.1083/jcb.202208005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Volume electron microscopy is an important imaging modality in contemporary cell biology. Identification of intracellular structures is a laborious process limiting the effective use of this potentially powerful tool. We resolved this bottleneck with automated segmentation of intracellular substructures in electron microscopy (ASEM), a new pipeline to train a convolutional neural network to detect structures of a wide range in size and complexity. We obtained dedicated models for each structure based on a small number of sparsely annotated ground truth images from only one or two cells. Model generalization was improved with a rapid, computationally effective strategy to refine a trained model by including a few additional annotations. We identified mitochondria, Golgi apparatus, endoplasmic reticulum, nuclear pore complexes, caveolae, clathrin-coated pits, and vesicles imaged by focused ion beam scanning electron microscopy. We uncovered a wide range of membrane-nuclear pore diameters within a single cell and derived morphological metrics from clathrin-coated pits and vesicles, consistent with the classical constant-growth assembly model.
Collapse
Affiliation(s)
- Benjamin Gallusser
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Giorgio Maltese
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
| | - Giuseppe Di Caprio
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Tegy John Vadakkan
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
| | - Anwesha Sanyal
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Elliott Somerville
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
| | - Mihir Sahasrabudhe
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Université Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes, Gif-sur-Yvette, France
| | - Justin O’Connor
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Martin Weigert
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tom Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| |
Collapse
|
43
|
Nonaka H, Mino T, Sakamoto S, Oh JH, Watanabe Y, Ishikawa M, Tsushima A, Amaike K, Kiyonaka S, Tamura T, Aricescu AR, Kakegawa W, Miura E, Yuzaki M, Hamachi I. Revisiting PFA-mediated tissue fixation chemistry: FixEL enables trapping of small molecules in the brain to visualize their distribution changes. Chem 2023; 9:523-540. [PMID: 38094901 PMCID: PMC7615374 DOI: 10.1016/j.chempr.2022.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Various small molecules have been used as functional probes for tissue imaging in medical diagnosis and pharmaceutical drugs for disease treatment. The spatial distribution, target selectivity, and diffusion/excretion kinetics of small molecules in structurally complicated specimens are critical for function. However, robust methods for precisely evaluating these parameters in the brain have been limited. Herein, we report a new method termed "fixation-driven chemical cross-linking of exogenous ligands (FixEL)," which traps and images exogenously administered molecules of interest (MOIs) in complex tissues. This method relies on protein-MOI interactions and chemical cross-linking of amine-tethered MOI with paraformaldehyde used for perfusion fixation. FixEL is used to obtain images of the distribution of the small molecules, which addresses selective/nonselective binding to proteins, time-dependent localization changes, and diffusion/retention kinetics of MOIs such as the scaffold of PET tracer derivatives or drug-like small molecules.
Collapse
Affiliation(s)
- Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Tokyo 102-0075, Japan
| | - Takeharu Mino
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Seiji Sakamoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Jae Hoon Oh
- ERATO (Exploratory Research for Advanced Technology, JST), Tokyo 102-0075, Japan
| | - Yu Watanabe
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Mamoru Ishikawa
- ERATO (Exploratory Research for Advanced Technology, JST), Tokyo 102-0075, Japan
| | - Akihiro Tsushima
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Kazuma Amaike
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Shigeki Kiyonaka
- ERATO (Exploratory Research for Advanced Technology, JST), Tokyo 102-0075, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Tokyo 102-0075, Japan
| | - A. Radu Aricescu
- Division of Structural Biology, University of Oxford, Oxford OX3 7BN, UK
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Wataru Kakegawa
- ERATO (Exploratory Research for Advanced Technology, JST), Tokyo 102-0075, Japan
- Department of Neurophysiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Eriko Miura
- Department of Neurophysiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Michisuke Yuzaki
- Department of Neurophysiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Tokyo 102-0075, Japan
| |
Collapse
|
44
|
Arizono M, Idziak A, Quici F, Nägerl UV. Getting sharper: the brain under the spotlight of super-resolution microscopy. Trends Cell Biol 2023; 33:148-161. [PMID: 35906123 DOI: 10.1016/j.tcb.2022.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023]
Abstract
Brain cells such as neurons and astrocytes exhibit an extremely elaborate morphology, and their functional specializations like synapses and glial processes often fall below the resolution limit of conventional light microscopy. This is a huge obstacle for neurobiologists because the nanoarchitecture critically shapes fundamental functions like synaptic transmission and Ca2+ signaling. Super-resolution microscopy can overcome this problem, offering the chance to visualize the structural and molecular organization of brain cells in a living and dynamic tissue context, unlike traditional methods like electron microscopy or atomic force microscopy. This review covers the basic principles of the main super-resolution microscopy techniques in use today and explains how their specific strengths can illuminate the nanoscale mechanisms that govern brain physiology.
Collapse
Affiliation(s)
- Misa Arizono
- Interdisciplinary Institute for Neuroscience, University of Bordeaux and CNRS, Bordeaux, France; Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Agata Idziak
- Interdisciplinary Institute for Neuroscience, University of Bordeaux and CNRS, Bordeaux, France
| | - Federica Quici
- Interdisciplinary Institute for Neuroscience, University of Bordeaux and CNRS, Bordeaux, France
| | - U Valentin Nägerl
- Interdisciplinary Institute for Neuroscience, University of Bordeaux and CNRS, Bordeaux, France.
| |
Collapse
|
45
|
Affiliation(s)
- Jinrun Dong
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
46
|
Affiliation(s)
- Sven Truckenbrodt
- Convergent Research, E11 Bio. 1600 Harbor Bay Parkway, Alameda, California94502, United States
| |
Collapse
|
47
|
Sato Y, Yamamoto H, Kato H, Tanii T, Sato S, Hirano-Iwata A. Microfluidic cell engineering on high-density microelectrode arrays for assessing structure-function relationships in living neuronal networks. Front Neurosci 2023; 16:943310. [PMID: 36699522 PMCID: PMC9868575 DOI: 10.3389/fnins.2022.943310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023] Open
Abstract
Neuronal networks in dissociated culture combined with cell engineering technology offer a pivotal platform to constructively explore the relationship between structure and function in living neuronal networks. Here, we fabricated defined neuronal networks possessing a modular architecture on high-density microelectrode arrays (HD-MEAs), a state-of-the-art electrophysiological tool for recording neural activity with high spatial and temporal resolutions. We first established a surface coating protocol using a cell-permissive hydrogel to stably attach a polydimethylsiloxane microfluidic film on the HD-MEA. We then recorded the spontaneous neural activity of the engineered neuronal network, which revealed an important portrait of the engineered neuronal network-modular architecture enhances functional complexity by reducing the excessive neural correlation between spatially segregated modules. The results of this study highlight the impact of HD-MEA recordings combined with cell engineering technologies as a novel tool in neuroscience to constructively assess the structure-function relationships in neuronal networks.
Collapse
Affiliation(s)
- Yuya Sato
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan,Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Hideaki Yamamoto
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan,*Correspondence: Hideaki Yamamoto,
| | - Hideyuki Kato
- Faculty of Science and Technology, Oita University, Oita, Japan
| | - Takashi Tanii
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Shigeo Sato
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| | - Ayumi Hirano-Iwata
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan,Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan,Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| |
Collapse
|
48
|
Lu CH, Huang CY, Tian X, Chen P, Chen BC. Large-scale expanded sample imaging with tiling lattice lightsheet microscopy. Int J Biochem Cell Biol 2023; 154:106340. [PMID: 36442734 DOI: 10.1016/j.biocel.2022.106340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
The ability to observe biological nanostructures forms a vital step in understanding their functions. Thanks to the invention of expansion microscopy (ExM) technology, super-resolution features of biological samples can now be easily visualized with conventional light microscopies. However, when the sample is physically expanded, the demand for deep and precise 3D imaging increases. Lattice lightsheet microscopy (LLSM), which utilizes a planar illumination that is confined within the imaging depth of high numerical aperture (NA=1.1) detection objective, fulfils such requirements. In addition, optical tiling could be implemented to increase the field of view (FoV) by moving the lightsheet without mechanically moving the samples or the objective for high-precision 3D imaging. In this review article, we will explain the principle of the tiling lattice lightsheet microscopy (tLLSM), which combines optical tiling and lattice lightsheet, and discuss the applications of tLLSM in ExM.
Collapse
Affiliation(s)
- Chieh-Han Lu
- Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan; Institute and Undergraduate Program of Electro-Optical Engineering, National Taiwan Normal University, Taipei 116, Taiwan.
| | - Cheng-Yu Huang
- Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Xuejiao Tian
- Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan; Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan; Institute of Physics, Academia Sinica, Taipei 115, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
49
|
Wei X, Liu Q, Liu M, Wang Y, Meijering E. 3D Soma Detection in Large-Scale Whole Brain Images via a Two-Stage Neural Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:148-157. [PMID: 36103445 DOI: 10.1109/tmi.2022.3206605] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
3D soma detection in whole brain images is a critical step for neuron reconstruction. However, existing soma detection methods are not suitable for whole mouse brain images with large amounts of data and complex structure. In this paper, we propose a two-stage deep neural network to achieve fast and accurate soma detection in large-scale and high-resolution whole mouse brain images (more than 1TB). For the first stage, a lightweight Multi-level Cross Classification Network (MCC-Net) is proposed to filter out images without somas and generate coarse candidate images by combining the advantages of the multi convolution layer's feature extraction ability. It can speed up the detection of somas and reduce the computational complexity. For the second stage, to further obtain the accurate locations of somas in the whole mouse brain images, the Scale Fusion Segmentation Network (SFS-Net) is developed to segment soma regions from candidate images. Specifically, the SFS-Net captures multi-scale context information and establishes a complementary relationship between encoder and decoder by combining the encoder-decoder structure and a 3D Scale-Aware Pyramid Fusion (SAPF) module for better segmentation performance. The experimental results on three whole mouse brain images verify that the proposed method can achieve excellent performance and provide the reconstruction of neurons with beneficial information. Additionally, we have established a public dataset named WBMSD, including 798 high-resolution and representative images ( 256 ×256 ×256 voxels) from three whole mouse brain images, dedicated to the research of soma detection, which will be released along with this paper.
Collapse
|
50
|
Romshin AM, Osypov AA, Popova IY, Zeeb VE, Sinogeykin AG, Vlasov II. Heat Release by Isolated Mouse Brain Mitochondria Detected with Diamond Thermometer. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:98. [PMID: 36616008 PMCID: PMC9823591 DOI: 10.3390/nano13010098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The production of heat by mitochondria is critical for maintaining body temperature, regulating metabolic rate, and preventing oxidative damage to mitochondria and cells. Until the present, mitochondrial heat production has been characterized only by methods based on fluorescent probes, which are sensitive to environmental variations (viscosity, pH, ionic strength, quenching, etc.). Here, for the first time, the heat release of isolated mitochondria was unambiguously measured by a diamond thermometer (DT), which is absolutely indifferent to external non-thermal parameters. We show that during total uncoupling of transmembrane potential by CCCP application, the temperature near the mitochondria rises by 4-22 °C above the ambient temperature with an absolute maximum of 45 °C. Such a broad variation in the temperature response is associated with the heterogeneity of the mitochondria themselves as well as their aggregations in the isolated suspension. Spontaneous temperature bursts with comparable amplitude were also detected prior to CCCP application, which may reflect involvement of some mitochondria to ATP synthesis or membrane potential leaking to avoid hyperproduction of reactive oxygen species. The results obtained with the diamond temperature sensor shed light on the "hot mitochondria" paradox.
Collapse
Affiliation(s)
- Alexey M. Romshin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander A. Osypov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142292 Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia
| | - Irina Yu. Popova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142292 Moscow, Russia
| | - Vadim E. Zeeb
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142292 Moscow, Russia
| | | | - Igor I. Vlasov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|