1
|
Cardinale L, Beutner GL, Bemis CY, Weix DJ, Stahl SS. Non-Innocent Role of Sacrificial Anodes in Electrochemical Nickel-Catalyzed C(sp 2)-C(sp 3) Cross-Electrophile Coupling. J Am Chem Soc 2024. [PMID: 39545940 DOI: 10.1021/jacs.4c10979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Sacrificial anodes composed of inexpensive metals such as Zn, Fe, and Mg are widely used to support electrochemical nickel-catalyzed cross-electrophile coupling (XEC) reactions, in addition to other reductive electrochemical transformations. Such anodes are appealing because they provide a stable counter-electrode potential and typically avoid interference with the reductive chemistry. The present study outlines the development of an electrochemical Ni-catalyzed XEC reaction that streamlines access to a key pharmaceutical intermediate. Metal ions derived from sacrificial anode oxidation, however, directly contribute to homocoupling and proto-dehalogenation side products that are commonly formed in chemical and electrochemical Ni-catalyzed XEC reactions. Use of a divided cell limits interference by the anode-derived metal ions and supports a high product yield with negligible side product formation, introducing a strategy to overcome one of the main limitations of Ni-catalyzed XEC.
Collapse
Affiliation(s)
- Luana Cardinale
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Gregory L Beutner
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Christopher Y Bemis
- Bristol Myers Squibb, Chemical Process Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Daniel J Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Liu T, Luo Y, Liu Y. Construction of fused heterocycles by visible-light induced dearomatization of nonactivated arenes. Org Biomol Chem 2024. [PMID: 39469871 DOI: 10.1039/d4ob01530d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
A diverse array of fused [6-6-5] tricyclic heterocycles has been synthesized via the dimerization and dearomative cyclization of benzene derivatives under visible light irradiation. The initiation of the cascade process is likely from aryloxy radicals, engendered through proton-coupled electron transfer by the photoexcited vinylidene ortho-quinone methide (VQM) and a Brønsted base.
Collapse
Affiliation(s)
- Tianyu Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yong Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| |
Collapse
|
3
|
Regnier M, Vega C, Ioannou DI, Noël T. Enhancing electrochemical reactions in organic synthesis: the impact of flow chemistry. Chem Soc Rev 2024; 53:10741-10760. [PMID: 39297689 DOI: 10.1039/d4cs00539b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Utilizing electrons directly offers significant potential for advancing organic synthesis by facilitating novel reactivity and enhancing selectivity under mild conditions. As a result, an increasing number of organic chemists are exploring electrosynthesis. However, the efficacy of electrochemical transformations depends critically on the design of the electrochemical cell. Batch cells often suffer from limitations such as large inter-electrode distances and poor mass transfer, making flow cells a promising alternative. Implementing flow cells, however, requires a foundational understanding of microreactor technology. In this review, we briefly outline the applications of flow electrosynthesis before providing a comprehensive examination of existing flow reactor technologies. Our goal is to equip organic chemists with the insights needed to tailor their electrochemical flow cells to meet specific reactivity requirements effectively. We also highlight the application of reactor designs in scaling up electrochemical processes and integrating high-throughput experimentation and automation. These advancements not only enhance the potential of flow electrosynthesis for the synthetic community but also hold promise for both academia and industry.
Collapse
Affiliation(s)
- Morgan Regnier
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Clara Vega
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Dimitris I Ioannou
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Cardozo C, Pizarro AM. Facile Method to Obtain Functionalised η 6-Bound Arenes in Ru(II) and Os(II) Half-Sandwich Complexes. Chemistry 2024; 30:e202402799. [PMID: 39159213 DOI: 10.1002/chem.202402799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Half-sandwich Ru(II)- and Os(II)-arene complexes have great potential for catalytic and biological applications. The possibility of fine-tuning their chemical reactivity by including modifications in the ligands around the metal adds to their many advantages. However, structural modifications at the η6-bound arene have had significant synthetic limitations, particularly in the design of Os(II)-tethered complexes. For the first time, we have employed a practical C(sp3)-C(sp2) coupling to obtain 28 new Ru(II) and Os(II) η6-arene half-sandwich complexes with a wide variety of arene functionalities, including those that enable the formation of tether rings, such as quinoline, and coumarin. The introduction of novel functional groups at the arene in Ru(II)- and Os(II) half-sandwich complexes can broaden the synthetic scope of this type of organometallic complexes, and help to take full advantage of their structural diversity, for example, in intracellular catalysis.
Collapse
|
5
|
Ge G, Li F, Yang M, Zhao Z, Hou G, Zhang C, Li X. In Situ Molecular Reconfiguration of Pyrene Redox-Active Molecules for High-Performance Aqueous Organic Flow Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412197. [PMID: 39428902 DOI: 10.1002/adma.202412197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/05/2024] [Indexed: 10/22/2024]
Abstract
Aqueous organic flow batteries (AOFBs) hold great potential for large-scale energy storage, however, scalable, green, and economical synthetic methods for stable organic redox-active molecules (ORAMs) are still required for their practical applications. Herein, pyrene-based ORAMs are obtained via an in situ organic electrolysis strategy in a flow cell. It is revealed that the water attacking pyrenes restructured molecules to produce a variety of isomers and dimers during the electrolysis, which can be modulated by regulating the local electron cloud density and steric hindrance of pyrene precursors. As a result, the molecularly reconfigured pyrene-based catholytes, even without any further purification, achieved a high electrolyte utilization of ≈96% and volumetric capacity above 50 Ah L-1. Inspiringly, remarkable cell stability with almost no capacity decay for ≈70 days is achieved, benefiting from the robust aromatic structure of the pyrene cores. The insights into the in situ electrosynthesis of pyrene-based ORAMs provided in the work will provide guidance for designing ultra-stable ORAMs for AOFB applications.
Collapse
Affiliation(s)
- Guangxu Ge
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Fan Li
- University of Chinese Academy of Sciences, Beijing, 100039, China
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Min Yang
- University of Chinese Academy of Sciences, Beijing, 100039, China
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Ziming Zhao
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Changkun Zhang
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Xianfeng Li
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| |
Collapse
|
6
|
Das A, Kumaran S, Ravi Sankar HS, Premkumar JR, Sundararaju B. A Dual Cobalt-Photoredox Catalytic Approach for Asymmetric Dearomatization of Indoles with Aryl Amides via C-H Activation. Angew Chem Int Ed Engl 2024; 63:e202406195. [PMID: 38896502 DOI: 10.1002/anie.202406195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
In this study, we unveil a novel method for the asymmetric dearomatization of indoles under cobalt/photoredox catalysis. By strategically activating C-H bonds of amides and subsequent migratory insertion of π-bonds present in indole as reactive partner, we achieve syn-selective tetrahydro-5H-indolo[2,3-c]isoquinolin-5-one derivatives with excellent yields and enantiomeric excesses of up to >99 %. The developed method operates without a metal oxidant, relying solely on oxygen as the oxidant and employing an organic dye as a photocatalyst under irradiation. Control experiments and stoichiometric studies elucidate the reversible nature of the enantiodetermining C-H activation step, albeit not being rate-determining. This study not only expands the horizon of cobalt-catalyzed asymmetric C-H bond functionalization, but also showcases the potential synergy between cobalt and photoredox catalysis in enabling asymmetric synthesis of complex molecules.
Collapse
Affiliation(s)
- Abir Das
- Department of chemistry, Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh, India-, 208 016
| | - Subramani Kumaran
- Department of chemistry, Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh, India-, 208 016
| | | | - J Richard Premkumar
- PG & Research Department of Chemistry, Bishop Heber College, Tiruchirappalli, 620017, Tamil Nadu, India
| | - Basker Sundararaju
- Department of chemistry, Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh, India-, 208 016
| |
Collapse
|
7
|
Williams AW, Gilmore KM. Transition-Metal Free Amination and Hydrodefluorination of Aryl Fluorides Promoted by Solvated Electrons. Chemistry 2024:e202403410. [PMID: 39325980 DOI: 10.1002/chem.202403410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Cross-coupling reactions for constructing C-N bonds represent a pivotal advancement in chemical science. Traditional methodologies, including nucleophilic aromatic substitution (SNAr) and transition metal-catalyzed cross-couplings, have limitations concerning aryl scope, reliance on toxic and costly transition-metal catalysts, and issues related to atom economy and waste generation from ligands and additives. In this work, we introduce a novel method for aminating neutral, electron-rich, and electron-deficient aryl halides, eliminating the need for transition metals. Our approach involves the activation of aryl halides using solvated electrons generated from granulated lithium and sonication. This serves as a sustainable source of reducing power, facilitating the efficient formation of C-N bonds under near ambient conditions. Competitive selectivity studies between halide and ester functionalities were explored. Reaction scope and conducted mechanistic studies which supported the proposed radical-nucleophilic substitution (SRN1) mechanism for the reaction. Notably, the developed reaction has a highly competitive reductive dehalogenation pathway during the C-N coupling reaction, and this mechanistic divergency was thoroughly explored. This work not only broadens the scope of C-N coupling reactions which typically employs aryl bromides and iodides and rarely aryl fluorides which is also equally abundant, but also introduces a new way to do C-N coupling reactions using solvated electrons.
Collapse
Affiliation(s)
- Anietie W Williams
- Department of Chemistry, University of Connecticut, 55 N Eagleville Rd, Storrs, CT, 06269
| | - Kerry M Gilmore
- Department of Chemistry, University of Connecticut, 55 N Eagleville Rd, Storrs, CT, 06269
| |
Collapse
|
8
|
Li H, Li Y, Chen J, Lu L, Wang P, Hu J, Ma R, Gao Y, Yi H, Li W, Lei A. Scalable and Selective Electrochemical Hydrogenation of Polycyclic Arenes. Angew Chem Int Ed Engl 2024; 63:e202407392. [PMID: 39031667 DOI: 10.1002/anie.202407392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 07/22/2024]
Abstract
The reduction of aromatic compounds constitutes a fundamental and ongoing area of investigation. The selective reduction of polycyclic aromatic compounds to give either fully or partially reduced products remains a challenge, especially in applications to complex molecules at scale. Herein, we present a selective electrochemical hydrogenation of polycyclic arenes conducted under mild conditions. A noteworthy achievement of this approach is the ability to finely control both the complete and partial reduction of specific aromatic rings within polycyclic arenes by judiciously varying the reaction solvents. Mechanistic investigations elucidate the pivotal role played by in situ proton generation and interface regulation in governing reaction selectivity. The reductive electrochemical conditions show a very high level of functional-group tolerance. Furthermore, this methodology represents an easily scalable reduction (demonstrated by the reduction of 1 kg scale starting material) using electrochemical flow chemistry to give key intermediates for the synthesis of specific drugs.
Collapse
Affiliation(s)
- Hao Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Yan Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Jiaye Chen
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Lijun Lu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Pengjie Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Jingcheng Hu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Rui Ma
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Yiming Gao
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Wu Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P.R. China
| |
Collapse
|
9
|
Mollik P, Drees M, Frantz AM, Halter DP. Electrocatalytic Transfer Hydrogenation of 1-Octene with [( tBuPCP)Ir(H)(Cl)] and Water. Angew Chem Int Ed Engl 2024; 63:e202317844. [PMID: 38757787 DOI: 10.1002/anie.202317844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Electrocatalytic hydrogenation of 1-octene as non-activated model substrate with neutral water as H-donor is reported, using [(tBuPCP)Ir(H)(Cl)] (1) as the catalyst, to form octane with high faradaic efficiency (FE) of 96 % and a kobs of 87 s-1. Cyclic voltammetry with 1 revealed that two subsequent reductions trigger the elimination of Cl- and afford the highly reactive anionic Ir(I) hydride complex [(tBuPCP)Ir(H)]- (2), a previously merely proposed intermediate for which we now report first experimental data by mass spectrometry. In absence of alkene, the stoichiometric electrolysis of 1 in THF with water selectively affords the Ir(III) dihydride complex [(tBuPCP)Ir(H)2] (3) in 88 % FE from the reaction of 2 with H2O. Complex 3 then hydrogenates the alkene in classical fashion. The presented electro-hydrogenation works with extremely high FE, because the iridium hydrides are water stable, which prevents H2 formation. Even in strongly alkaline conditions (Bu4NOH added), the electro-hydrogenation of 1-octene with 1 also proceeds cleanly (89 % FE), suggesting a highly robust process that may rely on H2O activation, reminiscent to transfer hydrogenation pathways, instead of classical H+ reduction. DFT calculations confirmed oxidative addition of H2O as a key step in this context.
Collapse
Affiliation(s)
- Patrick Mollik
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Markus Drees
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Alexander M Frantz
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Dominik P Halter
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstr. 4, 85748, Garching, Germany
| |
Collapse
|
10
|
Brzezinski C, LeBlanc AR, Clerici MG, Wuest WM. Mild Photochemical Reduction of Alkenes and Heterocycles via Thiol-Mediated Formate Activation. Org Lett 2024; 26:5534-5538. [PMID: 38915178 PMCID: PMC11232005 DOI: 10.1021/acs.orglett.4c01894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
The reduction of alkenes to their respective alkanes is one of the most important transformations in organic chemistry, given the abundance of natural and commercial olefins. Metal-catalyzed hydrogenation is the most common way to reduce alkenes; however, the use of H2 gas in combination with the precious metals required for these conditions can be impractical, dangerous, and expensive. More complex substrates often require extremely high pressures of H2, further emphasizing the safety concerns associated with these hydrogenation reactions. Here we report a safe, cheap, and practical photochemical alkene reduction using a readily available organophotocatalyst, catalytic thiol, and formate. These conditions reduce a variety of di-, tri-, and tetra-substituted alkenes in good yield as well as dearomatize pharmaceutically relevant heterocycles to generate sp3-rich isosteres of benzofurans and indoles. These formal-hydrogenation conditions tolerate a broad range of functionalities that would otherwise be sensitive to typical hydrogenations and are likely to be important for industry applications.
Collapse
Affiliation(s)
| | | | - Madeline G. Clerici
- Department of Chemistry, Emory
University, Atlanta, Georgia 30322, United States
| | - William M. Wuest
- Department of Chemistry, Emory
University, Atlanta, Georgia 30322, United States
| |
Collapse
|
11
|
Avanthay M, Goodrich OH, Tiemessen D, Alder CM, George MW, Lennox AJJ. Bromide-Mediated Silane Oxidation: A Practical Counter-Electrode Process for Nonaqueous Deep Reductive Electrosynthesis. JACS AU 2024; 4:2220-2227. [PMID: 38938809 PMCID: PMC11200245 DOI: 10.1021/jacsau.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024]
Abstract
The counter-electrode process of an organic electrochemical reaction is integral for the success and sustainability of the process. Unlike for oxidation reactions, counter-electrode processes for reduction reactions remain limited, especially for deep reductions that apply very negative potentials. Herein, we report the development of a bromide-mediated silane oxidation counter-electrode process for nonaqueous electrochemical reduction reactions in undivided cells. The system is found to be suitable for replacing either sacrificial anodes or a divided cell in several reported reactions. The conditions are metal-free, use inexpensive reagents and a graphite anode, are scalable, and the byproducts are reductively stable and readily removed. We showcase the translation of a previously reported divided cell reaction to a >100 g scale in continuous flow.
Collapse
Affiliation(s)
- Mickaël
E. Avanthay
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Oliver H. Goodrich
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - David Tiemessen
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Catherine M. Alder
- Modalities
Platform Technologies, Molecular Modalities Discovery, GSK Medicines Research Centre, Stevenage SG1 2NY, U.K.
| | - Michael W. George
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | | |
Collapse
|
12
|
Ji P, Duan K, Li M, Wang Z, Meng X, Zhang Y, Wang W. Photochemical dearomative skeletal modifications of heteroaromatics. Chem Soc Rev 2024; 53:6600-6624. [PMID: 38817197 PMCID: PMC11181993 DOI: 10.1039/d4cs00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Indexed: 06/01/2024]
Abstract
Dearomatization has emerged as a powerful tool for rapid construction of 3D molecular architectures from simple, abundant, and planar (hetero)arenes. The field has evolved beyond simple dearomatization driven by new synthetic technology development. With the renaissance of photocatalysis and expansion of the activation mode, the last few years have witnessed impressive developments in innovative photochemical dearomatization methodologies, enabling skeletal modifications of dearomatized structures. They offer truly efficient and useful tools for facile construction of highly complex structures, which are viable for natural product synthesis and drug discovery. In this review, we aim to provide a mechanistically insightful overview on these innovations based on the degree of skeletal alteration, categorized into dearomative functionalization and skeletal editing, and to highlight their synthetic utilities.
Collapse
Affiliation(s)
- Peng Ji
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | - Kuaikuai Duan
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Menglong Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Zhiyuan Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Meng
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| | - Yueteng Zhang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Wei Wang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| |
Collapse
|
13
|
Zhang W, Killian L, Thevenon A. Electrochemical recycling of polymeric materials. Chem Sci 2024; 15:8606-8624. [PMID: 38873080 PMCID: PMC11168094 DOI: 10.1039/d4sc01754d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Polymeric materials play a pivotal role in our modern world, offering a diverse range of applications. However, they have been designed with end-properties in mind over recyclability, leading to a crisis in their waste management. The recent emergence of electrochemical recycling methodologies for polymeric materials provides new perspectives on closing their life cycle, and to a larger extent, the plastic loop by transforming plastic waste into monomers, building blocks, or new polymers. In this context, we summarize electrochemical strategies developed for the recovery of building blocks, the functionalization of polymer chains as well as paired electrolysis and discuss how they can make an impact on plastic recycling, especially compared to traditional thermochemical approaches. Additionally, we explore potential directions that could revolutionize research in electrochemical plastic recycling, addressing associated challenges.
Collapse
Affiliation(s)
- Weizhe Zhang
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University Universiteitsweg 99 Utrecht The Netherlands
| | - Lars Killian
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University Universiteitsweg 99 Utrecht The Netherlands
| | - Arnaud Thevenon
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University Universiteitsweg 99 Utrecht The Netherlands
| |
Collapse
|
14
|
Liu DH, Ma J. Recent Advances in Dearomative Partial Reduction of Benzenoid Arenes. Angew Chem Int Ed Engl 2024; 63:e202402819. [PMID: 38480464 DOI: 10.1002/anie.202402819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 04/11/2024]
Abstract
Dearomative partial reduction is an extraordinary approach for transforming benzenoid arenes and has been well-known for many decades, as exemplified by the dehydrogenation of Birch reduction and the hydroarylation of Crich addition. Despite its remarkable importance in synthesis, this field has experienced slow progress over the last half-century. However, a revival has been observed with the recent introduction of electrochemical and photochemical methods. In this Minireview, we summarize the recent advancements in dearomative partial reduction of benzenoid arenes, including dihydrogenation, hydroalkylation, arylation, alkenylation, amination, borylation and others. Further, the intriguing utilization of dearomative partial reduction in the synthesis of natural products is also emphasized. It is anticipated that this Minireview will stimulate further progress in arene dearomative transformations.
Collapse
Affiliation(s)
- De-Hai Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiajia Ma
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
15
|
Nallaparaju JV, Satsi R, Merzhyievskyi D, Jarg T, Aav R, Kananovich DG. Mechanochemical Birch Reduction with Low Reactive Alkaline Earth Metals. Angew Chem Int Ed Engl 2024; 63:e202319449. [PMID: 38436590 DOI: 10.1002/anie.202319449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 03/05/2024]
Abstract
Birch reduction and similar dissolved metal-type transformations hold significant importance in the organic synthesis toolbox. Historically, the field has been dominated by alkali metal reductants. In this study, we report that largely neglected, low-reactive alkaline earth metals can become powerful and affordable reductants when used in a ball mill under essentially solvent-free conditions, in the presence of ethylenediamine and THF as liquid additives. Calcium can reduce both electron-deficient and electron-rich arenes, with yields of products similar to those obtained with lithium metal. Magnesium reveals enhanced reducing power, enabling the reduction of benzoic acids while keeping electron-rich aromatic moieties intact and allows for chemoselective transformations. The developed mechanochemical approach uses readily available and safer-to-handle metals, operates under air and ambient temperature conditions, and can be used for gram-scale preparations. Finally, we demonstrate that the developed conditions can be used for other dissolved metal-type reductive transformations, including reductive amination, deoxygenation, dehalogenation, alkene and alkyne reductions.
Collapse
Affiliation(s)
- Jagadeesh Varma Nallaparaju
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Riin Satsi
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Danylo Merzhyievskyi
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
- Department of Chemistry of Bioactive Nitrogen-containing Heterocyclic Bases, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Academician Kukhar Str. 1, 02094, Kyiv, Ukraine
| | - Tatsiana Jarg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Riina Aav
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Dzmitry G Kananovich
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| |
Collapse
|
16
|
Ware SD, Zhang W, Guan W, Lin S, See KA. A guide to troubleshooting metal sacrificial anodes for organic electrosynthesis. Chem Sci 2024; 15:5814-5831. [PMID: 38665512 PMCID: PMC11041367 DOI: 10.1039/d3sc06885d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 04/28/2024] Open
Abstract
The development of reductive electrosynthetic reactions is often enabled by the oxidation of a sacrificial metal anode, which charge-balances the reductive reaction of interest occurring at the cathode. The metal oxidation is frequently assumed to be straightforward and innocent relative to the chemistry of interest, but several processes can interfere with ideal sacrificial anode behavior, thereby limiting the success of reductive electrosynthetic reactions. These issues are compounded by a lack of reported observations and characterization of the anodes themselves, even when a failure at the anode is observed. Here, we weave lessons from electrochemistry, interfacial characterization, and organic synthesis to share strategies for overcoming issues related to sacrificial anodes in electrosynthesis. We highlight common but underexplored challenges with sacrificial anodes that cause reactions to fail, including detrimental side reactions between the anode or its cations and the components of the organic reaction, passivation of the anode surface by an insulating native surface film, accumulation of insulating byproducts at the anode surface during the reaction, and competitive reduction of sacrificial metal cations at the cathode. For each case, we propose experiments to diagnose and characterize the anode and explore troubleshooting strategies to overcome the challenge. We conclude by highlighting open questions in the field of sacrificial-anode-driven electrosynthesis and by indicating alternatives to traditional sacrificial anodes that could streamline reaction optimization.
Collapse
Affiliation(s)
- Skyler D Ware
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Wendy Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Weiyang Guan
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| | - Kimberly A See
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| |
Collapse
|
17
|
Brachi M, El Housseini W, Beaver K, Jadhav R, Dantanarayana A, Boucher DG, Minteer SD. Advanced Electroanalysis for Electrosynthesis. ACS ORGANIC & INORGANIC AU 2024; 4:141-187. [PMID: 38585515 PMCID: PMC10995937 DOI: 10.1021/acsorginorgau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 04/09/2024]
Abstract
Electrosynthesis is a popular, environmentally friendly substitute for conventional organic methods. It involves using charge transfer to stimulate chemical reactions through the application of a potential or current between two electrodes. In addition to electrode materials and the type of reactor employed, the strategies for controlling potential and current have an impact on the yields, product distribution, and reaction mechanism. In this Review, recent advances related to electroanalysis applied in electrosynthesis were discussed. The first part of this study acts as a guide that emphasizes the foundations of electrosynthesis. These essentials include instrumentation, electrode selection, cell design, and electrosynthesis methodologies. Then, advances in electroanalytical techniques applied in organic, enzymatic, and microbial electrosynthesis are illustrated with specific cases studied in recent literature. To conclude, a discussion of future possibilities that intend to advance the academic and industrial areas is presented.
Collapse
Affiliation(s)
- Monica Brachi
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Wassim El Housseini
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Kevin Beaver
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Rohit Jadhav
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Ashwini Dantanarayana
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Dylan G. Boucher
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
18
|
Saha J, Banerjee S, Malo S, Das AK, Das I. A Torquoselective Thermal 6π-Electrocyclization Approach to 1,4-Cyclohexadienes via Solvent-Aided Proton Transfer: Experimental and Theoretical Studies. Chemistry 2024; 30:e202304009. [PMID: 38179806 DOI: 10.1002/chem.202304009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/06/2024]
Abstract
The thermal 6π-electrocyclization of hexatriene typically delivers 1,3-cyclohexadiene (1,3-CHD). However, there is only limited success in directly synthesizing 1,4-cyclohexadiene (1,4-CHD) using such an approach, probably due to the difficulty in realizing thermally-forbidden 1,3-hydride shift after electrocyclic ring closure. The present study shows that by heating (2E,4E,6E)-hexatrienes bearing ester or ketone substituents at the C1-position in a mixture of toluene/MeOH or EtOH (2 : 1) solvents at 90-100 °C, 1,4-CHDs can be selectively synthesized. This is achieved through a torquoselective disrotatory 6π-electrocyclic ring closure followed by a proton-transfer process. The success of this method depends on the polar protic solvent-assisted intramolecular proton transfer from 1,3-CHD to 1,4-CHD, which has been confirmed by deuterium-labeling experiments. There are no reports to date for such a solvent-assisted isomerization. Density functional theory (DFT) studies have suggested that forming 1,3-CHD and subsequent isomerization is a thermodynamically feasible process, regardless of the functional groups involved. Two possible successive polar solvent-assisted proton-transfer pathways have been identified for isomerization.
Collapse
Affiliation(s)
- Jayanta Saha
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Soumadip Banerjee
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata, 700032, India
| | - Sidhartha Malo
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhijit Kumar Das
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata, 700032, India
| | - Indrajit Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
19
|
Dequina HJ, Vine LE, Robey JT, Raskopf WT, Schomaker JM. Progress toward the Total Synthesis of Nogalamycin Using a Benzyne Cycloaddition Strategy. J Org Chem 2024; 89:3491-3499. [PMID: 38372575 DOI: 10.1021/acs.joc.3c02921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Nogalamycin (NOG) is a member of the anthracycline glycoside natural products; no total syntheses have yet been reported, and there is minimal understanding of how the aglycone substitution pattern and identities of the A- and D-ring sugars impact the anticancer activity and toxicity. This paper reports progress toward a modular approach to NOG that could enable systematic structure-activity relationship studies. Key steps include a regioselective benzyne cycloaddition and reductive ring-opening to assemble a versatile AB core for analogue synthesis.
Collapse
Affiliation(s)
- Hillary J Dequina
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Logan E Vine
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Joseph T Robey
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - William T Raskopf
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jennifer M Schomaker
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
20
|
Li AZ, Yuan BJ, Xu M, Wang Y, Zhang C, Wang X, Wang X, Li J, Zheng L, Li BJ, Duan H. One-Step Electrochemical Ethylene-to-Ethylene Glycol Conversion over a Multitasking Molecular Catalyst. J Am Chem Soc 2024; 146:5622-5633. [PMID: 38373280 DOI: 10.1021/jacs.3c14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Ethylene glycol is an essential commodity chemical with high demand, which is conventionally produced via thermocatalytic oxidation of ethylene with huge fossil fuel consumption and CO2 emission. The one-step electrochemical approach offers a sustainable route but suffers from reliance on noble metal catalysts, low activity, and mediocre selectivity. Herein, we report a one-step electrochemical oxidation of ethylene to ethylene glycol over an earth-abundant metal-based molecular catalyst, a cobalt phthalocyanine supported on a carbon nanotube (CoPc/CNT). The catalyst delivers ethylene glycol with 100% selectivity and 1.78 min-1 turnover frequency at room temperature and ambient pressure, more competitive than those obtained over palladium catalysts. Experimental data demonstrate that the catalyst orchestrates multiple tasks in sequence, involving electrochemical water activation to generate high-valence Co-oxo species, ethylene epoxidation to afford an ethylene oxide intermediate via oxygen transfer, and eventually ring-opening of ethylene oxide to ethylene glycol facilitated by in situ formed Lewis acid site. This work offers a great opportunity for commodity chemicals synthesis based on a one-step, earth-abundant metal-catalyzed, and renewable electricity-driven route.
Collapse
Affiliation(s)
- An-Zhen Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bo-Jun Yuan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ye Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chunyu Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiongbo Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jing Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Bi-Jie Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Zhang H, Liang Q, Xie K. How to rationally design homogeneous catalysts for efficient CO 2 electroreduction? iScience 2024; 27:108973. [PMID: 38327791 PMCID: PMC10847752 DOI: 10.1016/j.isci.2024.108973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Electrified converting CO2 into valuable fuels and chemicals using a homogeneous electrochemical CO2 reduction (CO2ER) approach simplifies the operation, providing a potential option for decoupling energy harvesting and renewable chemical production. These merits benefit the scenarios where decentralization and intermittent power are key factors. This perspective aims to provide an overview of recent progress in homogeneous CO2ER. We introduce firstly the fundamentals chemistry of the homogeneous CO2ER, followed by a summary of the crucial factors and the important criteria broadly employed for evaluating the performance. We then highlight the recent advances in the most widely explored transition-metal coordinate complexes for the C1 and multicarbon (C2+) products from homogeneous CO2ER. Finally, we summarize the remaining challenges and opportunities for developing homogeneous electrocatalysts for efficient CO2ER. This perspective is expected to favor the rational design of efficient homogeneous electrocatalysts for selective CO2ER toward renewable fuels and feedstocks.
Collapse
Affiliation(s)
- Hui Zhang
- International Center for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Qinghua Liang
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, P.R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, P.R. China
| | - Ke Xie
- Department of Chemistry, Northwestern Universiy, Evanston, IL 60208, USA
| |
Collapse
|
22
|
Zhang K, Liu Z, Khan NA, Ma Y, Xie Z, Xu J, Jiang T, Liu H, Zhu Z, Liu S, Wang W, Meng Y, Peng Q, Zheng X, Wang M, Chen W. An All-Climate Nonaqueous Hydrogen Gas-Proton Battery. NANO LETTERS 2024; 24:1729-1737. [PMID: 38289279 DOI: 10.1021/acs.nanolett.3c04566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Rechargeable hydrogen gas batteries, driven by hydrogen evolution and oxidation reactions (HER/HOR), are emerging grid-scale energy storage technologies owing to their low cost and superb cycle life. However, compared with aqueous electrolytes, the HER/HOR activities in nonaqueous electrolytes have rarely been studied. Here, for the first time, we develop a nonaqueous proton electrolyte (NAPE) for a high-performance hydrogen gas-proton battery for all-climate energy storage applications. The advanced nonaqueous hydrogen gas-proton battery (NAHPB) assembled with a representative V2(PO4)3 cathode and H2 anode in a NAPE exhibits a high discharge capacity of 165 mAh g-1 at 1 C at room temperature. It also efficiently operates under all-climate conditions (from -30 to +70 °C) with an excellent electrochemical performance. Our findings offer a new direction for designing nonaqueous proton batteries in a wide temperature range.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zaichun Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, People's Republic of China
| | - Nawab Ali Khan
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yirui Ma
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zehui Xie
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jingwen Xu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Taoli Jiang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hongxu Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhengxin Zhu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Shuang Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Weiping Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yahan Meng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Qia Peng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xinhua Zheng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Mingming Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
23
|
Rafiee M, Abrams DJ, Cardinale L, Goss Z, Romero-Arenas A, Stahl SS. Cyclic voltammetry and chronoamperometry: mechanistic tools for organic electrosynthesis. Chem Soc Rev 2024; 53:566-585. [PMID: 38050749 PMCID: PMC10842901 DOI: 10.1039/d2cs00706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Electrochemical methods offer unique advantages for chemical synthesis, as the reaction selectivity may be controlled by tuning the applied potential or current. Similarly, measuring the current or potential during the reaction can provide valuable mechanistic insights into these reactions. The aim of this tutorial review is to explain the use of cyclic voltammetry and chronoamperometry to interrogate reaction mechanisms, optimize electrochemical reactions, or design new reactions. Fundamental principles of cyclic voltammetry and chronoamperometry experiments are presented together with the application of these techniques to probe (electro)chemical reactions. Several diagnostic criteria are noted for the use of cyclic voltammetry and chronoamperometry to analyze coupled electrochemical-chemical (EC) reactions, and a series of individual mechanistic studies are presented. Steady state voltammetric and amperometric measurements, using microelectrodes (ME) or rotating disk electrodes (RDE) provide a means to analyze concentrations of redox active species in bulk solution and offer a versatile strategy to conduct kinetic analysis or determine the species present during (electro)synthetic chemical reactions.
Collapse
Affiliation(s)
- Mohammad Rafiee
- Department of Chemistry, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA.
| | - Dylan J Abrams
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Luana Cardinale
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Zachary Goss
- Department of Chemistry, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA.
| | - Antonio Romero-Arenas
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Departamento de Química Orgánica, Universidad de Sevilla, C/Prof. García González, 1, 41012 Sevilla, Spain
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
24
|
Tao L, Liu XF, Ren BH, Wang H, Sun HQ, Zhang K, Teng YQ, Ren WM, Lu XB, Zhang WZ. Electroreductive Ring-Opening Carboxylation of 1,3-Oxazolidin-2-ones with CO 2 for Accessing β-Amino Acids. Org Lett 2024. [PMID: 38189289 DOI: 10.1021/acs.orglett.3c04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Electrocarboxylation of the C(sp3)-O bond in 1,3-oxazolidin-2-ones with CO2 to achieve β-amino acids is developed. The C-O bond in substrates can be selectively cleaved via the single electron transfer on the surface of a cathode or through a CO2• - intermediate under additive-free conditions. A great diversity of β-amino acids can be obtained in a moderate to excellent yield and readily converted to various biologically active compounds.
Collapse
Affiliation(s)
- Li Tao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Xiao-Fei Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Bai-Hao Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - He Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Hui-Qin Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Ke Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Yong-Qiang Teng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Wen-Zhen Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| |
Collapse
|
25
|
Deng YH, Li Q, Li M, Wang L, Sun TY. Rational design of super reductive EDA photocatalyst for challenging reactions: a theoretical and experimental study. RSC Adv 2024; 14:1902-1908. [PMID: 38192317 PMCID: PMC10772736 DOI: 10.1039/d3ra07558c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024] Open
Abstract
We reported a novel electron-donor-acceptor (EDA) photocatalyst formed in situ from isoquinoline, a diboron reagent, and a weak base. To further optimize the efficiency of this photocatalyst, Density Functional Theory (DFT) calculations were conducted to investigate the substituent effects on the properties of vertical excitation energy and redox potential. Subsequently, we experimentally validated these effects using a broader range of substituents and varying substitution positions. Notably, the 4-NH2 EDA complex derived from 4-NH2-isoquinoline exhibits the highest photocatalytic efficiency, enabling feasible metal free borylation of aromatic C-H bond and detosylaion of Ts-anilines under green and super mild conditions. These experimental results demonstrate the effectiveness of our strategy for photocatalyst optimization.
Collapse
Affiliation(s)
- Yi-Hui Deng
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Qini Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University No.66, Gongchang Road Shenzhen 518107 P. R. China
| | - Manhong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University No.66, Gongchang Road Shenzhen 518107 P. R. China
| | - Leifeng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University No.66, Gongchang Road Shenzhen 518107 P. R. China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| |
Collapse
|
26
|
Tian X, Liu Y, Yakubov S, Schütte J, Chiba S, Barham JP. Photo- and electro-chemical strategies for the activations of strong chemical bonds. Chem Soc Rev 2024; 53:263-316. [PMID: 38059728 DOI: 10.1039/d2cs00581f] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The employment of light and/or electricity - alternatively to conventional thermal energy - unlocks new reactivity paradigms as tools for chemical substrate activations. This leads to the development of new synthetic reactions and a vast expansion of chemical spaces. This review summarizes recent developments in photo- and/or electrochemical activation strategies for the functionalization of strong bonds - particularly carbon-heteroatom (C-X) bonds - via: (1) direct photoexcitation by high energy UV light; (2) activation via photoredox catalysis under irradiation with relatively lower energy UVA or blue light; (3) electrochemical reduction; (4) combination of photocatalysis and electrochemistry. Based on the types of the targeted C-X bonds, various transformations ranging from hydrodefunctionalization to cross-coupling are covered with detailed discussions of their reaction mechanisms.
Collapse
Affiliation(s)
- Xianhai Tian
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Yuliang Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Shahboz Yakubov
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Jonathan Schütte
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Shunsuke Chiba
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
27
|
Feng Q, He T, Qian S, Xu P, Liao S, Huang S. Electroreductive hydroxy fluorosulfonylation of alkenes. Nat Commun 2023; 14:8278. [PMID: 38092768 PMCID: PMC10719349 DOI: 10.1038/s41467-023-44029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
An electroreductive strategy for radical hydroxyl fluorosulfonylation of alkenes with sulfuryl chlorofluoride and molecular oxygen from air is described. This mild protocol displays excellent functional group compatibility, broad scope, and good scalability, providing convenient access to diverse β-hydroxy sulfonyl fluorides. These β-hydroxy sulfonyl fluoride products can be further converted to valuable aliphatic sulfonyl fluorides, β-keto sulfonyl fluorides, and β-alkenyl sulfonyl fluorides. Further, some of these products showed excellent inhibitory activity against Botrytis cinerea or Bursaphelenchus xylophilus, which could be useful for potent agrochemical discovery. Preliminary mechanistic studies indicate that this transformation is achieved through rapid O2 interception by the alkyl radical and subsequent reduction of the peroxy radical, which outcompete other side reactions such as chlorine atom transfer, hydrogen atom transfer, and Russell fragmentation.
Collapse
Affiliation(s)
- Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Tianyu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Shencheng Qian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Peng Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
28
|
Zeng L, Wang J, Wang D, Yi H, Lei A. Comprehensive Comparisons between Directing and Alternating Current Electrolysis in Organic Synthesis. Angew Chem Int Ed Engl 2023; 62:e202309620. [PMID: 37606535 DOI: 10.1002/anie.202309620] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
Organic electrosynthesis has consistently aroused significant interest within both academic and industrial spheres. Despite the considerable progress achieved in this field, the majority of electrochemical transformations have been conducted through the utilization of direct-current (DC) electricity. In contrast, the application of alternating current (AC), characterized by its polarity-alternating nature, remains in its infancy within the sphere of organic synthesis, primarily due to the absence of a comprehensive theoretical framework. This minireview offers an overview of recent advancements in AC-driven organic transformations and seeks to elucidate the differences between DC and AC electrolytic methodologies by probing into their underlying physical principles. These differences encompass the ability of AC to preclude the deposition of metal catalysts, the precision in modulating oxidation and reduction intensities, and the mitigation of mass transfer processes.
Collapse
Affiliation(s)
- Li Zeng
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jianxing Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Daoxin Wang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
| |
Collapse
|
29
|
Lv YK, Wang K, Sun WY, Peng P, Zang SQ. A Universal Electrochemical Synthetic Strategy for the Direct Assembly of Single-Atom Catalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304656. [PMID: 37828584 DOI: 10.1002/advs.202304656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Indexed: 10/14/2023]
Abstract
Single-atom catalysts (SACs) have been one of the frontiers in the field of catalysis in recent years owing to their high atomic utilization and unique electronic structure. To facilitate the practical application of single-atom, it is vital to develop a sustainable, facile single-atom preparation method with mass production potential. Herein, a universal one-step electrochemical synthesis strategy is proposed, and various metal-organic framework-supported SACs (including Pt, Au, Ir, Pd, Ru, Mo, Rh, and W) are straightforwardly obtained by simply replacing the guest metal precursors. As a proof-of-concept, the electrosynthetic Pt-based catalysts exhibit outstanding activity and stability in the electrocatalytic hydrogen evolution reaction (HER). This study not only enriches the single-atom synthesis methodology, but also extends the scenario of electrochemical synthesis, opening up new avenues for the design of advanced electro-synthesized catalysts.
Collapse
Affiliation(s)
- Ya-Kun Lv
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Kun Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Wen-Yan Sun
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Peng Peng
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
30
|
Kasemthaveechok S, Gérardo P, von Wolff N. Merging electrocatalytic alcohol oxidation with C-N bond formation by electrifying metal-ligand cooperative catalysts. Chem Sci 2023; 14:13437-13445. [PMID: 38033911 PMCID: PMC10685316 DOI: 10.1039/d3sc03408a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Electrification of thermal chemical processes could play an important role in creating a more energy efficient chemical sector. Here we demonstrate that a range of MLC catalysts can be successfully electrified and used for imine formation from alcohol precursors, thus demonstrating the first example of molecular electrocatalytic C-N bond formation.This novel concept allowed energy efficiency to be increased by an order of magnitude compared to thermal catalysis. Molecular EAO and the electrification of homogeneous catalysts can thus contribute to current efforts for the electrocatalytic generation of C-N bonds from simple building blocks.
Collapse
Affiliation(s)
| | - Patrice Gérardo
- Laboratoire de Chimie et Biochimie, Pharmacologiques et Toxicologiques, Université Paris Cité/CNRS UMR8601 F-75006 Paris France
| | - Niklas von Wolff
- Laboratoire d'Électrochimie Moléculaire, Université Paris Cité/CNRS UMR7591 F-75013 Paris France
| |
Collapse
|
31
|
Liu DH, Nagashima K, Liang H, Yue XL, Chu YP, Chen S, Ma J. Chemoselective Quinoline and Isoquinoline Reduction by Energy Transfer Catalysis Enabled Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2023; 62:e202312203. [PMID: 37803457 DOI: 10.1002/anie.202312203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
(Hetero)arene reduction is one of the key avenues for synthesizing related cyclic alkenes and alkanes. While catalytic hydrogenation and Birch reduction are the two broadly utilized approaches for (hetero)arene reduction across academia and industry over the last century, both methods have encountered significant chemoselectivity challenges. We hereby introduce a highly chemoselective quinoline and isoquinoline reduction protocol operating through selective energy transfer (EnT) catalysis, which enables subsequent hydrogen atom transfer (HAT). The design of this protocol bypasses the conventional metric of reduction reaction, that is, the reductive potential, and instead relies on the triplet energies of the chemical moieties and the kinetic barriers of energy and hydrogen atom transfer events. Many reducing labile functional groups, which were incompatible with previous (hetero)arene reduction reactions, are retained in this reaction. We anticipate that this protocol will trigger the further advancement of chemoselective arene reduction and enable the current arene-rich drug space to escape from flatland.
Collapse
Affiliation(s)
- De-Hai Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kyogo Nagashima
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St., Oberlin, Ohio 44074, USA
| | - Hui Liang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xue-Lin Yue
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yun-Peng Chu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St., Oberlin, Ohio 44074, USA
| | - Jiajia Ma
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
32
|
Zhang W, Guan W, Wang Y, Lin S, See KA. Enabling Al sacrificial anodes in tetrahydrofuran electrolytes for reductive electrosynthesis. Chem Sci 2023; 14:13108-13118. [PMID: 38023497 PMCID: PMC10664456 DOI: 10.1039/d3sc04725c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Al0 is widely used as a sacrificial anode in organic electrosynthesis. However, there remains a notable knowledge gap in the understanding of Al anode interface chemistry under electrolysis conditions. We hypothesize that Al interfacial chemistry plays a pivotal role in the discernible bias observed in solvent selections for reductive electrosynthesis. The majority of existing methodologies that employ an Al sacrificial anode use N,N-dimethylformamide (DMF) as the preferred solvent, with only isolated examples of ethereal solvents such as tetrahydrofuran (THF). Given the crucial role of the solvent in determining the efficiency and selectivity of an organic reaction, limitations on solvent choice could significantly hinder substrate reactivity and impede the desired transformations. In this study, we aim to understand the Al metal interfaces and manipulate them to improve the performance of an Al sacrificial anode in THF-based electrolytes. We have discovered that the presence of halide ions (Cl-, Br-, I-) in the electrolyte is crucial for efficient Al stripping. By incorporating halide additive, we achieve bulk Al stripping in THF-based electrolytes and successfully improve the cell potentials of electrochemically driven reductive methodologies. This study will encourage the use of ethereal solvents in systems using Al sacrificial anodes and guide future endeavors in optimizing electrolytes for reductive electrosynthesis.
Collapse
Affiliation(s)
- Wendy Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Weiyang Guan
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| | - Yi Wang
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| | - Kimberly A See
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| |
Collapse
|
33
|
De Luca C, Zanetti D, Battisti T, Ferreira RR, Lopez S, McMillan AH, Lesher-Pérez SC, Maggini L, Bonifazi D. Photoreduction of Anthracenes Catalyzed by peri-Xanthenoxanthene: a Scalable and Sustainable Birch-Type Alternative. Chemistry 2023; 29:e202302129. [PMID: 37593905 DOI: 10.1002/chem.202302129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
The typical Birch reduction transforms arenes into cyclohexa-1,4-dienes by using alkali metals, an alcohol as a proton source, and an amine as solvent. Capitalizing on the strong photoreductive properties of peri-xanthenoxanthene (PXX), herein we report the photocatalyzed "Birch-type" reduction of acenes by employing visible blue light irradiation at room temperature in the presence of air. Upon excitation at 405 or 460 nm in the presence of a mixture of N,N-diisopropylethylamine (DIPEA) and trifluoromethanesulfonimide (HNTf2 ) in DMSO, PXX photocatalyzes the selective reduction of full-carbon acene derivatives (24-75 %). Immobilization of PXX onto polydimethylsiloxane (PDMS) beads (PXX-PDMS) allowed the use of the catalyst in heterogeneous batch reactions, giving 9-phenyl-9,10-dihydroanthracene in high yield (68 %). The catalyst could easily be recovered and reused, with no notable drop in performance observed after five reaction cycles. Integration of the PXX-PDMS beads into a microreactor enabled the reduction of acenes under continuous-flow conditions, thereby validating the sustainability and scalability of this heterogeneous-phase approach.
Collapse
Affiliation(s)
- Cristian De Luca
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Davide Zanetti
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Tommaso Battisti
- School of Chemistry, Cardiff University, Park Place, CF10 3AT, Cardiff, UK
| | - Rúben R Ferreira
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Sofia Lopez
- División Polímeros Nanoestructurados, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMdP-CONICET y Departamento de Química, UNMdP, Av. Cristóbal Colón 10850, Mar del Plata, B7606BWV, Buenos Aires, Argentina
| | | | - Sasha Cai Lesher-Pérez
- Department of Chemical Engineering, Department of Biomedical Engineering, University of Michigan, North Campus Research Complex Building 28, 2800 Plymouth Rd, 48109-2800, Ann Arbor, MI, USA
| | - Laura Maggini
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Davide Bonifazi
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| |
Collapse
|
34
|
Twilton J, Johnson MR, Sidana V, Franke MC, Bottecchia C, Lehnherr D, Lévesque F, Knapp SMM, Wang L, Gerken JB, Hong CM, Vickery TP, Weisel MD, Strotman NA, Weix DJ, Root TW, Stahl SS. Quinone-mediated hydrogen anode for non-aqueous reductive electrosynthesis. Nature 2023; 623:71-76. [PMID: 37604186 PMCID: PMC10777621 DOI: 10.1038/s41586-023-06534-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
Electrochemical synthesis can provide more sustainable routes to industrial chemicals1-3. Electrosynthetic oxidations may often be performed 'reagent-free', generating hydrogen (H2) derived from the substrate as the sole by-product at the counter electrode. Electrosynthetic reductions, however, require an external source of electrons. Sacrificial metal anodes are commonly used for small-scale applications4, but more sustainable options are needed at larger scale. Anodic water oxidation is an especially appealing option1,5,6, but many reductions require anhydrous, air-free reaction conditions. In such cases, H2 represents an ideal alternative, motivating the growing interest in the electrochemical hydrogen oxidation reaction (HOR) under non-aqueous conditions7-12. Here we report a mediated H2 anode that achieves indirect electrochemical oxidation of H2 by pairing thermal catalytic hydrogenation of an anthraquinone mediator with electrochemical oxidation of the anthrahydroquinone. This quinone-mediated H2 anode is used to support nickel-catalysed cross-electrophile coupling (XEC), a reaction class gaining widespread adoption in the pharmaceutical industry13-15. Initial validation of this method in small-scale batch reactions is followed by adaptation to a recirculating flow reactor that enables hectogram-scale synthesis of a pharmaceutical intermediate. The mediated H2 anode technology disclosed here offers a general strategy to support H2-driven electrosynthetic reductions.
Collapse
Affiliation(s)
- Jack Twilton
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Mathew R Johnson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Vinayak Sidana
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Mareena C Franke
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Dan Lehnherr
- Process Research & Development, Merck & Co., Inc., Rahway, NJ, USA
| | | | - Spring M M Knapp
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Luning Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - James B Gerken
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Cynthia M Hong
- Process Research & Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Thomas P Vickery
- Process Research & Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Mark D Weisel
- Process Research & Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Neil A Strotman
- Process Research & Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Daniel J Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Thatcher W Root
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
35
|
Bruggeman C, Gregurash K, Hickey DP. Impact of sodium pyruvate on the electrochemical reduction of NAD + biomimetics. Faraday Discuss 2023; 247:87-100. [PMID: 37496434 DOI: 10.1039/d3fd00047h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Biomimetics of nicotinamide adenine dinucleotide (mNADH) are promising cost-effective alternatives to their natural counterpart for biosynthetic applications; however, attempts to recycle mNADH often rely on coenzymes or precious metal catalysts. Direct electrolysis is an attractive approach for recycling mNADH, but electrochemical reduction of the oxidized mimetic (mNAD+) primarily results in the formation of an enzymatically inactive dimer. Herein, we find that aqueous electrochemical reduction of an NAD+ mimetic, 1-n-butyl-3-carbamoylpyridinium bromide (1+), to its enzymatically active form, 1,4-dihydro-1-n-butyl nicotinamide (1H), is favored in the presence of sodium pyruvate as a supporting electrolyte. Maximum formation of 1H is achieved in the presence of a large excess of pyruvate in combination with a large excess of a co-supporting electrolyte. Formation of 1H is found to be favored at pH 7, with an optimized product ratio of ∼50/50 dimer/1H observed by cyclic voltammetry. Furthermore, sodium pyruvate is shown to promote electroreductive generation of the 1,4-dihydro form of several additional mNADH as well as NADH itself. This method provides a general strategy for regenerating 1,4-dihydro-nicotinamide mimetics of NADH from their oxidized forms.
Collapse
Affiliation(s)
- Chase Bruggeman
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824-1226, USA.
| | - Karissa Gregurash
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824-1226, USA.
| | - David P Hickey
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824-1226, USA.
| |
Collapse
|
36
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
37
|
Tan EYK, Mat Lani AS, Sow W, Liu Y, Li H, Chiba S. Dearomatization of (Hetero)arenes through Photodriven Interplay between Polysulfide Anions and Formate. Angew Chem Int Ed Engl 2023; 62:e202309764. [PMID: 37582050 DOI: 10.1002/anie.202309764] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
The facile construction of C(sp3 )-rich carbo- and heterocyclic compounds is a pivotal synthetic strategy to foster contemporary drug discovery programs. The downstream dearomatization of readily accessible two-dimensional (2D) planar arenes represents a direct pathway towards accessing three-dimensional (3D) aliphatic scaffolds. Here, we demonstrate that polysulfide anions are capable of catalyzing a dearomatization process of substituted naphthalenes, indoles, and other related heteroaromatic compounds in the presence of potassium formate and methanol under visible light irradiation. The developed protocol exhibits broad functional group tolerance, operational simplicity, scalability, and cost-effectiveness, representing a practical and sustainable synthetic tool for the arene dearomatization.
Collapse
Affiliation(s)
- Eugene Yew Kun Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore, 637371, Singapore
| | - Amirah S Mat Lani
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore, 637371, Singapore
| | - Wayne Sow
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore, 637371, Singapore
| | - Yuliang Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore, 637371, Singapore
| | - Haoyu Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore, 637371, Singapore
| | - Shunsuke Chiba
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore, 637371, Singapore
| |
Collapse
|
38
|
Wang S, Wang P, Li SJ, Chen YH, Sun ZJ, Lei A. Electrochemical flow aziridination of unactivated alkenes. Natl Sci Rev 2023; 10:nwad187. [PMID: 38059062 PMCID: PMC10697417 DOI: 10.1093/nsr/nwad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 12/08/2023] Open
Abstract
Aziridines derived from bioactive molecules may have unique pharmacological activities, making them useful in pharmacology (e.g. mitomycin C). Furthermore, the substitution of the epoxide moiety in epothilone B with aziridine, an analog of epoxides, yielded a pronounced enhancement in its anticancer efficacy. Thus, there is interest in developing novel synthetic technologies to produce aziridines from bioactive molecules. However, known methods usually require metal catalysts, stoichiometric oxidants and/or pre-functionalized amination reagents, causing difficulty in application. A practical approach without a metal catalyst and extra-oxidant for the aziridination of bioactive molecules is in demand, yet challenging. Herein, we report an electro-oxidative flow protocol that accomplishes an oxidant-free aziridination of natural products. This process is achieved by an oxidative sulfonamide/alkene cross-coupling, in which sulfonamide and alkene undergo simultaneous oxidation or alkene is oxidized preferentially. Further anticancer treatments in cell lines have demonstrated the pharmacological activities of these aziridines, supporting the potential of this method for drug discovery.
Collapse
Affiliation(s)
- Shengchun Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430079, China
| | - Pengjie Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430079, China
| | - Shu-Jin Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yi-Hung Chen
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430079, China
| |
Collapse
|
39
|
Russo C, Leech MC, Walsh JM, Higham JI, Giannessi L, Lambert E, Kiaku C, Poole DL, Mason J, Goodall CAI, Devo P, Giustiniano M, Radi M, Lam K. eHydrogenation: Hydrogen-free Electrochemical Hydrogenation. Angew Chem Int Ed Engl 2023; 62:e202309563. [PMID: 37540528 DOI: 10.1002/anie.202309563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/05/2023]
Abstract
Hydrogenation reactions are staple transformations commonly used across scientific fields to synthesise pharmaceuticals, natural products, and various functional materials. However, the vast majority of these reactions require the use of a toxic and costly catalyst leading to unpractical, hazardous and often functionally limited conditions. Herein, we report a new, general, practical, efficient, mild and high-yielding hydrogen-free electrochemical method for the reduction of alkene, alkyne, nitro and azido groups. Finally, this method has been applied to deuterium labelling.
Collapse
Affiliation(s)
- Camilla Russo
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Matthew C Leech
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Jamie M Walsh
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Joe I Higham
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Lisa Giannessi
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
- Department of Food and Drug, University of Parma Parco area delle, Scienze 27°, Parma, Italy
| | - Emmanuelle Lambert
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Cyrille Kiaku
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Darren L Poole
- Discovery High-Throughput Chemistry, Medicinal Chemistry, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Joseph Mason
- Discovery High-Throughput Chemistry, Medicinal Chemistry, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Charles A I Goodall
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Perry Devo
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Marco Radi
- Department of Food and Drug, University of Parma Parco area delle, Scienze 27°, Parma, Italy
| | - Kevin Lam
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| |
Collapse
|
40
|
Smith LB, Armstrong RJ, Hou J, Smith E, Sze M, Sterling AJ, Smith A, Duarte F, Donohoe TJ. Redox Reorganization: Aluminium Promoted 1,5-Hydride Shifts Allow the Controlled Synthesis of Multisubstituted Cyclohexenes. Angew Chem Int Ed Engl 2023; 62:e202307424. [PMID: 37358307 PMCID: PMC10953022 DOI: 10.1002/anie.202307424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
An efficient synthesis of cyclohexenes has been achieved from easily accessible tetrahydropyrans via a tandem 1,5-hydride shift-aldol condensation. We discovered that readily available aluminium reagents, e.g. Al2 O3 or Al(Ot Bu)3 are essential for this process, promoting the 1,5-hydride shift with complete regio- and enantiospecificity (in stark contrast to results obtained under basic conditions). The mild conditions, coupled with multiple methods available to access the tetrahydropyran starting materials makes this a versatile method with exceptional functional group tolerance. A wide range of cyclohexenes (>40 examples) have been prepared, many in enantiopure form, showing our ability to selectively install a substituent at each position around the newly forged cyclohexene ring. Experimental and computational studies revealed that aluminium serves a dual role in facilitating the hydride shift, activating both the alkoxide nucleophile and the electrophilic carbonyl group.
Collapse
Affiliation(s)
- Lewis B. Smith
- Chemistry Research LaboratoryUniversity of OxfordOX1 3TAOxfordUK
| | - Roly J. Armstrong
- Chemistry Research LaboratoryUniversity of OxfordOX1 3TAOxfordUK
- School of Natural and Environmental SciencesNewcastle UniversityNE1 7RUNewcastle Upon TyneUK
| | - Jingyan Hou
- Chemistry Research LaboratoryUniversity of OxfordOX1 3TAOxfordUK
| | - Edward Smith
- Chemistry Research LaboratoryUniversity of OxfordOX1 3TAOxfordUK
| | - Ming Sze
- Chemistry Research LaboratoryUniversity of OxfordOX1 3TAOxfordUK
| | | | - Alex Smith
- Syngenta, Jealott's Hill International Research CentreRG42 6EYBracknellBerkshireUK
| | - Fernanda Duarte
- Chemistry Research LaboratoryUniversity of OxfordOX1 3TAOxfordUK
| | | |
Collapse
|
41
|
Zhang W, Gu C, Wang Y, Ware SD, Lu L, Lin S, Qi Y, See KA. Improving the Mg Sacrificial Anode in Tetrahydrofuran for Synthetic Electrochemistry by Tailoring Electrolyte Composition. JACS AU 2023; 3:2280-2290. [PMID: 37654576 PMCID: PMC10466324 DOI: 10.1021/jacsau.3c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 09/02/2023]
Abstract
Mg0 is commonly used as a sacrificial anode in reductive electrosynthesis. While numerous methodologies using a Mg sacrificial anode have been successfully developed, the optimization of the electrochemistry at the anode, i.e., Mg stripping, remains empirical. In practice, electrolytes and organic substrates often passivate the Mg electrode surface, which leads to high overall cell potential causing poor energy efficiency and limiting reaction scale-up. In this study, we seek to understand and manipulate the Mg metal interfaces for a more effective counter electrode in tetrahydrofuran. Our results suggest that the ionic interactions between the cation and the anion of a supporting electrolyte can influence the electrical double layer, which impacts the Mg stripping efficiency. We find halide salt additives can prevent passivation on the Mg electrode by influencing the composition of the solid electrolyte interphase. This study demonstrates that, by tailoring the electrolyte composition, we can modify the Mg stripping process and enable a streamlined optimization process for the development of new electrosynthetic methodologies.
Collapse
Affiliation(s)
- Wendy Zhang
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Chaoxuan Gu
- School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Yi Wang
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Skyler D. Ware
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Lingxiang Lu
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Song Lin
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Yue Qi
- School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kimberly A. See
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
42
|
Hill S, Dao N, Dang VQ, Stahl EL, Bohn LM, Shenvi RA. A Route to Potent, Selective, and Biased Salvinorin Chemical Space. ACS CENTRAL SCIENCE 2023; 9:1567-1574. [PMID: 37637743 PMCID: PMC10450872 DOI: 10.1021/acscentsci.3c00616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 08/29/2023]
Abstract
The salvinorins serve as templates for next generation analgesics, antipruritics, and dissociative hallucinogens via selective and potent agonism of the kappa-opioid receptor (KOR). In contrast to most opioids, the salvinorins lack basic amines and bind with high affinity and selectivity via complex polyoxygenated scaffolds that have frustrated deep-seated modification by synthesis. Here we describe a short asymmetric synthesis that relies on a sterically confined organocatalyst to dissociate acidity from reactivity and effect Robinson annulation of an unactivated nucleophile/unstable electrophile pair. Combined with a cobalt-catalyzed polarized diene-alkyne cycloaddition, the route allows divergent access to a focused library of salvinorins. We appraise the synthesis by its generation of multiple analogs that exceed the potency, selectivity, stability, and functional bias of salvinorin A itself.
Collapse
Affiliation(s)
- Sarah
J. Hill
- Department
of Chemistry, Scripps Research, La Jolla, California 92037, United States
- Graduate
School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | - Nathan Dao
- Department
of Chemistry, Scripps Research, La Jolla, California 92037, United States
- Graduate
School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | - Vuong Q. Dang
- Department
of Molecular Medicine, The Herbert Wertheim
UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Edward L. Stahl
- Department
of Molecular Medicine, The Herbert Wertheim
UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Laura M. Bohn
- Department
of Molecular Medicine, The Herbert Wertheim
UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Ryan A. Shenvi
- Department
of Chemistry, Scripps Research, La Jolla, California 92037, United States
- Graduate
School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
43
|
Lepori M, Schmid S, Barham JP. Photoredox catalysis harvesting multiple photon or electrochemical energies. Beilstein J Org Chem 2023; 19:1055-1145. [PMID: 37533877 PMCID: PMC10390843 DOI: 10.3762/bjoc.19.81] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
Photoredox catalysis (PRC) is a cutting-edge frontier for single electron-transfer (SET) reactions, enabling the generation of reactive intermediates for both oxidative and reductive processes via photon activation of a catalyst. Although this represents a significant step towards chemoselective and, more generally, sustainable chemistry, its efficacy is limited by the energy of visible light photons. Nowadays, excellent alternative conditions are available to overcome these limitations, harvesting two different but correlated concepts: the use of multi-photon processes such as consecutive photoinduced electron transfer (conPET) and the combination of photo- and electrochemistry in synthetic photoelectrochemistry (PEC). Herein, we review the most recent contributions to these fields in both oxidative and reductive activations of organic functional groups. New opportunities for organic chemists are captured, such as selective reactions employing super-oxidants and super-reductants to engage unactivated chemical feedstocks, and scalability up to gram scales in continuous flow. This review provides comparisons between the two techniques (multi-photon photoredox catalysis and PEC) to help the reader to fully understand their similarities, differences and potential applications and to therefore choose which method is the most appropriate for a given reaction, scale and purpose of a project.
Collapse
Affiliation(s)
- Mattia Lepori
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Simon Schmid
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| |
Collapse
|
44
|
Zhang W, Guan W, Martinez Alvarado JI, Novaes LFT, Lin S. Deep Electroreductive Chemistry: Harnessing Carbon- and Silicon-based Reactive Intermediates in Organic Synthesis. ACS Catal 2023; 13:8038-8048. [PMID: 38707967 PMCID: PMC11067979 DOI: 10.1021/acscatal.3c01174] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
This Viewpoint outlines our recent contribution in electroreductive synthesis. Specifically, we leveraged deeply reducing potentials provided by electrochemistry to generate radical and anionic intermediates from readily available alkyl halides and chlorosilanes. Harnessing the distinct reactivities of radicals and anions, we have achieved several challenging transformations to construct C-C, C-Si, and Si-Si bonds. We highlight the mechanistic design principle that underpinned the development of each transformation and provide a view forward on future opportunities in growing area of reductive electrosynthesis.
Collapse
Affiliation(s)
| | | | | | - Luiz F. T. Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
45
|
Zhang S, Liang Y, Liu K, Zhan X, Fan W, Li MB, Findlater M. Electrochemically Generated Carbanions Enable Isomerizing Allylation and Allenylation of Aldehydes with Alkenes and Alkynes. J Am Chem Soc 2023. [PMID: 37318054 DOI: 10.1021/jacs.3c04864] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The direct coupling of aldehydes with petrochemical feedstock alkenes and alkynes would represent a practical and streamlined approach for allylation and allenylation chemistry. However, conventional approaches commonly require preactivated substrates or strong bases to generate allylic or propargylic carbanions and only afford branched allylation or propargylation products. Developing a mild and selective approach to access synthetically useful linear allylation and allenylation products is highly desirable, albeit with formidable challenges. We report a strategy using hydrogen evolution reaction (HER) to generate a carbanion from weakly acidic sp3 C-H bonds (pKa ∼ 35-40) under mild reaction conditions, obviating the use of strong bases, Schlenk techniques, and multistep procedures. The cathodically generated carbanion reverses the typical reaction selectivity to afford unconventional isomerizing allylation and allenylation products (125 examples). The generation of carbanions was monitored and identified by in situ ultraviolet-visible (UV-vis) spectroelectrochemistry. Furthermore, we extended this protocol to the generation of other carbanions and their application in coupling reactions between alcohols with carbanions. The appealing features of this approach include mild reaction conditions, excellent functional group tolerance, unconventional chemo- and regioselectivity, and the diverse utility of products, which includes offering direct access to diene luminophores and bioactive scaffolds. We also performed cyclic voltammetry, control experiments, and density functional theory (DFT) calculations to rationalize the observed reaction selectivity and mechanism.
Collapse
Affiliation(s)
- Sheng Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Yating Liang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Ke Liu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Xuan Zhan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Weigang Fan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Michael Findlater
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| |
Collapse
|
46
|
Hatch CE, Chain WJ. Electrochemically Enabled Total Syntheses of Natural Products. ChemElectroChem 2023; 10:e202300140. [PMID: 38106361 PMCID: PMC10723087 DOI: 10.1002/celc.202300140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 12/19/2023]
Abstract
Electrochemical techniques have helped to enable the total synthesis of natural products since the pioneering work of Kolbe in the mid 1800's. The electrochemical toolset grows every day and these new possibilities change the way chemists look at and think about natural products. This review provides a perspective on total syntheses wherein electrochemical techniques enabled the carbon─carbon bond formations in the skeletal assembly of important natural products, discussion of mechanistic details, and representative examples of the bond formations enabled over the last several decades. These bond formations are often distinctly different from those possible with conventional chemistries and allow assemblies complementary to other techniques.
Collapse
Affiliation(s)
- Chad E Hatch
- Chemical Biology, Memorial Sloan Kettering Cancer Center, 417 E. 68 St., New York, NY, 10065 (United States)
| | - William J Chain
- Department of Chemistry & Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716 (United States)
| |
Collapse
|
47
|
Hartweg S, Barnes J, Yoder BL, Garcia GA, Nahon L, Miliordos E, Signorell R. Solvated dielectrons from optical excitation: An effective source of low-energy electrons. Science 2023:eadh0184. [PMID: 37228229 DOI: 10.1126/science.adh0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Low-energy electrons dissolved in liquid ammonia or aqueous media are powerful reducing agents that promote challenging reduction reactions, but can also cause radiation damage to biological tissue. Knowledge of the underlying mechanistic processes remains incomplete, in particular with respect to the details and energetics of the electron transfer steps. Here, we show how ultraviolet (UV) photoexcitation of metal-ammonia clusters could be used to generate tunable low-energy electrons in situ. Specifically, we identified UV light-induced generation of spin-paired solvated dielectrons and their subsequent relaxation by an unconventional electron-transfer-mediated decay as an efficient low-energy electron source. The process is robust and straightforward to induce, with the prospect of improving our understanding of radiation damage and fostering mechanistic studies of solvated electron reduction reactions.
Collapse
Affiliation(s)
- Sebastian Hartweg
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 St Aubin, France
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3a, 79104 Freiburg, Germany
| | - Jonathan Barnes
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Bruce L Yoder
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Gustavo A Garcia
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 St Aubin, France
| | - Laurent Nahon
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 St Aubin, France
| | - Evangelos Miliordos
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, AL, USA
| | - Ruth Signorell
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
48
|
Petersen H, Miller EN, Pham PH, Kajal, Katsirubas JL, Koltunski HJ, Luca OR. On the Temperature Sensitivity of Electrochemical Reaction Thermodynamics. ACS PHYSICAL CHEMISTRY AU 2023; 3:241-251. [PMID: 37249933 PMCID: PMC10214520 DOI: 10.1021/acsphyschemau.2c00063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 08/19/2023]
Abstract
Herein, we report a method to estimate the thermodynamic potentials of electrochemical reactions at different temperatures. We use a two-term Taylor series approximation of thermodynamic potential as a function of temperature, and we calculate the temperature sensitivity for a family of twenty seven known half reactions. We further analyze pairs of cathode and anode half-cells to pinpoint optimal voltage matches and discuss implications of changes in temperature on overall cell voltages. Using these observations, we look forward to increased interest in temperature and idealized half-reaction pairing as experimental choices for the optimization of electrochemical processes.
Collapse
Affiliation(s)
- Haley
A. Petersen
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Emmet N. Miller
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Phuc H. Pham
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kajal
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jaclyn L. Katsirubas
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hunter J. Koltunski
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Oana R. Luca
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable
and Sustainable Energy Institute, University
of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials
Science and Engineering Program, University
of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
49
|
Williams OP, Chmiel AF, Mikhael M, Bates DM, Yeung CS, Wickens ZK. Practical and General Alcohol Deoxygenation Protocol. Angew Chem Int Ed Engl 2023; 62:e202300178. [PMID: 36840940 PMCID: PMC10121858 DOI: 10.1002/anie.202300178] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023]
Abstract
Herein, we describe a practical protocol for the removal of alcohol functional groups through reductive cleavage of their benzoate ester analogs. This transformation requires a strong single electron transfer (SET) reductant and a means to accelerate slow fragmentation following substrate reduction. To accomplish this, we developed a photocatalytic system that generates a potent reductant from formate salts alongside Brønsted or Lewis acids that promote fragmentation of the reduced intermediate. This deoxygenation procedure is effective across structurally and electronically diverse alcohols and enables a variety of difficult net transformations. This protocol requires no precautions to exclude air or moisture and remains efficient on multigram scale. Finally, the system can be adapted to a one-pot benzoylation-deoxygenation sequence to enable direct alcohol deletion. Mechanistic studies validate that the role of acidic additives is to promote the key C(sp3 )-O bond fragmentation step.
Collapse
Affiliation(s)
- Oliver P. Williams
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| | - Alyah F. Chmiel
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| | - Myriam Mikhael
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Desiree M. Bates
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| | - Charles S. Yeung
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| |
Collapse
|
50
|
Ikeda K, Kojima R, Kawai K, Murakami T, Kikuchi T, Kojima M, Yoshino T, Matsunaga S. Formation of Isolable Dearomatized [4 + 2] Cycloadducts from Benzenes, Naphthalenes, and N-Heterocycles Using 1,2-Dihydro-1,2,4,5-tetrazine-3,6-diones as Arenophiles under Visible Light Irradiation. J Am Chem Soc 2023; 145:9326-9333. [PMID: 37055373 DOI: 10.1021/jacs.3c02556] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
We report that the dearomative [4 + 2] cycloaddition between 1,2-dihydro-1,2,4,5-tetrazine-3,6-diones (TETRADs) and benzenes, naphthalenes, or N-heteroaromatic compounds under visible light irradiation affords the corresponding isolable cycloadducts. Several synthetic transformations including transition-metal-catalyzed allylic substitution reactions using the isolated cycloadducts at room temperature or above were demonstrated. Computational studies revealed that the retro-cycloaddition of the benzene-TETRAD adduct proceeds via an asynchronous concerted mechanism, while that of the benzene-MTAD adduct (MTAD = 4-methyl-1,2,4-triazoline-3,5-dione) proceeds via a synchronous mechanism.
Collapse
Affiliation(s)
- Kazuki Ikeda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Riku Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kentaro Kawai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takayasu Murakami
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Kikuchi
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|