1
|
Shaikh M, Rubalcaba K, Yan Y. Halide Perovskite Induces Halogen/Hydrogen Atom Transfer (XAT/HAT) for Allylic C-H Amination. Angew Chem Int Ed Engl 2025; 64:e202413012. [PMID: 39231037 DOI: 10.1002/anie.202413012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Allylic C-H amination has emerged as a powerful tool to construct allylamines, common motifs in molecular therapeutics. Such reaction implies an oxidative path for C-H activation but furnishes reductive amines, inferring mild oxidants' inactivity for C-H oxidation but strong oxidants' detriment to products. Herein we report a heterogeneous catalytic approach that manipulates halogen-vacancies of perovskite photocatalyst and exploits halogenated-solvents (i.e. CH2Cl2, CH2Br2) as mild oxidants for selective C-H allyl amination with 19,376 turnovers. CsPbBr3 nanocrystals induce cooperative hydrogen-atom-transfer (HAT, C-H oxidation, and halogen-vacancy CsPbBr3-x formation) and halogen-atom-transfer (XAT, CsPbBr3-x-induced solvent reduction) under a radical chain mechanism. Terminal/internal olefins are amenable to forge aromatic/aliphatic, cyclic/acyclic, secondary/tertiary allylamines (70 examples), including drugs or their derivatives.
Collapse
Affiliation(s)
- Melad Shaikh
- Department of Chemistry and Biochemistry, San Diego State University, 92182, San Diego, CA, USA
| | - Kevin Rubalcaba
- Department of Chemistry and Biochemistry, San Diego State University, 92182, San Diego, CA, USA
| | - Yong Yan
- Department of Chemistry and Biochemistry, San Diego State University, 92182, San Diego, CA, USA
| |
Collapse
|
2
|
van der Heide P, Retini M, Fanini F, Piersanti G, Secci F, Mazzarella D, Noël T, Luridiana A. Giese-type alkylation of dehydroalanine derivatives via silane-mediated alkyl bromide activation. Beilstein J Org Chem 2024; 20:3274-3280. [PMID: 39717264 PMCID: PMC11665442 DOI: 10.3762/bjoc.20.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
The rising popularity of bioconjugate therapeutics has led to growing interest in late-stage functionalization (LSF) of peptide scaffolds. α,β-Unsaturated amino acids like dehydroalanine (Dha) derivatives have emerged as particularly useful structures, as the electron-deficient olefin moiety can engage in late-stage functionalization reactions, like a Giese-type reaction. Cheap and widely available building blocks like organohalides can be converted into alkyl radicals by means of photoinduced silane-mediated halogen-atom transfer (XAT) to offer a mild and straightforward methodology of alkylation. In this research, we present a metal-free strategy for the photochemical alkylation of dehydroalanine derivatives. Upon abstraction of a hydride from tris(trimethylsilyl)silane (TTMS) by an excited benzophenone derivative, the formed silane radical can undergo a XAT with an alkyl bromide to generate an alkyl radical. Consequently, the alkyl radical undergoes a Giese-type reaction with the Dha derivative, forming a new C(sp3)-C(sp3) bond. The reaction can be performed in a phosphate-buffered saline (PBS) solution and shows post-functionalization prospects through pathways involving classical peptide chemistry.
Collapse
Affiliation(s)
- Perry van der Heide
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554, bivio per Sestu, 09042 Monserrato (CA), Italy
- Flow Chemistry Group, Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Michele Retini
- Department of Biomolecular Sciences, University of Urbino ‘‘Carlo Bo”, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Fabiola Fanini
- Department of Biomolecular Sciences, University of Urbino ‘‘Carlo Bo”, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences, University of Urbino ‘‘Carlo Bo”, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Francesco Secci
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554, bivio per Sestu, 09042 Monserrato (CA), Italy
| | - Daniele Mazzarella
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata” Via della Ricerca Scientifica, 1, 00133 Rome, Italy,
- Department of Chemical Sciences, University of Padova Institution, Via Francesco Marzolo, 1, 35131 Padova, Italy
| | - Timothy Noël
- Flow Chemistry Group, Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Alberto Luridiana
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554, bivio per Sestu, 09042 Monserrato (CA), Italy
| |
Collapse
|
3
|
Wang LC, Wu XF. Carbonylation Reactions at Carbon-Centered Radicals with an Adjacent Heteroatom. Angew Chem Int Ed Engl 2024; 63:e202413374. [PMID: 39248444 DOI: 10.1002/anie.202413374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
Heteroatoms are essential to living organisms and present in almost all molecules with medicinal usage. The catalytic functionalization at the carbon-centered radical with an adjacent heteroatom provides an effective way to value added moiety while retaining the unique physicochemical and pharmacological properties of heteroatoms, which can promote the development of pharmaceutical and fine chemical production. Carbonylative transformation was discovered nearly a century ago which is an efficient method for the synthesis of carbonyl-containing molecules with potent applications in both industry and academia. Despite numerous advances in new reaction development, carbonylative transformation involving adjacent heteroatom carbon radical remain a subject that deserves to be discussed. In this minireview, we systematically summarized and discussed the recent advances in carbonylative transformations involving carbon-centered radicals with an adjacent heteroatom, including oxygen (O), nitrogen (N), phosphorus (P), silicon (Si), sulfur (S), boron (B), fluorine (F), and chlorine (Cl). The related reaction mechanism was also discussed.
Collapse
Affiliation(s)
- Le-Cheng Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| |
Collapse
|
4
|
He Y, Zhao Q, Yuan W, Gong L. Photo-Induced Three-Component Reaction for the Construction Of α-Tertiary Amino Acid Derivatives. Chemistry 2024; 30:e202402995. [PMID: 39305150 DOI: 10.1002/chem.202402995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Indexed: 11/01/2024]
Abstract
The synthesis of α-tertiary amino acids (ATAAs), which are pivotal components in natural metabolism and pharmaceutical innovation, continues to attract significant research interest. Despite substantial advancements, the pursuit of a facile, versatile, and resource-efficient methodology remains an area of active development. In this work, we introduce a visible light-triggered three-component reaction involving readily available nitrosoarenes, N-acyl pyrazoles, and allyl or (bromomethyl)benzenes under mild conditions. This approach enables the straightforward assembly of a wide array of ATAA derivatives (42 examples) in commendably high yields (up to 89 %). Mechanistic investigations elucidate that the reaction proceeds through a dehydration condensation between nitrosoarenes and N-acyl pyrazoles to generate ketimine intermediates. This is followed by a light-driven halogen atom transfer (XAT) process and a radical addition, culminating in the formation of the desired products. The approach showcases excellent functional group compatibility and late-stage derivatization potential, offering new insights and avenues for the synthesis of ATAA analogs.
Collapse
Affiliation(s)
- Yuhang He
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qianyi Zhao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Wei Yuan
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, China
| | - Lei Gong
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
5
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Wang J, Wang Y, Lin W, Yang A, Wang Y, Wang J, Zheng H, Ge H. Photoredox-Catalyzed C-H Methylation of N-Heteroarenes Enabled by N, N-Dimethylethanolamine. J Org Chem 2024; 89:17482-17487. [PMID: 39571100 DOI: 10.1021/acs.joc.4c02223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
A visible-light-driven radical C-H methylation of N-heteroarenes that is efficient and additive- and catalyst-free and employs readily available N,N-dimethylethanolamine as the methyl source has been developed. The transformation offers the benefits of broad substrate scope, mild reaction conditions, and operational simplicity. A photoactive electron donor-acceptor (EDA) complex between N-heteroarenes and N,N-dimethylethanolamine is essential for this transformation, as revealed by mechanistic investigations.
Collapse
Affiliation(s)
- Jiayang Wang
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313002, P. R. China
| | - Yun Wang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang 313002, P. R. China
| | - Wenjing Lin
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313002, P. R. China
| | - Anyi Yang
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313002, P. R. China
| | - Ying Wang
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313002, P. R. China
| | - Jingran Wang
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313002, P. R. China
| | - Haizhen Zheng
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313002, P. R. China
| | - Haixia Ge
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313002, P. R. China
| |
Collapse
|
7
|
Zhao HQ, Li WT, Yao Y, Zhao YL, Ouyang XH. Iron-Catalyzed Perfluoroalkylarylation of Styrenes with Arenes and Alkyl Iodides Enabled by Halogen Atom Transfer. Org Lett 2024; 26:10183-10188. [PMID: 39556037 DOI: 10.1021/acs.orglett.4c04095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
A new iron-catalyzed three-component perfluoroalkylarylation of styrenes with alkyl halides and arenes has been established. Alkyl halides undergo halogen atom transfer with methyl radicals to form alkyl radicals in reactions initiated by a combination of tert-butyl peroxybenzoate and an iron catalyst, thus adducting to the olefins, which results in alkylarylation products. The protocol is compatible with a wide range of perfluoroalkyl and non-perfluoroalkyl halides, features excellent functional group tolerance, and enables the synthesis of structurally diverse 1,1-diaryl fluoro-substituted alkanes.
Collapse
Affiliation(s)
- Han-Qing Zhao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
| | - Wan-Ting Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
| | - Yong Yao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
| | - Yi-Lin Zhao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
8
|
Zeng L, Zhang Y, Hu M, He DL, Ouyang XH, Li JH. Divergent Synthesis of ( E)- and ( Z)-Alkenones via Photoredox C(sp 3)-H Alkenylation-Dehydrogenation of o-Iodoarylalkanols with Alkynes. Org Lett 2024; 26:10096-10101. [PMID: 39546467 DOI: 10.1021/acs.orglett.4c03707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
A photoredox C(sp3)-H alkenylation-dehydrogenation of o-iodoarylalkanols with terminal alkynes for the synthesis of (E)- and (Z)-quaternary carbon center-containing pent-4-en-1-ones is described. The stereoselectivity depends on the utilization of alkynes and photocatalysts. While using an organic photocatalyst like 4-DPAIPN manipulates the C(sp3)-H alkenylation-dehydrogenation of o-iodoarylalkanols with arylalkynes to assemble (E)-pent-4-en-1-ones, in the case of an Ir potocatalyst such as Ir(ppy)2(dtbbpy)PF6 the reaction with arylalkynes delivers (Z)-pent-4-en-1-ones. For alkylalkynes, the reaction furnishes (E)-pent-4-en-1-ones exclusively in the presence of 4-DPAIPN or Ir(ppy)2(dtbbpy)PF6.
Collapse
Affiliation(s)
- Liang Zeng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Yin Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ming Hu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - De-Liang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Xuan-Hui Ouyang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jin-Heng Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
9
|
Ma P, Guo T, Lu H. Hydro- and deutero-deamination of primary amines using O-diphenylphosphinylhydroxylamine. Nat Commun 2024; 15:10190. [PMID: 39582045 PMCID: PMC11586428 DOI: 10.1038/s41467-024-54599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
While selective defunctionalizations are valuable in organic synthesis, hydrodeamination of primary amines poses challenges. Deuterodeamination, analogous to hydrodeamination, presents even greater difficulties due to its frequently slower deuteration rate, interference by hydrogenation and constraints in deuterated sources. This study introduces a reliable, robust, and scalable hydro- and deuterodeamination method capable of handling various primary amines. Defined by its mild reaction conditions, rapid completion, simplified purification facilitated by water-soluble byproducts, the method leverages deuterium oxide as a deuterium source and employs commercialized O-diphenylphosphinylhydroxylamine for deamination. Applied to a diverse range of biologically active molecules, it has consistently achieved high yields and efficient deuterium incorporation. By synergizing with site-selective C-H functionalization of primary aliphatic amines, our method reveals synthetic strategies utilizing nitrogen atom as a traceless directing group, encompassing deaminative alkylation, 1,1-deuteroalkylation, 1,1-dialkylation, 1,1,1-deuterodialkylation, C-H arylation, and 1,3-deuteroarylation. Emphasizing this innovation, the processes of deaminative degree-controlled deuteration have been developed.
Collapse
Affiliation(s)
- Panpan Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ting Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, Anhui, China.
| |
Collapse
|
10
|
Xing ZX, Chen SS, Huang HM. Catalytic Aldehyde-Alkyne Couplings Triggered by Ketyl Radicals. Org Lett 2024; 26:9949-9954. [PMID: 39515987 PMCID: PMC11590102 DOI: 10.1021/acs.orglett.4c03802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
A general and flexible platform for catalytic aldehyde-alkyne couplings triggered by ketyl radicals is described. This open-shell strategy necessitates only a catalytic quantity of a photoredox catalyst, along with Hünig's base (DIPEA) as a halogen atom transfer reagent. The reaction proceeds through sequential steps involving activation, halogen atom transfer, and radical addition. This carbonyl-alkyne coupling exhibits a wide substrate scope and functional group compatibility and has been successfully applied to the late-stage modification of complex architectures.
Collapse
Affiliation(s)
- Zhi-Xi Xing
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shu-Sheng Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
11
|
Kothuri P, Bhumannagari H, Battula S, Rekha K, Nayani K. N-Protection Dependent Phosphorylation of Dehydroamino Acids to Build Unusual Phosphono-Peptides. Chem Asian J 2024:e202401244. [PMID: 39568182 DOI: 10.1002/asia.202401244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/22/2024]
Abstract
An efficient Mn(III)-promoted phosphorylation of dehydroalanine (Dha) has been developed to give unusual α-amino acids bearing phosphonates/phosphine oxides and β-vinyl phosphonates/phosphinates depending on N-protection of amino acid. N,N-diprotected dehydroalanine reacted with H-phosphonates and H-phosphine oxides to give structurally diverse phosphorylated α-amino acids through conjugate addition of phosphorous radical generated by Mn(OAc)3.2H2O. Whereas, a highly Z-selective phosphorylation was observed in the case of mono N-Boc protected dehydroalanine via cross dehydrogenative coupling to give (Z)- β -vinyl phosphono amino acid. The method is successfully applied to short peptides to derive unusual phosphono-peptides under mild conditions.
Collapse
Affiliation(s)
- Pranay Kothuri
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Haripriya Bhumannagari
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Shravani Battula
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kolachina Rekha
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Kiranmai Nayani
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
12
|
Chen S, Ding D, Yin L, Wang X, Krause JA, Liu W. Overcoming Copper Reduction Limitation in Asymmetric Substitution: Aryl-Radical-Enabled Enantioconvergent Cyanation of Alkyl Iodides. J Am Chem Soc 2024; 146:31982-31991. [PMID: 39505711 DOI: 10.1021/jacs.4c11888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Cu-catalyzed enantioconvergent cross-coupling of alkyl halides has emerged as a powerful strategy for synthesizing enantioenriched molecules. However, this approach is intrinsically limited by the weak reducing power of copper(I) species, which restricts the scope of compatible nucleophiles and necessitates extensive ligand optimization or the use of complex chiral scaffolds. To overcome these challenges, we introduce an aryl-radical-enabled strategy that decouples the alkyl halide activation step from the chiral Cu center. We demonstrate that merging aryl-radical-enabled iodine abstraction with Cu-catalyzed asymmetric radical functionalization enables the conversion of racemic α-iodoamides to enantioenriched alkyl nitrile products with good yield and enantioselectivity. The rational design of chiral ligands identified a new class of carboxamide-containing BOX ligands. Mechanistic studies support an aryl-radical-enabled pathway and the unique hydrogen-bonding ability in the newly designed BOX ligands. This aryl-radical-enabled asymmetric substitution reaction has the potential to significantly expand the scope of Cu-catalyzed enantioconvergent cross-coupling reactions.
Collapse
Affiliation(s)
- Su Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Decai Ding
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Xiao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
13
|
Kumar V, Bisoyi A, Beevi V F, Yatham VR. Light-Induced Difunctionalization of Alkenes with Polyhaloalkanes and Quinoxalin-2(1 H)-ones. J Org Chem 2024; 89:16964-16968. [PMID: 39484822 DOI: 10.1021/acs.joc.4c02119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Herein, we report a metal-free light-induced three-component reaction for the synthesis of polychloroalkyl-substituted quinoxalin-2(1H)-ones using commercially available alkenes, polyhalo alkanes, and quinoxalin-2(1H)-ones. Preliminary mechanistic studies suggested the generation of radical intermediates via an EDA-complex, single electron transfer, or halogen atom transfer pathway. Under mild reaction conditions, various alkenes and quinoxalin-2(1H)-ones containing different functional groups are compatible, providing the corresponding polychloroalkyl-substituted quinoxalin-2(1H)-ones in moderate to good yields.
Collapse
Affiliation(s)
- Vivek Kumar
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Akash Bisoyi
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Fathima Beevi V
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
14
|
Liu S, Liu G, Wang M, Qin L, Guo Q, Li D, Yang L, Zheng M. Free radical mechanisms of ammonium sulfate as intensively used industrial materials on suppressing organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175644. [PMID: 39168350 DOI: 10.1016/j.scitotenv.2024.175644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Organic free radicals are critical intermediates for the generation and inhibition of organic pollutants during industrial processes. Clarifying the free radical mechanism of pollutant inhibition is significant for their efficient control. Ammonium sulfate is intensively used in industrial materials to suppress organic pollutants. In this study, organic free radical intermediate species in metal-catalyzed reactions inhibited by ammonium sulfate were identified using continuous-wave electron paramagnetic resonance (EPR) spectroscopy, providing direct evidence for the free radical mechanisms of organic pollutants inhibition. The transverse (T2) and longitudinal (T1) relaxation time variations catalyzed by different metal catalysts in the presence of ammonium sulfate were compared using pulsed-wave EPR. Consequently, after the addition of ammonium sulfate, the observed increase in T2 suggests that ammonium sulfate leads to radical concentration reduction. A decrease in the T1 relaxation time suggests the enhanced interaction between organic radicals and metals, which is an obstacle to subsequent radical reactions. Therefore, ammonium sulfate dominantly changed the free radical intermediates species, concentrations, and their reactivity, and then inhibited the organic pollutants formations. The inhibition mechanisms of ammonium sulfate on metal-catalyzed pollutants were then proposed combining EPR analysis, X-ray characterization, and high-resolution mass spectrometry screening. As a result, (1) occupying the active sites of metal catalysis and (2) inhibiting free radical intermediates are the two main intrinsic inhibition mechanisms of ammonium sulfate. The findings provide new perspectives on the efficient inhibition of organic pollutants in industrial processes involving various metal catalysts.
Collapse
Affiliation(s)
- Shuting Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100080, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100080, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Mingxuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100080, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linjun Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100080, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyu Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100080, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100080, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100080, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100080, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, Jianghan University, Wuhan 430056, China
| |
Collapse
|
15
|
Zhao H, Cuomo VD, Tian W, Romano C, Procter DJ. Light-assisted functionalization of aryl radicals towards metal-free cross-coupling. Nat Rev Chem 2024:10.1038/s41570-024-00664-5. [PMID: 39548311 DOI: 10.1038/s41570-024-00664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/17/2024]
Abstract
The many synthetic possibilities that arise when using radical intermediates, in place of their polar counterparts, make contemporary radical chemistry research an exhilarating field. The introduction of photocatalysis has helped tame aryl radicals, leading to a resurgence of interest in their chemistry, and an expansion of viable coupling partners and attainable transformations. These methods are more selective and safer than classical approaches, and they utilize new radical precursors. Given the importance of sustainability in current organic synthesis and our interest in light-assisted metal-free transformations, this Review focuses on recent advances in the use of aryl radicals in photoinduced cross-couplings that do not rely on metals for the crucial bond-forming event, and it is structured according to the key step that the aryl radicals engage in.
Collapse
Affiliation(s)
- Huaibo Zhao
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | - Wei Tian
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Ciro Romano
- Department of Chemistry, University of Manchester, Manchester, UK.
| | - David J Procter
- Department of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
16
|
Bretón C, Oroz P, Torres M, Zurbano MM, Garcia-Orduna P, Avenoza A, Busto JH, Corzana F, Peregrina JM. Exploring Photoredox Catalytic Reactions as an Entry to Glycosyl-α-amino Acids. ACS OMEGA 2024; 9:45437-45446. [PMID: 39554407 PMCID: PMC11561640 DOI: 10.1021/acsomega.4c07412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
The synthesis of glycosyl-α-amino acids presents a significant challenge due to the need for precise glycosidic linkages connecting carbohydrate moieties to amino acids while maintaining stereo- and regiochemical fidelity. Classical methods relying on ionic intermediates (2e-) often involve intricate synthetic procedures, particularly when dealing with 2-N-acetamido-2-deoxyglycosides linked to α-amino acids-a crucial class of glycoconjugates that play important biological roles. Considering the growing prominence of photocatalysis, this study explores various photoredox catalytic approaches to achieving glycosylation reactions. Our focus lies on the notoriously difficult case of 2-N-acetamido-2-deoxyglycosyl-α-amino acids, which could be obtained efficiently by two methodologies that involved, on the one hand, photoredox Giese reactions using a chiral dehydroalanine (Dha) as an electron density-deficient alkene in these radical 1,4-additions and, on the other hand, photoredox glycosylations using selenoglycosides as glycosyl donors and hydroxyl groups of protected amino acids as acceptors.
Collapse
Affiliation(s)
- Carmen Bretón
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| | - Paula Oroz
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| | - Miguel Torres
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| | - María M. Zurbano
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| | - Pilar Garcia-Orduna
- Departamento de
Química Inorgánica, Instituto de Síntesis Química
y Catálisis Homogénea (ISQCH), CSIC − Universidad de Zaragoza, C/Pedro Cerbuna, 12, Zaragoza 50009, Spain
| | - Alberto Avenoza
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| | - Jesús H. Busto
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| | - Francisco Corzana
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| | - Jesús M. Peregrina
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| |
Collapse
|
17
|
Sheng XX, Qiu CY, Wang LN, Du YJ, Tang LN, Chen JM, Liu GY, Yang S, Zheng PF, Chen M. Transition-Metal-Free Radical Relay Cascade Annulation of Amides: Access to Antitumor Active Benzo[b]azepine and Oxindole Derivatives. Chemistry 2024; 30:e202402402. [PMID: 39186035 DOI: 10.1002/chem.202402402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 08/27/2024]
Abstract
Efficient transition-metal-free synthesis of benzo[b]azepines and oxindoles is achieved via a radical relay cascade strategy employing halogen atom transfer (XAT) for aryl radical generation followed by intramolecular hydrogen atom transfer (HAT). Optimization yielded moderate to substantial yields under visible light irradiation. Preliminary biological assessments revealed promising anti-tumor activity for select compounds. This study underscores the potential of XAT-mediated radical relay cascades in medicinal chemistry and anticancer drug discovery.
Collapse
Affiliation(s)
- Xia-Xin Sheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Chao-Ying Qiu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Li-Na Wang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Yu-Jia Du
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Lu-Ning Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Jia-Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Guo-Ying Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Peng-Fei Zheng
- College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| |
Collapse
|
18
|
Peng J, Wang A, Liu Y, Chen F, Tang G, Zhao Y. Selective Functionalization of White Phosphorus with Alkyl Bromides under Photocatalytic Conditions: A Chlorine-Free Protocol to Dialkyl and Trialkyl Phosphine Oxides. Org Lett 2024; 26:9316-9321. [PMID: 39445636 DOI: 10.1021/acs.orglett.4c03494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A novel and efficient method for the direct selective alkylation of white phosphorus (P4) with alkyl bromides has been developed, utilizing 4DPAIPN as the photocatalyst and Hantzsch ester as the reductant. This method facilitates the synthesis of structurally diverse dialkyl phosphine oxides in good yields, offering a streamlined alternative to the traditional stepwise approach of chlorinating P4 with Cl2 and subsequently displacing the chlorine atom. Noteworthy features of this reaction include excellent product selectivity, remarkable functional group tolerance, and a broad substrate scope. Additionally, this method is effective for the synthesis of trialkyl phosphine oxides.
Collapse
Affiliation(s)
- Jialiang Peng
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - An Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Yan Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Fushan Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Guo Tang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| | - Yufen Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
19
|
Liang C, Wang S, Xue Y, He X, Qin J, Zhan R, Liu B, Huang H. Visible-Light-Induced α-Arylation of Ketones with (Hetero)aryl Halides. Org Lett 2024; 26:9346-9351. [PMID: 39441872 DOI: 10.1021/acs.orglett.4c03510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
An enamine-mediated photoredox catalyzed C(sp2)-C(sp3) cross-coupling of dual radical precursors for the arylation of ketone is presented in this Letter. These reactions led to the formation of an enamine by using pyrrolidine to functionalize the C(sp3)-H bond in ketone substrates, which could be smoothly converted to α-arylated ketones with inert aryl bromides and even aryl chlorides in moderate to good yields under mild reaction conditions. The photocatalytically induced C(sp2)-C(sp3) cross-coupling between unactivated noncyclic ketones and aryl halides was achieved, and multiple carbonyl α-arylated backbones containing various natural products and drug molecules were successfully constructed.
Collapse
Affiliation(s)
- Chuyun Liang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Shuzhong Wang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yunhao Xue
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xingyao He
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jialiang Qin
- The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ruoting Zhan
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Bo Liu
- The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510006, China
| | - Huicai Huang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
20
|
Jankins TC, Blank PM, Brugnetti A, Boehm P, Aouane FA, Morandi B. Shuttle HAT for mild alkene transfer hydrofunctionalization. Nat Commun 2024; 15:9397. [PMID: 39477933 PMCID: PMC11525564 DOI: 10.1038/s41467-024-53281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Hydrogen atom transfer (HAT) from a metal-hydride is a reliable and powerful method for functionalizing unsaturated C-C bonds in organic synthesis. Cobalt hydrides (Co-H) have garnered significant attention in this field, where the weak Co-H bonds are most commonly generated in a catalytic fashion through a mixture of stoichiometric amounts of peroxide oxidant and silane reductant. Here we show that the reverse process of HAT to an alkene, i.e. hydrogen atom abstraction of a C-H adjacent to a radical, can be leveraged to generate catalytically active Co-H species in an application of shuttle catalysis coined shuttle HAT. This method obviates the need for stoichiometric reductant/oxidant mixtures thereby greatly simplifying the generation of Co-H. To demonstrate the generality of this shuttle HAT platform, five different reaction manifolds are shown, and the reaction can easily be scaled up to 100 mmol.
Collapse
Affiliation(s)
- Tanner C Jankins
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Philip M Blank
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Andrea Brugnetti
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Philip Boehm
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Françoise A Aouane
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland.
| |
Collapse
|
21
|
Corpas J, Alonso M, Leonori D. Boryl radical-mediated halogen-atom transfer (XAT) enables the Sonogashira-like alkynylation of alkyl halides. Chem Sci 2024:d4sc06516f. [PMID: 39483251 PMCID: PMC11521202 DOI: 10.1039/d4sc06516f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
Alkynes are a crucial class of materials with application across the wide range of chemical disciplines. The alkynylation of alkyl halides presents an ideal strategy for assembling these materials. Current methods rely on the intrinsic electrophilic nature of alkyl halides to couple with nucleophilic acetylenic systems, but these methods faces limitations in terms of applicability and generality. Herein, we introduce a different approach to alkynylation of alkyl halides that proceeds via radical intermediates and uses alkynyl sulfones as coupling partners. This strategy exploits the ability of amine-ligated boryl radicals to activate alkyl iodides and bromides through halogen-atom transfer (XAT). The resulting radicals then undergo a cascade of α-addition and β-fragmentation with the sulfone reagent, leading to the construction of C(sp3)-C(sp) bonds. The generality of the methodology has been demonstrated by its successful application in the alkynylation of complex and high-value molecules.
Collapse
Affiliation(s)
- Javier Corpas
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 Aachen 52056 Germany
| | - Maialen Alonso
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 Aachen 52056 Germany
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 Aachen 52056 Germany
| |
Collapse
|
22
|
Yang T, Xiong W, Sun G, Yang W, Lu M, Koh MJ. Multicomponent Construction of Tertiary Alkylamines by Photoredox/Nickel-Catalyzed Aminoalkylation of Organohalides. J Am Chem Soc 2024; 146:29177-29188. [PMID: 39394998 DOI: 10.1021/jacs.4c11602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Tertiary alkylamines are privileged structural motifs widely present in natural products, pharmaceutical agents, and bioactive molecules, and their efficient synthesis has been a longstanding goal in organic chemistry. The functionalization of α-amino radicals derived from abundant precursors represents an emerging approach to accessing alkylamines, but application of this strategy to obtain tertiary alkylamines remains challenging. Here, we show that dual photoredox/nickel catalysis enables aminoalkylation of organohalides (sp2- and sp3-hybridized) in combination with secondary alkylamines and aldehydes. The multicomponent process proceeds through selective generation of α-amino radicals from the reduction of in situ-generated iminium ions by photoredox catalysis, followed by nickel-catalyzed cross-coupling to build a wide array of functionally diverse tertiary alkylamines. This strategy could also be extended to unprecedented four-component reactions and their asymmetric variants to deliver enantioenriched α-aryl-substituted γ-amino acid derivatives. Taken together, this work offers a streamlined synthetic route to aliphatic tertiary amines.
Collapse
Affiliation(s)
- Tao Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Wenhui Xiong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Guangyu Sun
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Weiran Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Mandi Lu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117544, Republic of Singapore
| |
Collapse
|
23
|
Mato M, Stamoulis A, Cleto Bruzzese P, Cornella J. Activation and C-C Coupling of Aryl Iodides via Bismuth Photocatalysis. Angew Chem Int Ed Engl 2024:e202418367. [PMID: 39436157 DOI: 10.1002/anie.202418367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Within the emerging field of bismuth redox catalysis, the catalytic formation of C-C bonds using aryl halides would be highly desirable; yet such a process remains a synthetic challenge. Herein, we present a chemoselective bismuth-photocatalyzed activation and subsequent coupling of (hetero)aryl iodides with pyrrole derivatives to access C(sp2)-C(sp2) linkages through C-H functionalization. This unique reactivity is the result of the bismuth complex featuring two redox state-dependent interactions with light, which 1) activates the Bi(I) complex for oxidative addition via MLCT, and 2) promotes the homolytic cleavage of aryl Bi(III) intermediates through a LLCT process.
Collapse
Affiliation(s)
- Mauro Mato
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Alexios Stamoulis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Paolo Cleto Bruzzese
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
24
|
Li J, Zhang D, Tan L, Li CJ. Direct Excitation Strategy for Deacylative Couplings of Ketones. Angew Chem Int Ed Engl 2024; 63:e202410363. [PMID: 39043558 DOI: 10.1002/anie.202410363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024]
Abstract
The homolysis of chemical bonds represents one of the most fundamental reactivities of excited molecules. Historically, it has been exploited to generate radicals under ultraviolet (UV) light irradiation. However, unlike most contemporary radical-generating mechanisms, the direct excitation to homolyze chemical bonds and produce aliphatic carbon-centered radicals under visible light remains rare, especially in metallaphotoredox cross couplings. Herein, we present our design of the dihydropyrimidoquinolinone (DHPQ) reagents derived from ketones, which can undergo formal deacylation and homolytic C-C bond cleavage to release alkyl radicals without external photocatalysts. Spectroscopic and computational analysis reveal unique optical and structural features of DHPQs, rationalizing their faster kinetics in alkyl radical generation than a structurally similar but visible-light transparent radical precursor. Such a capability allows DHPQ to facilitate a wide range of Ni-metallaphotoredox cross couplings with aryl, alkynyl and acyl halides. Other catalytic and non-catalyzed alkylative transformations of DHPQs are also feasible with various radical acceptors. We believe this work would be of broad interest, aiding the synthetic planning with simplified operation and expanding the synthetic reach of photocatalyst-free approaches in cutting-edge research.
Collapse
Affiliation(s)
- Jianbin Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Longgang District, Shenzhen, Guangdong, 518172, China
| | - Ding Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Longgang District, Shenzhen, Guangdong, 518172, China
| | - Lida Tan
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, Québec, H3 A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, Québec, H3 A 0B8, Canada
| |
Collapse
|
25
|
Garwood JJA, Chen AD, Nagib DA. Radical Polarity. J Am Chem Soc 2024. [PMID: 39363280 DOI: 10.1021/jacs.4c06774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The polarity of a radical intermediate profoundly impacts its reactivity and selectivity. To quantify this influence and predict its effects, the electrophilicity/nucleophilicity of >500 radicals has been calculated. This database of open-shell species entails frequently encountered synthetic intermediates, including radicals centered at sp3, sp2, and sp hybridized carbon atoms or various heteroatoms (O, N, S, P, B, Si, X). Importantly, these computationally determined polarities have been experimentally validated for electronically diverse sets of >50 C-centered radicals, as well as N- and O- centered radicals. High correlations are measured between calculated polarity and quantified reactivity, as well as within parallel sets of competition experiments (across different radical types and reaction classes). These multipronged analyses show a strong relationship between the computed electrophilicity, ω, of a radical and its relative reactivity (krel vs Δω slopes up to 40; showing mere Δω of 0.1 eV affords up to 4-fold rate enhancement). We expect this experimentally validated database will enable reactivity and selectivity prediction (by harnessing polarity-matched rate enhancement) and assist with troubleshooting in synthetic reaction development.
Collapse
Affiliation(s)
- Jacob J A Garwood
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andrew D Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
26
|
Draper F, DiLuzio S, Sayre HJ, Pham LN, Coote ML, Doeven EH, Francis PS, Connell TU. Maximizing Photon-to-Electron Conversion for Atom Efficient Photoredox Catalysis. J Am Chem Soc 2024; 146:26830-26843. [PMID: 39302225 DOI: 10.1021/jacs.4c07396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Photoredox catalysis is a powerful tool to access challenging and diverse syntheses. Absorption of visible light forms the excited state catalyst (*PC) but photons may be wasted if one of several unproductive pathways occur. Facile dissociation of the charge-separated encounter complex [PC•-:D•+], also known as (solvent) cage escape, is required for productive chemistry and directly governs availability of the critical PC•- intermediate. Competitive charge recombination, either inside or outside the solvent cage, may limit the overall efficiency of a photochemical reaction or internal quantum yield (defined as the moles of product formed per mole of photons absorbed by PC). Measuring the cage escape efficiency (ϕCE) typically requires time-resolved spectroscopy; however, we demonstrate how to estimate ϕCE using steady-state techniques that measure the efficiency of PC•- formation (ϕPC). Our results show that choice of electron donor critically impacts ϕPC, which directly correlates to improved synthetic and internal quantum yields. Furthermore, we demonstrate how modest structural differences between photocatalysts may afford a sizable effect on reactivity due to changes in ϕPC, and by extension ϕCE. Optimizing experimental conditions for cage escape provides photochemical reactions with improved atom economy and energy input, paving the way for sustainable design of photocatalytic systems.
Collapse
Affiliation(s)
- Felicity Draper
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Stephen DiLuzio
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Hannah J Sayre
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Le Nhan Pham
- Institute for Nanoscale Science and Technology, Flinders University, Adelaide, South Australia 5042, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, Flinders University, Adelaide, South Australia 5042, Australia
| | - Egan H Doeven
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Paul S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Timothy U Connell
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| |
Collapse
|
27
|
Wang S, Luo X, Wang Y, Liu Z, Yu Y, Wang X, Ren D, Wang P, Chen YH, Qi X, Yi H, Lei A. Radical-triggered translocation of C-C double bond and functional group. Nat Chem 2024; 16:1621-1629. [PMID: 39251841 DOI: 10.1038/s41557-024-01633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Multi-site functionalization of molecules provides a potent approach to accessing intricate compounds. However, simultaneous functionalization of the reactive site and the inert remote C(sp3)-H poses a formidable challenge, as chemical reactions conventionally occur at the most active site. In addition, achieving precise control over site selectivity for remote C(sp3)-H activation presents an additional hurdle. Here we report an alternative modular method for alkene difunctionalization, encompassing radical-triggered translocation of functional groups and remote C(sp3)-H desaturation via photo/cobalt dual catalysis. By systematically combining radical addition, functional group migration and cobalt-promoted hydrogen atom transfer, we successfully effectuate the translocation of the carbon-carbon double bond and another functional group with precise site selectivity and remarkable E/Z selectivity. This redox-neutral approach shows good compatibility with diverse fluoroalkyl and sulfonyl radical precursors, enabling the migration of benzoyloxy, acetoxy, formyl, cyano and heteroaryl groups. This protocol offers a resolution for the simultaneous transformation of manifold sites.
Collapse
Affiliation(s)
- Shengchun Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Xu Luo
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Yuan Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Zhao Liu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Yi Yu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Xuejie Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Demin Ren
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Pengjie Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Yi-Hung Chen
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Xiaotian Qi
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China.
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, P. R. China.
| | - Hong Yi
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China.
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China.
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, P. R. China.
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, P. R. China.
| |
Collapse
|
28
|
Liu Q, Ren Y, Zhang B, Tang W, Wang Z, He L, Chen X. Photoinduced Single Electron Reduction of the 4-O-5 Linkage in Lignin Models for C-P Coupling Catalyzed by Bifunctional N-Heterocyclic Carbenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406095. [PMID: 39099408 PMCID: PMC11481192 DOI: 10.1002/advs.202406095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/14/2024] [Indexed: 08/06/2024]
Abstract
Catalytic activation of Caryl-O bonds is considered as a powerful strategy for the production of aromatics from lignin. However, due to the high reduction potentials of diaryl ether 4-O-5 linkage models, their single electron reduction remains a daunting challenge. This study presents the blue light-induced bifunctional N-heterocyclic carbene (NHC)-catalyzed one-electron reduction of diaryl ether 4-O-5 linkage models for the synthesis of trivalent phosphines. The H-bond between the newly devised bifunctional NHC and diaryl ethers is responsible for the success of the single electron transfer. Furthermore, this approach demonstrates selective one-electron reduction of unsymmetric diaryl ethers, oligomeric phenylene oxide, and lignin model.
Collapse
Affiliation(s)
- Qiang Liu
- School of Chemical SciencesUniversity of the Chinese Academy of SciencesBeijing National Laboratory for Molecular SciencesBeijing100049China
| | - Ying‐Zheng Ren
- School of Chemical SciencesUniversity of the Chinese Academy of SciencesBeijing National Laboratory for Molecular SciencesBeijing100049China
- State Key Laboratory Incubation Base for Green Processing of Chemical EngineeringSchool of Chemistry and Chemical EngineeringShihezi UniversityXinjiang832000China
| | - Bei‐Bei Zhang
- School of Chemical SciencesUniversity of the Chinese Academy of SciencesBeijing National Laboratory for Molecular SciencesBeijing100049China
| | - Wen‐Xin Tang
- School of Chemical SciencesUniversity of the Chinese Academy of SciencesBeijing National Laboratory for Molecular SciencesBeijing100049China
| | - Zhi‐Xiang Wang
- School of Chemical SciencesUniversity of the Chinese Academy of SciencesBeijing National Laboratory for Molecular SciencesBeijing100049China
- Binzhou Institute of TechnologyWeiqiao‐UCAS Science and Technology ParkBinzhouShandong256606China
| | - Lin He
- State Key Laboratory Incubation Base for Green Processing of Chemical EngineeringSchool of Chemistry and Chemical EngineeringShihezi UniversityXinjiang832000China
| | - Xiang‐Yu Chen
- School of Chemical SciencesUniversity of the Chinese Academy of SciencesBeijing National Laboratory for Molecular SciencesBeijing100049China
- Binzhou Institute of TechnologyWeiqiao‐UCAS Science and Technology ParkBinzhouShandong256606China
| |
Collapse
|
29
|
Bastick KAC, Roberts DD, Watson AJB. The current utility and future potential of multiborylated alkanes. Nat Rev Chem 2024; 8:741-761. [PMID: 39327469 DOI: 10.1038/s41570-024-00650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
Organoboron chemistry has become a cornerstone of modern synthetic methodology. Most of these reactions use an organoboron starting material that contains just one C(sp2)-B or C(sp3)-B bond; however, there has been a recent and accelerating trend to prepare multiborylated alkanes that possess two or more C(sp3)-B bonds. This is despite a lack of general reactivity, meaning many of these compounds currently offer limited downstream synthetic value. This Review summarizes recent advances in the exploration of multiborylated alkanes, including a discussion on how these products may be elaborated in further synthetic manipulations.
Collapse
Affiliation(s)
- Kane A C Bastick
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Dean D Roberts
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Allan J B Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK.
| |
Collapse
|
30
|
Tan Y, Pei M, Yang K, Zhou T, Hu A, Guo JJ. Catalytic Generation of Pyridyl Radicals via Electron Donor-Acceptor Complex Photoexcitation: Synthesis of 2-Pyridylindole-Based Heterobiaryls. Org Lett 2024; 26:8084-8089. [PMID: 39287652 DOI: 10.1021/acs.orglett.4c02985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
We report the catalytic generation of pyridyl radicals through photoexcitation of the electron donor-acceptor (EDA) complex, which enables the C2-selective heteroarylation of indole under ambient conditions. In this manifold, catalytic triarylamine and chloropyridine aggregate into an EDA complex in the presence of an inorganic base, making readily available chloropyridines good precursors for the generation of diverse pyridyl radicals. Given the broad reaction scope, this catalytic EDA complex protocol provides robust access to heterobiaryl scaffolds that are widely present in biologically important molecules.
Collapse
Affiliation(s)
- Yingfei Tan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Meiting Pei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Kang Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Tingting Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Anhua Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Jing-Jing Guo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
31
|
Langschwager T, Storch G. Flavin-Catalyzed, Photochemical Conversion of Dehydroalanine into 4,5-Dihydroxynorvaline. Angew Chem Int Ed Engl 2024:e202414679. [PMID: 39305229 DOI: 10.1002/anie.202414679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 11/06/2024]
Abstract
The chemical synthesis of unnatural amino acids (UAA) is a key strategy for preparing designed peptides, including pharmaceutically active compounds. Alterations of existing amino acid residues such as dehydroalanine (Dha) are particularly important since selected positions can be addressed without the necessity of a complete de novo synthesis. The intriguing UAA 4,5-dihydroxynorvaline (Dnv) is found in a variety of naturally occurring peptides and biologically active compounds. However, no method is currently available to modify an existing peptide with this residue. We report the use of flavin catalysts and visible light irradiation for this challenge, which serves as a versatile strategy for converting Dha into Dnv. Our study shows that excited flavins are competent hydrogen atom abstraction catalysts for ethers and acetals, which allows masked 1,2-dihydroxyethylene functionalization from 2,2-dimethyl-1,3-dioxolane. The masked diol was successfully coupled to Dha residues, and a series of Dnv-containing products is reported. A mild and orthogonal protocol for deprotection of the acetal group was also identified, allowing free Dnv-modified peptides to be obtained. This method provides a straightforward strategy for Dnv functionalization, which is envisioned to be crucial for accessing natural products and synthetic analogues with pharmaceutical activity.
Collapse
Affiliation(s)
- Tim Langschwager
- School of Natural Sciences and Catalysis Research Center (CRC), Technical University of Munich (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Golo Storch
- School of Natural Sciences and Catalysis Research Center (CRC), Technical University of Munich (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| |
Collapse
|
32
|
Zeng L, Ouyang XH, He DL, Li JH. Synthesis of Diarylalkanes by Photoreductive 1,2-Diarylation of Alkenes with Aryl Halides and Cyanoaromatics. J Org Chem 2024; 89:13641-13653. [PMID: 39235129 DOI: 10.1021/acs.joc.4c01830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
We report a visible light-induced photoreductive strategy for three-component diarylation of alkenes with aryl halides and cyanoaromatics. Upon photoredox catalysis and with tertiary alkyl amines as the electron transfer agent, aryl halides selectively undergo halogen atom transfer to generate the aryl radicals and two C(sp2)-C(sp3) bonds between the cabron atoms are created in a radical addition and radical-radical coupling fashion to rapidly assemble diverse functionalized polyarylalkanes with high regio- and chemoselectivity. This method can be applied to broad feedstocks, including terminal alkenes, internal alkenes, aryl iodides, aryl bromides, aryl chlorides, electron-deficient benzonitriles, and isonicotinonitriles.
Collapse
Affiliation(s)
- Liang Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xuan-Hui Ouyang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - De-Liang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
33
|
Su XD, Liu Q, Cheng JT, Wang ZX, Chen XY. Near-Infrared-Light-Induced Iron(I) Dimer-Enabled Radical Cascade Reactions of Fluoroalkyl Bromides for the Synthesis of Ring-Fused Quinazolinones. Org Lett 2024; 26:7976-7980. [PMID: 39240022 DOI: 10.1021/acs.orglett.4c03087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The use of an earth-abundant and inexpensive iron complex as a catalyst, coupled with near-infrared (NIR) light as the energy source, for radical reactions with alkyl halides has been far less developed. In this study, we report NIR light-mediated iron(I) dimer-catalyzed radical cascade reactions of fluoroalkyl bromides for the synthesis of ring-fused quinazolinones bearing a difluoromethyl group. In this process, the 3-bromo-1,10-phenanthroline ligand facilitates the reactivity of [CpFe(CO)2]2, thereby improving the efficiency of the reaction.
Collapse
Affiliation(s)
- Xiao-Di Su
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Tang Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| |
Collapse
|
34
|
Suo W, Qi JQ, Liu J, Sun S, Jiao L, Guo X. Overestimated Halogen Atom Transfer Reactivity of α-Aminoalkyl Radicals. J Am Chem Soc 2024; 146:25860-25869. [PMID: 39233359 DOI: 10.1021/jacs.4c09792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Halogen atom transfer (XAT) is a versatile method for generating carbon radicals. Recent interest has focused on α-aminoalkyl radicals as potential XAT reagents, previously reported to exhibit reactivity comparable to tin radicals. Utilizing an advanced time-resolved EPR technique, the XAT reactions between α-aminoalkyl radicals and organic halides were examined, allowing direct observation of the process through EPR spectroscopy and analysis of radical kinetics. Second-order rate constants for these reactions were determined, with some validated using transient absorption spectroscopy. The key finding is that the reactivity of α-aminoalkyl radicals in XAT reactions is 103 to 105 times lower than that of tin and silicon radicals and only slightly higher than alkyl radicals. This challenges the belief that α-aminoalkyl radicals are as reactive as tin radicals. The study on the solvent effect indicates that the XAT reaction of α-aminoalkyl radicals does not involve a highly polarized transition state, suggesting that the kinetic polar effect in this XAT process is not as significant as previously believed. The present study provides a reliable XAT reactivity scale for α-aminoalkyl radicals, which is crucial for designing XAT reactions and understanding their mechanisms.
Collapse
Affiliation(s)
- Weiqun Suo
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jian-Qing Qi
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jing Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Songtao Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xingwei Guo
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Kong P, Ye Y, Zhang X, Bao X, Huo C. Alkylation of Glycine Derivatives through a Synergistic Single-Electron Transfer and Halogen-Atom Transfer Process. Org Lett 2024; 26:7507-7513. [PMID: 39207059 DOI: 10.1021/acs.orglett.4c02352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Here, we present a versatile method for forming C(sp3)-C(sp3) bonds, enabling the synthesis of a range of natural and non-natural amino acids. This approach utilizes readily available glycine derivatives and alkyl iodides, combining single-electron transfer and halogen-atom transfer processes. The utility of this step-economic and redox-economic C(sp3)-C(sp3) bond formation is further highlighted in the late-stage site-selective modifications of the glycine residue in short peptides.
Collapse
Affiliation(s)
- Peng Kong
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Youwan Ye
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xin Zhang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xiazhen Bao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| |
Collapse
|
36
|
Yang LF, Zeng L, Liu YL, Hu M, Li JH. Photoreductive 1,4-Dicarbofunctionalization of 1,3-Enynes with Organoiodides and Cyanoarenes via Halogen-Atom Transfer. Org Lett 2024; 26:7661-7666. [PMID: 39197044 DOI: 10.1021/acs.orglett.4c02774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
A photoreductive halogen-atom transfer (XAT) strategy for 1,4-dicarbofunctionalization of 1,3-enynes with organoiodides and cyanoarenes is disclosed, enabling access to functionalized allenes in a highly regio-, chemo-, and stereoselective manner. Upon the photoredox catalysis and the activation of Et3N XAT agents, the mild conditions and high functional group tolerance of this protocol enable the formation of two C-C bonds, including a C(sp3)-C(sp3) bond and a C(sp2)-C(sp2) bond, in a single reaction step, and provides a general avenue to polysubstituted allenes and late-stage modification of bioactive compounds.
Collapse
Affiliation(s)
- Liang-Feng Yang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Liang Zeng
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yi-Lin Liu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China
| | - Ming Hu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jin-Heng Li
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
37
|
Min H, Kwon Y, Shin S, Choi M, Mehra MK, Jeon W, Kwon MS, Lee CW. Tailoring the Degradation of Cyanoarene-Based Photocatalysts for Enhanced Visible-Light-Driven Halogen Atom Transfer. Angew Chem Int Ed Engl 2024; 63:e202406880. [PMID: 38842479 DOI: 10.1002/anie.202406880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/07/2024]
Abstract
We present the strategic design of donor-acceptor cyanoarene-based photocatalysts (PCs) aiming to augment beneficial PC degradation for halogen atom transfer (XAT)-induced dehalogenation reactions. Our investigation reveals a competitive nature between the catalytic cycle and the degradation pathway, with the degradation becoming dominant, particularly for less activated alkyl halides. The degradation behavior of PCs significantly impacts the efficiency of the XAT process, leading to exploration into manipulating the degradation behavior in a desirable direction. Recognizing the variation in the nature and rate of PC degradation, as well as its influence on the reaction across the range of PC structures, we carefully engineered the PCs to develop a pre-catalyst, named 3DP-DCDP-IPN. This pre-catalyst undergoes rapid degradation into an active form, 3DP-DCDP-Me-BN, exhibited an enhanced reducing ability in its radical anion form to induce better PC regeneration and consequently effectively catalyzes the XAT reaction, even with a challenging substrate.
Collapse
Affiliation(s)
- Hyunji Min
- Department of Chemistry, Gachon University, 1342 Seongnamdaero, Seongnam, Gyeonggi, 13120, Republic of Korea
| | - Yonghwan Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sukhyun Shin
- Department of Chemistry, Gachon University, 1342 Seongnamdaero, Seongnam, Gyeonggi, 13120, Republic of Korea
| | - Miseon Choi
- Department of Chemistry, Gachon University, 1342 Seongnamdaero, Seongnam, Gyeonggi, 13120, Republic of Korea
| | - Manish Kumar Mehra
- Department of Chemistry, Gachon University, 1342 Seongnamdaero, Seongnam, Gyeonggi, 13120, Republic of Korea
- Present address, The Wistar Institute, Philadelphia, 19104, PA, United States
| | - Woojin Jeon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chung Whan Lee
- Department of Chemistry, Gachon University, 1342 Seongnamdaero, Seongnam, Gyeonggi, 13120, Republic of Korea
| |
Collapse
|
38
|
Beil SB, Bonnet S, Casadevall C, Detz RJ, Eisenreich F, Glover SD, Kerzig C, Næsborg L, Pullen S, Storch G, Wei N, Zeymer C. Challenges and Future Perspectives in Photocatalysis: Conclusions from an Interdisciplinary Workshop. JACS AU 2024; 4:2746-2766. [PMID: 39211583 PMCID: PMC11350580 DOI: 10.1021/jacsau.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Photocatalysis is a versatile and rapidly developing field with applications spanning artificial photosynthesis, photo-biocatalysis, photoredox catalysis in solution or supramolecular structures, utilization of abundant metals and organocatalysts, sustainable synthesis, and plastic degradation. In this Perspective, we summarize conclusions from an interdisciplinary workshop of young principal investigators held at the Lorentz Center in Leiden in March 2023. We explore how diverse fields within photocatalysis can benefit from one another. We delve into the intricate interplay between these subdisciplines, by highlighting the unique challenges and opportunities presented by each field and how a multidisciplinary approach can drive innovation and lead to sustainable solutions for the future. Advanced collaboration and knowledge exchange across these domains can further enhance the potential of photocatalysis. Artificial photosynthesis has become a promising technology for solar fuel generation, for instance, via water splitting or CO2 reduction, while photocatalysis has revolutionized the way we think about assembling molecular building blocks. Merging such powerful disciplines may give rise to efficient and sustainable protocols across different technologies. While photocatalysis has matured and can be applied in industrial processes, a deeper understanding of complex mechanisms is of great importance to improve reaction quantum yields and to sustain continuous development. Photocatalysis is in the perfect position to play an important role in the synthesis, deconstruction, and reuse of molecules and materials impacting a sustainable future. To exploit the full potential of photocatalysis, a fundamental understanding of underlying processes within different subfields is necessary to close the cycle of use and reuse most efficiently. Following the initial interactions at the Lorentz Center Workshop in 2023, we aim to stimulate discussions and interdisciplinary approaches to tackle these challenges in diverse future teams.
Collapse
Affiliation(s)
- Sebastian B. Beil
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
- Max Planck
Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mulheim an der Ruhr, Germany
| | - Sylvestre Bonnet
- Leiden Institute
of Chemistry, Leiden University, Gorlaeus
Laboratories, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Carla Casadevall
- Department
of Physical and Inorganic Chemistry, University
Rovira i Virgili (URV), C/Marcel.lí Domingo, 1, 43007 Tarragona, Spain
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Avinguda dels Països Catalans, 16, 43007 Tarragona, Spain
| | - Remko J. Detz
- Energy Transition
Studies (ETS), Netherlands Organization
for Applied Scientific Research (TNO), Radarweg 60, 1043
NT Amsterdam, The
Netherlands
| | - Fabian Eisenreich
- Department
of Chemical Engineering and Chemistry & Institute for Complex
Molecular Systems, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Starla D. Glover
- Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Christoph Kerzig
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Line Næsborg
- Department
of Organic Chemistry, University of Münster, Correnstr. 40, 48149 Münster, Germany
| | - Sonja Pullen
- Homogeneous
and Supramolecular Catalysis, Van ’t Hoff Institute for Molecular
Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Golo Storch
- Technical
University of Munich (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
| | - Ning Wei
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
- Max Planck
Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mulheim an der Ruhr, Germany
| | - Cathleen Zeymer
- Center for
Functional Protein Assemblies & Department of Bioscience, TUM
School of Natural Sciences, Technical University
of Munich, 85748 Garching, Germany
| |
Collapse
|
39
|
Sephton T, Large JM, Natrajan LS, Butterworth S, Greaney MF. XAT-Catalysis for Intramolecular Biaryl Synthesis. Angew Chem Int Ed Engl 2024; 63:e202407979. [PMID: 38818676 DOI: 10.1002/anie.202407979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
Radical ipso-substitution offers an alternative to organometallic approaches for biaryl synthesis, but usually requires stoichiometric reagents such as tributyltin hydride. Here, we demonstrate that visible light photoredox catalysis can be used for ipso-biaryl synthesis, via a halogen-atom transfer (XAT) regime. Using amide substrates that promote ipso- over unwanted ortho-addition, we demonstrate smooth biaryl formation with no constraint on the electronic character of the migrating arene ring. The photoreaction can be combined in one operation to achieve a formal arylation of the inert aniline C-N bond.
Collapse
Affiliation(s)
- Thomas Sephton
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Jonathan M Large
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Louise S Natrajan
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Michael F Greaney
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
40
|
Zhang Z, Poletti L, Leonori D. A Radical Strategy for the Alkylation of Amides with Alkyl Halides by Merging Boryl Radical-Mediated Halogen-Atom Transfer and Copper Catalysis. J Am Chem Soc 2024; 146:22424-22430. [PMID: 39087940 DOI: 10.1021/jacs.4c05487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Amide alkylation is a fundamental process in organic chemistry. However, the low nucleophilicity of amides means that divergent coupling with alkyl electrophiles is often not achievable. To circumvent this reactivity challenge, individual amine synthesis followed by amidation with standard coupling agents is generally required. Herein, we demonstrate a radical solution to this challenge by using an amine-borane complex and copper catalysis under oxidative conditions. While borohydride reagents are generally used as reducing agents in ionic chemistry, their conversion into amine-ligated boryl radicals diverts their reactivity toward halogen-atom transfer. This enables the conversion of alkyl halides into the corresponding alkyl radicals for amide functionalization via copper catalysis. The process is applicable to the N-alkylation of primary amides employing unactivated alkyl iodides and bromides, and it was also showcased in the late-state functionalization of both complex amide- and halide-containing drugs.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52056, Germany
| | - Lorenzo Poletti
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52056, Germany
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52056, Germany
| |
Collapse
|
41
|
Capaldo L, Wan T, Mulder R, Djossou J, Noël T. Visible light-induced halogen-atom transfer by N-heterocyclic carbene-ligated boryl radicals for diastereoselective C(sp 3)-C(sp 2) bond formation. Chem Sci 2024:d4sc02962c. [PMID: 39184300 PMCID: PMC11340342 DOI: 10.1039/d4sc02962c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024] Open
Abstract
Photoinduced halogen-atom transfer (XAT) has rapidly emerged as a programmable approach to generate carbon-centered radical intermediates, mainly relying on silyl and α-aminoalkyl radicals as halogen abstractors. More recently, ligated boryl radicals have also been proposed as effective halogen abstractors under visible-light irradiation. In this study, we describe the use of this approach to enable C(sp3)-C(sp2) bond formation via radical addition of carbon-centered radicals generated via XAT onto chloroalkynes. Our mechanistic investigation reveals a complex interplay of highly reactive radical intermediates which, under optimized conditions, delivered the targeted vinyl chlorides in excellent yields and Z : E ratios. Finally, we demonstrated the synthetic value of these products in transition metal-based cross-coupling reactions.
Collapse
Affiliation(s)
- Luca Capaldo
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- Department of Chemistry, SynCat Lab, Life Sciences and Environmental Sustainability, University of Parma 43124 Parma Italy
| | - Ting Wan
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Robin Mulder
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Jonas Djossou
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
42
|
Dam P, Zuo K, Azofra LM, El-Sepelgy O. Biomimetic Photoexcited Cobaloxime Catalysis in Organic Synthesis. Angew Chem Int Ed Engl 2024; 63:e202405775. [PMID: 38775208 DOI: 10.1002/anie.202405775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Indexed: 07/17/2024]
Abstract
Drawing inspiration from nature has long been a cornerstone of chemical innovation, with natural systems offering a wealth of untapped potential for discovery. In this minireview, we delve into the burgeoning field of cobaloxime catalysis in organic synthesis, which mimics the catalytic activity of the natural organometallic alkylcobalamine enzymes. Our focus lies on elucidating the latest advancements in this area, as well as delineating the primary mechanistic pathways at play. By describing, and comparing these mechanisms, we provide a comprehensive overview of the current state-of-the-art, while also shedding light on the key unresolved challenges that await further exploration.
Collapse
Affiliation(s)
- Phong Dam
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Kaiming Zuo
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Luis Miguel Azofra
- Instituto de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017, Las Palmas de Gran Canaria, Spain
| | - Osama El-Sepelgy
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|
43
|
Powell J, Mann CA, Toth PD, Nolan S, Steinert A, Ove C, Seffernick JT, Wozniak DJ, Kebriaei R, Lindert S, Osheroff N, Yalowich JC, Mitton-Fry MJ. Development of Novel Bacterial Topoisomerase Inhibitors Assisted by Computational Screening. ACS Med Chem Lett 2024; 15:1287-1297. [PMID: 39140037 PMCID: PMC11318591 DOI: 10.1021/acsmedchemlett.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 08/15/2024] Open
Abstract
Multidrug-resistant bacterial infections pose an ever-evolving threat to public health. Since the outset of the antibacterial age, bacteria have developed a multitude of diverse resistance mechanisms that suppress the effectiveness of current therapies. New drug entities, such as Novel Bacterial Topoisomerase Inhibitors (NBTIs), can circumvent this major issue. A computational docking model was employed to predict the binding to DNA gyrase of atypical NBTIs with novel pharmacophores. Synthesis of NBTIs based on computational docking and subsequent antibacterial evaluation against both Gram-positive and Gram-negative bacteria yielded congeners with outstanding anti-staphylococcal activity and varying activity against select Gram-negative pathogens.
Collapse
Affiliation(s)
- Joshua
W. Powell
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chelsea A. Mann
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Paul D. Toth
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sheri Nolan
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Anja Steinert
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Clarissa Ove
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Justin T. Seffernick
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Daniel J. Wozniak
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Razieh Kebriaei
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Steffen Lindert
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Neil Osheroff
- Department of Biochemistry and Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Jack C. Yalowich
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mark J. Mitton-Fry
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
44
|
Ren J, Xia XF. Visible-light-induced alkyl-arylation of olefins via a halogen-atom transfer process. Org Biomol Chem 2024; 22:6370-6375. [PMID: 39046012 DOI: 10.1039/d4ob00971a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Visible-light-induced three-component 1,2-alkyl-arylation of alkenes and alkyl radical addition/cyclization of acrylamides have been realized via a photocatalytic halogen-atom transfer (XAT) process. This metal-free protocol utilizes readily available tertiary alkylamine as both an electron donor and an XAT reagent for the activation of alkyl halides using naphthalimide (NI)-based organic photocatalysts. This process features broad substrate scope and good functional group tolerance under mild conditions, and could be effectively applied to a variety of medicinally relevant substrates.
Collapse
Affiliation(s)
- Juan Ren
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
45
|
Quirós I, Martín M, Pérez-Sánchez C, Rigotti T, Tortosa M. Trityl isocyanide as a general reagent for visible light mediated photoredox-catalyzed cyanations. Chem Sci 2024:d4sc04199b. [PMID: 39149220 PMCID: PMC11320021 DOI: 10.1039/d4sc04199b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
A photoredox catalytic strategy has been developed to enable the functionalization of a variety of commercially available, structurally different radical precursors by the use of a bench-stable isonitrile as an efficient cyanating reagent. Specifically, a radical-based reaction has provided a mild and convenient procedure for the cyanation of primary, secondary and tertiary radicals derived from widely accessible sp3-hybridized carboxylic acids, alcohols and halides under visible light irradiation. The reaction tolerates a variety of functional groups and it represents a complementary method for the cyanation of structurally different scaffolds that show diverse native functionalities, expanding the scope of previously reported methodologies.
Collapse
Affiliation(s)
- Irene Quirós
- Organic Chemistry Department, Faculty of Science, Autonomous University of Madrid (UAM) Madrid 28049 Spain
| | - María Martín
- Organic Chemistry Department, Faculty of Science, Autonomous University of Madrid (UAM) Madrid 28049 Spain
| | - Carla Pérez-Sánchez
- Organic Chemistry Department, Faculty of Science, Autonomous University of Madrid (UAM) Madrid 28049 Spain
| | - Thomas Rigotti
- Organic Chemistry Department, Faculty of Science, Autonomous University of Madrid (UAM) Madrid 28049 Spain
| | - Mariola Tortosa
- Organic Chemistry Department, Faculty of Science, Autonomous University of Madrid (UAM) Madrid 28049 Spain
- Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Autonomous University of Madrid (UAM) Madrid 28049 Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Autonomous University of Madrid (UAM) Madrid 28049 Spain
| |
Collapse
|
46
|
Wu J, Purushothaman R, Kallert F, Homölle SL, Ackermann L. Electrochemical Glycosylation via Halogen-Atom-Transfer for C-Glycoside Assembly. ACS Catal 2024; 14:11532-11544. [PMID: 39114086 PMCID: PMC11301629 DOI: 10.1021/acscatal.4c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
Glycosyl donor activation emerged as an enabling technology for anomeric functionalization, but aimed primarily at O-glycosylation. In contrast, we herein disclose mechanistically distinct electrochemical glycosyl bromide donor activations via halogen-atom transfer and anomeric C-glycosylation. The anomeric radical addition to alkenes led to C-alkyl glycoside synthesis under precious metal-free reaction conditions from readily available glycosyl bromides. The robustness of our e-XAT strategy was further mirrored by C-aryl and C-acyl glycosides assembly through nickela-electrocatalysis. Our approach provides an orthogonal strategy for glycosyl donor activation with expedient scope, hence representing a general method for direct C-glycosides assembly.
Collapse
Affiliation(s)
| | | | - Felix Kallert
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| | - Simon L. Homölle
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| | - Lutz Ackermann
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| |
Collapse
|
47
|
Kim S, Zhou X, Li Y, Yang Q, Liu X, Graf R, Blom PWM, Ferguson CTJ, Landfester K. Size-Dependent Photocatalytic Reactivity of Conjugated Microporous Polymer Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404054. [PMID: 38925104 DOI: 10.1002/adma.202404054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Particle size is a critical factor for improving photocatalytic reactivity of conjugated microporous polymers (CMPs) as mass transfer in the porous materials is often the rate-limiting step. However, due to the synthetic challenge of controlling the size of CMPs, the impact of particle size is yet to be investigated. To address this problem, a simple and versatile dispersion polymerization route that can synthesize dispersible CMP nanoparticles with controlled size from 15 to 180 nm is proposed. Leveraging the precise control of the size, it is demonstrated that smaller CMP nanoparticles have dramatically higher photocatalytic reactivity in various organic transformations, achieving more than 1000% enhancement in the reaction rates by decreasing the size from 180 to 15 nm. The size-dependent photocatalytic reactivity is further scrutinized using a kinetic model and transient absorption spectroscopy, revealing that only the initial 5 nm-thick surface layer of CMP nanoparticles is involved in the photocatalytic reactions because of internal mass transfer limitations. This finding substantiates the potential of small CMP nanoparticles to efficiently use photo-generated excitons and improve energy-efficiency of numerous photocatalytic reactions.
Collapse
Affiliation(s)
- Seunghyeon Kim
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xin Zhou
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yungui Li
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Qiqi Yang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xiaomin Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Robert Graf
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Paul W M Blom
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Calum T J Ferguson
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
48
|
Kato N, Seki Y, Nanjo T, Takemoto Y. Bulky Alkyl Substituents Enhance the Photocatalytic Activity of Pyridine-Based Donor-Acceptor Molecules in the Direct Reductive Cleavage of the C-Br Bond of Aliphatic Bromides. Org Lett 2024; 26:5883-5887. [PMID: 38967316 DOI: 10.1021/acs.orglett.4c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
We report new pyridine-based donor-acceptor (D-A) molecules that enable the direct reductive transformation of a variety of secondary and tertiary aliphatic bromides. A series of experimental and theoretical results suggested that the D-A molecules promote direct C-Br bond cleavage triggered by the excitation of the complex between the catalyst and the aliphatic bromide and that the alkyl groups significantly contribute to the stabilization of the complex, which improves the efficiency of its excitation.
Collapse
Affiliation(s)
- Natsuki Kato
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuta Seki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
49
|
Guo SY, Liu YP, Huang JS, He LB, He GC, Ji DW, Wan B, Chen QA. Visible light-induced chemoselective 1,2-diheteroarylation of alkenes. Nat Commun 2024; 15:6102. [PMID: 39030211 PMCID: PMC11271625 DOI: 10.1038/s41467-024-50460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
Visible-light photocatalysis has evolved as a powerful technique to enable controllable radical reactions. Exploring unique photocatalytic mode for obtaining new chemoselectivity and product diversity is of great significance. Herein, we present a photo-induced chemoselective 1,2-diheteroarylation of unactivated alkenes utilizing halopyridines and quinolines. The ring-fused azaarenes serve as not only substrate, but also potential precursors for halogen-atom abstraction for pyridyl radical generation in this photocatalysis. As a complement to metal catalysis, this photo-induced radical process with mild and redox neutral conditions assembles two different heteroaryl groups into alkenes regioselectively and contribute to broad substrates scope. The obtained products containing aza-arene units permit various further diversifications, demonstrating the synthetic utility of this protocol. We anticipate that this protocol will trigger the further advancement of photo-induced alkyl/aryl halides activation.
Collapse
Affiliation(s)
- Shi-Yu Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yi-Peng Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jin-Song Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Li-Bowen He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gu-Cheng He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Boshun Wan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
50
|
Wan T, Ciszewski ŁW, Ravelli D, Capaldo L. Photoinduced Intermolecular Radical Hydroalkylation of Olefins via Ligated Boryl Radicals-Mediated Halogen Atom Transfer. Org Lett 2024; 26:5839-5843. [PMID: 38950385 PMCID: PMC11250028 DOI: 10.1021/acs.orglett.4c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Light-mediated Halogen-Atom Transfer (XAT) has become a significant methodology in contemporary synthesis. Unlike α-aminoalkyl and silyl radicals, ligated boryl radicals (LBRs) have not been extensively explored as halogen atom abstractors. In this study, we introduce NHC-ligated boranes as optimal radical chain carriers for the intermolecular reductive radical hydroalkylation and hydroarylation of electron-deficient olefins by using direct UV-A light irradiation. DFT analysis allowed us to rationalize the critical role of the NHC ligand in facilitating efficient chain propagation.
Collapse
Affiliation(s)
- Ting Wan
- Flow
Chemistry Group, van’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- The
Research Center of Chiral Drugs, Innovation Research Institute of
Traditional Chinese Medicine, Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
| | - Łukasz W. Ciszewski
- Flow
Chemistry Group, van’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Davide Ravelli
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, 27100 Pavia, Italy
| | - Luca Capaldo
- Flow
Chemistry Group, van’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- SynCat
Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| |
Collapse
|