1
|
Gu B. Toward Collective Chemistry under Strong Light-Matter Coupling. J Phys Chem Lett 2025; 16:317-323. [PMID: 39723952 DOI: 10.1021/acs.jpclett.4c02896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Collective strong light-matter coupling provides a versatile means to manipulate physicochemical properties of molecules and materials. Understanding collective polaritonic dynamics is hindered by the macroscopic number of molecules interacting collectively with photonic modes. We develop a many-body theory to investigate the spectroscopy and dynamics of a molecular ensemble embedded in an optical cavity in the collective strong coupling regime. This theory is constructed by a pseudoparticle representation of the molecular Hamiltonian, which maps the polaritonic Hamiltonian into a coupled fermion-boson model under particle number constraints. The mapped model is then analyzed using the nonequilibrium Green's function theory with the self-energy diagrams identified through a large N expansion. We demonstrate that in the thermodynamic limit, the necessary condition to have any collective effects is to have a macroscopic cavity field. Numerical illustrations are shown for the driven Tavis-Cummings model, which shows an excellent agreement with exact results.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry and Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
2
|
Zhang J, Wang S, Guo M, Li XK, Xiong YC, Zhou W. Photon-mediated energy transfer between molecules and atoms in a cavity: A numerical study. J Chem Phys 2024; 161:244305. [PMID: 39786904 DOI: 10.1063/5.0242420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025] Open
Abstract
The molecular energy transfer is crucial for many different physicochemical processes. The efficiency of traditional resonance energy transfer relies on dipole-dipole distance between molecules and becomes negligible when the distance is larger than ∼10 nm, which is difficult to overcome. Cavity polariton, formed when placing molecules inside the cavity, is a promising way to surmount the distance limit. By hybridizing a two-level atom (TLA) and a lithium fluoride (LiF) molecule with a cavity, we numerically simulate the reaction process and the energy transfer between them. Our results show that the TLA can induce a deep potential well, which can be seen as a replica of the potential energy surface of bare LiF, acting as a reservoir to absorb/release the molecular kinetic energy. In addition, the energy transfer shows a molecular nuclear kinetic energy dependent behavior, namely, more nuclear kinetic energy igniting more energy transfer. These findings show us a promising way to manipulate the energy transfer process within the cavity using an intentional TLA, which can also serve as a knob to control the reaction process.
Collapse
Affiliation(s)
- Jun Zhang
- Shiyan Key Laboratory of Quantum Information and Precision Optics, and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Hubei Key Laboratory of Energy Storage and Power Battery, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Institute of Shiyan Industrial Technology of Chinese Academy of Engineering, Shiyan 442002, People's Republic of China
| | - Shaohong Wang
- Shiyan Key Laboratory of Quantum Information and Precision Optics, and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Hubei Key Laboratory of Energy Storage and Power Battery, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
| | - Mengdi Guo
- Shiyan Key Laboratory of Quantum Information and Precision Optics, and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Hubei Key Laboratory of Energy Storage and Power Battery, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
| | - Xin-Ke Li
- Shiyan Key Laboratory of Quantum Information and Precision Optics, and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Hubei Key Laboratory of Energy Storage and Power Battery, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
| | - Yong-Chen Xiong
- Shiyan Key Laboratory of Quantum Information and Precision Optics, and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Hubei Key Laboratory of Energy Storage and Power Battery, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Institute of Shiyan Industrial Technology of Chinese Academy of Engineering, Shiyan 442002, People's Republic of China
| | - Wanghuai Zhou
- Shiyan Key Laboratory of Quantum Information and Precision Optics, and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Hubei Key Laboratory of Energy Storage and Power Battery, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Institute of Shiyan Industrial Technology of Chinese Academy of Engineering, Shiyan 442002, People's Republic of China
| |
Collapse
|
3
|
Wu Z, Liu B, Liao S, Xu Z. Vibrational strong coupling of organic molecules embedded within graphene plasmon nanocavities facilitated by perfect absorbers. J Chem Phys 2024; 161:234703. [PMID: 39679518 DOI: 10.1063/5.0238572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
The strong coupling between infrared photonic resonances and vibrational transitions of organic molecules is called vibrational strong coupling (VSC), which presents attractive prospects for modifying molecular chemical characteristics and behaviors. Currently, VSC studies suffer from limited bandwidth or enormous mode volumes. In addition, in certain instances, the absorption spectrum of VSC is weaker, thus impeding the effective monitoring of the VSC effect. Here, we theoretically study the VSC effect by embedding 5-nm-thick organic molecules into a graphene plasmon nanocavity (GPNC). Pronounced anti-crossing characteristics with Rabi splitting exceeding 80 cm-1 are disclosed from the spectra of the coupled molecular system, benefiting from the ultra-small mode volume provided by the GPNC. Further assembling the GPNC into a perfect absorber configuration can significantly enhance the spectral peaks of the VSC effect, thus maximizing the reachability of the VSC phenomenon. Furthermore, the tunability of graphene enables monitoring of spectral changes by electrically adjusting graphene's Fermi level in a structure with fixed geometric parameters. In addition, we establish an analytical framework in alignment with computational simulations to elucidate the triggering criteria for the VSC mode, thereby giving a clear picture for understanding the physical processes that form the VSC mode. Given that graphene supports plasmon modes across an extensive range extending from infrared to terahertz, the suggested GPNC presents a suitable framework for investigating the VSC effect of diverse organic materials.
Collapse
Affiliation(s)
- Zhiyong Wu
- Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Baiquan Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaolin Liao
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhengji Xu
- Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
4
|
Pyles CG, Simpkins BS, Vurgaftman I, Owrutsky JC, Dunkelberger AD. Revisiting cavity-coupled 2DIR: A classical approach implicates reservoir modes. J Chem Phys 2024; 161:234202. [PMID: 39692498 DOI: 10.1063/5.0239301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
Significant debate surrounds the origin of nonlinear optical responses from cavity-coupled molecular vibrations. Several groups, including our own, have previously assigned portions of the nonlinear response to polariton excited-state transitions. Here, we report a new method to approximate two-dimensional infrared spectra under vibrational strong coupling, which properly accounts for inhomogeneous broadening. We find excellent agreement between this model and experimental results for prototypical systems exhibiting both homogeneous and inhomogeneous broadening. This work implies that reservoir excitation is solely responsible for all optical response measured after the polariton modes dephase and represents an important new method for predicting and interpreting the nonlinear optical response of molecular vibrational polaritons.
Collapse
Affiliation(s)
- Cynthia G Pyles
- Chemistry Division, U. S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, District of Columbia 20375, USA
| | - Blake S Simpkins
- Chemistry Division, U. S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, District of Columbia 20375, USA
| | - Igor Vurgaftman
- Optical Sciences Division, U. S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, District of Columbia 20375, USA
| | - Jeffrey C Owrutsky
- Precise Systems, 22290 Exploration Dr, Lexington Park, Maryland 20653, USA
| | - Adam D Dunkelberger
- Chemistry Division, U. S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, District of Columbia 20375, USA
| |
Collapse
|
5
|
Wang S, Huang JL, Hsu LY. Theory of molecular emission power spectra. III. Non-Hermitian interactions in multichromophoric systems coupled with polaritons. J Chem Phys 2024; 161:234113. [PMID: 39692490 DOI: 10.1063/5.0235250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
Based on our previous study [Wang et al., J. Chem. Phys. 153, 184102 (2020)], we generalize the theory of molecular emission power spectra (EPS) from one molecule to multichromophoric systems in the framework of macroscopic quantum electrodynamics. This generalized theory is applicable to ensembles of molecules, providing a comprehensive description of the molecular spontaneous emission spectrum in arbitrary inhomogeneous, dispersive, and absorbing media. In the far-field region, the analytical formula of EPS can be expressed as the product of a lineshape function (LF) and an electromagnetic environment factor (EEF). To demonstrate the polaritonic effect on multichromophoric systems, we simulate the LF and EEF for one to three molecules weakly coupled to surface plasmon polaritons above a silver surface. Our analytical expressions show that the peak broadening originates from not only the spontaneous emission rates but also the imaginary part of resonant dipole-dipole interactions (non-Hermitian interactions), which is associated with the superradiance of molecular aggregates, indicating that the superradiance rate can be controlled through an intermolecular distance and the design of dielectric environments. This study presents an alternative approach to directly analyze the hybrid-state dynamics of multichromophoric systems coupled with polaritons.
Collapse
Affiliation(s)
- Siwei Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Jia-Liang Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Liang-Yan Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- National Center for Theoretical Sciences, Taipei 10617, Taiwan
| |
Collapse
|
6
|
Liu J, Yang J, Zhu G, Li J, Li Y, Zhai Y, Song H, Yang Y, Li H. Revealing the Ultrafast Energy Transfer Pathways in Energetic Materials: Time-Dependent and Quantum State-Resolved. JACS AU 2024; 4:4455-4465. [PMID: 39610737 PMCID: PMC11600156 DOI: 10.1021/jacsau.4c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
Intramolecular vibrational energy transfer is gaining tremendous attention as a regulator of condensed-phase behavior and reactions. In polyatomic molecules, this transfer is an ultrafast process involving multiple modes with numerous quantum states. The inherent complexity and rapid evolution of these processes pose significant challenges to experimental observation, and the high computational costs make full quantum mechanical calculations impractical with current technology. In the intramolecular energy transfer process, whether the doorway modes are intermediaries for transferring energy from lattice phonons to high-frequency intramolecular vibrational modes has been a controversial issue. However, the broad range of doorway modes complicates the experimental identification of a specific doorway in the transfer process corresponding to a specific end point. Here, for the first time, we utilize a combination of vibrational projection, statistical analysis, and the local quantum vibrational embedding (LQVE) method to elucidate the ultrafast energy transfer pathways that upconvert energy from lattice phonons to intramolecular modes in the typical energetic material β-HMX. This approach enables us to resolve the coupled vibrational mode groups, identify the most probable energy transfer pathways corresponding to the different final modes, and clearly confirm that the doorway region is a mandatory pathway for energy transfer. The LQVE method's time-dependent and quantum state-resolved advantages are leveraged to reveal the microscopic mechanism of the energy transfer process. The time scale of these processes is determined at about 1 ps, and the first theoretical two-dimensional infrared spectroscopy evidence is provided, which is confirmed by the experimental results. These findings deliver important insights into the fundamental mechanisms of ultrafast energy transfer in energetic materials, providing theoretical support for controlling explosive behavior and designing new explosives. The methodologies developed in this work can be extended to other condensed phase materials and used to evaluate the coupling between multiple vibrational modes.
Collapse
Affiliation(s)
- Jia Liu
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Jitai Yang
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Gangbei Zhu
- National
Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
| | - Jiarui Li
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - You Li
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Yu Zhai
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huajie Song
- Institute
of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Yanqiang Yang
- National
Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
| | - Hui Li
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| |
Collapse
|
7
|
Mondal S, Keshavamurthy S. Cavity induced modulation of intramolecular vibrational energy flow pathways. J Chem Phys 2024; 161:194302. [PMID: 39545667 DOI: 10.1063/5.0236437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Recent experiments in polariton chemistry indicate that reaction rates can be significantly enhanced or suppressed inside an optical cavity. One possible explanation for the rate modulation involves the cavity mode altering the intramolecular vibrational energy redistribution (IVR) pathways by coupling to specific molecular vibrations in the vibrational strong coupling (VSC) regime. However, the mechanism for such a cavity-mediated modulation of IVR is yet to be understood. In a recent study, Ahn et al. [Science 380, 1165 (2023)] observed that the rate of alcoholysis of phenyl isocyanate (PHI) is considerably suppressed when the cavity mode is tuned to be resonant with the isocyanate (NCO) stretching mode of PHI. Here, we analyze the quantum and classical IVR dynamics of a model effective Hamiltonian for PHI involving the high-frequency NCO-stretch mode and two of the key low-frequency phenyl ring modes. We compute various indicators of the extent of IVR in the cavity-molecule system and show that tuning the cavity frequency to the NCO-stretching mode strongly perturbs the cavity-free IVR pathways. Subsequent IVR dynamics involving the cavity and the molecular anharmonic resonances lead to efficient scrambling of an initial NCO-stretching overtone state over the molecular quantum number space. We also show that the hybrid light-matter states of the effective Hamiltonian undergo a localization-delocalization transition in the VSC regime.
Collapse
Affiliation(s)
- Subhadip Mondal
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208 016, India
| | - Srihari Keshavamurthy
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
8
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024; 124:11641-11766. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
9
|
Michon MA, Simpkins BS. Impact of Cavity Length Non-uniformity on Reaction Rate Extraction in Strong Coupling Experiments. J Am Chem Soc 2024; 146:30596-30606. [PMID: 39466594 DOI: 10.1021/jacs.4c12269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Reports of altered chemical phenomena under vibrational strong coupling, including reaction rates, product distributions, intermolecular forces, and cavity-mediated vibrational energy transfer, have been met with a great deal of skepticism due to several irreproducible results and the lack of an accepted theoretical framework. In this work, we add some insight by identifying a UV-vis measurement artifact that distorts observed absorption peak positions, amplitudes, and consequently, chemical reaction rates extracted in optical microcavities. We predict and characterize the behavior of this artifact using the Transfer Matrix (TM) method and confirm its presence experimentally. We then present a correction technique whereby an effective molar absorption coefficient is assigned to an absorbing species within the cavity. These revelations have important implications for many existing examples of cavity-modified chemistry and establishing best practices for carrying out robust future investigations.
Collapse
Affiliation(s)
- Michael A Michon
- National Academies of Science NRC Post-Doctoral Researcher, Naval Research Laboratory, Chemistry Division, 4555 Overlook Ave SW, Washington, District of Columbia 20375, United States
| | - Blake S Simpkins
- National Academies of Science NRC Post-Doctoral Researcher, Naval Research Laboratory, Chemistry Division, 4555 Overlook Ave SW, Washington, District of Columbia 20375, United States
| |
Collapse
|
10
|
Shishkov VY, Andrianov ES, Tretiak S, Whaley KB, Zasedatelev AV. Sympathetic Mechanism for Vibrational Condensation Enabled by Polariton Optomechanical Interaction. PHYSICAL REVIEW LETTERS 2024; 133:186903. [PMID: 39547193 DOI: 10.1103/physrevlett.133.186903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/30/2024] [Accepted: 09/13/2024] [Indexed: 11/17/2024]
Abstract
We demonstrate a macrocoherent regime in exciton-polariton systems, where nonequilibrium polariton Bose-Einstein condensation coexists with macroscopically occupied vibrational states. Strong exciton-vibration coupling induces an effective optomechanical interaction between cavity polaritons and vibrational degrees of freedom of molecules, leading to vibrational amplification in a resonant blue-detuned configuration. This interaction provides a sympathetic mechanism to achieve vibrational condensation with potential applications in cavity-controlled chemistry, nonlinear, and quantum optics.
Collapse
|
11
|
Peng K, Rabani E. Polariton-assisted incoherent to coherent excitation energy transfer between colloidal nanocrystal quantum dots. J Chem Phys 2024; 161:154107. [PMID: 39417420 DOI: 10.1063/5.0223369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
We explore the dynamics of energy transfer between two nanocrystal quantum dots placed within an optical microcavity. By adjusting the coupling strength between the cavity photon mode and the quantum dots, we have the capacity to fine-tune the effective coupling between the donor and acceptor. Introducing a non-adiabatic parameter, γ, governed by the coupling to the cavity mode, we demonstrate the system's capability to shift from the overdamped Förster regime (γ ≪ 1) to an underdamped coherent regime (γ ≫ 1). In the latter regime, characterized by swift energy transfer rates, the dynamics are influenced by decoherence time. To illustrate this, we study the exciton energy transfer dynamics between two closely positioned CdSe/CdS core/shell quantum dots with sizes and separations relevant to experimental conditions. Employing an atomistic approach, we calculate the excitonic level arrangement, exciton-phonon interactions, and transition dipole moments of the quantum dots within the microcavity. These parameters are then utilized to define a model Hamiltonian. Subsequently, we apply a generalized non-Markovian quantum Redfield equation to delineate the dynamics within the polaritonic framework.
Collapse
Affiliation(s)
- Kaiyue Peng
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
12
|
Zhang B, Gu Y, Freixas VM, Sun S, Tretiak S, Jiang J, Mukamel S. Cavity Manipulation of Attosecond Charge Migration in Conjugated Dendrimers. J Am Chem Soc 2024; 146:26743-26750. [PMID: 39291347 DOI: 10.1021/jacs.4c06727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Dendrimers are branched polymers with wide applications to photosensitization, photocatalysis, photodynamic therapy, photovoltaic conversion, and light sensor amplification. The primary step of numerous photophysical and photochemical processes in many molecules involves ultrafast coherent electronic dynamics and charge oscillations triggered by photoexcitation. This electronic wavepacket motion at short times where the nuclei are frozen is known as attosecond charge migration. We show how charge migration in a dendrimer can be manipulated by placing it in an optical cavity and monitored by time-resolved X-ray diffraction. Our simulations demonstrate that the dendrimer charge migration modes and the character of photoexcited wave function can be significantly influenced by the strong light-matter interaction in the cavity. This presents a new avenue for modulating initial ultrafast charge dynamics and subsequently controlling coherent energy transfer in dendritic nanostructures.
Collapse
Affiliation(s)
- Baicheng Zhang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Yonghao Gu
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Victor Manuel Freixas
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Shichao Sun
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
13
|
Mao H, Xiong W. A second-order kinetic model for global analysis of vibrational polariton dynamics. J Chem Phys 2024; 161:104201. [PMID: 39254166 DOI: 10.1063/5.0222302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
The interaction between cavity photons and molecular vibrations leads to the formation of vibrational polaritons, which have demonstrated the ability to influence chemical reactivity and change material characteristics. Although ultrafast spectroscopy has been extensively applied to study vibrational polaritons, the nonlinear relationship between signal and quantum state population complicates the analysis of their kinetics. Here, we employ a second-order kinetic model and transform matrix method (TMM) to develop an effective model to capture the nonlinear relationship between the two-dimensional IR (or pump-probe) signal and excited state populations. We test this method on two types of kinetics: a sequential relaxation from the second to the first excited states of dark modes, and a Raman state relaxing into the first excited state. By globally fitting the simulated data, we demonstrate accurate extraction of relaxation rates and the ability to identify intermediate species by comparing the species spectra with theoretical ground truth, validating our method. This study demonstrates the efficacy of a second-order TMM approximation in capturing essential spectral features with up to 10% excited state population, simplifying global analysis and enabling straightforward extraction of kinetic parameters, thus empowering our methodology in understanding excited-state dynamics in polariton systems.
Collapse
Affiliation(s)
- Haochuan Mao
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093-0358, USA
| | - Wei Xiong
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093-0358, USA
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California 92093-0418, USA
| |
Collapse
|
14
|
Riso RR, Ronca E, Koch H. Strong Coupling to Circularly Polarized Photons: Toward Cavity-Induced Enantioselectivity. J Phys Chem Lett 2024; 15:8838-8844. [PMID: 39167677 PMCID: PMC11372830 DOI: 10.1021/acs.jpclett.4c01701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The development of new methodologies for the selective synthesis of individual enantiomers is still one of the major challenges in synthetic chemistry. Many biomolecules, and also many pharmaceutical compounds, are indeed chiral. While the use of chiral reactants or catalysts has led to substantial progress in the field of asymmetric synthesis, a systematic approach applicable to general reactions has still not been proposed. In this work, we demonstrate that strong coupling to circularly polarized fields can induce asymmetry in otherwise nonselective reactions. Specifically, we show that the field induces stereoselectivity in the early stages of chemical reactions by selecting an energetically preferred direction of approach for the reagents. Although the effects observed thus far are too small to significantly drive asymmetric synthesis, our results provide a proof of principle for field-induced stereoselective mechanisms. These findings lay the groundwork for future research.
Collapse
Affiliation(s)
- Rosario R Riso
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Enrico Ronca
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
15
|
Litman Y, Kapil V, Feldman YMY, Tisi D, Begušić T, Fidanyan K, Fraux G, Higer J, Kellner M, Li TE, Pós ES, Stocco E, Trenins G, Hirshberg B, Rossi M, Ceriotti M. i-PI 3.0: A flexible and efficient framework for advanced atomistic simulations. J Chem Phys 2024; 161:062504. [PMID: 39140447 DOI: 10.1063/5.0215869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Atomic-scale simulations have progressed tremendously over the past decade, largely thanks to the availability of machine-learning interatomic potentials. These potentials combine the accuracy of electronic structure calculations with the ability to reach extensive length and time scales. The i-PI package facilitates integrating the latest developments in this field with advanced modeling techniques thanks to a modular software architecture based on inter-process communication through a socket interface. The choice of Python for implementation facilitates rapid prototyping but can add computational overhead. In this new release, we carefully benchmarked and optimized i-PI for several common simulation scenarios, making such overhead negligible when i-PI is used to model systems up to tens of thousands of atoms using widely adopted machine learning interatomic potentials, such as Behler-Parinello, DeePMD, and MACE neural networks. We also present the implementation of several new features, including an efficient algorithm to model bosonic and fermionic exchange, a framework for uncertainty quantification to be used in conjunction with machine-learning potentials, a communication infrastructure that allows for deeper integration with electronic-driven simulations, and an approach to simulate coupled photon-nuclear dynamics in optical or plasmonic cavities.
Collapse
Affiliation(s)
- Yair Litman
- Y. Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Venkat Kapil
- Y. Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Physics and Astronomy, University College London, 17-19 Gordon St, London WC1H 0AH, United Kingdom
- Thomas Young Centre and London Centre for Nanotechnology, 19 Gordon St, London WC1H 0AH, United Kingdom
| | | | - Davide Tisi
- Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Tomislav Begušić
- Div. of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Karen Fidanyan
- MPI for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Guillaume Fraux
- Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jacob Higer
- School of Physics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Matthias Kellner
- Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Tao E Li
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - Eszter S Pós
- MPI for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Elia Stocco
- MPI for the Structure and Dynamics of Matter, Hamburg, Germany
| | - George Trenins
- MPI for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Barak Hirshberg
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mariana Rossi
- MPI for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Sandik G, Feist J, García-Vidal FJ, Schwartz T. Cavity-enhanced energy transport in molecular systems. NATURE MATERIALS 2024:10.1038/s41563-024-01962-5. [PMID: 39122930 DOI: 10.1038/s41563-024-01962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/01/2024] [Indexed: 08/12/2024]
Abstract
Molecules are the building blocks of all of nature's functional components, serving as the machinery that captures, stores and releases energy or converts it into useful work. However, molecules interact with each other over extremely short distances, which hinders the spread of energy across molecular systems. Conversely, photons are inert, but they are fast and can traverse large distances very efficiently. Using optical resonators, these distinct entities can be mixed with each other, opening a path to new architectures that benefit from both the active nature of molecules and the long-range transport obtained by the coupling with light. In this Review, we present the physics underlying the enhancement of energy transfer and energy transport in molecular systems, and highlight the experimental and theoretical advances in this field over the past decade. Finally, we identify several key questions and theoretical challenges that remain to be resolved via future research.
Collapse
Affiliation(s)
- Gal Sandik
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences and Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel
| | - Johannes Feist
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain.
| | - Francisco J García-Vidal
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain.
| | - Tal Schwartz
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences and Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
17
|
Hirschmann O, Bhakta HH, Kort-Kamp WJM, Jones AC, Xiong W. Spatially Resolved Near Field Spectroscopy of Vibrational Polaritons at the Small N Limit. ACS PHOTONICS 2024; 11:2650-2658. [PMID: 39036063 PMCID: PMC11258779 DOI: 10.1021/acsphotonics.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/23/2024]
Abstract
Vibrational polaritons, which have been primarily studied in Fabry-Pérot cavities with a large number of molecules (N ∼ 106-1010) coupled to the resonator mode, exhibit various experimentally observed effects on chemical reactions. However, the exact mechanism is elusively understood from the theoretical side, as the large number of molecules involved in an experimental strong coupling condition cannot be represented completely in simulations. This discrepancy between theory and experiment arises from computational descriptions of polariton systems typically being limited to only a few molecules, thus failing to represent the experimental conditions adequately. To address this mismatch, we used surface phonon polariton (SPhP) resonators as an alternative platform for vibrational strong coupling. SPhPs exhibit strong electromagnetic confinement on the surface and thus allow for coupling to a small number of molecules. As a result, this platform can enhance nonlinearity and slow down relaxation to the dark modes. In this study, we fabricated a pillar-shaped quartz resonator and then coated it with a thin layer of cobalt phthalocyanine (CoPc). By employing scattering-type scanning near-field optical microscopy (s-SNOM), we spatially investigated the dependency of vibrational strong coupling on the spatially varying electromagnetic field strength and demonstrated strong coupling with 38,000 molecules only-reaching to the small N limit. Through s-SNOM analysis, we found that strong coupling was observed primarily on the edge of the quartz pillar and the apex of the s-SNOM tip, where the maximum field enhancement occurs. In contrast, a weak resonance signal and lack of coupling were observed closer to the center of the pillar. This work demonstrates the importance of spatially resolved polariton systems in nanophotonic platforms and lays a foundation to explore polariton chemistry and chemical dynamics at the small N limit-one step closer to reconcile with high-level quantum calculations.
Collapse
Affiliation(s)
- Oliver Hirschmann
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Harsh H. Bhakta
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Wilton J. M. Kort-Kamp
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew C. Jones
- Center
for Integrated Nanotechnologies, Materials
Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Wei Xiong
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Materials
Science and Engineering Program, University
of California San Diego, La Jolla, California 92093, United States
- Department
of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
18
|
Kumar S, Biswas S, Rashid U, Mony KS, Chandrasekharan G, Mattiotti F, Vergauwe RMA, Hagenmuller D, Kaliginedi V, Thomas A. Extraordinary Electrical Conductance through Amorphous Nonconducting Polymers under Vibrational Strong Coupling. J Am Chem Soc 2024; 146:18999-19008. [PMID: 38736166 DOI: 10.1021/jacs.4c03016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Enhancing the electrical conductance through amorphous nondoped polymers is challenging. Here, we show that vibrational strong coupling (VSC) of intrinsically nonconducting and amorphous polymers such as polystyrene, deuterated polystyrene, and poly(benzyl methacrylate) to the vacuum electromagnetic field of the cavity enhances the electrical conductivity by at least 6 orders of magnitude compared to the uncoupled polymers. Remarkably, the observed extraordinary conductance is vibrational mode selective and occurs only under the VSC of the aromatic C-H(D) out-of-plane bending modes of the polymers. The conductance is thermally activated at the onset of strong coupling and becomes temperature-independent as the collective strong coupling strength increases. The electrical characterizations are performed without external light excitation, demonstrating the role of vacuum electromagnetic field-matter strong coupling in enhancing long-range transport even in amorphous nonconducting polymers.
Collapse
Affiliation(s)
- Sunil Kumar
- Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, 560 012, India
| | - Subha Biswas
- Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, 560 012, India
| | - Umar Rashid
- Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, 560 012, India
| | - Kavya S Mony
- Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, 560 012, India
| | - Gokul Chandrasekharan
- Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, 560 012, India
| | - Francesco Mattiotti
- University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), 67000 Strasbourg, France
| | - Robrecht M A Vergauwe
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - David Hagenmuller
- University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), 67000 Strasbourg, France
| | | | - Anoop Thomas
- Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, 560 012, India
| |
Collapse
|
19
|
Li TE. Mesoscale Molecular Simulations of Fabry-Pérot Vibrational Strong Coupling. J Chem Theory Comput 2024. [PMID: 38912683 DOI: 10.1021/acs.jctc.4c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Developing theoretical frameworks for vibrational strong coupling (VSC) beyond the single-mode approximation is crucial for a comprehensive understanding of experiments with planar Fabry-Pérot cavities. Herein, a generalized cavity molecular dynamics (CavMD) scheme is developed to simulate VSC of a large ensemble of realistic molecules coupled to an arbitrary 1D or 2D photonic environment. This approach is built upon the Power-Zienau-Woolley Hamiltonian in the normal mode basis and uses a grid representation of the molecular ensembles to reduce the computational cost. When simulating the polariton dispersion relation for a homogeneous distribution of molecules in planar Fabry-Pérot cavities, our data highlight the importance of preserving the in-plane translational symmetry of the molecular distribution. In this homogeneous limit, CavMD yields the consistent polariton dispersion relation as an analytic theory, i.e., incorporating many cavity modes with varying in-plane wave vectors (k∥) produces the same spectrum as the system with a single cavity mode. Furthermore, CavMD reveals that the validity of the single-mode approximation is challenged when nonequilibrium polariton dynamics are considered, as polariton-polariton scattering occurs between modes with the nearest neighbor k∥. The procedure for numerically approaching the macroscopic limit is also demonstrated with CavMD by increasing the system size. Looking forward, our generalized CavMD approach may facilitate understanding vibrational polariton transport and condensation.
Collapse
Affiliation(s)
- Tao E Li
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
20
|
Ying W, Taylor MAD, Huo P. Resonance theory of vibrational polariton chemistry at the normal incidence. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2601-2615. [PMID: 39678662 PMCID: PMC11636501 DOI: 10.1515/nanoph-2023-0685] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/10/2024] [Indexed: 12/17/2024]
Abstract
We present a theory that explains the resonance effect of the vibrational strong coupling (VSC) modified reaction rate constant at the normal incidence of a Fabry-Pérot (FP) cavity. This analytic theory is based on a mechanistic hypothesis that cavity modes promote the transition from the ground state to the vibrational excited state of the reactant, which is the rate-limiting step of the reaction. This mechanism for a single molecule coupled to a single-mode cavity has been confirmed by numerically exact simulations in our recent work in [J. Chem. Phys. 159, 084104 (2023)]. Using Fermi's golden rule (FGR), we formulate this rate constant for many molecules coupled to many cavity modes inside a FP microcavity. The theory provides a possible explanation for the resonance condition of the observed VSC effect and a plausible explanation of why only at the normal incident angle there is the resonance effect, whereas, for an oblique incidence, there is no apparent VSC effect for the rate constant even though both cases generate Rabi splitting and forming polariton states. On the other hand, the current theory cannot explain the collective effect when a large number of molecules are collectively coupled to the cavity, and future work is required to build a complete microscopic theory to explain all observed phenomena in VSC.
Collapse
Affiliation(s)
- Wenxiang Ying
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY14627, USA
| | - Michael A. D. Taylor
- Hajim School of Engineering, The Institute of Optics, University of Rochester, Rochester, NY14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY14627, USA
- Hajim School of Engineering, The Institute of Optics, University of Rochester, Rochester, NY14627, USA
| |
Collapse
|
21
|
Sufrin S, Cohn B, Chuntonov L. Probing the anharmonicity of vibrational polaritons with double-quantum two-dimensional infrared spectroscopy. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2523-2530. [PMID: 39678654 PMCID: PMC11636414 DOI: 10.1515/nanoph-2023-0683] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2024]
Abstract
Strong coupling between the molecular vibrations and electromagnetic fields of light confined to an infrared cavity leads to the formation of vibro-polaritons - quasi-particles thought to provide the means to control the rates of chemical reactions inside a dark cavity. Despite the mechanisms indicating how vibrational coupling to the vacuum fields can affect the reaction rates are still not well understood, it has been recently demonstrated that the formation of the polariton states alters the ultrafast relaxation dynamics of the strongly coupled system. The relaxation dynamics in molecules, which is known to be important for the chemical reactivity, is directed by anharmonic couplings involving multiple intra- and inter-molecular vibrational degrees of freedom. However, the impact of the molecular anharmonicity on the polariton states remains elusive. Some theoretical models, employed to interpret the experimental observations, assume that vibrational polaritons are harmonic. Others assume a certain anharmonicity of vibro-polaritons; however, to date, it has not been experimentally determined. Herein, we performed double-quantum two-dimensional third-order nonlinear infrared spectroscopy of the carbonyl stretching (C=O) vibrational modes in a thin film of polymethyl methacrylate polymer (PMMA) strongly coupled to the surface lattice resonances of the periodic arrays of half-wavelength infrared disk antennas. We found that, indeed, the mechanical anharmonicity of polaritons is very small. Quantitatively, our results place an upper bound on a polariton mechanical anharmonicity of 2 cm-1, compared with that of the C=O mode in a PMMA film of 15 cm-1. Thus, our results support previous assumptions regarding the harmonic character of vibro-polaritons.
Collapse
Affiliation(s)
- Shmuel Sufrin
- Schulich Faculty of Chemistry, Solid State Institute, and Helen Diller Quantum Center, Technion – Israel Institute of Technology, Haifa3200003, Israel
| | - Bar Cohn
- Schulich Faculty of Chemistry, Solid State Institute, and Helen Diller Quantum Center, Technion – Israel Institute of Technology, Haifa3200003, Israel
| | - Lev Chuntonov
- Schulich Faculty of Chemistry, Solid State Institute, and Helen Diller Quantum Center, Technion – Israel Institute of Technology, Haifa3200003, Israel
| |
Collapse
|
22
|
Meng F, Cao L, Mangeney J, Roskos HG. Strong coupling of metamaterials with cavity photons: toward non-Hermitian optics. NANOPHOTONICS 2024; 13:2443-2451. [PMID: 38836105 PMCID: PMC11147495 DOI: 10.1515/nanoph-2023-0899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/23/2024] [Indexed: 06/06/2024]
Abstract
The investigation of strong coupling between light and matter is an important field of research. Its significance arises not only from the emergence of a plethora of intriguing chemical and physical phenomena, often novel and unexpected, but also from its provision of important tool sets for the design of core components for novel chemical, electronic, and photonic devices such as quantum computers, lasers, amplifiers, modulators, sensors and more. Strong coupling has been demonstrated for various material systems and spectral regimes, each exhibiting unique features and applications. In this perspective, we will focus on a sub-field of this domain of research and discuss the strong coupling between metamaterials and photonic cavities at THz frequencies. The metamaterials, themselves electromagnetic resonators, serve as "artificial atoms". We provide a concise overview of recent advances and outline possible research directions in this vital and impactful field of interdisciplinary science.
Collapse
Affiliation(s)
- Fanqi Meng
- Physikalisches Institut, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Lei Cao
- Physikalisches Institut, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | | | - Hartmut G. Roskos
- Physikalisches Institut, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Cargioli A, Lednev M, Lavista L, Camposeo A, Sassella A, Pisignano D, Tredicucci A, Garcia-Vidal FJ, Feist J, Persano L. Active control of polariton-enabled long-range energy transfer. NANOPHOTONICS 2024; 13:2541-2551. [PMID: 38836104 PMCID: PMC11147494 DOI: 10.1515/nanoph-2023-0677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/27/2023] [Indexed: 06/06/2024]
Abstract
Optical control is achieved on the excited state energy transfer between spatially separated donor and acceptor molecules, both coupled to the same optical mode of a cavity. The energy transfer occurs through the formed hybrid polaritons and can be switched on and off by means of ultraviolet and visible light. The control mechanism relies on a photochromic component used as donor, whose absorption and emission properties can be varied reversibly through light irradiation, whereas in-cavity hybridization with acceptors through polariton states enables a 6-fold enhancement of acceptor/donor contribution to the emission intensity with respect to a reference multilayer. These results pave the way for synthesizing effective gating systems for the transport of energy by light, relevant for light-harvesting and light-emitting devices, and for photovoltaic cells.
Collapse
Affiliation(s)
- Alessio Cargioli
- Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo B. Pontecorvo 3, I-56127Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127Pisa, Italy
| | - Maksim Lednev
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049Madrid, Spain
| | - Lorenzo Lavista
- Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo B. Pontecorvo 3, I-56127Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127Pisa, Italy
| | - Andrea Camposeo
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127Pisa, Italy
| | - Adele Sassella
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Via Roberto Cozzi 55, I-20125Milano, Italy
| | - Dario Pisignano
- Dipartimento di Fisica “E. Fermi” and Center for Instrument Sharing (CISUP), Università di Pisa, Largo B. Pontecorvo 3, I-56127Pisa, Italy
- NEST, Istituto Nanoscienze-CNR, I-56127Pisa, Italy
| | - Alessandro Tredicucci
- Dipartimento di Fisica “E. Fermi” and Center for Instrument Sharing (CISUP), Università di Pisa, Largo B. Pontecorvo 3, I-56127Pisa, Italy
- NEST, Istituto Nanoscienze-CNR, I-56127Pisa, Italy
| | - Francisco J. Garcia-Vidal
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049Madrid, Spain
| | - Johannes Feist
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049Madrid, Spain
| | - Luana Persano
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127Pisa, Italy
| |
Collapse
|
24
|
Yuen-Zhou J, Xiong W. Strong Coupling of Organic Molecules 2023 (SCOM23). NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2437-2441. [PMID: 39678653 PMCID: PMC11636515 DOI: 10.1515/nanoph-2024-0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Affiliation(s)
- Joel Yuen-Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wei Xiong
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
25
|
Aroeira GJR, Kairys KT, Ribeiro RF. Coherent transient exciton transport in disordered polaritonic wires. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2553-2564. [PMID: 39678656 PMCID: PMC11636474 DOI: 10.1515/nanoph-2023-0797] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/07/2024] [Indexed: 12/17/2024]
Abstract
Excitation energy transport can be significantly enhanced by strong light-matter interactions. In the present work, we explore intriguing features of coherent transient exciton wave packet dynamics on a lossless disordered polaritonic wire. Our main results can be understood in terms of the effective exciton group velocity, a new quantity we obtain from the polariton dispersion. Under weak and moderate disorder, we find that the early wave packet spread velocity is controlled by the overlap of the initial exciton momentum distribution and its effective group velocity. Conversely, when disorder is stronger, the initial state is nearly irrelevant, and red-shifted cavities support excitons with greater mobility. Our findings provide guiding principles for optimizing ultrafast coherent exciton transport based on the magnitude of disorder and the polariton dispersion. The presented perspectives may be valuable for understanding and designing new polaritonic platforms for enhanced exciton energy transport.
Collapse
Affiliation(s)
- Gustavo J. R. Aroeira
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, GA, USA
| | - Kyle T. Kairys
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, GA, USA
| | - Raphael F. Ribeiro
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, GA, USA
| |
Collapse
|
26
|
Odewale EO, Avramenko AG, Rury AS. Deciphering between enhanced light emission and absorption in multi-mode porphyrin cavity polariton samples. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2695-2706. [PMID: 39678670 PMCID: PMC11636455 DOI: 10.1515/nanoph-2023-0748] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/29/2024] [Indexed: 12/17/2024]
Abstract
It remains unclear how the collective strong coupling of cavity-confined photons to the electronic transitions of molecular chromophore leverages the distinct properties of the polaritonic constituents for future technologies. In this study, we design, fabricate, and characterize multiple types of Fabry-Pérot (FP) mirco-resonators containing copper(II) tetraphenyl porphyrin (CuTPP) to show how cavity polariton formation affects radiative relaxation processes in the presence of substantial non-Condon vibronic coupling between two of this molecule's excited electronic states. Unlike the prototypical enhancement of Q state radiative relaxation of CuTPP in a FP resonator incapable of forming polaritons, we find the light emission processes in multimode cavity polariton samples become enhanced for cavity-exciton energy differences near those of vibrations known to mediate non-Condon vibronic coupling. We propose the value of this detuning is consistent with radiative relaxation of Herzberg-Teller polaritons into collective molecular states coupled to the cavity photon coherently. We contrast the feature stemming from light emission from the HT polariton state with those that occur due to polariton-enhanced light absorption. Our results demonstrate the landscape of molecular and photonic interactions enabled by cavity polariton formation using complex chromophores and how researchers can design resonators to leverage these interactions to characterize and control polaritonic properties.
Collapse
Affiliation(s)
- Elizabeth O. Odewale
- Materials Structural Dynamics Laboratory, Department of Chemistry, Wayne State University, 48202, Detroit, MI, USA
| | - Aleksandr G. Avramenko
- Materials Structural Dynamics Laboratory, Department of Chemistry, Wayne State University, 48202, Detroit, MI, USA
| | - Aaron S. Rury
- Materials Structural Dynamics Laboratory, Department of Chemistry, Wayne State University, 48202, Detroit, MI, USA
| |
Collapse
|
27
|
Odewale E, Wanasinghe ST, Rury AS. Assessing the Determinants of Cavity Polariton Relaxation Using Angle-Resolved Photoluminescence Excitation Spectroscopy. J Phys Chem Lett 2024; 15:5705-5713. [PMID: 38768370 PMCID: PMC11146005 DOI: 10.1021/acs.jpclett.4c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
The strong coupling of light and matter within electromagnetic resonators leads to the formation of cavity polaritons whose hybrid nature may help certain ground and excited state chemical processes. To help enable the development of polariton chemistry, we have developed and applied a spectroscopic technique to leverage the relatively larger spatial coherence of polaritons to assess the determinants of relaxation in hybrid light-matter states. By exciting the lower polariton (LP) state in cavity samples filled with different metalloporphyrin chromophores, we measured and modeled angle-resolved photoluminescence excitation spectra. Our results suggest that the shortest lived constituent of the LP state characterized by specific Hopfield coefficients limits the light absorption of the intracavity molecules, which we equate with the effective polariton lifetime. Our results suggest that researchers need to consider the lifetimes of both photons and excitons participating in strong light-matter coupling when designing polaritonic systems and the methods they can use to assess the relaxation of polaritonic states.
Collapse
Affiliation(s)
- Elizabeth
O. Odewale
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Materials
Structural Dynamics Laboratory, Wayne State
University, Detroit, Michigan 48202, United States
| | - Sachithra T. Wanasinghe
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Materials
Structural Dynamics Laboratory, Wayne State
University, Detroit, Michigan 48202, United States
| | - Aaron S. Rury
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Materials
Structural Dynamics Laboratory, Wayne State
University, Detroit, Michigan 48202, United States
| |
Collapse
|
28
|
Gu B. Generalized Optical Sum Rules for Light-Dressed Matter. J Phys Chem Lett 2024; 15:5580-5585. [PMID: 38754080 DOI: 10.1021/acs.jpclett.4c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Light-driven matter can exhibit qualitatively distinct electronic and optical properties from those observed at equilibrium. We introduce generalized sum rules for the optical properties of light-driven molecules. Both classical and quantum light are considered. For classical light, the Floquet sum rules show that the sum of all Fourier components, indexed by n = -∞ to ∞, of the time-dependent dipole matrix elements between Floquet modes weighted by the corresponding quasienergy difference in the first Floquet Brillouin zone plus n driving frequency is a constant. Surprisingly, it is impossible to alter the energy exchange rate between matter and a perturbative external probe laser by a strong driving, even though the spectra can differ significantly from the bare ones. These developments provide guidance for the control of effective optical properties of matter by light fields.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry & Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
29
|
Yu Q, Bowman JM. Fully Quantum Simulation of Polaritonic Vibrational Spectra of Large Cavity-Molecule System. J Chem Theory Comput 2024; 20:4278-4287. [PMID: 38717309 DOI: 10.1021/acs.jctc.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The formation of molecular vibrational polaritons, arising from the interplay between molecular vibrations and infrared cavity modes, is a quantum phenomenon necessitating accurate quantum dynamical simulations. Here, we introduce the cavity vibrational self-consistent field/virtual state configuration interaction method, enabling quantum simulation of the vibrational spectra of many-molecule systems within the optical cavity. Focusing on the representative (H2O)21 system, we showcase this parameter-free quantum approach's ability to capture both linear and nonlinear vibrational spectral features. Our findings highlight the growing prominence of molecular couplings among OH stretches and bending excited bands with increased light-matter interaction, revealing distinctive nonlinear spectral features induced by vibrational strong coupling.
Collapse
Affiliation(s)
- Qi Yu
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
30
|
Hirschmann O, Bhakta HH, Xiong W. The role of IR inactive mode in W(CO) 6 polariton relaxation process. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2029-2034. [PMID: 39635079 PMCID: PMC11501596 DOI: 10.1515/nanoph-2023-0589] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 12/07/2024]
Abstract
Vibrational polaritons have shown potential in influencing chemical reactions, but the exact mechanism by which they impact vibrational energy redistribution, crucial for rational polariton chemistry design, remains unclear. In this work, we shed light on this aspect by revealing the role of solvent phonon modes in facilitating the energy relaxation process from the polaritons formed of a T 1u mode of W(CO)6 to an IR inactive E g mode. Ultrafast dynamic measurements indicate that along with the direct relaxation to the dark T 1u modes, lower polaritons also transition to an intermediate state, which then subsequently relaxes to the T 1u mode. We reason that the intermediate state could correspond to the near-in-energy Raman active E g mode, which is populated through a phonon scattering process. This proposed mechanism finds support in the observed dependence of the IR-inactive state's population on the factors influencing phonon density of states, e.g., solvents. The significance of the Raman mode's involvement emphasizes the importance of non-IR active modes in modifying chemical reactions and ultrafast molecular dynamics.
Collapse
Affiliation(s)
- Oliver Hirschmann
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093, USA
| | - Harsh H. Bhakta
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093, USA
| | - Wei Xiong
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093, USA
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA92093, USA
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA92093, USA
| |
Collapse
|
31
|
Yim JE, Brawley ZT, Sheldon MT. Subradiant plasmonic cavities make bright polariton states dark. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2035-2045. [PMID: 39635085 PMCID: PMC11501913 DOI: 10.1515/nanoph-2024-0058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/12/2024] [Indexed: 12/07/2024]
Abstract
Nanostructured plasmonic surfaces allow for precise tailoring of electromagnetic modes within sub-diffraction mode volumes, boosting light-matter interactions. This study explores vibrational strong coupling (VSC) between molecular ensembles and subradiant "dark" cavities that support infrared quadrupolar plasmonic resonances (QPLs). The QPL mode exhibits a dispersion characteristic of bound states in the continuum (BIC). That is, the mode is subradiant or evanescent at normal incidence and acquires increasing "bright" dipole character with larger in-plane wavevectors. We deposited polymethyl methacrylate (PMMA) thin films on QPL substrates to induce VSC with the carbonyl stretch in PMMA and measured the resulting infrared (IR) spectra. Our computational analysis predicts the presence of "dark" subradiant polariton states within the near-field of the QPL mode, and "bright" collective molecular states. This finding is consistent with classical and quantum mechanical descriptions of VSC that predict hybrid polariton states with cavity-like modal character and N-1 collective molecular states with minimal cavity character. However, the behaviour is opposite of what is standardly observed in VSC experiments that use "bright" cavities, which results in "bright" polariton states that can be spectrally resolved as well as N-1 collective molecular states that are spectrally absent. Our experiments confirm a reduction of molecular absorption and other spectral signatures of VSC with the QPL mode. In comparison, our experiments promoting VSC with dipolar plasmonic resonances (DPLs) reproduce the conventional behavior. Our results highlight the significance of cavity mode symmetry in modifying the properties of the resultant states from VSC, while offering prospects for direct experimental probing of the N-1 molecule-like states that are usually spectrally "dark".
Collapse
Affiliation(s)
- Ju Eun Yim
- Department of Chemistry, Texas A&M University, College Station, USA
| | - Zachary T. Brawley
- Department of Materials Science and Engineering, Texas A&M University, College Station, USA
| | - Matthew T. Sheldon
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
32
|
Phuc NT. Semiclassical Truncated-Wigner-Approximation Theory of Molecular Vibration-Polariton Dynamics in Optical Cavities. J Chem Theory Comput 2024; 20:3019-3027. [PMID: 38608260 DOI: 10.1021/acs.jctc.4c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
It has been experimentally demonstrated that molecular-vibration polaritons formed by strong coupling of a molecular vibration to an infrared cavity mode can significantly modify the physical properties and chemical reactivities of various molecular systems. However, a complete theoretical understanding of the underlying mechanisms of the modifications remains elusive due to the complexity of the hybrid system, especially the collective nature of polaritonic states in systems containing many molecules. We develop here the semiclassical theory of molecular vibration-polariton dynamics based on the truncated Wigner approximation (TWA) that is tractable in large molecular systems and simultaneously captures the quantum character of photons in the optical cavity. The theory is then applied to investigate the nuclear quantum dynamics of a system of identical diatomic molecules having the ground-state Morse potential and being strongly coupled to an infrared cavity mode in the ultrastrong coupling regime. The validity of TWA is examined by comparing it with the full quantum dynamics of a single-molecule system for two different initial states in the dipole and Coulomb gauges. For the initial tensor-product ground state in the dipole gauge, which corresponds to a light-matter entangled state in the Coulomb gauge, the collective and resonance effects of molecular vibration-polariton formation on the nuclear dynamics are observed in a system of many molecules.
Collapse
Affiliation(s)
- Nguyen Thanh Phuc
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
33
|
Lee I, Melton SR, Xu D, Delor M. Controlling Molecular Photoisomerization in Photonic Cavities through Polariton Funneling. J Am Chem Soc 2024; 146:9544-9553. [PMID: 38530932 DOI: 10.1021/jacs.3c11292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Strong coupling between photonic modes and molecular electronic excitations, creating hybrid light-matter states called polaritons, is an attractive avenue for controlling chemical reactions. Nevertheless, experimental demonstrations of polariton-modified chemical reactions remain sparse. Here, we demonstrate modified photoisomerization kinetics of merocyanine and diarylethene by coupling the reactant's optical transition with photonic microcavity modes. We leverage broadband Fourier-plane optical microscopy to noninvasively and rapidly monitor photoisomerization within microcavities, enabling systematic investigation of chemical kinetics for different cavity-exciton detunings and photoexcitation conditions. We demonstrate three distinct effects of cavity coupling: first, a renormalization of the photonic density of states, akin to a Purcell effect, leads to enhanced absorption and isomerization rates at certain wavelengths, notably red-shifting the onset of photoisomerization. This effect is present under both strong and weak light-matter couplings. Second, kinetic competition between polariton localization into reactive molecular states and cavity losses leads to a suppression of the photoisomerization yield. Finally, our key result is that in reaction mixtures with multiple reactant isomers, exhibiting partially overlapping optical transitions and distinct isomerization pathways, the cavity resonance can be tuned to funnel photoexcitations into specific reactant isomers. Thus, upon decoherence, polaritons localize into a chosen isomer, selectively triggering the latter's photoisomerization despite initially being delocalized across all isomers. This result suggests that careful tuning of the cavity resonance is a promising avenue to steer chemical reactions and enhance product selectivity in reaction mixtures.
Collapse
Affiliation(s)
- Inki Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sarah R Melton
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Ding Xu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Milan Delor
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
34
|
Chuang YT, Hsu LY. Microscopic theory of exciton-polariton model involving multiple molecules: Macroscopic quantum electrodynamics formulation and essence of direct intermolecular interactions. J Chem Phys 2024; 160:114105. [PMID: 38501476 DOI: 10.1063/5.0192704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Cavity quantum electrodynamics (CQED) and its extensions are widely used for the description of exciton-polariton systems. However, the exciton-polariton models based on CQED vary greatly within different contexts. One of the most significant discrepancies among these CQED models is whether one should include direct intermolecular interactions in the CQED Hamiltonian. To answer this question, in this article, we derive an effective dissipative CQED model including free-space dipole-dipole interactions (CQED-DDI) from a microscopic Hamiltonian based on macroscopic quantum electrodynamics. Dissipative CQED-DDI successfully captures the nature of vacuum fluctuations in dielectric media and separates them into free-space effects and dielectric-induced effects. The former include spontaneous emissions, dephasings, and dipole-dipole interactions in free space; the latter include exciton-polariton interactions and photonic losses due to dielectric media. We apply dissipative CQED-DDI to investigate the exciton-polariton dynamics (the population dynamics of molecules above a plasmonic surface) and compare the results with those based on the methods proposed by several previous studies. We find that direct intermolecular interactions are a crucial element when employing CQED-like models to study exciton-polariton systems involving multiple molecules.
Collapse
Affiliation(s)
- Yi-Ting Chuang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Liang-Yan Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
| |
Collapse
|
35
|
Stemo G, Nishiuchi J, Bhakta H, Mao H, Wiesehan G, Xiong W, Katsuki H. Ultrafast Spectroscopy under Vibrational Strong Coupling in Diphenylphosphoryl Azide. J Phys Chem A 2024; 128:1817-1824. [PMID: 38437187 PMCID: PMC10945483 DOI: 10.1021/acs.jpca.3c07847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
Strong coupling of cavity photons and molecular vibrations creates vibrational polaritons that have been shown to modify chemical reactivity and alter material properties. While ultrafast spectroscopy of vibrational polaritons has been performed intensively in metal complexes, ultrafast dynamics in vibrationally strongly coupled organic molecules remain unexplored. Here, we report ultrafast pump-probe measurement and two-dimensional infrared spectroscopy in diphenylphosphoryl azide under vibrational strong coupling. Early time oscillatory structures indicate coherent energy exchange between the two polariton modes, which decays in ∼2 ps. We observe a large transient absorptive feature around the lower polariton, which can be explained by the overlapped excited-state absorption and derivative-shaped structures around the lower and upper polaritons. The latter feature is explained by the Rabi splitting contraction, which is ascribed to a reduced population in the ground state. These results reassure the previously reported spectroscopic theory to describe nonlinear spectroscopy of vibrational polaritons. We have also noticed the influence of the complicated layer structure of the cavity mirrors. The penetration of the electric field distribution into the layered structure of the dielectric-mirror cavities can significantly affect the Rabi splitting and the decay time constant of polaritonic systems.
Collapse
Affiliation(s)
- Garrek Stemo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Joel Nishiuchi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Harsh Bhakta
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Haochuan Mao
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Garret Wiesehan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Wei Xiong
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Hiroyuki Katsuki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| |
Collapse
|
36
|
Xiang B, Xiong W. Molecular Polaritons for Chemistry, Photonics and Quantum Technologies. Chem Rev 2024; 124:2512-2552. [PMID: 38416701 PMCID: PMC10941193 DOI: 10.1021/acs.chemrev.3c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024]
Abstract
Molecular polaritons are quasiparticles resulting from the hybridization between molecular and photonic modes. These composite entities, bearing characteristics inherited from both constituents, exhibit modified energy levels and wave functions, thereby capturing the attention of chemists in the past decade. The potential to modify chemical reactions has spurred many investigations, alongside efforts to enhance and manipulate optical responses for photonic and quantum applications. This Review centers on the experimental advances in this burgeoning field. Commencing with an introduction of the fundamentals, including theoretical foundations and various cavity architectures, we discuss outcomes of polariton-modified chemical reactions. Furthermore, we navigate through the ongoing debates and uncertainties surrounding the underpinning mechanism of this innovative method of controlling chemistry. Emphasis is placed on gaining a comprehensive understanding of the energy dynamics of molecular polaritons, in particular, vibrational molecular polaritons─a pivotal facet in steering chemical reactions. Additionally, we discuss the unique capability of coherent two-dimensional spectroscopy to dissect polariton and dark mode dynamics, offering insights into the critical components within the cavity that alter chemical reactions. We further expand to the potential utility of molecular polaritons in quantum applications as well as precise manipulation of molecular and photonic polarizations, notably in the context of chiral phenomena. This discussion aspires to ignite deeper curiosity and engagement in revealing the physics underpinning polariton-modified molecular properties, and a broad fascination with harnessing photonic environments to control chemistry.
Collapse
Affiliation(s)
- Bo Xiang
- Department
of Chemistry, School of Science and Research Center for Industries
of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Wei Xiong
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92126, United States
- Materials
Science and Engineering Program, University
of California, San Diego, California 92126, United States
- Department
of Electrical and Computer Engineering, University of California, San
Diego, California 92126, United States
| |
Collapse
|
37
|
Ma X, Wang X, Cui S, Pu S. Construction of a Reversible Solid-state Fluorescence Switching Via Photochromic Diarylethene and Si-ZnO Quantum Dots. J Fluoresc 2024; 34:531-539. [PMID: 37300784 DOI: 10.1007/s10895-023-03279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Developing fluorescence switching as functional system is highly desirable for potential applications in the fields of light-responsive materials or devices. Attempt to construct fluorescence switching system tend to focus on the high fluorescence modulation efficiency, especially in solid state. Herein, a photo-controlled fluorescence switching system was constructed with photochromic diarylethene and trimethoxysilane modified zinc oxide quantum dots (Si-ZnO QDs) successfully. It was verified by the measurement of modulation efficiency, fatigue resistance as well as theoretical calculation. Upon irradiation with UV/Vis lights, the system exhibited excellent photochromic property and photo-controlled fluorescence switching performance. Furthermore, the excellent fluorescence switching characters could also be realized in solid state and the fluorescence modulation efficiency was determined to be 87.4%. The results will provide new strategies to the construction of reversible solid-state photo-controlled fluorescence switching for the application in the fields of optical data storage and security labels.
Collapse
Affiliation(s)
- Xinhuan Ma
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Xinyao Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Shiqiang Cui
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China.
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China.
| |
Collapse
|
38
|
Cai MR, Zhang X, Cheng ZQ, Yan TF, Dong H. Extracting double-quantum coherence in two-dimensional electronic spectroscopy under pump-probe geometry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:033006. [PMID: 38497835 DOI: 10.1063/5.0198255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
Two-dimensional electronic spectroscopy (2DES) can be implemented with different geometries, e.g., BOXCARS, collinear, and pump-probe geometries. The pump-probe geometry has the advantage of overlapping only two beams and reducing phase cycling steps. However, its applications are typically limited to observing the dynamics with single-quantum coherence and population, leaving the challenge to measure the dynamics of the double-quantum (2Q) coherence, which reflects the many-body interactions. We demonstrate an experimental technique in 2DES under pump-probe geometry with a designed pulse sequence and the signal processing method to extract 2Q coherence. In the designed pulse sequence, with the probe pulse arriving earlier than the pump pulses, our measured signal includes the 2Q signal as well as the zero-quantum signal. With phase cycling and data processing using causality enforcement, we extract the 2Q signal. The proposal is demonstrated with rubidium atoms. We observe the collective resonances of two-body dipole-dipole interactions in both the D1 and D2 lines.
Collapse
Affiliation(s)
- Mao-Rui Cai
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| | - Xue Zhang
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| | - Zi-Qian Cheng
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| | - Teng-Fei Yan
- School of Microelectronics, Shanghai University, Shanghai 200444, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| |
Collapse
|
39
|
Koo Y, Moon T, Kang M, Joo H, Lee C, Lee H, Kravtsov V, Park KD. Dynamical control of nanoscale light-matter interactions in low-dimensional quantum materials. LIGHT, SCIENCE & APPLICATIONS 2024; 13:30. [PMID: 38272869 PMCID: PMC10810844 DOI: 10.1038/s41377-024-01380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/26/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Tip-enhanced nano-spectroscopy and -imaging have significantly advanced our understanding of low-dimensional quantum materials and their interactions with light, providing a rich insight into the underlying physics at their natural length scale. Recently, various functionalities of the plasmonic tip expand the capabilities of the nanoscopy, enabling dynamic manipulation of light-matter interactions at the nanoscale. In this review, we focus on a new paradigm of the nanoscopy, shifting from the conventional role of imaging and spectroscopy to the dynamical control approach of the tip-induced light-matter interactions. We present three different approaches of tip-induced control of light-matter interactions, such as cavity-gap control, pressure control, and near-field polarization control. Specifically, we discuss the nanoscale modifications of radiative emissions for various emitters from weak to strong coupling regime, achieved by the precise engineering of the cavity-gap. Furthermore, we introduce recent works on light-matter interactions controlled by tip-pressure and near-field polarization, especially tunability of the bandgap, crystal structure, photoluminescence quantum yield, exciton density, and energy transfer in a wide range of quantum materials. We envision that this comprehensive review not only contributes to a deeper understanding of the physics of nanoscale light-matter interactions but also offers a valuable resource to nanophotonics, plasmonics, and materials science for future technological advancements.
Collapse
Affiliation(s)
- Yeonjeong Koo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Taeyoung Moon
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Mingu Kang
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Huitae Joo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Changjoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyeongwoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Vasily Kravtsov
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Kyoung-Duck Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
40
|
Rana B, Hohenstein EG, Martínez TJ. Simulating the Excited-State Dynamics of Polaritons with Ab Initio Multiple Spawning. J Phys Chem A 2024; 128:139-151. [PMID: 38110364 DOI: 10.1021/acs.jpca.3c06607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Over the past decade, there has been a growth of interest in polaritonic chemistry, where the formation of hybrid light-matter states (polaritons) can alter the course of photochemical reactions. These hybrid states are created by strong coupling between molecules and photons in resonant optical cavities and can even occur in the absence of light when the molecule is strongly coupled with the electromagnetic fluctuations of the vacuum field. We present a first-principles model to simulate nonadiabatic dynamics of such polaritonic states inside optical cavities by leveraging graphical processing units (GPUs). Our first implementation of this model is specialized for a single molecule coupled to a single-photon mode confined inside the optical cavity but with any number of excited states computed using complete active space configuration interaction (CASCI) and a Jaynes-Cummings-type Hamiltonian. Using this model, we have simulated the excited-state dynamics of a single salicylideneaniline (SA) molecule strongly coupled to a cavity photon with the ab initio multiple spawning (AIMS) method. We demonstrate how the branching ratios of the photodeactivation pathways for this molecule can be manipulated by coupling to the cavity. We also show how one can stop the photoreaction from happening inside of an optical cavity. Finally, we also investigate cavity-based control of the ordering of two excited states (one optically bright and the other optically dark) inside a cavity for a set of molecules, where the dark and bright states are close in energy.
Collapse
Affiliation(s)
- Bhaskar Rana
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Edward G Hohenstein
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Todd J Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
41
|
Tichauer RH, Sokolovskii I, Groenhof G. Tuning the Coherent Propagation of Organic Exciton-Polaritons through the Cavity Q-factor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302650. [PMID: 37818758 PMCID: PMC10667804 DOI: 10.1002/advs.202302650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/22/2023] [Indexed: 10/13/2023]
Abstract
Transport of excitons in organic materials can be enhanced through polariton formation when the interaction strength between these excitons and the confined light modes of an optical resonator exceeds their decay rates. While the polariton lifetime is determined by the Q(uality)-factor of the optical resonator, the polariton group velocity is not. Instead, the latter is solely determined by the polariton dispersion. Yet, experiments suggest that the Q-factor also controls the polariton propagation velocity. To understand this observation, the authors perform molecular dynamics simulations of Rhodamine chromophores strongly coupled to Fabry-Pérot cavities with various Q-factors. The results suggest that propagation in the aforementioned experiments is initially dominated by ballistic motion of upper polariton states at their group velocities, which leads to a rapid expansion of the wavepacket. Cavity decay in combination with non-adiabatic population transfer into dark states, rapidly depletes these bright states, causing the wavepacket to contract. However, because population transfer is reversible, propagation continues, but as a diffusion process, at lower velocity. By controlling the lifetime of bright states, the Q-factor determines the duration of the ballistic phase and the diffusion coefficient in the diffusive regime. Thus, polariton propagation in organic microcavities can be effectively tuned through the Q-factor.
Collapse
Affiliation(s)
- Ruth H. Tichauer
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadridE‐28049Spain
| | - Ilia Sokolovskii
- Nanoscience Center and Department of ChemistryUniversity of JyväskyläP.O. Box 35, 40014JyväskyläFinland
| | - Gerrit Groenhof
- Nanoscience Center and Department of ChemistryUniversity of JyväskyläP.O. Box 35, 40014JyväskyläFinland
| |
Collapse
|
42
|
Fidler AP, Chen L, McKillop AM, Weichman ML. Ultrafast dynamics of CN radical reactions with chloroform solvent under vibrational strong coupling. J Chem Phys 2023; 159:164302. [PMID: 37870135 DOI: 10.1063/5.0167410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/21/2023] [Indexed: 10/24/2023] Open
Abstract
Polariton chemistry may provide a new means to control molecular reactivity, permitting remote, reversible modification of reaction energetics, kinetics, and product yields. A considerable body of experimental and theoretical work has already demonstrated that strong coupling between a molecular vibrational mode and the confined electromagnetic field of an optical cavity can alter chemical reactivity without external illumination. However, the mechanisms underlying cavity-altered chemistry remain unclear in large part because the experimental systems examined previously are too complex for detailed analysis of their reaction dynamics. Here, we experimentally investigate photolysis-induced reactions of cyanide radicals with strongly-coupled chloroform (CHCl3) solvent molecules and examine the intracavity rates of photofragment recombination, solvent complexation, and hydrogen abstraction. We use a microfluidic optical cavity fitted with dichroic mirrors to facilitate vibrational strong coupling (VSC) of the C-H stretching mode of CHCl3 while simultaneously permitting optical access at visible wavelengths. Ultrafast transient absorption experiments performed with cavities tuned on- and off-resonance reveal that VSC of the CHCl3 C-H stretching transition does not significantly modify any measured rate constants, including those associated with the hydrogen abstraction reaction. This work represents, to the best of our knowledge, the first experimental study of an elementary bimolecular reaction under VSC. We discuss how the conspicuous absence of cavity-altered effects in this system may provide insights into the mechanisms of modified ground state reactivity under VSC and help bridge the divide between experimental results and theoretical predictions in vibrational polariton chemistry.
Collapse
Affiliation(s)
- Ashley P Fidler
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Liying Chen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | | - Marissa L Weichman
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
43
|
Sokolovskii I, Tichauer RH, Morozov D, Feist J, Groenhof G. Multi-scale molecular dynamics simulations of enhanced energy transfer in organic molecules under strong coupling. Nat Commun 2023; 14:6613. [PMID: 37857599 PMCID: PMC10587084 DOI: 10.1038/s41467-023-42067-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Exciton transport can be enhanced in the strong coupling regime where excitons hybridize with confined light modes to form polaritons. Because polaritons have group velocity, their propagation should be ballistic and long-ranged. However, experiments indicate that organic polaritons propagate in a diffusive manner and more slowly than their group velocity. Here, we resolve this controversy by means of molecular dynamics simulations of Rhodamine molecules in a Fabry-Pérot cavity. Our results suggest that polariton propagation is limited by the cavity lifetime and appears diffusive due to reversible population transfers between polaritonic states that propagate ballistically at their group velocity, and dark states that are stationary. Furthermore, because long-lived dark states transiently trap the excitation, propagation is observed on timescales beyond the intrinsic polariton lifetime. These insights not only help to better understand and interpret experimental observations, but also pave the way towards rational design of molecule-cavity systems for coherent exciton transport.
Collapse
Affiliation(s)
- Ilia Sokolovskii
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä, 40014, Finland
| | - Ruth H Tichauer
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä, 40014, Finland
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Dmitry Morozov
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä, 40014, Finland
| | - Johannes Feist
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä, 40014, Finland.
| |
Collapse
|
44
|
Gu B, Gu Y, Chernyak VY, Mukamel S. Cavity Control of Molecular Spectroscopy and Photophysics. Acc Chem Res 2023; 56:2753-2762. [PMID: 37782841 DOI: 10.1021/acs.accounts.3c00280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
ConspectusOptical cavities have been established as a powerful platform for manipulating the spectroscopy and photophysics of molecules. Molecules placed inside an optical cavity will interact with the cavity field, even if the cavity is in the vacuum state with no photons. When the coupling strength between matter excitations, either electronic or vibrational, and a cavity photon mode surpasses all decay rates in the system, hybrid light-matter excitations known as cavity polaritons emerge. Originally studied in atomic systems, there has been growing interest in studying polaritons in molecules. Numerous studies, both experimental and theoretical, have demonstrated that the formation of molecular polaritons can significantly alter the optical, electronic, and chemical properties of molecules in a noninvasive manner.This Account focuses on novel studies that reveal how optical cavities can be employed to control electronic excitations, both valence and core, in molecules and the spectroscopic signatures of molecular polaritons. We first discuss the capacity of optical cavities to manipulate and control the intrinsic conical intersection dynamics in polyatomic molecules. Since conical intersections are responsible for a wide range of photochemical and photophysical processes such as internal conversion, photoisomerization, and singlet fission, this provides a practical strategy to control molecular photodynamics. Two examples are given for the internal conversion in pyrazine and singlet fission in a pentacene dimer. We further show how X-ray cavities can be exploited to control the core-level excitations of molecules. Core polaritons can be created from inequivalent core orbitals by exchanging X-ray cavity photons. The core polaritons can also alter the selection rules in nonlinear spectroscopy.Polaritonic states and dynamics can be monitored by nonlinear spectroscopy. Quantum light spectroscopy is a frontier in nonlinear spectroscopy that exploits the quantum-mechanical properties of light, such as entanglement and squeezing, to extract matter information inaccessible by classical light. We discuss how quantum spectroscopic techniques can be employed for probing polaritonic systems. In multimolecule polaritonic systems, there exist two-polariton states that are dark in the two-photon absorption spectrum due to destructive interference between transition pathways. We show that a time-frequency entangled photon pair can manipulate the interference between transition pathways in the two-photon absorption signal and thus capture classically dark two-polariton states. Finally, we discuss cooperative effects among molecules in spectroscopy and possibly in chemistry. When many molecules are involved in forming the polaritons, while the cooperative effects clearly manifest in the dependence of the Rabi splitting on the number of molecules, whether they can show up in chemical reactivity, which is intrinsically local, is an open question. We explore the cooperative nature of the charge migration process in a cavity and show that, unlike spectroscopy, polaritonic charge dynamics is intrinsically local and does not show collective many-molecule effects.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry and Department of Physics, School of Science, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yonghao Gu
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Vladimir Y Chernyak
- Department of Chemistry and Department of Mathematics, Wayne State University, Detroit, Michigan 48202, United States
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| |
Collapse
|
45
|
Philbin JP, Haugland TS, Ghosh TK, Ronca E, Chen M, Narang P, Koch H. Molecular van der Waals Fluids in Cavity Quantum Electrodynamics. J Phys Chem Lett 2023; 14:8988-8993. [PMID: 37774379 PMCID: PMC10578074 DOI: 10.1021/acs.jpclett.3c01790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023]
Abstract
Intermolecular van der Waals interactions are central to chemical and physical phenomena ranging from biomolecule binding to soft-matter phase transitions. In this work, we demonstrate that strong light-matter coupling can be used to control the thermodynamic properties of many-molecule systems. Our analyses reveal orientation dependent single molecule energies and interaction energies for van der Waals molecules. For example, we find intermolecular interactions that depend on the distance between the molecules R as R-3 and R0. Moreover, we employ ab initio cavity quantum electrodynamics calculations to develop machine-learning-based interaction potentials for molecules inside optical cavities. By simulating systems ranging from 12 H2 to 144 H2 molecules, we observe varying degrees of orientational order because of cavity-modified interactions, and we explain how quantum nuclear effects, light-matter coupling strengths, number of cavity modes, molecular anisotropies, and system size all impact the extent of orientational order.
Collapse
Affiliation(s)
- John P. Philbin
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- College
of Letters and Science, University of California, Los Angeles, California 90095, United States
| | - Tor S. Haugland
- Department
of Chemistry, Norwegian University of Science
and Technology, 7491 Trondheim, Norway
| | - Tushar K. Ghosh
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Enrico Ronca
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
- Max Planck
Institute for the Structure and Dynamics of Matter and Center Free-Electron
Laser Science, Luruper
Chaussee 149, 22761 Hamburg, Germany
| | - Ming Chen
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Prineha Narang
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- College
of Letters and Science, University of California, Los Angeles, California 90095, United States
| | - Henrik Koch
- Department
of Chemistry, Norwegian University of Science
and Technology, 7491 Trondheim, Norway
- Scuola
Normale Superiore, Piazza dei Cavalieri, 7, 56124 Pisa, Italy
| |
Collapse
|
46
|
Cohn B, Filippov T, Ber E, Chuntonov L. Spontaneous Raman scattering from vibrational polaritons is obscured by reservoir states. J Chem Phys 2023; 159:104705. [PMID: 37694751 DOI: 10.1063/5.0159666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Vibrational strong coupling results from the interaction between optically allowed molecular vibrational excitations and the resonant mode of an infrared cavity. Strong coupling leads to the formation of hybrid states, known as vibrational polaritons, which are readily observed in transmission measurements and a manifold of the reservoir states. In contrast, Raman spectroscopy of vibrational polaritons is elusive and has recently been the focus of both theoretical and experimental investigations. Because Raman measurements are frequently performed with high-numerical aperture excitation/collection optics, the angular dispersion of the strongly coupled system must be carefully considered. Herein, we experimentally investigated vibrational polaritons involving dispersive collective lattice resonances of infrared antenna arrays. Despite clear indications of the strong coupling to vibrational excitations in the transmission spectrum; we found that Raman spectra do not bear signatures of the polaritonic transitions. Detailed measurements indicate that the disappearance of the Raman signal is not due to the polariton dispersion in our samples. On the other hand, the Tavis-Cummings-Holstein model that we employed to interpret our results suggests that the ratio of the Raman transition strengths between the reservoir and the polariton states scales according to the number of strongly coupled molecules. Because the vibrational transitions are relatively weak, the number of molecules required to achieve strong coupling conditions is about 109 per unit cell of the array of infrared antennas. Therefore, the scaling predicted by the Tavis-Cummings-Holstein model can explain the absence of the polariton signatures in spontaneous Raman scattering experiments.
Collapse
Affiliation(s)
- Bar Cohn
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Tikhon Filippov
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Emanuel Ber
- Viterbi Faculty of Electrical and Computer Engineering, and The Helen Diller Quantum Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Lev Chuntonov
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
47
|
Wang Y, Dou W. Nonadiabatic dynamics near metal surfaces under Floquet engineering: Floquet electronic friction vs Floquet surface hopping. J Chem Phys 2023; 159:094103. [PMID: 37655774 DOI: 10.1063/5.0161292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
In the previous study Wang and Dou [J. Chem. Phys. 158, 224109 (2023)], we have derived a Floquet classical master equation (FCME) to treat nonadiabatic dynamics near metal surfaces under Floquet engineering. We have also proposed a trajectory surface hopping algorithm to solve the FCME. In this study, we map the FCME into a Floquet Fokker-Planck equation in the limit of fast Floquet driving and fast electron motion as compared to nuclear motion. The Fokker-Planck equation is then being solved using Langevin dynamics with explicit friction and random force from the nonadiabatic effects of hybridized electrons and Floquet states. We benchmark the Floquet electronic friction dynamics against Floquet quantum master equation and Floquet surface hopping. We find that Floquet driving results in a violation of the second fluctuation-dissipation theorem, which further gives rise to heating effects.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Wenjie Dou
- Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
- Department of Physics, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
48
|
Lyu PT, Yin LX, Shen YT, Gao Z, Chen HY, Xu JJ, Kang B. Plasmonic Cavity-Catalysis by Standing Hot Carrier Waves. J Am Chem Soc 2023; 145:18912-18919. [PMID: 37584625 DOI: 10.1021/jacs.3c05392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Manipulating active sites of catalysts is crucial but challenging in catalysis science and engineering. Beyond the design of the composition and structure of catalysts, the confined electromagnetic field in optical cavities has recently become a promising method for catalyzing chemical reactions via strong light-matter interactions. Another form of confined electromagnetic field, the charge density wave in plasmonic cavities, however, still needs to be explored for catalysis. Here, we present an unprecedented catalytic mode based on plasmonic cavities, called plasmonic cavity-catalysis. We achieve direct control of catalytic sites in plasmonic cavities through standing hot carrier waves. Periodic catalytic hotspots are formed because of localized energy and carrier distribution and can be well tuned by cavity geometry, charge density, and excitation angle. We also found that the catalytic activity of the cavity mode increases several orders of magnitude compared with conventional plasmonic catalysis. We ultimately demonstrate that the locally concentrated long-lived hot carriers in the standing wave mode underlie the formation of the catalytic hotspots. Plasmonic cavity-catalysis provides a new approach to manipulate the catalytic sites and rates and may expand the frontier of heterogeneous catalysis.
Collapse
Affiliation(s)
- Pin-Tian Lyu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Li-Xin Yin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Ting Shen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhaoshuai Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
49
|
Koner A, Du M, Pannir-Sivajothi S, Goldsmith RH, Yuen-Zhou J. A path towards single molecule vibrational strong coupling in a Fabry-Pérot microcavity. Chem Sci 2023; 14:7753-7761. [PMID: 37476723 PMCID: PMC10355109 DOI: 10.1039/d3sc01411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023] Open
Abstract
Interaction between light and molecular vibrations leads to hybrid light-matter states called vibrational polaritons. Even though many intriguing phenomena have been predicted for single-molecule vibrational strong coupling (VSC), several studies suggest that these effects tend to be diminished in the many-molecule regime due to the presence of dark states. Achieving single or few-molecule vibrational polaritons has been constrained by the need for fabricating extremely small mode volume infrared cavities. In this theoretical work, we propose an alternative strategy to achieve single-molecule VSC in a cavity-enhanced Raman spectroscopy (CERS) setup, based on the physics of cavity optomechanics. We then present a scheme harnessing few-molecule VSC to thermodynamically couple two reactions, such that a spontaneous electron transfer can now fuel a thermodynamically uphill reaction that was non-spontaneous outside the cavity.
Collapse
Affiliation(s)
- Arghadip Koner
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
| | - Matthew Du
- Department of Chemistry, University of Chicago 5735 S Ellis Ave Chicago Illinois 60637 USA
| | - Sindhana Pannir-Sivajothi
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison Madison Wisconsin 53706-1322 USA
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
| |
Collapse
|
50
|
Abstract
The coherent exchange of energy between materials and optical fields leads to strong light-matter interactions and so-called polaritonic states with intriguing properties, halfway between light and matter. Two decades ago, research on these strong light-matter interactions, using optical cavity (vacuum) fields, remained for the most part the province of the physicist, with a focus on inorganic materials requiring cryogenic temperatures and carefully fabricated, high-quality optical cavities for their study. This review explores the history and recent acceleration of interest in the application of polaritonic states to molecular properties and processes. The enormous collective oscillator strength of dense films of organic molecules, aggregates, and materials allows cavity vacuum field strong coupling to be achieved at room temperature, even in rapidly fabricated, highly lossy metallic optical cavities. This has put polaritonic states and their associated coherent phenomena at the fingertips of laboratory chemists, materials scientists, and even biochemists as a potentially new tool to control molecular chemistry. The exciting phenomena that have emerged suggest that polaritonic states are of genuine relevance within the molecular and material energy landscape.
Collapse
Affiliation(s)
- Kenji Hirai
- Division of Photonics and Optical Science, Research Institute for Electronic Science (RIES), Hokkaido University, North 20 West 10, Kita ward, Sapporo, Hokkaido 001-0020, Japan
| | - James A Hutchison
- School of Chemistry and ARC Centre of Excellence in Exciton Science, The University of Melbourne, Masson Road, Parkville, Victoria 3052 Australia
| | - Hiroshi Uji-I
- Division of Photonics and Optical Science, Research Institute for Electronic Science (RIES), Hokkaido University, North 20 West 10, Kita ward, Sapporo, Hokkaido 001-0020, Japan
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee Leuven Belgium
| |
Collapse
|