1
|
Obr M, Percipalle M, Chernikova D, Yang H, Thader A, Pinke G, Porley D, Mansky LM, Dick RA, Schur FKM. Distinct stabilization of the human T cell leukemia virus type 1 immature Gag lattice. Nat Struct Mol Biol 2025; 32:268-276. [PMID: 39242978 PMCID: PMC11832423 DOI: 10.1038/s41594-024-01390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/14/2024] [Indexed: 09/09/2024]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) immature particles differ in morphology from other retroviruses, suggesting a distinct way of assembly. Here we report the results of cryo-electron tomography studies of HTLV-1 virus-like particles assembled in vitro, as well as derived from cells. This work shows that HTLV-1 uses a distinct mechanism of Gag-Gag interactions to form the immature viral lattice. Analysis of high-resolution structural information from immature capsid (CA) tubular arrays reveals that the primary stabilizing component in HTLV-1 is the N-terminal domain of CA. Mutagenesis analysis supports this observation. This distinguishes HTLV-1 from other retroviruses, in which the stabilization is provided primarily by the C-terminal domain of CA. These results provide structural details of the quaternary arrangement of Gag for an immature deltaretrovirus and this helps explain why HTLV-1 particles are morphologically distinct.
Collapse
Affiliation(s)
- Martin Obr
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Material and Structural Analysis Division, Thermo Fisher Scientific, Achtseweg Noord, Eindhoven, Netherlands
| | - Mathias Percipalle
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Darya Chernikova
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Huixin Yang
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| | - Andreas Thader
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Gergely Pinke
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Dario Porley
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| | - Robert A Dick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Department of Pediatrics, Laboratory of Biochemical Pharmacology, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, GA, USA
| | - Florian K M Schur
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
2
|
Huang SW, Briganti L, Annamalai AS, Greenwood J, Shkriabai N, Haney R, Armstrong ML, Wempe MF, Singh SP, Francis AC, Engelman AN, Kvaratskhelia M. The primary mechanism for highly potent inhibition of HIV-1 maturation by lenacapavir. PLoS Pathog 2025; 21:e1012862. [PMID: 39869652 DOI: 10.1371/journal.ppat.1012862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/27/2024] [Indexed: 01/29/2025] Open
Abstract
Lenacapavir (LEN) is a highly potent, long-acting antiretroviral medication for treating people infected with muti-drug-resistant HIV-1 phenotypes. The inhibitor targets multifaceted functions of the viral capsid protein (CA) during HIV-1 replication. Previous studies have mainly focused on elucidating LEN's mode of action during viral ingress. Additionally, the inhibitor has been shown to interfere with mature capsid assembly during viral egress. However, the mechanism for how LEN affects HIV-1 maturation is unknown. Here, we show that pharmacologically relevant LEN concentrations do not impair proteolytic processing of Gag in virions. Instead, we have elucidated the primary mechanism for highly potent inhibition of HIV-1 maturation by sub-stoichiometric LEN:CA ratios. The inhibitor exerts opposing effects on formation of CA pentamers versus hexamers, the key capsomere intermediates in mature capsid assembly. LEN impairs formation of pentamers, whereas it induces assembly of hexameric lattices by imposing an opened CA conformation and stabilizing a dimeric form of CA. Consequently, LEN treatment results in morphologically atypical virus particles containing malformed, hyper-stable CA assemblies, which fail to infect target cells. Moreover, we have uncovered an inverse correlation between inhibitor potency and CA levels in cell culture assays, which accounts for LEN's ability to potently (with picomolar EC50 values) inhibit HIV-1 maturation at clinically relevant drug concentrations.
Collapse
Affiliation(s)
- Szu-Wei Huang
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America
| | - Lorenzo Briganti
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America
| | - Arun S Annamalai
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America
| | - Juliet Greenwood
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Nikoloz Shkriabai
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America
| | - Reed Haney
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America
| | - Michael L Armstrong
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, United States of America
| | - Michael F Wempe
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, United States of America
| | - Satya Prakash Singh
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Ashwanth C Francis
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
3
|
Garza CM, Holcomb M, Santos-Martins D, Torbett BE, Forli S. IP6, PF74 affect HIV-1 capsid stability through modulation of hexamer-hexamer tilt angle preference. Biophys J 2025; 124:417-427. [PMID: 39690744 PMCID: PMC11788498 DOI: 10.1016/j.bpj.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/22/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024] Open
Abstract
The HIV-1 capsid is an irregularly shaped protein complex containing the viral genome and several proteins needed for integration into the host cell genome. Small molecules, such as the drug-like compound PF-3450074 (PF74) and the anionic sugar inositolhexakisphosphate (IP6), are known to impact capsid stability, although the mechanisms through which they do so remain unknown. In this study, we employed atomistic molecular dynamics simulations to study the impact of molecules bound to hexamers at the central pore (IP6) and the FG-binding site (PF74) on the interface between capsid oligomers. We found that the IP6 cofactor stabilizes a pair of neighboring hexamers in their flattest configurations, whereas PF74 introduces a strong preference for intermediate tilt angles. These results suggest that the tilt angle between neighboring hexamers is a primary mechanism for the modulation of capsid stability. In addition, hexamer-pentamer interfaces were highly stable, suggesting that pentamers are likely not the locus of disassembly.
Collapse
Affiliation(s)
- Chris M Garza
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California; University of California San Diego School of Medicine, La Jolla, California
| | - Matthew Holcomb
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Diogo Santos-Martins
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Bruce E Torbett
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington; Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California.
| |
Collapse
|
4
|
Kreysing JP, Heidari M, Zila V, Cruz-León S, Obarska-Kosinska A, Laketa V, Rohleder L, Welsch S, Köfinger J, Turoňová B, Hummer G, Kräusslich HG, Beck M. Passage of the HIV capsid cracks the nuclear pore. Cell 2025:S0092-8674(24)01421-1. [PMID: 39826544 DOI: 10.1016/j.cell.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
Upon infection, human immunodeficiency virus type 1 (HIV-1) releases its cone-shaped capsid into the cytoplasm of infected T cells and macrophages. The capsid enters the nuclear pore complex (NPC), driven by interactions with numerous phenylalanine-glycine (FG)-repeat nucleoporins (FG-Nups). Whether NPCs structurally adapt to capsid passage and whether capsids are modified during passage remains unknown, however. Here, we combined super-resolution and correlative microscopy with cryoelectron tomography and molecular simulations to study the nuclear entry of HIV-1 capsids in primary human macrophages. Our data indicate that cytosolically bound cyclophilin A is stripped off capsids entering the NPC, and the capsid hexagonal lattice remains largely intact inside and beyond the central channel. Strikingly, the NPC scaffold rings frequently crack during capsid passage, consistent with computer simulations indicating the need for NPC widening. The unique cone shape of the HIV-1 capsid facilitates its entry into NPCs and helps to crack their rings.
Collapse
Affiliation(s)
- Jan Philipp Kreysing
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; IMPRS on Cellular Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Maziar Heidari
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Vojtech Zila
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
| | - Sergio Cruz-León
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Agnieszka Obarska-Kosinska
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Vibor Laketa
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Lara Rohleder
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Jürgen Köfinger
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Beata Turoňová
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
| | - Martin Beck
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Shinde A, Sayini R, Singh P, Burns JM, Ahmad S, Laidlaw GM, Gupton BF, Klumpp DA, Jin L. A New Synthesis of Enantiopure Amine Fragment: An Important Intermediate to the Anti-HIV Drug Lenacapavir. J Org Chem 2025; 90:471-478. [PMID: 39680644 PMCID: PMC11731271 DOI: 10.1021/acs.joc.4c02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Herein, we describe a new seven-step approach to prepare (S)-1-(3,6-dibromopyridin-2-yl)-2-(3,5-difluorophenyl)ethan-1-amine ((S)-4) from the inexpensive 2-(3,5-difluorophenyl)acetic acid. The key steps in the sequence include (1) the Weinreb amide-based ketone synthesis to provide an entry point to the core structure; (2) simple functional group transformations to afford the racemic amine 4-rac; and (3) dynamic kinetic resolution (DKR) to access the chiral amine (S)-4. This seven-step process delivered the enantiopure amine (S)-4 in an overall isolated yield of approximately 15%. The process was demonstrated on a decagram scale, and the process requires no chromatographic purifications. Single-crystal X-ray crystallography measurements verified the chiral amine structure and absolute configuration.
Collapse
Affiliation(s)
| | | | | | - Justina M. Burns
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - Saeed Ahmad
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - G. Michael Laidlaw
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - B. Frank Gupton
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - Douglas A. Klumpp
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - Limei Jin
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| |
Collapse
|
6
|
Morling KL, ElGhazaly M, Milne RSB, Towers GJ. HIV capsids: orchestrators of innate immune evasion, pathogenesis and pandemicity. J Gen Virol 2025; 106. [PMID: 39804283 DOI: 10.1099/jgv.0.002057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Human immunodeficiency virus (HIV) is an exemplar virus, still the most studied and best understood and a model for mechanisms of viral replication, immune evasion and pathogenesis. In this review, we consider the earliest stages of HIV infection from transport of the virion contents through the cytoplasm to integration of the viral genome into host chromatin. We present a holistic model for the virus-host interaction during this pivotal stage of infection. Central to this process is the HIV capsid. The last 10 years have seen a transformation in the way we understand HIV capsid structure and function. We review key discoveries and present our latest thoughts on the capsid as a dynamic regulator of innate immune evasion and chromatin targeting. We also consider the accessory proteins Vpr and Vpx because they are incorporated into particles where they collaborate with capsids to manipulate defensive cellular responses to infection. We argue that effective regulation of capsid uncoating and evasion of innate immunity define pandemic potential and viral pathogenesis, and we review how comparison of different HIV lineages can reveal what makes pandemic lentiviruses special.
Collapse
Affiliation(s)
- Kate L Morling
- Division of Infection and Immunity, UCL, London, WC1E 6BT, UK
| | | | | | - Greg J Towers
- Division of Infection and Immunity, UCL, London, WC1E 6BT, UK
| |
Collapse
|
7
|
van Kampen JJA, van Nood E, Mahmud R, Krullaars Z, Voskamp T, Voskamp M, Nijssen T, Voermans JJC, Charpentier C, Le Hingrat Q, van de Vijver DAMC, Gruters RA, Mesplède T. Novel Dolutegravir and Lenacapavir Resistance Patterns in Human Immunodeficiency Virus Type 2 Infection: A Case Report. Open Forum Infect Dis 2025; 12:ofae705. [PMID: 39741997 PMCID: PMC11685954 DOI: 10.1093/ofid/ofae705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 01/03/2025] Open
Abstract
Background The treatment management of human immunodeficiency virus (HIV)-2 infection presents greater challenges compared to HIV-1 infection, primarily because of inherent resistance against non-nucleoside reverse transcriptase inhibitors. Integrase strand transfer inhibitors, particularly dolutegravir, have improved treatment outcomes for people with HIV-2. Lenacapavir, a novel and potent antiretroviral capsid inhibitor, offers additional therapeutic options. However, limited knowledge exists regarding HIV-2 resistance against dolutegravir and lenacapavir. Methods We report the case of a treatment-experienced individual who did not achieve virological suppression with regimens containing dolutegravir and lenacapavir. Clinical monitoring, genotypic and phenotypic resistance assays, and in silico structural modeling were performed. Results Lenacapavir was added to a failing regimen of boosted darunavir, twice daily dolutegravir, and 2 nucleoside reverse transcriptase inhibitors. Initially, this addition led to a decline in the viral load and increase in CD4+ T-cell count, despite the identification of a previously unreported combination of integrase resistance mutations. However, virological suppression was not achieved and viral load, although reduced, resumed increasing. This rebound was associated with the development of an N73D capsid substitution in HIV-2, which conferred resistance against lenacapavir. Based on cell-based assays predicting hypersusceptibility to bictegravir, the regimen was adjusted to oral lenacapavir plus bictegravir/emtricitabine/tenofovir alafenamide, resulting in a resumption in viral load decline. Conclusions Although lenacapavir demonstrated therapeutic potential, our case underscores the critical need to combine it with other fully active antiretroviral agents to prevent the rapid emergence of resistance and achieve long-term virological control in treatment-experienced individuals with HIV-2.
Collapse
Affiliation(s)
| | - Els van Nood
- Department of Medical Microbiology & Infectious Diseases and Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Rizwan Mahmud
- Viroscience Department, Erasmus MC, Rotterdam, The Netherlands
| | - Zoë Krullaars
- Viroscience Department, Erasmus MC, Rotterdam, The Netherlands
| | - Tess Voskamp
- Viroscience Department, Erasmus MC, Rotterdam, The Netherlands
| | - Mike Voskamp
- Viroscience Department, Erasmus MC, Rotterdam, The Netherlands
| | - Tess Nijssen
- Viroscience Department, Erasmus MC, Rotterdam, The Netherlands
| | | | - Charlotte Charpentier
- Service de Virologie, INSERM, IAME, UMR 1137, AP-HP, Hôpital Bichat-Claude Bernard, Université Paris Cité, Paris, France
| | - Quentin Le Hingrat
- Service de Virologie, INSERM, IAME, UMR 1137, AP-HP, Hôpital Bichat-Claude Bernard, Université Paris Cité, Paris, France
| | | | - Rob A Gruters
- Viroscience Department, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
8
|
Scott TM, Arnold LM, Powers JA, McCann DA, Rowe AB, Christensen DE, Pereira MJ, Zhou W, Torrez RM, Iwasa JH, Kranzusch PJ, Sundquist WI, Johnson JS. Cell-free assays reveal that the HIV-1 capsid protects reverse transcripts from cGAS immune sensing. PLoS Pathog 2025; 21:e1012206. [PMID: 39874383 PMCID: PMC11793794 DOI: 10.1371/journal.ppat.1012206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 02/04/2025] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
Retroviruses can be detected by the innate immune sensor cyclic GMP-AMP synthase (cGAS), which recognizes reverse-transcribed DNA and activates an antiviral response. However, the extent to which HIV-1 shields its genome from cGAS recognition remains unclear. To study this process in mechanistic detail, we reconstituted reverse transcription, genome release, and innate immune sensing of HIV-1 in a cell-free system. We found that wild-type HIV-1 capsids protect viral genomes from cGAS even after completing reverse transcription. Viral DNA could be "deprotected" by thermal stress, capsid mutations, or reduced concentrations of inositol hexakisphosphate (IP6) that destabilize the capsid. Strikingly, the capsid inhibitor lenacapavir also disrupted viral cores and dramatically potentiated cGAS activity, both in vitro and in cellular infections. Our results provide biochemical evidence that the HIV-1 capsid lattice conceals the genome from cGAS and that chemical or physical disruption of the viral core can expose HIV-1 DNA and activate innate immune signaling.
Collapse
Affiliation(s)
- Tiana M. Scott
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Lydia M. Arnold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jordan A. Powers
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Delaney A. McCann
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Ana B. Rowe
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Devin E. Christensen
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Miguel J. Pereira
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Rachel M. Torrez
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Janet H. Iwasa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Philip J. Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Wesley I. Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jarrod S. Johnson
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
9
|
Yang H, Arndt WG, Zhang W, Mansky LM. Determinants in the HTLV-1 Capsid Major Homology Region that are Critical for Virus Particle Assembly. J Mol Biol 2024; 436:168851. [PMID: 39505063 PMCID: PMC11637902 DOI: 10.1016/j.jmb.2024.168851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
The Gag protein of retroviruses is the primary driver of virus particle assembly. Particle morphologies among retroviral genera are distinct, with intriguing differences observed relative to human immunodeficiency virus type 1 (HIV-1), particularly that of human T-cell leukemia virus type 1 (HTLV-1). In contrast to HIV-1 and other retroviruses where the capsid (CA) carboxy-terminal domain (CTD) possesses the key amino acid determinants involved in driving Gag-Gag interactions, we have previously demonstrated that the amino-terminal domain (NTD) encodes the key residues crucial for Gag multimerization and immature particle production. Here in this study, we sought to thoroughly interrogate the conserved HTLV-1 major homology region (MHR) of the CACTD to determine whether this region harbors residues important for particle assembly. In particular, site-directed mutagenesis of the HTLV-1 MHR was conducted, and mutants were analyzed for their ability to impact Gag subcellular distribution, particle production and morphology, as well as the CA-CA assembly kinetics. Several key residues (i.e., Q138, E142, Y144, F147 and R150), were found to significantly impact Gag multimerization and particle assembly. Taken together, these observations imply that while the HTLV-1 CANTD acts as the major region involved in CA-CA interactions, residues in the MHR can impact Gag multimerization, particle assembly and morphology, and likely play an important role in the conformation the CACTD that is required for CA-CA interactions.
Collapse
Affiliation(s)
- Huixin Yang
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - William G Arndt
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Biochemistry, Molecular Biology & Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Wei Zhang
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Characterization Facility, College of Sciences and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Biochemistry, Molecular Biology & Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Microbiology and Immunology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
10
|
Huang SW, Briganti L, Annamalai AS, Greenwood J, Shkriabai N, Haney R, Armstrong ML, Wempe MF, Singh SP, Francis AC, Engelman AN, Kvaratskhelia M. The primary mechanism for highly potent inhibition of HIV-1 maturation by lenacapavir. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627250. [PMID: 39677622 PMCID: PMC11643057 DOI: 10.1101/2024.12.06.627250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Lenacapavir (LEN) is a highly potent, long-acting antiretroviral medication for treating people infected with muti-drug-resistant HIV-1 phenotypes. The inhibitor targets multifaceted functions of the viral capsid protein (CA) during HIV-1 replication. Previous studies have mainly focused on elucidating LEN's mode of action during viral ingress. Additionally, the inhibitor has been shown to interfere with mature capsid assembly during viral egress. However, the mechanism for how LEN affects HIV-1 maturation is unknown. Here, we show that pharmacologically relevant LEN concentrations do not impair proteolytic processing of Gag in virions. Instead, we have elucidated the primary mechanism for highly potent inhibition of HIV-1 maturation by sub-stoichiometric LEN:CA ratios. The inhibitor exerts opposing effects on formation of CA pentamers versus hexamers, the key capsomere intermediates in mature capsid assembly. LEN impairs formation of pentamers, whereas it induces assembly of hexameric lattices by imposing an opened CA conformation and stabilizing a dimeric form of CA. Consequently, LEN treatment results in morphologically atypical virus particles containing malformed, hyper-stable CA assemblies, which fail to infect target cells. Moreover, we have uncovered an inverse correlation between inhibitor potency and CA levels in cell culture assays, which accounts for LEN's ability to potently (with pM EC 50 values) inhibit HIV-1 maturation at clinically relevant drug concentrations. Author Summary Lenacapavir (LEN) is the first-in-class HIV-1 capsid targeting antiretroviral that exhibits multimodal modality to inhibit both early and late steps of viral replication. Our studies here have elucidated previously undescribed structural and mechanistic bases for a highly potent antiviral activity of LEN during viral egress. These findings will inform clinical applications of LEN as a potent HIV-1 maturation inhibitor and aid the development of second-generation inhibitors targeting assembly of the mature viral capsid.
Collapse
|
11
|
Ma C, Chang J, Yu B. Sunlenca® (Lenacapavir): A first-in-class, long-acting HIV-1 capsid inhibitor for treating highly multidrug-resistant HIV-1 infection. Acta Pharm Sin B 2024; 14:5512-5514. [PMID: 39807316 PMCID: PMC11725028 DOI: 10.1016/j.apsb.2024.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 01/16/2025] Open
Affiliation(s)
- Chunhua Ma
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Bin Yu
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
12
|
Briganti L, Annamalai AS, Bester SM, Wei G, Andino-Moncada JR, Singh SP, Kleinpeter AB, Tripathi M, Nguyen B, Radhakrishnan R, Singh PK, Greenwood J, Schope LI, Haney R, Huang SW, Freed EO, Engelman AN, Francis AC, Kvaratskhelia M. Structural and Mechanistic Bases for Resistance of the M66I Capsid Variant to Lenacapavir. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625199. [PMID: 39651162 PMCID: PMC11623492 DOI: 10.1101/2024.11.25.625199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Lenacapavir (LEN) is the first in class viral capsid protein (CA) targeting antiretroviral for treating multi-drug-resistant HIV-1 infection. Clinical trials and cell culture experiments have identified resistance associated mutations (RAMs) in the vicinity of the hydrophobic CA pocket targeted by LEN. The M66I substitution conferred by far the highest level of resistance to the inhibitor compared to other RAMs. Here we investigated structural and mechanistic bases for how the M66I change affects LEN binding to CA and viral replication. The high-resolution X-ray structure of the CA(M66I) hexamer revealed that the β-branched side chain of Ile66 induces steric hindrance specifically to LEN thereby markedly reducing the inhibitor binding affinity. By contrast, the M66I substitution did not affect binding of Phe-Gly (FG)-motif-containing cellular cofactors CPSF6, NUP153, or SEC24C, which engage the same hydrophobic pocket of CA. In cell culture the M66I variant did not acquire compensatory mutations or replicate in the presence of LEN. Analysis of viral replication intermediates revealed that HIV-1 (M66I CA) predominantly formed correctly matured viral cores, which were more stable than their wildtype counterparts. The mutant cores stably bound to the nuclear envelope but failed to penetrate inside the nucleus. Furthermore, the M66I substitution markedly altered HIV-1 integration targeting. Taken together, our findings elucidate mechanistic insights for how the M66I change confers remarkable resistance to LEN and affects HIV-1 replication. Moreover, our structural findings provide powerful means for future medicinal chemistry efforts to rationally develop second generation inhibitors with a higher barrier to resistance. IMPORTANCE Lenacapavir (LEN) is a highly potent and long-acting antiretroviral that works by a unique mechanism of targeting the viral capsid protein. The inhibitor is used in combination with other antiretrovirals to treat multi-drug-resistant HIV-1 infection in heavily treatment-experienced adults. Furthermore, LEN is in clinical trials for preexposure prophylaxis (PrEP) with interim results indicating 100 % efficacy to prevent HIV-1 infections. However, one notable shortcoming is a relatively low barrier of viral resistance to LEN. Clinical trials and cell culture experiments identified emergent resistance mutations near the inhibitor binding site on capsid. The M66I variant was the most prevalent capsid substitution identified in patients receiving LEN to treat muti-drug resistant HIV-1 infections. The studies described here elucidate the underlying mechanism by which the M66I substitution confers a marked resistance to the inhibitor. Furthermore, our structural findings will aid future efforts to develop the next generation of capsid inhibitors with enhanced barriers to resistance.
Collapse
|
13
|
Xu S, Wang S, Zhou Y, Foley N, Sun L, Walsham L, Tang K, Shi D, Shi X, Zhang Z, Jiang X, Gao S, Liu X, Pannecouque C, Goldstone DC, Dick A, Zhan P. "Pseudosubstrate Envelope"/Free Energy Perturbation-Guided Design and Mechanistic Investigations of Benzothiazole HIV Capsid Modulators with High Ligand Efficiency. J Med Chem 2024; 67:19057-19076. [PMID: 39418501 DOI: 10.1021/acs.jmedchem.4c01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Based on our proposed "pseudosubstrate envelope" concept, 25 benzothiazole-bearing HIV capsid protein (CA) modulators were designed and synthesized under the guidance of free energy perturbation technology. The most potent compound, IC-1k, exhibited an EC50 of 2.69 nM against HIV-1, being 393 times more potent than the positive control PF74. Notably, IC-1k emerged as the highest ligand efficiency (LE = 0.32) HIV CA modulator, surpassing that of the approved drug lenacapavir (LE = 0.21). Surface plasmon resonance assay and crystallographic analysis confirmed that IC-1k targeted HIV-1 CA within the chemical space of the "pseudosubstrate envelope". Further mechanistic studies revealed a dual-stage inhibition profile: IC-1k disrupted early-stage capsid-host-factor interactions and promoted late-stage capsid misassembly. Preliminary pharmacokinetic evaluations demonstrated significantly improved metabolic stability in human liver microsomes for IC-1k (T1/2 = 91.3 min) compared to PF74 (T1/2 = 0.7 min), alongside a favorable safety profile. Overall, IC-1k presents a promising lead compound for further optimization.
Collapse
Affiliation(s)
- Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Yang Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Nicholas Foley
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Laura Walsham
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Kai Tang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Dazhou Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Xiaoyu Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Zhijiao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), Leuven B-3000, Belgium
| | - David C Goldstone
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| |
Collapse
|
14
|
Dinh T, Tber Z, Rey JS, Mengshetti S, Annamalai AS, Haney R, Briganti L, Amblard F, Fuchs JR, Cherepanov P, Kim K, Schinazi RF, Perilla JR, Kim B, Kvaratskhelia M. The structural and mechanistic bases for the viral resistance to allosteric HIV-1 integrase inhibitor pirmitegravir. mBio 2024; 15:e0046524. [PMID: 39404354 PMCID: PMC11559089 DOI: 10.1128/mbio.00465-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are investigational antiretroviral agents that potently impair virion maturation by inducing hyper-multimerization of IN and inhibiting its interaction with viral genomic RNA. The pyrrolopyridine-based ALLINI pirmitegravir (PIR) has recently advanced into phase 2a clinical trials. Previous cell culture-based viral breakthrough assays identified the HIV-1(Y99H/A128T IN) variant that confers substantial resistance to this inhibitor. Here, we have elucidated the unexpected mechanism of viral resistance to PIR. Although both Tyr99 and Ala128 are positioned within the inhibitor binding V-shaped cavity at the IN catalytic core domain (CCD) dimer interface, the Y99H/A128T IN mutations did not substantially affect the direct binding of PIR to the CCD dimer or functional oligomerization of full-length IN. Instead, the drug-resistant mutations introduced a steric hindrance at the inhibitor-mediated interface between CCD and C-terminal domain (CTD) and compromised CTD binding to the CCDY99H/A128T + PIR complex. Consequently, full-length INY99H/A128T was substantially less susceptible to the PIR-induced hyper-multimerization than the WT protein, and HIV-1(Y99H/A128T IN) conferred >150-fold resistance to the inhibitor compared with the WT virus. By rationally modifying PIR, we have developed its analog EKC110, which readily induced hyper-multimerization of INY99H/A128T in vitro and was ~14-fold more potent against HIV-1(Y99H/A128T IN) than the parent inhibitor. These findings suggest a path for developing improved PIR chemotypes with a higher barrier to resistance for their potential clinical use.IMPORTANCEAntiretroviral therapies save the lives of millions of people living with HIV (PLWH). However, the evolution of multi-drug-resistant viral phenotypes is a major clinical problem, and there are limited or no treatment options for heavily treatment-experienced PLWH. Allosteric HIV-1 integrase inhibitors (ALLINIs) are a novel class of antiretroviral compounds that work by a unique mechanism of binding to the non-catalytic site on the viral protein and inducing aberrant integrase multimerization. Accordingly, ALLINIs potently inhibit both wild-type HIV-1 and all drug-resistant viral phenotypes that have so far emerged against currently used therapies. Pirmitegravir, a highly potent and safe investigational ALLINI, is currently advancing through clinical trials. Here, we have elucidated the structural and mechanistic bases behind the emergence of HIV-1 integrase mutations in infected cells that confer resistance to pirmitegravir. In turn, our findings allowed us to rationally develop an improved ALLINI with substantially enhanced potency against the pirmitegravir-resistant virus.
Collapse
Affiliation(s)
- Tung Dinh
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zahira Tber
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Juan S. Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Seema Mengshetti
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Arun S. Annamalai
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Reed Haney
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lorenzo Briganti
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - James R. Fuchs
- College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Peter Cherepanov
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Raymond F. Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Baek Kim
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
15
|
Boulay A, Quevarec E, Malet I, Nicastro G, Chamontin C, Perrin S, Henriquet C, Pugnière M, Courgnaud V, Blaise M, Marcelin AG, Taylor IA, Chaloin L, Arhel NJ. A new class of capsid-targeting inhibitors that specifically block HIV-1 nuclear import. EMBO Mol Med 2024; 16:2918-2945. [PMID: 39358603 PMCID: PMC11555092 DOI: 10.1038/s44321-024-00143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
HIV-1 capsids cross nuclear pore complexes (NPCs) by engaging with the nuclear import machinery. To identify compounds that inhibit HIV-1 nuclear import, we screened drugs in silico on a three-dimensional model of a CA hexamer bound by Transportin-1 (TRN-1). Among hits, compound H27 inhibited HIV-1 with a low micromolar IC50. Unlike other CA-targeting compounds, H27 did not alter CA assembly or disassembly, inhibited nuclear import specifically, and retained antiviral activity against PF74- and Lenacapavir-resistant mutants. The differential sensitivity of divergent primate lentiviral capsids, capsid stability and H27 escape mutants, together with structural analyses, suggest that H27 makes multiple low affinity contacts with assembled capsid. Interaction experiments indicate that H27 may act by preventing CA from engaging with components of the NPC machinery such as TRN-1. H27 exhibited good metabolic stability in vivo and was efficient against different subtypes and circulating recombinant forms from treatment-naïve patients as well as strains resistant to the four main classes of antiretroviral drugs. This work identifies compounds that demonstrate a novel mechanism of action by specifically blocking HIV-1 nuclear import.
Collapse
Affiliation(s)
- Aude Boulay
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Emmanuel Quevarec
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Isabelle Malet
- Department of Virology, INSERM, Sorbonne University, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Giuseppe Nicastro
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Célia Chamontin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Suzon Perrin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Corinne Henriquet
- Institut de Recherche en Cancérologie de Montpellier, INSERM, University of Montpellier, Institut Régional du Cancer, Montpellier, France
| | - Martine Pugnière
- Institut de Recherche en Cancérologie de Montpellier, INSERM, University of Montpellier, Institut Régional du Cancer, Montpellier, France
| | - Valérie Courgnaud
- RNA viruses and host factors, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Mickaël Blaise
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Anne-Geneviève Marcelin
- Department of Virology, INSERM, Sorbonne University, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Laurent Chaloin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Nathalie J Arhel
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France.
| |
Collapse
|
16
|
M.Ravichandran S, M.McFadden W, A.Snyder A, G.Sarafianos S. State of the ART (antiretroviral therapy): Long-acting HIV-1 therapeutics. Glob Health Med 2024; 6:285-294. [PMID: 39483451 PMCID: PMC11514626 DOI: 10.35772/ghm.2024.01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 11/03/2024]
Abstract
Human immunodeficiency virus (HIV) impacts millions of individuals worldwide, and well over 2/3 of those living with HIV are accessing antiviral therapies that are successfully repressing viral replication. Most often, HIV treatments and prevention are administered in the form of daily pills as combinations of multiple drugs. An emergent and effective strategy for suppressing viral replication is the application of long-acting antiretroviral therapy (LAART), or antivirals that require less-frequent, non-daily doses. Thus far, the repertoire of LAARTs includes the widely used antiviral classes of non-nucleoside reverse transcriptase inhibitors (NNRTIs) and integrase strand transfer inhibitors (INSTIs) and has recently expanded to include a capsid-targeting antiviral. Possible future additions are nucleoside reverse transcriptase inhibitors (NRTIs) and nucleoside reverse transcriptase translocation inhibitors (NRTTIs). Here, we discuss the different strategies of using long-acting compounds to treat or prevent HIV-1 infection by targeting reverse transcriptase, integrase, and capsid.
Collapse
Affiliation(s)
- Shreya M.Ravichandran
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - William M.McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Alexa A.Snyder
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Stefan G.Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
17
|
Scott TM, Arnold LM, Powers JA, McCann DA, Rowe AB, Christensen DE, Pereira MJ, Zhou W, Torrez RM, Iwasa JH, Kranzusch PJ, Sundquist WI, Johnson JS. Cell-free assays reveal that the HIV-1 capsid protects reverse transcripts from cGAS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590513. [PMID: 38712059 PMCID: PMC11071359 DOI: 10.1101/2024.04.22.590513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Retroviruses can be detected by the innate immune sensor cyclic GMP-AMP synthase (cGAS), which recognizes reverse-transcribed DNA and activates an antiviral response. However, the extent to which HIV-1 shields its genome from cGAS recognition remains unclear. To study this process in mechanistic detail, we reconstituted reverse transcription, genome release, and innate immune sensing of HIV-1 in a cell-free system. We found that wild-type HIV-1 capsids protect viral genomes from cGAS even after completing reverse transcription. Viral DNA could be "deprotected" by thermal stress, capsid mutations, or reduced concentrations of inositol hexakisphosphate (IP6) that destabilize the capsid. Strikingly, the capsid inhibitor lenacapavir also disrupted viral cores and dramatically potentiated cGAS activity, both in vitro and in cellular infections. Our results provide biochemical evidence that the HIV-1 capsid lattice conceals the genome from cGAS and that chemical or physical disruption of the viral core can expose HIV-1 DNA and activate innate immune signaling.
Collapse
Affiliation(s)
- Tiana M. Scott
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine; Salt Lake City, UT 84112, USA
| | - Lydia M. Arnold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine; Salt Lake City, UT 84112, USA
| | - Jordan A. Powers
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine; Salt Lake City, UT 84112, USA
| | - Delaney A. McCann
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine; Salt Lake City, UT 84112, USA
| | - Ana B. Rowe
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine; Salt Lake City, UT 84112, USA
| | - Devin E. Christensen
- Department of Biochemistry, University of Utah School of Medicine; Salt Lake City, UT 84112, USA
| | - Miguel J. Pereira
- Department of Biochemistry, University of Utah School of Medicine; Salt Lake City, UT 84112, USA
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology; Shenzhen, Guangdong 518055, China
| | - Rachel M. Torrez
- Department of Biochemistry, University of Utah School of Medicine; Salt Lake City, UT 84112, USA
| | - Janet H. Iwasa
- Department of Biochemistry, University of Utah School of Medicine; Salt Lake City, UT 84112, USA
| | - Philip J. Kranzusch
- Department of Microbiology, Harvard Medical School; Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute; Boston, MA 02115, USA
| | - Wesley I. Sundquist
- Department of Biochemistry, University of Utah School of Medicine; Salt Lake City, UT 84112, USA
| | - Jarrod S. Johnson
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine; Salt Lake City, UT 84112, USA
| |
Collapse
|
18
|
Kiarie IW, Hoffka G, Laporte M, Leyssen P, Neyts J, Tőzsér J, Mahdi M. Efficacy of Integrase Strand Transfer Inhibitors and the Capsid Inhibitor Lenacapavir against HIV-2, and Exploring the Effect of Raltegravir on the Activity of SARS-CoV-2. Viruses 2024; 16:1607. [PMID: 39459940 PMCID: PMC11512360 DOI: 10.3390/v16101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Retroviruses perpetuate their survival by incorporating a copy of their genome into the host cell, a critical step catalyzed by the virally encoded integrase. The viral capsid plays an important role during the viral life cycle, including nuclear importation in the case of lentiviruses and integration targeting events; hence, targeting the integrase and the viral capsid is a favorable therapeutic strategy. While integrase strand transfer inhibitors (INSTIs) are recommended as first-line regimens given their high efficacy and tolerability, lenacapavir is the first capsid inhibitor and the newest addition to the HIV treatment arsenal. These inhibitors are however designed for treatment of HIV-1 infection, and their efficacy against HIV-2 remains widely understudied and inconclusive, supported only by a few limited phenotypic susceptibility studies. We therefore carried out inhibition profiling of a panel of second-generation INSTIs and lenacapavir against HIV-2 in cell culture, utilizing pseudovirion inhibition profiling assays. Our results show that the tested INSTIs and lenacapavir exerted excellent efficacy against ROD-based HIV-2 integrase. We further evaluated the efficacy of raltegravir and other INSTIs against different variants of SARS-CoV-2; however, contrary to previous in silico findings, the inhibitors did not demonstrate significant antiviral activity.
Collapse
Affiliation(s)
- Irene Wanjiru Kiarie
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (G.H.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Gyula Hoffka
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (G.H.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Manon Laporte
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.L.); (P.L.); (J.N.)
| | - Pieter Leyssen
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.L.); (P.L.); (J.N.)
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Rue du Trône 98, 1050 Brussels, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.L.); (P.L.); (J.N.)
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Rue du Trône 98, 1050 Brussels, Belgium
| | - József Tőzsér
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (G.H.)
| | - Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (G.H.)
| |
Collapse
|
19
|
Lyu CA, Shen Y, Zhang P. Zooming in and out: Exploring RNA Viral Infections with Multiscale Microscopic Methods. Viruses 2024; 16:1504. [PMID: 39339980 PMCID: PMC11437419 DOI: 10.3390/v16091504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
RNA viruses, being submicroscopic organisms, have intriguing biological makeups and substantially impact human health. Microscopic methods have been utilized for studying RNA viruses at a variety of scales. In order of observation scale from large to small, fluorescence microscopy, cryo-soft X-ray tomography (cryo-SXT), serial cryo-focused ion beam/scanning electron microscopy (cryo-FIB/SEM) volume imaging, cryo-electron tomography (cryo-ET), and cryo-electron microscopy (cryo-EM) single-particle analysis (SPA) have been employed, enabling researchers to explore the intricate world of RNA viruses, their ultrastructure, dynamics, and interactions with host cells. These methods evolve to be combined to achieve a wide resolution range from atomic to sub-nano resolutions, making correlative microscopy an emerging trend. The developments in microscopic methods provide multi-fold and spatial information, advancing our understanding of viral infections and providing critical tools for developing novel antiviral strategies and rapid responses to emerging viral threats.
Collapse
Affiliation(s)
- Cheng-An Lyu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK;
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Yao Shen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK;
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK;
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| |
Collapse
|
20
|
Zheng J, Lu B, Carr G, Mwangi J, Wang K, Hao J, Staiger KM, Kozon N, Murray BP, Bashir M, Gohdes MA, Tse WC, Schroeder S, Graupe M, Link JO, Yoon J, Chiu A, Rowe W, Smith BJ, Subramanian R. Lenacapavir Exhibits Atropisomerism-Mechanistic Pharmacokinetics and Disposition Studies of Lenacapavir Reveal Intestinal Excretion as a Major Clearance Pathway. J Pharmacol Exp Ther 2024; 391:91-103. [PMID: 39117460 DOI: 10.1124/jpet.124.002302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Lenacapavir (LEN), a long-acting injectable, is the first approved human immunodeficiency virus type 1 capsid inhibitor and one of a few Food and Drug Administration-approved drugs that exhibit atropisomerism. LEN exists as a mixture of two class 2 atropisomers that interconvert at a fast rate (half-life < 2 hours) with a ratio that is stable over time and unaffected by enzymes or binding to proteins in plasma. LEN exhibits low systemic clearance (CL) in nonclinical species and humans; however, in all species, the observed CL was higher than the in vitro predicted CL. The volume of distribution was moderate in nonclinical species and consistent with the tissue distribution observed by whole-body autoradiography in rats. LEN does not distribute to brain, consistent with being a P-glycoprotein (P-gp) substrate. Mechanistic drug disposition studies with [14C]LEN in intravenously dosed bile duct-cannulated rats and dogs showed a substantial amount of unchanged LEN (31%-60% of dose) excreted in feces, indicating that intestinal excretion (IE) was a major clearance pathway for LEN in both species. Coadministration of oral elacridar, a P-gp inhibitor, in rats decreased CL and IE of LEN. Renal excretion was < 1% of dose in both species. In plasma, almost all radioactivity was unchanged LEN. Low levels of metabolites in excreta included LEN conjugates with glutathione, pentose, and glucuronic acid, which were consistent with metabolites formed in vitro in Hμrel hepatocyte cocultures and those observed in human. Our studies highlight the importance of IE for efflux substrates that are highly metabolically stable compounds with slow elimination rates. SIGNIFICANCE STATEMENT: LEN is a long-acting injectable that exists as conformationally stable atropisomers. Due to an atropisomeric interconversion rate that significantly exceeds the in vivo elimination rate, the atropisomer ratio of LEN remains constant in circulation. The disposition of LEN highlights that intestinal excretion has a substantial part in the elimination of compounds that are metabolically highly stable and efflux transporter substrates.
Collapse
Affiliation(s)
- Jim Zheng
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Bing Lu
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Gavin Carr
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Judy Mwangi
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Kelly Wang
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Jia Hao
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Kelly McLennan Staiger
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Nathan Kozon
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Bernard P Murray
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Mohammad Bashir
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Mark A Gohdes
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Winston C Tse
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Scott Schroeder
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Michael Graupe
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - John O Link
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Jungjoo Yoon
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Anna Chiu
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - William Rowe
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Bill J Smith
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Raju Subramanian
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| |
Collapse
|
21
|
Deshpande A, Bryer AJ, Andino-Moncada JR, Shi J, Hong J, Torres C, Harel S, Francis AC, Perilla JR, Aiken C, Rousso I. Elasticity of the HIV-1 core facilitates nuclear entry and infection. PLoS Pathog 2024; 20:e1012537. [PMID: 39259747 PMCID: PMC11419384 DOI: 10.1371/journal.ppat.1012537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/23/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
HIV-1 infection requires passage of the viral core through the nuclear pore of the cell, a process that depends on functions of the viral capsid. Recent studies have shown that HIV-1 cores enter the nucleus prior to capsid disassembly. Interactions of the viral capsid with the nuclear pore complex are necessary but not sufficient for nuclear entry, and the mechanism by which the viral core traverses the comparably sized nuclear pore is unknown. Here we show that the HIV-1 core is highly elastic and that this property is linked to nuclear entry and infectivity. Using atomic force microscopy-based approaches, we found that purified wild type cores rapidly returned to their normal conical morphology following a severe compression. Results from independently performed molecular dynamic simulations of the mature HIV-1 capsid also revealed its elastic property. Analysis of four HIV-1 capsid mutants that exhibit impaired nuclear entry revealed that the mutant viral cores are brittle. Adaptation of two of the mutant viruses in cell culture resulted in additional substitutions that restored elasticity and rescued infectivity and nuclear entry. We also show that capsid-targeting compound PF74 and the antiviral drug Lenacapavir reduce core elasticity and block HIV-1 nuclear entry at concentrations that preserve interactions between the viral core and the nuclear envelope. Our results indicate that elasticity is a fundamental property of the HIV-1 core that enables nuclear entry, thereby facilitating infection. These results provide new insights into the role of the capsid in HIV-1 nuclear entry and the antiviral mechanisms of HIV-1 capsid inhibitors.
Collapse
Affiliation(s)
- Akshay Deshpande
- Ben-Gurion University of the Negev, Department of Physiology and Cell Biology, Beer Sheva, Israel
| | - Alexander J. Bryer
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware, United States of America
| | - Jonathan R. Andino-Moncada
- Florida State University, Institute of Molecular Biophysics, Tallahassee, Florida, United States of America
| | - Jiong Shi
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, Tennessee, United States of America
| | - Jun Hong
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, Tennessee, United States of America
| | - Cameron Torres
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, Tennessee, United States of America
| | - Shimon Harel
- Ben-Gurion University of the Negev, Department of Physiology and Cell Biology, Beer Sheva, Israel
| | - Ashwanth C. Francis
- Florida State University, Institute of Molecular Biophysics, Tallahassee, Florida, United States of America
- Florida State University, Department of Biological Sciences, Tallahassee, Florida, United States of America
| | - Juan R. Perilla
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware, United States of America
| | - Christopher Aiken
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, Tennessee, United States of America
| | - Itay Rousso
- Ben-Gurion University of the Negev, Department of Physiology and Cell Biology, Beer Sheva, Israel
| |
Collapse
|
22
|
Bialas K, Diaz-Griffero F. HIV-1-induced translocation of CPSF6 to biomolecular condensates. Trends Microbiol 2024; 32:781-790. [PMID: 38267295 PMCID: PMC11263504 DOI: 10.1016/j.tim.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Cleavage and polyadenylation specificity factor subunit 6 (CPSF6, also known as CFIm68) is a 68 kDa component of the mammalian cleavage factor I (CFIm) complex that modulates mRNA alternative polyadenylation (APA) and determines 3' untranslated region (UTR) length, an important gene expression control mechanism. CPSF6 directly interacts with the HIV-1 core during infection, suggesting involvement in HIV-1 replication. Here, we review the contributions of CPSF6 to every stage of the HIV-1 replication cycle. Recently, several groups described the ability of HIV-1 infection to induce CPSF6 translocation to nuclear speckles, which are biomolecular condensates. We discuss the implications for CPSF6 localization in condensates and the potential role of condensate-localized CPSF6 in the ability of HIV-1 to control the protein expression pattern of the cell.
Collapse
Affiliation(s)
- Katarzyna Bialas
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
23
|
Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X. Advances in the understanding of nuclear pore complexes in human diseases. J Cancer Res Clin Oncol 2024; 150:374. [PMID: 39080077 PMCID: PMC11289042 DOI: 10.1007/s00432-024-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS The literatures from PubMed have been reviewed for this article. CONCLUSION This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.
Collapse
Affiliation(s)
- Yuxuan Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Jie Zhu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Hong Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| | - Xiaofeng Jin
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
24
|
Diamond TL, Goh SL, Ngo W, Rodriguez S, Xu M, Klein DJ, Grobler JA, Asante-Appiah E. No antagonism or cross-resistance and a high barrier to the emergence of resistance in vitro for the combination of islatravir and lenacapavir. Antimicrob Agents Chemother 2024; 68:e0033424. [PMID: 38864613 PMCID: PMC11232396 DOI: 10.1128/aac.00334-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
Islatravir (ISL) is a deoxyadenosine analog that inhibits HIV-1 reverse transcription by multiple mechanisms. Lenacapavir (LEN) is a novel capsid inhibitor that inhibits HIV-1 at multiple stages throughout the viral life cycle. ISL and LEN are being investigated as once-weekly combination oral therapy for the treatment of HIV-1. Here, we characterized ISL and LEN in vitro to assess combinatorial antiviral activity, cytotoxicity, and the potential for interactions between the two compounds. Bliss analysis revealed ISL with LEN demonstrated additive inhibition of HIV-1 replication, with no evidence of antagonism across the range of concentrations tested. ISL exhibited potent antiviral activity against variants encoding known LEN resistance-associated mutations (RAMs) with or without the presence of M184V, an ISL RAM in reverse transcriptase (RT) . Static resistance selection experiments were conducted with ISL and LEN alone and in combination, initiating with either wild-type virus or virus containing the M184I RAM in RT to further assess their barrier to the emergence of resistance. The combination of ISL with LEN more effectively suppressed viral breakthrough at lower multiples of the compounds' IC50 (half-maximal inhibitory concentration) values and fewer mutations emerged with the combination compared to either compound on its own. The known pathways for development of resistance with ISL and LEN were not altered, and no novel single mutations emerged that substantially reduced susceptibility to either compound. The lack of antagonism and cross-resistance between ISL and LEN support the ongoing evaluation of the combination for treatment of HIV-1.
Collapse
Affiliation(s)
| | | | - Winnie Ngo
- Merck & Co., Inc., Rahway, New Jersey, USA
| | | | - Min Xu
- Merck & Co., Inc., Rahway, New Jersey, USA
| | | | | | | |
Collapse
|
25
|
Arribas L, Menéndez-Arias L, Betancor G. May I Help You with Your Coat? HIV-1 Capsid Uncoating and Reverse Transcription. Int J Mol Sci 2024; 25:7167. [PMID: 39000271 PMCID: PMC11241228 DOI: 10.3390/ijms25137167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) capsid is a protein core formed by multiple copies of the viral capsid (CA) protein. Inside the capsid, HIV-1 harbours all the viral components required for replication, including the genomic RNA and viral enzymes reverse transcriptase (RT) and integrase (IN). Upon infection, the RT transforms the genomic RNA into a double-stranded DNA molecule that is subsequently integrated into the host chromosome by IN. For this to happen, the viral capsid must open and release the viral DNA, in a process known as uncoating. Capsid plays a key role during the initial stages of HIV-1 replication; therefore, its stability is intimately related to infection efficiency, and untimely uncoating results in reverse transcription defects. How and where uncoating takes place and its relationship with reverse transcription is not fully understood, but the recent development of novel biochemical and cellular approaches has provided unprecedented detail on these processes. In this review, we present the latest findings on the intricate link between capsid stability, reverse transcription and uncoating, the different models proposed over the years for capsid uncoating, and the role played by other cellular factors on these processes.
Collapse
Affiliation(s)
- Laura Arribas
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain;
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), 28049 Madrid, Spain;
| | - Gilberto Betancor
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain;
| |
Collapse
|
26
|
Schirra RT, dos Santos NFB, Ganser-Pornillos BK, Pornillos O. Arg18 Substitutions Reveal the Capacity of the HIV-1 Capsid Protein for Non-Fullerene Assembly. Viruses 2024; 16:1038. [PMID: 39066201 PMCID: PMC11281672 DOI: 10.3390/v16071038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
In the fullerene cone HIV-1 capsid, the central channels of the hexameric and pentameric capsomers each contain a ring of arginine (Arg18) residues that perform essential roles in capsid assembly and function. In both the hexamer and pentamer, the Arg18 rings coordinate inositol hexakisphosphate, an assembly and stability factor for the capsid. Previously, it was shown that amino-acid substitutions of Arg18 can promote pentamer incorporation into capsid-like particles (CLPs) that spontaneously assemble in vitro under high-salt conditions. Here, we show that these Arg18 mutant CLPs contain a non-canonical pentamer conformation and distinct lattice characteristics that do not follow the fullerene geometry of retroviral capsids. The Arg18 mutant pentamers resemble the hexamer in intra-oligomeric contacts and form a unique tetramer-of-pentamers that allows for incorporation of an octahedral vertex with a cross-shaped opening in the hexagonal capsid lattice. Our findings highlight an unexpected degree of structural plasticity in HIV-1 capsid assembly.
Collapse
Affiliation(s)
- Randall T. Schirra
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA (N.F.B.d.S.)
| | - Nayara F. B. dos Santos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA (N.F.B.d.S.)
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Barbie K. Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA (N.F.B.d.S.)
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA (N.F.B.d.S.)
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
27
|
Liu Y, Peng Y. Mathematical analysis of synthesis chemical reactions for virus building block polymers in vivo. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:6393-6406. [PMID: 39176431 DOI: 10.3934/mbe.2024279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
For numerous viruses, their capsid assembly is composed of two steps. The first step is that virus structural protein monomers are polymerized to building blocks. Then, these building blocks are cumulative and efficiently assembled to virus capsid shell. These building block polymerization reactions in the first step are fundamental for virus assembly, and some drug targets were found in this step. In this work, we focused on the first step. Often, virus building blocks consisted of less than six monomers. That is, dimer, trimer, tetramer, pentamer, and hexamer. We presented mathematical models for polymerization chemical reactions of these five building blocks, respectively. Then, we proved the existence and uniqueness of the positive equilibrium solution for these mathematical models one by one. Subsequently, we also analyzed the stability of the equilibrium states, respectively. These results may provide further insight into property of virus building block polymerization chemical reactions in vivo.
Collapse
Affiliation(s)
- Yuewu Liu
- College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China
| | - Yan Peng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
28
|
Asad N, Lyons M, Muniz Machado Rodrigues S, Burns JM, Roper TD, Laidlaw GM, Ahmad S, Gupton BF, Klumpp D, Jin L. Practical Synthesis of 7-Bromo-4-chloro-1 H-indazol-3-amine: An Important Intermediate to Lenacapavir. Molecules 2024; 29:2705. [PMID: 38930779 PMCID: PMC11206596 DOI: 10.3390/molecules29122705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
7-Bromo-4-chloro-1H-indazol-3-amine is a heterocyclic fragment used in the synthesis of Lenacapavir, a potent capsid inhibitor for the treatment of HIV-1 infections. In this manuscript, we describe a new approach to synthesizing 7-bromo-4-chloro-1H-indazol-3-amine from inexpensive 2,6-dichlorobenzonitrile. This synthetic method utilizes a two-step sequence including regioselective bromination and heterocycle formation with hydrazine to give the desired product in an overall isolated yield of 38-45%. The new protocol has been successfully demonstrated on hundred-gram scales without the need for column chromatography purification. This new synthesis provides a potential economical route to the large-scale production of this heterocyclic fragment of Lenacapavir.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Limei Jin
- Medicines for All Institute, Virginia Commonwealth University, Richmond, VA 23284-3068, USA; (N.A.); (M.L.); (S.M.M.R.); (J.M.B.); (T.D.R.); (G.M.L.); (S.A.); (B.F.G.); (D.K.)
| |
Collapse
|
29
|
Kalemera MD, Maher AK, Dominguez-Villar M, Maertens GN. Cell Culture Evaluation Hints Widely Available HIV Drugs Are Primed for Success if Repurposed for HTLV-1 Prevention. Pharmaceuticals (Basel) 2024; 17:730. [PMID: 38931397 PMCID: PMC11206710 DOI: 10.3390/ph17060730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
With an estimated 10 million people infected, the deltaretrovirus human T-cell lymphotropic virus type 1 (HTLV-1) is the second most prevalent pathogenic retrovirus in humans after HIV-1. Like HIV-1, HTLV-1 overwhelmingly persists in a host via a reservoir of latently infected CD4+ T cells. Although most patients are asymptomatic, HTLV-1-associated pathologies are often debilitating and include adult T-cell leukaemia/lymphoma (ATLL), which presents in mature adulthood and is associated with poor prognosis with short overall survival despite treatment. Curiously, the strongest indicator for the development of ATLL is the acquisition of HTLV-1 through breastfeeding. There are no therapeutic or preventative regimens for HTLV-1. However, antiretrovirals (ARVs), which target the essential retrovirus enzymes, have been developed for and transformed HIV therapy. As the architectures of retroviral enzyme active sites are highly conserved, some HIV-specific compounds are active against HTLV-1. Here, we expand on our work, which showed that integrase strand transfer inhibitors (INSTIs) and some nucleoside reverse transcriptase inhibitors (NRTIs) block HTLV-1 transmission in cell culture. Specifically, we find that dolutegravir, the INSTI currently recommended as the basis of all new combination antiretroviral therapy prescriptions, and the latest prodrug formula of the NRTI tenofovir, tenofovir alafenamide, also potently inhibit HTLV-1 infection. Our results, if replicated in a clinical setting, could see transmission rates of HTLV-1 and future caseloads of HTLV-1-associated pathologies like ATLL dramatically cut via the simple repurposing of already widely available HIV pills in HTLV-1 endemic areas. Considering our findings with the old medical saying "it is better to prevent than cure", we highly recommend the inclusion of INSTIs and tenofovir prodrugs in upcoming HTLV-1 clinical trials as potential prophylactics.
Collapse
Affiliation(s)
| | | | | | - Goedele N. Maertens
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK; (M.D.K.); (A.K.M.); (M.D.-V.)
| |
Collapse
|
30
|
Smith RA, Raugi DN, Nixon RS, Seydi M, Margot NA, Callebaut C, Gottlieb GS. Antiviral Activity of Lenacapavir Against Human Immunodeficiency Virus Type 2 (HIV-2) Isolates and Drug-Resistant HIV-2 Mutants. J Infect Dis 2024; 229:1290-1294. [PMID: 38060982 PMCID: PMC11095534 DOI: 10.1093/infdis/jiad562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 03/07/2024] Open
Abstract
The activity of lenacapavir against human immunodeficiency virus type 1 (HIV-1) has been extensively evaluated in vitro, but comparable data for human immunodeficiency virus type 2 (HIV-2) are scarce. We determined the anti-HIV-2 activity of lenacapavir using single-cycle infections of MAGIC-5A cells and multicycle infections of a T-cell line. Lenacapavir exhibited low-nanomolar activity against HIV-2, but was 11- to 14-fold less potent against HIV-2 in comparison to HIV-1. Mutations in HIV-2 that confer resistance to other antiretrovirals did not confer cross-resistance to lenacapavir. Although lenacapavir-containing regimens might be considered for appropriate patients with HIV-2, more frequent viral load and/or CD4 testing may be needed to assess clinical response.
Collapse
Affiliation(s)
- Robert A Smith
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle
| | - Dana N Raugi
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle
| | - Robert S Nixon
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle
| | - Moussa Seydi
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier National Universitaire de Fann, Dakar, Senegal
| | | | | | - Geoffrey S Gottlieb
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle
- Department of Global Health, University of Washington, Seattle
| |
Collapse
|
31
|
Eschbach JE, Puray-Chavez M, Mohammed S, Wang Q, Xia M, Huang LC, Shan L, Kutluay SB. HIV-1 capsid stability and reverse transcription are finely balanced to minimize sensing of reverse transcription products via the cGAS-STING pathway. mBio 2024; 15:e0034824. [PMID: 38530034 PMCID: PMC11077976 DOI: 10.1128/mbio.00348-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024] Open
Abstract
A critical determinant for early post-entry events, the HIV-1 capsid (CA) protein forms the conical core when it rearranges around the dimeric RNA genome and associated viral proteins. Although mutations in CA have been reported to alter innate immune sensing of HIV-1, a direct link between core stability and sensing of HIV-1 nucleic acids has not been established. Herein, we assessed how manipulating the stability of the CA lattice through chemical and genetic approaches affects innate immune recognition of HIV-1. We found that destabilization of the CA lattice resulted in potent sensing of reverse transcription products when destabilization per se does not completely block reverse transcription. Surprisingly, due to the combined effects of enhanced reverse transcription and defects in nuclear entry, two separate CA mutants that form hyperstable cores induced innate immune sensing more potently than destabilizing CA mutations. At low concentrations that allowed the accumulation of reverse transcription products, CA-targeting compounds GS-CA1 and lenacapavir measurably impacted CA lattice stability in cells and modestly enhanced innate immune sensing of HIV. Interestingly, innate immune activation observed with viruses containing unstable cores was abolished by low doses of lenacapavir. Innate immune activation observed with both hyperstable and unstable CA mutants was dependent on the cGAS-STING DNA-sensing pathway and reverse transcription. Overall, our findings demonstrate that CA lattice stability and reverse transcription are finely balanced to support reverse transcription and minimize cGAS-STING-mediated sensing of the resulting viral DNA. IMPORTANCE In HIV-1 particles, the dimeric RNA genome and associated viral proteins and enzymes are encased in a proteinaceous lattice composed of the viral capsid protein. Herein, we assessed how altering the stability of this capsid lattice through orthogonal genetic and chemical approaches impacts the induction of innate immune responses. Specifically, we found that decreasing capsid lattice stability results in more potent sensing of viral reverse transcription products, but not the genomic RNA, in a cGAS-STING-dependent manner. The recently developed capsid inhibitors lenacapavir and GS-CA1 enhanced the innate immune sensing of HIV-1. Unexpectedly, due to increased levels of reverse transcription and cytosolic accumulation of the resulting viral cDNA, capsid mutants with hyperstable cores also resulted in the potent induction of type I interferon-mediated innate immunity. Our findings suggest that HIV-1 capsid lattice stability and reverse transcription are finely balanced to minimize exposure of reverse transcription products in the cytosol of host cells.
Collapse
Affiliation(s)
- Jenna E. Eschbach
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shawn Mohammed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Qiankun Wang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Ming Xia
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lin-Chen Huang
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
32
|
Niu ZX, Hu J, Sun JF, Wang YT. Fluorine in the pharmaceutical industry: Synthetic approaches and application of clinically approved fluorine-enriched anti-infectious medications. Eur J Med Chem 2024; 271:116446. [PMID: 38678824 DOI: 10.1016/j.ejmech.2024.116446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The strategic integration of fluorine atoms into anti-infectious agents has become a cornerstone in the field of medicinal chemistry, owing to the unique influence of fluorine on the chemical and biological properties of pharmaceuticals. This review examines the synthetic methodologies that enable the incorporation of fluorine into anti-infectious drugs, and the resultant clinical applications of these fluorine-enriched compounds. With a focus on clinically approved medications, the discussion extends to the molecular mechanisms. It further outlines the specific effects of fluorination, which contribute to the heightened efficacy of anti-infective therapies. By presenting a comprehensive analysis of current drugs and their developmental pathways, this review underscores the continuing evolution and significance of fluorine in advancing anti-infectious treatment options. The insights offered extend valuable guidance for future drug design and the development of next-generation anti-infectious agents.
Collapse
Affiliation(s)
- Zhen-Xi Niu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Jing Hu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin,133002, China.
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476100, China; Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| |
Collapse
|
33
|
Taylor IA, Fassati A. The capsid revolution. J Mol Cell Biol 2024; 15:mjad076. [PMID: 38037430 PMCID: PMC11193064 DOI: 10.1093/jmcb/mjad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023] Open
Abstract
Lenacapavir, targeting the human immunodeficiency virus type-1 (HIV-1) capsid, is the first-in-class antiretroviral drug recently approved for clinical use. The development of Lenacapavir is attributed to the remarkable progress in our understanding of the capsid protein made during the last few years. Considered little more than a component of the virus shell to be shed early during infection, the capsid has been found to be a key player in the HIV-1 life cycle by interacting with multiple host factors, entering the nucleus, and directing integration. Here, we describe the key advances that led to this 'capsid revolution'.
Collapse
Affiliation(s)
- Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Ariberto Fassati
- Division of Infection and Immunity, University College London, London WC1E 6JF, UK
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, UK
| |
Collapse
|
34
|
Lim K, Hazawa M, Wong RW. Crafty mimicry grants nuclear pore entry to HIV. Cell Host Microbe 2024; 32:441-442. [PMID: 38604120 DOI: 10.1016/j.chom.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024]
Abstract
The size of the nuclear pore should, in principle, prevent HIV-1 entry. However, HIV-1 capsid is able to gain nuclear pore entry. In a recent issue of Nature, Fu et al. and Dickson et al. demonstrate that the HIV-1 capsid mimics the nuclear transport protein karyopherins to access host nuclei.
Collapse
Affiliation(s)
- Keesiang Lim
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Masaharu Hazawa
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan; Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W Wong
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan; Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
35
|
Ingram Z, Kline C, Hughson AK, Singh PK, Fischer HL, Sowd GA, Watkins SC, Kane M, Engelman AN, Ambrose Z. Spatiotemporal binding of cyclophilin A and CPSF6 to capsid regulates HIV-1 nuclear entry and integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588584. [PMID: 38645162 PMCID: PMC11030324 DOI: 10.1101/2024.04.08.588584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Human immunodeficiency virus type 1 (HIV-1) capsid, which is the target of the antiviral lenacapavir, protects the viral genome and binds multiple host proteins to influence intracellular trafficking, nuclear import, and integration. Previously, we showed that capsid binding to cleavage and polyadenylation specificity factor 6 (CPSF6) in the cytoplasm is competitively inhibited by cyclophilin A (CypA) binding and regulates capsid trafficking, nuclear import, and infection. Here we determined that a capsid mutant with increased CypA binding affinity had significantly reduced nuclear entry and mislocalized integration. However, disruption of CypA binding to the mutant capsid restored nuclear entry, integration, and infection in a CPSF6-dependent manner. Furthermore, relocalization of CypA expression from the cell cytoplasm to the nucleus failed to restore mutant HIV-1 infection. Our results clarify that sequential binding of CypA and CPSF6 to HIV-1 capsid is required for optimal nuclear entry and integration targeting, informing antiretroviral therapies that contain lenacapavir.
Collapse
Affiliation(s)
- Zachary Ingram
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Christopher Kline
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Alexandra K. Hughson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA
| | - Parmit K. Singh
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Hannah L. Fischer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Gregory A. Sowd
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Simon C. Watkins
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Melissa Kane
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Alan N. Engelman
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA
| |
Collapse
|
36
|
Jogiraju V, Weber E, Hindman J, West S, Ling J, Rhee M, Girish S, Palaparthy R, Singh R. Pharmacokinetics of long-acting lenacapavir in participants with hepatic or renal impairment. Antimicrob Agents Chemother 2024; 68:e0134423. [PMID: 38456707 PMCID: PMC10994821 DOI: 10.1128/aac.01344-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
Lenacapavir is a novel, first-in-class, multistage inhibitor of HIV-1 capsid function approved for the treatment of multidrug-resistant HIV-1 infection in combination with other antiretrovirals for heavily treatment-experienced people with HIV. Two Phase 1, open-label, parallel-group, single-dose studies assessed the pharmacokinetics (PK) of lenacapavir in participants with moderate hepatic impairment [Child-Pugh-Turcotte (CPT) Class B: score 7-9] or severe renal impairment [15 ≤ creatinine clearance (CLcr) ≤29 mL/min] to inform lenacapavir dosing in HIV-1-infected individuals with organ impairment. In both studies, a single oral dose of 300 mg lenacapavir was administered to participants with normal (n = 10) or impaired (n = 10) hepatic/renal function who were matched for age (±10 years), sex, and body mass index (±20%). Lenacapavir exposures [area under the plasma concentration-time curve from time 0 to infinity (AUCinf) and maximum concentration (Cmax)] were approximately 1.47- and 2.61-fold higher, respectively, in participants with moderate hepatic impairment compared to those with normal hepatic function, whereas lenacapavir AUCinf and Cmax were approximately 1.84- and 2.62-fold higher, respectively, in participants with severe renal impairment compared to those with normal renal function. Increased lenacapavir exposures with moderate hepatic or severe renal impairment were not considered clinically meaningful. Lenacapavir was considered generally safe and well tolerated in both studies. These results support the use of approved lenacapavir dosing regimen in patients with mild (CPT Class A: score 5-6) or moderate hepatic impairment as well as in patients with mild (60 ≤ CLcr ≤ 89 mL/min), moderate (30 ≤ CLcr ≤ 59 mL/min), and severe renal impairment.
Collapse
Affiliation(s)
| | - Elijah Weber
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Steve West
- Gilead Sciences, Inc., Foster City, California, USA
| | - John Ling
- Gilead Sciences, Inc., Foster City, California, USA
| | - Martin Rhee
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | - Renu Singh
- Gilead Sciences, Inc., Foster City, California, USA
| |
Collapse
|
37
|
Akther T, McFadden WM, Zhang H, Kirby KA, Sarafianos SG, Wang Z. Design and Synthesis of New GS-6207 Subtypes for Targeting HIV-1 Capsid Protein. Int J Mol Sci 2024; 25:3734. [PMID: 38612545 PMCID: PMC11012105 DOI: 10.3390/ijms25073734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
HIV-1 capsid protein (CA) is the molecular target of the recently FDA-approved long acting injectable (LAI) drug lenacapavir (GS-6207). The quick emergence of CA mutations resistant to GS-6207 necessitates the design and synthesis of novel sub-chemotypes. We have conducted the structure-based design of two new sub-chemotypes combining the scaffold of GS-6207 and the N-terminal cap of PF74 analogs, the other important CA-targeting chemotype. The design was validated via induced-fit molecular docking. More importantly, we have worked out a general synthetic route to allow the modular synthesis of novel GS-6207 subtypes. Significantly, the desired stereochemistry of the skeleton C2 was confirmed via an X-ray crystal structure of the key synthetic intermediate 22a. Although the newly synthesized analogs did not show significant potency, our efforts herein will facilitate the future design and synthesis of novel subtypes with improved potency.
Collapse
Affiliation(s)
- Thamina Akther
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - William M. McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (W.M.M.); (H.Z.)
| | - Huanchun Zhang
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (W.M.M.); (H.Z.)
| | - Karen A. Kirby
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (W.M.M.); (H.Z.)
| | - Stefan G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (W.M.M.); (H.Z.)
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
38
|
Garza CM, Holcomb M, Santos-Martins D, Torbett BE, Forli S. IP6 and PF74 affect HIV-1 Capsid Stability through Modulation of Hexamer-Hexamer Tilt Angle Preference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584513. [PMID: 38559213 PMCID: PMC10979974 DOI: 10.1101/2024.03.11.584513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The HIV-1 capsid is an irregularly shaped complex of about 1200 protein chains containing the viral genome and several viral proteins. Together, these components are the key to unlocking passage into the nucleus, allowing for permanent integration of the viral genome into the host cell genome. Recent interest into the role of the capsid in viral replication has been driven by the approval of the first-in-class drug lenacapavir, which marks the first drug approved to target a non-enzymatic HIV-1 viral protein. In addition to lenacapavir, other small molecules such as the drug-like compound PF74, and the anionic sugar inositolhexakisphosphate (IP6), are known to impact capsid stability, and although this is widely accepted as a therapeutic effect, the mechanisms through which they do so remain unknown. In this study, we employed a systematic atomistic simulation approach to study the impact of molecules bound to hexamers at the central pore (IP6) and the FG-binding site (PF74) on capsid oligomer dynamics, compared to apo hexamers and pentamers. We found that neither small molecule had a sizeable impact on the free energy of binding of the interface between neighboring hexamers but that both had impacts on the free energy profiles of performing angular deformations to the pair of oligomers akin to the variations in curvature along the irregular surface of the capsid. The IP6 cofactor, on one hand, stabilizes a pair of neighboring hexamers in their flattest configurations, whereas without IP6, the hexamers prefer a high tilt angle between them. On the other hand, having PF74 bound introduces a strong preference for intermediate tilt angles. These results suggest that structural instability is a natural feature of the HIV-1 capsid which is modulated by molecules bound in either the central pore or the FG-binding site. Such modulators, despite sharing many of the same effects on non-bonded interactions at the various protein-protein interfaces, have decidedly different effects on the flexibility of the complex. This study provides a detailed model of the HIV-1 capsid and its interactions with small molecules, informing structure-based drug design, as well as experimental design and interpretation.
Collapse
|
39
|
Azzman N, Gill MSA, Hassan SS, Christ F, Debyser Z, Mohamed WAS, Ahemad N. Pharmacological advances in anti-retroviral therapy for human immunodeficiency virus-1 infection: A comprehensive review. Rev Med Virol 2024; 34:e2529. [PMID: 38520650 DOI: 10.1002/rmv.2529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/23/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
The discovery of anti-retroviral (ARV) drugs over the past 36 years has introduced various classes, including nucleoside/nucleotide reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, protease inhibitor, fusion, and integrase strand transfer inhibitors inhibitors. The introduction of combined highly active anti-retroviral therapies in 1996 was later proven to combat further ARV drug resistance along with enhancing human immunodeficiency virus (HIV) suppression. As though the development of ARV therapies was continuously expanding, the variation of action caused by ARV drugs, along with its current updates, was not comprehensively discussed, particularly for HIV-1 infection. Thus, a range of HIV-1 ARV medications is covered in this review, including new developments in ARV therapy based on the drug's mechanism of action, the challenges related to HIV-1, and the need for combination therapy. Optimistically, this article will consolidate the overall updates of HIV-1 ARV treatments and conclude the significance of HIV-1-related pharmacotherapy research to combat the global threat of HIV infection.
Collapse
Affiliation(s)
- Nursyuhada Azzman
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Pulau Pinang Kampus Bertam, Permatang Pauh, Pulau Pinang, Malaysia
| | - Muhammad Shoaib Ali Gill
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Wan Ahmad Syazani Mohamed
- Nutrition Unit, Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Level 3, Block C, Institute for Medical Research (IMR), National Institutes of Health (NIH) Complex, Ministry of Health Malaysia (MOH), Shah Alam, Selangor, Malaysia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
40
|
Faysal KMR, Walsh JC, Renner N, Márquez CL, Shah VB, Tuckwell AJ, Christie MP, Parker MW, Turville SG, Towers GJ, James LC, Jacques DA, Böcking T. Pharmacologic hyperstabilisation of the HIV-1 capsid lattice induces capsid failure. eLife 2024; 13:e83605. [PMID: 38347802 PMCID: PMC10863983 DOI: 10.7554/elife.83605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
The HIV-1 capsid has emerged as a tractable target for antiretroviral therapy. Lenacapavir, developed by Gilead Sciences, is the first capsid-targeting drug approved for medical use. Here, we investigate the effect of lenacapavir on HIV capsid stability and uncoating. We employ a single particle approach that simultaneously measures capsid content release and lattice persistence. We demonstrate that lenacapavir's potent antiviral activity is predominantly due to lethal hyperstabilisation of the capsid lattice and resultant loss of compartmentalisation. This study highlights that disrupting capsid metastability is a powerful strategy for the development of novel antivirals.
Collapse
Affiliation(s)
- KM Rifat Faysal
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - James C Walsh
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Nadine Renner
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Chantal L Márquez
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Vaibhav B Shah
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Andrew J Tuckwell
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Michelle P Christie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourneAustralia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourneAustralia
- Structural Biology Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
| | | | - Greg J Towers
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Leo C James
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - David A Jacques
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| |
Collapse
|
41
|
Weber E, Subramanian R, Rowe W, Graupe M, Ling J, Shen G, Begley R, Sager J, Wolckenhauer S, Rhee M, Palaparthy R, Singh R. Pharmacokinetics, Disposition, and Biotransformation of [ 14C]Lenacapavir, a Novel, First-in-Class, Selective Inhibitor of HIV-1 Capsid Function, in Healthy Participants Following a Single Intravenous Infusion. Clin Pharmacokinet 2024; 63:241-253. [PMID: 38236562 DOI: 10.1007/s40262-023-01328-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND AND OBJECTIVE Lenacapavir (LEN) is a novel, first-in-class, multistage, selective inhibitor of human immunodeficiency virus type 1 (HIV-1) capsid function recently approved for the treatment of HIV-1 infection in heavily treatment-experienced adults with multidrug-resistant HIV-1 infection. The purpose of this multicohort study was to evaluate the pharmacokinetics, metabolism, excretion, safety, and tolerability of LEN following a single intravenous (IV) infusion of 10 mg LEN or 20 mg [14C]LEN in healthy participants. METHODS Twenty-one healthy adult participants were enrolled into the study and received either a single IV dose of 10 mg LEN (n = 8 active, n = 3 placebo; cohort 1) or a single IV dose of 20 mg [14C]LEN containing 200 µCi (n = 10; cohort 2). Blood, urine, and feces samples (when applicable) were collected after dosing, and radioactivity (cohort 2) was assessed using liquid scintillation counting in both plasma and excreta. LEN in plasma was quantified by liquid chromatography (LC) tandem mass spectroscopy (MS/MS) method bioanalysis. Metabolite profiling in plasma and excreta were performed using LC-fraction collect (FC)-high-resolution MS and LC-FC-accelerator mass spectrometry in plasma. RESULTS Between the 10 mg and 20 mg doses of LEN, the observed plasma exposure of LEN doubled, while the elimination half-life was similar. Following administration of 20 mg [14C]LEN (200 µCi), the mean cumulative recovery of [14C] radioactivity was 75.9% and 0.24% from feces and urine, respectively. The mean whole [14C] blood-to-plasma concentration ratio was 0.5-0.7, which showed a low distribution of LEN to red blood cells. Intact LEN was the predominant circulating species in plasma (representing 68.8% of circulating radioactivity), and no single metabolite contributed to > 10% of total radioactivity exposure through 1176 h postdose. Similarly, intact LEN was the most abundant component (32.9% of administered dose; 75.9% of recovered dose) measured in feces, with metabolites accounting for trace amounts. These results suggest metabolism of LEN is not a primary pathway of elimination. Of the metabolites observed in the feces, the three most abundant metabolites were direct phase 2 conjugates (glucuronide, hexose, and pentose conjugates), with additional metabolites formed to a lesser extent via other pathways. The administered LEN IV doses were generally safe and well-tolerated across participants in this study. CONCLUSIONS The results of this mass balance study indicated that LEN was majorly eliminated as intact LEN via the feces. The renal pathway played a minor role in LEN elimination (0.24%). In addition, no major circulating metabolites in plasma or feces were found, indicating minimal metabolism of LEN.
Collapse
Affiliation(s)
- Elijah Weber
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA, 94404, USA
| | - Raju Subramanian
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA, 94404, USA
| | - William Rowe
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA, 94404, USA
| | - Michael Graupe
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA, 94404, USA
| | - John Ling
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA, 94404, USA
| | - Gong Shen
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA, 94404, USA
| | | | | | | | - Martin Rhee
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA, 94404, USA
| | - Ramesh Palaparthy
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA, 94404, USA
| | - Renu Singh
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA, 94404, USA.
| |
Collapse
|
42
|
Marquis KA, Everett J, Cantu A, McFarland A, Sherrill-Mix S, Krystal M, Parcella K, Gillis E, Fridell RA, Bushman FD. The HIV-1 Capsid-Targeted Inhibitor GSK878 Alters Selection of Target Sites for HIV DNA Integration. AIDS Res Hum Retroviruses 2024; 40:114-126. [PMID: 37125442 PMCID: PMC10877385 DOI: 10.1089/aid.2022.0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Decades of effort have yielded highly effective antiviral agents to treat HIV, but viral strains have evolved resistance to each inhibitor type, focusing attention on the importance of developing new inhibitor classes. A particularly promising new target is the HIV capsid, the function of which can be disrupted by highly potent inhibitors that persist long term in treated subjects. Studies with such inhibitors have contributed to an evolving picture of the role of capsid itself-the inhibitors, like certain capsid protein (CA) amino acid substitutions, can disrupt intracellular trafficking to alter the selection of target sites for HIV DNA integration in cellular chromosomes. In this study, we compare effects on HIV integration targeting for two potent inhibitors-a new molecule targeting CA, GSK878, and the previously studied lenacapavir (LEN, formerly known as GS-6207). We find that both inhibitors reduce integration in active transcription units and near epigenetic marks associated with active transcription. A careful study of integration near repeated sequences indicated frequencies were also altered for integration within multiple repeat classes. One notable finding was increased integration in centromeric satellite repeats in the presence of LEN and GSK878, which is of interest because proviruses integrated in centromeric repeats have been associated with transcriptional repression, inducibility, and latency. These data add to the picture that CA protein remains associated with preintegration complexes through the point in infection during which target sites for integration are selected, and specify new aspects of the consequences of disrupting this mechanism.
Collapse
Affiliation(s)
- Kaitlin A. Marquis
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adrian Cantu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexander McFarland
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott Sherrill-Mix
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
43
|
Sumner C, Ono A. The "basics" of HIV-1 assembly. PLoS Pathog 2024; 20:e1011937. [PMID: 38300900 PMCID: PMC10833515 DOI: 10.1371/journal.ppat.1011937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Affiliation(s)
- Christopher Sumner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
44
|
Dinh T, Tber Z, Rey JS, Mengshetti S, Annamalai AS, Haney R, Briganti L, Amblard F, Fuchs JR, Cherepanov P, Kim K, Schinazi RF, Perilla JR, Kim B, Kvaratskhelia M. The structural and mechanistic bases for the viral resistance to allosteric HIV-1 integrase inhibitor pirmitegravir. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577387. [PMID: 38328097 PMCID: PMC10849636 DOI: 10.1101/2024.01.26.577387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are investigational antiretroviral agents which potently impair virion maturation by inducing hyper-multimerization of IN and inhibiting its interaction with viral genomic RNA. The pyrrolopyridine-based ALLINI pirmitegravir (PIR) has recently advanced into Phase 2a clinical trials. Previous cell culture based viral breakthrough assays identified the HIV-1(Y99H/A128T IN) variant that confers substantial resistance to this inhibitor. Here, we have elucidated the unexpected mechanism of viral resistance to PIR. While both Tyr99 and Ala128 are positioned within the inhibitor binding V-shaped cavity at the IN catalytic core domain (CCD) dimer interface, the Y99H/A128T IN mutations did not substantially affect direct binding of PIR to the CCD dimer or functional oligomerization of full-length IN. Instead, the drug-resistant mutations introduced a steric hindrance at the inhibitor mediated interface between CCD and C-terminal domain (CTD) and compromised CTD binding to the CCDY99H/A128T + PIR complex. Consequently, full-length INY99H/A128T was substantially less susceptible to the PIR induced hyper-multimerization than the WT protein, and HIV-1(Y99H/A128T IN) conferred >150-fold resistance to the inhibitor compared to the WT virus. By rationally modifying PIR we have developed its analog EKC110, which readily induced hyper-multimerization of INY99H/A128T in vitro and was ~14-fold more potent against HIV-1(Y99H/A128T IN) than the parent inhibitor. These findings suggest a path for developing improved PIR chemotypes with a higher barrier to resistance for their potential clinical use.
Collapse
Affiliation(s)
- Tung Dinh
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zahira Tber
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Juan S Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Seema Mengshetti
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Arun S Annamalai
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Reed Haney
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lorenzo Briganti
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - James R Fuchs
- College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
| | - Peter Cherepanov
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Raymond F Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Baek Kim
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
45
|
Hudait A, Voth GA. HIV-1 capsid shape, orientation, and entropic elasticity regulate translocation into the nuclear pore complex. Proc Natl Acad Sci U S A 2024; 121:e2313737121. [PMID: 38241438 PMCID: PMC10823262 DOI: 10.1073/pnas.2313737121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/06/2023] [Indexed: 01/21/2024] Open
Abstract
Nuclear import and uncoating of the viral capsid are critical steps in the HIV-1 life cycle that serve to transport and release genomic material into the nucleus. Viral core import involves translocating the HIV-1 capsid at the nuclear pore complex (NPC). Notably, the central channel of the NPC appears to often accommodate and allow passage of intact HIV-1 capsid, though mechanistic details of the process remain to be fully understood. Here, we investigate the molecular interactions that operate in concert between the HIV-1 capsid and the NPC that regulate capsid translocation through the central channel. To this end, we develop a "bottom-up" coarse-grained (CG) model of the human NPC from recently released cryo-electron tomography structure and then construct composite membrane-embedded CG NPC models. We find that successful translocation from the cytoplasmic side to the NPC central channel is contingent on the compatibility of the capsid morphology and channel dimension and the proper orientation of the capsid approach to the channel from the cytoplasmic side. The translocation dynamics is driven by maximizing the contacts between phenylalanine-glycine nucleoporins at the central channel and the capsid. For the docked intact capsids, structural analysis reveals correlated striated patterns of lattice disorder likely related to the intrinsic capsid elasticity. Uncondensed genomic material inside the docked capsid augments the overall lattice disorder of the capsid. Our results suggest that the intrinsic "elasticity" can also aid the capsid to adapt to the stress and remain structurally intact during translocation.
Collapse
Affiliation(s)
- Arpa Hudait
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL60637
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL60637
| |
Collapse
|
46
|
Dwivedi R, Prakash P, Kumbhar BV, Balasubramaniam M, Dash C. HIV-1 capsid and viral DNA integration. mBio 2024; 15:e0021222. [PMID: 38085100 PMCID: PMC10790781 DOI: 10.1128/mbio.00212-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE HIV-1 capsid protein (CA)-independently or by recruiting host factors-mediates several key steps of virus replication in the cytoplasm and nucleus of the target cell. Research in the recent years have established that CA is multifunctional and genetically fragile of all the HIV-1 proteins. Accordingly, CA has emerged as a validated and high priority therapeutic target, and the first CA-targeting antiviral drug was recently approved for treating multi-drug resistant HIV-1 infection. However, development of next generation CA inhibitors depends on a better understanding of CA's known roles, as well as probing of CA's novel roles, in HIV-1 replication. In this timely review, we present an updated overview of the current state of our understanding of CA's multifunctional role in HIV-1 replication-with a special emphasis on CA's newfound post-nuclear roles, highlight the pressing knowledge gaps, and discuss directions for future research.
Collapse
Affiliation(s)
- Richa Dwivedi
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Prem Prakash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Bajarang Vasant Kumbhar
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed to be) University, Mumbai, Maharashtra, India
| | - Muthukumar Balasubramaniam
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Chandravanu Dash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
47
|
Asarnow D, Becker VA, Bobe D, Dubbledam C, Johnston JD, Kopylov M, Lavoie NR, Li Q, Mattingly JM, Mendez JH, Paraan M, Turner J, Upadhye V, Walsh RM, Gupta M, Eng ET. Recent advances in infectious disease research using cryo-electron tomography. Front Mol Biosci 2024; 10:1296941. [PMID: 38288336 PMCID: PMC10822977 DOI: 10.3389/fmolb.2023.1296941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/07/2023] [Indexed: 01/31/2024] Open
Abstract
With the increasing spread of infectious diseases worldwide, there is an urgent need for novel strategies to combat them. Cryogenic sample electron microscopy (cryo-EM) techniques, particularly electron tomography (cryo-ET), have revolutionized the field of infectious disease research by enabling multiscale observation of biological structures in a near-native state. This review highlights the recent advances in infectious disease research using cryo-ET and discusses the potential of this structural biology technique to help discover mechanisms of infection in native environments and guiding in the right direction for future drug discovery.
Collapse
Affiliation(s)
- Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Vada A. Becker
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States
| | - Daija Bobe
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Charlie Dubbledam
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Jake D. Johnston
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, United States
| | - Mykhailo Kopylov
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Nathalie R. Lavoie
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA, United States
| | - Qiuye Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jacob M. Mattingly
- Department of Chemistry, College of Arts and Sciences, Emory University, Atlanta, GA, United States
| | - Joshua H. Mendez
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Mohammadreza Paraan
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Jack Turner
- European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Viraj Upadhye
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Richard M. Walsh
- Harvard Cryo-Electron Microscopy Center for Structural Biology and Harvard Medical School, Boston, MA, United States
| | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States
| | - Edward T. Eng
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| |
Collapse
|
48
|
Jablunovsky A, Narayanan A, Jose J. Identification of a critical role for ZIKV capsid α3 in virus assembly and its genetic interaction with M protein. PLoS Negl Trop Dis 2024; 18:e0011873. [PMID: 38166143 PMCID: PMC10786401 DOI: 10.1371/journal.pntd.0011873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/12/2024] [Accepted: 12/19/2023] [Indexed: 01/04/2024] Open
Abstract
Flaviviruses such as Zika and dengue viruses are persistent health concerns in endemic regions worldwide. Efforts to combat the spread of flaviviruses have been challenging, as no antivirals or optimal vaccines are available. Prevention and treatment of flavivirus-induced diseases require a comprehensive understanding of their life cycle. However, several aspects of flavivirus biogenesis, including genome packaging and virion assembly, are not well characterized. In this study, we focused on flavivirus capsid protein (C) using Zika virus (ZIKV) as a model to investigate the role of the externally oriented α3 helix (C α3) without a known or predicted function. Alanine scanning mutagenesis of surface-exposed amino acids on C α3 revealed a critical CN67 residue essential for ZIKV virion production. The CN67A mutation did not affect dimerization or RNA binding of purified C protein in vitro. The virus assembly is severely affected in cells transfected with an infectious cDNA clone of ZIKV with CN67A mutation, resulting in a highly attenuated phenotype. We isolated a revertant virus with a partially restored phenotype by continuous passage of the CN67A mutant virus in Vero E6 cells. Sequence analysis of the revertant revealed a second site mutation in the viral membrane (M) protein MF37L, indicating a genetic interaction between the C and M proteins of ZIKV. Introducing the MF37L mutation on the mutant ZIKV CN67A generated a double-mutant virus phenotypically consistent with the isolated genetic revertant. Similar results were obtained with analogous mutations on C and M proteins of dengue virus, suggesting the critical nature of C α3 and possible C and M residues contributing to virus assembly in other Aedes-transmitted flaviviruses. This study provides the first experimental evidence of a genetic interaction between the C protein and the viral envelope protein M, providing a mechanistic understanding of the molecular interactions involved in the assembly and budding of Aedes-transmitted flaviviruses.
Collapse
Affiliation(s)
- Anastazia Jablunovsky
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Anoop Narayanan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
49
|
Menéndez-Arias L, Gago F. Antiviral Agents: Structural Basis of Action and Rational Design. Subcell Biochem 2024; 105:745-784. [PMID: 39738962 DOI: 10.1007/978-3-031-65187-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
During the last forty years, significant progress has been made in the development of novel antiviral drugs, mainly crystallizing in the establishment of potent antiretroviral therapies and the approval of drugs eradicating hepatitis C virus infection. Although major targets of antiviral intervention involve intracellular processes required for the synthesis of viral proteins and nucleic acids, a number of inhibitors blocking virus assembly, budding, maturation, entry, or uncoating act on virions or viral capsids. In this review, we focus on the drug discovery process while presenting the currently used methodologies to identify novel antiviral drugs by means of computer-based approaches. We provide examples illustrating structure-based antiviral drug development, specifically neuraminidase inhibitors against influenza virus (e.g., oseltamivir and zanamivir) and human immunodeficiency virus type 1 protease inhibitors (i.e., the development of darunavir from early peptidomimetic compounds such as saquinavir). A number of drugs acting against hepatitis B virus and human immunodeficiency virus and their mechanism of action are presented to show how viral capsids can be exploited as targets of antiviral therapy. The recent approval of the antiretroviral drug lenacapavir illustrates the successful application of this knowledge.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain.
| | - Federico Gago
- Department of Biomedical Sciences, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
50
|
Hitchcock AM, Kufel WD, Dwyer KAM, Sidman EF. Lenacapavir: A novel injectable HIV-1 capsid inhibitor. Int J Antimicrob Agents 2024; 63:107009. [PMID: 37844807 DOI: 10.1016/j.ijantimicag.2023.107009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/06/2023] [Accepted: 10/01/2023] [Indexed: 10/18/2023]
Abstract
Patients living with multidrug-resistant (MDR) HIV have limited antiretroviral regimen options that provide durable viral suppression. Lenacapavir is a novel first-in-class inhibitor of HIV-1 capsid function with efficacy at various stages of the viral life cycle, and it is indicated for the treatment of MDR HIV-1 infection in combination with optimized background antiretroviral therapy. The favourable pharmacokinetic profile supports an every sixth month dosing interval of subcutaneous lenacapavir after an initial oral loading dose, which may advocate for continued adherence to antiretroviral therapy (ART) through the reduction of daily pill burden. The role of lenacapavir in promoting virologic suppression has been studied in patients with MDR HIV-1 on failing ART at baseline. Lenacapavir was well tolerated in clinical trials with the most common adverse effects including mild to moderate injection site reactions, gastrointestinal symptoms, and headache. Substitutions on the capsid molecule may confer resistance to lenacapavir by changing the binding potential. Cross-resistance to other antiretrovirals has not been observed. The unique mechanism of action, pharmacokinetics, and safety and efficacy of lenacapavir support its use for the management of MDR HIV-1 infection. Current studies are ongoing to evaluate the potential use of subcutaneous lenacapavir for pre-exposure prophylaxis (PrEP). Future studies will confirm the long-term clinical safety, efficacy, and resistance data for lenacapavir.
Collapse
Affiliation(s)
| | - Wesley D Kufel
- Upstate University Hospital, Syracuse, New York; Binghamton University School of Pharmacy and Pharmaceutical Sciences, Johnson City, New York
| | - Keri A Mastro Dwyer
- Binghamton University School of Pharmacy and Pharmaceutical Sciences, Johnson City, New York
| | | |
Collapse
|