1
|
Zhou Q, Lok SM. Visualizing the virus world inside the cell by cryo-electron tomography. J Virol 2024; 98:e0108523. [PMID: 39494908 DOI: 10.1128/jvi.01085-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Structural studies on purified virus have revealed intricate architectures, but there is little structural information on how viruses interact with host cells in situ. Cryo-focused ion beam (FIB) milling and cryo-electron tomography (cryo-ET) have emerged as revolutionary tools in structural biology to visualize the dynamic conformational of viral particles and their interactions with host factors within infected cells. Here, we review the state-of-the-art cryo-ET technique for in situ viral structure studies and highlight exemplary studies that showcase the remarkable capabilities of cryo-ET in capturing the dynamic virus-host interaction, advancing our understanding of viral infection and pathogenesis.
Collapse
Affiliation(s)
- Qunfei Zhou
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Shee-Mei Lok
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Biological Sciences, Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Huang SW, Briganti L, Annamalai AS, Greenwood J, Shkriabai N, Haney R, Armstrong ML, Wempe MF, Singh SP, Francis AC, Engelman AN, Kvaratskhelia M. The primary mechanism for highly potent inhibition of HIV-1 maturation by lenacapavir. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627250. [PMID: 39677622 PMCID: PMC11643057 DOI: 10.1101/2024.12.06.627250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Lenacapavir (LEN) is a highly potent, long-acting antiretroviral medication for treating people infected with muti-drug-resistant HIV-1 phenotypes. The inhibitor targets multifaceted functions of the viral capsid protein (CA) during HIV-1 replication. Previous studies have mainly focused on elucidating LEN's mode of action during viral ingress. Additionally, the inhibitor has been shown to interfere with mature capsid assembly during viral egress. However, the mechanism for how LEN affects HIV-1 maturation is unknown. Here, we show that pharmacologically relevant LEN concentrations do not impair proteolytic processing of Gag in virions. Instead, we have elucidated the primary mechanism for highly potent inhibition of HIV-1 maturation by sub-stoichiometric LEN:CA ratios. The inhibitor exerts opposing effects on formation of CA pentamers versus hexamers, the key capsomere intermediates in mature capsid assembly. LEN impairs formation of pentamers, whereas it induces assembly of hexameric lattices by imposing an opened CA conformation and stabilizing a dimeric form of CA. Consequently, LEN treatment results in morphologically atypical virus particles containing malformed, hyper-stable CA assemblies, which fail to infect target cells. Moreover, we have uncovered an inverse correlation between inhibitor potency and CA levels in cell culture assays, which accounts for LEN's ability to potently (with pM EC 50 values) inhibit HIV-1 maturation at clinically relevant drug concentrations. Author Summary Lenacapavir (LEN) is the first-in-class HIV-1 capsid targeting antiretroviral that exhibits multimodal modality to inhibit both early and late steps of viral replication. Our studies here have elucidated previously undescribed structural and mechanistic bases for a highly potent antiviral activity of LEN during viral egress. These findings will inform clinical applications of LEN as a potent HIV-1 maturation inhibitor and aid the development of second-generation inhibitors targeting assembly of the mature viral capsid.
Collapse
|
3
|
Briganti L, Annamalai AS, Bester SM, Wei G, Andino-Moncada JR, Singh SP, Kleinpeter AB, Tripathi M, Nguyen B, Radhakrishnan R, Singh PK, Greenwood J, Schope LI, Haney R, Huang SW, Freed EO, Engelman AN, Francis AC, Kvaratskhelia M. Structural and Mechanistic Bases for Resistance of the M66I Capsid Variant to Lenacapavir. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625199. [PMID: 39651162 PMCID: PMC11623492 DOI: 10.1101/2024.11.25.625199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Lenacapavir (LEN) is the first in class viral capsid protein (CA) targeting antiretroviral for treating multi-drug-resistant HIV-1 infection. Clinical trials and cell culture experiments have identified resistance associated mutations (RAMs) in the vicinity of the hydrophobic CA pocket targeted by LEN. The M66I substitution conferred by far the highest level of resistance to the inhibitor compared to other RAMs. Here we investigated structural and mechanistic bases for how the M66I change affects LEN binding to CA and viral replication. The high-resolution X-ray structure of the CA(M66I) hexamer revealed that the β-branched side chain of Ile66 induces steric hindrance specifically to LEN thereby markedly reducing the inhibitor binding affinity. By contrast, the M66I substitution did not affect binding of Phe-Gly (FG)-motif-containing cellular cofactors CPSF6, NUP153, or SEC24C, which engage the same hydrophobic pocket of CA. In cell culture the M66I variant did not acquire compensatory mutations or replicate in the presence of LEN. Analysis of viral replication intermediates revealed that HIV-1 (M66I CA) predominantly formed correctly matured viral cores, which were more stable than their wildtype counterparts. The mutant cores stably bound to the nuclear envelope but failed to penetrate inside the nucleus. Furthermore, the M66I substitution markedly altered HIV-1 integration targeting. Taken together, our findings elucidate mechanistic insights for how the M66I change confers remarkable resistance to LEN and affects HIV-1 replication. Moreover, our structural findings provide powerful means for future medicinal chemistry efforts to rationally develop second generation inhibitors with a higher barrier to resistance. IMPORTANCE Lenacapavir (LEN) is a highly potent and long-acting antiretroviral that works by a unique mechanism of targeting the viral capsid protein. The inhibitor is used in combination with other antiretrovirals to treat multi-drug-resistant HIV-1 infection in heavily treatment-experienced adults. Furthermore, LEN is in clinical trials for preexposure prophylaxis (PrEP) with interim results indicating 100 % efficacy to prevent HIV-1 infections. However, one notable shortcoming is a relatively low barrier of viral resistance to LEN. Clinical trials and cell culture experiments identified emergent resistance mutations near the inhibitor binding site on capsid. The M66I variant was the most prevalent capsid substitution identified in patients receiving LEN to treat muti-drug resistant HIV-1 infections. The studies described here elucidate the underlying mechanism by which the M66I substitution confers a marked resistance to the inhibitor. Furthermore, our structural findings will aid future efforts to develop the next generation of capsid inhibitors with enhanced barriers to resistance.
Collapse
|
4
|
Abajorga M, Yurkovetskiy L, Luban J. piRNA Defense Against Endogenous Retroviruses. Viruses 2024; 16:1756. [PMID: 39599869 PMCID: PMC11599104 DOI: 10.3390/v16111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Infection by retroviruses and the mobilization of transposable elements cause DNA damage that can be catastrophic for a cell. If the cell survives, the mutations generated by retrotransposition may confer a selective advantage, although, more commonly, the effect of new integrants is neutral or detrimental. If retrotransposition occurs in gametes or in the early embryo, it introduces genetic modifications that can be transmitted to the progeny and may become fixed in the germline of that species. PIWI-interacting RNAs (piRNAs) are single-stranded, 21-35 nucleotide RNAs generated by the PIWI clade of Argonaute proteins that maintain the integrity of the animal germline by silencing transposons. The sequence specific manner by which piRNAs and germline-encoded PIWI proteins repress transposons is reminiscent of CRISPR, which retains memory for invading pathogen sequences. piRNAs are processed preferentially from the unspliced transcripts of piRNA clusters. Via complementary base pairing, mature antisense piRNAs guide the PIWI clade of Argonaute proteins to transposon RNAs for degradation. Moreover, these piRNA-loaded PIWI proteins are imported into the nucleus to modulate the co-transcriptional repression of transposons by initiating histone and DNA methylation. How retroviruses that invade germ cells are first recognized as foreign by the piRNA machinery, as well as how endogenous piRNA clusters targeting the sequences of invasive genetic elements are acquired, is not known. Currently, koalas (Phascolarctos cinereus) are going through an epidemic due to the horizontal and vertical transmission of the KoRV-A gammaretrovirus. This provides an unprecedented opportunity to study how an exogenous retrovirus becomes fixed in the genome of its host, and how piRNAs targeting this retrovirus are generated in germ cells of the infected animal. Initial experiments have shown that the unspliced transcript from KoRV-A proviruses in koala testes, but not the spliced KoRV-A transcript, is directly processed into sense-strand piRNAs. The cleavage of unspliced sense-strand transcripts is thought to serve as an initial innate defense until antisense piRNAs are generated and an adaptive KoRV-A-specific genome immune response is established. Further research is expected to determine how the piRNA machinery recognizes a new foreign genetic invader, how it distinguishes between spliced and unspliced transcripts, and how a mature genome immune response is established, with both sense and antisense piRNAs and the methylation of histones and DNA at the provirus promoter.
Collapse
Affiliation(s)
- Milky Abajorga
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Leonid Yurkovetskiy
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| |
Collapse
|
5
|
Boulay A, Quevarec E, Malet I, Nicastro G, Chamontin C, Perrin S, Henriquet C, Pugnière M, Courgnaud V, Blaise M, Marcelin AG, Taylor IA, Chaloin L, Arhel NJ. A new class of capsid-targeting inhibitors that specifically block HIV-1 nuclear import. EMBO Mol Med 2024; 16:2918-2945. [PMID: 39358603 PMCID: PMC11555092 DOI: 10.1038/s44321-024-00143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
HIV-1 capsids cross nuclear pore complexes (NPCs) by engaging with the nuclear import machinery. To identify compounds that inhibit HIV-1 nuclear import, we screened drugs in silico on a three-dimensional model of a CA hexamer bound by Transportin-1 (TRN-1). Among hits, compound H27 inhibited HIV-1 with a low micromolar IC50. Unlike other CA-targeting compounds, H27 did not alter CA assembly or disassembly, inhibited nuclear import specifically, and retained antiviral activity against PF74- and Lenacapavir-resistant mutants. The differential sensitivity of divergent primate lentiviral capsids, capsid stability and H27 escape mutants, together with structural analyses, suggest that H27 makes multiple low affinity contacts with assembled capsid. Interaction experiments indicate that H27 may act by preventing CA from engaging with components of the NPC machinery such as TRN-1. H27 exhibited good metabolic stability in vivo and was efficient against different subtypes and circulating recombinant forms from treatment-naïve patients as well as strains resistant to the four main classes of antiretroviral drugs. This work identifies compounds that demonstrate a novel mechanism of action by specifically blocking HIV-1 nuclear import.
Collapse
Affiliation(s)
- Aude Boulay
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Emmanuel Quevarec
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Isabelle Malet
- Department of Virology, INSERM, Sorbonne University, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Giuseppe Nicastro
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Célia Chamontin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Suzon Perrin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Corinne Henriquet
- Institut de Recherche en Cancérologie de Montpellier, INSERM, University of Montpellier, Institut Régional du Cancer, Montpellier, France
| | - Martine Pugnière
- Institut de Recherche en Cancérologie de Montpellier, INSERM, University of Montpellier, Institut Régional du Cancer, Montpellier, France
| | - Valérie Courgnaud
- RNA viruses and host factors, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Mickaël Blaise
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Anne-Geneviève Marcelin
- Department of Virology, INSERM, Sorbonne University, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Laurent Chaloin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Nathalie J Arhel
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France.
| |
Collapse
|
6
|
Scott TM, Arnold LM, Powers JA, McCann DA, Rowe AB, Christensen DE, Pereira MJ, Zhou W, Torrez RM, Iwasa JH, Kranzusch PJ, Sundquist WI, Johnson JS. Cell-free assays reveal that the HIV-1 capsid protects reverse transcripts from cGAS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590513. [PMID: 38712059 PMCID: PMC11071359 DOI: 10.1101/2024.04.22.590513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Retroviruses can be detected by the innate immune sensor cyclic GMP-AMP synthase (cGAS), which recognizes reverse-transcribed DNA and activates an antiviral response. However, the extent to which HIV-1 shields its genome from cGAS recognition remains unclear. To study this process in mechanistic detail, we reconstituted reverse transcription, genome release, and innate immune sensing of HIV-1 in a cell-free system. We found that wild-type HIV-1 capsids protect viral genomes from cGAS even after completing reverse transcription. Viral DNA could be "deprotected" by thermal stress, capsid mutations, or reduced concentrations of inositol hexakisphosphate (IP6) that destabilize the capsid. Strikingly, the capsid inhibitor lenacapavir also disrupted viral cores and dramatically potentiated cGAS activity, both in vitro and in cellular infections. Our results provide biochemical evidence that the HIV-1 capsid lattice conceals the genome from cGAS and that chemical or physical disruption of the viral core can expose HIV-1 DNA and activate innate immune signaling.
Collapse
Affiliation(s)
- Tiana M. Scott
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine; Salt Lake City, UT 84112, USA
| | - Lydia M. Arnold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine; Salt Lake City, UT 84112, USA
| | - Jordan A. Powers
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine; Salt Lake City, UT 84112, USA
| | - Delaney A. McCann
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine; Salt Lake City, UT 84112, USA
| | - Ana B. Rowe
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine; Salt Lake City, UT 84112, USA
| | - Devin E. Christensen
- Department of Biochemistry, University of Utah School of Medicine; Salt Lake City, UT 84112, USA
| | - Miguel J. Pereira
- Department of Biochemistry, University of Utah School of Medicine; Salt Lake City, UT 84112, USA
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology; Shenzhen, Guangdong 518055, China
| | - Rachel M. Torrez
- Department of Biochemistry, University of Utah School of Medicine; Salt Lake City, UT 84112, USA
| | - Janet H. Iwasa
- Department of Biochemistry, University of Utah School of Medicine; Salt Lake City, UT 84112, USA
| | - Philip J. Kranzusch
- Department of Microbiology, Harvard Medical School; Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute; Boston, MA 02115, USA
| | - Wesley I. Sundquist
- Department of Biochemistry, University of Utah School of Medicine; Salt Lake City, UT 84112, USA
| | - Jarrod S. Johnson
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine; Salt Lake City, UT 84112, USA
| |
Collapse
|
7
|
Jennings J, Bracey H, Hong J, Nguyen DT, Dasgupta R, Rivera AV, Sluis-Cremer N, Shi J, Aiken C. The HIV-1 capsid serves as a nanoscale reaction vessel for reverse transcription. PLoS Pathog 2024; 20:e1011810. [PMID: 39226318 PMCID: PMC11398657 DOI: 10.1371/journal.ppat.1011810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 09/13/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024] Open
Abstract
The viral capsid performs critical functions during HIV-1 infection and is a validated target for antiviral therapy. Previous studies have established that the proper structure and stability of the capsid are required for efficient HIV-1 reverse transcription in target cells. Moreover, it has recently been demonstrated that permeabilized virions and purified HIV-1 cores undergo efficient reverse transcription in vitro when the capsid is stabilized by addition of the host cell metabolite inositol hexakisphosphate (IP6). However, the molecular mechanism by which the capsid promotes reverse transcription is undefined. Here we show that wild type HIV-1 virions can undergo efficient reverse transcription in vitro in the absence of a membrane-permeabilizing agent. This activity, originally termed "natural endogenous reverse transcription" (NERT), depends on expression of the viral envelope glycoprotein during virus assembly and its incorporation into virions. Truncation of the gp41 cytoplasmic tail markedly reduced NERT activity, suggesting that gp41 licenses the entry of nucleotides into virions. By contrast to reverse transcription in permeabilized virions, NERT required neither the addition of IP6 nor a mature capsid, indicating that an intact viral membrane can substitute for the function of the viral capsid during reverse transcription in vitro. Collectively, these results demonstrate that the viral capsid functions as a nanoscale container for reverse transcription during HIV-1 infection.
Collapse
Affiliation(s)
- Jordan Jennings
- Department of Pathology, Microbiology, and Immunology and Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Harrison Bracey
- Department of Pathology, Microbiology, and Immunology and Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jun Hong
- Department of Pathology, Microbiology, and Immunology and Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Danny T Nguyen
- Department of Pathology, Microbiology, and Immunology and Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Rishav Dasgupta
- Department of Pathology, Microbiology, and Immunology and Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Alondra Vázquez Rivera
- Division of Infectious Disease, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Nicolas Sluis-Cremer
- Division of Infectious Disease, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Jiong Shi
- Department of Pathology, Microbiology, and Immunology and Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Christopher Aiken
- Department of Pathology, Microbiology, and Immunology and Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
8
|
Biswas B, Lai KK, Bracey H, Datta SAK, Harvin D, Sowd GA, Aiken C, Rein A. Essential functions of inositol hexakisphosphate (IP6) in murine leukemia virus replication. mBio 2024; 15:e0115824. [PMID: 38912776 PMCID: PMC11253606 DOI: 10.1128/mbio.01158-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024] Open
Abstract
We have investigated the function of inositol hexakisphosphate (IP6) and inositol pentakisphosphate (IP5) in the replication of murine leukemia virus (MLV). While IP6 is known to be critical for the life cycle of HIV-1, its significance in MLV remains unexplored. We find that IP6 is indeed important for MLV replication. It significantly enhances endogenous reverse transcription (ERT) in MLV. Additionally, a pelleting-based assay reveals that IP6 can stabilize MLV cores, thereby facilitating ERT. We find that IP5 and IP6 are packaged in MLV particles. However, unlike HIV-1, MLV depends upon the presence of IP6 and IP5 in target cells for successful infection. This IP6/5 requirement for infection is reflected in impaired reverse transcription observed in IP6/5-deficient cell lines. In summary, our findings demonstrate the importance of capsid stabilization by IP6/5 in the replication of diverse retroviruses; we suggest possible reasons for the differences from HIV-1 that we observed in MLV.IMPORTANCEInositol hexakisphosphate (IP6) is crucial for the assembly and replication of HIV-1. IP6 is packaged in HIV-1 particles and stabilizes the viral core enabling it to synthesize viral DNA early in viral infection. While its importance for HIV-1 is well established, its significance for other retroviruses is unknown. Here we report the role of IP6 in the gammaretrovirus, murine leukemia virus (MLV). We found that like HIV-1, MLV packages IP6, and as in HIV-1, IP6 stabilizes the MLV core thus promoting reverse transcription. Interestingly, we discovered a key difference in the role of IP6 in MLV versus HIV-1: while HIV-1 is not dependent upon IP6 levels in target cells, MLV replication is significantly reduced in IP6-deficient cell lines. We suggest that this difference in IP6 requirements reflects key differences between HIV-1 and MLV replication.
Collapse
Affiliation(s)
- Banhi Biswas
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, Maryland, USA
| | - Kin Kui Lai
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, Maryland, USA
| | - Harrison Bracey
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Siddhartha A. K. Datta
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, Maryland, USA
| | - Demetria Harvin
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, Maryland, USA
| | - Gregory A. Sowd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alan Rein
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, Maryland, USA
| |
Collapse
|
9
|
Arribas L, Menéndez-Arias L, Betancor G. May I Help You with Your Coat? HIV-1 Capsid Uncoating and Reverse Transcription. Int J Mol Sci 2024; 25:7167. [PMID: 39000271 PMCID: PMC11241228 DOI: 10.3390/ijms25137167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) capsid is a protein core formed by multiple copies of the viral capsid (CA) protein. Inside the capsid, HIV-1 harbours all the viral components required for replication, including the genomic RNA and viral enzymes reverse transcriptase (RT) and integrase (IN). Upon infection, the RT transforms the genomic RNA into a double-stranded DNA molecule that is subsequently integrated into the host chromosome by IN. For this to happen, the viral capsid must open and release the viral DNA, in a process known as uncoating. Capsid plays a key role during the initial stages of HIV-1 replication; therefore, its stability is intimately related to infection efficiency, and untimely uncoating results in reverse transcription defects. How and where uncoating takes place and its relationship with reverse transcription is not fully understood, but the recent development of novel biochemical and cellular approaches has provided unprecedented detail on these processes. In this review, we present the latest findings on the intricate link between capsid stability, reverse transcription and uncoating, the different models proposed over the years for capsid uncoating, and the role played by other cellular factors on these processes.
Collapse
Affiliation(s)
- Laura Arribas
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain;
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), 28049 Madrid, Spain;
| | - Gilberto Betancor
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain;
| |
Collapse
|
10
|
Schirra RT, dos Santos NFB, Ganser-Pornillos BK, Pornillos O. Arg18 Substitutions Reveal the Capacity of the HIV-1 Capsid Protein for Non-Fullerene Assembly. Viruses 2024; 16:1038. [PMID: 39066201 PMCID: PMC11281672 DOI: 10.3390/v16071038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
In the fullerene cone HIV-1 capsid, the central channels of the hexameric and pentameric capsomers each contain a ring of arginine (Arg18) residues that perform essential roles in capsid assembly and function. In both the hexamer and pentamer, the Arg18 rings coordinate inositol hexakisphosphate, an assembly and stability factor for the capsid. Previously, it was shown that amino-acid substitutions of Arg18 can promote pentamer incorporation into capsid-like particles (CLPs) that spontaneously assemble in vitro under high-salt conditions. Here, we show that these Arg18 mutant CLPs contain a non-canonical pentamer conformation and distinct lattice characteristics that do not follow the fullerene geometry of retroviral capsids. The Arg18 mutant pentamers resemble the hexamer in intra-oligomeric contacts and form a unique tetramer-of-pentamers that allows for incorporation of an octahedral vertex with a cross-shaped opening in the hexagonal capsid lattice. Our findings highlight an unexpected degree of structural plasticity in HIV-1 capsid assembly.
Collapse
Affiliation(s)
- Randall T. Schirra
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA (N.F.B.d.S.)
| | - Nayara F. B. dos Santos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA (N.F.B.d.S.)
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Barbie K. Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA (N.F.B.d.S.)
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA (N.F.B.d.S.)
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
11
|
Gien H, Morse M, McCauley MJ, Rouzina I, Gorelick RJ, Williams MC. Cationic Residues of the HIV-1 Nucleocapsid Protein Enable DNA Condensation to Maintain Viral Core Particle Stability during Reverse Transcription. Viruses 2024; 16:872. [PMID: 38932164 PMCID: PMC11209390 DOI: 10.3390/v16060872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
The HIV-1 nucleocapsid protein (NC) is a multifunctional viral protein necessary for HIV-1 replication. Recent studies have demonstrated that reverse transcription (RT) completes in the intact viral capsid, and the timing of RT and uncoating are correlated. How the small viral core stably contains the ~10 kbp double stranded (ds) DNA product of RT, and the role of NC in this process, are not well understood. We showed previously that NC binds and saturates dsDNA in a non-specific electrostatic binding mode that triggers uniform DNA self-attraction, condensing dsDNA into a tight globule against extending forces up to 10 pN. In this study, we use optical tweezers and atomic force microscopy to characterize the role of NC's basic residues in dsDNA condensation. Basic residue mutations of NC lead to defective interaction with the dsDNA substrate, with the constant force plateau condensation observed with wild-type (WT) NC missing or diminished. These results suggest that NC's high positive charge is essential to its dsDNA condensing activity, and electrostatic interactions involving NC's basic residues are responsible in large part for the conformation, size, and stability of the dsDNA-protein complex inside the viral core. We observe DNA re-solubilization and charge reversal in the presence of excess NC, consistent with the electrostatic nature of NC-induced DNA condensation. Previous studies of HIV-1 replication in the presence of the same cationic residue mutations in NC showed significant defects in both single- and multiple-round viral infectivity. Although NC participates in many stages of viral replication, our results are consistent with the hypothesis that cationic residue mutations inhibit genomic DNA condensation, resulting in increased premature capsid uncoating and contributing to viral replication defects.
Collapse
Affiliation(s)
- Helena Gien
- Department of Physics, Northeastern University, Boston, MA 02115, USA; (H.G.); (M.M.); (M.J.M.)
| | - Michael Morse
- Department of Physics, Northeastern University, Boston, MA 02115, USA; (H.G.); (M.M.); (M.J.M.)
| | - Micah J. McCauley
- Department of Physics, Northeastern University, Boston, MA 02115, USA; (H.G.); (M.M.); (M.J.M.)
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Center for Retroviral Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA;
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA;
| | - Mark C. Williams
- Department of Physics, Northeastern University, Boston, MA 02115, USA; (H.G.); (M.M.); (M.J.M.)
| |
Collapse
|
12
|
Eschbach JE, Puray-Chavez M, Mohammed S, Wang Q, Xia M, Huang LC, Shan L, Kutluay SB. HIV-1 capsid stability and reverse transcription are finely balanced to minimize sensing of reverse transcription products via the cGAS-STING pathway. mBio 2024; 15:e0034824. [PMID: 38530034 PMCID: PMC11077976 DOI: 10.1128/mbio.00348-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024] Open
Abstract
A critical determinant for early post-entry events, the HIV-1 capsid (CA) protein forms the conical core when it rearranges around the dimeric RNA genome and associated viral proteins. Although mutations in CA have been reported to alter innate immune sensing of HIV-1, a direct link between core stability and sensing of HIV-1 nucleic acids has not been established. Herein, we assessed how manipulating the stability of the CA lattice through chemical and genetic approaches affects innate immune recognition of HIV-1. We found that destabilization of the CA lattice resulted in potent sensing of reverse transcription products when destabilization per se does not completely block reverse transcription. Surprisingly, due to the combined effects of enhanced reverse transcription and defects in nuclear entry, two separate CA mutants that form hyperstable cores induced innate immune sensing more potently than destabilizing CA mutations. At low concentrations that allowed the accumulation of reverse transcription products, CA-targeting compounds GS-CA1 and lenacapavir measurably impacted CA lattice stability in cells and modestly enhanced innate immune sensing of HIV. Interestingly, innate immune activation observed with viruses containing unstable cores was abolished by low doses of lenacapavir. Innate immune activation observed with both hyperstable and unstable CA mutants was dependent on the cGAS-STING DNA-sensing pathway and reverse transcription. Overall, our findings demonstrate that CA lattice stability and reverse transcription are finely balanced to support reverse transcription and minimize cGAS-STING-mediated sensing of the resulting viral DNA. IMPORTANCE In HIV-1 particles, the dimeric RNA genome and associated viral proteins and enzymes are encased in a proteinaceous lattice composed of the viral capsid protein. Herein, we assessed how altering the stability of this capsid lattice through orthogonal genetic and chemical approaches impacts the induction of innate immune responses. Specifically, we found that decreasing capsid lattice stability results in more potent sensing of viral reverse transcription products, but not the genomic RNA, in a cGAS-STING-dependent manner. The recently developed capsid inhibitors lenacapavir and GS-CA1 enhanced the innate immune sensing of HIV-1. Unexpectedly, due to increased levels of reverse transcription and cytosolic accumulation of the resulting viral cDNA, capsid mutants with hyperstable cores also resulted in the potent induction of type I interferon-mediated innate immunity. Our findings suggest that HIV-1 capsid lattice stability and reverse transcription are finely balanced to minimize exposure of reverse transcription products in the cytosol of host cells.
Collapse
Affiliation(s)
- Jenna E. Eschbach
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shawn Mohammed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Qiankun Wang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Ming Xia
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lin-Chen Huang
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Burdick RC, Morse M, Rouzina I, Williams MC, Hu WS, Pathak VK. HIV-1 uncoating requires long double-stranded reverse transcription products. SCIENCE ADVANCES 2024; 10:eadn7033. [PMID: 38657061 PMCID: PMC11042746 DOI: 10.1126/sciadv.adn7033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
HIV-1 cores, which contain the viral genome and replication machinery, must disassemble (uncoat) during viral replication. However, the viral and host factors that trigger uncoating remain unidentified. Recent studies show that infectious cores enter the nucleus and uncoat near the site of integration. Here, we show that efficient uncoating of nuclear cores requires synthesis of a double-stranded DNA (dsDNA) genome >3.5 kb and that the efficiency of uncoating correlates with genome size. Core disruption by capsid inhibitors releases viral DNA, some of which integrates. However, most of the viral DNA is degraded, indicating that the intact core safeguards viral DNA. Atomic force microscopy and core content estimation reveal that synthesis of full-length genomic dsDNA induces substantial internal strain on the core to promote uncoating. We conclude that HIV-1 cores protect viral DNA from degradation by host factors and that synthesis of long double-stranded reverse transcription products is required to trigger efficient HIV-1 uncoating.
Collapse
Affiliation(s)
- Ryan C. Burdick
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Michael Morse
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Center for Retroviral Research and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Mark C. Williams
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
14
|
Taylor IA, Fassati A. The capsid revolution. J Mol Cell Biol 2024; 15:mjad076. [PMID: 38037430 PMCID: PMC11193064 DOI: 10.1093/jmcb/mjad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023] Open
Abstract
Lenacapavir, targeting the human immunodeficiency virus type-1 (HIV-1) capsid, is the first-in-class antiretroviral drug recently approved for clinical use. The development of Lenacapavir is attributed to the remarkable progress in our understanding of the capsid protein made during the last few years. Considered little more than a component of the virus shell to be shed early during infection, the capsid has been found to be a key player in the HIV-1 life cycle by interacting with multiple host factors, entering the nucleus, and directing integration. Here, we describe the key advances that led to this 'capsid revolution'.
Collapse
Affiliation(s)
- Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Ariberto Fassati
- Division of Infection and Immunity, University College London, London WC1E 6JF, UK
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, UK
| |
Collapse
|
15
|
McFadden WM, Casey-Moore MC, Bare GAL, Kirby KA, Wen X, Li G, Wang H, Slack RL, Snyder AA, Lorson ZC, Kaufman IL, Cilento ME, Tedbury PR, Gembicky M, Olson AJ, Torbett BE, Sharpless KB, Sarafianos SG. Identification of clickable HIV-1 capsid-targeting probes for viral replication inhibition. Cell Chem Biol 2024; 31:477-486.e7. [PMID: 38518746 PMCID: PMC11257216 DOI: 10.1016/j.chembiol.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/15/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Of the targets for HIV-1 therapeutics, the capsid core is a relatively unexploited but alluring drug target due to its indispensable roles throughout virus replication. Because of this, we aimed to identify "clickable" covalent modifiers of the HIV-1 capsid protein (CA) for future functionalization. We screened a library of fluorosulfate compounds that can undergo sulfur(VI) fluoride exchange (SuFEx) reactions, and five compounds were identified as hits. These molecules were further characterized for antiviral effects. Several compounds impacted in vitro capsid assembly. One compound, BBS-103, covalently bound CA via a SuFEx reaction to Tyr145 and had antiviral activity in cell-based assays by perturbing virus production, but not uncoating. The covalent binding of compounds that target the HIV-1 capsid could aid in the future design of antiretroviral drugs or chemical probes that will help study aspects of HIV-1 replication.
Collapse
Affiliation(s)
- William M McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Mary C Casey-Moore
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Grant A L Bare
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Karen A Kirby
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Xin Wen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Gencheng Li
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hua Wang
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan L Slack
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Alexa A Snyder
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Zachary C Lorson
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Isabella L Kaufman
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Maria E Cilento
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Philip R Tedbury
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Milan Gembicky
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92521, United States
| | - Arthur J Olson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bruce E Torbett
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - K Barry Sharpless
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stefan G Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
16
|
Biswas B, Lai KK, Bracey H, Datta SA, Harvin D, Sowd GA, Aiken C, Rein A. Essential functions of Inositol hexakisphosphate (IP6) in Murine Leukemia Virus replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.581940. [PMID: 38464197 PMCID: PMC10925174 DOI: 10.1101/2024.02.27.581940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
We have investigated the function of inositol hexakisphosphate (IP6) and inositol pentakisphosphate (IP5) in the replication of murine leukemia virus (MLV). While IP6 is known to be critical for the life cycle of HIV-1, its significance in MLV remains unexplored. We find that IP6 is indeed important for MLV replication. It significantly enhances endogenous reverse transcription (ERT) in MLV. Additionally, a pelleting-based assay reveals that IP6 can stabilize MLV cores, thereby facilitating ERT. We find that IP5 and IP6 are packaged in MLV particles. However, unlike HIV-1, MLV depends upon the presence of IP6 and IP5 in target cells for successful infection. This IP6/5 requirement for infection is reflected in impaired reverse transcription observed in IP6/5-deficient cell lines. In summary, our findings demonstrate the importance of capsid stabilization by IP6/5 in the replication of diverse retroviruses; we suggest possible reasons for the differences from HIV-1 that we observed in MLV.
Collapse
Affiliation(s)
- Banhi Biswas
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| | - Kin Kui Lai
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| | - Harrison Bracey
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-3263, USA
| | - Siddhartha A.K. Datta
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| | - Demetria Harvin
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| | - Gregory A. Sowd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-3263, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-3263, USA
| | - Alan Rein
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| |
Collapse
|
17
|
Zhang F, Schmidt F, Muecksch F, Wang Z, Gazumyan A, Nussenzweig MC, Gaebler C, Caskey M, Hatziioannou T, Bieniasz PD. SARS-CoV-2 spike glycosylation affects function and neutralization sensitivity. mBio 2024; 15:e0167223. [PMID: 38193662 PMCID: PMC10865855 DOI: 10.1128/mbio.01672-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/08/2023] [Indexed: 01/10/2024] Open
Abstract
The glycosylation of viral envelope proteins can play important roles in virus biology and immune evasion. The spike (S) glycoprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) includes 22 N-linked glycosylation sequons and 17 O-linked glycosites. We investigated the effect of individual glycosylation sites on SARS-CoV-2 S function in pseudotyped virus infection assays and on sensitivity to monoclonal and polyclonal neutralizing antibodies. In most cases, the removal of individual glycosylation sites decreased the infectiousness of the pseudotyped virus. For glycosylation mutants in the N-terminal domain and the receptor-binding domain (RBD), reduction in pseudotype infectivity was predicted by a commensurate reduction in the level of virion-incorporated S protein and reduced S trafficking to the cell surface. Notably, the presence of a glycan at position N343 within the RBD had diverse effects on neutralization by RBD-specific monoclonal antibodies cloned from convalescent individuals. The N343 glycan reduced the overall sensitivity to polyclonal antibodies in plasma from COVID-19 convalescent individuals, suggesting a role for SARS-CoV-2 S glycosylation in immune evasion. However, vaccination of convalescent individuals produced neutralizing activity that was resilient to the inhibitory effect of the N343 glycan.IMPORTANCEThe attachment of glycans to the spike proteins of viruses during their synthesis and movement through the secretory pathway can affect their properties. This study shows that the glycans attached to the severe acute respiratory syndrome coronavirus-2 spike protein enable its movement to the cell surface and incorporation into virus particles. Certain glycans, including one that is attached to asparagine 343 in the receptor-binding domain of the spike protein, can also affect virus neutralization by antibodies. This glycan can increase or decrease sensitivity to individual antibodies, likely through direct effects on antibody epitopes and modulation of spike conformation. However, the overall effect of the glycan in the context of the polyclonal mixture of antibodies in convalescent serum is to reduce neutralization sensitivity. Overall, this study highlights the complex effects of glycosylation on spike protein function and immune evasion.
Collapse
Affiliation(s)
- Fengwen Zhang
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, USA
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | | | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| |
Collapse
|
18
|
Faysal KMR, Walsh JC, Renner N, Márquez CL, Shah VB, Tuckwell AJ, Christie MP, Parker MW, Turville SG, Towers GJ, James LC, Jacques DA, Böcking T. Pharmacologic hyperstabilisation of the HIV-1 capsid lattice induces capsid failure. eLife 2024; 13:e83605. [PMID: 38347802 PMCID: PMC10863983 DOI: 10.7554/elife.83605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
The HIV-1 capsid has emerged as a tractable target for antiretroviral therapy. Lenacapavir, developed by Gilead Sciences, is the first capsid-targeting drug approved for medical use. Here, we investigate the effect of lenacapavir on HIV capsid stability and uncoating. We employ a single particle approach that simultaneously measures capsid content release and lattice persistence. We demonstrate that lenacapavir's potent antiviral activity is predominantly due to lethal hyperstabilisation of the capsid lattice and resultant loss of compartmentalisation. This study highlights that disrupting capsid metastability is a powerful strategy for the development of novel antivirals.
Collapse
Affiliation(s)
- KM Rifat Faysal
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - James C Walsh
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Nadine Renner
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Chantal L Márquez
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Vaibhav B Shah
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Andrew J Tuckwell
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Michelle P Christie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourneAustralia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourneAustralia
- Structural Biology Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
| | | | - Greg J Towers
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Leo C James
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - David A Jacques
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| |
Collapse
|
19
|
Shi D, Xu S, Ding D, Tang K, Zhou Y, Jiang X, Wang S, Liu X, Zhan P. Advances in drug structure-activity-relationships for the development of selenium-based compounds against HIV. Expert Opin Drug Discov 2024; 19:139-146. [PMID: 37988053 DOI: 10.1080/17460441.2023.2284830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
INTRODUCTION Selenium possesses numerous advantageous properties in the field of medicine, and a variety of selenium-containing compounds have been documented to exhibit anti-HIV activity. This paper aims to categorize these compounds and conduct SAR analysis to offer guidance for drug design and optimization. AREAS COVERED The authors present a comprehensive review of the reported SAR analysis conducted on selenium-based compounds against HIV, accompanied by a concise discussion regarding the pivotal role of selenium in drug development. EXPERT OPINION In addition to the conventional bioisosterism strategy, advanced strategies such as covalent inhibition, fragment-based growth and drug repositioning can also be incorporated into research on selenium-containing anti-HIV drugs. Ebselen, which acts as an HIV capsid inhibitor, serves as a valuable probe compound for the discovery of novel HIV integrase inhibitors. Furthermore, it is crucial not to underestimate the potential toxicity associated with organic selenium compounds despite no reported instances of severe toxicity.
Collapse
Affiliation(s)
- Dazhou Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Dang Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Kai Tang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Yang Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
20
|
Gifford LB, Melikyan GB. HIV-1 Capsid Uncoating Is a Multistep Process That Proceeds through Defect Formation Followed by Disassembly of the Capsid Lattice. ACS NANO 2024; 18:2928-2947. [PMID: 38241476 PMCID: PMC10832047 DOI: 10.1021/acsnano.3c07678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
The HIV-1 core consists of a cone-shaped capsid shell made of capsid protein (CA) hexamers and pentamers encapsulating the viral genome. HIV-1 capsid disassembly, referred to as uncoating, is important for productive infection; however, the location, timing, and regulation of uncoating remain controversial. Here, we employ amber codon suppression to directly label CA. In addition, a fluid phase fluorescent probe is incorporated into the viral core to detect small defects in the capsid lattice. This double-labeling strategy enables the visualization of uncoating of single cores in vitro and in living cells, which we found to always proceed through at least two distinct steps─the formation of a defect in the capsid lattice that initiates gradual loss of CA below a detectable level. Importantly, intact cores containing the fluid phase and CA fluorescent markers enter and uncoat in the nucleus, as evidenced by a sequential loss of both markers, prior to establishing productive infection. This two-step uncoating process is observed in different cells, including a macrophage line. Notably, the lag between the release of fluid phase marker and terminal loss of CA appears to be independent of the cell type or reverse transcription and is much longer (>5-fold) for nuclear capsids compared to cell-free cores or cores in the cytosol, suggesting that the capsid lattice is stabilized by capsid-binding nuclear factors. Our results imply that intact HIV-1 cores enter the cell nucleus and that uncoating is initiated through a localized defect in the capsid lattice prior to a global loss of CA.
Collapse
Affiliation(s)
- Levi B. Gifford
- Department
of Pediatrics, Emory University School of
Medicine, Atlanta, Georgia 30322, United States
| | - Gregory B. Melikyan
- Department
of Pediatrics, Emory University School of
Medicine, Atlanta, Georgia 30322, United States
- Children’s
Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| |
Collapse
|
21
|
Hudait A, Voth GA. HIV-1 capsid shape, orientation, and entropic elasticity regulate translocation into the nuclear pore complex. Proc Natl Acad Sci U S A 2024; 121:e2313737121. [PMID: 38241438 PMCID: PMC10823262 DOI: 10.1073/pnas.2313737121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/06/2023] [Indexed: 01/21/2024] Open
Abstract
Nuclear import and uncoating of the viral capsid are critical steps in the HIV-1 life cycle that serve to transport and release genomic material into the nucleus. Viral core import involves translocating the HIV-1 capsid at the nuclear pore complex (NPC). Notably, the central channel of the NPC appears to often accommodate and allow passage of intact HIV-1 capsid, though mechanistic details of the process remain to be fully understood. Here, we investigate the molecular interactions that operate in concert between the HIV-1 capsid and the NPC that regulate capsid translocation through the central channel. To this end, we develop a "bottom-up" coarse-grained (CG) model of the human NPC from recently released cryo-electron tomography structure and then construct composite membrane-embedded CG NPC models. We find that successful translocation from the cytoplasmic side to the NPC central channel is contingent on the compatibility of the capsid morphology and channel dimension and the proper orientation of the capsid approach to the channel from the cytoplasmic side. The translocation dynamics is driven by maximizing the contacts between phenylalanine-glycine nucleoporins at the central channel and the capsid. For the docked intact capsids, structural analysis reveals correlated striated patterns of lattice disorder likely related to the intrinsic capsid elasticity. Uncondensed genomic material inside the docked capsid augments the overall lattice disorder of the capsid. Our results suggest that the intrinsic "elasticity" can also aid the capsid to adapt to the stress and remain structurally intact during translocation.
Collapse
Affiliation(s)
- Arpa Hudait
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL60637
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL60637
| |
Collapse
|
22
|
Dwivedi R, Prakash P, Kumbhar BV, Balasubramaniam M, Dash C. HIV-1 capsid and viral DNA integration. mBio 2024; 15:e0021222. [PMID: 38085100 PMCID: PMC10790781 DOI: 10.1128/mbio.00212-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE HIV-1 capsid protein (CA)-independently or by recruiting host factors-mediates several key steps of virus replication in the cytoplasm and nucleus of the target cell. Research in the recent years have established that CA is multifunctional and genetically fragile of all the HIV-1 proteins. Accordingly, CA has emerged as a validated and high priority therapeutic target, and the first CA-targeting antiviral drug was recently approved for treating multi-drug resistant HIV-1 infection. However, development of next generation CA inhibitors depends on a better understanding of CA's known roles, as well as probing of CA's novel roles, in HIV-1 replication. In this timely review, we present an updated overview of the current state of our understanding of CA's multifunctional role in HIV-1 replication-with a special emphasis on CA's newfound post-nuclear roles, highlight the pressing knowledge gaps, and discuss directions for future research.
Collapse
Affiliation(s)
- Richa Dwivedi
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Prem Prakash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Bajarang Vasant Kumbhar
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed to be) University, Mumbai, Maharashtra, India
| | - Muthukumar Balasubramaniam
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Chandravanu Dash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
23
|
Twarock R, Towers GJ, Stockley PG. Molecular frustration: a hypothesis for regulation of viral infections. Trends Microbiol 2024; 32:17-26. [PMID: 37507296 DOI: 10.1016/j.tim.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
The recent revolution in imaging techniques and results from RNA footprinting in situ reveal how the bacteriophage MS2 genome regulates both particle assembly and genome release. We have proposed a model in which multiple packaging signal (PS) RNA-coat protein (CP) contacts orchestrate different stages of a viral life cycle. Programmed formation and release of specific PS contacts with CP regulates viral particle assembly and genome uncoating during cell entry. We hypothesize that molecular frustration, a concept introduced to understand protein folding, can be used to better rationalize how PSs function in both particle assembly and genome release. More broadly this concept may explain the directionality of viral life cycles, for example, the roles of host cofactors in HIV infection. We propose that this is a universal principle in virology that explains mechanisms of host-virus interaction and suggests diverse therapeutic interventions.
Collapse
Affiliation(s)
- Reidun Twarock
- Departments of Mathematics and Biology & York Cross-Disciplinary Centre for Systems Analysis, University of York, York, UK
| | - Greg J Towers
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
24
|
Salas-Briceno K, Zhao W, Ross SR. Murine leukemia virus infection of non-dividing dendritic cells is dependent on nucleoporins. PLoS Pathog 2024; 20:e1011640. [PMID: 38215165 PMCID: PMC10810426 DOI: 10.1371/journal.ppat.1011640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/25/2024] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
Retroviral reverse transcription starts within the capsid and uncoating and reverse transcription are mutually dependent. There is still debate regarding the timing and cellular location of HIV's uncoating and reverse transcription and whether it occurs solely in the cytoplasm, nucleus or both. HIV can infect non-dividing cells because there is active transport of the preintegration complex (PIC) across the nuclear membrane, but Murine Leukemia Virus (MLV) is thought to depend on cell division for replication and whether MLV uncoating and reverse transcription is solely cytoplasmic has not been studied. Here, we used NIH3T3 and primary mouse dendritic cells to determine where the different stages of reverse transcription occur and whether cell division is needed for nuclear entry. Our data strongly suggest that in both NIH3T3 cells and dendritic cells (DCs), the initial step of reverse transcription occurs in the cytoplasm. However, we detected MLV RNA/DNA hybrid intermediates in the nucleus of dividing NIH3T3 cells and non-dividing DCs, suggesting that reverse transcription can continue after nuclear entry. We also confirmed that the MLV PIC requires cell division to enter the nucleus of NIH3T3 cells. In contrast, we show that MLV can infect non-dividing primary DCs, although integration of MLV DNA in DCs still required the viral p12 protein. Knockdown of several nuclear pore proteins dramatically reduced the appearance of integrated MLV DNA in DCs but not NIH3T3 cells. Additionally, MLV capsid associated with the nuclear pore proteins NUP358 and NUP62 during infection. These findings suggest that simple retroviruses, like the complex retrovirus HIV, gain nuclear entry by traversing the nuclear pore complex in non-mitotic cells.
Collapse
Affiliation(s)
- Karen Salas-Briceno
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Wenming Zhao
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
25
|
Jang S, Engelman AN. Capsid-host interactions for HIV-1 ingress. Microbiol Mol Biol Rev 2023; 87:e0004822. [PMID: 37750702 PMCID: PMC10732038 DOI: 10.1128/mmbr.00048-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
The HIV-1 capsid, composed of approximately 1,200 copies of the capsid protein, encases genomic RNA alongside viral nucleocapsid, reverse transcriptase, and integrase proteins. After cell entry, the capsid interacts with a myriad of host factors to traverse the cell cytoplasm, pass through the nuclear pore complex (NPC), and then traffic to chromosomal sites for viral DNA integration. Integration may very well require the dissolution of the capsid, but where and when this uncoating event occurs remains hotly debated. Based on size constraints, a long-prevailing view was that uncoating preceded nuclear transport, but recent research has indicated that the capsid may remain largely intact during nuclear import, with perhaps some structural remodeling required for NPC traversal. Completion of reverse transcription in the nucleus may further aid capsid uncoating. One canonical type of host factor, typified by CPSF6, leverages a Phe-Gly (FG) motif to bind capsid. Recent research has shown these peptides reside amid prion-like domains (PrLDs), which are stretches of protein sequence devoid of charged residues. Intermolecular PrLD interactions along the exterior of the capsid shell impart avid host factor binding for productive HIV-1 infection. Herein we overview capsid-host interactions implicated in HIV-1 ingress and discuss important research questions moving forward. Highlighting clinical relevance, the long-acting ultrapotent inhibitor lenacapavir, which engages the same capsid binding pocket as FG host factors, was recently approved to treat people living with HIV.
Collapse
Affiliation(s)
- Sooin Jang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Badieyan S, Lichon D, Andreas MP, Gillies JP, Peng W, Shi J, DeSantis ME, Aiken CR, Böcking T, Giessen TW, Campbell EM, Cianfrocco MA. HIV-1 binds dynein directly to hijack microtubule transport machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555335. [PMID: 37693451 PMCID: PMC10491134 DOI: 10.1101/2023.08.29.555335] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Viruses exploit host cytoskeletal elements and motor proteins for trafficking through the dense cytoplasm. Yet the molecular mechanism that describes how viruses connect to the motor machinery is unknown. Here, we demonstrate the first example of viral microtubule trafficking from purified components: HIV-1 hijacking microtubule transport machinery. We discover that HIV-1 directly binds to the retrograde microtubule-associated motor, dynein, and not via a cargo adaptor, as previously suggested. Moreover, we show that HIV-1 motility is supported by multiple, diverse dynein cargo adaptors as HIV-1 binds to dynein light and intermediate chains on dynein's tail. Further, we demonstrate that multiple dynein motors tethered to rigid cargoes, like HIV-1 capsids, display reduced motility, distinct from the behavior of multiple motors on membranous cargoes. Our results introduce a new model of viral trafficking wherein a pathogen opportunistically 'hijacks' the microtubule transport machinery for motility, enabling multiple transport pathways through the host cytoplasm.
Collapse
Affiliation(s)
| | - Drew Lichon
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, IL, USA
| | - Michael P Andreas
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - John P Gillies
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI USA
| | - Wang Peng
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jiong Shi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Morgan E DeSantis
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI USA
| | - Christopher R Aiken
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Tobias W Giessen
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Edward M Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, IL, USA
| | - Michael A Cianfrocco
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Marty L, Pastre C, Blaise M, Beaumelle B. [Mechanism enabling HIV Tat association with viral particles]. Med Sci (Paris) 2023; 39:915-917. [PMID: 38108716 DOI: 10.1051/medsci/2023167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Affiliation(s)
- Laetitia Marty
- Institut de recherche en infectiologie de Montpellier, UMR 9004, université de Montpellier-CNRS, Montpellier, France
| | - Camille Pastre
- Institut de recherche en infectiologie de Montpellier, UMR 9004, université de Montpellier-CNRS, Montpellier, France
| | - Mickaël Blaise
- Institut de recherche en infectiologie de Montpellier, UMR 9004, université de Montpellier-CNRS, Montpellier, France
| | - Bruno Beaumelle
- Institut de recherche en infectiologie de Montpellier, UMR 9004, université de Montpellier-CNRS, Montpellier, France
| |
Collapse
|
28
|
Padron A, Prakash P, Pandhare J, Luban J, Aiken C, Balasubramaniam M, Dash C. Emerging role of cyclophilin A in HIV-1 infection: from producer cell to the target cell nucleus. J Virol 2023; 97:e0073223. [PMID: 37843371 PMCID: PMC10688351 DOI: 10.1128/jvi.00732-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
The HIV-1 genome encodes a small number of proteins with structural, enzymatic, regulatory, and accessory functions. These viral proteins interact with a number of host factors to promote the early and late stages of HIV-1 infection. During the early stages of infection, interactions between the viral proteins and host factors enable HIV-1 to enter the target cell, traverse the cytosol, dock at the nuclear pore, gain access to the nucleus, and integrate into the host genome. Similarly, the viral proteins recruit another set of host factors during the late stages of infection to orchestrate HIV-1 transcription, translation, assembly, and release of progeny virions. Among the host factors implicated in HIV-1 infection, Cyclophilin A (CypA) was identified as the first host factor to be packaged within HIV-1 particles. It is now well established that CypA promotes HIV-1 infection by directly binding to the viral capsid. Mechanistic models to pinpoint CypA's role have spanned from an effect in the producer cell to the early steps of infection in the target cell. In this review, we will describe our understanding of the role(s) of CypA in HIV-1 infection, highlight the current knowledge gaps, and discuss the potential role of this host factor in the post-nuclear entry steps of HIV-1 infection.
Collapse
Affiliation(s)
- Adrian Padron
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Prem Prakash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Jui Pandhare
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Jeremy Luban
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chris Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Muthukumar Balasubramaniam
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Chandravanu Dash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
29
|
Jennings J, Bracey H, Nguyen DT, Dasgupta R, Rivera AV, Sluis-Cremer N, Shi J, Aiken C. The HIV-1 capsid serves as a nanoscale reaction vessel for reverse transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566350. [PMID: 37986899 PMCID: PMC10659366 DOI: 10.1101/2023.11.08.566350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The viral capsid performs critical functions during HIV-1 infection and is a validated target for antiviral therapy. Previous studies have established that the proper structure and stability of the capsid are required for efficient HIV-1 reverse transcription in target cells. Moreover, it has recently been demonstrated that permeabilized virions and purified HIV-1 cores undergo efficient reverse transcription in vitro when the capsid is stabilized by addition of the host cell metabolite inositol hexakisphosphate (IP6). However, the molecular mechanism by which the capsid promotes reverse transcription is undefined. Here we show that wild type HIV-1 particles can undergo efficient reverse transcription in vitro in the absence of a membrane-permeabilizing agent. This activity, originally termed "natural endogenous reverse transcription" (NERT), depends on expression of the viral envelope glycoprotein during virus assembly and its incorporation into virions. Truncation of the gp41 cytoplasmic tail markedly reduced NERT activity, indicating that gp41 permits the entry of nucleotides into virions. Protease treatment of virions markedly reduced NERT suggesting the presence of a proteinaceous membrane channel. By contrast to reverse transcription in permeabilized virions, NERT required neither the addition of IP6 nor a mature capsid, indicating that an intact viral membrane can substitute for the function of the viral capsid during reverse transcription in vitro. Collectively, these results demonstrate that the viral capsid functions as a nanoscale container for reverse transcription during HIV-1 infection.
Collapse
Affiliation(s)
- Jordan Jennings
- Department of Pathology, Microbiology, and Immunology and Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Harrison Bracey
- Department of Pathology, Microbiology, and Immunology and Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Danny T. Nguyen
- Department of Pathology, Microbiology, and Immunology and Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Rishav Dasgupta
- Department of Pathology, Microbiology, and Immunology and Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Alondra Vázquez Rivera
- Division of Infectious Disease, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Nicolas Sluis-Cremer
- Division of Infectious Disease, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Jiong Shi
- Department of Pathology, Microbiology, and Immunology and Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Christopher Aiken
- Department of Pathology, Microbiology, and Immunology and Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
30
|
Cilento ME, Wen X, Reeve AB, Ukah OB, Snyder AA, Carrillo CM, Smith CP, Edwards K, Wahoski CC, Kitzler DR, Kodama EN, Mitsuya H, Parniak MA, Tedbury PR, Sarafianos SG. HIV-1 Resistance to Islatravir/Tenofovir Combination Therapy in Wild-Type or NRTI-Resistant Strains of Diverse HIV-1 Subtypes. Viruses 2023; 15:1990. [PMID: 37896768 PMCID: PMC10612037 DOI: 10.3390/v15101990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
Tenofovir disoproxil fumarate (TDF) and islatravir (ISL, 4'-ethynyl-2-fluoro-2'-deoxyadensine, or MK-8591) are highly potent nucleoside reverse transcriptase inhibitors. Resistance to TDF and ISL is conferred by K65R and M184V, respectively. Furthermore, K65R and M184V increase sensitivity to ISL and TDF, respectively. Therefore, these two nucleoside analogs have opposing resistance profiles and could present a high genetic barrier to resistance. To explore resistance to TDF and ISL in combination, we performed passaging experiments with HIV-1 WT, K65R, or M184V in the presence of ISL and TDF. We identified K65R, M184V, and S68G/N mutations. The mutant most resistant to ISL was S68N/M184V, yet it remained susceptible to TDF. To further confirm our cellular findings, we implemented an endogenous reverse transcriptase assay to verify in vitro potency. To better understand the impact of these resistance mutations in the context of global infection, we determined potency of ISL and TDF against HIV subtypes A, B, C, D, and circulating recombinant forms (CRF) 01_AE and 02_AG with and without resistance mutations. In all isolates studied, we found K65R imparted hypersensitivity to ISL whereas M184V conferred resistance. We demonstrated that the S68G polymorphism can enhance fitness of drug-resistant mutants in some genetic backgrounds. Collectively, the data suggest that the opposing resistance profiles of ISL and TDF suggest that a combination of the two drugs could be a promising drug regimen for the treatment of patients infected with any HIV-1 subtype, including those who have failed 3TC/FTC-based therapies.
Collapse
Affiliation(s)
- Maria E. Cilento
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xin Wen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Aaron B. Reeve
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Obiaara B. Ukah
- CS Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Alexa A. Snyder
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ciro M. Carrillo
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cole P. Smith
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kristin Edwards
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Claudia C. Wahoski
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Deborah R. Kitzler
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eiichi N. Kodama
- Division of Infectious Disease, International Institute of Disaster Science, Tohoku University, Sendai 980-8572, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health & Medicine Research Institute, Tokyo 162-8655, Japan
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Clinical Sciences, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| | - Michael A. Parniak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Philip R. Tedbury
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stefan G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
31
|
Huang Y, Zhang Y, Ni T. Towards in situ high-resolution imaging of viruses and macromolecular complexes using cryo-electron tomography. J Struct Biol 2023; 215:108000. [PMID: 37467823 DOI: 10.1016/j.jsb.2023.108000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/15/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Cryo-electron tomography and subtomogram averaging are rising and fast-evolving imaging techniques to study biological events, providing structural information at an unprecedented resolution while preserving spatial correlation in their native contexts. The latest technology and methodology development ranging from sample preparation to data collection and data processing, has enabled significant advancement in its applications to various biological systems. This review provides an overview of the current technology development enabling high-resolution structural study in situ, highlighting the use of a priori information of biological samples to assess the quality of subtomogram averaging pipeline. We exemplify the applications of this technique to understanding viruses and principles of macromolecule assembly using different biological systems, ranging from in vitro to in situ samples, which provide structural information at different resolutions and contexts.
Collapse
Affiliation(s)
- Yixin Huang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Yu Zhang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Tao Ni
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
32
|
Monette A, Niu M, Maldonado RK, Chang J, Lambert GS, Flanagan JM, Cochrane A, Parent LJ, Mouland AJ. Influence of HIV-1 Genomic RNA on the Formation of Gag Biomolecular Condensates. J Mol Biol 2023; 435:168190. [PMID: 37385580 PMCID: PMC10838171 DOI: 10.1016/j.jmb.2023.168190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Biomolecular condensates (BMCs) play an important role in the replication of a growing number of viruses, but many important mechanistic details remain to be elucidated. Previously, we demonstrated that the pan-retroviral nucleocapsid (NC) and HIV-1 pr55Gag (Gag) proteins phase separate into condensates, and that HIV-1 protease (PR)-mediated maturation of Gag and Gag-Pol precursor proteins yields self-assembling BMCs that have HIV-1 core architecture. Using biochemical and imaging techniques, we aimed to further characterize the phase separation of HIV-1 Gag by determining which of its intrinsically disordered regions (IDRs) influence the formation of BMCs, and how the HIV-1 viral genomic RNA (gRNA) could influence BMC abundance and size. We found that mutations in the Gag matrix (MA) domain or the NC zinc finger motifs altered condensate number and size in a salt-dependent manner. Gag BMCs were also bimodally influenced by the gRNA, with a condensate-promoting regime at lower protein concentrations and a gel dissolution at higher protein concentrations. Interestingly, incubation of Gag with CD4+ T cell nuclear lysates led to the formation of larger BMCs compared to much smaller ones observed in the presence of cytoplasmic lysates. These findings suggest that the composition and properties of Gag-containing BMCs may be altered by differential association of host factors in nuclear and cytosolic compartments during virus assembly. This study significantly advances our understanding of HIV-1 Gag BMC formation and provides a foundation for future therapeutic targeting of virion assembly.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | - Meijuan Niu
- Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | - Rebecca Kaddis Maldonado
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Jordan Chang
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Gregory S Lambert
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - John M Flanagan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Leslie J Parent
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States.
| | - Andrew J Mouland
- Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada; Department of Medicine, McGill University, Montréal, Québec H4A 3J1, Canada.
| |
Collapse
|
33
|
Santos MF, Rappa G, Karbanová J, Diana P, Cirrincione G, Carbone D, Manna D, Aalam F, Wang D, Vanier C, Corbeil D, Lorico A. HIV-1-induced nuclear invaginations mediated by VAP-A, ORP3, and Rab7 complex explain infection of activated T cells. Nat Commun 2023; 14:4588. [PMID: 37563144 PMCID: PMC10415338 DOI: 10.1038/s41467-023-40227-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
The mechanism of human immunodeficiency virus 1 (HIV-1) nuclear entry, required for productive infection, is not fully understood. Here, we report that in HeLa cells and activated CD4+ T cells infected with HIV-1 pseudotyped with VSV-G and native Env protein, respectively, Rab7+ late endosomes containing endocytosed HIV-1 promote the formation of nuclear envelope invaginations (NEIs) by a molecular mechanism involving the VOR complex, composed of the outer nuclear membrane protein VAP-A, hyperphosphorylated ORP3 and Rab7. Silencing VAP-A or ORP3 and drug-mediated impairment of Rab7 binding to ORP3-VAP-A inhibited the nuclear transfer of the HIV-1 components and productive infection. In HIV-1-resistant quiescent CD4+ T cells, ORP3 was not hyperphosphorylated and neither VOR complex nor NEIs were formed. This new cellular pathway and its molecular players are potential therapeutic targets, perhaps shared by other viruses that require nuclear entry to complete their life cycle.
Collapse
Affiliation(s)
- Mark F Santos
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
| | - Germana Rappa
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
| | - Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Patrizia Diana
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Girolamo Cirrincione
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Daniela Carbone
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - David Manna
- Touro College of Osteopathic Medicine, Middletown, New York, NY, USA
| | - Feryal Aalam
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
| | - David Wang
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
| | - Cheryl Vanier
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
- Imgen Research, LLC, 5495 South Rainbow #201, Las Vegas, NV, USA
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.
| | - Aurelio Lorico
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA.
| |
Collapse
|
34
|
Levin JG, Musier-Forsyth K, Rein A. Molecular Genetics of Retrovirus Replication. Viruses 2023; 15:1549. [PMID: 37515235 PMCID: PMC10385656 DOI: 10.3390/v15071549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Despite the availability of effective anti-HIV drug therapy, according to UNAIDS estimates, 1 [...].
Collapse
Affiliation(s)
- Judith G Levin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Alan Rein
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
35
|
Zhang F, Schmidt F, Muecksch F, Wang Z, Gazumyan A, Nussenzweig MC, Gaebler C, Caskey M, Hatziioannou T, Bieniasz PD. SARS-CoV-2 spike glycosylation affects function and neutralization sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547241. [PMID: 37425700 PMCID: PMC10327196 DOI: 10.1101/2023.06.30.547241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The glycosylation of viral envelope proteins can play important roles in virus biology and immune evasion. The spike (S) glycoprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) includes 22 N-linked glycosylation sequons and 17 O-linked glycosites. Here, we investigated the effect of individual glycosylation sites on SARS-CoV-2 S function in pseudotyped virus infection assays and on sensitivity to monoclonal and polyclonal neutralizing antibodies. In most cases, removal of individual glycosylation sites decreased the infectiousness of the pseudotyped virus. For glycosylation mutants in the N-terminal domain (NTD) and the receptor binding domain (RBD), reduction in pseudotype infectivity was predicted by a commensurate reduction in the level of virion-incorporated spike protein. Notably, the presence of a glycan at position N343 within the RBD had diverse effects on neutralization by RBD-specific monoclonal antibodies (mAbs) cloned from convalescent individuals. The N343 glycan reduced overall sensitivity to polyclonal antibodies in plasma from COVID-19 convalescent individuals, suggesting a role for SARS-CoV-2 spike glycosylation in immune evasion. However, vaccination of convalescent individuals produced neutralizing activity that was resilient to the inhibitory effect of the N343 glycan.
Collapse
Affiliation(s)
- Fengwen Zhang
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
- Current address: King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia. Center for Integrative Infectious Disease Research, Universitätsklinikum Heidelberg, 69120 Heidleberg, Germany
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Current address: Laboratory of Translational Immunology of Viral Infections, Charité - Universitätsmedizin Berlin, Germany
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
36
|
Kleinpeter AB, Zhu Y, Mallery DL, Ablan SD, Chen L, Hardenbrook N, Saiardi A, James LC, Zhang P, Freed EO. The Effect of Inositol Hexakisphosphate on HIV-1 Particle Production and Infectivity can be Modulated by Mutations that Affect the Stability of the Immature Gag Lattice. J Mol Biol 2023; 435:168037. [PMID: 37330292 PMCID: PMC10544863 DOI: 10.1016/j.jmb.2023.168037] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 06/19/2023]
Abstract
The assembly of an HIV-1 particle begins with the construction of a spherical lattice composed of hexamer subunits of the Gag polyprotein. The cellular metabolite inositol hexakisphosphate (IP6) binds and stabilizes the immature Gag lattice via an interaction with the six-helix bundle (6HB), a crucial structural feature of Gag hexamers that modulates both virus assembly and infectivity. The 6HB must be stable enough to promote immature Gag lattice formation, but also flexible enough to be accessible to the viral protease, which cleaves the 6HB during particle maturation. 6HB cleavage liberates the capsid (CA) domain of Gag from the adjacent spacer peptide 1 (SP1) and IP6 from its binding site. This pool of IP6 molecules then promotes the assembly of CA into the mature conical capsid that is required for infection. Depletion of IP6 in virus-producer cells results in severe defects in assembly and infectivity of wild-type (WT) virions. Here we show that in an SP1 double mutant (M4L/T8I) with a hyperstable 6HB, IP6 can block virion infectivity by preventing CA-SP1 processing. Thus, depletion of IP6 in virus-producer cells markedly increases M4L/T8I CA-SP1 processing and infectivity. We also show that the introduction of the M4L/T8I mutations partially rescues the assembly and infectivity defects induced by IP6 depletion on WT virions, likely by increasing the affinity of the immature lattice for limiting IP6. These findings reinforce the importance of the 6HB in virus assembly, maturation, and infection and highlight the ability of IP6 to modulate 6HB stability.
Collapse
Affiliation(s)
- Alex B Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA. https://twitter.com/AlexKleinpeter
| | - Yanan Zhu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Donna L Mallery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sherimay D Ablan
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Long Chen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Nathan Hardenbrook
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, University College London, London, UK. https://twitter.com/SaiardiLab
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. https://twitter.com/JamesLab9
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| |
Collapse
|
37
|
Papa G, Albecka A, Mallery D, Vaysburd M, Renner N, James LC. IP6-stabilised HIV capsids evade cGAS/STING-mediated host immune sensing. EMBO Rep 2023; 24:e56275. [PMID: 36970882 PMCID: PMC10157305 DOI: 10.15252/embr.202256275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
HIV-1 uses inositol hexakisphosphate (IP6) to build a metastable capsid capable of delivering its genome into the host nucleus. Here, we show that viruses that are unable to package IP6 lack capsid protection and are detected by innate immunity, resulting in the activation of an antiviral state that inhibits infection. Disrupting IP6 enrichment results in defective capsids that trigger cytokine and chemokine responses during infection of both primary macrophages and T-cell lines. Restoring IP6 enrichment with a single mutation rescues the ability of HIV-1 to infect cells without being detected. Using a combination of capsid mutants and CRISPR-derived knockout cell lines for RNA and DNA sensors, we show that immune sensing is dependent upon the cGAS-STING axis and independent of capsid detection. Sensing requires the synthesis of viral DNA and is prevented by reverse transcriptase inhibitors or reverse transcriptase active-site mutation. These results demonstrate that IP6 is required to build capsids that can successfully transit the cell and avoid host innate immune sensing.
Collapse
Affiliation(s)
- Guido Papa
- MRC Laboratory of Molecular Biology, Protein & Nucleic Acid DivisionCambridgeUK
| | - Anna Albecka
- MRC Laboratory of Molecular Biology, Protein & Nucleic Acid DivisionCambridgeUK
| | - Donna Mallery
- MRC Laboratory of Molecular Biology, Protein & Nucleic Acid DivisionCambridgeUK
| | - Marina Vaysburd
- MRC Laboratory of Molecular Biology, Protein & Nucleic Acid DivisionCambridgeUK
| | - Nadine Renner
- MRC Laboratory of Molecular Biology, Protein & Nucleic Acid DivisionCambridgeUK
| | - Leo C James
- MRC Laboratory of Molecular Biology, Protein & Nucleic Acid DivisionCambridgeUK
| |
Collapse
|
38
|
Di Nunzio F, Uversky VN, Mouland AJ. Biomolecular condensates: insights into early and late steps of the HIV-1 replication cycle. Retrovirology 2023; 20:4. [PMID: 37029379 PMCID: PMC10081342 DOI: 10.1186/s12977-023-00619-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/16/2023] [Indexed: 04/09/2023] Open
Abstract
A rapidly evolving understanding of phase separation in the biological and physical sciences has led to the redefining of virus-engineered replication compartments in many viruses with RNA genomes. Condensation of viral, host and genomic and subgenomic RNAs can take place to evade the innate immunity response and to help viral replication. Divergent viruses prompt liquid-liquid phase separation (LLPS) to invade the host cell. During HIV replication there are several steps involving LLPS. In this review, we characterize the ability of individual viral and host partners that assemble into biomolecular condensates (BMCs). Of note, bioinformatic analyses predict models of phase separation in line with several published observations. Importantly, viral BMCs contribute to function in key steps retroviral replication. For example, reverse transcription takes place within nuclear BMCs, called HIV-MLOs while during late replication steps, retroviral nucleocapsid acts as a driver or scaffold to recruit client viral components to aid the assembly of progeny virions. Overall, LLPS during viral infections represents a newly described biological event now appreciated in the virology field, that can also be considered as an alternative pharmacological target to current drug therapies especially when viruses become resistant to antiviral treatment.
Collapse
Affiliation(s)
- Francesca Di Nunzio
- Advanced Molecular Virology Unit, Department of Virology, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Andrew J Mouland
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC, H3T 1E2, Canada.
- Department of Microbiology and Immunology, McGill University, Montréal, QC, H3A 2B4, Canada.
- Department of Medicine, McGill University, Montréal, QC, H4A 3J1, Canada.
| |
Collapse
|
39
|
Schirra RT, Dos Santos NFB, Zadrozny KK, Kucharska I, Ganser-Pornillos BK, Pornillos O. A molecular switch modulates assembly and host factor binding of the HIV-1 capsid. Nat Struct Mol Biol 2023; 30:383-390. [PMID: 36759579 PMCID: PMC10023569 DOI: 10.1038/s41594-022-00913-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/20/2022] [Indexed: 02/11/2023]
Abstract
The HIV-1 capsid is a fullerene cone made of quasi-equivalent hexamers and pentamers of the viral CA protein. Typically, quasi-equivalent assembly of viral capsid subunits is controlled by a molecular switch. Here, we identify a Thr-Val-Gly-Gly motif that modulates CA hexamer/pentamer switching by folding into a 310 helix in the pentamer and random coil in the hexamer. Manipulating the coil/helix configuration of the motif allowed us to control pentamer and hexamer formation in a predictable manner, thus proving its function as a molecular switch. Importantly, the switch also remodels the common binding site for host factors that are critical for viral replication and the new ultra-potent HIV-1 inhibitor lenacapavir. This study reveals that a critical assembly element also modulates the post-assembly and viral replication functions of the HIV-1 capsid and provides new insights on capsid function and inhibition.
Collapse
Affiliation(s)
- Randall T Schirra
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Nayara F B Dos Santos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Kaneil K Zadrozny
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Iga Kucharska
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- The Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Barbie K Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| | - Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
40
|
Li YL, Langley CA, Azumaya CM, Echeverria I, Chesarino NM, Emerman M, Cheng Y, Gross JD. The structural basis for HIV-1 Vif antagonism of human APOBEC3G. Nature 2023; 615:728-733. [PMID: 36754086 PMCID: PMC10033410 DOI: 10.1038/s41586-023-05779-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
The APOBEC3 (A3) proteins are host antiviral cellular proteins that hypermutate the viral genome of diverse viral families. In retroviruses, this process requires A3 packaging into viral particles1-4. The lentiviruses encode a protein, Vif, that antagonizes A3 family members by targeting them for degradation. Diversification of A3 allows host escape from Vif whereas adaptations in Vif enable cross-species transmission of primate lentiviruses. How this 'molecular arms race' plays out at the structural level is unknown. Here, we report the cryogenic electron microscopy structure of human APOBEC3G (A3G) bound to HIV-1 Vif, and the hijacked cellular proteins that promote ubiquitin-mediated proteolysis. A small surface explains the molecular arms race, including a cross-species transmission event that led to the birth of HIV-1. Unexpectedly, we find that RNA is a molecular glue for the Vif-A3G interaction, enabling Vif to repress A3G by ubiquitin-dependent and -independent mechanisms. Our results suggest a model in which Vif antagonizes A3G by intercepting it in its most dangerous form for the virus-when bound to RNA and on the pathway to packaging-to prevent viral restriction. By engaging essential surfaces required for restriction, Vif exploits a vulnerability in A3G, suggesting a general mechanism by which RNA binding helps to position key residues necessary for viral antagonism of a host antiviral gene.
Collapse
Affiliation(s)
- Yen-Li Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Caroline A Langley
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Caleigh M Azumaya
- Fred Hutchinson Cancer Center, Electron Microscopy Shared Resource, Seattle, WA, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Quantitative Bioscience Institute, University of California, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Nicholas M Chesarino
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yifan Cheng
- Quantitative Bioscience Institute, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Quantitative Bioscience Institute, University of California, San Francisco, CA, USA.
| |
Collapse
|
41
|
Monette A, Niu M, Maldonado RK, Chang J, Lambert GS, Flanagan JM, Cochrane A, Parent LJ, Mouland AJ. Influence of HIV-1 genomic RNA on the formation of Gag biomolecular condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529585. [PMID: 36865181 PMCID: PMC9980109 DOI: 10.1101/2023.02.23.529585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Biomolecular condensates (BMCs) play an important role in the replication of a growing number of viruses, but many important mechanistic details remain to be elucidated. Previously, we demonstrated that pan-retroviral nucleocapsid (NC) and the HIV-1 pr55 Gag (Gag) proteins phase separate into condensates, and that HIV-1 protease (PR)-mediated maturation of Gag and Gag-Pol precursor proteins yield self-assembling BMCs having HIV-1 core architecture. Using biochemical and imaging techniques, we aimed to further characterize the phase separation of HIV-1 Gag by determining which of its intrinsically disordered regions (IDRs) influence the formation of BMCs and how the HIV-1 viral genomic RNA (gRNA) could influence BMC abundance and size. We found that mutations in the Gag matrix (MA) domain or the NC zinc finger motifs altered condensate number and size in a salt-dependent manner. Gag BMCs were also bimodally influenced by the gRNA, with a condensate-promoting regime at lower protein concentrations and a gel dissolution at higher protein concentrations. Interestingly, incubation of Gag with CD4 + T cell nuclear lysates led to the formation of larger BMCs as compared to much smaller ones observed in the presence of cytoplasmic lysates. These findings suggests that the composition and properties of Gag-containing BMCs may be altered by differential association of host factors in nuclear and cytosolic compartments during virus assembly. This study significantly advances our understanding of HIV-1 Gag BMC formation and provides a foundation for future therapeutic targeting of virion assembly.
Collapse
|
42
|
Roberto de Souza Fonseca R, Valois Laurentino R, Fernando Almeida Machado L, Eduardo Vieira da Silva Gomes C, Oliveira de Alencar Menezes T, Faciola Pessoa O, Branco Oliveira-Filho A, Resque Beckmann Carvalho T, Gabriela Faciola Pessoa de Oliveira P, Brito Tanaka E, Sá Elias Nogueira J, Magno Guimarães D, Newton Carneiro M, Mendes Acatauassú Carneiro P, Ferreira Celestino Junior A, de Almeida Rodrigues P, Augusto Fernandes de Menezes S. HIV Infection and Oral Manifestations: An Update. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Human immunodeficiency virus (HIV) causes a complete depletion of the immune system; it has been a major health issue around the world since the 1980s, and due to the reduction of CD4+ T lymphocytes levels, it can trigger various opportunistic infections. Oral lesions are usually accurate indicators of immunosuppression because these oral manifestations may occur as a result of the compromised immune system caused by HIV infection; therefore, oral lesions might be initial and common clinical features in people living with HIV. So, it is necessary to evaluate and understand the mechanism, prevalence, and risk factors of oral lesions to avoid the increase morbidity among those with oral diseases.
Collapse
|
43
|
Abstract
Lenacapavir (LEN) is a long-acting, highly potent HIV-1 capsid (CA) inhibitor. The evolution of viral variants under the genetic pressure of LEN identified Q67H, N74D, and Q67H/N74D CA substitutions as the main resistance associated mutations (RAMs). Here, we determined high-resolution structures of CA hexamers containing these RAMs in the absence and presence of LEN. Our findings reveal that the Q67H change induces a conformational switch, which adversely affects the inhibitor binding. In the unliganded protein, the His67 side chain adopts the closed conformation by projecting into the inhibitor binding pocket and thereby creating steric hindrance with respect to LEN. Upon the inhibitor binding, the His67 side chain repositions to the open conformation that closely resembles the Gln67 side chain in the WT protein. We propose that the switch from the closed conformation to the open conformation, which is needed to accommodate LEN, accounts for the reduced inhibitor potency with respect to the Q67H CA variant. The N74D CA change results in the loss of a direct hydrogen bond and in induced electrostatic repulsions between CA and LEN. The double Q67H/N74D substitutions exhibited cumulative effects of respective single amino acid changes. An examination of LEN binding kinetics to CA hexamers revealed that Q67H and N74D CA changes adversely influenced the inhibitor binding affinity (KD) by primarily affecting the dissociation rate constant (koff). We used these structural and mechanistic findings to rationally modify LEN. The resulting analog exhibited increased potency against the Q67H/N74D viral variant. Thus, our studies provide a means for the development of second-generation inhibitors with enhanced barriers to resistance.
Collapse
|
44
|
HIV-1 Preintegration Complex Preferentially Integrates the Viral DNA into Nucleosomes Containing Trimethylated Histone 3-Lysine 36 Modification and Flanking Linker DNA. J Virol 2022; 96:e0101122. [PMID: 36094316 PMCID: PMC9517705 DOI: 10.1128/jvi.01011-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
HIV-1 DNA is preferentially integrated into chromosomal hot spots by the preintegration complex (PIC). To understand the mechanism, we measured the DNA integration activity of PICs-extracted from infected cells-and intasomes, biochemically assembled PIC substructures using a number of relevant target substrates. We observed that PIC-mediated integration into human chromatin is preferred compared to genomic DNA. Surprisingly, nucleosomes lacking histone modifications were not preferred integration compared to the analogous naked DNA. Nucleosomes containing the trimethylated histone 3 lysine 36 (H3K36me3), an epigenetic mark linked to active transcription, significantly stimulated integration, but the levels remained lower than the naked DNA. Notably, H3K36me3-modified nucleosomes with linker DNA optimally supported integration mediated by the PIC but not by the intasome. Interestingly, optimal intasome-mediated integration required the cellular cofactor LEDGF. Unexpectedly, LEDGF minimally affected PIC-mediated integration into naked DNA but blocked integration into nucleosomes. The block for the PIC-mediated integration was significantly relieved by H3K36me3 modification. Mapping the integration sites in the preferred substrates revealed that specific features of the nucleosome-bound DNA are preferred for integration, whereas integration into naked DNA was random. Finally, biochemical and genetic studies demonstrate that DNA condensation by the H1 protein dramatically reduces integration, providing further evidence that features inherent to the open chromatin are preferred for HIV-1 integration. Collectively, these results identify the optimal target substrate for HIV-1 integration, report a mechanistic link between H3K36me3 and integration preference, and importantly, reveal distinct mechanisms utilized by the PIC for integration compared to the intasomes. IMPORTANCE HIV-1 infection is dependent on integration of the viral DNA into the host chromosomes. The preintegration complex (PIC) containing the viral DNA, the virally encoded integrase (IN) enzyme, and other viral/host factors carries out HIV-1 integration. HIV-1 integration is not dependent on the target DNA sequence, and yet the viral DNA is selectively inserted into specific "hot spots" of human chromosomes. A growing body of literature indicates that structural features of the human chromatin are important for integration targeting. However, the mechanisms that guide the PIC and enable insertion of the PIC-associated viral DNA into specific hot spots of the human chromosomes are not fully understood. In this study, we describe a biochemical mechanism for the preference of the HIV-1 DNA integration into open chromatin. Furthermore, our study defines a direct role for the histone epigenetic mark H3K36me3 in HIV-1 integration preference and identify an optimal substrate for HIV-1 PIC-mediated viral DNA integration.
Collapse
|
45
|
Wang W, Li Y, Zhang Z, Wei W. Human immunodeficiency virus-1 core: The Trojan horse in virus–host interaction. Front Microbiol 2022; 13:1002476. [PMID: 36106078 PMCID: PMC9465167 DOI: 10.3389/fmicb.2022.1002476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) is the major cause of acquired immunodeficiency syndrome (AIDs) worldwide. In HIV-1 infection, innate immunity is the first defensive line for immune recognition and viral clearance to ensure the normal biological function of the host cell and body health. Under the strong selected pressure generated by the human body over thousands of years, HIV has evolved strategies to counteract and deceive the innate immune system into completing its lifecycle. Recently, several studies have demonstrated that HIV capsid core which is thought to be a protector of the cone structure of genomic RNA, also plays an essential role in escaping innate immunity surveillance. This mini-review summarizes the function of capsid in viral immune evasion, and the comprehensive elucidation of capsid-host cell innate immunity interaction could promote our understanding of HIV-1’s pathogenic mechanism and provide insights for HIV-1 treatment in clinical therapy.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yan Li
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhe Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Wei
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
- *Correspondence: Wei Wei,
| |
Collapse
|
46
|
Monette A, Niu M, Nijhoff Asser M, Gorelick RJ, Mouland AJ. Scaffolding viral protein NC nucleates phase separation of the HIV-1 biomolecular condensate. Cell Rep 2022; 40:111251. [PMID: 36001979 DOI: 10.1016/j.celrep.2022.111251] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Membraneless biomolecular condensates (BMCs) contribute to the replication of a growing number of viruses but remain to be functionally characterized. Previously, we demonstrated that pan-retroviral nucleocapsid (NC) proteins phase separated into condensates regulating virus assembly. Here we discover that intrinsically disordered human immunodeficiency virus-type 1 (HIV-1) core proteins condense with the viral genomic RNA (vRNA) to assemble as BMCs attaining a geometry characteristic of viral reverse transcription complexes. We explore the predisposition, mechanisms, and pharmacologic sensitivity of HIV-1 core BMCs in living cells. HIV-1 vRNA-interacting NC condensates were found to be scaffolds onto which client capsid, reverse transcriptase, and integrase condensates assemble. HIV-1 core BMCs exhibit fundamental characteristics of BMCs and are drug-sensitive. Lastly, protease-mediated maturation of Gag and Gag-Pol precursor proteins yield abundant and visible BMCs in cells. This study redefines HIV-1 core components as fluid BMCs and advances our understanding of the nature of viral cores during ingress.
Collapse
Affiliation(s)
- Anne Monette
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.
| | - Meijuan Niu
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Maya Nijhoff Asser
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada.
| |
Collapse
|
47
|
Yoh SM, Mamede JI, Lau D, Ahn N, Sánchez-Aparicio MT, Temple J, Tuckwell A, Fuchs NV, Cianci GC, Riva L, Curry H, Yin X, Gambut S, Simons LM, Hultquist JF, König R, Xiong Y, García-Sastre A, Böcking T, Hope TJ, Chanda SK. Recognition of HIV-1 capsid by PQBP1 licenses an innate immune sensing of nascent HIV-1 DNA. Mol Cell 2022; 82:2871-2884.e6. [PMID: 35809572 PMCID: PMC9552964 DOI: 10.1016/j.molcel.2022.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/22/2022] [Accepted: 06/07/2022] [Indexed: 12/21/2022]
Abstract
We have previously described polyglutamine-binding protein 1 (PQBP1) as an adapter required for the cyclic GMP-AMP synthase (cGAS)-mediated innate response to the human immunodeficiency virus 1 (HIV-1) and other lentiviruses. Cytoplasmic HIV-1 DNA is a transient and low-abundance pathogen-associated molecular pattern (PAMP), and the mechanism for its detection and verification is not fully understood. Here, we show a two-factor authentication strategy by the innate surveillance machinery to selectively respond to the low concentration of HIV-1 DNA, while distinguishing these species from extranuclear DNA molecules. We find that, upon HIV-1 infection, PQBP1 decorates the intact viral capsid, and this serves as a primary verification step for the viral nucleic acid cargo. As reverse transcription and capsid disassembly initiate, cGAS is recruited to the capsid in a PQBP1-dependent manner. This positions cGAS at the site of PAMP generation and sanctions its response to a low-abundance DNA PAMP.
Collapse
Affiliation(s)
- Sunnie M Yoh
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA.
| | - João I Mamede
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Derrick Lau
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Narae Ahn
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Maria T Sánchez-Aparicio
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joshua Temple
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Andrew Tuckwell
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Nina V Fuchs
- Host-Pathogen Interaction, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Gianguido C Cianci
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Laura Riva
- Calibr, a Division of The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Heather Curry
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Stéphanie Gambut
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lacy M Simons
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Judd F Hultquist
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Renate König
- Host-Pathogen Interaction, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Thomas J Hope
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sumit K Chanda
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
48
|
Müller TG, Zila V, Müller B, Kräusslich HG. Nuclear Capsid Uncoating and Reverse Transcription of HIV-1. Annu Rev Virol 2022; 9:261-284. [PMID: 35704745 DOI: 10.1146/annurev-virology-020922-110929] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
After cell entry, human immunodeficiency virus type 1 (HIV-1) replication involves reverse transcription of the RNA genome, nuclear import of the subviral complex without nuclear envelope breakdown, and integration of the viral complementary DNA into the host genome. Here, we discuss recent evidence indicating that completion of reverse transcription and viral genome uncoating occur in the nucleus rather than in the cytoplasm, as previously thought, and suggest a testable model for nuclear import and uncoating. Multiple recent studies indicated that the cone-shaped capsid, which encases the genome and replication proteins, not only serves as a reaction container for reverse transcription and as a shield from innate immune sensors but also may constitute the elusive HIV-1 nuclear import factor. Rupture of the capsid may be triggered in the nucleus by completion of reverse transcription, by yet-unknown nuclear factors, or by physical damage, and it appears to occur in close temporal and spatial association with the integration process. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Thorsten G Müller
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany;
| | - Vojtech Zila
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany;
| | - Barbara Müller
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany;
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; .,German Center for Infection Research, Heidelberg, Germany
| |
Collapse
|
49
|
Meissner ME, Talledge N, Mansky LM. Molecular Biology and Diversification of Human Retroviruses. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2022; 2:872599. [PMID: 35783361 PMCID: PMC9242851 DOI: 10.3389/fviro.2022.872599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Studies of retroviruses have led to many extraordinary discoveries that have advanced our understanding of not only human diseases, but also molecular biology as a whole. The most recognizable human retrovirus, human immunodeficiency virus type 1 (HIV-1), is the causative agent of the global AIDS epidemic and has been extensively studied. Other human retroviruses, such as human immunodeficiency virus type 2 (HIV-2) and human T-cell leukemia virus type 1 (HTLV-1), have received less attention, and many of the assumptions about the replication and biology of these viruses are based on knowledge of HIV-1. Existing comparative studies on human retroviruses, however, have revealed that key differences between these viruses exist that affect evolution, diversification, and potentially pathogenicity. In this review, we examine current insights on disparities in the replication of pathogenic human retroviruses, with a particular focus on the determinants of structural and genetic diversity amongst HIVs and HTLV.
Collapse
Affiliation(s)
- Morgan E. Meissner
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| | - Nathaniel Talledge
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| |
Collapse
|
50
|
Troyano-Hernáez P, Reinosa R, Holguín Á. HIV Capsid Protein Genetic Diversity Across HIV-1 Variants and Impact on New Capsid-Inhibitor Lenacapavir. Front Microbiol 2022; 13:854974. [PMID: 35495642 PMCID: PMC9039614 DOI: 10.3389/fmicb.2022.854974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
The HIV p24 capsid protein has an essential, structural, and functional role in the viral replication cycle, being an interesting target for vaccine design, diagnostic tests, and new antiretroviral drugs (ARVs). The HIV-1 variability poses a challenge for the accuracy and efficiency of diagnostic and treatment tools. This study analyzes p24 diversity among HIV-1 variants and within its secondary structure in HIV-1 M, O, P, and N groups. All available HIV-1 p24 nucleotide sequences were downloaded from the Los Alamos HIV Sequence Database, selecting 23,671 sequences belonging to groups O, N, P, and M (9 subtypes, 7 sub-sub types, and 109 circulating recombinant forms or CRFs). Using a bioinformatics tool developed in our laboratory (EpiMolBio program), we analyzed the amino acid conservation compared to the HXB2 subtype B reference sequence and the V-markers, or amino acid changes that were specific for each variant with at least 10 available sequences. We inferred the p24 consensus sequence for HIV-1 and for each group to analyze the overall conservation in p24 main structural regions, reporting the percentage of substitutions per variant affecting the capsid assembly and molecule-binding, including those associated with resistance to the new capsid-inhibitor lenacapavir, and the key residues involved in lenacapavir-p24 interaction, according to the bibliography. Although the overall structure of p24 was highly conserved, the conservation in the secondary structure varied between HIV-1 variants and the type of secondary structure. All HIV-1 variants presented >80% amino acid conservation vs. HXB2 reference sequence, except for group M sub-subtype F1 (69.27%). Mutants affecting the capsid assembly or lenacapavir capsid-binding were found in <1% of the p24 consensus sequence. Our study reports the HIV-1 variants carrying 14 unique single V-markers in 9/38 group M variants and the level of p24 conservation in each secondary structure region among the 4 HIV-1 groups and group M variants, revealing no natural resistance to lenacapavir in any HIV-1 variant. We present a thorough analysis of p24 variability among all HIV-1 variants circulating to date. Since p24 genetic variability can impact the viral replication cycle and the efficacy of new p24-based diagnostic, therapeutic, and vaccine strategies, conservation studies must consider all HIV-1 variants circulating worldwide.
Collapse
Affiliation(s)
- Paloma Troyano-Hernáez
- HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), Madrid, Spain
| | - Roberto Reinosa
- HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), Madrid, Spain
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), Madrid, Spain
| |
Collapse
|