1
|
Vránová L, Poláková I, Vaníková Š, Saláková M, Musil J, Vaníčková M, Vencálek O, Holub M, Bohoněk M, Řezáč D, Dresler J, Tachezy R, Šmahel M. Multiparametric analysis of the specific immune response against SARS-CoV-2. Infect Dis (Lond) 2024; 56:851-869. [PMID: 38805304 DOI: 10.1080/23744235.2024.2358379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/24/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND SARS-CoV-2, which causes COVID-19, has killed more than 7 million people worldwide. Understanding the development of postinfectious and postvaccination immune responses is necessary for effective treatment and the introduction of appropriate antipandemic measures. OBJECTIVES We analysed humoral and cell-mediated anti-SARS-CoV-2 immune responses to spike (S), nucleocapsid (N), membrane (M), and open reading frame (O) proteins in individuals collected up to 1.5 years after COVID-19 onset and evaluated immune memory. METHODS Peripheral blood mononuclear cells and serum were collected from patients after COVID-19. Sampling was performed in two rounds: 3-6 months after infection and after another year. Most of the patients were vaccinated between samplings. SARS-CoV-2-seronegative donors served as controls. ELISpot assays were used to detect SARS-CoV-2-specific T and B cells using peptide pools (S, NMO) or recombinant proteins (rS, rN), respectively. A CEF peptide pool consisting of selected viral epitopes was applied to assess the antiviral T-cell response. SARS-CoV-2-specific antibodies were detected via ELISA and a surrogate virus neutralisation assay. RESULTS We confirmed that SARS-CoV-2 infection induces the establishment of long-term memory IgG+ B cells and memory T cells. We also found that vaccination enhanced the levels of anti-S memory B and T cells. Multivariate comparison also revealed the benefit of repeated vaccination. Interestingly, the T-cell response to CEF was lower in patients than in controls. CONCLUSION This study supports the importance of repeated vaccination for enhancing immunity and suggests a possible long-term perturbation of the overall antiviral immune response caused by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lucie Vránová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ingrid Poláková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Šárka Vaníková
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Martina Saláková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Musil
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Marie Vaníčková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ondřej Vencálek
- Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Michal Holub
- Department of Infectious Diseases, First Faculty of Medicine, Military University Hospital Prague and Charles University, Prague, Czech Republic
| | - Miloš Bohoněk
- Department of Hematology and Blood Transfusion, Military University Hospital Prague, Prague, Czech Republic
- Faculty of Biomedical Engineering, Czech Technical University, Prague, Czech Republic
| | - David Řezáč
- Department of Infectious Diseases, First Faculty of Medicine, Military University Hospital Prague and Charles University, Prague, Czech Republic
| | - Jiří Dresler
- Military Health Institute, Military Medical Agency, Prague, Czech Republic
| | - Ruth Tachezy
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Michal Šmahel
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
2
|
Wallace R, Bliss CM, Parker AL. The Immune System-A Double-Edged Sword for Adenovirus-Based Therapies. Viruses 2024; 16:973. [PMID: 38932265 PMCID: PMC11209478 DOI: 10.3390/v16060973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Pathogenic adenovirus (Ad) infections are widespread but typically mild and transient, except in the immunocompromised. As vectors for gene therapy, vaccine, and oncology applications, Ad-based platforms offer advantages, including ease of genetic manipulation, scale of production, and well-established safety profiles, making them attractive tools for therapeutic development. However, the immune system often poses a significant challenge that must be overcome for adenovirus-based therapies to be truly efficacious. Both pre-existing anti-Ad immunity in the population as well as the rapid development of an immune response against engineered adenoviral vectors can have detrimental effects on the downstream impact of an adenovirus-based therapeutic. This review focuses on the different challenges posed, including pre-existing natural immunity and anti-vector immunity induced by a therapeutic, in the context of innate and adaptive immune responses. We summarise different approaches developed with the aim of tackling these problems, as well as their outcomes and potential future applications.
Collapse
Affiliation(s)
- Rebecca Wallace
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
| | - Carly M. Bliss
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Alan L. Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
3
|
Apoorva, Singh SK. A tale of endurance: bats, viruses and immune dynamics. Future Microbiol 2024; 19:841-856. [PMID: 38648093 PMCID: PMC11382704 DOI: 10.2217/fmb-2023-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/09/2024] [Indexed: 04/25/2024] Open
Abstract
The emergence of highly zoonotic viral infections has propelled bat research forward. The viral outbreaks including Hendra virus, Nipah virus, Marburg virus, Ebola virus, Rabies virus, Middle East respiratory syndrome coronavirus, SARS-CoV and the latest SARS-CoV-2 have been epidemiologically linked to various bat species. Bats possess unique immunological characteristics that allow them to serve as a potential viral reservoir. Bats are also known to protect themselves against viruses and maintain their immunity. Therefore, there is a need for in-depth understanding into bat-virus biology to unravel the major factors contributing to the coexistence and spread of viruses.
Collapse
Affiliation(s)
- Apoorva
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sunit Kumar Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
- Dr. B R Ambedkar Center for Biomedical Research, University of Delhi (North Campus), New Delhi, 110007, India
| |
Collapse
|
4
|
Croucher NJ. Immune interface interference vaccines: An evolution-informed approach to anti-bacterial vaccine design. Microb Biotechnol 2024; 17:e14446. [PMID: 38536702 PMCID: PMC10970203 DOI: 10.1111/1751-7915.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 10/17/2024] Open
Abstract
Developing protein-based vaccines against bacteria has proved much more challenging than producing similar immunisations against viruses. Currently, anti-bacterial vaccines are designed using methods based on reverse vaccinology. These identify broadly conserved, immunogenic proteins using a combination of genomic and high-throughput laboratory data. While this approach has successfully generated multiple rationally designed formulations that show promising immunogenicity in animal models, few have been licensed. The difficulty of inducing protective immunity in humans with such vaccines mirrors the ability of many bacteria to recolonise individuals despite recognition by natural polyvalent antibody repertoires. As bacteria express too many antigens to evade all adaptive immune responses through mutation, they must instead inhibit the efficacy of such host defences through expressing surface structures that interface with the immune system. Therefore, 'immune interface interference' (I3) vaccines that target these features should synergistically directly target bacteria and prevent them from inhibiting responses to other surface antigens. This approach may help us understand the efficacy of the two recently introduced immunisations against serotype B meningococci, which both target the Factor H-binding protein (fHbp) that inhibits complement deposition on the bacterial surface. Therefore, I3 vaccine designs may help overcome the current challenges of developing protein-based vaccines to prevent bacterial infections.
Collapse
Affiliation(s)
- Nicholas J. Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public HealthImperial College LondonLondonUK
| |
Collapse
|
5
|
Souan L, Abdel-Razeq H, Al Zughbieh M, Al Badr S, Sughayer MA. Comparative Assessment of the Kinetics of Cellular and Humoral Immune Responses to COVID-19 Vaccination in Cancer Patients. Viruses 2023; 15:1439. [PMID: 37515127 PMCID: PMC10383486 DOI: 10.3390/v15071439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE The kinetics of immune responses to various SARS-CoV-2 vaccines in cancer patients were investigated. METHODS In total, 57 cancer patients who received BNT162b2-RNA or BBIBP-CorV vaccines were enrolled. Cellular and humoral immunity were assessed at three-time points, before the first vaccine dose and 14-21 days after the first and second doses. Chemiluminescent microparticle immunoassay was used to evaluate SARS-CoV-2 anti-spike IgG response, and QuantiFERON® SARS-CoV-2 kit assessed T-cell response. RESULTS Data showed that cancer patients' CD4+ and CD8+ T cell-median IFN-γ secretion of SARS-CoV-2 antigens increased after the first and second vaccine doses (p = 0.027 and p = 0.042). BNT162b2 vaccinees had significantly higher IFN-γ levels to CD4+ and CD8+ T cell epitopes than BBIBP-CorV vaccinees (p = 0.028). There was a positive correlation between IgG antibody titer and T cell response regardless of vaccine type (p < 0.05). CONCLUSIONS This study is one of the first to investigate cellular and humoral immune responses to SARS-CoV-2 immunization in cancer patients on active therapy after each vaccine dose. COVID-19 immunizations helped cancer patients develop an effective immune response. Understanding the cellular and humoral immune response to COVID-19 in cancer patients undergoing active treatment is necessary to improve vaccines and avoid future SARS pandemics.
Collapse
Affiliation(s)
- Lina Souan
- Laboratory Medicine, Department of Pathology, King Hussein Cancer Center, Amman 11941, Jordan
| | | | - Muna Al Zughbieh
- Laboratory Medicine, Department of Pathology, King Hussein Cancer Center, Amman 11941, Jordan
| | - Sara Al Badr
- Laboratory Medicine, Department of Pathology, King Hussein Cancer Center, Amman 11941, Jordan
| | - Maher A Sughayer
- Laboratory Medicine, Department of Pathology, King Hussein Cancer Center, Amman 11941, Jordan
| |
Collapse
|
6
|
Jeanne PV, McLamb F, Feng Z, Griffin L, Gong S, Shea D, Szuch MA, Scott S, Gersberg RM, Bozinovic G. Locomotion and brain gene expression exhibit sex-specific non-monotonic dose-response to HFPO-DA during Drosophila melanogaster lifespan. Neurotoxicology 2023; 96:207-221. [PMID: 37156305 DOI: 10.1016/j.neuro.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Legacy per- and polyfluoroalkyl substances (PFAS), known for their environmental persistence and bio-accumulative properties, have been phased out in the U.S. due to public health concerns. A newer polymerization aid used in the manufacture of some fluoropolymers, hexafluoropropylene oxide-dimer acid (HFPO-DA), has lower reported bioaccumulation and toxicity, but is a potential neurotoxicant implicated in dopaminergic neurodegeneration. OBJECTIVE We investigated HFPO-DA's bio-accumulative potential and sex-specific effects on lifespan, locomotion, and brain gene expression in fruit flies. METHODS We quantified bioaccumulation of HFPO-DA in fruit flies exposed to 8.7×104µg/L of HFPO-DA in the fly media for 14 days via UHPLC-MS. Long-term effect on lifespan was determined by exposing both sexes to 8.7×102 - 8.7×105µg/L of HFPO-DA in media. Locomotion was measured following 3, 7, and 14 days of exposures at 8.7×101 - 8.7×105µg/L of HFPO-DA in media, and high-throughput 3'-end RNA-sequencing was used to quantify gene expression in fly brains across the same time points. RESULTS Bioaccumulation of HFPO-DA in fruit flies was not detected. HFPO-DA-induced effects on lifespan, locomotion, and brain gene expression, and lowest adverse effect level (LOAEL) showed sexually dimorphic patterns. Locomotion scores significantly decreased in at least one dose at all time points for females and only at 3-day exposure for males, while brain gene expression exhibited non-monotonic dose-response. Differentially expressed genes correlated to locomotion scores revealed sex-specific numbers of positively and negatively correlated genes per functional category. CONCLUSION Although HFPO-DA effects on locomotion and survival were significant at doses higher than the US EPA reference dose, the brain transcriptomic profiling reveals sex-specific changes and neurological molecular targets; gene enrichments highlight disproportionately affected categories, including immune response: female-specific co-upregulation suggests potential neuroinflammation. Consistent sex-specific exposure effects necessitate blocking for sex in experimental design during HFPO-DA risk assessment.
Collapse
Affiliation(s)
- P Vu Jeanne
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; San Diego State University, Graduate School of Public Health, San Diego, CA, USA; University of California, San Diego, Division of Extended Studies, La Jolla, CA, USA
| | - Flannery McLamb
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; University of California, San Diego, Division of Extended Studies, La Jolla, CA, USA
| | - Zuying Feng
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; San Diego State University, Graduate School of Public Health, San Diego, CA, USA
| | - Lindsey Griffin
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; University of California, San Diego, Division of Extended Studies, La Jolla, CA, USA
| | - Sylvia Gong
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; San Diego State University, Graduate School of Public Health, San Diego, CA, USA; University of California, San Diego, Division of Extended Studies, La Jolla, CA, USA
| | | | - Mary A Szuch
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
| | - Savannah Scott
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
| | - Richard M Gersberg
- San Diego State University, Graduate School of Public Health, San Diego, CA, USA
| | - Goran Bozinovic
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; San Diego State University, Graduate School of Public Health, San Diego, CA, USA; University of California, San Diego, School of Biological Sciences, La Jolla, CA, USA.
| |
Collapse
|
7
|
Hülskötter K, Lühder F, Leitzen E, Flügel A, Baumgärtner W. CD28-signaling can be partially compensated in CD28-knockout mice but is essential for virus elimination in a murine model of multiple sclerosis. Front Immunol 2023; 14:1105432. [PMID: 37090733 PMCID: PMC10113529 DOI: 10.3389/fimmu.2023.1105432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
The intracerebral infection of mice with Theiler’s murine encephalomyelitis virus (TMEV) represents a well-established animal model for multiple sclerosis (MS). Because CD28 is the main co-stimulatory molecule for the activation of T cells, we wanted to investigate its impact on the course of the virus infection as well as on a potential development of autoimmunity as seen in susceptible mouse strains for TMEV. In the present study, 5 weeks old mice on a C57BL/6 background with conventional or tamoxifen-induced, conditional CD28-knockout were infected intracerebrally with TMEV-BeAn. In the acute phase at 14 days post TMEV-infection (dpi), both CD28-knockout strains showed virus spread within the central nervous system (CNS) as an uncommon finding in C57BL/6 mice, accompanied by histopathological changes such as reduced microglial activation. In addition, the conditional, tamoxifen-induced CD28-knockout was associated with acute clinical deterioration and weight loss, which limited the observation period for this mouse strain to 14 dpi. In the chronic phase (42 and 147 dpi) of TMEV-infection, surprisingly only 33% of conventional CD28-knockout mice showed chronic TMEV-infection with loss of motor function concomitant with increased spinal cord inflammation, characterized by T- and B cell infiltration, microglial activation and astrogliosis at 33-42 dpi. Therefore, the clinical outcome largely depends on the time point of the CD28-knockout during development of the immune system. Whereas a fatal clinical outcome can already be observed in the early phase during TMEV-infection for conditional, tamoxifen-induced CD28-knockout mice, only one third of conventional CD28-knockout mice develop clinical symptoms later, accompanied by ongoing inflammation and an inability to clear the virus. However, the development of autoimmunity could not be observed in this C57BL/6 TMEV model irrespective of the time point of CD28 deletion.
Collapse
Affiliation(s)
- Kirsten Hülskötter
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research (IMSF), University Medical Center Goettingen, Goettingen, Germany
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research (IMSF), University Medical Center Goettingen, Goettingen, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- *Correspondence: Wolfgang Baumgärtner,
| |
Collapse
|
8
|
Kogevinas M, Karachaliou M, Espinosa A, Aguilar R, Castaño-Vinyals G, Garcia-Aymerich J, Carreras A, Cortés B, Pleguezuelos V, Papantoniou K, Rubio R, Jiménez A, Vidal M, Serra P, Parras D, Santamaría P, Izquierdo L, Cirach M, Nieuwenhuijsen M, Dadvand P, Straif K, Moncunill G, de Cid R, Dobaño C, Tonne C. Long-Term Exposure to Air Pollution and COVID-19 Vaccine Antibody Response in a General Population Cohort (COVICAT Study, Catalonia). ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:47001. [PMID: 37017430 PMCID: PMC10075082 DOI: 10.1289/ehp11989] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/05/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Ambient air pollution has been associated with COVID-19 disease severity and antibody response induced by infection. OBJECTIVES We examined the association between long-term exposure to air pollution and vaccine-induced antibody response. METHODS This study was nested in an ongoing population-based cohort, COVICAT, the GCAT-Genomes for Life cohort, in Catalonia, Spain, with multiple follow-ups. We drew blood samples in 2021 from 1,090 participants of 2,404 who provided samples in 2020, and we included 927 participants in this analysis. We measured immunoglobulin M (IgM), IgG, and IgA antibodies against five viral-target antigens, including receptor-binding domain (RBD), spike-protein (S), and segment spike-protein (S2) triggered by vaccines available in Spain. We estimated prepandemic (2018-2019) exposure to fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)], nitrogen dioxide (NO2), black carbon (BC), and ozone (O3) using Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE) models. We adjusted estimates for individual- and area-level covariates, time since vaccination, and vaccine doses and type and stratified by infection status. We used generalized additive models to explore the relationship between air pollution and antibodies according to days since vaccination. RESULTS Among vaccinated persons not infected by SARS-CoV-2 (n=632), higher prepandemic air pollution levels were associated with a lower vaccine antibody response for IgM (1 month post vaccination) and IgG. Percentage change in geometric mean IgG levels per interquartile range of PM2.5 (1.7 μg/m3) were -8.1 (95% CI: -15.9, 0.4) for RBD, -9.9 (-16.2, -3.1) for S, and -8.4 (-13.5, -3.0) for S2. We observed a similar pattern for NO2 and BC and an inverse pattern for O3. Differences in IgG levels by air pollution levels persisted with time since vaccination. We did not observe an association of air pollution with vaccine antibody response among participants with prior infection (n=295). DISCUSSION Exposure to air pollution was associated with lower COVID-19 vaccine antibody response. The implications of this association on the risk of breakthrough infections require further investigation. https://doi.org/10.1289/EHP11989.
Collapse
Affiliation(s)
- Manolis Kogevinas
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | | | - Ana Espinosa
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Ruth Aguilar
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Gemma Castaño-Vinyals
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Judith Garcia-Aymerich
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Anna Carreras
- Genomes for Life-GCAT lab Group, Germans Trias i Pujol Research Institute, Badalona, Spain
| | - Beatriz Cortés
- Genomes for Life-GCAT lab Group, Germans Trias i Pujol Research Institute, Badalona, Spain
| | | | - Kyriaki Papantoniou
- Department of Epidemiology, Center of Public Health, Medical University of Vienna, Vienna, Austria
| | - Rocío Rubio
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Alfons Jiménez
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
| | - Marta Vidal
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Pau Serra
- Institut d’Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Daniel Parras
- Institut d’Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Pere Santamaría
- Institut d’Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luis Izquierdo
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Enfermedades Infecciosas, Barcelona, Spain
| | - Marta Cirach
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Payam Dadvand
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Kurt Straif
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Gemma Moncunill
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Enfermedades Infecciosas, Barcelona, Spain
| | - Rafael de Cid
- Genomes for Life-GCAT lab Group, Germans Trias i Pujol Research Institute, Badalona, Spain
| | - Carlota Dobaño
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Enfermedades Infecciosas, Barcelona, Spain
| | - Cathryn Tonne
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
9
|
Petrellis G, Piedfort O, Katsandegwaza B, Dewals BG. Parasitic worms affect virus coinfection: a mechanistic overview. Trends Parasitol 2023; 39:358-372. [PMID: 36935340 DOI: 10.1016/j.pt.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/19/2023]
Abstract
Helminths are parasitic worms that coevolve with their host, usually resulting in long-term persistence through modulating host immunity. The multifarious mechanisms altering the immune system induced by helminths have significant implications on the control of coinfecting pathogens such as viruses. Here, we explore the recent literature to highlight the main immune alterations and mechanisms that affect the control of viral coinfection. Insights from these mechanisms are valuable in the understanding of clinical observations in helminth-prevalent areas and in the design of new therapeutic and vaccination strategies to control viral diseases.
Collapse
Affiliation(s)
- Georgios Petrellis
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium
| | - Ophélie Piedfort
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium
| | - Brunette Katsandegwaza
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium
| | - Benjamin G Dewals
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium.
| |
Collapse
|
10
|
Debie Y, Van Audenaerde JRM, Vandamme T, Croes L, Teuwen LA, Verbruggen L, Vanhoutte G, Marcq E, Verheggen L, Le Blon D, Peeters B, Goossens ME, Pannus P, Ariën KK, Anguille S, Janssens A, Prenen H, Smits ELJ, Vulsteke C, Lion E, Peeters M, van Dam PA. Humoral and Cellular Immune Responses against SARS-CoV-2 after Third Dose BNT162b2 following Double-Dose Vaccination with BNT162b2 versus ChAdOx1 in Patients with Cancer. Clin Cancer Res 2023; 29:635-646. [PMID: 36341493 DOI: 10.1158/1078-0432.ccr-22-2185] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Patients with cancer display reduced humoral responses after double-dose COVID-19 vaccination, whereas their cellular response is more comparable with that in healthy individuals. Recent studies demonstrated that a third vaccination dose boosts these immune responses, both in healthy people and patients with cancer. Because of the availability of many different COVID-19 vaccines, many people have been boosted with a different vaccine from the one used for double-dose vaccination. Data on such alternative vaccination schedules are scarce. This prospective study compares a third dose of BNT162b2 after double-dose BNT162b2 (homologous) versus ChAdOx1 (heterologous) vaccination in patients with cancer. EXPERIMENTAL DESIGN A total of 442 subjects (315 patients and 127 healthy) received a third dose of BNT162b2 (230 homologous vs. 212 heterologous). Vaccine-induced adverse events (AE) were captured up to 7 days after vaccination. Humoral immunity was assessed by SARS-CoV-2 anti-S1 IgG antibody levels and SARS-CoV-2 50% neutralization titers (NT50) against Wuhan and BA.1 Omicron strains. Cellular immunity was examined by analyzing CD4+ and CD8+ T-cell responses against SARS-CoV-2-specific S1 and S2 peptides. RESULTS Local AEs were more common after heterologous boosting. SARS-CoV-2 anti-S1 IgG antibody levels did not differ significantly between homologous and heterologous boosted subjects [GMT 1,755.90 BAU/mL (95% CI, 1,276.95-2,414.48) vs. 1,495.82 BAU/mL (95% CI, 1,131.48-1,977.46)]. However, homologous-boosted subjects show significantly higher NT50 values against BA.1 Omicron. Subjects receiving heterologous boosting demonstrated increased spike-specific CD8+ T cells, including higher IFNγ and TNFα levels. CONCLUSIONS In patients with cancer who received double-dose ChAdOx1, a third heterologous dose of BNT162b2 was able to close the gap in antibody response.
Collapse
Affiliation(s)
- Yana Debie
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Jonas R M Van Audenaerde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Timon Vandamme
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Lieselot Croes
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,GeIntegreerd Kankercentrum Gent (IKG), AZ Maria Middelares, Gent, Belgium
| | - Laure-Anne Teuwen
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Lise Verbruggen
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Greetje Vanhoutte
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Elly Marcq
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Lisa Verheggen
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Debbie Le Blon
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Bart Peeters
- Department of Laboratory Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Maria E Goossens
- SD Infectious Diseases in Humans, Service Immune response, Sciensano, Brussels, Belgium
| | - Pieter Pannus
- SD Infectious Diseases in Humans, Service Immune response, Sciensano, Brussels, Belgium
| | - Kevin K Ariën
- Virology Unit, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sébastien Anguille
- Laboratory of Experimental Hematology (LEH), Vaxinfectio, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,Division of Hematology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Annelies Janssens
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Hans Prenen
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Evelien L J Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Christof Vulsteke
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,GeIntegreerd Kankercentrum Gent (IKG), AZ Maria Middelares, Gent, Belgium
| | - Eva Lion
- Laboratory of Experimental Hematology (LEH), Vaxinfectio, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Marc Peeters
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Peter A van Dam
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
11
|
Costa B, Vale N. Modulating Immune Response in Viral Infection for Quantitative Forecasts of Drug Efficacy. Pharmaceutics 2023; 15:pharmaceutics15010167. [PMID: 36678799 PMCID: PMC9867121 DOI: 10.3390/pharmaceutics15010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
The antiretroviral drug, the total level of viral production, and the effectiveness of immune responses are the main topics of this review because they are all dynamically interrelated. Immunological and viral processes interact in extremely complex and non-linear ways. For reliable analysis and quantitative forecasts that may be used to follow the immune system and create a disease profile for each patient, mathematical models are helpful in characterizing these non-linear interactions. To increase our ability to treat patients and identify individual differences in disease development, immune response profiling might be useful. Identifying which patients are moving from mild to severe disease would be more beneficial using immune system parameters. Prioritize treatments based on their inability to control the immune response and prevent T cell exhaustion. To increase treatment efficacy and spur additional research in this field, this review intends to provide examples of the effects of modelling immune response in viral infections, as well as the impact of pharmaceuticals on immune response.
Collapse
Affiliation(s)
- Bárbara Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
12
|
Li SC, Kabeer MH. Caveolae-Mediated Extracellular Vesicle (CMEV) Signaling of Polyvalent Polysaccharide Vaccination: A Host-Pathogen Interface Hypothesis. Pharmaceutics 2022; 14:pharmaceutics14122653. [PMID: 36559147 PMCID: PMC9784826 DOI: 10.3390/pharmaceutics14122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/22/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
We published a study showing that improvement in response to splenectomy associated defective, in regards to the antibody response to Pneumovax® 23 (23-valent polysaccharides, PPSV23), can be achieved by splenocyte reinfusion. This study triggered a debate on whether and how primary and secondary immune responses occur based on humoral antibody responses to the initial vaccination and revaccination. The anti-SARS-CoV-2 vaccine sheds new light on the interpretation of our previous data. Here, we offer an opinion on the administration of the polyvalent polysaccharide vaccine (PPSV23), which appears to be highly relevant to the primary vaccine against SARS-CoV-2 and its booster dose. Thus, we do not insist this is a secondary immune response but an antibody response, nonetheless, as measured through IgG titers after revaccination. However, we contend that we are not sure if these lower but present IgG levels against pneumococcal antigens are clinically protective or are equally common in all groups because of the phenomenon of "hyporesponsiveness" seen after repeated polysaccharide vaccine challenge. We review the literature and propose a new mechanism-caveolae memory extracellular vesicles (CMEVs)-by which polysaccharides mediate prolonged and sustained immune response post-vaccination. We further delineate and explain the data sets to suggest that the dual targets on both Cav-1 and SARS-CoV-2 spike proteins may block the viral entrance and neutralize viral load, which minimizes the immune reaction against viral attacks and inflammatory responses. Thus, while presenting our immunological opinion, we answer queries and responses made by readers to our original statements published in our previous work and propose a hypothesis for all vaccination strategies, i.e., caveolae-mediated extracellular vesicle-mediated vaccine memory.
Collapse
Affiliation(s)
- Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children’s Research Institute, Children’s Hospital of Orange County, 1201 West La Veta Ave., Orange, CA 92868-3874, USA
- Department of Neurology, University of California-Irvine School of Medicine, 200 S Manchester Ave. Ste 206, Orange, CA 92868, USA
- Correspondence: ; Tel.: +1-714-509-4964
| | - Mustafa H. Kabeer
- Division of Pediatric General and Thoracic Surgery, CHOC Children’s Hospital, 1201 West La Veta Ave., Orange, CA 92868, USA
- Department of Surgery, University of California-Irvine School of Medicine, 333 City Blvd. West, Suite 700, Orange, CA 92868, USA
| |
Collapse
|
13
|
Jaago M, Rähni A, Pupina N, Pihlak A, Sadam H, Tuvikene J, Avarlaid A, Planken A, Planken M, Haring L, Vasar E, Baćević M, Lambert F, Kalso E, Pussinen P, Tienari PJ, Vaheri A, Lindholm D, Timmusk T, Ghaemmaghami AM, Palm K. Differential patterns of cross-reactive antibody response against SARS-CoV-2 spike protein detected for chronically ill and healthy COVID-19 naïve individuals. Sci Rep 2022; 12:16817. [PMID: 36207326 PMCID: PMC9540097 DOI: 10.1038/s41598-022-20849-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Immunity to previously encountered viruses can alter response to unrelated pathogens. We reasoned that similar mechanism may also involve SARS-CoV-2 and thereby affect the specificity and the quality of the immune response against the virus. Here, we employed high-throughput next generation phage display method to explore the link between antibody immune response to previously encountered antigens and spike (S) glycoprotein. By profiling the antibody response in COVID-19 naïve individuals with a diverse clinical history (including cardiovascular, neurological, or oncological diseases), we identified 15 highly antigenic epitopes on spike protein that showed cross-reactivity with antigens of seasonal, persistent, latent or chronic infections from common human viruses. We observed varying degrees of cross-reactivity of different viral antigens with S in an epitope-specific manner. The data show that pre-existing SARS-CoV-2 S1 and S2 cross-reactive serum antibody is readily detectable in pre-pandemic cohort. In the severe COVID-19 cases, we found differential antibody response to the 15 defined antigenic and cross-reactive epitopes on spike. We also noted that despite the high mutation rates of Omicron (B.1.1.529) variants of SARS-CoV-2, some of the epitopes overlapped with the described mutations. Finally, we propose that the resolved epitopes on spike if targeted by re-called antibody response from SARS-CoV-2 infections or vaccinations can function in chronically ill COVID-19 naïve/unvaccinated individuals as immunogenic targets to boost antibodies augmenting the chronic conditions. Understanding the relationships between prior antigen exposure at the antibody epitope level and the immune response to subsequent infections with viruses from a different strain is paramount to guiding strategies to exit the COVID-19 pandemic.
Collapse
Affiliation(s)
- Mariliis Jaago
- Protobios LLC, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Annika Rähni
- Protobios LLC, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | | | - Helle Sadam
- Protobios LLC, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Jürgen Tuvikene
- Protobios LLC, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- DXLabs LLC, Tallinn, Estonia
| | - Annela Avarlaid
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Anu Planken
- North Estonia Medical Centre Foundation, Tallinn, Estonia
| | - Margus Planken
- North Estonia Medical Centre Foundation, Tallinn, Estonia
| | - Liina Haring
- Institute of Clinical Medicine, Psychiatry Clinic of Tartu University Hospital, University of Tartu, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Miljana Baćević
- Dental Biomaterial Research Unit (d-BRU), Faculty of Medicine, University of Liege, Liege, Belgium
| | - France Lambert
- Department of Periodontology and Oral Surgery, Faculty of Medicine, University of Liege, Liege, Belgium
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital, Helsinki, Finland
- SleepWell Research Programme, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Pirkko Pussinen
- Oral and Maxillofacial Diseases, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Pentti J Tienari
- Translational Immunology Research Program, Department of Neurology, Neurocenter, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Tõnis Timmusk
- Protobios LLC, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Amir M Ghaemmaghami
- Immunology and Immuno-Bioengineering Group, School of Life Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
14
|
Weinberg M, Yovel Y. Revising the paradigm: Are bats really pathogen reservoirs or do they possess an efficient immune system? iScience 2022; 25:104782. [PMID: 35982789 PMCID: PMC9379578 DOI: 10.1016/j.isci.2022.104782] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While bats are often referred to as reservoirs of viral pathogens, a meta-analysis of the literature reveals many cases in which there is not enough evidence to claim so. In many cases, bats are able to confront viruses, recover, and remain immune by developing a potent titer of antibodies, often without becoming a reservoir. In other cases, bats might have carried an ancestral virus that at some time point might have mutated into a human pathogen. Moreover, bats exhibit a balanced immune response against viruses that have evolved over millions of years. Using genomic tools, it is now possible to obtain a deeper understanding of that unique immune system and its variability across the order Chiroptera. We conclude, that with the exception of a few viruses, bats pose little zoonotic danger to humans and that they operate a highly efficient anti-inflammatory response that we should strive to understand.
Collapse
Affiliation(s)
- Maya Weinberg
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Corresponding author
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
15
|
Abstract
AbstractUpper respiratory tract infections (“common cold”) are the most common acute illnesses in elite athletes. Numerous studies on exercise immunology have proposed that intense exercise may increase susceptibility to respiratory infections. Virological data to support that view are sparse, and several fundamental questions remain. Immunity to respiratory viral infections is highly complex, and there is a lack of evidence that minor short- or long-term alterations in immunity in elite athletes have clinical implications. The degree to which athletes are infected by respiratory viruses is unclear. During major sport events, athletes are at an increased risk of symptomatic infections caused by the same viruses as those in the general population. The symptoms are usually mild and self-limiting. It is anecdotally known that athletes commonly exercise and compete while having a respiratory viral infection; there are no virological studies to suggest that such activity would affect either the illness or the performance. The risk of myocarditis exists. Which simple mitigation procedures are crucial for effective control of seasonal respiratory viral infections is not known.
Collapse
|
16
|
Montano M, Landay A, Perkins M, Holstad M, Pallikkuth S, Pahwa S. HIV and Aging in the Era of ART and COVID-19: Symposium Overview. J Acquir Immune Defic Syndr 2022; 89:S3-S9. [PMID: 35015739 PMCID: PMC8751291 DOI: 10.1097/qai.0000000000002837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Monty Montano
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Boston Pepper Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- HU CFAR HIV and Aging SWG, Harvard Medical School, Cambridge, MA
| | - Alan Landay
- Microbial Pathogens and Immunity, Internal Medicine, Rush University Medical Center, Chicago, IL
| | - Molly Perkins
- Division of General and Geriatric Medicine, Wesley Woods Health Center, Emory University School of Medicine, Atlanta, GA
| | - Marcia Holstad
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL; and
- Department of Microbiology and Immunology, Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL; and
- Department of Microbiology and Immunology, Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
17
|
Wang H, Zheng Y, Huang J, Li J. Mitophagy in Antiviral Immunity. Front Cell Dev Biol 2021; 9:723108. [PMID: 34540840 PMCID: PMC8446632 DOI: 10.3389/fcell.2021.723108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022] Open
Abstract
Mitochondria are important organelles whose primary function is energy production; in addition, they serve as signaling platforms for apoptosis and antiviral immunity. The central role of mitochondria in oxidative phosphorylation and apoptosis requires their quality to be tightly regulated. Mitophagy is the main cellular process responsible for mitochondrial quality control. It selectively sends damaged or excess mitochondria to the lysosomes for degradation and plays a critical role in maintaining cellular homeostasis. However, increasing evidence shows that viruses utilize mitophagy to promote their survival. Viruses use various strategies to manipulate mitophagy to eliminate critical, mitochondria-localized immune molecules in order to escape host immune attacks. In this article, we will review the scientific advances in mitophagy in viral infections and summarize how the host immune system responds to viral infection and how viruses manipulate host mitophagy to evade the host immune system.
Collapse
Affiliation(s)
- Hongna Wang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China.,GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yongfeng Zheng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| | - Jieru Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| | - Jin Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| |
Collapse
|
18
|
Gomez-Perosanz M, Fiyouzi T, Fernandez-Arquero M, Sidney J, Sette A, Reinherz EL, Lafuente EM, Reche PA. Characterization of Conserved and Promiscuous Human Rhinovirus CD4 T Cell Epitopes. Cells 2021; 10:cells10092294. [PMID: 34571943 PMCID: PMC8471592 DOI: 10.3390/cells10092294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Human rhinovirus (RV) is the most common cause of upper respiratory infections and exacerbations of asthma. In this work, we selected 14 peptides (6 from RV A and 8 from RV C) encompassing potential CD4 T cell epitopes. Peptides were selected for being highly conserved in RV A and C serotypes and predicted to bind to multiple human leukocyte antigen class II (HLA II) molecules. We found positive T cell recall responses by interferon gamma (IFNγ)-ELISPOT assays to eight peptides, validating seven of them (three from RV A and four from RV C) as CD4 T cell epitopes through intracellular cytokine staining assays. Additionally, we verified their promiscuous binding to multiple HLA II molecules by quantitative binding assays. According to their experimental HLA II binding profile, the combination of all these seven epitopes could be recognized by >95% of the world population. We actually determined IFNγ responses to a pool encompassing these CD4 T cell epitopes by intracellular cytokine staining, finding positive responses in 29 out of 30 donors. The CD4 T cell epitopes identified in this study could be key to monitor RV infections and to develop peptide-based vaccines against most RV A and C serotypes.
Collapse
Affiliation(s)
- Marta Gomez-Perosanz
- Department of Immunology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.G.-P.); (T.F.); (E.M.L.)
| | - Tara Fiyouzi
- Department of Immunology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.G.-P.); (T.F.); (E.M.L.)
| | | | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; (J.S.); (A.S.)
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; (J.S.); (A.S.)
| | - Ellis L. Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
| | - Esther M. Lafuente
- Department of Immunology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.G.-P.); (T.F.); (E.M.L.)
| | - Pedro A. Reche
- Department of Immunology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.G.-P.); (T.F.); (E.M.L.)
- Correspondence: ; Tel.: +34-913947229
| |
Collapse
|
19
|
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), has resulted in a pandemic that has had widespread effects on human activities. The clinical presentation of severe COVID-19 includes a broad spectrum of clinical disease, most notably acute respiratory distress syndrome, cytokine release syndrome (CRS), multiorgan failure, and death. Direct viral damage and uncontrolled inflammation have been suggested as contributory factors in COVID-19 disease severity. The COVID-19 pandemic has emphasized the critical role of an effective host immune response in controlling a virus infection and demonstrated the devastating effect of immune dysregulation. Understanding the nature of the immune response to SARS-CoV-2 pathogenesis is key to developing effective treatments for COVID-19. Here, we describe the nature of the dysregulated host immune response in COVID-19, identify potential mechanisms involved in CRS, and discuss potential strategies that can be used to manage immune dysregulation in COVID-19. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa 52242, USA;
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa 52242, USA;
| |
Collapse
|
20
|
Sormani MP, Salvetti M, Labauge P, Schiavetti I, Zephir H, Carmisciano L, Bensa C, De Rossi N, Pelletier J, Cordioli C, Vukusic S, Moiola L, Kerschen P, Radaelli M, Théaudin M, Immovilli P, Casez O, Capobianco M, Ciron J, Trojano M, Stankoff B, Créange A, Tedeschi G, Clavelou P, Comi G, Thouvenot E, Battaglia MA, Moreau T, Patti F, De Sèze J, Louapre C. DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France. Ann Clin Transl Neurol 2021; 8:1738-1744. [PMID: 34240579 PMCID: PMC8351392 DOI: 10.1002/acn3.51408] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/15/2021] [Accepted: 05/30/2021] [Indexed: 12/15/2022] Open
Abstract
We evaluated the effect of DMTs on Covid‐19 severity in patients with MS, with a pooled‐analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid‐19 severity was assessed by multivariate ordinal‐logistic models and pooled by a fixed‐effect meta‐analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti‐CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid‐19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled‐analysis confirms an increased risk of severe Covid‐19 in patients on anti‐CD20 therapies and supports the protective role of interferon.
Collapse
Affiliation(s)
- Maria Pia Sormani
- Department of Health Sciences, University of Genova, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Salvetti
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy.,Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy
| | - Pierre Labauge
- Department of Neurology, CHU de Montpellier, Montpellier, France
| | - Irene Schiavetti
- Department of Health Sciences, University of Genova, Genova, Italy
| | - Helene Zephir
- Department of Neurology, U 1172, CRC-SEP, University Hospital of Lille, Lille, France
| | - Luca Carmisciano
- Department of Health Sciences, University of Genova, Genova, Italy
| | - Caroline Bensa
- Department of Neurology, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Nicola De Rossi
- Centro Sclerosi Multipla ASST Spedali Civili di Brescia, Montichiari, Italy
| | - Jean Pelletier
- Department of Neurology, Aix Marseille Univ, APHM, Hôpital de la Timone, Pôle de Neurosciences Cliniques, Marseille, 13005, France
| | - Cinzia Cordioli
- Centro Sclerosi Multipla ASST Spedali Civili di Brescia, Montichiari, Italy
| | - Sandra Vukusic
- Service de Neurologie, sclérose en plaques, pathologies de la myéline et neuro-inflammation, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
| | - Lucia Moiola
- Department of Neurology, Multiple Sclerosis Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Marta Radaelli
- Department of Neurology and Multiple Sclerosis Center, ASST "Papa Giovanni XXIII", Bergamo, Italy
| | - Marie Théaudin
- Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Paolo Immovilli
- Multiple Sclerosis Center, Ospedale Guglielmo da Saliceto, Piacenza, Italy
| | - Olivier Casez
- Department of Neurology, University Hospital Grenoble Alpes, Neuro Inflammatory Unit, Grenoble, France
| | - Marco Capobianco
- Department of Neurology, Regional Referral Multiple Sclerosis Centre, University Hospital San Luigi, Orbassano (Torino), Italy
| | - Jonathan Ciron
- Department of Neurology, CHU de Toulouse, CRC-SEP, Toulouse, France
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Bruno Stankoff
- Sorbonne University, Paris Brain Institute, ICM, Pitié Salpêtrière Hospital, Inserm UMR S 1127, CNRS UMR 7225, Paris, France.,Neurology Department, St Antoine Hospital, APHP, Paris, France
| | - Alain Créange
- Service de Neurologie and CRC SEP, APHP, Groupe Hospitalier Henri Mondor, UPEC Université, Créteil, France
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences, University of Campania, Napoli, Italy
| | - Pierre Clavelou
- University of Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France
| | - Giancarlo Comi
- Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Eric Thouvenot
- Department of Neurology, Nîmes University Hospital, Nîmes, France.,Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Mario Alberto Battaglia
- Research Department, Italian Multiple Sclerosis Foundation, Genoa, Italy.,Department of Life Sciences, University of Siena, Siena, Italy
| | - Thibault Moreau
- Department of Neurology, University hospital of Dijon, EA4184, Dijon, France
| | - Francesco Patti
- Department of Medical and Surgical Sciences and Advanced Technologies, GF Ingrassia, University of Catania, Catania, Italy.,Centro Sclerosi Multipla, Policlinico Catania, University of Catania, Catania, Italy
| | - Jérôme De Sèze
- Department of Neurology, CIC INSERM 1434, CHU de Strasbourg, Strasbourg, France
| | - Celine Louapre
- Sorbonne University, Paris Brain Institute, ICM, Assistance Publique Hôpitaux de Paris APHP, Hôpital de la Pitié-Salpêtrière, Inserm, CNRS, CIC Neuroscience, Paris, France
| | | | | |
Collapse
|
21
|
Polat C, Ergunay K. Insights into the virologic and immunologic features of SARS-COV-2. World J Clin Cases 2021; 9:5007-5018. [PMID: 34307551 PMCID: PMC8283606 DOI: 10.12998/wjcc.v9.i19.5007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
The host immunity is crucial in determining the clinical course and prognosis of coronavirus disease 2019, where some systemic and severe manifestations are associated with excessive or suboptimal responses. Several antigenic epitopes in spike, nucleocapsid and membrane proteins of severe acute respiratory syndrome coronavirus 2 are targeted by the immune system, and a robust response with innate and adaptive components develops in infected individuals. High titer neutralizing antibodies and a balanced T cell response appears to constitute the optimal immune response to severe acute respiratory syndrome coronavirus 2, where innate and mucosal defenses also contribute significantly. Following exposure, immunological memory seems to develop and be maintained for substantial periods. Here, we provide an overview of the main aspects in antiviral immunity involving innate and adaptive responses with insights into virus structure, individual variations pertaining to disease severity as well as long-term protective immunity expected to be attained by vaccination.
Collapse
Affiliation(s)
- Ceylan Polat
- Department of Medical Microbiology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| | - Koray Ergunay
- Department of Medical Microbiology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| |
Collapse
|
22
|
Vinceti M, Filippini T, Rothman KJ, Di Federico S, Orsini N. SARS-CoV-2 infection incidence during the first and second COVID-19 waves in Italy. ENVIRONMENTAL RESEARCH 2021; 197:111097. [PMID: 33811866 PMCID: PMC8012166 DOI: 10.1016/j.envres.2021.111097] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 05/14/2023]
Abstract
We assessed the relation between COVID-19 waves in Italy, which was severely affected during the pandemic. We evaluated the hypothesis that a larger impact from the first wave (February-May 2020) predicts a smaller peak during the second wave (September-October 2020), in the absence of local changes in public health interventions and area-specific differences in time trends of environmental parameters. Based on publicly available data on province-specific SARS-CoV-2 infections and both crude and multivariable cubic spline regression models, we found that for provinces with the lowest incidence rates in the first wave, the incidence in the second wave increased roughly in proportion with the incidence in the first wave until an incidence of about 500-600 cases/100,000 in the first wave. Above that value, provinces with higher incidences in the first wave experienced lower incidences in the second wave. It appears that a comparatively high cumulative incidence of infection, even if far below theoretical thresholds required for herd immunity, may provide noticeable protection during the second wave. We speculate that, if real, the mechanism for this pattern could be depletion of most susceptible individuals and of superspreaders in the first wave. A population learning effect regarding cautious behavior could have also contributed. Since no area-specific variation of the national policy against the SARS-CoV-2 outbreak was allowed until early November 2020, neither individual behaviors nor established or purported environmental risk factors of COVID-19, such as air pollution and meteorological factors, are likely to have confounded the inverse trends we observed in infection incidence over time.
Collapse
Affiliation(s)
- Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, US.
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Kenneth J Rothman
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, US; RTI Health Solutions, Research Triangle Park, NC, US
| | - Silvia Di Federico
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicola Orsini
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|