1
|
Taha BA, Addie AJ, Haider AJ, Kadhim AC, Azzahrani AS, Arsad N. Needle-Free Targeted Injections Using Bubble Laser Technology in Therapeutics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39460975 DOI: 10.1021/acs.langmuir.4c03513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
This work explores bubble laser technology as an alternative to needles in injection systems for vaccination, cancer treatment, insulin delivery, and catheter hygiene. The technology leverages laser-induced microfiltration and bubble dynamics to create high-speed pneumatic jets that penetrate the skin without needles, addressing discomfort, infection risk, and needle-related concerns. The system's performance is analyzed based on laser wavelength, pulse duration, and Gaussian beam droplet size. The findings indicate a significant increase in spot size at 1064 nm compared with 400 nm, consistent with the diffraction theory. Induced bubble dynamics reveal bubble generation, jetting, and fluid interactions as the Weber number increases, as well as jet velocity and fluid inertia. For femtosecond pulses, increasing the pulse duration from 100 to 1500 fs reduces the bubble lifespan from 0.8 to 0.3 arbitrary units, and the collapse pressure decreases from 2.1 to 0.4 bar. For picosecond pulses, the bubble lifetime decreases from 0.9 to 0.5 arbitrary units, and the pressure drop decreases from 2.0 to 0.4 bar as the pulse length extends from 2000 to 8000 ps. Jet formation in laser jet injection systems is enhanced by short pulses in water that produce longer-lasting bubbles. Drug delivery based on the Rayleigh-Plesset equation is characterized by a low-pressure collapse and short bubble lifetime. Thus, this relationship suggests that bubble laser technology can provide a more controlled and safer method of needle-free procedures, increasing compliance and reducing tissue trauma.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- UKM─Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, Bangi 43600, Malaysia
| | - Ali J Addie
- Center of Industrial Applications and Materials Technology, Scientific Research Commission, Baghdad 00964, Iraq
| | - Adawiya J Haider
- Applied Sciences Department/Laser Science and Technology Branch, University of Technology, Baghdad 10066, Iraq
| | - Ahmed C Kadhim
- Department of Communications Engineering, University of Technology, Baghdad 10066, Iraq
| | - Ahmad S Azzahrani
- Electrical Engineering Department, Northern Border University, Arar 73211, Saudi Arabia
| | - Norhana Arsad
- UKM─Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, Bangi 43600, Malaysia
| |
Collapse
|
2
|
Yang QF, Hu Y, Torres-Company V, Vahala K. Efficient microresonator frequency combs. ELIGHT 2024; 4:18. [PMID: 39415946 PMCID: PMC11481671 DOI: 10.1186/s43593-024-00075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 10/19/2024]
Abstract
The rapid development of optical frequency combs from their table-top origins towards chip-scale platforms has opened up exciting possibilities for comb functionalities outside laboratories. Enhanced nonlinear processes in microresonators have emerged as a mainstream comb-generating mechanism with compelling advantages in size, weight, and power consumption. The established understanding of gain and loss in nonlinear microresonators, along with recently developed ultralow-loss nonlinear photonic circuitry, has boosted the optical energy conversion efficiency of microresonator frequency comb (microcomb) devices from below a few percent to above 50%. This review summarizes the latest advances in novel photonic devices and pumping strategies that contribute to these milestones of microcomb efficiency. The resulting benefits for high-performance integration of comb applications are also discussed before summarizing the remaining challenges.
Collapse
Affiliation(s)
- Qi-Fan Yang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Yaowen Hu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
- John Paulson School of Engineering and applied science, Harvard University, Cambridge, Boston, USA
| | - Victor Torres-Company
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
| | - Kerry Vahala
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, USA
| |
Collapse
|
3
|
Hu ZG, Gao YM, Liu JF, Yang H, Wang M, Lei Y, Zhou X, Li J, Cao X, Liang J, Hu CQ, Li Z, Lau YC, Cai JW, Li BB. Picotesla-sensitivity microcavity optomechanical magnetometry. LIGHT, SCIENCE & APPLICATIONS 2024; 13:279. [PMID: 39341806 PMCID: PMC11439073 DOI: 10.1038/s41377-024-01643-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Cavity optomechanical systems have enabled precision sensing of magnetic fields, by leveraging the optical resonance-enhanced readout and mechanical resonance-enhanced response. Previous studies have successfully achieved mass-produced and reproducible microcavity optomechanical magnetometry (MCOM) by incorporating Terfenol-D thin films into high-quality (Q) factor whispering gallery mode (WGM) microcavities. However, the sensitivity was limited to 585 pT Hz-1/2, over 20 times inferior to those using Terfenol-D particles. In this work, we propose and demonstrate a high-sensitivity and mass-produced MCOM approach by sputtering a FeGaB thin film onto a high-Q SiO2 WGM microdisk. Theoretical studies are conducted to explore the magnetic actuation constant and noise-limited sensitivity by varying the parameters of the FeGaB film and SiO2 microdisk. Multiple magnetometers with different radii are fabricated and characterized. By utilizing a microdisk with a radius of 355 μm and a thickness of 1 μm, along with a FeGaB film with a radius of 330 μm and a thickness of 1.3 μm, we have achieved a remarkable peak sensitivity of 1.68 pT Hz-1/2 at 9.52 MHz. This represents a significant improvement of over two orders of magnitude compared with previous studies employing sputtered Terfenol-D film. Notably, the magnetometer operates without a bias magnetic field, thanks to the remarkable soft magnetic properties of the FeGaB film. Furthermore, as a proof of concept, we have demonstrated the real-time measurement of a pulsed magnetic field simulating the corona current in a high-voltage transmission line using our developed magnetometer. These high-sensitivity magnetometers hold great potential for various applications, such as magnetic induction tomography and corona current monitoring.
Collapse
Affiliation(s)
- Zhi-Gang Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Meng Gao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Fei Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuechen Lei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jincheng Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physics, Beihang University, Beijing, 100191, China
| | - Xuening Cao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinjing Liang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao-Qun Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhilin Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China
| | - Yong-Chang Lau
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Wang Cai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bei-Bei Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
4
|
Park BJ, Kim MW, Park KT, Kim HM, You BU, Yu A, Kim JT, No YS, Kim MK. Minimal-gain-printed silicon nanolaser. SCIENCE ADVANCES 2024; 10:eadl1548. [PMID: 39292779 PMCID: PMC11409962 DOI: 10.1126/sciadv.adl1548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
While there have been notable advancements in Si-based optical integration, achieving compact and efficient continuous-wave (CW) III-V semiconductor nanolasers on Si at room temperature remains a substantial challenge. This study presents an innovative approach: the on-demand minimal-gain-printed Si nanolaser. By using a carefully designed minimal III-V optical gain structure and a precise on-demand gain-printing technique, we achieve lasing operation with superior spectral stability under pulsed conditions and observe a strong signature of CW operation at room temperature. These achievements are attributed to addressing both fundamental and technological issues, including carrier diffusion, absorption loss, and inefficient thermal dissipation, through minimal-gain printing in the nanolaser. Moreover, our demonstration of the laser-on-waveguide structure emphasizes the integration benefits of this on-demand gain-printed Si nanolaser, highlighting its potential significance in the fields of Si photonics and photonic integrated circuits.
Collapse
Affiliation(s)
- Byoung Jun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Min-Woo Kim
- Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyong-Tae Park
- Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | - Hwi-Min Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| | - Byeong Uk You
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Aran Yu
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Jin Tae Kim
- Quantum Technology Research Department, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - You-Shin No
- Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | - Myung-Ki Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
5
|
Zhang X, Zhou Z, Guo Y, Zhuang M, Jin W, Shen B, Chen Y, Huang J, Tao Z, Jin M, Chen R, Ge Z, Fang Z, Zhang N, Liu Y, Cai P, Hu W, Shu H, Pan D, Bowers JE, Wang X, Chang L. High-coherence parallelization in integrated photonics. Nat Commun 2024; 15:7892. [PMID: 39256391 PMCID: PMC11387407 DOI: 10.1038/s41467-024-52269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
Coherent optics has profoundly impacted diverse applications ranging from communications, LiDAR to quantum computations. However, developing coherent systems in integrated photonics comes at great expense in hardware integration and energy efficiency. Here we demonstrate a high-coherence parallelization strategy for advanced integrated coherent systems at minimal cost. By using a self-injection locked microcomb to injection lock distributed feedback lasers, we achieve a record high on-chip gain of 60 dB with no degradation in coherence. This strategy enables highly coherent channels with linewidths down to 10 Hz and power over 20 dBm. The overall electrical-to-optical efficiency reaches 19%, comparable to that of advanced semiconductor lasers. This method supports a silicon photonic communication link with an unprecedented data rate beyond 60 Tbit/s and reduces phase-related DSP consumption by 99.99999% compared to traditional III-V laser pump schemes. This work paves the way for realizing scalable, high-performance coherent integrated photonic systems, potentially benefiting numerous applications.
Collapse
Affiliation(s)
- Xuguang Zhang
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, Beijing, China
| | - Zixuan Zhou
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, Beijing, China
| | - Yijun Guo
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, Beijing, China
| | - Minxue Zhuang
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, Beijing, China
| | - Warren Jin
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Bitao Shen
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, Beijing, China
| | - Yujun Chen
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, Beijing, China
| | - Jiahui Huang
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, Beijing, China
| | - Zihan Tao
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, Beijing, China
| | - Ming Jin
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, Beijing, China
| | - Ruixuan Chen
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, Beijing, China
| | - Zhangfeng Ge
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, China
| | - Zhou Fang
- SiFotonics Technologies Co., Ltd., Beijing, China
| | - Ning Zhang
- SiFotonics Technologies Co., Ltd., Beijing, China
| | - Yadong Liu
- SiFotonics Technologies Co., Ltd., Beijing, China
| | - Pengfei Cai
- SiFotonics Technologies Co., Ltd., Beijing, China
| | - Weiwei Hu
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, Beijing, China
| | - Haowen Shu
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, Beijing, China
| | - Dong Pan
- SiFotonics Technologies Co., Ltd., Beijing, China
| | - John E Bowers
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Xingjun Wang
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, Beijing, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, China.
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, China.
| | - Lin Chang
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, Beijing, China.
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, China.
| |
Collapse
|
6
|
Chen R, Luo YH, Long J, Shi B, Shen C, Liu J. Ultralow-Loss Integrated Photonics Enables Bright, Narrowband, Photon-Pair Sources. PHYSICAL REVIEW LETTERS 2024; 133:083803. [PMID: 39241729 DOI: 10.1103/physrevlett.133.083803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/23/2024] [Indexed: 09/09/2024]
Abstract
Photon-pair sources are critical building blocks for photonic quantum systems. Leveraging Kerr nonlinearity and cavity-enhanced spontaneous four-wave mixing, chip-scale photon-pair sources can be created using microresonators built on photonic integrated circuit. For practical applications, a high microresonator quality factor Q is mandatory to magnify photon-pair sources' brightness and reduce their linewidth. The former is proportional to Q^{4}, while the latter is inversely proportional to Q. Here, we demonstrate an integrated, microresonator-based, narrowband photon-pair source. The integrated microresonator, made of silicon nitride and fabricated using a standard CMOS foundry process, features ultralow loss down to 0.03 dB/cm and intrinsic Q factor exceeding 10^{7}. The photon-pair source has brightness of 1.17×10^{9} Hz/mW^{2}/GHz and linewidth of 25.9 MHz, both of which are record values for silicon-photonics-based quantum light source. It further enables a heralded single-photon source with heralded second-order correlation g_{h}^{(2)}(0)=0.0037(5), as well as an energy-time entanglement source with a raw visibility of 0.973(9). Our work evidences the global potential of ultralow-loss integrated photonics to create novel quantum light sources and circuits, catalyzing efficient, compact, and robust interfaces to quantum communication and networks.
Collapse
Affiliation(s)
| | - Yi-Han Luo
- International Quantum Academy, Shenzhen 518048, China
| | - Jinbao Long
- International Quantum Academy, Shenzhen 518048, China
| | | | - Chen Shen
- International Quantum Academy, Shenzhen 518048, China
- Qaleido Photonics, Shenzhen 518048, China
| | | |
Collapse
|
7
|
Morin TJ, Camponeschi F, Feng K, Dumont M, Bowers JE. Heterogeneous quantum dot lasers on low-confinement silicon nitride with reduced-bending architecture. OPTICS LETTERS 2024; 49:4130-4133. [PMID: 39090874 DOI: 10.1364/ol.528621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/28/2024] [Indexed: 08/04/2024]
Abstract
Low-confinement silicon nitride (SiN) waveguides offer ultra-low losses but require wide bend radii to avoid radiative losses. To realize the benefits of silicon nitride in a heterogeneous laser while maintaining a small footprint, we employ metal-coated etched facets and transversely coupled Fabry-Perot resonators as mirrors. Heterogeneous quantum dot lasers are fabricated using an on-chip facet plus adiabatic taper coupler, and Fabry-Perot cavities are defined by metal mirrors and post-grating-distributed Bragg reflectors (DBRs). Threshold current densities below 250 A/cm2 are observed, and a power >15 mW is measured in an integrating sphere. A laser linewidth of <5 MHz is measured by tuning two lasers to about 50 MHz apart and measuring their beatnote on a photodiode. The total device footprint is <1 mm2.
Collapse
|
8
|
Laryn T, Chu RJ, Kim Y, Madarang MA, Lung QND, Ahn DH, Han JH, Choi WJ, Jung D. Reduction of GaAs Buffer Thickness and Its Impact on Epitaxially Integrated III-V Quantum Dot Lasers on a Si Substrate. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30209-30217. [PMID: 38828941 DOI: 10.1021/acsami.4c04597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Monolithic integration of III-V quantum dot (QD) lasers onto a Si substrate is a scalable and reliable approach for obtaining highly efficient light sources for Si photonics. Recently, a combination of optimized GaAs buffers and QD gain materials resulted in monolithically integrated butt-coupled lasers on Si. However, the use of thick GaAs buffers up to 3 μm not only hinders accurate vertical alignment to the Si optical waveguide but also imposes considerable growth costs and time constraints. Here, for the first time, we demonstrate InAs QD lasers epitaxially grown on a 700 nm thick GaAs/Si template, which is approximately four times thinner than the conventional III-V buffers on Si. The optimized 700 nm GaAs buffer yields a remarkably smooth surface and low threading dislocation density of 4 × 108 cm-2, which is sufficient for QD laser growth. The InAs QD lasers fabricated on these ultrathin templates still lase at room temperature with a threshold current density of 661 A/cm2 and a characteristic temperature of 50 K. We believe that these results are important for the monolithically integrated III-V QD lasers for Si photonics applications.
Collapse
Affiliation(s)
- Tsimafei Laryn
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, South Korea
- Nanoscience and Technology, KIST School at University of Science and Technology, Seoul 02792, South Korea
| | - Rafael Jumar Chu
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, South Korea
- Nanoscience and Technology, KIST School at University of Science and Technology, Seoul 02792, South Korea
| | - Yeonhwa Kim
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, South Korea
- Department of Materials Science and Engineering, Korea University, Seoul 02841, South Korea
| | - May Angelu Madarang
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, South Korea
- Nanoscience and Technology, KIST School at University of Science and Technology, Seoul 02792, South Korea
| | - Quang Nhat Dang Lung
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Dae-Hwan Ahn
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Jae-Hoon Han
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Won Jun Choi
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Daehwan Jung
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, South Korea
- Nanoscience and Technology, KIST School at University of Science and Technology, Seoul 02792, South Korea
| |
Collapse
|
9
|
Yang J, Van Gasse K, Lukin DM, Guidry MA, Ahn GH, White AD, Vučković J. Titanium:sapphire-on-insulator integrated lasers and amplifiers. Nature 2024; 630:853-859. [PMID: 38926612 DOI: 10.1038/s41586-024-07457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/23/2024] [Indexed: 06/28/2024]
Abstract
Titanium:sapphire (Ti:sapphire) lasers have been essential for advancing fundamental research and technological applications, including the development of the optical frequency comb1, two-photon microscopy2 and experimental quantum optics3,4. Ti:sapphire lasers are unmatched in bandwidth and tuning range, yet their use is restricted because of their large size, cost and need for high optical pump powers5. Here we demonstrate a monocrystalline titanium:sapphire-on-insulator (Ti:SaOI) photonics platform that enables dramatic miniaturization, cost reduction and scalability of Ti:sapphire technology. First, through the fabrication of low-loss whispering-gallery-mode resonators, we realize a Ti:sapphire laser operating with an ultralow, sub-milliwatt lasing threshold. Then, through orders-of-magnitude improvement in mode confinement in Ti:SaOI waveguides, we realize an integrated solid-state (that is, non-semiconductor) optical amplifier operating below 1 μm. We demonstrate unprecedented distortion-free amplification of picosecond pulses to peak powers reaching 1.0 kW. Finally, we demonstrate a tunable integrated Ti:sapphire laser, which can be pumped with low-cost, miniature, off-the-shelf green laser diodes. This opens the doors to new modalities of Ti:sapphire lasers, such as massively scalable Ti:sapphire laser-array systems for several applications. As a proof-of-concept demonstration, we use a Ti:SaOI laser array as the sole optical control for a cavity quantum electrodynamics experiment with artificial atoms in silicon carbide6. This work is a key step towards the democratization of Ti:sapphire technology through a three-orders-of-magnitude reduction in cost and footprint and introduces solid-state broadband amplification of sub-micron wavelength light.
Collapse
Affiliation(s)
- Joshua Yang
- E. L. Ginzton Laboratory, Stanford University, Stanford, CA, USA
| | - Kasper Van Gasse
- E. L. Ginzton Laboratory, Stanford University, Stanford, CA, USA
- Photonics Research Group, Ghent University-imec, Ghent, Belgium
| | - Daniil M Lukin
- E. L. Ginzton Laboratory, Stanford University, Stanford, CA, USA
| | - Melissa A Guidry
- E. L. Ginzton Laboratory, Stanford University, Stanford, CA, USA
| | - Geun Ho Ahn
- E. L. Ginzton Laboratory, Stanford University, Stanford, CA, USA
| | | | - Jelena Vučković
- E. L. Ginzton Laboratory, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Ling J, Gao Z, Xue S, Hu Q, Li M, Zhang K, Javid UA, Lopez-Rios R, Staffa J, Lin Q. Electrically empowered microcomb laser. Nat Commun 2024; 15:4192. [PMID: 38760350 PMCID: PMC11101629 DOI: 10.1038/s41467-024-48544-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/02/2024] [Indexed: 05/19/2024] Open
Abstract
Optical microcomb underpins a wide range of applications from communication, metrology, to sensing. Although extensively explored in recent years, challenges remain in key aspects of microcomb such as complex soliton initialization, low power efficiency, and limited comb reconfigurability. Here we present an on-chip microcomb laser to address these key challenges. Realized with integration between III and V gain chip and a thin-film lithium niobate (TFLN) photonic integrated circuit (PIC), the laser directly emits mode-locked microcomb on demand with robust turnkey operation inherently built in, with individual comb linewidth down to 600 Hz, whole-comb frequency tuning rate exceeding 2.4 × 1017 Hz/s, and 100% utilization of optical power fully contributing to comb generation. The demonstrated approach unifies architecture and operation simplicity, electro-optic reconfigurability, high-speed tunability, and multifunctional capability enabled by TFLN PIC, opening up a great avenue towards on-demand generation of mode-locked microcomb that is of great potential for broad applications.
Collapse
Affiliation(s)
- Jingwei Ling
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Zhengdong Gao
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Shixin Xue
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Qili Hu
- Institute of Optics, University of Rochester, Rochester, NY, USA
| | - Mingxiao Li
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Kaibo Zhang
- Institute of Optics, University of Rochester, Rochester, NY, USA
| | - Usman A Javid
- Institute of Optics, University of Rochester, Rochester, NY, USA
| | | | - Jeremy Staffa
- Institute of Optics, University of Rochester, Rochester, NY, USA
| | - Qiang Lin
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA.
- Institute of Optics, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
11
|
Wang CG, Xu W, Li C, Shi L, Jiang J, Guo T, Yue WC, Li T, Zhang P, Lyu YY, Pan J, Deng X, Dong Y, Tu X, Dong S, Cao C, Zhang L, Jia X, Sun G, Kang L, Chen J, Wang YL, Wang H, Wu P. Integrated and DC-powered superconducting microcomb. Nat Commun 2024; 15:4009. [PMID: 38740761 DOI: 10.1038/s41467-024-48224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Frequency combs, specialized laser sources emitting multiple equidistant frequency lines, have revolutionized science and technology with unprecedented precision and versatility. Recently, integrated frequency combs are emerging as scalable solutions for on-chip photonics. Here, we demonstrate a fully integrated superconducting microcomb that is easy to manufacture, simple to operate, and consumes ultra-low power. Our turnkey apparatus comprises a basic nonlinear superconducting device, a Josephson junction, directly coupled to a superconducting microstrip resonator. We showcase coherent comb generation through self-started mode-locking. Therefore, comb emission is initiated solely by activating a DC bias source, with power consumption as low as tens of picowatts. The resulting comb spectrum resides in the microwave domain and spans multiple octaves. The linewidths of all comb lines can be narrowed down to 1 Hz through a unique coherent injection-locking technique. Our work represents a critical step towards fully integrated microwave photonics and offers the potential for integrated quantum processors.
Collapse
Affiliation(s)
- Chen-Guang Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- National Key Laboratory of Spintronics, Nanjing University, Suzhou, China
| | - Wuyue Xu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- National Key Laboratory of Spintronics, Nanjing University, Suzhou, China
| | - Chong Li
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- National Key Laboratory of Spintronics, Nanjing University, Suzhou, China
| | - Lili Shi
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Junliang Jiang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Tingting Guo
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Wen-Cheng Yue
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- National Key Laboratory of Spintronics, Nanjing University, Suzhou, China
| | - Tianyu Li
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- National Key Laboratory of Spintronics, Nanjing University, Suzhou, China
| | - Ping Zhang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Yang-Yang Lyu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
| | | | - Xiuhao Deng
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Hefei National Laboratory, Hefei, China
| | - Ying Dong
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou, China
| | - Xuecou Tu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Hefei National Laboratory, Hefei, China
| | - Sining Dong
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- National Key Laboratory of Spintronics, Nanjing University, Suzhou, China
| | - Chunhai Cao
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Labao Zhang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Hefei National Laboratory, Hefei, China
| | - Xiaoqing Jia
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Hefei National Laboratory, Hefei, China
| | - Guozhu Sun
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Hefei National Laboratory, Hefei, China
| | - Lin Kang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Hefei National Laboratory, Hefei, China
| | - Jian Chen
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
| | - Yong-Lei Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, China.
- Purple Mountain Laboratories, Nanjing, China.
- National Key Laboratory of Spintronics, Nanjing University, Suzhou, China.
| | - Huabing Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, China.
- Purple Mountain Laboratories, Nanjing, China.
| | - Peiheng Wu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, China.
- Purple Mountain Laboratories, Nanjing, China.
| |
Collapse
|
12
|
Han W, Liu Z, Xu Y, Tan M, Li Y, Zhu X, Ou Y, Yin F, Morandotti R, Little BE, Chu ST, Xu X, Moss DJ, Xu K. Dual-polarization RF channelizer based on microcombs. OPTICS EXPRESS 2024; 32:11281-11295. [PMID: 38570979 DOI: 10.1364/oe.519235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/16/2024] [Indexed: 04/05/2024]
Abstract
We report a dual-polarization radio frequency (RF) channelizer based on microcombs. Two high-Q micro-ring resonators (MRRs) with slightly different free spectral ranges (FSRs) are used: one MRR is pumped to yield soliton crystal microcombs ("active"), and the other MRR is used as a "passive" periodic optical filter supporting dual-polarization operation to slice the RF spectrum. With the tailored mismatch between the FSRs of the active and passive MRRs, wideband RF spectra can be channelized into multiple segments featuring digital-compatible bandwidths via the Vernier effect. Due to the use of dual-polarization states, the number of channelized spectral segments, and thus the RF instantaneous bandwidth (with a certain spectral resolution), can be doubled. In our experiments, we used 20 microcomb lines with ∼ 49 GHz FSR to achieve 20 channels for each polarization, with high RF spectra slicing resolutions at 144 MHz (TE) and 163 MHz (TM), respectively; achieving an instantaneous RF operation bandwidth of 3.1 GHz (TE) and 2.2 GHz (TM). Our approach paves the path towards monolithically integrated photonic RF receivers (the key components - active and passive MRRs are all fabricated on the same platform) with reduced complexity, size, and unprecedented performance, which is important for wide RF applications with digital-compatible signal detection.
Collapse
|
13
|
Xiao Y, Qian S, Bai Q, Wen H, Geng Y, Wang Y, Lai H, Yao B, Qiu K, Xu J, Zhou H. Optimizing auxiliary laser heating for Kerr soliton microcomb generation. OPTICS LETTERS 2024; 49:1129-1132. [PMID: 38426955 DOI: 10.1364/ol.513721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Auxiliary laser heating has become a widely adopted method for Kerr soliton frequency comb generation in optical microcavities, thanks to its reliable and easy-to-achieve merits for solving the thermal instability during the formation of dissipative Kerr solitons. Here, we conduct optimization of auxiliary laser heating by leveraging the distinct loss and absorption characteristics of different longitudinal and polarization cavity modes. We show that even if the auxiliary and pump lasers enter orthogonal polarization modes, their mutual photothermal balance can be efficient enough to maintain a cavity thermal equilibrium as the pump laser enters the red-detuning soliton regime, and by choosing the most suitable resonance for the auxiliary and pump lasers, the auxiliary laser power can be reduced to 20% of the pump laser and still be capable of warranting soliton generation. Moreover, we demonstrate soliton comb generation using integrated laser modules with a few milliwatt on-chip pump and auxiliary powers, showcasing the potential for further chip integration of the auxiliary laser heating method.
Collapse
|
14
|
Kudelin I, Groman W, Ji QX, Guo J, Kelleher ML, Lee D, Nakamura T, McLemore CA, Shirmohammadi P, Hanifi S, Cheng H, Jin N, Wu L, Halladay S, Luo Y, Dai Z, Jin W, Bai J, Liu Y, Zhang W, Xiang C, Chang L, Iltchenko V, Miller O, Matsko A, Bowers SM, Rakich PT, Campbell JC, Bowers JE, Vahala KJ, Quinlan F, Diddams SA. Photonic chip-based low-noise microwave oscillator. Nature 2024; 627:534-539. [PMID: 38448599 PMCID: PMC10954552 DOI: 10.1038/s41586-024-07058-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/11/2024] [Indexed: 03/08/2024]
Abstract
Numerous modern technologies are reliant on the low-phase noise and exquisite timing stability of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low-noise microwave signals are generated by the down-conversion of ultrastable optical references using a frequency comb1-3. Such systems, however, are constructed with bulk or fibre optics and are difficult to further reduce in size and power consumption. In this work we address this challenge by leveraging advances in integrated photonics to demonstrate low-noise microwave generation via two-point optical frequency division4,5. Narrow-linewidth self-injection-locked integrated lasers6,7 are stabilized to a miniature Fabry-Pérot cavity8, and the frequency gap between the lasers is divided with an efficient dark soliton frequency comb9. The stabilized output of the microcomb is photodetected to produce a microwave signal at 20 GHz with phase noise of -96 dBc Hz-1 at 100 Hz offset frequency that decreases to -135 dBc Hz-1 at 10 kHz offset-values that are unprecedented for an integrated photonic system. All photonic components can be heterogeneously integrated on a single chip, providing a significant advance for the application of photonics to high-precision navigation, communication and timing systems.
Collapse
Affiliation(s)
- Igor Kudelin
- National Institute of Standards and Technology, Boulder, CO, USA.
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA.
| | - William Groman
- National Institute of Standards and Technology, Boulder, CO, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | - Qing-Xin Ji
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA
| | - Joel Guo
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Megan L Kelleher
- National Institute of Standards and Technology, Boulder, CO, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | - Dahyeon Lee
- National Institute of Standards and Technology, Boulder, CO, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | - Takuma Nakamura
- National Institute of Standards and Technology, Boulder, CO, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | - Charles A McLemore
- National Institute of Standards and Technology, Boulder, CO, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | - Pedram Shirmohammadi
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
| | - Samin Hanifi
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
| | - Haotian Cheng
- Department of Applied Physics, Yale University, New Haven, CT, USA
| | - Naijun Jin
- Department of Applied Physics, Yale University, New Haven, CT, USA
| | - Lue Wu
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA
| | - Samuel Halladay
- Department of Applied Physics, Yale University, New Haven, CT, USA
| | - Yizhi Luo
- Department of Applied Physics, Yale University, New Haven, CT, USA
| | - Zhaowei Dai
- Department of Applied Physics, Yale University, New Haven, CT, USA
| | - Warren Jin
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Junwu Bai
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
| | - Yifan Liu
- National Institute of Standards and Technology, Boulder, CO, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | - Wei Zhang
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Chao Xiang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Lin Chang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Vladimir Iltchenko
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Owen Miller
- Department of Applied Physics, Yale University, New Haven, CT, USA
| | - Andrey Matsko
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Steven M Bowers
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
| | - Peter T Rakich
- Department of Applied Physics, Yale University, New Haven, CT, USA
| | - Joe C Campbell
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
| | - John E Bowers
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Kerry J Vahala
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA
| | - Franklyn Quinlan
- National Institute of Standards and Technology, Boulder, CO, USA
- Electrical Computer & Energy Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Scott A Diddams
- National Institute of Standards and Technology, Boulder, CO, USA.
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA.
- Electrical Computer & Energy Engineering, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
15
|
Sun S, Wang B, Liu K, Harrington MW, Tabatabaei F, Liu R, Wang J, Hanifi S, Morgan JS, Jahanbozorgi M, Yang Z, Bowers SM, Morton PA, Nelson KD, Beling A, Blumenthal DJ, Yi X. Integrated optical frequency division for microwave and mmWave generation. Nature 2024; 627:540-545. [PMID: 38448598 PMCID: PMC10954543 DOI: 10.1038/s41586-024-07057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/10/2024] [Indexed: 03/08/2024]
Abstract
The generation of ultra-low-noise microwave and mmWave in miniaturized, chip-based platforms can transform communication, radar and sensing systems1-3. Optical frequency division that leverages optical references and optical frequency combs has emerged as a powerful technique to generate microwaves with superior spectral purity than any other approaches4-7. Here we demonstrate a miniaturized optical frequency division system that can potentially transfer the approach to a complementary metal-oxide-semiconductor-compatible integrated photonic platform. Phase stability is provided by a large mode volume, planar-waveguide-based optical reference coil cavity8,9 and is divided down from optical to mmWave frequency by using soliton microcombs generated in a waveguide-coupled microresonator10-12. Besides achieving record-low phase noise for integrated photonic mmWave oscillators, these devices can be heterogeneously integrated with semiconductor lasers, amplifiers and photodiodes, holding the potential of large-volume, low-cost manufacturing for fundamental and mass-market applications13.
Collapse
Affiliation(s)
- Shuman Sun
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
| | - Beichen Wang
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kaikai Liu
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Mark W Harrington
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Fatemehsadat Tabatabaei
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
| | - Ruxuan Liu
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
| | - Jiawei Wang
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Samin Hanifi
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
| | - Jesse S Morgan
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
| | - Mandana Jahanbozorgi
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
| | - Zijiao Yang
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
- Department of Physics, University of Virginia, Charlottesville, VA, USA
| | - Steven M Bowers
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
| | | | | | - Andreas Beling
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
| | - Daniel J Blumenthal
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Xu Yi
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Physics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
16
|
Feng H, Ge T, Guo X, Wang B, Zhang Y, Chen Z, Zhu S, Zhang K, Sun W, Huang C, Yuan Y, Wang C. Integrated lithium niobate microwave photonic processing engine. Nature 2024; 627:80-87. [PMID: 38418888 DOI: 10.1038/s41586-024-07078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
Integrated microwave photonics (MWP) is an intriguing technology for the generation, transmission and manipulation of microwave signals in chip-scale optical systems1,2. In particular, ultrafast processing of analogue signals in the optical domain with high fidelity and low latency could enable a variety of applications such as MWP filters3-5, microwave signal processing6-9 and image recognition10,11. An ideal integrated MWP processing platform should have both an efficient and high-speed electro-optic modulation block to faithfully perform microwave-optic conversion at low power and also a low-loss functional photonic network to implement various signal-processing tasks. Moreover, large-scale, low-cost manufacturability is required to monolithically integrate the two building blocks on the same chip. Here we demonstrate such an integrated MWP processing engine based on a 4 inch wafer-scale thin-film lithium niobate platform. It can perform multipurpose tasks with processing bandwidths of up to 67 GHz at complementary metal-oxide-semiconductor (CMOS)-compatible voltages. We achieve ultrafast analogue computation, namely temporal integration and differentiation, at sampling rates of up to 256 giga samples per second, and deploy these functions to showcase three proof-of-concept applications: solving ordinary differential equations, generating ultra-wideband signals and detecting edges in images. We further leverage the image edge detector to realize a photonic-assisted image segmentation model that can effectively outline the boundaries of melanoma lesion in medical diagnostic images. Our ultrafast lithium niobate MWP engine could provide compact, low-latency and cost-effective solutions for future wireless communications, high-resolution radar and photonic artificial intelligence.
Collapse
Affiliation(s)
- Hanke Feng
- Department of Electrical Engineering & State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, China
| | - Tong Ge
- Department of Electrical Engineering & State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, China
| | - Xiaoqing Guo
- Department of Electrical Engineering & State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, China
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Benshan Wang
- Department of Electronic Engineering, Chinese University of Hong Kong, Shatin, China
| | - Yiwen Zhang
- Department of Electrical Engineering & State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, China
| | - Zhaoxi Chen
- Department of Electrical Engineering & State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, China
| | - Sha Zhu
- Department of Electrical Engineering & State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, China
- College of Microelectronics, Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Ke Zhang
- Department of Electrical Engineering & State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, China
| | - Wenzhao Sun
- Department of Electrical Engineering & State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, China
- City University of Hong Kong (Dongguan), Dongguan, China
- Center of Information and Communication Technology, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Chaoran Huang
- Department of Electronic Engineering, Chinese University of Hong Kong, Shatin, China
| | - Yixuan Yuan
- Department of Electrical Engineering & State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, China
- Department of Electronic Engineering, Chinese University of Hong Kong, Shatin, China
| | - Cheng Wang
- Department of Electrical Engineering & State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, China.
| |
Collapse
|
17
|
Zhong Y, Wang C, Bian C, Chen X, Chen J, Zhu X, Hu H, Low T, Chen H, Zhang B, Lin X. Near-field directionality governed by asymmetric dipole-matter interactions. OPTICS LETTERS 2024; 49:826-829. [PMID: 38359192 DOI: 10.1364/ol.515912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/14/2024] [Indexed: 02/17/2024]
Abstract
Directionally molding the near-field and far-field radiation lies at the heart of nanophotonics and is crucial for applications such as on-chip information processing and chiral quantum networks. The most fundamental model for radiating structures is a dipolar source located inside homogeneous matter. However, the influence of matter on the directionality of dipolar radiation is oftentimes overlooked, especially for the near-field radiation. As background, the dipole-matter interaction is intrinsically asymmetric and does not fulfill the duality principle, originating from the inherent asymmetry of Maxwell's equations, i.e., electric charge and current density are ubiquitous but their magnetic counterparts are non-existent to elusive. We find that the asymmetric dipole-matter interaction could offer an enticing route to reshape the directionality of not only the near-field radiation but also the far-field radiation. As an example, both the near-field and far-field radiation directionality of the Huygens dipole (located close to a dielectric-metal interface) would be reversed if the dipolar position is changed from the dielectric region to the metal region.
Collapse
|
18
|
Weng H, McDermott M, Afridi AA, Tu H, Lu Q, Guo W, Donegan JF. Turn-key Kerr soliton generation and tunable microwave synthesizer in dual-mode Si 3N 4 microresonators. OPTICS EXPRESS 2024; 32:3123-3137. [PMID: 38297541 DOI: 10.1364/oe.510228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 02/02/2024]
Abstract
This study investigates the thermal compensation mechanism in dual-mode Si3N4 microresonators that demonstrates the ease of generation of single-solitons with nearly octave-wide spectral bandwidth. The deterministic creation of soliton frequency combs is achieved by merely switching the wavelength of a tunable laser or a semiconductor diode laser in a single step. The pump frequency detuning range that can sustain the soliton state is 30 gigahertz (GHz), which is approximately 100 times the resonance linewidth. Interestingly, these dual-mode resonators also support the coexistence of primary combs and solitons, enabling their utilization as functional microwave synthesizers. Furthermore, these resonators readily facilitate the generation of diverse multi-solitons and soliton crystals. This work presents a simplified system to access high-performance and versatile Kerr solitons, with wide-ranging applications in optical metrology, microwave photonics, and LiDAR.
Collapse
|
19
|
Nie M, Musgrave J, Jia K, Bartos J, Zhu S, Xie Z, Huang SW. Turnkey photonic flywheel in a microresonator-filtered laser. Nat Commun 2024; 15:55. [PMID: 38168081 PMCID: PMC10761980 DOI: 10.1038/s41467-023-44314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Dissipative Kerr soliton (DKS) microcomb has emerged as an enabling technology that revolutionizes a wide range of applications in both basic science and technological innovation. Reliable turnkey operation with sub-optical-cycle and sub-femtosecond timing jitter is key to the success of many intriguing microcomb applications at the intersection of ultrafast optics and microwave electronics. Here we propose an approach and demonstrate the first turnkey Brillouin-DKS frequency comb to the best of our knowledge. Our microresonator-filtered laser design offers essential benefits, including phase insensitivity, self-healing capability, deterministic selection of the DKS state, and access to the ultralow noise comb state. The demonstrated turnkey Brillouin-DKS frequency comb achieves a fundamental comb linewidth of 100 mHz and DKS timing jitter of 1 femtosecond for averaging times up to 56 μs. The approach is universal and generalizable to various device platforms for user-friendly and field-deployable comb devices.
Collapse
Affiliation(s)
- Mingming Nie
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado, 80309, USA.
| | - Jonathan Musgrave
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Kunpeng Jia
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China.
| | - Jan Bartos
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Shining Zhu
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Zhenda Xie
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China.
| | - Shu-Wei Huang
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado, 80309, USA.
| |
Collapse
|
20
|
Spektor G, Zang J, Dan A, Briles TC, Brodnik GM, Liu H, Black JA, Carlson DR, Papp SB. Photonic bandgap microcombs at 1064 nm. APL PHOTONICS 2024; 9:10.1063/5.0191602. [PMID: 38681736 PMCID: PMC11047138 DOI: 10.1063/5.0191602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Microresonator frequency combs and their design versatility have revolutionized research areas from data communication to exoplanet searches. While microcombs in the 1550 nm band are well documented, there is interest in using microcombs in other bands. Here, we demonstrate the formation and spectral control of normal-dispersion dark soliton microcombs at 1064 nm. We generate 200 GHz repetition rate microcombs by inducing a photonic bandgap of the microresonator mode for the pump laser with a photonic crystal. We perform the experiments with normal-dispersion microresonators made from Ta2O5 and explore unique soliton pulse shapes and operating behaviors. By adjusting the resonator dispersion through its nanostructured geometry, we demonstrate control over the spectral bandwidth of these combs, and we employ numerical modeling to understand their existence range. Our results highlight how photonic design enables microcomb spectra tailoring across wide wavelength ranges, offering potential in bioimaging, spectroscopy, and photonic-atomic quantum technologies.
Collapse
Affiliation(s)
- Grisha Spektor
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- Octave Photonics, Louisville, Colorado 80027, USA
| | - Jizhao Zang
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Atasi Dan
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Travis C. Briles
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Grant M. Brodnik
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Haixin Liu
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Jennifer A. Black
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - David R. Carlson
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
- Octave Photonics, Louisville, Colorado 80027, USA
| | - Scott B. Papp
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
21
|
Clementi M, Nitiss E, Liu J, Durán-Valdeiglesias E, Belahsene S, Debrégeas H, Kippenberg TJ, Brès CS. A chip-scale second-harmonic source via self-injection-locked all-optical poling. LIGHT, SCIENCE & APPLICATIONS 2023; 12:296. [PMID: 38062066 PMCID: PMC10703906 DOI: 10.1038/s41377-023-01329-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 11/06/2023] [Indexed: 03/27/2024]
Abstract
Second-harmonic generation allows for coherently bridging distant regions of the optical spectrum, with applications ranging from laser technology to self-referencing of frequency combs. However, accessing the nonlinear response of a medium typically requires high-power bulk sources, specific nonlinear crystals, and complex optical setups, hindering the path toward large-scale integration. Here we address all of these issues by engineering a chip-scale second-harmonic (SH) source based on the frequency doubling of a semiconductor laser self-injection-locked to a silicon nitride microresonator. The injection-locking mechanism, combined with a high-Q microresonator, results in an ultra-narrow intrinsic linewidth at the fundamental harmonic frequency as small as 41 Hz. Owing to the extreme resonant field enhancement, quasi-phase-matched second-order nonlinearity is photoinduced through the coherent photogalvanic effect and the high coherence is mapped on the generated SH field. We show how such optical poling technique can be engineered to provide efficient SH generation across the whole C and L telecom bands, in a reconfigurable fashion, overcoming the need for poling electrodes. Our device operates with milliwatt-level pumping and outputs SH power exceeding 2 mW, for an efficiency as high as 280%/W under electrical driving. Our findings suggest that standalone, highly-coherent, and efficient SH sources can be integrated in current silicon nitride photonics, unlocking the potential of χ(2) processes in the next generation of integrated photonic devices.
Collapse
Affiliation(s)
- Marco Clementi
- Photonic Systems Laboratory (PHOSL), École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| | - Edgars Nitiss
- Photonic Systems Laboratory (PHOSL), École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Junqiu Liu
- Laboratory of Photonics and Quantum Measurements (LPQM), École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | | | | | | | - Tobias J Kippenberg
- Laboratory of Photonics and Quantum Measurements (LPQM), École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Camille-Sophie Brès
- Photonic Systems Laboratory (PHOSL), École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
22
|
Moille G, Stone J, Chojnacky M, Shrestha R, Javid UA, Menyuk C, Srinivasan K. Kerr-induced synchronization of a cavity soliton to an optical reference. Nature 2023; 624:267-274. [PMID: 38092906 DOI: 10.1038/s41586-023-06730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/09/2023] [Indexed: 12/18/2023]
Abstract
The phase-coherent frequency division of a stabilized optical reference laser to the microwave domain is made possible by optical-frequency combs (OFCs)1,2. OFC-based clockworks3-6 lock one comb tooth to a reference laser, which probes a stable atomic transition, usually through an active servo that increases the complexity of the OFC photonic and electronic integration for fieldable clock applications. Here, we demonstrate that the Kerr nonlinearity enables passive, electronics-free synchronization of a microresonator-based dissipative Kerr soliton (DKS) OFC7 to an externally injected reference laser. We present a theoretical model explaining this Kerr-induced synchronization (KIS), which closely matches experimental results based on a chip-integrated, silicon nitride, micro-ring resonator. Once synchronized, the reference laser captures an OFC tooth, so that tuning its frequency provides direct external control of the OFC repetition rate. We also show that the stability of the repetition rate is linked to that of the reference laser through the expected frequency division factor. Finally, KIS of an octave-spanning DKS exhibits enhancement of the opposite dispersive wave, consistent with the theoretical model, and enables improved self-referencing and access to the OFC carrier-envelope offset frequency. The KIS-mediated enhancements we demonstrate can be directly implemented in integrated optical clocks and chip-scale low-noise microwave generators.
Collapse
Affiliation(s)
- Grégory Moille
- Joint Quantum Institute, NIST/University of Maryland, College Park, MD, USA.
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, USA.
| | - Jordan Stone
- Joint Quantum Institute, NIST/University of Maryland, College Park, MD, USA
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Michal Chojnacky
- Joint Quantum Institute, NIST/University of Maryland, College Park, MD, USA
- Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Rahul Shrestha
- Joint Quantum Institute, NIST/University of Maryland, College Park, MD, USA
| | - Usman A Javid
- Joint Quantum Institute, NIST/University of Maryland, College Park, MD, USA
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Curtis Menyuk
- University of Maryland at Baltimore County, Baltimore, MD, USA
| | - Kartik Srinivasan
- Joint Quantum Institute, NIST/University of Maryland, College Park, MD, USA.
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, USA.
| |
Collapse
|
23
|
Liu M, Dang Y, Huang H, Lu Z, Mei S, Cai Y, Zhou W, Zhao W. Vector solitonic pulses excitation in microresonators via free carrier effects. OPTICS EXPRESS 2023; 31:32172-32187. [PMID: 37859026 DOI: 10.1364/oe.498671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/02/2023] [Indexed: 10/21/2023]
Abstract
We numerically investigate the excitation of vector solitonic pulse with orthogonally polarized components via free-carrier effects in microresonators with normal group velocity dispersion (GVD). The dynamics of single, dual and oscillated vector pulses are unveiled under turn-key excitation with a single frequency-fixed CW laser source. Parameter spaces associated with detuning, polarization angle, interval between the pumped orthogonal resonances and pump amplitude have been revealed. Different vector pulse states can also be observed exploiting the traditional pump scanning scheme. Simultaneous and independent excitation regimes are identified due to varying interval of the orthogonal pump modes. The nonlinear coupling between two modes contributes to the distortion of the vector pulses' profile. The free-carrier effects and the pump polarization angle provide additional degrees of freedom for efficiently controlling the properties of the vector solitonic microcombs. Moreover, the crucial thermal dynamics in microcavities is discussed and weak thermal effects are found to be favorable for delayed vector pulse formation. These findings reveal complex excitation mechanism of solitonic structures and could provide novel routes for microcomb generation.
Collapse
|
24
|
Xiang C, Jin W, Terra O, Dong B, Wang H, Wu L, Guo J, Morin TJ, Hughes E, Peters J, Ji QX, Feshali A, Paniccia M, Vahala KJ, Bowers JE. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature 2023; 620:78-85. [PMID: 37532812 PMCID: PMC10396957 DOI: 10.1038/s41586-023-06251-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/23/2023] [Indexed: 08/04/2023]
Abstract
Photonic integrated circuits are widely used in applications such as telecommunications and data-centre interconnects1-5. However, in optical systems such as microwave synthesizers6, optical gyroscopes7 and atomic clocks8, photonic integrated circuits are still considered inferior solutions despite their advantages in size, weight, power consumption and cost. Such high-precision and highly coherent applications favour ultralow-noise laser sources to be integrated with other photonic components in a compact and robustly aligned format-that is, on a single chip-for photonic integrated circuits to replace bulk optics and fibres. There are two major issues preventing the realization of such envisioned photonic integrated circuits: the high phase noise of semiconductor lasers and the difficulty of integrating optical isolators directly on-chip. Here we challenge this convention by leveraging three-dimensional integration that results in ultralow-noise lasers with isolator-free operation for silicon photonics. Through multiple monolithic and heterogeneous processing sequences, direct on-chip integration of III-V gain medium and ultralow-loss silicon nitride waveguides with optical loss around 0.5 decibels per metre are demonstrated. Consequently, the demonstrated photonic integrated circuit enters a regime that gives rise to ultralow-noise lasers and microwave synthesizers without the need for optical isolators, owing to the ultrahigh-quality-factor cavity. Such photonic integrated circuits also offer superior scalability for complex functionalities and volume production, as well as improved stability and reliability over time. The three-dimensional integration on ultralow-loss photonic integrated circuits thus marks a critical step towards complex systems and networks on silicon.
Collapse
Affiliation(s)
- Chao Xiang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA.
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.
| | - Warren Jin
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
- Anello Photonics, Santa Clara, CA, USA
| | - Osama Terra
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
- Primary Length and Laser Technology Lab, National Institute of Standards, Giza, Egypt
| | - Bozhang Dong
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Heming Wang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Lue Wu
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA
| | - Joel Guo
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Theodore J Morin
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Eamonn Hughes
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jonathan Peters
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Qing-Xin Ji
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA
| | | | | | - Kerry J Vahala
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA
| | - John E Bowers
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA.
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
25
|
Dong B, Dumont M, Terra O, Wang H, Netherton A, Bowers JE. Broadband quantum-dot frequency-modulated comb laser. LIGHT, SCIENCE & APPLICATIONS 2023; 12:182. [PMID: 37491305 PMCID: PMC10368713 DOI: 10.1038/s41377-023-01225-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023]
Abstract
Frequency-modulated (FM) laser combs, which offer a quasi-continuous-wave output and a flat-topped optical spectrum, are emerging as a promising solution for wavelength-division multiplexing applications, precision metrology, and ultrafast optical ranging. The generation of FM combs relies on spatial hole burning, group velocity dispersion, Kerr nonlinearity, and four-wave mixing (FWM). While FM combs have been widely observed in quantum cascade Fabry-Perot (FP) lasers, the requirement for a low-dispersion FP cavity can be a challenge in platforms where the waveguide dispersion is mainly determined by the material. Here we report a 60 GHz quantum-dot (QD) mode-locked laser in which both the amplitude-modulated (AM) and the FM comb can be generated independently. The high FWM efficiency of -5 dB allows the QD laser to generate FM comb efficiently. We also demonstrate that the Kerr nonlinearity can be practically engineered to improve the FM comb bandwidth without the need for GVD engineering. The maximum 3-dB bandwidth that our QD platform can deliver is as large as 2.2 THz. This study gives novel insights into the improvement of FM combs and paves the way for small-footprint, electrically pumped, and energy-efficient frequency combs for silicon photonic integrated circuits (PICs).
Collapse
Affiliation(s)
- Bozhang Dong
- Institute for Energy Efficiency, University of California, Santa Barbara, CA, USA.
| | - Mario Dumont
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA
| | - Osama Terra
- Institute for Energy Efficiency, University of California, Santa Barbara, CA, USA
- Primary Length and Laser Technology Lab, National Institute of Standards, Giza, Egypt
| | - Heming Wang
- Institute for Energy Efficiency, University of California, Santa Barbara, CA, USA
| | - Andrew Netherton
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA
| | - John E Bowers
- Institute for Energy Efficiency, University of California, Santa Barbara, CA, USA.
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
26
|
Alkhazraji E, Chow WW, Grillot F, Bowers JE, Wan Y. Linewidth narrowing in self-injection-locked on-chip lasers. LIGHT, SCIENCE & APPLICATIONS 2023; 12:162. [PMID: 37380663 DOI: 10.1038/s41377-023-01172-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 06/30/2023]
Abstract
Stable laser emission with narrow linewidth is of critical importance in many applications, including coherent communications, LIDAR, and remote sensing. In this work, the physics underlying spectral narrowing of self-injection-locked on-chip lasers to Hz-level lasing linewidth is investigated using a composite-cavity structure. Heterogeneously integrated III-V/SiN lasers operating with quantum-dot and quantum-well active regions are analyzed with a focus on the effects of carrier quantum confinement. The intrinsic differences are associated with gain saturation and carrier-induced refractive index, which are directly connected with 0- and 2-dimensional carrier densities of states. Results from parametric studies are presented for tradeoffs involved with tailoring the linewidth, output power, and injection current for different device configurations. Though both quantum-well and quantum-dot devices show similar linewidth-narrowing capabilities, the former emits at a higher optical power in the self-injection-locked state, while the latter is more energy-efficient. Lastly, a multi-objective optimization analysis is provided to optimize the operation and design parameters. For the quantum-well laser, minimizing the number of quantum-well layers is found to decrease the threshold current without significantly reducing the output power. For the quantum-dot laser, increasing the quantum-dot layers or density in each layer increases the output power without significantly increasing the threshold current. These findings serve to guide more detailed parametric studies to produce timely results for engineering design.
Collapse
Affiliation(s)
- Emad Alkhazraji
- Integrated Photonics Lab, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Weng W Chow
- Sandia National Laboratories, Albuquerque, NM, 87185-1086, USA.
| | - Frédéric Grillot
- LTCI, Télécom Paris, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - John E Bowers
- Department of Electronic and Computer Engineering, University of California - Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Yating Wan
- Integrated Photonics Lab, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
27
|
Zhang H, Tan T, Chen HJ, Yu Y, Wang W, Chang B, Liang Y, Guo Y, Zhou H, Xia H, Gong Q, Wong CW, Rao Y, Xiao YF, Yao B. Soliton Microcombs Multiplexing Using Intracavity-Stimulated Brillouin Lasers. PHYSICAL REVIEW LETTERS 2023; 130:153802. [PMID: 37115887 DOI: 10.1103/physrevlett.130.153802] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Solitons in microresonators have spurred intriguing nonlinear optical physics and photonic applications. Here, by combining Kerr and Brillouin nonlinearities in an over-modal microcavity, we demonstrate spatial multiplexing of soliton microcombs under a single external laser pumping operation. This demonstration offers an ideal scheme to realize highly coherent dual-comb sources in a compact, low-cost and energy-efficient manner, with uniquely low beating noise. Moreover, by selecting the dual-comb modes, the repetition rate difference of a dual-comb pair could be flexibly switched, ranging from 8.5 to 212 MHz. Beyond dual-comb, the high-density mode geometry allows the cascaded Brillouin lasers, driving the co-generation of up to 5 space-multiplexing frequency combs in distinct mode families. This Letter offers a novel physics paradigm for comb interferometry and provides a widely appropriate tool for versatile applications such as comb metrology, spectroscopy, and ranging.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Optical Fibre Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Teng Tan
- Key Laboratory of Optical Fibre Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hao-Jing Chen
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA
| | - Yan Yu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA
| | - Wenting Wang
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, California 90095, USA
| | - Bing Chang
- Key Laboratory of Optical Fibre Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yupei Liang
- Key Laboratory of Optical Fibre Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanhong Guo
- Key Laboratory of Optical Fibre Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Heng Zhou
- Key Laboratory of Optical Fibre Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Handing Xia
- Research Center of Laser Fusion, China Academic of Engineering Physics, Mianyang 621900, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Chee Wei Wong
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, California 90095, USA
| | - Yunjiang Rao
- Key Laboratory of Optical Fibre Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 611731, China
- Research Centre for Optical Fiber Sensing, Zhejiang Laboratory, Hangzhou 310000, China
| | - Yun-Feng Xiao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Baicheng Yao
- Key Laboratory of Optical Fibre Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
28
|
Liang Q, Chan YC, Toscano J, Bjorkman KK, Leinwand LA, Parker R, Nozik ES, Nesbitt DJ, Ye J. Breath analysis by ultra-sensitive broadband laser spectroscopy detects SARS-CoV-2 infection. J Breath Res 2023; 17:10.1088/1752-7163/acc6e4. [PMID: 37016829 PMCID: PMC10930087 DOI: 10.1088/1752-7163/acc6e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/23/2023] [Indexed: 04/06/2023]
Abstract
Rapid testing is essential to fighting pandemics such as coronavirus disease 2019 (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Exhaled human breath contains multiple volatile molecules providing powerful potential for non-invasive diagnosis of diverse medical conditions. We investigated breath detection of SARS-CoV-2 infection using cavity-enhanced direct frequency comb spectroscopy (CE-DFCS), a state-of-the-art laser spectroscopic technique capable of a real-time massive collection of broadband molecular absorption features at ro-vibrational quantum state resolution and at parts-per-trillion volume detection sensitivity. Using a total of 170 individual breath samples (83 positive and 87 negative with SARS-CoV-2 based on reverse transcription polymerase chain reaction tests), we report excellent discrimination capability for SARS-CoV-2 infection with an area under the receiver-operating-characteristics curve of 0.849(4). Our results support the development of CE-DFCS as an alternative, rapid, non-invasive test for COVID-19 and highlight its remarkable potential for optical diagnoses of diverse biological conditions and disease states.
Collapse
Affiliation(s)
- Qizhong Liang
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, United States of America
- Department of Physics, University of Colorado, Boulder, CO 80309, United States of America
| | - Ya-Chu Chan
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, United States of America
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States of America
| | - Jutta Toscano
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, United States of America
- Department of Physics, University of Colorado, Boulder, CO 80309, United States of America
- Present address: Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Kristen K Bjorkman
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
| | - Leslie A Leinwand
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80303, United States of America
| | - Roy Parker
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
- Department of Biochemistry and HHMI, University of Colorado, Boulder, CO 80303, United States of America
| | - Eva S Nozik
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, and Division of Pediatric Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, United States of America
- Department of Physics, University of Colorado, Boulder, CO 80309, United States of America
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States of America
| | - Jun Ye
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, United States of America
- Department of Physics, University of Colorado, Boulder, CO 80309, United States of America
| |
Collapse
|
29
|
Belsley A. Quantum-Enhanced Absorption Spectroscopy with Bright Squeezed Frequency Combs. PHYSICAL REVIEW LETTERS 2023; 130:133602. [PMID: 37067300 DOI: 10.1103/physrevlett.130.133602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Absorption spectroscopy is a widely used technique that permits the detection and characterization of gas species at low concentrations. We propose a sensing strategy combining the advantages of frequency modulation spectroscopy with the reduced noise properties accessible by squeezing the probe state. A homodyne detection scheme allows the simultaneous measurement of the absorption at multiple frequencies and is robust against dispersion across the absorption profile. We predict a significant enhancement of the signal-to-noise ratio that scales exponentially with the squeezing factor. An order of magnitude improvement beyond the standard quantum limit is possible with state-of-the-art squeezing levels facilitating high precision gas sensing.
Collapse
Affiliation(s)
- Alexandre Belsley
- Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1FD, United Kingdom and Quantum Engineering Centre for Doctoral Training, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1FD, United Kingdom
| |
Collapse
|
30
|
Sirleto L, Righini GC. An Introduction to Nonlinear Integrated Photonics Devices: Nonlinear Effects and Materials. MICROMACHINES 2023; 14:604. [PMID: 36985011 PMCID: PMC10058895 DOI: 10.3390/mi14030604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The combination of integrated optics technologies with nonlinear photonics, which has led to the growth of nonlinear integrated photonics, has also opened the way to groundbreaking new devices and applications. Here we introduce the main physical processes involved in nonlinear photonics applications, and we discuss the fundaments of this research area, starting from traditional second-order and third-order phenomena and going to ultrafast phenomena. The applications, on the other hand, have been made possible by the availability of suitable materials, with high nonlinear coefficients, and/or by the design of guided-wave structures, which can enhance the material's nonlinear properties. A summary of the most common nonlinear materials is presented, together with a discussion of the innovative ones. The discussion of fabrication processes and integration platforms is the subject of a companion article, also submitted for publication in this journal. There, several examples of nonlinear photonic integrated devices to be employed in optical communications, all-optical signal processing and computing, or quantum optics are shown, too. We aimed at offering a broad overview, even if, certainly, not exhaustive. We hope that the overall work could provide guidance for those who are newcomers to this field and some hints to the interested researchers for a more detailed investigation of the present and future development of this hot and rapidly growing field.
Collapse
Affiliation(s)
- Luigi Sirleto
- National Research Council (CNR), Institute of Applied Sciences and Intelligent Systems (ISASI), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Giancarlo C. Righini
- National Research Council (CNR), Institute of Applied Physics (IFAC) “Nello Carrara”, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
31
|
High-performance Kerr microresonator optical parametric oscillator on a silicon chip. Nat Commun 2023; 14:242. [PMID: 36646688 PMCID: PMC9842726 DOI: 10.1038/s41467-022-35746-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Optical parametric oscillation (OPO) is distinguished by its wavelength access, that is, the ability to flexibly generate coherent light at wavelengths that are dramatically different from the pump laser, and in principle bounded solely by energy conservation between the input pump field and the output signal/idler fields. As society adopts advanced tools in quantum information science, metrology, and sensing, microchip OPO may provide an important path for accessing relevant wavelengths. However, a practical source of coherent light should additionally have high conversion efficiency and high output power. Here, we demonstrate a silicon photonics OPO device with unprecedented performance. Our OPO device, based on the third-order (χ(3)) nonlinearity in a silicon nitride microresonator, produces output signal and idler fields widely separated from each other in frequency ( > 150 THz), and exhibits a pump-to-idler conversion efficiency up to 29 % with a corresponding output idler power of > 18 mW on-chip. This performance is achieved by suppressing competitive processes and by strongly overcoupling the output light. This methodology can be readily applied to existing silicon photonics platforms with heterogeneously-integrated pump lasers, enabling flexible coherent light generation across a broad range of wavelengths with high output power and efficiency.
Collapse
|
32
|
Yang J, Tang M, Chen S, Liu H. From past to future: on-chip laser sources for photonic integrated circuits. LIGHT, SCIENCE & APPLICATIONS 2023; 12:16. [PMID: 36641490 PMCID: PMC9840602 DOI: 10.1038/s41377-022-01006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The realisation of on-chip light sources paves the way towards the full integration of Si-based photonic integrated circuits (PICs).
Collapse
Affiliation(s)
- Junjie Yang
- Department of Electronic and Electrical Engineering, University College London, London, WC1E 7JE, United Kingdom
| | - Mingchu Tang
- Department of Electronic and Electrical Engineering, University College London, London, WC1E 7JE, United Kingdom
| | - Siming Chen
- Department of Electronic and Electrical Engineering, University College London, London, WC1E 7JE, United Kingdom
| | - Huiyun Liu
- Department of Electronic and Electrical Engineering, University College London, London, WC1E 7JE, United Kingdom.
| |
Collapse
|
33
|
kHz-precision wavemeter based on reconfigurable microsoliton. Nat Commun 2023; 14:169. [PMID: 36631455 PMCID: PMC9834224 DOI: 10.1038/s41467-022-35728-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
The mode-locked microcomb offers a unique and compact solution for photonics applications, ranging from the optical communications, the optical clock, optical ranging, the precision spectroscopy, novel quantum light source, to photonic artificial intelligence. However, the photonic micro-structures are suffering from the perturbations arising from environment thermal noises and also laser-induced nonlinear effects, leading to the frequency instability of the generated comb. Here, a universal mechanism for fully stabilizing the microcomb is proposed and experimentally verified. By incorporating two global tuning approaches and the autonomous thermal locking mechanism, the pump laser frequency and repetition rate of the microcomb can be controlled independently in real-time without interrupting the microcomb generation. The high stability and controllability of the microcomb frequency enables its application in wavelength measurement with a precision of about 1 kHz. The approach for the full control of comb frequency could be applied in various microcomb platforms, and improve their performances in timing, spectroscopy, and sensing.
Collapse
|
34
|
Abstract
The emergence of parallel convolution-operation technology has substantially powered the complexity and functionality of optical neural networks (ONN) by harnessing the dimension of optical wavelength. However, this advanced architecture faces remarkable challenges in high-level integration and on-chip operation. In this work, convolution based on time-wavelength plane stretching approach is implemented on a microcomb-driven chip-based photonic processing unit (PPU). To support the operation of this processing unit, we develop a dedicated control and operation protocol, leading to a record high weight precision of 9 bits. Moreover, the compact architecture and high data loading speed enable a preeminent photonic-core compute density of over 1 trillion of operations per second per square millimeter (TOPS mm-2). Two proof-of-concept experiments are demonstrated, including image edge detection and handwritten digit recognition, showing comparable processing capability compared to that of a digital computer. Due to the advanced performance and the great scalability, this parallel photonic processing unit can potentially revolutionize sophisticated artificial intelligence tasks including autonomous driving, video action recognition and image reconstruction.
Collapse
|
35
|
Zhou Z, Ou X, Fang Y, Alkhazraji E, Xu R, Wan Y, Bowers JE. Prospects and applications of on-chip lasers. ELIGHT 2023; 3:1. [PMID: 36618904 PMCID: PMC9810524 DOI: 10.1186/s43593-022-00027-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 01/05/2023]
Abstract
Integrated silicon photonics has sparked a significant ramp-up of investment in both academia and industry as a scalable, power-efficient, and eco-friendly solution. At the heart of this platform is the light source, which in itself, has been the focus of research and development extensively. This paper sheds light and conveys our perspective on the current state-of-the-art in different aspects of application-driven on-chip silicon lasers. We tackle this from two perspectives: device-level and system-wide points of view. In the former, the different routes taken in integrating on-chip lasers are explored from different material systems to the chosen integration methodologies. Then, the discussion focus is shifted towards system-wide applications that show great prospects in incorporating photonic integrated circuits (PIC) with on-chip lasers and active devices, namely, optical communications and interconnects, optical phased array-based LiDAR, sensors for chemical and biological analysis, integrated quantum technologies, and finally, optical computing. By leveraging the myriad inherent attractive features of integrated silicon photonics, this paper aims to inspire further development in incorporating PICs with on-chip lasers in, but not limited to, these applications for substantial performance gains, green solutions, and mass production.
Collapse
Affiliation(s)
- Zhican Zhou
- Integrated Photonics Lab, King Abdullah University of Science and Technology, Thuwal, Makkah Province Saudi Arabia
| | - Xiangpeng Ou
- Integrated Photonics Lab, King Abdullah University of Science and Technology, Thuwal, Makkah Province Saudi Arabia
| | - Yuetong Fang
- Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, China
| | - Emad Alkhazraji
- Integrated Photonics Lab, King Abdullah University of Science and Technology, Thuwal, Makkah Province Saudi Arabia
| | - Renjing Xu
- Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, China
| | - Yating Wan
- Integrated Photonics Lab, King Abdullah University of Science and Technology, Thuwal, Makkah Province Saudi Arabia
- Institute for Energy Efficiency, University of California, Santa Barbara, Santa Barbara, CA 93106 USA
| | - John E Bowers
- Institute for Energy Efficiency, University of California, Santa Barbara, Santa Barbara, CA 93106 USA
| |
Collapse
|
36
|
Shitikov AE, Lykov II, Benderov OV, Chermoshentsev DA, Gorelov IK, Danilin AN, Galiev RR, Kondratiev NM, Cordette SJ, Rodin AV, Masalov AV, Lobanov VE, Bilenko IA. Optimization of laser stabilization via self-injection locking to a whispering-gallery-mode microresonator: experimental study. OPTICS EXPRESS 2023; 31:313-327. [PMID: 36606969 DOI: 10.1364/oe.478009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Self-injection locking of a diode laser to a high-quality-factor microresonator is widely used for frequency stabilization and linewidth narrowing. We constructed several microresonator-based laser sources with measured instantaneous linewidths of 1 Hz and used them for investigation and implementation of the self-injection locking effect. We studied analytically and experimentally the dependence of the stabilization coefficient on tunable parameters such as locking phase and coupling rate. It was shown that precise control of the locking phase allows fine-tuning of the generated frequency from the stabilized laser diode. We also showed that it is possible for such laser sources to realize fast continuous and linear frequency modulation by injection current tuning inside the self-injection locking regime. We conceptually demonstrate coherent frequency-modulated continuous wave LIDAR over a distance of 10 km using such a microresonator-stabilized laser diode in the frequency-chirping regime and measure velocities as low as sub-micrometer per second in the unmodulated case. These results could be of interest to cutting-edge technology applications such as space debris monitoring and long-range object classification, high-resolution spectroscopy, and others.
Collapse
|
37
|
Jang J, Jeong M, Lee J, Kim S, Yun H, Rho J. Planar Optical Cavities Hybridized with Low-Dimensional Light-Emitting Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203889. [PMID: 35861661 DOI: 10.1002/adma.202203889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Low-dimensional light-emitting materials have been actively investigated due to their unprecedented optical and optoelectronic properties that are not observed in their bulk forms. However, the emission from low-dimensional light-emitting materials is generally weak and difficult to use in nanophotonic devices without being amplified and engineered by optical cavities. Along with studies on various planar optical cavities over the last decade, the physics of cavity-emitter interactions as well as various integration methods are investigated deeply. These integrations not only enhance the light-matter interaction of the emitters, but also provide opportunities for realizing nanophotonic devices based on the new physics allowed by low-dimensional emitters. In this review, the fundamentals, strengths and weaknesses of various planar optical resonators are first provided. Then, commonly used low-dimensional light-emitting materials such as 0D emitters (quantum dots and upconversion nanoparticles) and 2D emitters (transition-metal dichalcogenide and hexagonal boron nitride) are discussed. The integration of these emitters and cavities and the expect interplay between them are explained in the following chapters. Finally, a comprehensive discussion and outlook of nanoscale cavity-emitter integrated systems is provided.
Collapse
Affiliation(s)
- Jaehyuck Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Minsu Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seokwoo Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Huichang Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junsuk Rho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea
| |
Collapse
|
38
|
O'Malley NP, McKinzie KA, Alshaykh MS, Liu J, Leaird DE, Kippenberg TJ, McKinney JD, Weiner AM. Architecture for integrated RF photonic downconversion of electronic signals. OPTICS LETTERS 2023; 48:159-162. [PMID: 36563395 DOI: 10.1364/ol.474710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Electronic analog to digital converters (ADCs) are running up against the well-known bit depth versus bandwidth trade off. Towards this end, radio frequency (RF) photonic-enhanced ADCs have been the subject of interest for some time. Optical frequency comb technology has been used as a workhorse underlying many of these architectures. Unfortunately, such designs must generally grapple with size, weight, and power (SWaP) concerns, as well as frequency ambiguity issues which threaten to obscure critical spectral information of detected RF signals. In this work, we address these concerns via an RF photonic downconverter with potential for easy integration and field deployment by leveraging a novel, to the best of our knowledge, hybrid microcomb/electro-optic comb design.
Collapse
|
39
|
Hu J, Nitiss E, He J, Liu J, Yakar O, Weng W, Kippenberg TJ, Brès CS. Photo-induced cascaded harmonic and comb generation in silicon nitride microresonators. SCIENCE ADVANCES 2022; 8:eadd8252. [PMID: 36516262 PMCID: PMC9750138 DOI: 10.1126/sciadv.add8252] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/08/2022] [Indexed: 05/25/2023]
Abstract
Silicon nitride (Si3N4) is an ever-maturing integrated platform for nonlinear optics but mostly considered for third-order [χ(3)] nonlinear interactions. Recently, second-order [χ(2)] nonlinearity was introduced into Si3N4 via the photogalvanic effect, resulting in the inscription of quasi-phase-matched χ(2) gratings. However, the full potential of the photogalvanic effect in microresonators remains largely unexplored for cascaded effects. Here, we report combined χ(2) and χ(3) nonlinear effects in a normal dispersion Si3N4 microresonator. We demonstrate that the photo-induced χ(2) grating also provides phase-matching for the sum-frequency generation process, enabling the initiation and successive switching of primary combs. In addition, the doubly resonant pump and second-harmonic fields allow for effective third-harmonic generation, where a secondary optically written χ(2) grating is identified. Last, we reach a broadband microcomb state evolved from the sum-frequency-coupled primary comb. These results expand the scope of cascaded effects in microresonators.
Collapse
Affiliation(s)
- Jianqi Hu
- École Polytechnique Fédérale de Lausanne, Photonic Systems Laboratory (PHOSL), STI-IEM, Station 11, Lausanne CH-1015, Switzerland
| | - Edgars Nitiss
- École Polytechnique Fédérale de Lausanne, Photonic Systems Laboratory (PHOSL), STI-IEM, Station 11, Lausanne CH-1015, Switzerland
| | - Jijun He
- École Polytechnique Fédérale de Lausanne, Laboratory of Photonics and Quantum Measurements (LPQM), SB-IPHYS, Station 3, Lausanne CH-1015, Switzerland
| | - Junqiu Liu
- École Polytechnique Fédérale de Lausanne, Laboratory of Photonics and Quantum Measurements (LPQM), SB-IPHYS, Station 3, Lausanne CH-1015, Switzerland
| | - Ozan Yakar
- École Polytechnique Fédérale de Lausanne, Photonic Systems Laboratory (PHOSL), STI-IEM, Station 11, Lausanne CH-1015, Switzerland
| | - Wenle Weng
- École Polytechnique Fédérale de Lausanne, Laboratory of Photonics and Quantum Measurements (LPQM), SB-IPHYS, Station 3, Lausanne CH-1015, Switzerland
| | - Tobias J. Kippenberg
- École Polytechnique Fédérale de Lausanne, Laboratory of Photonics and Quantum Measurements (LPQM), SB-IPHYS, Station 3, Lausanne CH-1015, Switzerland
| | - Camille-Sophie Brès
- École Polytechnique Fédérale de Lausanne, Photonic Systems Laboratory (PHOSL), STI-IEM, Station 11, Lausanne CH-1015, Switzerland
| |
Collapse
|
40
|
Geng Y, Xiao Y, Bai Q, Han X, Dong W, Wang W, Xue J, Yao B, Deng G, Zhou Q, Qiu K, Xu J, Zhou H. Wavelength-division multiplexing communications using integrated soliton microcomb laser source. OPTICS LETTERS 2022; 47:6129-6132. [PMID: 37219189 DOI: 10.1364/ol.475075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 05/24/2023]
Abstract
In this Letter, we report an investigation of the feasibility and performance of wavelength-division multiplexed (WDM) optical communications using an integrated perfect soliton crystal as the multi-channel laser source. First, we confirm that perfect soliton crystals pumped directly by a distributed-feedback (DFB) laser self-injection locked to the host microcavity has sufficiently low frequency and amplitude noise to encode advanced data formats. Second, perfect soliton crystals are exploited to boost the power level of each microcomb line, so that it can be directly used for data modulation, excluding preamplification. Third, in a proof-of-concept experiment, we demonstrate seven-channel 16-quadrature amplitude modulation (16-QAM) and 4-level pulse amplitude modulation (PAM4) data transmissions using an integrated perfect soliton crystal as the laser carrier; excellent data receiving performance is obtained for various fiber link distances and amplifier configurations. Our study reveals that fully integrated Kerr soliton microcombs are viable and advantageous for optical data communications.
Collapse
|
41
|
Chen X, Sun S, Ji W, Ding X, Gao Y, Liu T, Wen J, Guo H, Wang T. Soliton Microcomb on Chip Integrated Si3N 4 Microresonators with Power Amplification in Erbium-Doped Optical Mono-Core Fiber. MICROMACHINES 2022; 13:2125. [PMID: 36557424 PMCID: PMC9785997 DOI: 10.3390/mi13122125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Soliton microcombs, offering large mode spacing and broad bandwidth, have enabled a variety of advanced applications, particularly for telecommunications, photonic data center, and optical computation. Yet, the absolute power of microcombs remains insufficient, such that optical power amplification is always required. Here, we demonstrate a combined technique to access power-sufficient optical microcombs, with a photonic-integrated soliton microcomb and home-developed erbium-doped gain fiber. The soliton microcomb is generated in an integrated Si3N4 microresonator chip, which serves as a full-wave probing signal for power amplification. After the amplification, more than 40 comb modes, with 115-GHz spacing, reach the onset power level of >−10 dBm, which is readily available for parallel telecommunications , among other applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianxiang Wen
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China
| | - Hairun Guo
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China
| | | |
Collapse
|
42
|
Wang X, Xie P, Chen B, Zhang X. Chip-Based High-Dimensional Optical Neural Network. NANO-MICRO LETTERS 2022; 14:221. [PMID: 36374430 PMCID: PMC9663775 DOI: 10.1007/s40820-022-00957-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/03/2022] [Indexed: 05/16/2023]
Abstract
Parallel multi-thread processing in advanced intelligent processors is the core to realize high-speed and high-capacity signal processing systems. Optical neural network (ONN) has the native advantages of high parallelization, large bandwidth, and low power consumption to meet the demand of big data. Here, we demonstrate the dual-layer ONN with Mach-Zehnder interferometer (MZI) network and nonlinear layer, while the nonlinear activation function is achieved by optical-electronic signal conversion. Two frequency components from the microcomb source carrying digit datasets are simultaneously imposed and intelligently recognized through the ONN. We successfully achieve the digit classification of different frequency components by demultiplexing the output signal and testing power distribution. Efficient parallelization feasibility with wavelength division multiplexing is demonstrated in our high-dimensional ONN. This work provides a high-performance architecture for future parallel high-capacity optical analog computing.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Xie
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| | - Bohan Chen
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Xingcai Zhang
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
43
|
Guo J, McLemore CA, Xiang C, Lee D, Wu L, Jin W, Kelleher M, Jin N, Mason D, Chang L, Feshali A, Paniccia M, Rakich PT, Vahala KJ, Diddams SA, Quinlan F, Bowers JE. Chip-based laser with 1-hertz integrated linewidth. SCIENCE ADVANCES 2022; 8:eabp9006. [PMID: 36306350 PMCID: PMC9616488 DOI: 10.1126/sciadv.abp9006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Lasers with hertz linewidths at time scales of seconds are critical for metrology, timekeeping, and manipulation of quantum systems. Such frequency stability relies on bulk-optic lasers and reference cavities, where increased size is leveraged to reduce noise but with the trade-off of cost, hand assembly, and limited applications. Alternatively, planar waveguide-based lasers enjoy complementary metal-oxide semiconductor scalability yet are fundamentally limited from achieving hertz linewidths by stochastic noise and thermal sensitivity. In this work, we demonstrate a laser system with a 1-s linewidth of 1.1 Hz and fractional frequency instability below 10-14 to 1 s. This low-noise performance leverages integrated lasers together with an 8-ml vacuum-gap cavity using microfabricated mirrors. All critical components are lithographically defined on planar substrates, holding potential for high-volume manufacturing. Consequently, this work provides an important advance toward compact lasers with hertz linewidths for portable optical clocks, radio frequency photonic oscillators, and related communication and navigation systems.
Collapse
Affiliation(s)
- Joel Guo
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Charles A. McLemore
- National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
- Department of Physics, University of Colorado Boulder, 440 UCB Boulder, CO 80309, USA
| | - Chao Xiang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Dahyeon Lee
- National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
- Department of Physics, University of Colorado Boulder, 440 UCB Boulder, CO 80309, USA
| | - Lue Wu
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Warren Jin
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Megan Kelleher
- National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
- Department of Physics, University of Colorado Boulder, 440 UCB Boulder, CO 80309, USA
| | - Naijun Jin
- Department of Applied Physics, Yale University, New Haven, CT 06520, USA
| | - David Mason
- Department of Applied Physics, Yale University, New Haven, CT 06520, USA
| | - Lin Chang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | | - Peter T. Rakich
- Department of Applied Physics, Yale University, New Haven, CT 06520, USA
| | - Kerry J. Vahala
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Scott A. Diddams
- National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
- Department of Physics, University of Colorado Boulder, 440 UCB Boulder, CO 80309, USA
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, 425 UCB, Boulder, CO 80309, USA
| | - Franklyn Quinlan
- National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
- Department of Physics, University of Colorado Boulder, 440 UCB Boulder, CO 80309, USA
| | - John E. Bowers
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
44
|
Nie M, Li B, Jia K, Xie Y, Yan J, Zhu S, Xie Z, Huang SW. Dissipative soliton generation and real-time dynamics in microresonator-filtered fiber lasers. LIGHT, SCIENCE & APPLICATIONS 2022; 11:296. [PMID: 36224184 PMCID: PMC9556569 DOI: 10.1038/s41377-022-00998-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 05/23/2023]
Abstract
Optical frequency combs in microresonators (microcombs) have a wide range of applications in science and technology, due to its compact size and access to considerably larger comb spacing. Despite recent successes, the problems of self-starting, high mode efficiency as well as high output power have not been fully addressed for conventional soliton microcombs. Recent demonstration of laser cavity soliton microcombs by nesting a microresonator into a fiber cavity, shows great potential to solve the problems. Here we study the dissipative soliton generation and interaction dynamics in a microresonator-filtered fiber laser in both theory and experiment. We bring theoretical insight into the mode-locking principle, discuss the parameters effect on soliton properties, and provide experimental guidelines for broadband soliton generation. We predict chirped bright dissipative soliton with flat-top spectral envelope in microresonators with normal dispersion, which is fundamentally forbidden for the externally driven case. Furthermore, we experimentally achieve soliton microcombs with large bandwidth of ~10 nm and high mode efficiency of 90.7%. Finally, by taking advantage of an ultrahigh-speed time magnifier, we study the real-time soliton formation and interaction dynamics and experimentally observe soliton Newton's cradle. Our study will benefit the design of the novel, high-efficiency and self-starting microcombs for real-world applications.
Collapse
Affiliation(s)
- Mingming Nie
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado, 80309, USA.
| | - Bowen Li
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Kunpeng Jia
- School of Electronic Science and Engineering, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yijun Xie
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Jingjie Yan
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Shining Zhu
- School of Electronic Science and Engineering, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Zhenda Xie
- School of Electronic Science and Engineering, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Shu-Wei Huang
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado, 80309, USA.
| |
Collapse
|
45
|
Li M, Chang L, Wu L, Staffa J, Ling J, Javid UA, Xue S, He Y, Lopez-Rios R, Morin TJ, Wang H, Shen B, Zeng S, Zhu L, Vahala KJ, Bowers JE, Lin Q. Integrated Pockels laser. Nat Commun 2022; 13:5344. [PMID: 36097269 PMCID: PMC9467990 DOI: 10.1038/s41467-022-33101-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
The development of integrated semiconductor lasers has miniaturized traditional bulky laser systems, enabling a wide range of photonic applications. A progression from pure III-V based lasers to III-V/external cavity structures has harnessed low-loss waveguides in different material systems, leading to significant improvements in laser coherence and stability. Despite these successes, however, key functions remain absent. In this work, we address a critical missing function by integrating the Pockels effect into a semiconductor laser. Using a hybrid integrated III-V/Lithium Niobate structure, we demonstrate several essential capabilities that have not existed in previous integrated lasers. These include a record-high frequency modulation speed of 2 exahertz/s (2.0 × 1018 Hz/s) and fast switching at 50 MHz, both of which are made possible by integration of the electro-optic effect. Moreover, the device co-lases at infrared and visible frequencies via the second-harmonic frequency conversion process, the first such integrated multi-color laser. Combined with its narrow linewidth and wide tunability, this new type of integrated laser holds promise for many applications including LiDAR, microwave photonics, atomic physics, and AR/VR.
Collapse
Affiliation(s)
- Mingxiao Li
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Lin Chang
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Lue Wu
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jeremy Staffa
- Institute of Optics, University of Rochester, Rochester, NY, 14627, USA
| | - Jingwei Ling
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Usman A Javid
- Institute of Optics, University of Rochester, Rochester, NY, 14627, USA
| | - Shixin Xue
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Yang He
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, 14627, USA
| | | | - Theodore J Morin
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Heming Wang
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Boqiang Shen
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Siwei Zeng
- Department of Electrical and Computer Engineering, Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC, 29634, USA
| | - Lin Zhu
- Department of Electrical and Computer Engineering, Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC, 29634, USA
| | - Kerry J Vahala
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - John E Bowers
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Qiang Lin
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, 14627, USA.
- Institute of Optics, University of Rochester, Rochester, NY, 14627, USA.
| |
Collapse
|
46
|
Lihachev G, Riemensberger J, Weng W, Liu J, Tian H, Siddharth A, Snigirev V, Shadymov V, Voloshin A, Wang RN, He J, Bhave SA, Kippenberg TJ. Low-noise frequency-agile photonic integrated lasers for coherent ranging. Nat Commun 2022; 13:3522. [PMID: 35725718 PMCID: PMC9209488 DOI: 10.1038/s41467-022-30911-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/24/2022] [Indexed: 11/27/2022] Open
Abstract
Frequency modulated continuous wave laser ranging (FMCW LiDAR) enables distance mapping with simultaneous position and velocity information, is immune to stray light, can achieve long range, operate in the eye-safe region of 1550 nm and achieve high sensitivity. Despite its advantages, it is compounded by the simultaneous requirement of both narrow linewidth low noise lasers that can be precisely chirped. While integrated silicon-based lasers, compatible with wafer scale manufacturing in large volumes at low cost, have experienced major advances and are now employed on a commercial scale in data centers, and impressive progress has led to integrated lasers with (ultra) narrow sub-100 Hz-level intrinsic linewidth based on optical feedback from photonic circuits, these lasers presently lack fast nonthermal tuning, i.e. frequency agility as required for coherent ranging. Here, we demonstrate a hybrid photonic integrated laser that exhibits very narrow intrinsic linewidth of 25 Hz while offering linear, hysteresis-free, and mode-hop-free-tuning beyond 1 GHz with up to megahertz actuation bandwidth constituting 1.6 × 1015 Hz/s tuning speed. Our approach uses foundry-based technologies - ultralow-loss (1 dB/m) Si3N4 photonic microresonators, combined with aluminium nitride (AlN) or lead zirconium titanate (PZT) microelectromechanical systems (MEMS) based stress-optic actuation. Electrically driven low-phase-noise lasing is attained by self-injection locking of an Indium Phosphide (InP) laser chip and only limited by fundamental thermo-refractive noise at mid-range offsets. By utilizing difference-drive and apodization of the photonic chip to suppress mechanical vibrations of the chip, a flat actuation response up to 10 MHz is achieved. We leverage this capability to demonstrate a compact coherent LiDAR engine that can generate up to 800 kHz FMCW triangular optical chirp signals, requiring neither any active linearization nor predistortion compensation, and perform a 10 m optical ranging experiment, with a resolution of 12.5 cm. Our results constitute a photonic integrated laser system for scenarios where high compactness, fast frequency actuation, and high spectral purity are required. Stable and tunable integrated lasers are fundamental building blocks for applications from spectroscopy to imaging and communication. Here the authors present a narrow linewidth hybrid photonic integrated laser with low frequency noise and fast linear wavelength tuning. They then provide an efficient FMCW LIDAR demonstration.
Collapse
Affiliation(s)
- Grigory Lihachev
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Johann Riemensberger
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Wenle Weng
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland.,Institute for Photonics and Advanced Sensing (IPAS), and School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Junqiu Liu
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Hao Tian
- OxideMEMS Lab, Purdue University, West Lafayette, IN, 47907, USA
| | - Anat Siddharth
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Viacheslav Snigirev
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Vladimir Shadymov
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Andrey Voloshin
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Rui Ning Wang
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Jijun He
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Sunil A Bhave
- OxideMEMS Lab, Purdue University, West Lafayette, IN, 47907, USA
| | - Tobias J Kippenberg
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
47
|
Kim J. Chip-scale power booster for light. Science 2022; 376:1269. [PMID: 35709282 DOI: 10.1126/science.abq8422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A miniature amplifier with high power is realized with an ion-doped waveguide.
Collapse
Affiliation(s)
- Jungwon Kim
- Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
48
|
Gao M, Yang QF, Ji QX, Wang H, Wu L, Shen B, Liu J, Huang G, Chang L, Xie W, Yu SP, Papp SB, Bowers JE, Kippenberg TJ, Vahala KJ. Probing material absorption and optical nonlinearity of integrated photonic materials. Nat Commun 2022; 13:3323. [PMID: 35680923 PMCID: PMC9184588 DOI: 10.1038/s41467-022-30966-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/26/2022] [Indexed: 11/19/2022] Open
Abstract
Optical microresonators with high quality (Q) factors are essential to a wide range of integrated photonic devices. Steady efforts have been directed towards increasing microresonator Q factors across a variety of platforms. With success in reducing microfabrication process-related optical loss as a limitation of Q, the ultimate attainable Q, as determined solely by the constituent microresonator material absorption, has come into focus. Here, we report measurements of the material-limited Q factors in several photonic material platforms. High-Q microresonators are fabricated from thin films of SiO2, Si3N4, Al0.2Ga0.8As, and Ta2O5. By using cavity-enhanced photothermal spectroscopy, the material-limited Q is determined. The method simultaneously measures the Kerr nonlinearity in each material and reveals how material nonlinearity and ultimate Q vary in a complementary fashion across photonic materials. Besides guiding microresonator design and material development in four material platforms, the results help establish performance limits in future photonic integrated systems.
Collapse
Affiliation(s)
- Maodong Gao
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Qi-Fan Yang
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Qing-Xin Ji
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Heming Wang
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Lue Wu
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Boqiang Shen
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Junqiu Liu
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Guanhao Huang
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Lin Chang
- ECE Department, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Weiqiang Xie
- ECE Department, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Su-Peng Yu
- National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - Scott B Papp
- National Institute of Standards and Technology, Boulder, CO, 80305, USA.
| | - John E Bowers
- ECE Department, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Tobias J Kippenberg
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, CH-1015, Switzerland.
| | - Kerry J Vahala
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
49
|
Dual chirped microcomb based parallel ranging at megapixel-line rates. Nat Commun 2022; 13:3280. [PMID: 35672284 PMCID: PMC9174235 DOI: 10.1038/s41467-022-30542-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/05/2022] [Indexed: 11/08/2022] Open
Abstract
Laser-based ranging (LiDAR) - already ubiquitously used in industrial monitoring, atmospheric dynamics, or geodesy - is a key sensor technology. Coherent laser ranging, in contrast to time-of-flight approaches, is immune to ambient light, operates continuous-wave allowing higher average powers, and yields simultaneous velocity and distance information. State-of-the-art coherent single laser-detector architectures reach hundreds of kilopixel per second sampling rates, while emerging applications - autonomous driving, robotics, and augmented reality - mandate megapixel per second point sampling to support real-time video-rate imaging. Yet, such rates of coherent LiDAR have not been demonstrated. Recent advances in photonic chip-based microcombs provide a route to higher acquisition speeds via parallelization but require separation of individual channels at the detector side, increasing photonic integration complexity. Here we overcome the challenge and report a hardware-efficient swept dual-soliton microcomb technique that achieves coherent ranging and velocimetry at megapixel per second line scan measurement rates with up to 64 optical channels. Multiheterodyning two synchronously frequency-modulated microcombs yields distance and velocity information of all individual ranging channels on a single receiver alleviating the need for individual separation, detection, and digitization. The reported LiDAR implementation is compatible with photonic integration and demonstrates the significant advantages of acquisition speed afforded by the convergence of optical telecommunication and metrology technologies. Photonic integrated systems can be harnessed for fast and efficient optical telecommunication and metrology technologies. Here the authors develop a dual-soliton microcomb technique for massively parallel coherent laser ranging that requires only a single laser and a single photoreceiver.
Collapse
|
50
|
Nonlinear co-generation of graphene plasmons for optoelectronic logic operations. Nat Commun 2022; 13:3138. [PMID: 35668130 PMCID: PMC9170737 DOI: 10.1038/s41467-022-30901-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Surface plasmons in graphene provide a compelling strategy for advanced photonic technologies thanks to their tight confinement, fast response and tunability. Recent advances in the field of all-optical generation of graphene’s plasmons in planar waveguides offer a promising method for high-speed signal processing in nanoscale integrated optoelectronic devices. Here, we use two counter propagating frequency combs with temporally synchronized pulses to demonstrate deterministic all-optical generation and electrical control of multiple plasmon polaritons, excited via difference frequency generation (DFG). Electrical tuning of a hybrid graphene-fibre device offers a precise control over the DFG phase-matching, leading to tunable responses of the graphene’s plasmons at different frequencies across a broadband (0 ~ 50 THz) and provides a powerful tool for high-speed logic operations. Our results offer insights for plasmonics on hybrid photonic devices based on layered materials and pave the way to high-speed integrated optoelectronic computing circuits. Nano-photonic devices based on 2D materials offer a potential solution for the miniaturization of optical computing technologies. Here, the authors demonstrate the implementation of high-speed logic operations via the all-optical generation and electrical control of multiple plasmon polaritons in a hybrid graphene device.
Collapse
|