1
|
Jiang Y, Qi Z, Zhu H, Shen K, Liu R, Fang C, Lou W, Jiang Y, Yuan W, Cao X, Chen L, Zhuang Q. Role of the globus pallidus in motor and non-motor symptoms of Parkinson's disease. Neural Regen Res 2025; 20:1628-1643. [PMID: 38845220 DOI: 10.4103/nrr.nrr-d-23-01660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/21/2024] [Indexed: 08/07/2024] Open
Abstract
The globus pallidus plays a pivotal role in the basal ganglia circuit. Parkinson's disease is characterized by degeneration of dopamine-producing cells in the substantia nigra, which leads to dopamine deficiency in the brain that subsequently manifests as various motor and non-motor symptoms. This review aims to summarize the involvement of the globus pallidus in both motor and non-motor manifestations of Parkinson's disease. The firing activities of parvalbumin neurons in the medial globus pallidus, including both the firing rate and pattern, exhibit strong correlations with the bradykinesia and rigidity associated with Parkinson's disease. Increased beta oscillations, which are highly correlated with bradykinesia and rigidity, are regulated by the lateral globus pallidus. Furthermore, bradykinesia and rigidity are strongly linked to the loss of dopaminergic projections within the cortical-basal ganglia-thalamocortical loop. Resting tremors are attributed to the transmission of pathological signals from the basal ganglia through the motor cortex to the cerebellum-ventral intermediate nucleus circuit. The cortico-striato-pallidal loop is responsible for mediating pallidi-associated sleep disorders. Medication and deep brain stimulation are the primary therapeutic strategies addressing the globus pallidus in Parkinson's disease. Medication is the primary treatment for motor symptoms in the early stages of Parkinson's disease, while deep brain stimulation has been clinically proven to be effective in alleviating symptoms in patients with advanced Parkinson's disease, particularly for the movement disorders caused by levodopa. Deep brain stimulation targeting the globus pallidus internus can improve motor function in patients with tremor-dominant and non-tremor-dominant Parkinson's disease, while deep brain stimulation targeting the globus pallidus externus can alter the temporal pattern of neural activity throughout the basal ganglia-thalamus network. Therefore, the composition of the globus pallidus neurons, the neurotransmitters that act on them, their electrical activity, and the neural circuits they form can guide the search for new multi-target drugs to treat Parkinson's disease in clinical practice. Examining the potential intra-nuclear and neural circuit mechanisms of deep brain stimulation associated with the globus pallidus can facilitate the management of both motor and non-motor symptoms while minimizing the side effects caused by deep brain stimulation.
Collapse
Affiliation(s)
- Yimiao Jiang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Huixian Zhu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Kangli Shen
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Ruiqi Liu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Chenxin Fang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Weiwei Lou
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Yifan Jiang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Wangrui Yuan
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Xin Cao
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Qianxing Zhuang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Wang SS, Mao XF, Cai ZS, Lin W, Liu XX, Luo B, Chen X, Yue Y, Fan HY, Sasaki T, Fukunaga K, Zhang WB, Lu YM, Han F. Distinct Olfactory Bulb-Cortex Neural Circuits Coordinate Cognitive Function in Parkinson's Disease. RESEARCH (WASHINGTON, D.C.) 2024; 7:0484. [PMID: 39359881 PMCID: PMC11445789 DOI: 10.34133/research.0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/24/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Cognitive dysfunction stands as a prevalent and consequential non-motor manifestation in Parkinson's disease (PD). Although dysfunction of the olfactory system has been recognized as an important predictor of cognitive decline, the exact mechanism by which aberrant olfactory circuits contribute to cognitive dysfunction in PD is unclear. Here, we provide the first evidence for abnormal functional connectivity across olfactory bulb (OB) and piriform cortex (PC) or entorhinal cortex (EC) by clinical fMRI, and dysfunction of neural coherence in the olfactory system in PD mice. Moreover, we discovered that 2 subpopulations of mitral/tufted (M/T) cells in OB projecting to anterior PC (aPC) and EC precisely mediated the process of cognitive memory respectively by neural coherence at specific frequencies in mice. In addition, the transcriptomic profiling analysis and functional genetic regulation analysis further revealed that biorientation defective 1 (Bod1) may play a pivotal role in encoding OBM/T-mediated cognitive function. We also verified that a new deep brain stimulation protocol in OB ameliorated the cognitive function of Bod1-deficient mice and PD mice. Together, aberrant coherent activity in the olfactory system can serve as a biomarker for assessing cognitive function and provide a candidate therapeutic target for the treatment of PD.
Collapse
Affiliation(s)
- Shuai-Shuai Wang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy,
Nanjing Medical University, Nanjing 211166, China
| | - Xing-Feng Mao
- Department of Physiology, School of Basic Medical Sciences,
Nanjing Medical University, Nanjing 211166, China
| | - Zhi-Shen Cai
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy,
Nanjing Medical University, Nanjing 211166, China
| | - Wen Lin
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy,
Nanjing Medical University, Nanjing 211166, China
| | - Xiu-Xiu Liu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy,
Nanjing Medical University, Nanjing 211166, China
| | - Bei Luo
- Department of Functional Neurosurgery,
The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiang Chen
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy,
Nanjing Medical University, Nanjing 211166, China
| | - Yue Yue
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy,
Nanjing Medical University, Nanjing 211166, China
| | - Heng-Yu Fan
- Life Sciences Institute and Innovation Center for Cell Biology,
Zhejiang University, Hangzhou 310058, China
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences,
Tohoku University, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences,
Tohoku University, Sendai, Japan
| | - Wen-Bin Zhang
- Department of Functional Neurosurgery,
The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences,
Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education,
Nanjing Medical University, Nanjing 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy,
Nanjing Medical University, Nanjing 211166, China
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital,
The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215009, China
- Institute of Brain Science,
the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
- The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University,
Northern Jiangsu Institute of Clinical Medicine, Huaian 223300, China
| |
Collapse
|
3
|
Kariv S, Choi JW, Mirpour K, Gordon AM, Alijanpourotaghsara A, Benam M, Abdalla R, Chilukuri S, Gu JW, Bokil H, Nanivadekar S, Gittis AH, Pouratian N. Pilot Study of Acute Behavioral Effects of Pallidal Burst Stimulation in Parkinson's Disease. Mov Disord 2024; 39:1873-1877. [PMID: 39007445 DOI: 10.1002/mds.29928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Burst-patterned pallidal deep brain stimulation (DBS) in an animal model of Parkinson's disease (PD) yields significantly prolonged therapeutic benefit compared to conventional continuous DBS, but its value in patients remains unclear. OBJECTIVES The aims were to evaluate the safety and tolerability of acute (<2 hours) burst DBS in PD patients and to evaluate preliminary clinical effectiveness relative to conventional DBS. METHODS Six PD patients were studied with DBS OFF, conventional DBS, and burst DBS. Unified Parkinson's Disease Rating Scale III (UPDRS-III) and proactive inhibition (using stop-signal task) were evaluated for each condition. RESULTS Burst and conventional DBS were equally tolerated without significant adverse events. Both stimulation patterns provided equivalent significant UPDRS-III reduction and increased proactive inhibition relative to DBS OFF. CONCLUSIONS This pilot study supports the safety and tolerability of burst DBS, with acute effects similar to conventional DBS. Further larger-scale studies are warranted given the potential benefits of burst DBS due to decreased total energy delivery. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Saar Kariv
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jeong Woo Choi
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Koorosh Mirpour
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ann M Gordon
- Department of Neurology, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | - Mohsen Benam
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ruwayd Abdalla
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sahil Chilukuri
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jianwen W Gu
- Boston Scientific Neuromodulation, Valencia, California, USA
| | - Hemant Bokil
- Boston Scientific Neuromodulation, Valencia, California, USA
| | - Shruti Nanivadekar
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aryn H Gittis
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Zammit Dimech D, Zammit Dimech AA, Hughes M, Zrinzo L. A systematic review of deep brain stimulation for substance use disorders. Transl Psychiatry 2024; 14:361. [PMID: 39237552 PMCID: PMC11377568 DOI: 10.1038/s41398-024-03060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Pharmaco-psychiatric techniques remain the mainstay, first line treatments in substance use disorders (SUD), assisting in detoxification but largely ineffective at reducing dependence. The path to rehabilitation and freedom from addiction often proves uncertain and laborious for both patients and their significant others. Relapse rates for multiple substances of abuse are considerable and the number of SUD patients is on the increase worldwide. OBJECTIVE To assess efficacy of deep brain stimulation (DBS) as a therapeutic solution for SUDs. METHODS A systematic electronic database search of PubMed and EMBASE retrieved DBS addiction-focused studies on humans, of which a total of 26 (n = 71) from 2007 to 2023 were deemed eligible, including the first randomized controlled trial (RCT) in this field. This review was prospectively registered with PROSPERO: CRD42023411631. RESULTS In addressing SUDs, DBS targeting primarily the nucleus accumbens (NAcc), with or without the anterior limb of the internal capsule, presented encouraging levels of efficacy in reducing cravings and consumption, followed by remission in some subjects, but still reporting relapses in 73.2% of patients. CONCLUSIONS For treatment-refractory addictions DBS use seems limited to reducing cravings with a satisfactory degree of success, yet not clinically consistent in inducing abstinence, suggesting involvement of factors unaffected by DBS intervention. Furthermore, costs and the scale of the problem are such that DBS is unlikely to have a significant societal impact. Nevertheless, DBS may provide insight into the biology of addiction and is worthy of further research using increased methodological rigor, standardized outcome measures, and pre-established surgical protocols.
Collapse
Affiliation(s)
| | | | - Mark Hughes
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ludvic Zrinzo
- UCL Institute of Neurology, Functional Neurosurgery Unit, Department of Clinical & Motor Neurosciences, University College London, London, UK
| |
Collapse
|
5
|
Sumarac S, Spencer KA, Steiner LA, Fearon C, Haniff EA, Kühn AA, Hodaie M, Kalia SK, Lozano A, Fasano A, Hutchison WD, Milosevic L. Interrogating basal ganglia circuit function in people with Parkinson's disease and dystonia. eLife 2024; 12:RP90454. [PMID: 39190604 PMCID: PMC11349293 DOI: 10.7554/elife.90454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Background The dichotomy between the hypo- versus hyperkinetic nature of Parkinson's disease (PD) and dystonia, respectively, is thought to be reflected in the underlying basal ganglia pathophysiology. In this study, we investigated differences in globus pallidus internus (GPi) neuronal activity, and short- and long-term plasticity of direct pathway projections. Methods Using microelectrode recording data collected from the GPi during deep brain stimulation surgery, we compared neuronal spiketrain features between people with PD and those with dystonia, as well as correlated neuronal features with respective clinical scores. Additionally, we characterized and compared readouts of short- and long-term synaptic plasticity using measures of inhibitory evoked field potentials. Results GPi neurons were slower, bustier, and less regular in dystonia. In PD, symptom severity positively correlated with the power of low-beta frequency spiketrain oscillations. In dystonia, symptom severity negatively correlated with firing rate and positively correlated with neuronal variability and the power of theta frequency spiketrain oscillations. Dystonia was moreover associated with less long-term plasticity and slower synaptic depression. Conclusions We substantiated claims of hyper- versus hypofunctional GPi output in PD versus dystonia, and provided cellular-level validation of the pathological nature of theta and low-beta oscillations in respective disorders. Such circuit changes may be underlain by disease-related differences in plasticity of striato-pallidal synapses. Funding This project was made possible with the financial support of Health Canada through the Canada Brain Research Fund, an innovative partnership between the Government of Canada (through Health Canada) and Brain Canada, and of the Azrieli Foundation (LM), as well as a grant from the Banting Research Foundation in partnership with the Dystonia Medical Research Foundation (LM).
Collapse
Affiliation(s)
- Srdjan Sumarac
- Institute of Biomedical Engineering, University of TorontoTorontoCanada
- Krembil Brain Institute, University Health NetworkTorontoCanada
| | - Kiah A Spencer
- Institute of Biomedical Engineering, University of TorontoTorontoCanada
- Krembil Brain Institute, University Health NetworkTorontoCanada
| | - Leon A Steiner
- Krembil Brain Institute, University Health NetworkTorontoCanada
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of Health (BIH)BerlinGermany
| | - Conor Fearon
- Krembil Brain Institute, University Health NetworkTorontoCanada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western HospitalTorontoCanada
- Department of Neurology, University of TorontoTorontoCanada
| | - Emily A Haniff
- Krembil Brain Institute, University Health NetworkTorontoCanada
| | - Andrea A Kühn
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin BerlinBerlinGermany
| | - Mojgan Hodaie
- Krembil Brain Institute, University Health NetworkTorontoCanada
- Institute of Medical Sciences, University of TorontoTorontoCanada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoCanada
- Department of Surgery, University of TorontoTorontoCanada
| | - Suneil K Kalia
- Krembil Brain Institute, University Health NetworkTorontoCanada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoCanada
- Department of Surgery, University of TorontoTorontoCanada
- KITE, University Health NetworkTorontoCanada
| | - Andres Lozano
- Krembil Brain Institute, University Health NetworkTorontoCanada
- Institute of Medical Sciences, University of TorontoTorontoCanada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoCanada
- Department of Surgery, University of TorontoTorontoCanada
| | - Alfonso Fasano
- Krembil Brain Institute, University Health NetworkTorontoCanada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western HospitalTorontoCanada
- Department of Neurology, University of TorontoTorontoCanada
- Institute of Medical Sciences, University of TorontoTorontoCanada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoCanada
| | - William Duncan Hutchison
- Krembil Brain Institute, University Health NetworkTorontoCanada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoCanada
- Department of Surgery, University of TorontoTorontoCanada
- Department of Physiology, University of TorontoTorontoCanada
| | - Luka Milosevic
- Institute of Biomedical Engineering, University of TorontoTorontoCanada
- Krembil Brain Institute, University Health NetworkTorontoCanada
- Institute of Medical Sciences, University of TorontoTorontoCanada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoCanada
- KITE, University Health NetworkTorontoCanada
| |
Collapse
|
6
|
Abstract
The cerebellum has a well-established role in controlling motor functions, including coordination, posture, and the learning of skilled movements. The mechanisms for how it carries out motor behavior remain under intense investigation. Interestingly though, in recent years the mechanisms of cerebellar function have faced additional scrutiny since nonmotor behaviors may also be controlled by the cerebellum. With such complexity arising, there is now a pressing need to better understand how cerebellar structure, function, and behavior intersect to influence behaviors that are dynamically called upon as an animal experiences its environment. Here, we discuss recent experimental work that frames possible neural mechanisms for how the cerebellum shapes disparate behaviors and why its dysfunction is catastrophic in hereditary and acquired conditions-both motor and nonmotor. For these reasons, the cerebellum might be the ideal therapeutic target.
Collapse
Affiliation(s)
- Linda H Kim
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA;
| | - Detlef H Heck
- Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, Minnesota, USA
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota, USA
| | - Roy V Sillitoe
- Departments of Neuroscience and Pediatrics, Program in Developmental Biology, and Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
7
|
Gittis AH, Sillitoe RV. Circuit-Specific Deep Brain Stimulation Provides Insights into Movement Control. Annu Rev Neurosci 2024; 47:63-83. [PMID: 38424473 DOI: 10.1146/annurev-neuro-092823-104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Deep brain stimulation (DBS), a method in which electrical stimulation is delivered to specific areas of the brain, is an effective treatment for managing symptoms of a number of neurological and neuropsychiatric disorders. Clinical access to neural circuits during DBS provides an opportunity to study the functional link between neural circuits and behavior. This review discusses how the use of DBS in Parkinson's disease and dystonia has provided insights into the brain networks and physiological mechanisms that underlie motor control. In parallel, insights from basic science about how patterns of electrical stimulation impact plasticity and communication within neural circuits are transforming DBS from a therapy for treating symptoms to a therapy for treating circuits, with the goal of training the brain out of its diseased state.
Collapse
Affiliation(s)
- Aryn H Gittis
- Department of Biological Sciences and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
| | - Roy V Sillitoe
- Departments of Neuroscience, Pathology & Immunology, and Pediatrics; and Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
8
|
van der Heijden ME, Brown AM, Kizek DJ, Sillitoe RV. Cerebellar nuclei cells produce distinct pathogenic spike signatures in mouse models of ataxia, dystonia, and tremor. eLife 2024; 12:RP91483. [PMID: 39072369 DOI: 10.7554/elife.91483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
The cerebellum contributes to a diverse array of motor conditions, including ataxia, dystonia, and tremor. The neural substrates that encode this diversity are unclear. Here, we tested whether the neural spike activity of cerebellar output neurons is distinct between movement disorders with different impairments, generalizable across movement disorders with similar impairments, and capable of causing distinct movement impairments. Using in vivo awake recordings as input data, we trained a supervised classifier model to differentiate the spike parameters between mouse models for ataxia, dystonia, and tremor. The classifier model correctly assigned mouse phenotypes based on single-neuron signatures. Spike signatures were shared across etiologically distinct but phenotypically similar disease models. Mimicking these pathophysiological spike signatures with optogenetics induced the predicted motor impairments in otherwise healthy mice. These data show that distinct spike signatures promote the behavioral presentation of cerebellar diseases.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Amanda M Brown
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Dominic J Kizek
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, United States
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
9
|
Zhang Q, Li T, Xu M, Islam B, Wang J. Application of Optogenetics in Neurodegenerative Diseases. Cell Mol Neurobiol 2024; 44:57. [PMID: 39060759 PMCID: PMC11281982 DOI: 10.1007/s10571-024-01486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/15/2024] [Indexed: 07/28/2024]
Abstract
Optogenetics, a revolutionary technique integrating optical and genetic methodologies, offers unparalleled precision in spatial targeting and temporal resolution for cellular control. This approach enables the selective manipulation of specific neuronal populations, inducing subtle electrical changes that significantly impact complex neural circuitry. As optogenetics precisely targets and modulates neuronal activity, it holds the potential for significant breakthroughs in understanding and potentially altering the course of neurodegenerative diseases, characterized by selective neuronal loss leading to functional deficits within the nervous system. The integration of optogenetics into neurodegenerative disease research has significantly advanced in the field, offering new insights and paving the way for innovative treatment strategies. Its application in clinical settings, although still in the nascent stages, suggests a promising future for addressing some of the most challenging aspects of neurodegenerative disorders. In this review, we provide a comprehensive overview of these research undertakings.
Collapse
Affiliation(s)
- Qian Zhang
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Mengying Xu
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Binish Islam
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, People's Republic of China.
| |
Collapse
|
10
|
Lee H, Kim HF, Hikosaka O. Implication of regional selectivity of dopamine deficits in impaired suppressing of involuntary movements in Parkinson's disease. Neurosci Biobehav Rev 2024; 162:105719. [PMID: 38759470 PMCID: PMC11167649 DOI: 10.1016/j.neubiorev.2024.105719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
To improve the initiation and speed of intended action, one of the crucial mechanisms is suppressing unwanted movements that interfere with goal-directed behavior, which is observed relatively aberrant in Parkinson's disease patients. Recent research has highlighted that dopamine deficits in Parkinson's disease predominantly occur in the caudal lateral part of the substantia nigra pars compacta (SNc) in human patients. We previously found two parallel circuits within the basal ganglia, primarily divided into circuits mediated by the rostral medial part and caudal lateral part of the SNc dopamine neurons. We have further discovered that the indirect pathway in caudal basal ganglia circuits, facilitated by the caudal lateral part of the SNc dopamine neurons, plays a critical role in suppressing unnecessary involuntary movements when animals perform voluntary goal-directed actions. We thus explored recent research in humans and non-human primates focusing on the distinct functions and networks of the caudal lateral part of the SNc dopamine neurons to elucidate the mechanisms involved in the impairment of suppressing involuntary movements in Parkinson's disease patients.
Collapse
Affiliation(s)
- Hyunchan Lee
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-4435, USA.
| | - Hyoung F Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-4435, USA
| |
Collapse
|
11
|
Li Y, Nie Y, Quan Z, Zhang H, Song R, Feng H, Cheng X, Liu W, Geng X, Sun X, Fu Y, Wang S. Brain-machine interactive neuromodulation research tool with edge AI computing. Heliyon 2024; 10:e32609. [PMID: 38975192 PMCID: PMC11225749 DOI: 10.1016/j.heliyon.2024.e32609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Closed-loop neuromodulation with intelligence methods has shown great potentials in providing novel neuro-technology for treating neurological and psychiatric diseases. Development of brain-machine interactive neuromodulation strategies could lead to breakthroughs in precision and personalized electronic medicine. The neuromodulation research tool integrating artificial intelligent computing and performing neural sensing and stimulation in real-time could accelerate the development of closed-loop neuromodulation strategies and translational research into clinical application. In this study, we developed a brain-machine interactive neuromodulation research tool (BMINT), which has capabilities of neurophysiological signals sensing, computing with mainstream machine learning algorithms and delivering electrical stimulation pulse by pulse in real-time. The BMINT research tool achieved system time delay under 3 ms, and computing capabilities in feasible computation cost, efficient deployment of machine learning algorithms and acceleration process. Intelligent computing framework embedded in the BMINT enable real-time closed-loop neuromodulation developed with mainstream AI ecosystem resources. The BMINT could provide timely contribution to accelerate the translational research of intelligent neuromodulation by integrating neural sensing, edge AI computing and stimulation with AI ecosystems.
Collapse
Affiliation(s)
- Yan Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zhaoyu Quan
- Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, China
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Han Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Rui Song
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Hao Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xi Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Wei Liu
- Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, China
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xinwei Sun
- School of Data Science, Fudan University, Shanghai, China
| | - Yanwei Fu
- School of Data Science, Fudan University, Shanghai, China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Shen C, Shen B, Liu D, Han L, Zou K, Gan L, Ren J, Wu B, Tang Y, Zhao J, Sun Y, Liu F, Yu W, Yao H, Wu J, Wang J. Bidirectional regulation of levodopa-induced dyskinesia by a specific neural ensemble in globus pallidus external segment. Cell Rep Med 2024; 5:101566. [PMID: 38759649 PMCID: PMC11228392 DOI: 10.1016/j.xcrm.2024.101566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/15/2024] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
Levodopa-induced dyskinesia (LID) is an intractable motor complication arising in Parkinson's disease with the progression of disease and chronic treatment of levodopa. However, the specific cell assemblies mediating dyskinesia have not been fully elucidated. Here, we utilize the activity-dependent tool to identify three brain regions (globus pallidus external segment [GPe], parafascicular thalamic nucleus, and subthalamic nucleus) that specifically contain dyskinesia-activated ensembles. An intensity-dependent hyperactivity in the dyskinesia-activated subpopulation in GPe (GPeTRAPed in LID) is observed during dyskinesia. Optogenetic inhibition of GPeTRAPed in LID significantly ameliorates LID, whereas reactivation of GPeTRAPed in LID evokes dyskinetic behavior in the levodopa-off state. Simultaneous chemogenetic reactivation of GPeTRAPed in LID and another previously reported ensemble in striatum fully reproduces the dyskinesia induced by high-dose levodopa. Finally, we characterize GPeTRAPed in LID as a subset of prototypic neurons in GPe. These findings provide theoretical foundations for precision medication and modulation of LID in the future.
Collapse
Affiliation(s)
- Cong Shen
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bo Shen
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Dechen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Linlin Han
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Kexin Zou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Linhua Gan
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingyu Ren
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Bin Wu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yilin Tang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jue Zhao
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yimin Sun
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengtao Liu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenbo Yu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Jianjun Wu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Aristieta A, Parker JE, Gao YE, Rubin JE, Gittis AH. Dopamine depletion weakens direct pathway modulation of SNr neurons. Neurobiol Dis 2024; 196:106512. [PMID: 38670278 DOI: 10.1016/j.nbd.2024.106512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024] Open
Abstract
Neurons in the substantia nigra reticulata (SNr) transmit information about basal ganglia output to dozens of brain regions in thalamocortical and brainstem motor networks. Activity of SNr neurons is regulated by convergent input from upstream basal ganglia nuclei, including GABAergic inputs from the striatum and the external globus pallidus (GPe). GABAergic inputs from the striatum convey information from the direct pathway, while GABAergic inputs from the GPe convey information from the indirect pathway. Chronic loss of dopamine, as occurs in Parkinson's disease, disrupts the balance of direct and indirect pathway neurons at the level of the striatum, but the question of how dopamine loss affects information propagation along these pathways outside of the striatum is less well understood. Using a combination of in vivo and slice electrophysiology, we find that dopamine depletion selectively weakens the direct pathway's influence over neural activity in the SNr due to changes in the decay kinetics of GABA-mediated synaptic currents. GABAergic signaling from GPe neurons in the indirect pathway was not affected, resulting in an inversion of the normal balance of inhibitory control over basal ganglia output through the SNr. These results highlight the contribution of cellular mechanisms outside of the striatum that impact the responses of basal ganglia output neurons to the direct and indirect pathways in disease.
Collapse
Affiliation(s)
- Asier Aristieta
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - John E Parker
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ya Emma Gao
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Aryn H Gittis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
14
|
Cole ER, Eggers TE, Weiss DA, Connolly MJ, Gombolay MC, Laxpati NG, Gross RE. Irregular optogenetic stimulation waveforms can induce naturalistic patterns of hippocampal spectral activity. J Neural Eng 2024; 21:036039. [PMID: 38834054 DOI: 10.1088/1741-2552/ad5407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
Objective. Therapeutic brain stimulation is conventionally delivered using constant-frequency stimulation pulses. Several recent clinical studies have explored how unconventional and irregular temporal stimulation patterns could enable better therapy. However, it is challenging to understand which irregular patterns are most effective for different therapeutic applications given the massively high-dimensional parameter space.Approach. Here we applied many irregular stimulation patterns in a single neural circuit to demonstrate how they can enable new dimensions of neural control compared to conventional stimulation, to guide future exploration of novel stimulation patterns in translational settings. We optogenetically excited the septohippocampal circuit with constant-frequency, nested pulse, sinusoidal, and randomized stimulation waveforms, systematically varying their amplitude and frequency parameters.Main results.We first found equal entrainment of hippocampal oscillations: all waveforms provided similar gamma-power increase, whereas no parameters increased theta-band power above baseline (despite the mechanistic role of the medial septum in driving hippocampal theta oscillations). We then compared each of the effects of each waveform on high-dimensional multi-band activity states using dimensionality reduction methods. Strikingly, we found that conventional stimulation drove predominantly 'artificial' (different from behavioral activity) effects, whereas all irregular waveforms induced activity patterns that more closely resembled behavioral activity.Significance. Our findings suggest that irregular stimulation patterns are not useful when the desired mechanism is to suppress or enhance a single frequency band. However, novel stimulation patterns may provide the greatest benefit for neural control applications where entraining a particular mixture of bands (e.g. if they are associated with different symptoms) or behaviorally-relevant activity is desired.
Collapse
Affiliation(s)
- Eric R Cole
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, United States of America
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Thomas E Eggers
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - David A Weiss
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, United States of America
| | - Mark J Connolly
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, United States of America
| | - Matthew C Gombolay
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Nealen G Laxpati
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, United States of America
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, Newark, NJ 07103, United States of America
| |
Collapse
|
15
|
Mondragón-González SL, Schreiweis C, Burguière E. Closed-loop recruitment of striatal interneurons prevents compulsive-like grooming behaviors. Nat Neurosci 2024; 27:1148-1156. [PMID: 38693349 PMCID: PMC11156588 DOI: 10.1038/s41593-024-01633-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/27/2024] [Indexed: 05/03/2024]
Abstract
Compulsive behaviors have been associated with striatal hyperactivity. Parvalbumin-positive striatal interneurons (PVIs) in the striatum play a crucial role in regulating striatal activity and suppressing prepotent inappropriate actions. To investigate the potential role of striatal PVIs in regulating compulsive behaviors, we assessed excessive self-grooming-a behavioral metric of compulsive-like behavior-in male Sapap3 knockout mice (Sapap3-KO). Continuous optogenetic activation of PVIs in striatal areas receiving input from the lateral orbitofrontal cortex reduced self-grooming events in Sapap3-KO mice to wild-type levels. Aiming to shorten the critical time window for PVI recruitment, we then provided real-time closed-loop optogenetic stimulation of striatal PVIs, using a transient power increase in the 1-4 Hz frequency band in the orbitofrontal cortex as a predictive biomarker of grooming onsets. Targeted closed-loop stimulation at grooming onsets was as effective as continuous stimulation in reducing grooming events but required 87% less stimulation time, paving the way for adaptive stimulation therapeutic protocols.
Collapse
Affiliation(s)
- Sirenia Lizbeth Mondragón-González
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, Inserm, CNRS, AP-HP Hôpital de la Pitié Salpêtrière, Paris, France
| | - Christiane Schreiweis
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, Inserm, CNRS, AP-HP Hôpital de la Pitié Salpêtrière, Paris, France
| | - Eric Burguière
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, Inserm, CNRS, AP-HP Hôpital de la Pitié Salpêtrière, Paris, France.
| |
Collapse
|
16
|
Kromer JA, Tass PA. Coordinated reset stimulation of plastic neural networks with spatially dependent synaptic connections. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1351815. [PMID: 38863734 PMCID: PMC11165135 DOI: 10.3389/fnetp.2024.1351815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/15/2024] [Indexed: 06/13/2024]
Abstract
Background Abnormal neuronal synchrony is associated with several neurological disorders, including Parkinson's disease (PD), essential tremor, dystonia, and epilepsy. Coordinated reset (CR) stimulation was developed computationally to counteract abnormal neuronal synchrony. During CR stimulation, phase-shifted stimuli are delivered to multiple stimulation sites. Computational studies in plastic neural networks reported that CR stimulation drove the networks into an attractor of a stable desynchronized state by down-regulating synaptic connections, which led to long-lasting desynchronization effects that outlasted stimulation. Later, corresponding long-lasting desynchronization and therapeutic effects were found in animal models of PD and PD patients. To date, it is unclear how spatially dependent synaptic connections, as typically observed in the brain, shape CR-induced synaptic downregulation and long-lasting effects. Methods We performed numerical simulations of networks of leaky integrate-and-fire neurons with spike-timing-dependent plasticity and spatially dependent synaptic connections to study and further improve acute and long-term responses to CR stimulation. Results The characteristic length scale of synaptic connections relative to the distance between stimulation sites plays a key role in CR parameter adjustment. In networks with short synaptic length scales, a substantial synaptic downregulation can be achieved by selecting appropriate stimulus-related parameters, such as the stimulus amplitude and shape, regardless of the employed spatiotemporal pattern of stimulus deliveries. Complex stimulus shapes can induce local connectivity patterns in the vicinity of the stimulation sites. In contrast, in networks with longer synaptic length scales, the spatiotemporal sequence of stimulus deliveries is of major importance for synaptic downregulation. In particular, rapid shuffling of the stimulus sequence is advantageous for synaptic downregulation. Conclusion Our results suggest that CR stimulation parameters can be adjusted to synaptic connectivity to further improve the long-lasting effects. Furthermore, shuffling of CR sequences is advantageous for long-lasting desynchronization effects. Our work provides important hypotheses on CR parameter selection for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Justus A. Kromer
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | | |
Collapse
|
17
|
Steiner LA, Crompton D, Sumarac S, Vetkas A, Germann J, Scherer M, Justich M, Boutet A, Popovic MR, Hodaie M, Kalia SK, Fasano A, Hutchison Wd WD, Lozano AM, Lankarany M, Kühn AA, Milosevic L. Neural signatures of indirect pathway activity during subthalamic stimulation in Parkinson's disease. Nat Commun 2024; 15:3130. [PMID: 38605039 PMCID: PMC11009243 DOI: 10.1038/s41467-024-47552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) produces an electrophysiological signature called evoked resonant neural activity (ERNA); a high-frequency oscillation that has been linked to treatment efficacy. However, the single-neuron and synaptic bases of ERNA are unsubstantiated. This study proposes that ERNA is a subcortical neuronal circuit signature of DBS-mediated engagement of the basal ganglia indirect pathway network. In people with Parkinson's disease, we: (i) showed that each peak of the ERNA waveform is associated with temporally-locked neuronal inhibition in the STN; (ii) characterized the temporal dynamics of ERNA; (iii) identified a putative mesocircuit architecture, embedded with empirically-derived synaptic dynamics, that is necessary for the emergence of ERNA in silico; (iv) localized ERNA to the dorsal STN in electrophysiological and normative anatomical space; (v) used patient-wise hotspot locations to assess spatial relevance of ERNA with respect to DBS outcome; and (vi) characterized the local fiber activation profile associated with the derived group-level ERNA hotspot.
Collapse
Affiliation(s)
- Leon A Steiner
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
- Berlin Institute of Health (BIH), Berlin, 10178, Germany
| | - David Crompton
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Srdjan Sumarac
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Artur Vetkas
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
| | - Jürgen Germann
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
| | - Maximilian Scherer
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Maria Justich
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Department of Neurology, University of Toronto, Toronto, ON, M5S 3H2, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
| | - Alexandre Boutet
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, M5G 1×6, Canada
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
| | - Mojgan Hodaie
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Suneil K Kalia
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Alfonso Fasano
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Department of Neurology, University of Toronto, Toronto, ON, M5S 3H2, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - William D Hutchison Wd
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Andres M Lozano
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Milad Lankarany
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada
| | - Andrea A Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Luka Milosevic
- Krembil Brain Institute, University Health Network, Toronto, ON, M5T 1M8, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada.
- KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, M5T 2S8, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
18
|
Huang T, Guo X, Huang X, Yi C, Cui Y, Dong Y. Input-output specific orchestration of aversive valence in lateral habenula during stress dynamics. J Zhejiang Univ Sci B 2024:1-11. [PMID: 38616136 DOI: 10.1631/jzus.b2300933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/14/2024] [Indexed: 04/16/2024]
Abstract
Stress has been considered as a major risk factor for depressive disorders, triggering depression onset via inducing persistent dysfunctions in specialized brain regions and neural circuits. Among various regions across the brain, the lateral habenula (LHb) serves as a critical hub for processing aversive information during the dynamic process of stress accumulation, thus having been implicated in the pathogenesis of depression. LHb neurons integrate aversive valence conveyed by distinct upstream inputs, many of which selectively innervate the medial part (LHbM) or lateral part (LHbL) of LHb. LHb subregions also separately assign aversive valence via dissociable projections to the downstream targets in the midbrain which provides feedback loops. Despite these strides, the spatiotemporal dynamics of LHb-centric neural circuits remain elusive during the progression of depression-like state under stress. In this review, we attempt to describe a framework in which LHb orchestrates aversive valence via the input-output specific neuronal architecture. Notably, a physiological form of Hebbian plasticity in LHb under multiple stressors has been unveiled to incubate neuronal hyperactivity in an input-specific manner, which causally encodes chronic stress experience and drives depression onset. Collectively, the recent progress and future efforts in elucidating LHb circuits shed light on early interventions and circuit-specific antidepressant therapies.
Collapse
Affiliation(s)
- Taida Huang
- Department of Neurology and International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
- Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China
- Research Centre, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaonan Guo
- Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaomin Huang
- Research Centre, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Chenju Yi
- Research Centre, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China.
| | - Yihui Cui
- Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China. ,
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China. ,
| | - Yiyan Dong
- Department of Neurology and International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China. ,
| |
Collapse
|
19
|
Noor MS, Steina AK, McIntyre CC. Dissecting deep brain stimulation evoked neural activity in the basal ganglia. Neurotherapeutics 2024; 21:e00356. [PMID: 38608373 PMCID: PMC11019280 DOI: 10.1016/j.neurot.2024.e00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Deep brain stimulation (DBS) is an established therapeutic tool for the treatment of Parkinson's disease (PD). The mechanisms of DBS for PD are likely rooted in modulation of the subthalamo-pallidal network. However, it can be difficult to electrophysiologically interrogate that network in human patients. The recent identification of large amplitude evoked potential (EP) oscillations from DBS in the subthalamic nucleus (STN) or globus pallidus internus (GPi) are providing new scientific opportunities to expand understanding of human basal ganglia network activity. In turn, the goal of this review is to provide a summary of DBS-induced EPs in the basal ganglia and attempt to explain various components of the EP waveforms from their likely network origins. Our analyses suggest that DBS-induced antidromic activation of globus pallidus externus (GPe) is a key driver of these oscillatory EPs, independent of stimulation location (i.e. STN or GPi). This suggests a potentially more important role for GPe in the mechanisms of DBS for PD than typically assumed. And from a practical perspective, DBS EPs are poised to become clinically useful electrophysiological biomarker signals for verification of DBS target engagement.
Collapse
Affiliation(s)
- M Sohail Noor
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Alexandra K Steina
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University, Durham, NC, USA.
| |
Collapse
|
20
|
Johnson KA, Dosenbach NUF, Gordon EM, Welle CG, Wilkins KB, Bronte-Stewart HM, Voon V, Morishita T, Sakai Y, Merner AR, Lázaro-Muñoz G, Williamson T, Horn A, Gilron R, O'Keeffe J, Gittis AH, Neumann WJ, Little S, Provenza NR, Sheth SA, Fasano A, Holt-Becker AB, Raike RS, Moore L, Pathak YJ, Greene D, Marceglia S, Krinke L, Tan H, Bergman H, Pötter-Nerger M, Sun B, Cabrera LY, McIntyre CC, Harel N, Mayberg HS, Krystal AD, Pouratian N, Starr PA, Foote KD, Okun MS, Wong JK. Proceedings of the 11th Annual Deep Brain Stimulation Think Tank: pushing the forefront of neuromodulation with functional network mapping, biomarkers for adaptive DBS, bioethical dilemmas, AI-guided neuromodulation, and translational advancements. Front Hum Neurosci 2024; 18:1320806. [PMID: 38450221 PMCID: PMC10915873 DOI: 10.3389/fnhum.2024.1320806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
The Deep Brain Stimulation (DBS) Think Tank XI was held on August 9-11, 2023 in Gainesville, Florida with the theme of "Pushing the Forefront of Neuromodulation". The keynote speaker was Dr. Nico Dosenbach from Washington University in St. Louis, Missouri. He presented his research recently published in Nature inn a collaboration with Dr. Evan Gordon to identify and characterize the somato-cognitive action network (SCAN), which has redefined the motor homunculus and has led to new hypotheses about the integrative networks underpinning therapeutic DBS. The DBS Think Tank was founded in 2012 and provides an open platform where clinicians, engineers, and researchers (from industry and academia) can freely discuss current and emerging DBS technologies, as well as logistical and ethical issues facing the field. The group estimated that globally more than 263,000 DBS devices have been implanted for neurological and neuropsychiatric disorders. This year's meeting was focused on advances in the following areas: cutting-edge translational neuromodulation, cutting-edge physiology, advances in neuromodulation from Europe and Asia, neuroethical dilemmas, artificial intelligence and computational modeling, time scales in DBS for mood disorders, and advances in future neuromodulation devices.
Collapse
Affiliation(s)
- Kara A. Johnson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Nico U. F. Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Evan M. Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Cristin G. Welle
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kevin B. Wilkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Helen M. Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Takashi Morishita
- Department of Neurosurgery, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Yuki Sakai
- ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Amanda R. Merner
- Center for Bioethics, Harvard Medical School, Boston, MA, United States
| | - Gabriel Lázaro-Muñoz
- Center for Bioethics, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| | - Theresa Williamson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States
| | - Andreas Horn
- Department of Neurology, Center for Brain Circuit Therapeutics, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, United States
- MGH Neurosurgery and Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | | | | | - Aryn H. Gittis
- Biological Sciences and Center for Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Simon Little
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Nicole R. Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network (UHN), University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
| | - Abbey B. Holt-Becker
- Restorative Therapies Group Implantables, Research, and Core Technology, Medtronic Inc., Minneapolis, MN, United States
| | - Robert S. Raike
- Restorative Therapies Group Implantables, Research, and Core Technology, Medtronic Inc., Minneapolis, MN, United States
| | - Lisa Moore
- Boston Scientific Neuromodulation Corporation, Valencia, CA, United States
| | | | - David Greene
- NeuroPace, Inc., Mountain View, CA, United States
| | - Sara Marceglia
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Lothar Krinke
- Newronika SPA, Milan, Italy
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Hagai Bergman
- Edmond and Lily Safar Center (ELSC) for Brain Research and Department of Medical Neurobiology (Physiology), Institute of Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | - Monika Pötter-Nerger
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Laura Y. Cabrera
- Neuroethics, Department of Engineering Science and Mechanics, Philosophy, and Bioethics, and the Rock Ethics Institute, Pennsylvania State University, State College, PA, United States
| | - Cameron C. McIntyre
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
- Department of Neurosurgery, Duke University, Durham, NC, United States
| | - Noam Harel
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Helen S. Mayberg
- Department of Neurology, Neurosurgery, Psychiatry, and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andrew D. Krystal
- Departments of Psychiatry and Behavioral Science and Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Nader Pouratian
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Philip A. Starr
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Kelly D. Foote
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Michael S. Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Joshua K. Wong
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neurology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
21
|
Guilhemsang L, Mallet NP. Arkypallidal neurons in basal ganglia circuits: Unveiling novel pallidostriatal loops? Curr Opin Neurobiol 2024; 84:102814. [PMID: 38016260 DOI: 10.1016/j.conb.2023.102814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/30/2023]
Abstract
Just over a decade ago, a novel GABAergic input originating from a subpopulation of external globus pallidus neurons known as Arkypallidal and projecting exclusively to the striatum was unveiled. At the single-cell level, these pallidostriatal Arkypallidal projections represent one of the largest extrinsic sources of GABA known to innervate the dorsal striatum. This discovery has sparked new questions regarding their role in striatal information processing, the circuit that recruit these neurons, and their influence on behaviour, especially in the context of action selection vs. inhibition. In this review, we will present the different anatomo-functional organization of Arkypallidal neurons as compared to classic Prototypic neurons, including their unique molecular properties and what is known about their specific input/output synaptic organization. We will further describe recent findings that demonstrate one mode of action of Arkypallidal neurons, which is to convey feedback inhibition to the striatum, and how this mechanism is differentially modulated by both striatal projection pathways. Lastly, we will delve into speculations on their mechanistic contribution to striatal action execution or inhibition.
Collapse
Affiliation(s)
- Lise Guilhemsang
- Université de Bordeaux, CNRS, Institut des Maladies Neurodégénératives, F-33000 Bordeaux, France
| | - Nicolas P Mallet
- Université de Bordeaux, CNRS, Institut des Maladies Neurodégénératives, F-33000 Bordeaux, France.
| |
Collapse
|
22
|
Prasad AA, Wallén-Mackenzie Å. Architecture of the subthalamic nucleus. Commun Biol 2024; 7:78. [PMID: 38200143 PMCID: PMC10782020 DOI: 10.1038/s42003-023-05691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The subthalamic nucleus (STN) is a major neuromodulation target for the alleviation of neurological and neuropsychiatric symptoms using deep brain stimulation (DBS). STN-DBS is today applied as treatment in Parkinson´s disease, dystonia, essential tremor, and obsessive-compulsive disorder (OCD). STN-DBS also shows promise as a treatment for refractory Tourette syndrome. However, the internal organization of the STN has remained elusive and challenges researchers and clinicians: How can this small brain structure engage in the multitude of functions that renders it a key hub for therapeutic intervention of a variety of brain disorders ranging from motor to affective to cognitive? Based on recent gene expression studies of the STN, a comprehensive view of the anatomical and cellular organization, including revelations of spatio-molecular heterogeneity, is now possible to outline. In this review, we focus attention to the neurobiological architecture of the STN with specific emphasis on molecular patterns discovered within this complex brain area. Studies from human, non-human primate, and rodent brains now reveal anatomically defined distribution of specific molecular markers. Together their spatial patterns indicate a heterogeneous molecular architecture within the STN. Considering the translational capacity of targeting the STN in severe brain disorders, the addition of molecular profiling of the STN will allow for advancement in precision of clinical STN-based interventions.
Collapse
Affiliation(s)
- Asheeta A Prasad
- University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia.
| | | |
Collapse
|
23
|
Siddiqi SH, Khosravani S, Rolston JD, Fox MD. The future of brain circuit-targeted therapeutics. Neuropsychopharmacology 2024; 49:179-188. [PMID: 37524752 PMCID: PMC10700386 DOI: 10.1038/s41386-023-01670-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023]
Abstract
The principle of targeting brain circuits has drawn increasing attention with the growth of brain stimulation treatments such as transcranial magnetic stimulation (TMS), deep brain stimulation (DBS), and focused ultrasound (FUS). Each of these techniques can effectively treat different neuropsychiatric disorders, but treating any given disorder depends on choosing the right treatment target. Here, we propose a three-phase framework for identifying and modulating these targets. There are multiple approaches to identifying a target, including correlative neuroimaging, retrospective optimization based on existing stimulation sites, and lesion localization. These techniques can then be optimized using personalized neuroimaging, physiological monitoring, and engagement of a specific brain state using pharmacological or psychological interventions. Finally, a specific stimulation modality or combination of modalities can be chosen after considering the advantages and tradeoffs of each. While there is preliminary literature to support different components of this framework, there are still many unanswered questions. This presents an opportunity for the future growth of research and clinical care in brain circuit therapeutics.
Collapse
Affiliation(s)
- Shan H Siddiqi
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Sanaz Khosravani
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - John D Rolston
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Fang LZ, Creed MC. Updating the striatal-pallidal wiring diagram. Nat Neurosci 2024; 27:15-27. [PMID: 38057614 DOI: 10.1038/s41593-023-01518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
The striatal and pallidal complexes are basal ganglia structures that orchestrate learning and execution of flexible behavior. Models of how the basal ganglia subserve these functions have evolved considerably, and the advent of optogenetic and molecular tools has shed light on the heterogeneity of subcircuits within these pathways. However, a synthesis of how molecularly diverse neurons integrate into existing models of basal ganglia function is lacking. Here, we provide an overview of the neurochemical and molecular diversity of striatal and pallidal neurons and synthesize recent circuit connectivity studies in rodents that takes this diversity into account. We also highlight anatomical organizational principles that distinguish the dorsal and ventral basal ganglia pathways in rodents. Future work integrating the molecular and anatomical properties of striatal and pallidal subpopulations may resolve controversies regarding basal ganglia network function.
Collapse
Affiliation(s)
- Lisa Z Fang
- Washington University Pain Center, Department of Anesthesiology, St. Louis, MO, USA
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Meaghan C Creed
- Washington University Pain Center, Department of Anesthesiology, St. Louis, MO, USA.
- Departments of Psychiatry, Neuroscience and Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
25
|
Widge AS. Closing the loop in psychiatric deep brain stimulation: physiology, psychometrics, and plasticity. Neuropsychopharmacology 2024; 49:138-149. [PMID: 37415081 PMCID: PMC10700701 DOI: 10.1038/s41386-023-01643-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/28/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
Deep brain stimulation (DBS) is an invasive approach to precise modulation of psychiatrically relevant circuits. Although it has impressive results in open-label psychiatric trials, DBS has also struggled to scale to and pass through multi-center randomized trials. This contrasts with Parkinson disease, where DBS is an established therapy treating thousands of patients annually. The core difference between these clinical applications is the difficulty of proving target engagement, and of leveraging the wide range of possible settings (parameters) that can be programmed in a given patient's DBS. In Parkinson's, patients' symptoms change rapidly and visibly when the stimulator is tuned to the correct parameters. In psychiatry, those same changes take days to weeks, limiting a clinician's ability to explore parameter space and identify patient-specific optimal settings. I review new approaches to psychiatric target engagement, with an emphasis on major depressive disorder (MDD). Specifically, I argue that better engagement may come by focusing on the root causes of psychiatric illness: dysfunction in specific, measurable cognitive functions and in the connectivity and synchrony of distributed brain circuits. I overview recent progress in both those domains, and how it may relate to other technologies discussed in companion articles in this issue.
Collapse
Affiliation(s)
- Alik S Widge
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
26
|
Nambu A, Chiken S. External segment of the globus pallidus in health and disease: Its interactions with the striatum and subthalamic nucleus. Neurobiol Dis 2024; 190:106362. [PMID: 37992783 DOI: 10.1016/j.nbd.2023.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
The external segment of the globus pallidus (GPe) has long been considered a homogeneous structure that receives inputs from the striatum and sends processed information to the subthalamic nucleus, composing a relay nucleus of the indirect pathway that contributes to movement suppression. Recent methodological revolution in rodents led to the identification of two distinct cell types in the GPe with different fiber connections. The GPe may be regarded as a dynamic, complex and influential center within the basal ganglia circuitry, rather than a simple relay nucleus. On the other hand, many studies have so far been performed in monkeys to clarify the functions of the basal ganglia in the healthy and diseased states, but have not paid much attention to such classification and functional differences of GPe neurons. In this minireview, we consider the knowledge on the rodent GPe and discuss its impact on the understanding of the basal ganglia circuitry in monkeys.
Collapse
Affiliation(s)
- Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, SOKENDAI, Okazaki, Aichi 444-8585, Japan.
| | - Satomi Chiken
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
27
|
Tao Q, Chao H, Fang D, Dou D. Progress in neurorehabilitation research and the support by the National Natural Science Foundation of China from 2010 to 2022. Neural Regen Res 2024; 19:226-232. [PMID: 37488871 PMCID: PMC10479845 DOI: 10.4103/1673-5374.375342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 07/26/2023] Open
Abstract
The National Natural Science Foundation of China is one of the major funding agencies for neurorehabilitation research in China. This study reviews the frontier directions and achievements in the field of neurorehabilitation in China and worldwide. We used data from the Web of Science Core Collection (WoSCC) database to analyze the publications and data provided by the National Natural Science Foundation of China to analyze funding information. In addition, the prospects for neurorehabilitation research in China are discussed. From 2010 to 2022, a total of 74,220 publications in neurorehabilitation were identified, with there being an overall upward tendency. During this period, the National Natural Science Foundation of China has funded 476 research projects with a total funding of 192.38 million RMB to support neurorehabilitation research in China. With the support of the National Natural Science Foundation of China, China has made some achievements in neurorehabilitation research. Research related to neurorehabilitation is believed to be making steady and significant progress in China.
Collapse
Affiliation(s)
- Qian Tao
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
- School of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| | - Honglu Chao
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Dong Fang
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| | - Dou Dou
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
28
|
Zhai S, Cui Q, Simmons DV, Surmeier DJ. Distributed dopaminergic signaling in the basal ganglia and its relationship to motor disability in Parkinson's disease. Curr Opin Neurobiol 2023; 83:102798. [PMID: 37866012 PMCID: PMC10842063 DOI: 10.1016/j.conb.2023.102798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023]
Abstract
The degeneration of mesencephalic dopaminergic neurons that innervate the basal ganglia is responsible for the cardinal motor symptoms of Parkinson's disease (PD). It has been thought that loss of dopaminergic signaling in one basal ganglia region - the striatum - was solely responsible for the network pathophysiology causing PD motor symptoms. While our understanding of dopamine (DA)'s role in modulating striatal circuitry has deepened in recent years, it also has become clear that it acts in other regions of the basal ganglia to influence movement. Underscoring this point, examination of a new progressive mouse model of PD shows that striatal dopamine DA depletion alone is not sufficient to induce parkinsonism and that restoration of extra-striatal DA signaling attenuates parkinsonian motor deficits once they appear. This review summarizes recent advances in the effort to understand basal ganglia circuitry, its modulation by DA, and how its dysfunction drives PD motor symptoms.
Collapse
Affiliation(s)
- Shenyu Zhai
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qiaoling Cui
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - DeNard V Simmons
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
29
|
Xu W, Wang J, Li XN, Liang J, Song L, Wu Y, Liu Z, Sun B, Li WG. Neuronal and synaptic adaptations underlying the benefits of deep brain stimulation for Parkinson's disease. Transl Neurodegener 2023; 12:55. [PMID: 38037124 PMCID: PMC10688037 DOI: 10.1186/s40035-023-00390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023] Open
Abstract
Deep brain stimulation (DBS) is a well-established and effective treatment for patients with advanced Parkinson's disease (PD), yet its underlying mechanisms remain enigmatic. Optogenetics, primarily conducted in animal models, provides a unique approach that allows cell type- and projection-specific modulation that mirrors the frequency-dependent stimulus effects of DBS. Opto-DBS research in animal models plays a pivotal role in unraveling the neuronal and synaptic adaptations that contribute to the efficacy of DBS in PD treatment. DBS-induced neuronal responses rely on a complex interplay between the distributions of presynaptic inputs, frequency-dependent synaptic depression, and the intrinsic excitability of postsynaptic neurons. This orchestration leads to conversion of firing patterns, enabling both antidromic and orthodromic modulation of neural circuits. Understanding these mechanisms is vital for decoding position- and programming-dependent effects of DBS. Furthermore, patterned stimulation is emerging as a promising strategy yielding long-lasting therapeutic benefits. Research on the neuronal and synaptic adaptations to DBS may pave the way for the development of more enduring and precise modulation patterns. Advanced technologies, such as adaptive DBS or directional electrodes, can also be integrated for circuit-specific neuromodulation. These insights hold the potential to greatly improve the effectiveness of DBS and advance PD treatment to new levels.
Collapse
Affiliation(s)
- Wenying Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xin-Ni Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jingxue Liang
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lu Song
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Wei-Guang Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
- Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
30
|
Liu Z, Zhou Y, Gao Y, Hu X. Editorial: Insights into the use of deep brain stimulation as a treatment for Parkinson's disease and related conditions. Front Neurosci 2023; 17:1322091. [PMID: 38033545 PMCID: PMC10684966 DOI: 10.3389/fnins.2023.1322091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Affiliation(s)
- Zhi Liu
- Neurosurgery Department, The First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yi Zhou
- Department of Neurology, 980 Hospital of PLA Joint Logistics Support Forces, Shijiazhuang, Hebei, China
| | - Ya Gao
- Neuroscience Institute, Dietrich College of Humanities and Social Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Xiaofei Hu
- Department of Nuclear Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
31
|
Neumann WJ, Steiner LA, Milosevic L. Neurophysiological mechanisms of deep brain stimulation across spatiotemporal resolutions. Brain 2023; 146:4456-4468. [PMID: 37450573 PMCID: PMC10629774 DOI: 10.1093/brain/awad239] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/04/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Deep brain stimulation is a neuromodulatory treatment for managing the symptoms of Parkinson's disease and other neurological and psychiatric disorders. Electrodes are chronically implanted in disease-relevant brain regions and pulsatile electrical stimulation delivery is intended to restore neurocircuit function. However, the widespread interest in the application and expansion of this clinical therapy has preceded an overarching understanding of the neurocircuit alterations invoked by deep brain stimulation. Over the years, various forms of neurophysiological evidence have emerged which demonstrate changes to brain activity across spatiotemporal resolutions; from single neuron, to local field potential, to brain-wide cortical network effects. Though fruitful, such studies have often led to debate about a singular putative mechanism. In this Update we aim to produce an integrative account of complementary instead of mutually exclusive neurophysiological effects to derive a generalizable concept of the mechanisms of deep brain stimulation. In particular, we offer a critical review of the most common historical competing theories, an updated discussion on recent literature from animal and human neurophysiological studies, and a synthesis of synaptic and network effects of deep brain stimulation across scales of observation, including micro-, meso- and macroscale circuit alterations.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Leon A Steiner
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
- Department of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto M5T 1M8, Canada
| | - Luka Milosevic
- Department of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto M5T 1M8, Canada
- Institute of Biomedical Engineering, Institute of Medical Sciences, and CRANIA Neuromodulation Institute, University of Toronto, Toronto M5S 3G9, Canada
| |
Collapse
|
32
|
Biswas S, Chan CS, Rubenstein JLR, Gan L. The transcription regulator Lmo3 is required for the development of medial ganglionic eminence derived neurons in the external globus pallidus. Dev Biol 2023; 503:10-24. [PMID: 37532091 PMCID: PMC10658356 DOI: 10.1016/j.ydbio.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/15/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
The external globus pallidus (GPe) is an essential component of the basal ganglia, a group of subcortical nuclei that are involved in control of action. Changes in the firing of GPe neurons are associated with both passive and active body movements. Aberrant activity of GPe neurons has been linked to motor symptoms of a variety of movement disorders, such as Parkinson's Disease, Huntington's disease and dystonia. Recent studies have helped delineate functionally distinct subtypes of GABAergic GPe projection neurons. However, not much is known about specific molecular mechanisms underlying the development of GPe neuronal subtypes. We show that the transcriptional regulator Lmo3 is required for the development of medial ganglionic eminence derived Nkx2.1+ and PV+ GPe neurons, but not lateral ganglionic eminence derived FoxP2+ neurons. As a consequence of the reduction in PV+ neurons, Lmo3-null mice have a reduced GPe input to the subthalamic nucleus.
Collapse
Affiliation(s)
- Shiona Biswas
- The Neuroscience Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14627, USA; Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14627, USA.
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - John L R Rubenstein
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California at San Francisco, CA, 94143, USA
| | - Lin Gan
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14627, USA; Department of Ophthalmology and the Flaum Eye Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14627, USA
| |
Collapse
|
33
|
Labouesse MA, Torres-Herraez A, Chohan MO, Villarin JM, Greenwald J, Sun X, Zahran M, Tang A, Lam S, Veenstra-VanderWeele J, Lacefield CO, Bonaventura J, Michaelides M, Chan CS, Yizhar O, Kellendonk C. A non-canonical striatopallidal Go pathway that supports motor control. Nat Commun 2023; 14:6712. [PMID: 37872145 PMCID: PMC10593790 DOI: 10.1038/s41467-023-42288-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023] Open
Abstract
In the classical model of the basal ganglia, direct pathway striatal projection neurons (dSPNs) send projections to the substantia nigra (SNr) and entopeduncular nucleus to regulate motor function. Recent studies have re-established that dSPNs also possess axon collaterals within the globus pallidus (GPe) (bridging collaterals), yet the significance of these collaterals for behavior is unknown. Here we use in vivo optical and chemogenetic tools combined with deep learning approaches in mice to dissect the roles of dSPN GPe collaterals in motor function. We find that dSPNs projecting to the SNr send synchronous motor-related information to the GPe via axon collaterals. Inhibition of native activity in dSPN GPe terminals impairs motor activity and function via regulation of Npas1 neurons. We propose a model by which dSPN GPe axon collaterals (striatopallidal Go pathway) act in concert with the canonical terminals in the SNr to support motor control by inhibiting Npas1 neurons.
Collapse
Affiliation(s)
- Marie A Labouesse
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Department of Health, Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland.
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, 8057, Zurich, Switzerland.
| | - Arturo Torres-Herraez
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Muhammad O Chohan
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Joseph M Villarin
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Julia Greenwald
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Xiaoxiao Sun
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Mysarah Zahran
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
- Barnard College, Columbia University, New York, NY, 10027, USA
| | - Alice Tang
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
- Columbia College, Columbia University, New York, NY, 10027, USA
| | - Sherry Lam
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Clay O Lacefield
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ofer Yizhar
- Departments of Brain Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Christoph Kellendonk
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
34
|
Stern MA, Cole ER, Gross RE, Berglund K. Seizure Event Detection Using Intravital Two-Photon Calcium Imaging Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.558338. [PMID: 37808822 PMCID: PMC10557641 DOI: 10.1101/2023.09.28.558338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Significance Genetic cellular calcium imaging has emerged as a powerful tool to investigate how different types of neurons interact at the microcircuit level to produce seizure activity, with newfound potential to understand epilepsy. Although many methods exist to measure seizure-related activity in traditional electrophysiology, few yet exist for calcium imaging. Aim To demonstrate an automated algorithmic framework to detect seizure-related events using calcium imaging - including the detection of pre-ictal spike events, propagation of the seizure wavefront, and terminal spreading waves for both population-level activity and that of individual cells. Approach We developed an algorithm for precise recruitment detection of population and individual cells during seizure-associated events, which broadly leverages averaged population activity and high-magnitude slope features to detect single-cell pre-ictal spike and seizure recruitment. We applied this method to data recorded using awake in vivo two-photon calcium imaging during pentylenetetrazol induced seizures in mice. Results We demonstrate that our detected recruitment times are concordant with visually identified labels provided by an expert reviewer and are sufficiently accurate to model the spatiotemporal progression of seizure-associated traveling waves. Conclusions Our algorithm enables accurate cell recruitment detection and will serve as a useful tool for researchers investigating seizure dynamics using calcium imaging.
Collapse
Affiliation(s)
- Matthew A. Stern
- Authors Contributed Equally
- Emory University School of Medicine, Department of Neurosurgery, Atlanta, GA, United States
| | - Eric R. Cole
- Authors Contributed Equally
- Emory University School of Medicine, Department of Neurosurgery, Atlanta, GA, United States
- Emory University and Georgia Institute of Technology, Coulter Department of Biomedical Engineering, Atlanta, GA, United States
| | - Robert E. Gross
- Emory University School of Medicine, Department of Neurosurgery, Atlanta, GA, United States
- Emory University and Georgia Institute of Technology, Coulter Department of Biomedical Engineering, Atlanta, GA, United States
| | - Ken Berglund
- Emory University School of Medicine, Department of Neurosurgery, Atlanta, GA, United States
| |
Collapse
|
35
|
Mondello SE, Young L, Dang V, Fischedick AE, Tolley NM, Wang T, Bravo MA, Lee D, Tucker B, Knoernschild M, Pedigo BD, Horner PJ, Moritz CT. Optogenetic spinal stimulation promotes new axonal growth and skilled forelimb recovery in rats with sub-chronic cervical spinal cord injury. J Neural Eng 2023; 20:056005. [PMID: 37524080 PMCID: PMC10496592 DOI: 10.1088/1741-2552/acec13] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Objective.Spinal cord injury (SCI) leads to debilitating sensorimotor deficits that greatly limit quality of life. This work aims to develop a mechanistic understanding of how to best promote functional recovery following SCI. Electrical spinal stimulation is one promising approach that is effective in both animal models and humans with SCI. Optogenetic stimulation is an alternative method of stimulating the spinal cord that allows for cell-type-specific stimulation. The present work investigates the effects of preferentially stimulating neurons within the spinal cord and not glial cells, termed 'neuron-specific' optogenetic spinal stimulation. We examined forelimb recovery, axonal growth, and vasculature after optogenetic or sham stimulation in rats with cervical SCI.Approach.Adult female rats received a moderate cervical hemicontusion followed by the injection of a neuron-specific optogenetic viral vector ipsilateral and caudal to the lesion site. Animals then began rehabilitation on the skilled forelimb reaching task. At four weeks post-injury, rats received a micro-light emitting diode (µLED) implant to optogenetically stimulate the caudal spinal cord. Stimulation began at six weeks post-injury and occurred in conjunction with activities to promote use of the forelimbs. Following six weeks of stimulation, rats were perfused, and tissue stained for GAP-43, laminin, Nissl bodies and myelin. Location of viral transduction and transduced cell types were also assessed.Main Results.Our results demonstrate that neuron-specific optogenetic spinal stimulation significantly enhances recovery of skilled forelimb reaching. We also found significantly more GAP-43 and laminin labeling in the optogenetically stimulated groups indicating stimulation promotes axonal growth and angiogenesis.Significance.These findings indicate that optogenetic stimulation is a robust neuromodulator that could enable future therapies and investigations into the role of specific cell types, pathways, and neuronal populations in supporting recovery after SCI.
Collapse
Affiliation(s)
- Sarah E Mondello
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Lisa Young
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Viet Dang
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Amanda E Fischedick
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Nicholas M Tolley
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Tian Wang
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Madison A Bravo
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Dalton Lee
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Belinda Tucker
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Megan Knoernschild
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Benjamin D Pedigo
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Philip J Horner
- Center for Neuroregeneration, Department of Neurological Surgery, Houston Methodist Research Institute, Houston, TX 77030, United States of America
| | - Chet T Moritz
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, United States of America
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, United States of America
| |
Collapse
|
36
|
van den Boom BJG, Elhazaz-Fernandez A, Rasmussen PA, van Beest EH, Parthasarathy A, Denys D, Willuhn I. Unraveling the mechanisms of deep-brain stimulation of the internal capsule in a mouse model. Nat Commun 2023; 14:5385. [PMID: 37666830 PMCID: PMC10477328 DOI: 10.1038/s41467-023-41026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023] Open
Abstract
Deep-brain stimulation (DBS) is an effective treatment for patients suffering from otherwise therapy-resistant psychiatric disorders, including obsessive-compulsive disorder. Modulation of cortico-striatal circuits has been suggested as a mechanism of action. To gain mechanistic insight, we monitored neuronal activity in cortico-striatal regions in a mouse model for compulsive behavior, while systematically varying clinically-relevant parameters of internal-capsule DBS. DBS showed dose-dependent effects on both brain and behavior: An increasing, yet balanced, number of excited and inhibited neurons was recruited, scattered throughout cortico-striatal regions, while excessive grooming decreased. Such neuronal recruitment did not alter basic brain function such as resting-state activity, and only occurred in awake animals, indicating a dependency on network activity. In addition to these widespread effects, we observed specific involvement of the medial orbitofrontal cortex in therapeutic outcomes, which was corroborated by optogenetic stimulation. Together, our findings provide mechanistic insight into how DBS exerts its therapeutic effects on compulsive behaviors.
Collapse
Affiliation(s)
- Bastijn J G van den Boom
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Alfredo Elhazaz-Fernandez
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Peter A Rasmussen
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Enny H van Beest
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Aishwarya Parthasarathy
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ingo Willuhn
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Isett BR, Nguyen KP, Schwenk JC, Yurek JR, Snyder CN, Vounatsos MV, Adegbesan KA, Ziausyte U, Gittis AH. The indirect pathway of the basal ganglia promotes transient punishment but not motor suppression. Neuron 2023; 111:2218-2231.e4. [PMID: 37207651 PMCID: PMC10524991 DOI: 10.1016/j.neuron.2023.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 03/19/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
Optogenetic stimulation of Adora2a receptor-expressing spiny projection neurons (A2A-SPNs) in the striatum drives locomotor suppression and transient punishment, results attributed to activation of the indirect pathway. The sole long-range projection target of A2A-SPNs is the external globus pallidus (GPe). Unexpectedly, we found that inhibition of the GPe drove transient punishment but not suppression of movement. Within the striatum, A2A-SPNs inhibit other SPNs through a short-range inhibitory collateral network, and we found that optogenetic stimuli that drove motor suppression shared a common mechanism of recruiting this inhibitory collateral network. Our results suggest that the indirect pathway plays a more prominent role in transient punishment than in motor control and challenges the assumption that activity of A2A-SPNs is synonymous with indirect pathway activity.
Collapse
Affiliation(s)
- Brian R Isett
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Katrina P Nguyen
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jenna C Schwenk
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jeff R Yurek
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Christen N Snyder
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Maxime V Vounatsos
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kendra A Adegbesan
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ugne Ziausyte
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Aryn H Gittis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
38
|
Courtney CD, Pamukcu A, Chan CS. Cell and circuit complexity of the external globus pallidus. Nat Neurosci 2023; 26:1147-1159. [PMID: 37336974 PMCID: PMC11382492 DOI: 10.1038/s41593-023-01368-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/18/2023] [Indexed: 06/21/2023]
Abstract
The external globus pallidus (GPe) of the basal ganglia has been underappreciated owing to poor understanding of its cells and circuits. It was assumed that the GPe consisted of a homogeneous neuron population primarily serving as a 'relay station' for information flowing through the indirect basal ganglia pathway. However, the advent of advanced tools in rodent models has sparked a resurgence in interest in the GPe. Here, we review recent data that have unveiled the cell and circuit complexity of the GPe. These discoveries have revealed that the GPe does not conform to traditional views of the basal ganglia. In particular, recent evidence confirms that the afferent and efferent connections of the GPe span both the direct and the indirect pathways. Furthermore, the GPe displays broad interconnectivity beyond the basal ganglia, consistent with its emerging multifaceted roles in both motor and non-motor functions. In summary, recent data prompt new proposals for computational rules of the basal ganglia.
Collapse
Affiliation(s)
- Connor D Courtney
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Arin Pamukcu
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
39
|
Andrews L, Keller SS, Osman-Farah J, Macerollo A. A structural magnetic resonance imaging review of clinical motor outcomes from deep brain stimulation in movement disorders. Brain Commun 2023; 5:fcad171. [PMID: 37304793 PMCID: PMC10257440 DOI: 10.1093/braincomms/fcad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023] Open
Abstract
Patients with movement disorders treated by deep brain stimulation do not always achieve successful therapeutic alleviation of motor symptoms, even in cases where surgery is without complications. Magnetic resonance imaging (MRI) offers methods to investigate structural brain-related factors that may be predictive of clinical motor outcomes. This review aimed to identify features which have been associated with variability in clinical post-operative motor outcomes in patients with Parkinson's disease, dystonia, and essential tremor from structural MRI modalities. We performed a literature search for articles published between 1 January 2000 and 1 April 2022 and identified 5197 articles. Following screening through our inclusion criteria, we identified 60 total studies (39 = Parkinson's disease, 11 = dystonia syndromes and 10 = essential tremor). The review captured a range of structural MRI methods and analysis techniques used to identify factors related to clinical post-operative motor outcomes from deep brain stimulation. Morphometric markers, including volume and cortical thickness were commonly identified in studies focused on patients with Parkinson's disease and dystonia syndromes. Reduced metrics in basal ganglia, sensorimotor and frontal regions showed frequent associations with reduced motor outcomes. Increased structural connectivity to subcortical nuclei, sensorimotor and frontal regions was also associated with greater motor outcomes. In patients with tremor, increased structural connectivity to the cerebellum and cortical motor regions showed high prevalence across studies for greater clinical motor outcomes. In addition, we highlight conceptual issues for studies assessing clinical response with structural MRI and discuss future approaches towards optimizing individualized therapeutic benefits. Although quantitative MRI markers are in their infancy for clinical purposes in movement disorder treatments, structural features obtained from MRI offer the powerful potential to identify candidates who are more likely to benefit from deep brain stimulation and provide insight into the complexity of disorder pathophysiology.
Collapse
Affiliation(s)
- Luke Andrews
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| | - Simon S Keller
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
| | - Jibril Osman-Farah
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| | - Antonella Macerollo
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| |
Collapse
|
40
|
Nagrale SS, Yousefi A, Netoff TI, Widge AS. In silicodevelopment and validation of Bayesian methods for optimizing deep brain stimulation to enhance cognitive control. J Neural Eng 2023; 20:036015. [PMID: 37105164 PMCID: PMC10193041 DOI: 10.1088/1741-2552/acd0d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/18/2023] [Accepted: 04/27/2023] [Indexed: 04/29/2023]
Abstract
Objective.deep brain stimulation (DBS) of the ventral internal capsule/striatum (VCVS) is a potentially effective treatment for several mental health disorders when conventional therapeutics fail. Its effectiveness, however, depends on correct programming to engage VCVS sub-circuits. VCVS programming is currently an iterative, time-consuming process, with weeks between setting changes and reliance on noisy, subjective self-reports. An objective measure of circuit engagement might allow individual settings to be tested in seconds to minutes, reducing the time to response and increasing patient and clinician confidence in the chosen settings. Here, we present an approach to measuring and optimizing that circuit engagement.Approach.we leverage prior results showing that effective VCVS DBS engages cognitive control circuitry and improves performance on the multi-source interference task, that this engagement depends primarily on which contact(s) are activated, and that circuit engagement can be tracked through a state space modeling framework. We develop a simulation framework based on those empirical results, then combine this framework with an adaptive optimizer to simulate a principled exploration of electrode contacts and identify the contacts that maximally improve cognitive control. We explore multiple optimization options (algorithms, number of inputs, speed of stimulation parameter changes) and compare them on problems of varying difficulty.Main results.we show that an upper confidence bound algorithm outperforms other optimizers, with roughly 80% probability of convergence to a global optimum when used in a majority-vote ensemble.Significance.we show that the optimization can converge even with lag between stimulation and effect, and that a complete optimization can be done in a clinically feasible timespan (a few hours). Further, the approach requires no specialized recording or imaging hardware, and thus could be a scalable path to expand the use of DBS in psychiatric and other non-motor applications.
Collapse
Affiliation(s)
- Sumedh S Nagrale
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Ali Yousefi
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA, United States of America
| | - Theoden I Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Alik S Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
41
|
Yin Z, Jiang Y, Merk T, Neumann WJ, Ma R, An Q, Bai Y, Zhao B, Xu Y, Fan H, Zhang Q, Qin G, Zhang N, Ma J, Zhang H, Liu H, Shi L, Yang A, Meng F, Zhu G, Zhang J. Pallidal activities during sleep and sleep decoding in dystonia, Huntington's, and Parkinson's disease. Neurobiol Dis 2023; 182:106143. [PMID: 37146835 DOI: 10.1016/j.nbd.2023.106143] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Sleep disturbances are highly prevalent in movement disorders, potentially due to the malfunctioning of basal ganglia structures. Pallidal deep brain stimulation (DBS) has been widely used for multiple movement disorders and been reported to improve sleep. We aimed to investigate the oscillatory pattern of pallidum during sleep and explore whether pallidal activities can be utilized to differentiate sleep stages, which could pave the way for sleep-aware adaptive DBS. METHODS We directly recorded over 500 h of pallidal local field potentials during sleep from 39 subjects with movement disorders (20 dystonia, 8 Huntington's disease, and 11 Parkinson's disease). Pallidal spectrum and cortical-pallidal coherence were computed and compared across sleep stages. Machine learning approaches were utilized to build sleep decoders for different diseases to classify sleep stages through pallidal oscillatory features. Decoding accuracy was further associated with the spatial localization of the pallidum. RESULTS Pallidal power spectra and cortical-pallidal coherence were significantly modulated by sleep-stage transitions in three movement disorders. Differences in sleep-related activities between diseases were identified in non-rapid eye movement (NREM) and REM sleep. Machine learning models using pallidal oscillatory features can decode sleep-wake states with over 90% accuracy. Decoding accuracies were higher in recording sites within the internus-pallidum than the external-pallidum, and can be precited using structural (P < 0.0001) and functional (P < 0.0001) whole-brain neuroimaging connectomics. CONCLUSION Our findings revealed strong sleep-stage dependent distinctions in pallidal oscillations in multiple movement disorders. Pallidal oscillatory features were sufficient for sleep stage decoding. These data may facilitate the development of adaptive DBS systems targeting sleep problems that have broad translational prospects.
Collapse
Affiliation(s)
- Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Timon Merk
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Campus Mitte, Charite - Universitatsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Campus Mitte, Charite - Universitatsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Ruoyu Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yichen Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Houyou Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Quan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guofan Qin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neuropsychiatry, Behavioral Neurology and Sleep Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Ma
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neuropsychiatry, Behavioral Neurology and Sleep Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hua Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huanguang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fangang Meng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| |
Collapse
|
42
|
Widge AS. Closed-Loop Deep Brain Stimulation for Psychiatric Disorders. Harv Rev Psychiatry 2023; 31:162-171. [PMID: 37171475 PMCID: PMC10188203 DOI: 10.1097/hrp.0000000000000367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
ABSTRACT Deep brain stimulation (DBS) is a well-established approach to treating medication-refractory neurological disorders and holds promise for treating psychiatric disorders. Despite strong open-label results in extremely refractory patients, DBS has struggled to meet endpoints in randomized controlled trials. A major challenge is stimulation "dosing"-DBS systems have many adjustable parameters, and clinicians receive little feedback on whether they have chosen the correct parameters for an individual patient. Multiple groups have proposed closed loop technologies as a solution. These systems sense electrical activity, identify markers of an (un)desired state, then automatically deliver or adjust stimulation to alter that electrical state. Closed loop DBS has been successfully deployed in movement disorders and epilepsy. The availability of that technology, as well as advances in opportunities for invasive research with neurosurgical patients, has yielded multiple pilot demonstrations in psychiatric illness. Those demonstrations split into two schools of thought, one rooted in well-established diagnoses and symptom scales, the other in the more experimental Research Domain Criteria (RDoC) framework. Both are promising, and both are limited by the boundaries of current stimulation technology. They are in turn driving advances in implantable recording hardware, signal processing, and stimulation paradigms. The combination of these advances is likely to change both our understanding of psychiatric neurobiology and our treatment toolbox, though the timeframe may be limited by the realities of implantable device development.
Collapse
Affiliation(s)
- Alik S Widge
- From the Department of Psychiatry & Behavioral Sciences and Medical Discovery Team on Addictions, University of Minnesota
| |
Collapse
|
43
|
Jain V, Forssell M, Tansel DZ, Goswami C, Fedder GK, Grover P, Chamanzar M. Focused Epicranial Brain Stimulation by Spatial Sculpting of Pulsed Electric Fields Using High Density Electrode Arrays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2207251. [PMID: 37114777 PMCID: PMC10369286 DOI: 10.1002/advs.202207251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Transcranial electrical neuromodulation of the central nervous system is used as a non-invasive method to induce neural and behavioral responses, yet targeted non-invasive electrical stimulation of the brain with high spatial resolution remains elusive. This work demonstrates a focused, steerable, high-density epicranial current stimulation (HD-ECS) approach to evoke neural activity. Custom-designed high-density (HD) flexible surface electrode arrays are employed to apply high-resolution pulsed electric currents through skull to achieve localized stimulation of the intact mouse brain. The stimulation pattern is steered in real time without physical movement of the electrodes. Steerability and focality are validated at the behavioral, physiological, and cellular levels using motor evoked potentials (MEPs), intracortical recording, and c-fos immunostaining. Whisker movement is also demonstrated to further corroborate the selectivity and steerability. Safety characterization confirmed no significant tissue damage following repetitive stimulation. This method can be used to design novel therapeutics and implement next-generation brain interfaces.
Collapse
Affiliation(s)
- Vishal Jain
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA-15213, USA
| | - Mats Forssell
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA-15213, USA
| | - Derya Z Tansel
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA-15213, USA
| | - Chaitanya Goswami
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA-15213, USA
| | - Gary K Fedder
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA-15213, USA
| | - Pulkit Grover
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA-15213, USA
- Neuroscience Insttitute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Maysamreza Chamanzar
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA-15213, USA
- Neuroscience Insttitute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
44
|
Neumann WJ, Horn A, Kühn AA. Insights and opportunities for deep brain stimulation as a brain circuit intervention. Trends Neurosci 2023; 46:472-487. [PMID: 37105806 DOI: 10.1016/j.tins.2023.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023]
Abstract
Deep brain stimulation (DBS) is an effective treatment and has provided unique insights into the dynamic circuit architecture of brain disorders. This Review illustrates our current understanding of the pathophysiology of movement disorders and their underlying brain circuits that are modulated with DBS. It proposes principles of pathological network synchronization patterns like beta activity (13-35 Hz) in Parkinson's disease. We describe alterations from microscale including local synaptic activity via modulation of mesoscale hypersynchronization to changes in whole-brain macroscale connectivity. Finally, an outlook on advances for clinical innovations in next-generation neurotechnology is provided: from preoperative connectomic targeting to feedback controlled closed-loop adaptive DBS as individualized network-specific brain circuit interventions.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Berlin, Germany
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Berlin, Germany; Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA; MGH Neurosurgery & Center for Neurotechnology and Neurorecovery at MGH Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea A Kühn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Berlin, Germany; NeuroCure Clinical Research Centre, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany; DZNE, German Center for Degenerative Diseases, Berlin, Germany.
| |
Collapse
|
45
|
Hu S, Wang S, He Q, Li D, Xin L, Xu C, Zhu X, Mei L, Cannon RD, Ji P, Tang H, Chen T. A Mechanically Reinforced Super Bone Glue Makes a Leap in Hard Tissue Strong Adhesion and Augmented Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206450. [PMID: 36698294 PMCID: PMC10104643 DOI: 10.1002/advs.202206450] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Existing bone tissue engineering strategies aim to achieve minimize surgical trauma, stabilize the injured area, and establish a dynamic osteogenic microenvironment. The cutting-edge bone glue developed in this study satisfies these criteria. Inspired by the excellent adhesive properties of mussels, herein, a super osteogenic glue (L-DPZ) that integrates poly(vinyl alcohol), L-dopa amino acid, and zeolitic imidazolate framework-8 characterized by catechol-metal coordination is used to successfully adhere to hard tissue with a maximum adhesive strength of 10 MPa, which is much higher than those of commercial and previously reported bone glues. The stable hard tissue adhesion also enables it to adhere strongly to luxated or broken teeth, Bio-Oss (a typical bone graft material), and splice fragments from comminuted fractures of the rabbit femur. Then, it is testified that the L-DPZ hydrogels exhibit satisfactory biocompatibility, stable degradability, and osteogenic ability in vitro. Moreover, the ability to anchor Bio-Oss and sustained osteogenesis of L-DPZ result in satisfactory healing in calvarial bone defect models in rabbits, as observed by increased bone thickness and the ingrowth of new bone tissue. These results are expected to demonstrate solutions to clinical dilemmas such as comminuted bone fracture fixation, bone defect reconstruction, and teeth dislocation replantation.
Collapse
Affiliation(s)
- Shanshan Hu
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing401147P. R. China
| | - Shan Wang
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing401147P. R. China
| | - Qingqing He
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing401147P. R. China
| | - Dize Li
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing401147P. R. China
| | - Liangjing Xin
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing401147P. R. China
| | - Chuanhang Xu
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing401147P. R. China
| | - Xingyu Zhu
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing401147P. R. China
| | - Li Mei
- Department of Oral SciencesSir John Walsh Research Institute Faculty of DentistryUniversity of Otago, DunedinDunedin9054New Zealand
| | - Richard D. Cannon
- Department of Oral SciencesSir John Walsh Research Institute Faculty of DentistryUniversity of Otago, DunedinDunedin9054New Zealand
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing401147P. R. China
| | - Han Tang
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing401147P. R. China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing401147P. R. China
| |
Collapse
|
46
|
Asp AJ, Chintaluru Y, Hillan S, Lujan JL. Targeted neuroplasticity in spatiotemporally patterned invasive neuromodulation therapies for improving clinical outcomes. Front Neuroinform 2023; 17:1150157. [PMID: 37035718 PMCID: PMC10080034 DOI: 10.3389/fninf.2023.1150157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Anders J. Asp
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Yaswanth Chintaluru
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Neurology and Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora, CO, United States
| | - Sydney Hillan
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - J. Luis Lujan
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
47
|
Zhang Y, Ma L, Zhang X, Yue L, Wang J, Zheng J, Cui S, Liu FY, Wang Z, Wan Y, Yi M. Deep brain stimulation in the lateral habenula reverses local neuronal hyperactivity and ameliorates depression-like behaviors in rats. Neurobiol Dis 2023; 180:106069. [PMID: 36893902 DOI: 10.1016/j.nbd.2023.106069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/22/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Deep brain stimulation (DBS) is a promising therapy for treatment-resistant depression, while mechanisms underlying its therapeutic effects remain poorly defined. Increasing evidence has revealed an intimate association between the lateral habenula (LHb) and major depression, and suggests that the LHb might be an effective target of DBS therapy for depression. Here, we found that DBS in the LHb effectively decreased depression-like behaviors in rats experienced with chronic unpredictable mild stress (CUMS), a well-accepted paradigm for modeling depression in rodents. In vivo electrophysiological recording unveiled that CUMS increased neuronal burst firing, as well as the proportion of neurons showing hyperactivity to aversive stimuli in the LHb. Nevertheless, DBS downregulated local field potential power, reversed the CUMS-induced increase of LHb burst firing and neuronal hyperactivity to aversive stimuli, and decreased the coherence between LHb and ventral tegmental area (VTA). Our results demonstrate that DBS in the LHb exerts antidepressant-like effects and reverses local neural hyperactivity, supporting the LHb as a target of DBS therapy for depression.
Collapse
Affiliation(s)
- Yuqi Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, PR China
| | - Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, PR China
| | - Xueying Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Science, Beijing 100101, China
| | - Jiaxin Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, PR China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, PR China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, PR China
| | - Feng-Yu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, PR China
| | - Zhiyan Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Science, Beijing 100101, China; National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, PR China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, PR China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, PR China.
| |
Collapse
|
48
|
Liang Q, Shen Z, Sun X, Yu D, Liu K, Mugo SM, Chen W, Wang D, Zhang Q. Electron Conductive and Transparent Hydrogels for Recording Brain Neural Signals and Neuromodulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211159. [PMID: 36563409 DOI: 10.1002/adma.202211159] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Recording brain neural signals and optogenetic neuromodulations open frontiers in decoding brain neural information and neurodegenerative disease therapeutics. Conventional implantable probes suffer from modulus mismatch with biological tissues and an irreconcilable tradeoff between transparency and electron conductivity. Herein, a strategy is proposed to address these tradeoffs, which generates conductive and transparent hydrogels with polypyrrole-decorated microgels as cross-linkers. The optical transparency of the electrodes can be attributed to the special structures that allow light waves to bypass the microgel particles and minimize their interaction. Demonstrated by probing the hippocampus of rat brains, the biomimetic electrode shows a prolonged capacity for simultaneous optogenetic neuromodulation and recording of brain neural signals. More importantly, an intriguing brain-machine interaction is realized, which involves signal input to the brain, brain neural signal generation, and controlling limb behaviors. This breakthrough work represents a significant scientific advancement toward decoding brain neural information and developing neurodegenerative disease therapies.
Collapse
Affiliation(s)
- Quanduo Liang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhenzhen Shen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiguang Sun
- Department of Hand Surgery, Public Research Platform, The First Hospital of Jilin University, Changchun, 130061, P. R. China
| | - Dehai Yu
- Department of Hand Surgery, Public Research Platform, The First Hospital of Jilin University, Changchun, 130061, P. R. China
| | - Kewei Liu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Samuel M Mugo
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Dong Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
49
|
Swinford-Jackson SE, Huffman PJ, Knouse MC, Thomas AS, Rich MT, Mankame S, Worobey SJ, Sarmiento M, Coleman A, Pierce RC. High frequency DBS-like optogenetic stimulation of nucleus accumbens dopamine D2 receptor-containing neurons attenuates cocaine reinstatement in male rats. Neuropsychopharmacology 2023; 48:459-467. [PMID: 36446928 PMCID: PMC9852282 DOI: 10.1038/s41386-022-01495-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/30/2022]
Abstract
Previous work indicated that deep brain stimulation (DBS) of the nucleus accumbens shell in male rats attenuated reinstatement of cocaine seeking, an animal model of craving. However, the potential differential impact of DBS on specific populations of neurons to drive the suppression of cocaine seeking is unknown. Medium spiny neurons in the nucleus accumbens are differentiated by expression of dopamine D1 receptors (D1DRs) or D2DRs, activation of which promotes or inhibits cocaine-related behaviors, respectively. The advent of transgenic rat lines expressing Cre recombinase selectively in D1DR-containing or D2DR-containing neurons, when coupled with Cre-dependent virally mediated gene transfer of channelrhodopsin (ChR2), enabled mimicry of DBS in a selective subpopulation of neurons during complex tasks. We tested the hypothesis that high frequency DBS-like optogenetic stimulation of D1DR-containing neurons in the accumbens shell would potentiate, whereas stimulation of D2DR-containing neurons in the accumbens shell would attenuate, cocaine-primed reinstatement of cocaine seeking. Results indicated that high frequency, DBS-like optogenetic stimulation of D2DR-containing neurons attenuated reinstatement of cocaine seeking in male rats, whereas DBS-like stimulation of D1DR-containing neurons did not alter cocaine-primed reinstatement. Surprisingly, DBS-like optogenetic stimulation did not alter reinstatement of cocaine seeking in female rats. In rats which only expressed eYFP, intra-accumbens optogenetic stimulation did not alter cocaine reinstatement, indicating that the effect of DBS-like stimulation to attenuate cocaine reinstatement is mediated specifically by ChR2 rather than by prolonged light delivery. These results suggest that DBS of the accumbens may attenuate cocaine-primed reinstatement in male rats through the selective manipulation of D2DR-containing neurons.
Collapse
Affiliation(s)
- Sarah E Swinford-Jackson
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, 08854, USA.
- Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Phillip J Huffman
- Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Melissa C Knouse
- Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA
| | - Arthur S Thomas
- Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew T Rich
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, 08854, USA
- Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, 08854, USA
| | - Sharvari Mankame
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, 08854, USA
| | - Samantha J Worobey
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, 08854, USA
| | - Mateo Sarmiento
- Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ayanna Coleman
- Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - R Christopher Pierce
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, 08854, USA
- Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, 08854, USA
| |
Collapse
|
50
|
Lehmann CM, Moussawi K. Cell type and sex specific insights into ventral striatum deep brain stimulation for cocaine relapse. Neuropsychopharmacology 2023; 48:434-435. [PMID: 36513870 PMCID: PMC9852299 DOI: 10.1038/s41386-022-01513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Collin M Lehmann
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Moussawi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|