1
|
Xia H, Yang M, Zhou X, Zhang Z, Feng A, Wang J, Wang Q, Hu Y, Li Q. Reshape Iron Nanoparticles Using a Zinc Oxide Nanowire Array for High Efficiency and Stable Electrocatalytic Nitrogen Fixation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7607-7618. [PMID: 39836870 DOI: 10.1021/acsami.4c15913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
As a type of century-old catalyst, the use of iron-based materials runs through the Haber-Bosch process and electrochemical synthesis of ammonia because of its excellent capability, low cost, and abundant reserves. How to continuously improve its catalytic activity and stability for electrochemical nitrogen fixation has always been a goal pursued by scientific researchers. Herein, we develop a free-standing iron-based catalyst, i.e., the iron nanoparticles with zinc oxide nanowire array support (Fe/ZnO NA), which exhibits a high ammonia yield of ∼54.81 μg h-1 mgcat.-1 and a Faradaic efficiency (FE) of ∼9.56% in a 0.5 M potassium hydroxide solution, along with good reusability and durability. Its electrocatalytic ability is superior to that of commercial Fe materials and most reported Fe-based catalysts, thus showing great competitiveness. This is because the ZnO NA not only supplies stable support for the homogeneous dispersion of Fe nanoparticles but also provides a very beneficial synergy to their catalytic activity. The work renews traditional iron-based catalysts and is thus of great significance for promoting the industrialization of electrochemical ammonia synthesis.
Collapse
Affiliation(s)
- Hongjin Xia
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Mingtao Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Xingyu Zhou
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Zheng Zhang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Anlin Feng
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Jingjing Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Qian Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yidong Hu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Qingyang Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Bagger A, Tort R, Titirici MM, Walsh A, Stephens IEL. Electrochemical Nitrogen Reduction: The Energetic Distance to Lithium. ACS ENERGY LETTERS 2024; 9:4947-4952. [PMID: 39416676 PMCID: PMC11474955 DOI: 10.1021/acsenergylett.4c01638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/11/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024]
Abstract
Energy-efficient electrochemical reduction of nitrogen to ammonia could help in mitigating climate change. Today, only Li- and recently Ca-mediated systems can perform the reaction. These materials have a large intrinsic energy loss due to the need to electroplate the metal. In this work, we present a series of calculated energetics, formation energies, and binding energies as fundamental features to calculate the energetic distance between Li and Ca and potential new electrochemical nitrogen reduction systems. The featured energetic distance increases with the standard potential. However, dimensionality reduction using principal component analysis provides an encouraging picture; Li and Ca are not exceptional in this feature space, and other materials should be able to carry out the reaction. However, it becomes more challenging the more positive the plating potential is.
Collapse
Affiliation(s)
- Alexander Bagger
- Department
of Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Romain Tort
- Department
of Chemical Engineering, Imperial College
London, SW7 2AZ London, United Kingdom
| | | | - Aron Walsh
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ifan E. L. Stephens
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
3
|
Ma X, Liu Z, Sun H, Liang Y, Zhou H, Sun H. Cu(N 2)-Li Battery for Ammonia Synthesis. J Phys Chem Lett 2024; 15:6435-6442. [PMID: 38865163 DOI: 10.1021/acs.jpclett.4c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The cathodic mechanism of Li-N2 batteries is similar to Li-mediated N2 reduction (LiNR). Herein, the Li-N2, LiNR, and Cu-Li battery were amalgamated to a milliliter-scale Cu(N2)-Li system. The utilization of a lithium anode with lithium oxidation reaction (LiOR), ensures an uninterrupted supply of lithium ions to active N2. LiOR not only enhances electrolyte stability but also reduces voltage by stripping Li ions, in contrast to the inert platinum anode, commonly employed in LiNR. Notably, an unusual observation of ammonia accumulation within the anode chamber elucidates the presence and role of reaction intermediates. The charging process aimed at lithium regeneration faces high polarization, and a cycling procedure involving low-current charging was proposed to improve cycling. This study integrates insights from three distinct research directions to leverage their respective advantages and scientific insights. The Li-N2 battery emerges as a highly advantageous strategy for ammonia synthesis due to the progressiveness of lithium anode.
Collapse
Affiliation(s)
- Xingyu Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| | - Zhiyang Liu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| | - Houkang Sun
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| | - Yongxiang Liang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| | - Hongjun Zhou
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| | - Hui Sun
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| |
Collapse
|
4
|
Mu J, Gao X, Yu T, Zhao L, Luo W, Yang H, Liu Z, Sun Z, Gu Q, Li F. Ambient Electrochemical Ammonia Synthesis: From Theoretical Guidance to Catalyst Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308979. [PMID: 38345238 PMCID: PMC11022736 DOI: 10.1002/advs.202308979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/01/2024] [Indexed: 04/18/2024]
Abstract
Ammonia, a vital component in the synthesis of fertilizers, plastics, and explosives, is traditionally produced via the energy-intensive and environmentally detrimental Haber-Bosch process. Given its considerable energy consumption and significant greenhouse gas emissions, there is a growing shift toward electrocatalytic ammonia synthesis as an eco-friendly alternative. However, developing efficient electrocatalysts capable of achieving high selectivity, Faraday efficiency, and yield under ambient conditions remains a significant challenge. This review delves into the decades-long research into electrocatalytic ammonia synthesis, highlighting the evolution of fundamental principles, theoretical descriptors, and reaction mechanisms. An in-depth analysis of the nitrogen reduction reaction (NRR) and nitrate reduction reaction (NitRR) is provided, with a focus on their electrocatalysts. Additionally, the theories behind electrocatalyst design for ammonia synthesis are examined, including the Gibbs free energy approach, Sabatier principle, d-band center theory, and orbital spin states. The review culminates in a comprehensive overview of the current challenges and prospective future directions in electrocatalyst development for NRR and NitRR, paving the way for more sustainable methods of ammonia production.
Collapse
Affiliation(s)
- Jianjia Mu
- Institute for Energy Electrochemistry and Urban Mines MetallurgySchool of MetallurgyNortheastern UniversityShenyangLiaoning110819China
| | - Xuan‐Wen Gao
- Institute for Energy Electrochemistry and Urban Mines MetallurgySchool of MetallurgyNortheastern UniversityShenyangLiaoning110819China
| | - Tong Yu
- Institute of Metal ResearchChinese Academy of SciencesShenyangLiaoning110016China
| | - Lu‐Kang Zhao
- Institute for Energy Electrochemistry and Urban Mines MetallurgySchool of MetallurgyNortheastern UniversityShenyangLiaoning110819China
| | - Wen‐Bin Luo
- Institute for Energy Electrochemistry and Urban Mines MetallurgySchool of MetallurgyNortheastern UniversityShenyangLiaoning110819China
| | - Huicong Yang
- Institute of Metal ResearchChinese Academy of SciencesShenyangLiaoning110016China
| | - Zhao‐Meng Liu
- Institute for Energy Electrochemistry and Urban Mines MetallurgySchool of MetallurgyNortheastern UniversityShenyangLiaoning110819China
| | - Zhenhua Sun
- Institute of Metal ResearchChinese Academy of SciencesShenyangLiaoning110016China
| | - Qin‐Fen Gu
- Institute for Energy Electrochemistry and Urban Mines MetallurgySchool of MetallurgyNortheastern UniversityShenyangLiaoning110819China
- Australian Synchrotron (ANSTO)800 Blackburn RdClaytonVIC3168Australia
| | - Feng Li
- Institute of Metal ResearchChinese Academy of SciencesShenyangLiaoning110016China
| |
Collapse
|
5
|
Thornton DB, Davies BJV, Scott SB, Aguadero A, Ryan MP, Stephens IEL. Probing Degradation in Lithium Ion Batteries with On-Chip Electrochemistry Mass Spectrometry. Angew Chem Int Ed Engl 2024; 63:e202315357. [PMID: 38103255 PMCID: PMC10962541 DOI: 10.1002/anie.202315357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/18/2023]
Abstract
The rapid uptake of lithium ion batteries (LIBs) for large scale electric vehicle and energy storage applications requires a deeper understanding of the degradation mechanisms. Capacity fade is due to the complex interplay between phase transitions, electrolyte decomposition and transition metal dissolution; many of these poorly understood parasitic reactions evolve gases as a side product. Here we present an on-chip electrochemistry mass spectrometry method that enables ultra-sensitive, fully quantified and time resolved detection of volatile species evolving from an operating LIB. The technique's electrochemical performance and mass transport is described by a finite element model and then experimentally used to demonstrate the variety of new insights into LIB performance. We show the versatility of the technique, including (a) observation of oxygen evolving from a LiNiMnCoO2 cathode and (b) the solid electrolyte interphase formation reaction on graphite in a variety of electrolytes, enabling the deconvolution of lithium inventory loss (c) the first direct evidence, by virtue of the improved time resolution of our technique, that carbon dioxide reduction to ethylene takes place in a lithium ion battery. The emerging insight will guide and validate battery lifetime models, as well as inform the design of longer lasting batteries.
Collapse
Affiliation(s)
- Daisy B. Thornton
- Department of MaterialsImperial College LondonLondonSW7UK
- The Faraday InstitutionHarwell Science and Innovation CampusHarwellOX11 0RAUK
| | - Bethan J. V. Davies
- Department of MaterialsImperial College LondonLondonSW7UK
- The Faraday InstitutionHarwell Science and Innovation CampusHarwellOX11 0RAUK
| | - Soren B. Scott
- Department of MaterialsImperial College LondonLondonSW7UK
| | - Ainara Aguadero
- Department of MaterialsImperial College LondonLondonSW7UK
- The Faraday InstitutionHarwell Science and Innovation CampusHarwellOX11 0RAUK
| | - Mary P. Ryan
- Department of MaterialsImperial College LondonLondonSW7UK
- The Faraday InstitutionHarwell Science and Innovation CampusHarwellOX11 0RAUK
| | - Ifan E. L. Stephens
- Department of MaterialsImperial College LondonLondonSW7UK
- The Faraday InstitutionHarwell Science and Innovation CampusHarwellOX11 0RAUK
| |
Collapse
|
6
|
Krämer M, Favelukis B, El-Zoka AA, Sokol M, Rosen BA, Eliaz N, Kim SH, Gault B. Near-Atomic-Scale Perspective on the Oxidation of Ti 3 C 2 T x MXenes: Insights from Atom Probe Tomography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305183. [PMID: 37608621 DOI: 10.1002/adma.202305183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Indexed: 08/24/2023]
Abstract
MXenes are a family of 2D transition metal carbides and nitrides with remarkable properties, bearing great potential for energy storage and catalysis applications. However, their oxidation behavior is not yet fully understood, and there are still open questions regarding the spatial distribution and precise quantification of surface terminations, intercalated ions, and possible uncontrolled impurities incorporated during synthesis and processing. Here, atom probe tomography (APT) analysis of as-synthesized Ti3 C2 Tx MXenes reveals the presence of alkali (Li, Na) and halogen (Cl, F) elements as well as unetched Al. Following oxidation of the colloidal solution of MXenes, it is observed that the alkalis are enriched in TiO2 nanowires. Although these elements are tolerated through the incorporation by wet chemical synthesis, they are often overlooked when the activity of these materials is considered, particularly during catalytic testing. This work demonstrates how the capability of APT to image these elements in 3D at the near-atomic scale can help to better understand the activity and degradation of MXenes, in order to guide their synthesis for superior functional properties.
Collapse
Affiliation(s)
- Mathias Krämer
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237, Düsseldorf, Germany
| | - Bar Favelukis
- Department of Materials Science and Engineering, Tel Aviv University, P.O.B 39040, Ramat Aviv, 6997801, Israel
| | - Ayman A El-Zoka
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237, Düsseldorf, Germany
- Department of Materials, Royal School of Mines, Imperial College London, London, SW7 2AZ, UK
| | - Maxim Sokol
- Department of Materials Science and Engineering, Tel Aviv University, P.O.B 39040, Ramat Aviv, 6997801, Israel
| | - Brian A Rosen
- Department of Materials Science and Engineering, Tel Aviv University, P.O.B 39040, Ramat Aviv, 6997801, Israel
| | - Noam Eliaz
- Department of Materials Science and Engineering, Tel Aviv University, P.O.B 39040, Ramat Aviv, 6997801, Israel
| | - Se-Ho Kim
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237, Düsseldorf, Germany
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Baptiste Gault
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237, Düsseldorf, Germany
- Department of Materials, Royal School of Mines, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
7
|
Chen X, Kastlunger G, Peterson AA. Fundamental Drivers of Electrochemical Barriers. PHYSICAL REVIEW LETTERS 2023; 131:238003. [PMID: 38134804 DOI: 10.1103/physrevlett.131.238003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/08/2023] [Indexed: 12/24/2023]
Abstract
We find that ion creation and destruction dominate the behavior of electrochemical reaction barriers, through grand-canonical electronic structure calculations of proton deposition on transition metal surfaces. We show that barriers respond to potential in a nonlinear manner and trace this to the continuous degree of electron transfer as an ion is created or destroyed. This explains both Marcus-like curvature and Hammond-like shifts. Across materials, we find the barrier energy to be driven primarily by the charge presented on the surface, which, in turn, is dictated by the native work function, a fundamentally different driving force than in nonelectrochemical systems.
Collapse
Affiliation(s)
- Xi Chen
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Georg Kastlunger
- Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Andrew A Peterson
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
8
|
Wiskich A, Rapson T. Economics of Emerging Ammonia Fertilizer Production Methods - a Role for On-Farm Synthesis? CHEMSUSCHEM 2023; 16:e202300565. [PMID: 37495900 DOI: 10.1002/cssc.202300565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
Prospects of recent promising methods of producing ammonia without fossil fuels are discussed. Despite demonstrating efficiency gains over previous similar approaches, the novel biological and electrochemical pathways require further large improvements to compete with electricity-powered Haber-Bosch. As some literature asserts that future production will shift to smaller scales, such as on-farm, we qualitatively discuss the economics of scale of future green ammonia production.
Collapse
Affiliation(s)
- Anthony Wiskich
- Commonwealth Science and Industry Research Organisation, Australia
| | - Trevor Rapson
- Commonwealth Science and Industry Research Organisation, Australia
| |
Collapse
|
9
|
Tort R, Bagger A, Westhead O, Kondo Y, Khobnya A, Winiwarter A, Davies BJV, Walsh A, Katayama Y, Yamada Y, Ryan MP, Titirici MM, Stephens IEL. Searching for the Rules of Electrochemical Nitrogen Fixation. ACS Catal 2023; 13:14513-14522. [PMID: 38026818 PMCID: PMC10660346 DOI: 10.1021/acscatal.3c03951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Li-mediated ammonia synthesis is, thus far, the only electrochemical method for heterogeneous decentralized ammonia production. The unique selectivity of the solid electrode provides an alternative to one of the largest heterogeneous thermal catalytic processes. However, it is burdened with intrinsic energy losses, operating at a Li plating potential. In this work, we survey the periodic table to understand the fundamental features that make Li stand out. Through density functional theory calculations and experimentation on chemistries analogous to lithium (e.g., Na, Mg, Ca), we find that lithium is unique in several ways. It combines a stable nitride that readily decomposes to ammonia with an ideal solid electrolyte interphase, balancing reagents at the reactive interface. We propose descriptors based on simulated formation and binding energies of key intermediates and further on hard and soft acids and bases (HSAB principle) to generalize such features. The survey will help the community toward electrochemical systems beyond Li for nitrogen fixation.
Collapse
Affiliation(s)
- Romain Tort
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Alexander Bagger
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
- Department
of Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Olivia Westhead
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | - Yasuyuki Kondo
- Osaka
University, SANKEN (The Institute of Scientific and Industrial Research),
Mihogaoka, Osaka, Ibaraki 567-0047, Japan
| | - Artem Khobnya
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | - Anna Winiwarter
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | | | - Aron Walsh
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | - Yu Katayama
- Osaka
University, SANKEN (The Institute of Scientific and Industrial Research),
Mihogaoka, Osaka, Ibaraki 567-0047, Japan
| | - Yuki Yamada
- Osaka
University, SANKEN (The Institute of Scientific and Industrial Research),
Mihogaoka, Osaka, Ibaraki 567-0047, Japan
| | - Mary P. Ryan
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | | | | |
Collapse
|
10
|
Blair SJ, Nielander AC, Stone KH, Kreider ME, Niemann VA, Benedek P, McShane EJ, Gallo A, Jaramillo TF. Development of a versatile electrochemical cell for in situ grazing-incidence X-ray diffraction during non-aqueous electrochemical nitrogen reduction. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:917-922. [PMID: 37594864 PMCID: PMC10481268 DOI: 10.1107/s1600577523006331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
In situ techniques are essential to understanding the behavior of electrocatalysts under operating conditions. When employed, in situ synchrotron grazing-incidence X-ray diffraction (GI-XRD) can provide time-resolved structural information of materials formed at the electrode surface. In situ cells, however, often require epoxy resins to secure electrodes, do not enable electrolyte flow, or exhibit limited chemical compatibility, hindering the study of non-aqueous electrochemical systems. Here, a versatile electrochemical cell for air-free in situ synchrotron GI-XRD during non-aqueous Li-mediated electrochemical N2 reduction (Li-N2R) has been designed. This cell not only fulfills the stringent material requirements necessary to study this system but is also readily extendable to other electrochemical systems. Under conditions relevant to non-aqueous Li-N2R, the formation of Li metal, LiOH and Li2O as well as a peak consistent with the α-phase of Li3N was observed, thus demonstrating the functionality of this cell toward developing a mechanistic understanding of complicated electrochemical systems.
Collapse
Affiliation(s)
- Sarah J. Blair
- Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA
| | - Adam C. Nielander
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA
| | - Kevin H. Stone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA
| | - Melissa E. Kreider
- Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA
| | - Valerie A. Niemann
- Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA
| | - Peter Benedek
- Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA
| | - Eric J. McShane
- Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
| | - Alessandro Gallo
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA
- Research Department, Sila Nanotechnologies, 2470 Mariner Square Loop, Alameda, CA, USA
| | - Thomas F. Jaramillo
- Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA
| |
Collapse
|
11
|
Jin H, Kim SS, Venkateshalu S, Lee J, Lee K, Jin K. Electrochemical Nitrogen Fixation for Green Ammonia: Recent Progress and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300951. [PMID: 37289104 PMCID: PMC10427382 DOI: 10.1002/advs.202300951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Indexed: 06/09/2023]
Abstract
Ammonia, a key feedstock used in various industries, has been considered a sustainable fuel and energy storage option. However, NH3 production via the conventional Haber-Bosch process is costly, energy-intensive, and significantly contributing to a massive carbon footprint. An electrochemical synthetic pathway for nitrogen fixation has recently gained considerable attention as NH3 can be produced through a green process without generating harmful pollutants. This review discusses the recent progress and challenges associated with the two relevant electrochemical pathways: direct and indirect nitrogen reduction reactions. The detailed mechanisms of these reactions and highlight the recent efforts to improve the catalytic performances are discussed. Finally, various promising research strategies and remaining tasks are presented to highlight future opportunities in the electrochemical nitrogen reduction reaction.
Collapse
Affiliation(s)
- Haneul Jin
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul04620Republic of Korea
| | - Suyeon S. Kim
- Department of Chemistry and Research Institute of Natural ScienceKorea UniversitySeoul02841Republic of Korea
| | - Sandhya Venkateshalu
- Department of Chemistry and Research Institute of Natural ScienceKorea UniversitySeoul02841Republic of Korea
| | - Jeseok Lee
- Department of Chemistry and Research Institute of Natural ScienceKorea UniversitySeoul02841Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute of Natural ScienceKorea UniversitySeoul02841Republic of Korea
| | - Kyoungsuk Jin
- Department of Chemistry and Research Institute of Natural ScienceKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
12
|
Westhead O, Spry M, Bagger A, Shen Z, Yadegari H, Favero S, Tort R, Titirici M, Ryan MP, Jervis R, Katayama Y, Aguadero A, Regoutz A, Grimaud A, Stephens IEL. The role of ion solvation in lithium mediated nitrogen reduction. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:12746-12758. [PMID: 37346742 PMCID: PMC10281334 DOI: 10.1039/d2ta07686a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/13/2023] [Accepted: 11/15/2022] [Indexed: 06/23/2023]
Abstract
Since its verification in 2019, there have been numerous high-profile papers reporting improved efficiency of lithium-mediated electrochemical nitrogen reduction to make ammonia. However, the literature lacks any coherent investigation systematically linking bulk electrolyte properties to electrochemical performance and Solid Electrolyte Interphase (SEI) properties. In this study, we discover that the salt concentration has a remarkable effect on electrolyte stability: at concentrations of 0.6 M LiClO4 and above the electrode potential is stable for at least 12 hours at an applied current density of -2 mA cm-2 at ambient temperature and pressure. Conversely, at the lower concentrations explored in prior studies, the potential required to maintain a given N2 reduction current increased by 8 V within a period of 1 hour under the same conditions. The behaviour is linked more coordination of the salt anion and cation with increasing salt concentration in the electrolyte observed via Raman spectroscopy. Time of flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy reveal a more inorganic, and therefore more stable, SEI layer is formed with increasing salt concentration. A drop in faradaic efficiency for nitrogen reduction is seen at concentrations higher than 0.6 M LiClO4, which is attributed to a combination of a decrease in nitrogen solubility and diffusivity as well as increased SEI conductivity as measured by electrochemical impedance spectroscopy.
Collapse
Affiliation(s)
- O Westhead
- Department of Materials, Imperial College London UK
- Solid-State Chemistry and Energy Laboratory, UMR8260, CNRS, Collège de France France
| | - M Spry
- Department of Materials, Imperial College London UK
| | - A Bagger
- Department of Chemistry, University of Copenhagen Denmark
- Department of Chemical Engineering, Imperial College London UK
| | - Z Shen
- Department of Materials, Imperial College London UK
| | - H Yadegari
- Department of Materials, Imperial College London UK
| | - S Favero
- Department of Chemical Engineering, Imperial College London UK
| | - R Tort
- Department of Chemical Engineering, Imperial College London UK
| | - M Titirici
- Department of Chemical Engineering, Imperial College London UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus Didcot OX11 0RA UK
| | - M P Ryan
- Department of Materials, Imperial College London UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus Didcot OX11 0RA UK
| | - R Jervis
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus Didcot OX11 0RA UK
- Eletrochemical Innovation Lab, Department of Chemical Engineering, University College London UK
| | | | - A Aguadero
- Department of Materials, Imperial College London UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus Didcot OX11 0RA UK
- Instituto de Ciencia de Materiales de Madrid ICMM-CSIC Spain
| | - A Regoutz
- Department of Chemistry, University College London UK
| | - A Grimaud
- Solid-State Chemistry and Energy Laboratory, UMR8260, CNRS, Collège de France France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459 80039 Amiens Cedex 1 France
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill MA USA
| | - I E L Stephens
- Department of Materials, Imperial College London UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus Didcot OX11 0RA UK
| |
Collapse
|
13
|
Ma X, Li J, Zhou H, Zhao J, Sun H. Li-N 2 Battery for Ammonia Synthesis and Computational Insight. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19032-19042. [PMID: 37026992 DOI: 10.1021/acsami.3c01929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Electrochemical synthesis of ammonia is deemed as an alternative to the fossil-fuel-driven Haber-Bosch (HB) process, in which Li-mediated nitrogen reduction (LiNR) is the most promising scheme. Continuous lithium-mediated nitrogen reduction for ammonia synthesis (C-LiNR) has recently been reported in high-level journals with many foggy internal reactions. Synthesizing ammonia in a separate way may be profitable for understanding the mechanism of LiNR. Herein, an intermittent lithium-mediated nitrogen reduction for ammonia synthesis (I-LiNR) was proposed, three steps required for I-LiNR were achieved in the cathode chamber of a Li-N2 battery. Discharge, stand, and charge in the Li-N2 battery correspond to N2 lithification, protonation, and lithium regeneration, respectively. It can also realize the quasi-continuous process with practical significance because it could be carried out through identical batteries. Products such as Li3N, LiOH, and NH3 are detected experimentally, which demonstrate a definite reaction pathway. The mechanism of the Li-N2 battery, the Li-mediated synthesis of ammonia, and LiOH decomposition are explored through density functional theory calculations. The role of Li in dinitrogen activation is highlighted. It expands the range of LiOH-based Li-air batteries and may guide the study from Li-air to Li-N2; attention has been given to the reaction mechanism of Li-mediated nitrogen reduction. The challenges and opportunities of the procedure are discussed in the end.
Collapse
Affiliation(s)
- Xingyu Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping, Beijing 102249, P. R. China
| | - Jiang Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping, Beijing 102249, P. R. China
| | - Hongjun Zhou
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping, Beijing 102249, P. R. China
| | - Jianwei Zhao
- Shenzhen HUASUAN Technology Co., Ltd., Shenzhen 518055, P. R. China
| | - Hui Sun
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping, Beijing 102249, P. R. China
| |
Collapse
|
14
|
Spry M, Westhead O, Tort R, Moss B, Katayama Y, Titirici MM, Stephens IEL, Bagger A. Water Increases the Faradaic Selectivity of Li-Mediated Nitrogen Reduction. ACS ENERGY LETTERS 2023; 8:1230-1235. [PMID: 36816776 PMCID: PMC9926485 DOI: 10.1021/acsenergylett.2c02792] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The lithium-mediated system catalyzes nitrogen to ammonia under ambient conditions. Herein we discover that trace amount of water as an electrolyte additive-in contrast to prior reports from the literature-can effect a dramatic improvement in the Faradaic selectivity of N2 reduction to NH3. We report that an optimal water concentration of 35.9 mM and LiClO4 salt concentration of 0.8 M allows a Faradaic efficiency up to 27.9 ± 2.5% at ambient pressure. We attribute the increase in Faradaic efficiency to the incorporation of Li2O in the solid electrolyte interphase, as suggested by our X-ray photoelectron spectroscopy measurements. Our results highlight the extreme sensitivity of lithium-mediated N2 reduction to small changes in the experimental conditions.
Collapse
Affiliation(s)
- Matthew Spry
- Department
of Materials, Imperial College London, Prince Consort Road, South Kensington, London, SW7 2AZ, U.K.
| | - Olivia Westhead
- Department
of Materials, Imperial College London, Prince Consort Road, South Kensington, London, SW7 2AZ, U.K.
| | - Romain Tort
- Department
of Chemical Engineering, Imperial College
London, Imperial College Rd, South Kensington, London, SW7 2AZ, U.K.
| | - Benjamin Moss
- Department
of Materials, Imperial College London, Prince Consort Road, South Kensington, London, SW7 2AZ, U.K.
| | - Yu Katayama
- SANKEN
(Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Maria-Magdalena Titirici
- Department
of Chemical Engineering, Imperial College
London, Imperial College Rd, South Kensington, London, SW7 2AZ, U.K.
| | - Ifan E. L. Stephens
- Department
of Materials, Imperial College London, Prince Consort Road, South Kensington, London, SW7 2AZ, U.K.
| | - Alexander Bagger
- Department
of Chemical Engineering, Imperial College
London, Imperial College Rd, South Kensington, London, SW7 2AZ, U.K.
| |
Collapse
|
15
|
Near ambient N2 fixation on solid electrodes versus enzymes and homogeneous catalysts. Nat Rev Chem 2023; 7:184-201. [PMID: 37117902 DOI: 10.1038/s41570-023-00462-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2022] [Indexed: 02/04/2023]
Abstract
The Mo/Fe nitrogenase enzyme is unique in its ability to efficiently reduce dinitrogen to ammonia at atmospheric pressures and room temperature. Should an artificial electrolytic device achieve the same feat, it would revolutionize fertilizer production and even provide an energy-dense, truly carbon-free fuel. This Review provides a coherent comparison of recent progress made in dinitrogen fixation on solid electrodes, homogeneous catalysts and nitrogenases. Specific emphasis is placed on systems for which there is unequivocal evidence that dinitrogen reduction has taken place. By establishing the cross-cutting themes and synergies between these systems, we identify viable avenues for future research.
Collapse
|
16
|
Christensen O, Zhao S, Sun Z, Bagger A, Lauritsen JV, Pedersen SU, Daasbjerg K, Rossmeisl J. Can the CO 2 Reduction Reaction Be Improved on Cu: Selectivity and Intrinsic Activity of Functionalized Cu Surfaces. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Oliver Christensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen2100, Denmark
| | - Siqi Zhao
- Novo Nordisk Foundation CO2 Research Center, Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, Aarhus8000, Denmark
| | - Zhaozong Sun
- iNano, Aarhus University, Gustav Wieds Vej 14, Aarhus8000, Denmark
| | - Alexander Bagger
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen2100, Denmark
| | | | | | - Kim Daasbjerg
- Novo Nordisk Foundation CO2 Research Center, Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, Aarhus8000, Denmark
| | - Jan Rossmeisl
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen2100, Denmark
| |
Collapse
|
17
|
Lv C, Liu J, Lee C, Zhu Q, Xu J, Pan H, Xue C, Yan Q. Emerging p-Block-Element-Based Electrocatalysts for Sustainable Nitrogen Conversion. ACS NANO 2022; 16:15512-15527. [PMID: 36240028 DOI: 10.1021/acsnano.2c07260] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Artificial nitrogen conversion reactions, such as the production of ammonia via dinitrogen or nitrate reduction and the synthesis of organonitrogen compounds via C-N coupling, play a pivotal role in the modern life. As alternatives to the traditional industrial processes that are energy- and carbon-emission-intensive, electrocatalytic nitrogen conversion reactions under mild conditions have attracted significant research interests. However, the electrosynthesis process still suffers from low product yield and Faradaic efficiency, which highlight the importance of developing efficient catalysts. In contrast to the transition-metal-based catalysts that have been widely studied, the p-block-element-based catalysts have recently shown promising performance because of their intriguing physiochemical properties and intrinsically poor hydrogen adsorption ability. In this Perspective, we summarize the latest breakthroughs in the development of p-block-element-based electrocatalysts toward nitrogen conversion applications, including ammonia electrosynthesis from N2 reduction and nitrate reduction and urea electrosynthesis using nitrogen-containing feedstocks and carbon dioxide. The catalyst design strategies and the underlying reaction mechanisms are discussed. Finally, major challenges and opportunities in future research directions are also proposed.
Collapse
Affiliation(s)
- Chade Lv
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Carmen Lee
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833 Singapore
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Can Xue
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore
| |
Collapse
|
18
|
Yao D, Tang C, Wang P, Cheng H, Jin H, Ding LX, Qiao SZ. Electrocatalytic green ammonia production beyond ambient aqueous nitrogen reduction. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Zhang Z, Zhao Y, Sun B, Xu J, Jin Q, Lu H, Lyu N, Dang ZM, Jin Y. Copper Particle-Enhanced Lithium-Mediated Synthesis of Green Ammonia from Water and Nitrogen. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19419-19425. [PMID: 35467840 DOI: 10.1021/acsami.2c01394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ammonia (NH3) is one of the most frequently produced chemical products in the world, and it plays an indispensable role in life on Earth. However, its synthesis by the Haber-Bosch (H-B) process is highly energy intensive, resulting in extensive carbon emissions that are unsustainable due to their ability to harm the environment. Herein, we propose a facile and mass-producible strategy for increasing the rate and efficiency of nitrogen fixation through the use of copper particle-catalyzed Li nitridation and a solid electrolyte as a medium to reduce Li salt; the above strategy results in the conversion of water and nitrogen into NH3 through the use of renewable electrical energy at room temperature and atmospheric pressure. Copper particles are uniformly pressed into Li metal by a simple rolling method, and their critical role in accelerating the nitrogen fixation process is revealed by both electrochemical tests and simulations. The nitridation of the Li in the composite is reduced to a few minutes instead of the more than 40 h that are needed for bare Li and N2 at room temperature and atmospheric pressure. Our new method provides three important advantages over the H-B method: (1) the new method can be operated at atmospheric pressure, thereby lowering equipment requirements and increasing security; (2) the use of water instead of fossil fuels as a hydrogen source decreases the consumption of these fuels and the emission of CO2; and (3) the low equipment requirements lead to the ready miniaturization and decentralization of the NH3 synthesizing process, thus promoting the possible use of renewable sources of electricity (e.g., wind or solar energy).
Collapse
Affiliation(s)
- Zili Zhang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yu Zhao
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Sun
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Xu
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Qianzheng Jin
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hongfei Lu
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Nawei Lyu
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi-Min Dang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Yang Jin
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
20
|
Zhao Y, Yan L, Zhao X. Development of Carbon‐Based Electrocatalysts for Ambient Nitrogen Reduction Reaction: Challenges and Perspectives. ChemElectroChem 2022. [DOI: 10.1002/celc.202101126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yanchao Zhao
- School of Materials Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 People's Republic of China
| | - Liting Yan
- School of Materials Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Xuebo Zhao
- School of Materials Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 People's Republic of China
| |
Collapse
|
21
|
Wu T, Melander MM, Honkala K. Coadsorption of NRR and HER Intermediates Determines the Performance of Ru-N4 toward Electrocatalytic N2 Reduction. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05820] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tongwei Wu
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Marko M. Melander
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Karoliina Honkala
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| |
Collapse
|
22
|
Ou L, Zhou H. Theoretical insights into the origin of promoter effect of alkali metals on Au-catalyzed nitrogen electroreduction. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Rock CA, Arradondo SN, Tschumper GS. Solvation of Isoelectronic Halide and Alkali Metal Ions by Argon Atoms. J Phys Chem A 2021; 125:10524-10531. [PMID: 34851634 DOI: 10.1021/acs.jpca.1c08069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This work systematically examines the interactions of alkali metal cations and their isoelectronic halide counterparts with up to six solvating Ar atoms (M+Arn and X-Arn, where M = Li, Na, K, and Rb; X = H, F, Cl, and Br; and n = 1-6) via full geometry optimizations with the MP2 method and robust, correlation-consistent quadruple-ζ (QZ) basis sets. 116 unique M+Arn and X-Arn stationary points have been characterized on the MP2/QZ potential energy surface. To the best of our knowledge, approximately two dozen of these stationary points have been reported here for the first time. Some of these new structures are either the lowest-energy stationary point for a particular cluster or energetically competitive with it. The CCSD(T) method was employed to perform additional single-point energy computations upon all MP2/QZ-optimized structures using the same basis set. CCSD(T)/QZ results indicate that internally solvated structures with the ion at/near the geometric center of the cluster have appreciably higher energies than those placing the ion on the periphery. While this study extends the prior investigations of M+Arn clusters found within the literature, it notably provides one of the first thorough characterizations of and comparisons to the corresponding negatively charged X-Arn clusters.
Collapse
Affiliation(s)
- Carly A Rock
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Sarah N Arradondo
- Department of Chemistry, Washington College, Chestertown, Maryland 21620-1438, United States
| | - Gregory S Tschumper
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| |
Collapse
|
24
|
|