1
|
Datta S, Davis HF. Photodissociation Dynamics of the Simplest Diazirine: Cyclo-CH 2N 2 → CH 2 + N 2. J Phys Chem A 2025; 129:3498-3507. [PMID: 40200664 DOI: 10.1021/acs.jpca.5c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The photodissociation of the simplest diazirine, 3H-diazirine (cyclo-CH2N2), was studied in the gas phase following excitation of S1 levels with one quantum of C-N symmetric stretching (ν6, 802 cm-1) or two quanta of C-N asymmetric stretching (2ν9, 216 cm-1). The angular and velocity distributions of the products were measured using 9.9 eV single photon vacuum ultraviolet photoionization and 70 eV electron impact ionization. Preferential scattering of products perpendicular to the laser polarization axis indicates that the transition is 1B1 ← 1A1 with dissociation occurring on subpicosecond time scales. From photofragment anisotropy measurements, initial asymmetric parent vibrational excitation results in shorter dissociation time scales as compared to symmetric stretching, suggesting that dissociation is initiated by asymmetric stepwise ring-opening. However, the final product translational energy distributions were nearly identical for each level, suggesting similar later-time dissociation dynamics. We observed no evidence for formation of ground state CH2 (X̃ 3B1). The CH2 + N2 products are formed with a most probable total internal energy of ∼2 eV. Although the translational energy distributions are consistent with production of highly vibrationally excited CH2 (ã 1A1) following passage through a conical intersection, a significant yield of CH2 (b̃ 1B1) is possible.
Collapse
Affiliation(s)
- Sagnik Datta
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| | - H Floyd Davis
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
2
|
Zou M, Moya Cruz E, Sojdak CA, Kozlowski MC, Karsili TNV, Lester MI. UV Photodissociation Dynamics of Organic Hydroperoxides: Experiment and Theory. J Phys Chem A 2025; 129:3052-3062. [PMID: 40112265 DOI: 10.1021/acs.jpca.5c00762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The UV photodissociation dynamics of three organic hydroperoxides (ROOH, R = tert-butyl, cyclopentyl, and cyclohexyl) are examined experimentally at 282 nm utilizing velocity map imaging of the OH X2Π3/2 (v″ = 0, J″) products. The three systems have similar O-O bond dissociation energies based on W1BD calculations and thus similar energy release to products. In each case, the experimental total kinetic energy release (TKER) distributions are bimodal, composed of narrow low and broad high TKER components extending over the available energy. The associated angular distributions of the OH X2Π products are isotropic, differing dramatically from those predicted for direct photodissociation. Complementary theoretical calculations map the relaxed potential energy profile for each ROOH along the steeply repulsive excited state (S1) potential leading to RO + OH products. Low CCOO torsional barriers predicted along the ROOH dissociation pathway enable the OH products to recoil in many different directions, yielding isotropic angular distributions. Simple models of photodissociation suggest that the low TKER component arises from internal conversion to the ground state (S0) potential, leading to a common RO + OH product asymptote. A simple impulsive model for dissociation captures some aspects of the high TKER component but neglects significant geometric changes in the alkyl substituent from ROOH to the RO product. This study provides new insight into the solar photolysis of organic hydroperoxides and the regeneration of OH radicals in atmospheric oxidation cycles.
Collapse
Affiliation(s)
- Meijun Zou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Emmanuel Moya Cruz
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Christopher A Sojdak
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Marisa C Kozlowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Tolga N V Karsili
- Department of Chemistry, University of Louisiana, Lafayette, Louisiana 70504, United States
| | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
3
|
Vassetti D, Cenedese G, Honorien J, Serinyel Z, Dagaut P, Boualem L, Moreau B, Gail S, Foucher F, Dayma G, Nicolle A. Ring-Opening Competes with Peroxidation in Fenchone Low-Temperature Autoignition. J Phys Chem A 2025; 129:3113-3131. [PMID: 40119857 DOI: 10.1021/acs.jpca.4c08396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
We report an atypical competition between fenchyl radical β-scission and peroxidation at low temperatures and unravel the impacts of strain energy and ring substituent location on their respective contributions. Our RRKM modeling reveals that radicals positioned on secondary carbons are the fastest-scission ones, exhibiting maximum local ring relief. Dimethyl substituents contribute to increased local strain compared to norbornane, hindering bridge scission and leading to cyclopentene and isoprene products. The dimethyl corset generates extra torsional strain during HO2 elimination from QOOH, while ether formation is favored by electron donation from the carbonyl group. The falloff extent is also affected by steric hindrance, insofar as it increases bridge stiffness, leading to a lower vibrational partition function and low-pressure rate constant. Furthermore, methyl-induced restrictions on reactant reorganization are found to modulate an enthalpy-entropy compensation in the Korcek reaction of fenchyl hydroperoxide. Unlike in our previous stirred reactor experiments, the impact of fenchyl peroxidation on reactivity is notable under our new rapid compression machine (RCM) experiments. The present model predicts contrasted fenchyl selectivities with radical position, β-scission and peroxidation prevailing respectively for F1/F2/F3/F4 and F5/F6 radicals. The kinetic mechanism accurately predicts the experimental IDT but indicates a slight first-stage pressure inflection point at the lower experimental temperature, which could not be confirmed experimentally. This new insight into fenchone ring-opening and -closing mechanisms under high-pressure oxidation can be useful for other polycyclic ketones.
Collapse
Affiliation(s)
- Dario Vassetti
- Aramco Fuel Research Center, Rueil-Malmaison 92852, France
- EMITECH - EMC France, 4 Allée de la Rhubarbe, Achères 78260, France
| | - Giorgia Cenedese
- CNRS-INSIS, ICARE, 1C avenue de la Recherche Scientifique, Orléans cedex 2 45071, France
- Université d'Orléans, rue de Chartres, Orléans 45100, France
| | - Jonathan Honorien
- Aramco Fuel Research Center, Rueil-Malmaison 92852, France
- EMITECH - EMC France, 4 Allée de la Rhubarbe, Achères 78260, France
| | - Zeynep Serinyel
- CNRS-INSIS, ICARE, 1C avenue de la Recherche Scientifique, Orléans cedex 2 45071, France
- Université d'Orléans, rue de Chartres, Orléans 45100, France
| | - Philippe Dagaut
- CNRS-INSIS, ICARE, 1C avenue de la Recherche Scientifique, Orléans cedex 2 45071, France
| | - Lydia Boualem
- CNRS-INSIS, ICARE, 1C avenue de la Recherche Scientifique, Orléans cedex 2 45071, France
| | - Bruno Moreau
- PRISME, Université d'Orléans, rue de Chartres, Orléans 45100, France
| | - Sandro Gail
- Aramco Fuel Research Center, Rueil-Malmaison 92852, France
| | - Fabrice Foucher
- Université d'Orléans, rue de Chartres, Orléans 45100, France
- PRISME, Université d'Orléans, rue de Chartres, Orléans 45100, France
| | - Guillaume Dayma
- CNRS-INSIS, ICARE, 1C avenue de la Recherche Scientifique, Orléans cedex 2 45071, France
- Université d'Orléans, rue de Chartres, Orléans 45100, France
| | - Andre Nicolle
- Aramco Fuel Research Center, Rueil-Malmaison 92852, France
| |
Collapse
|
4
|
Wang X, Xin X, Xiong L, Yang J, Wang T, Yang Y, Huang Z, Luo N, Tang J, Wang F. Buffered Hydroxyl Radical for Photocatalytic Non-Oxidative Methane Coupling. Angew Chem Int Ed Engl 2025; 64:e202420606. [PMID: 39800662 DOI: 10.1002/anie.202420606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Indexed: 01/21/2025]
Abstract
Hydroxy radical (⋅OH) is a prestigious oxidant that allows the cleavage of strong chemical bonds of methane but is untamed, leading to over-oxidation of methane and waste of oxidants, especially at high methane conversion. Here, we managed to buffer ⋅OH in an aqueous solution of photo-irradiated Fe3+, where ⋅OH almost participates in methane oxidation. Due to the interaction between Fe3+ and SO4 2-, the electron transfer from OH- to excited-state Fe3+ for ⋅OH generation is retarded, while excessive ⋅OH is consumed by generated Fe2+ to restore Fe3+. When combined with a Ru/SrTiO3:Rh photocatalyst, the buffered ⋅OH converts methane to C2+ hydrocarbons and H2 with formation rates of 246 and 418 μmol h-1, respectively. The apparent quantum efficiency reaches 13.0±0.2 %, along with 10.2 % methane conversion and 81 % C2+ selectivity after 80 hours of reaction. Overall, this work presents a strategy for controlling active radicals for selective and efficient photocatalysis.
Collapse
Affiliation(s)
- Xueyuan Wang
- State Key Laboratory of Catalysis and Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueshang Xin
- State Key Laboratory of Catalysis and Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lunqiao Xiong
- Industrial Catalysis Centre, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jianlong Yang
- Industrial Catalysis Centre, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Tieou Wang
- Industrial Catalysis Centre, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yang Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| | - Zhipeng Huang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nengchao Luo
- State Key Laboratory of Catalysis and Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Junwang Tang
- Industrial Catalysis Centre, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Feng Wang
- State Key Laboratory of Catalysis and Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
5
|
Li D, Li D, Herbinet O, Huang J, Garcia GA, Arnoux P, Tran LS, Vanhove G, Nahon L, Hochlaf M, Carstensen HH, Battin-Leclerc F, Bloino J, Zhang F, Bourgalais J. Conformational effects in the identification and quantification of ketohydroperoxides in the oxidation of n-pentane. Phys Chem Chem Phys 2025; 27:1241-1249. [PMID: 39744980 DOI: 10.1039/d4cp04184d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Stereochemistry plays a key role in both fundamental chemical processes and the dynamics of a large set of molecular systems of importance in chemistry, medicine and biology. Predicting the chemical transformations of organic precursors in such environments requires detailed kinetic models based on laboratory data. Reactive intermediates play a critical role in constraining the models but their identification and especially their quantification remain challenging. This work demonstrates, via the study of the gas-phase autoxidation of n-pentane, a typical fuel surrogate, that accounting for spatial orientation is essential for accurate characterization of such intermediates and for their further evolution. Using synchrotron-based photoelectron photoion coincidence spectroscopy and high-level quantum calculations to investigate the electronic structure and ionization dynamics of the main ketohydroperoxide isomer formed during the oxidation of n-pentane, we reveal the multiple thermally accessible conformers of the chain-branching agent, highlighting how their distinct ionization energies and fragmentation pathways can significantly affect intermediate quantification via photoionization-based probes, a universal in situ method of choice. This research underscores the importance of stereochemistry not only in combustion systems but in any chemical system where a molecular-level understanding is crucial for developing accurate predictive models for both scientific and industrial applications.
Collapse
Affiliation(s)
- Dongyang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| | - Deshan Li
- Scuola Normale Superiore, Pisa, Italy
| | | | - Jiabin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| | - Gustavo A Garcia
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | | | - Luc-Sy Tran
- PC2A, Université de Lille, CNRS, Avenue Mendeleiev, 59650 Villeneuve-d'Ascq, France
| | - Guillaume Vanhove
- PC2A, Université de Lille, CNRS, Avenue Mendeleiev, 59650 Villeneuve-d'Ascq, France
| | - Laurent Nahon
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Majdi Hochlaf
- Université Gustave Eiffel, COSYS/IMSE, 5 Bd Descartes, 77454 Champs sur Marne, France
| | - Hans-Heinrich Carstensen
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Zagaroza, 50018, Spain
- Escuela de Ingeniería y Arquitectura, Universidad de Zaragoza, Zaragoza, 50018, Spain
| | | | | | - Feng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, People's Republic of China
| | - Jérémy Bourgalais
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
- Université de Rennes, CNRS, IPR, F-35000, Rennes, France
| |
Collapse
|
6
|
Yang H, Raucci U, Iyer S, Hasan G, Golin Almeida T, Barua S, Savolainen A, Kangasluoma J, Rissanen M, Vehkamäki H, Kurtén T. Molecular dynamics-guided reaction discovery reveals endoperoxide-to-alkoxy radical isomerization as key branching point in α-pinene ozonolysis. Nat Commun 2025; 16:661. [PMID: 39809821 PMCID: PMC11733028 DOI: 10.1038/s41467-025-55985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Secondary organic aerosols (SOAs) significantly impact Earth's climate and human health. Although the oxidation of volatile organic compounds (VOCs) has been recognized as the major contributor to the atmospheric SOA budget, the mechanisms by which this process produces SOA-forming highly oxygenated organic molecules (HOMs) remain unclear. A major challenge is navigating the complex chemical landscape of these transformations, which traditional hypothesis-driven methods fail to thoroughly investigate. Here, we explore the oxidation of α-pinene, a critical atmospheric biogenic VOC, using a novel reaction discovery approach based on molecular dynamics and state-of-the-art enhanced sampling techniques. Our approach successfully identifies all established reaction pathways of α-pinene ozonolysis, as well as discovers multiple novel species and pathways without relying on a priori chemical knowledge. In particular, we unveil a key branching point that leads to the rapid formation of alkoxy radicals, whose high and diverse reactivity help to explain hitherto unexplained oxidation pathways suggested by mass spectral peaks observed in α-pinene ozonolysis experiments. This branching point is likely prevalent across a variety of atmospheric VOCs and could be crucial in establishing the missing link to SOA-forming HOMs.
Collapse
Affiliation(s)
- Huan Yang
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland.
- Max Planck Institute for Chemistry, Mainz, Germany.
| | - Umberto Raucci
- Atomistic Simulations, Italian Institute of Technology, Genova, Italy.
| | - Siddharth Iyer
- Aerosol Physics Laboratory, Tampere University, Tampere, Finland
| | - Galib Hasan
- Department of Chemistry, University of Helsinki, Helsinki, Finland
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | | - Shawon Barua
- Aerosol Physics Laboratory, Tampere University, Tampere, Finland
| | - Anni Savolainen
- Aerosol Physics Laboratory, Tampere University, Tampere, Finland
| | - Juha Kangasluoma
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland
| | - Matti Rissanen
- Aerosol Physics Laboratory, Tampere University, Tampere, Finland
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Hanna Vehkamäki
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Sun Z, Zhou H, Hou J, Shen F, Guo X, Dai L. In-situ DRIFTS insights into the evolution of surface functionality of biochar upon thermal air oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122582. [PMID: 39299126 DOI: 10.1016/j.jenvman.2024.122582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Biochar surface functionality is crucial for its application. Herein, the evolution of biochar surface functionality upon thermal air oxidation (TAO) was investigated in-situ by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and thermogravimetric analysis (TGA). The results show that, although the surface functionality of biochar is remarkably changed during TAO at the initial low temperature range, the biochar weight is still stable in the initial low temperature range, suggesting the chemisorption of O2 as intermediate oxygenated functional groups (OFGs) on biochar surface. Moreover, the evolution of biochar surface functionality upon TAO is highly affected on its preparation temperature and intrinsic minerals. Specifically, biochar produced at a high temperature is more resistant to TAO, and more favorable for the formation of ketone groups during TAO. While the biochars prepared at low or medium temperatures show a remarkable formation of carboxyl/lactone groups upon TAO, and the maximum temperature for the formation of carboxyl/lactone groups can be achieved at 400 °C. It's worth noting that the intrinsic minerals in biochar catalyze the TAO reaction, resulting in a much higher mass loss of biochar upon TAO. Furthermore, with the catalysis of intrinsic minerals, TAO is more suitable for enhancing the performance of biochar with intrinsic minerals. These results facilitate the design of engineered biochar via TAO for enhanced applications.
Collapse
Affiliation(s)
- Zhuozhuo Sun
- Key Laboratory of Development and Application of Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Academy of Agricultural Sciences, Chengdu, 610041, Sichuan, China
| | - Haiqin Zhou
- Key Laboratory of Development and Application of Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Academy of Agricultural Sciences, Chengdu, 610041, Sichuan, China
| | - Jianhua Hou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Feng Shen
- Agro-Environmental Protection Institute, Chinese Academy of Agricultural Sciences, No. 31, Fukang Road, Nankai District, Tianjin, 300191, China
| | - Xujing Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Lichun Dai
- Key Laboratory of Development and Application of Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Academy of Agricultural Sciences, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Qian Y, Roy TK, Valente DS, Cruz EM, Kozlowski MC, Della Libera A, Klippenstein SJ, Lester MI. Infrared Fingerprint and Unimolecular Decay Dynamics of the Hydroperoxyalkyl Intermediate (•QOOH) in Cyclopentane Oxidation. J Phys Chem A 2024; 128:9240-9250. [PMID: 39405476 DOI: 10.1021/acs.jpca.4c05677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A transient carbon-centered hydroperoxyalkyl intermediate (•QOOH) in the oxidation of cyclopentane is identified by IR action spectroscopy with time-resolved unimolecular decay to hydroxyl (OH) radical products that are detected by UV laser-induced fluorescence. Two nearly degenerate •QOOH isomers, β- and γ-QOOH, are generated by H atom abstraction of the cyclopentyl hydroperoxide precursor. Fundamental and first overtone OH stretch transitions and combination bands of •QOOH are observed and compared with anharmonic frequencies computed by second-order vibrational perturbation theory. An OH stretch transition is also observed for a conformer arising from torsion about a low-energy CCOO barrier. Definitive identification of the β-QOOH isomer relies on its significantly lower transition state (TS) barrier to OH products, which results in rapid unimolecular decay and near unity branching to OH products. A benchmarking approach is utilized to compute high-accuracy stationary point energies, most importantly TS barriers, for cyclopentane oxidation (C5H9O2), building on higher level reference calculations for ethane oxidation (C2H5O2). The experimental OH product appearance rates are compared with computed statistical microcanonical rates using RRKM theory, including heavy-atom tunneling, thereby validating the computed TS barrier. The results are extended to thermal unimolecular decay rate constants at temperatures and pressures relevant to cyclopentane combustion via master-equation modeling. The various torsional and ring puckering states of the wells and transition states are explicitly considered in these calculations.
Collapse
Affiliation(s)
- Yujie Qian
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, United States
| | - Tarun Kumar Roy
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, United States
| | - Dylan S Valente
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, United States
| | - Emmanuel Moya Cruz
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, United States
| | - Marisa C Kozlowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, United States
| | - Andrea Della Libera
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, MI, Milano 20133, Italy
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, United States
| |
Collapse
|
9
|
Roy TK, Qian Y, Sojdak CA, Kozlowski MC, Klippenstein SJ, Lester MI. Infrared signature of the hydroperoxyalkyl intermediate (·QOOH) in cyclohexane oxidation: An isomer-resolved spectroscopic study. J Chem Phys 2024; 161:034302. [PMID: 39007377 DOI: 10.1063/5.0219431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Infrared (IR) action spectroscopy is utilized to characterize carbon-centered hydroperoxy-cyclohexyl radicals (·QOOH) transiently formed in cyclohexane oxidation. The oxidation pathway leads to three nearly degenerate ·QOOH isomers, β-, γ-, and δ-QOOH, which are generated in the laboratory by H-atom abstraction from the corresponding ring sites of the cyclohexyl hydroperoxide (CHHP) precursor. The IR spectral features of jet-cooled and stabilized ·QOOH radicals are observed from 3590 to 7010 cm-1 (∼10-20 kcal mol-1) at energies in the vicinity of the transition state (TS) barrier leading to OH radicals that are detected by ultraviolet laser-induced fluorescence. The experimental approach affords selective detection of β-QOOH, arising from its significantly lower TS barrier to OH products compared to γ and δ isomers, which results in rapid unimolecular decay and near unity branching to OH products. The observed IR spectrum of β-QOOH includes fundamental and overtone OH stretch transitions, overtone CH stretch transitions, and combination bands involving OH or CH stretch with lower frequency modes. The assignment of β-QOOH spectral features is guided by anharmonic frequencies and intensities computed using second-order vibrational perturbation theory. The overtone OH stretch (2νOH) of β-QOOH is shifted only a few wavenumbers from that observed for the CHHP precursor, yet they are readily distinguished by their prompt vs slow dissociation rates to OH products.
Collapse
Affiliation(s)
- Tarun Kumar Roy
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, USA
| | - Yujie Qian
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, USA
| | - Christopher A Sojdak
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, USA
| | - Marisa C Kozlowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, USA
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, USA
| |
Collapse
|
10
|
Smith Lewin C, Kumar A, Herbinet O, Arnoux P, Asgher R, Barua S, Battin-Leclerc F, Farhoudian S, Garcia GA, Tran LS, Vanhove G, Nahon L, Rissanen M, Bourgalais J. 1-Hexene Ozonolysis across Atmospheric and Combustion Temperatures via Synchrotron-Based Photoelectron Spectroscopy and Chemical Ionization Mass Spectrometry. J Phys Chem A 2024; 128:5374-5385. [PMID: 38917032 DOI: 10.1021/acs.jpca.4c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This study investigates the complex interaction between ozone and the autoxidation of 1-hexene over a wide temperature range (300-800 K), overlapping atmospheric and combustion regimes. It is found that atmospheric molecular mechanisms initiate the oxidation of 1-hexene from room temperature up to combustion temperatures, leading to the formation of highly oxygenated organic molecules. As temperature rises, the highly oxygenated organic molecules contribute to radical-branching decomposition pathways inducing a high reactivity in the low-temperature combustion region, i.e., from 550 K. Above 650 K, the thermal decomposition of ozone into oxygen atoms becomes the dominant process, and a remarkable enhancement of the conversion is observed due to their diradical nature, counteracting the significant negative temperature coefficient behavior usually observed for 1-hexene. In order to better characterize the formation of heavy oxygenated organic molecules at the lowest temperatures, two analytical performance methods have been combined for the first time: synchrotron-based mass-selected photoelectron spectroscopy and orbitrap chemical ionization mass spectrometry. At the lowest studied temperatures (below 400 K), this analytical work has demonstrated the formation of the ketohydroperoxides usually found during the LTC oxidation of 1-hexene, as well as of molecules containing up to nine O atoms.
Collapse
Affiliation(s)
| | - Avinash Kumar
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| | | | | | - Rabbia Asgher
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| | - Shawon Barua
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| | | | - Sana Farhoudian
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| | - Gustavo A Garcia
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif-sur-Yvette Cedex, France
| | - Luc-Sy Tran
- PC2A, Université Lille, CNRS, F-59000 Lille, France
| | | | - Laurent Nahon
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif-sur-Yvette Cedex, France
| | - Matti Rissanen
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | | |
Collapse
|
11
|
Roy TK, Qian Y, Karlsson E, Rabayah R, Sojdak CA, Kozlowski MC, Karsili TNV, Lester MI. Vibrational spectroscopy and dissociation dynamics of cyclohexyl hydroperoxide. Chem Sci 2024; 15:6160-6167. [PMID: 38665513 PMCID: PMC11040651 DOI: 10.1039/d4sc00151f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Organic hydroperoxides (ROOH) are ubiquitous in the atmospheric oxidation of volatile organic compounds (VOCs) as well as in low-temperature oxidation of hydrocarbon fuels. The present work focuses on a prototypical cyclic hydroperoxide, cyclohexyl hydroperoxide (CHHP). The overtone OH stretch (2νOH) spectrum of jet-cooled CHHP is recorded by IR multiphoton excitation with UV laser-induced fluorescence detection of the resulting OH products. A distinctive IR feature is observed at 7012.5 cm-1. Two conformers of CHHP are predicted to have similar stabilities (within 0.2 kcal mol-1) and overtone OH stretch transitions (2νOH), yet are separated by a significant interconversion barrier. The IR power dependence indicates that absorption of three or more IR photons is required for dissociation of CHHP to cyclohexoxy (RO) and OH radical products. Accompanying high-level single- and multi-reference electronic structure calculations quantitatively support the experimental results. Calculations are extended to a range of organic hydroperoxides to examine trends in bond dissociation energies associated with RO + OH formation and compared with prior theoretical results.
Collapse
Affiliation(s)
- Tarun Kumar Roy
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Yujie Qian
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Elizabeth Karlsson
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Rawan Rabayah
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Christopher A Sojdak
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Marisa C Kozlowski
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | | | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| |
Collapse
|
12
|
Qian Y, Roy TK, Jasper AW, Sojdak CA, Kozlowski MC, Klippenstein SJ, Lester MI. Isomer-resolved unimolecular dynamics of the hydroperoxyalkyl intermediate (•QOOH) in cyclohexane oxidation. Proc Natl Acad Sci U S A 2024; 121:e2401148121. [PMID: 38602914 PMCID: PMC11032462 DOI: 10.1073/pnas.2401148121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024] Open
Abstract
The oxidation of cycloalkanes is important in the combustion of transportation fuels and in atmospheric secondary organic aerosol formation. A transient carbon-centered radical intermediate (•QOOH) in the oxidation of cyclohexane is identified through its infrared fingerprint and time- and energy-resolved unimolecular dissociation dynamics to hydroxyl (OH) radical and bicyclic ether products. Although the cyclohexyl ring structure leads to three nearly degenerate •QOOH isomers (β-, γ-, and δ-QOOH), their transition state (TS) barriers to OH products are predicted to differ considerably. Selective characterization of the β-QOOH isomer is achieved at excitation energies associated with the lowest TS barrier, resulting in rapid unimolecular decay to OH products that are detected. A benchmarking approach is employed for the calculation of high-accuracy stationary point energies, in particular TS barriers, for cyclohexane oxidation (C6H11O2), building on higher-level reference calculations for the smaller ethane oxidation (C2H5O2) system. The isomer-specific characterization of β-QOOH is validated by comparison of experimental OH product appearance rates with computed statistical microcanonical rates, including significant heavy-atom tunneling, at energies in the vicinity of the TS barrier. Master-equation modeling is utilized to extend the results to thermal unimolecular decay rate constants at temperatures and pressures relevant to cyclohexane combustion.
Collapse
Affiliation(s)
- Yujie Qian
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104-6323
| | - Tarun Kumar Roy
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104-6323
| | - Ahren W. Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439
| | | | - Marisa C. Kozlowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104-6323
| | | | - Marsha I. Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104-6323
| |
Collapse
|
13
|
Zuo X, Zhang L, Gao G, Xin C, Fu B, Liu S, Ding H. Catalytic Oxidation of Benzene over Atomic Active Site AgNi/BCN Catalysts at Room Temperature. Molecules 2024; 29:1463. [PMID: 38611743 PMCID: PMC11013234 DOI: 10.3390/molecules29071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Benzene is the typical volatile organic compound (VOC) of indoor and outdoor air pollution, which harms human health and the environment. Due to the stability of their aromatic structure, the catalytic oxidation of benzene rings in an environment without an external energy input is difficult. In this study, the efficient degradation of benzene at room temperature was achieved by constructing Ag and Ni bimetallic active site catalysts (AgNi/BCN) supported on boron-carbon-nitrogen aerogel. The atomic-scale Ag and Ni are uniformly dispersed on the catalyst surface and form Ag/Ni-C/N bonds with C and N, which were conducive to the catalytic oxidation of benzene at room temperature. Further catalytic reaction mechanisms indicate that benzene reacted with ·OH to produce R·, which reacted with O2 to regenerate ·OH. Under the strong oxidation of ·OH, benzene was oxidized to form alcohols, carboxylic acids, and eventually CO2 and H2O. This study not only significantly reduces the energy consumption of VOC catalytic oxidation, but also improves the safety of VOC treatment, providing new ideas for the low energy consumption and green development of VOC treatment.
Collapse
Affiliation(s)
- Xin Zuo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
- North China Municipal Engineering Design & Research Institute Co., Ltd., Tianjin 300074, China
| | - Lisheng Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| | - Ge Gao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| | - Changchun Xin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| | - Bingfeng Fu
- Shenzhen Yuanqi Environmental Energy Technology Co., Ltd., Futian District, Shenzhen 518045, China;
| | - Shejiang Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| | - Hui Ding
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| |
Collapse
|
14
|
Chang AM, Meisner J, Xu R, Martínez TJ. Efficient Acceleration of Reaction Discovery in the Ab Initio Nanoreactor: Phenyl Radical Oxidation Chemistry. J Phys Chem A 2023; 127:9580-9589. [PMID: 37934692 DOI: 10.1021/acs.jpca.3c05484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Over the years, many computational strategies have been employed to elucidate reaction networks. One of these methods is accelerated molecular dynamics, which can circumvent the expense required in dynamics to find all reactants and products (local minima) and transition states (first-order saddle points) on a potential energy surface (PES) by using fictitious forces that promote reaction events. The ab initio nanoreactor uses these accelerating forces to study large chemical reaction networks from first-principles quantum mechanics. In the initial nanoreactor studies, this acceleration was done through a piston periodic compression potential, which pushes molecules together to induce entropically unfavorable bimolecular reactions. However, the piston is not effective for discovering intramolecular and dissociative reactions, such as those integral to the decomposition channels of phenyl radical oxidation. In fact, the choice of accelerating forces dictates not only the rate of reaction discovery but also the types of reactions discovered; thus, it is critical to understand the biases and efficacies of these forces. In this study, we examine forces using metadynamics, attractive potentials, and local thermostats for accelerating reaction discovery. For each force, we construct a separate phenyl radical combustion reaction network using solely that force in discovery trajectories. We elucidate the enthalpic and entropic trends of each accelerating force and highlight their efficiency in reaction discovery. Comparing the nanoreactor-constructed reaction networks with literature renditions of the phenyl radical combustion PES shows that a combination of accelerating forces is best suited for reaction discovery.
Collapse
Affiliation(s)
- Alexander M Chang
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Jan Meisner
- Department of Chemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225, Germany
| | - Rui Xu
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Todd J Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
15
|
El Hajj O, Hartness SW, Vandergrift GW, Park Y, Glenn CK, Anosike A, Webb AR, Dewey NS, Doner AC, Cheng Z, Jatana GS, Moses-DeBusk M, China S, Rotavera B, Saleh R. Alkylperoxy radicals are responsible for the formation of oxygenated primary organic aerosol. SCIENCE ADVANCES 2023; 9:eadj2832. [PMID: 37976350 PMCID: PMC10656070 DOI: 10.1126/sciadv.adj2832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Organic aerosol (OA) is an air pollutant ubiquitous in urban atmospheres. Urban OA is usually apportioned into primary OA (POA), mostly emitted by mobile sources, and secondary OA (SOA), which forms in the atmosphere due to oxidation of gas-phase precursors from anthropogenic and biogenic sources. By performing coordinated measurements in the particle phase and the gas phase, we show that the alkylperoxy radical chemistry that is responsible for low-temperature ignition also leads to the formation of oxygenated POA (OxyPOA). OxyPOA is distinct from POA emitted during high-temperature ignition and is chemically similar to SOA. We present evidence for the prevalence of OxyPOA in emissions of a spark-ignition engine and a next-generation advanced compression-ignition engine, highlighting the importance of understanding OxyPOA for predicting urban air pollution patterns in current and future atmospheres.
Collapse
Affiliation(s)
- Omar El Hajj
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA 30602, USA
| | - Samuel W. Hartness
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA 30602, USA
| | | | - Yensil Park
- Energy and Transportation Science Division, Oak Ridge National Laboratory. Oak Ridge, TN 37831, USA
| | - Chase K. Glenn
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA 30602, USA
| | - Anita Anosike
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA 30602, USA
| | - Annabelle R. Webb
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Nicholas S. Dewey
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Anna C. Doner
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Zezhen Cheng
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Gurneesh S. Jatana
- Energy and Transportation Science Division, Oak Ridge National Laboratory. Oak Ridge, TN 37831, USA
| | - Melanie Moses-DeBusk
- Energy and Transportation Science Division, Oak Ridge National Laboratory. Oak Ridge, TN 37831, USA
| | - Swarup China
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Brandon Rotavera
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Rawad Saleh
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
16
|
Li Y, Zhang RM, Xu X. Theoretical Kinetics studies of isoprene peroxy radical chemistry: The fate of Z-δ-(4-OH, 1-OO)-ISOPOO radical. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115553. [PMID: 37839188 DOI: 10.1016/j.ecoenv.2023.115553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
The OH radical recycling mechanism in isoprene oxidation is one of the most exciting topics in atmospheric chemistry, and the corresponding studies expand our understanding of oxidation mechanisms of volatile organic compounds in the troposphere and provide reliable evidence to improve and develop conventional atmospheric models. In this work, we performed a detailed theoretical kinetics study on the Z-δ-(4-OH, 1-OO)-ISOPOO radical chemistry, which is proposed as the heart of OH recycling in isoprene oxidation. With the full consideration of its accumulation and consumption channels, we studied and discussed the fate of Z-δ-(4-OH, 1-OO)-ISOPOO radical by solving the energy-resolved master equation over a broad range of conditions, including not only room temperatures but also high temperatures of a forest fire or low temperatures and pressures of the upper troposphere. We found non-negligible pressure dependence of its fate at combustion temperatures (up to two orders of magnitude) and demonstrated the significance of both the multi-structural torsional anharmonicity and tunneling for accurately calculating kinetics of the studied system. More interestingly, the tunneling effect on the phenomenological rate constants of the H-shift reaction channel is also found to be pressure-dependent due to the competition with the O2 loss reaction. In addition, our time evolution calculations revealed a two-stage behavior of critical species in this reaction system and estimated the shortest half-lives for the Z-δ-(4-OH, 1-OO)-ISOPOO radical at various temperatures, pressures and altitudes. This detailed kinetics study of Z-δ-(4-OH, 1-OO)-ISOPOO radical chemistry offers a typical example to deeply understand the core mechanism of OH recycling pathways in isoprene oxidation, and provides valuable insights for promoting the development of relevant atmospheric models.
Collapse
Affiliation(s)
- Yan Li
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Rui Ming Zhang
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xuefei Xu
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Kandpal SC, Otukile KP, Jindal S, Senthil S, Matthews C, Chakraborty S, Moskaleva LV, Ramakrishnan R. Stereo-electronic factors influencing the stability of hydroperoxyalkyl radicals: transferability of chemical trends across hydrocarbons and ab initio methods. Phys Chem Chem Phys 2023; 25:27302-27320. [PMID: 37791466 DOI: 10.1039/d3cp03598k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The hydroperoxyalkyl radicals (˙QOOH) are known to play a significant role in combustion and tropospheric processes, yet their direct spectroscopic detection remains challenging. In this study, we investigate molecular stereo-electronic effects influencing the kinetic and thermodynamic stability of a ˙QOOH along its formation path from the precursor, alkylperoxyl radical (ROO˙), and the depletion path resulting in the formation of cyclic ether + ˙OH. We focus on reactive intermediates encountered in the oxidation of acyclic hydrocarbon radicals: ethyl, isopropyl, isobutyl, tert-butyl, neopentyl, and their alicyclic counterparts: cyclohexyl, cyclohexenyl, and cyclohexadienyl. We report reaction energies and barriers calculated with the highly accurate method Weizmann-1 (W1) for the channels: ROO˙ ⇌ ˙QOOH, ROO˙ ⇌ alkene + ˙OOH, ˙QOOH ⇌ alkene + ˙OOH, and ˙QOOH ⇌ cyclic ether + ˙OH. Using W1 results as a reference, we have systematically benchmarked the accuracy of popular density functional theory (DFT), composite thermochemistry methods, and an explicitly correlated coupled-cluster method. We ascertain inductive, resonance, and steric effects on the overall stability of ˙QOOH and computationally investigate the possibility of forming more stable species. With new reactions as test cases, we probe the capacity of various ab initio methods to yield quantitative insights on the elementary steps of combustion.
Collapse
Affiliation(s)
| | - Kgalaletso P Otukile
- Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa.
| | - Shweta Jindal
- Tata Institute of Fundamental Research, Hyderabad 500046, India.
| | - Salini Senthil
- Tata Institute of Fundamental Research, Hyderabad 500046, India.
| | - Cameron Matthews
- Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa.
| | | | - Lyudmila V Moskaleva
- Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa.
| | | |
Collapse
|
18
|
Doner AC, Dewey NS, Rotavera B. Unimolecular Reactions of 2-Methyloxetanyl and 2-Methyloxetanylperoxy Radicals. J Phys Chem A 2023; 127:6816-6829. [PMID: 37535464 PMCID: PMC10440797 DOI: 10.1021/acs.jpca.3c03918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Indexed: 08/05/2023]
Abstract
Alkyl-substituted cyclic ethers are intermediates formed in abundance during the low-temperature oxidation of hydrocarbons and biofuels via a chain-propagating step with ȮH. Subsequent reactions of cyclic ether radicals involve a competition between ring opening and reaction with O2, the latter of which enables pathways mediated by hydroperoxy-substituted carbon-centered radicals (Q̇OOH). Due to the resultant implications of competing unimolecular and bimolecular reactions on overall populations of ȮH, detailed insight into the chemical kinetics of cyclic ethers remains critical to high-fidelity numerical modeling of combustion. Cl-initiated oxidation experiments were conducted on 2-methyloxetane (an intermediate of n-butane oxidation) using multiplexed photoionization mass spectrometry (MPIMS), in tandem with calculations of stationary point energies on potential energy surfaces for unimolecular reactions of 2-methyloxetanyl and 2-methyloxetanylperoxy isomers. The potential energy surfaces were computed using the KinBot algorithm with stationary points calculated at the CCSD(T)-F12/cc-pVDZ-F12 level of theory. The experiments were conducted at 6 Torr and two temperatures (650 K and 800 K) under pseudo-first-order conditions to facilitate Ṙ + O2 reactions. Photoionization spectra were measured from 8.5 eV to 11.0 eV in 50-meV steps, and relative yields were quantified for species consistent with Ṙ → products and Q̇OOH → products. Species detected in the MPIMS experiments are linked to specific radicals of 2-methyloxetane. Species from Ṙ → products include methyl, ethene, formaldehyde, propene, ketene, 1,3-butadiene, and acrolein. Ion signals consistent with products from alkyl radical oxidation were detected, including for Q̇OOH-mediated species, which are also low-lying channels on their respective potential energy surfaces. In addition to species common to alkyl oxidation pathways, ring-opening reactions of Q̇OOH radicals derived from 2-methyloxetane produced ketohydroperoxide species (performic acid and 2-hydroperoxyacetaldehyde), which may impart additional chain-branching potential, and dicarbonyl species (3-oxobutanal and 2-methylpropanedial), which often serve as proxies for modeling reaction rates of ketohydroperoxides. The experimental and computational results underscore that reactions of cyclic ethers are inherently more complex than currently prescribed in chemical kinetic models utilized for combustion.
Collapse
Affiliation(s)
- Anna C. Doner
- University
of Georgia, Department of Chemistry, Athens, Georgia 30602, United States
| | - Nicholas S. Dewey
- University
of Georgia, Department of Chemistry, Athens, Georgia 30602, United States
| | - Brandon Rotavera
- University
of Georgia, Department of Chemistry, Athens, Georgia 30602, United States
- University
of Georgia, College of Engineering, Athens, Georgia 30602, United States
| |
Collapse
|
19
|
Lahm ME, Bartlett MA, Liang T, Pu L, Allen WD, Schaefer HF. The multichannel i-propyl + O2 reaction system: A model of secondary alkyl radical oxidation. J Chem Phys 2023; 159:024305. [PMID: 37428067 DOI: 10.1063/5.0156705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023] Open
Abstract
The i-propyl + O2 reaction mechanism has been investigated by definitive quantum chemical methods to establish this system as a benchmark for the combustion of secondary alkyl radicals. Focal point analyses extrapolating to the ab initio limit were performed based on explicit computations with electron correlation treatments through coupled cluster single, double, triple, and quadruple excitations and basis sets up to cc-pV5Z. The rigorous coupled cluster single, double, and triple excitations/cc-pVTZ level of theory was used to fully optimize all reaction species and transition states, thus, removing some substantial flaws in reference geometries existing in the literature. The vital i-propylperoxy radical (MIN1) and its concerted elimination transition state (TS1) were found 34.8 and 4.4 kcal mol-1 below the reactants, respectively. Two β-hydrogen transfer transition states (TS2, TS2') lie above the reactants by (1.4, 2.5) kcal mol-1 and display large Born-Oppenheimer diagonal corrections indicative of nearby surface crossings. An α-hydrogen transfer transition state (TS5) is discovered 5.7 kcal mol-1 above the reactants that bifurcates into equivalent α-peroxy radical hanging wells (MIN3) prior to a highly exothermic dissociation into acetone + OH. The reverse TS5 → MIN1 intrinsic reaction path also displays fascinating features, including another bifurcation and a conical intersection of potential energy surfaces. An exhaustive conformational search of two hydroperoxypropyl (QOOH) intermediates (MIN2 and MIN3) of the i-propyl + O2 system located nine rotamers within 0.9 kcal mol-1 of the corresponding lowest-energy minima.
Collapse
Affiliation(s)
- Mitchell E Lahm
- Center for Computational Quantum Chemistry and Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Marcus A Bartlett
- Center for Computational Quantum Chemistry and Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Tao Liang
- Center for Computational Quantum Chemistry and Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Liang Pu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Wesley D Allen
- Center for Computational Quantum Chemistry and Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Allen Heritage Foundation, Dickson, Tennessee 37055, USA
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry and Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
20
|
Li Y, Wang Y, Zhang RM, He X, Xu X. Comprehensive Theoretical Study on Four Typical Intramolecular Hydrogen Shift Reactions of Peroxy Radicals: Multireference Character, Recommended Model Chemistry, and Kinetics. J Chem Theory Comput 2023. [PMID: 37164004 DOI: 10.1021/acs.jctc.3c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Intramolecular hydrogen shift reactions in peroxy radicals (RO2• → •QOOH) play key roles in the low-temperature combustion and in the atmospheric chemistry. In the present study, we found that a mild-to-moderate multireference character of a potential energy surface (PES) is widely present in four typical hydrogen shift reactions of peroxy radicals (RO2•, R = ethyl, vinyl, formyl methyl, and acetyl) by a systematic assessment based on the T1 diagnostic, %TAE diagnostic, M diagnostic, and contribution of the dominant configuration of the reference CASSCF wavefunction (C02). To assess the effects of these inherent multireference characters on electronic structure calculations, we compared the PESs of the four reactions calculated by the multireference method CASPT2 in the complete basis set (CBS) limit, single-reference method CCSD(T)-F12, and single-reference-based composite method WMS. The results showed that ignoring the multireference character will introduce a mean unsigned deviation (MUD) of 0.46-1.72 kcal/mol from CASPT2/CBS results by using the CCSD(T)-F12 method or a MUD of 0.49-1.37 kcal/mol by WMS for three RO2• reactions (R = vinyl, formyl methyl, and acetyl) with a stronger multireference character. Further tests by single-reference Kohn-Sham (KS) density functional theory methods showed even larger deviations. Therefore, we specifically developed a new hybrid meta-generalized gradient approximation (GGA) functional M06-HS for the four typical H-shift reactions of peroxy radicals based on the WMS results for the ethyl peroxy radical reaction and on the CASPT2/CBS results for the others. The M06-HS method has an averaged MUD of 0.34 kcal/mol over five tested basis sets against the benchmark PESs, performing best in the tested 38 KS functionals. Last, in a temperature range of 200-3000 K, with the new functional, we calculated the high-pressure-limit rate coefficients of these H-shift reactions by the multi-structural variational transition-state theory with the small-curvature tunneling approximation (MS-CVT/SCT) and the thermochemical properties of all of the involved key radicals by the multi-structural torsional (MS-T) anharmonicity approximation method.
Collapse
Affiliation(s)
- Yan Li
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Rui Ming Zhang
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| | - Xuefei Xu
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Abstract
Combustion is a reactive oxidation process that releases energy bound in chemical compounds used as fuels─energy that is needed for power generation, transportation, heating, and industrial purposes. Because of greenhouse gas and local pollutant emissions associated with fossil fuels, combustion science and applications are challenged to abandon conventional pathways and to adapt toward the demand of future carbon neutrality. For the design of efficient, low-emission processes, understanding the details of the relevant chemical transformations is essential. Comprehensive knowledge gained from decades of fossil-fuel combustion research includes general principles for establishing and validating reaction mechanisms and process models, relying on both theory and experiments with a suite of analytic monitoring and sensing techniques. Such knowledge can be advantageously applied and extended to configure, analyze, and control new systems using different, nonfossil, potentially zero-carbon fuels. Understanding the impact of combustion and its links with chemistry needs some background. The introduction therefore combines information on exemplary cultural and technological achievements using combustion and on nature and effects of combustion emissions. Subsequently, the methodology of combustion chemistry research is described. A major part is devoted to fuels, followed by a discussion of selected combustion applications, illustrating the chemical information needed for the future.
Collapse
|
22
|
Doner AC, Zádor J, Rotavera B. Unimolecular Reactions of 2,4-Dimethyloxetanyl Radicals. J Phys Chem A 2023; 127:2591-2600. [PMID: 36898134 PMCID: PMC10041641 DOI: 10.1021/acs.jpca.2c08290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Alkyl-substituted oxetanes are cyclic ethers formed via unimolecular reactions of QOOH radicals produced via a six-membered transition state in the preceding isomerization step of organic peroxy radicals, ROO. Owing to radical isomer-specific formation pathways, cyclic ethers are unambiguous proxies for inferring QOOH reaction rates. Therefore, accounting for subsequent oxidation of cyclic ethers is important in order to accurately determine rates for QOOH → products. Cyclic ethers can react via unimolecular reaction (ring-opening) or via bimolecular reaction with O2 to form cyclic ether-peroxy adducts. The computations herein provide reaction mechanisms and theoretical rate coefficients for the former type in order to determine competing pathways for the cyclic ether radicals. Rate coefficients of unimolecular reactions of 2,4-dimethyloxetanyl radicals were computed using master equation modeling from 0.01 to 100 atm and from 300 to 1000 K. Coupled-cluster methods were utilized for stationary-point energy calculations, and uncertainties in the computed rate coefficients were accounted for using variation in barrier heights and in well depths. The potential energy surfaces reveal accessible channels to several species via crossover reactions, such as 2-methyltetrahydrofuran-5-yl and pentanonyl isomers. For the range of temperature over which 2,4-dimethyloxetane forms during n-pentane oxidation, the following are the major channels: 2,4-dimethyloxetan-1-yl → acetaldehyde + allyl, 2,4-dimethyloxetan-2-yl → propene + acetyl, and 2,4-dimethyloxetan-3-yl → 3-butenal + methyl, or, 1-penten-3-yl-4-ol. Well-skipping reactions were significant in a number of channels and also exhibited a markedly different pressure dependence. The calculations show that rate coefficients for ring-opening are approximately an order of magnitude lower for the tertiary 2,4-dimethyloxetanyl radicals than for the primary and secondary 2,4-dimethyloxetanyl radicals. Unlike for reactions of the corresponding ROO radicals, however, unimolecular rate coefficients are independent of the stereochemistry. Moreover, rate coefficients of cyclic ether radical ring-opening are of the same order of magnitude as O2 addition, underscoring the point that a competing network of reactions is necessary to include for accurate chemical kinetics modeling of species profiles for cyclic ethers.
Collapse
Affiliation(s)
| | - Judit Zádor
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | | |
Collapse
|
23
|
Liu Y, Li J. Permutation-Invariant-Polynomial Neural-Network-Based Δ-Machine Learning Approach: A Case for the HO 2 Self-Reaction and Its Dynamics Study. J Phys Chem Lett 2022; 13:4729-4738. [PMID: 35609295 DOI: 10.1021/acs.jpclett.2c01064] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Δ-machine learning, or the hierarchical construction scheme, is a highly cost-effective method, as only a small number of high-level ab initio energies are required to improve a potential energy surface (PES) fit to a large number of low-level points. However, there is no efficient and systematic way to select as few points as possible from the low-level data set. We here propose a permutation-invariant-polynomial neural-network (PIP-NN)-based Δ-machine learning approach to construct full-dimensional accurate PESs of complicated reactions efficiently. Particularly, the high flexibility of the NN is exploited to efficiently sample points from the low-level data set. This approach is applied to the challenging case of a HO2 self-reaction with a large configuration space. Only 14% of the DFT data set is used to successfully bring a newly fitted DFT PES to the UCCSD(T)-F12a/AVTZ quality. Then, the quasiclassical trajectory (QCT) calculations are performed to study its dynamics, particularly the mode specificity.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| |
Collapse
|
24
|
Zhu B, Jiang J, Lu B, Li X, Zeng X. Fluoromethylsulfinyl radicals: spectroscopic characterization and photoisomerization via intramolecular hydrogen shift. Phys Chem Chem Phys 2022; 24:8881-8889. [PMID: 35362501 DOI: 10.1039/d1cp05556a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Two new sulfinyl radicals, CHF2SO˙ and CH2FSO˙, have been generated in the gas phase through homolytic cleavage of the weak S-S bonds in disulfane oxides CHF2S(O)SCF3 and CH2FS(O)SCF3 by high-vacuum flash pyrolysis (HVFP) at ca. 500 °C. The IR spectroscopy characterization of the two fluoromethylsulfinyl radicals in solid N2 (10 K), Ar (10 K), and Ne (3 K) matrices reveals the presence of two conformers for CHF2SO˙ (gauche and cis) and one conformer for CH2FSO˙ (gauche). Upon 266 nm laser irradiation, these radicals undergo both isomerization and decomposition in the matrices. In addition to the dominant formation of the elusive oxathiyl radicals CHF2OS˙ (gauche and cis) and CH2FOS˙ (gauche) via 1,2-alkyl migration, two higher-energy carbon-centered radicals ˙CF2SOH and ˙CHFSOH bearing similar molecular structures to hydroperoxyalkyl radicals (˙QOOH) form via intramolecular 1,3-hydrogen shift in the two sulfinyl radicals. Additionally, the involvement of 1,3-hydrogen shift in CHF2OS˙ and CH2FOS˙ is also indicated by the observation of the fragmentation species. The identification of these radicals by matrix-isolation IR and UV-vis spectroscopy is aided by the quantum chemical calculations at the B3LYP/6-311++G(3df,3pd) level of theory. The stability of the isomers of the two sulfinyl radicals CHF2SO˙ and CH2FSO˙ has been discussed according to the experimental observations and also based on the CCSD(T)-F12a/aug-cc-pVTZ//B3LYP/6-311++G(3df,3pd) calculated energy profiles.
Collapse
Affiliation(s)
- Bifeng Zhu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| | - Junjie Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| | - Bo Lu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| | - Xiaolong Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
25
|
Hansen AS, Qian Y, Sojdak CA, Kozlowski MC, Esposito VJ, Francisco JS, Klippenstein SJ, Lester MI. Rapid Allylic 1,6 H-Atom Transfer in an Unsaturated Criegee Intermediate. J Am Chem Soc 2022; 144:5945-5955. [PMID: 35344666 DOI: 10.1021/jacs.2c00055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel allylic 1,6 hydrogen-atom-transfer mechanism is established through infrared activation of the 2-butenal oxide Criegee intermediate, resulting in very rapid unimolecular decay to hydroxyl (OH) radical products. A new precursor, Z/E-1,3-diiodobut-1-ene, is synthesized and photolyzed in the presence of oxygen to generate a new four-carbon Criegee intermediate with extended conjugation across the vinyl and carbonyl oxide groups that facilitates rapid allylic 1,6 H-atom transfer. A low-energy reaction pathway involving isomerization of 2-butenal oxide from a lower-energy (tZZ) conformer to a higher-energy (cZZ) conformer followed by 1,6 hydrogen transfer via a seven-membered ring transition state is predicted theoretically and shown experimentally to yield OH products. The low-lying (tZZ) conformer of 2-butenal oxide is identified based on computed anharmonic frequencies and intensities of its conformers. Experimental IR action spectra recorded in the fundamental CH stretch region with OH product detection by UV laser-induced fluorescence reveal a distinctive IR transition of the low-lying (tZZ) conformer at 2996 cm-1 that results in rapid unimolecular decay to OH products. Statistical RRKM calculations involving a combination of conformational isomerization and unimolecular decay via 1,6 H-transfer yield an effective decay rate keff(E) on the order of 108 s-1 at ca. 3000 cm-1 in good accord with the experiment. Unimolecular decay proceeds with significant enhancement due to quantum mechanical tunneling. A rapid thermal decay rate of ca. 106 s-1 is predicted by master-equation modeling of 2-butenal oxide at 298 K, 1 bar. This novel unimolecular decay pathway is expected to increase the nonphotolytic production of OH radicals upon alkene ozonolysis in the troposphere.
Collapse
Affiliation(s)
- Anne S Hansen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 United States
| | - Yujie Qian
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 United States
| | - Christopher A Sojdak
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 United States
| | - Marisa C Kozlowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 United States
| | - Vincent J Esposito
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 United States
| | - Joseph S Francisco
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 United States
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439 United States
| | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 United States
| |
Collapse
|
26
|
Hansen AS, Bhagde T, Qian Y, Cavazos A, Huchmala RM, Boyer MA, Gavin-Hanner CF, Klippenstein SJ, McCoy AB, Lester MI. Infrared spectroscopic signature of a hydroperoxyalkyl radical (•QOOH). J Chem Phys 2022; 156:014301. [PMID: 34998315 DOI: 10.1063/5.0076505] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Infrared (IR) action spectroscopy is utilized to characterize a prototypical carbon-centered hydroperoxyalkyl radical (•QOOH) transiently formed in the oxidation of volatile organic compounds. The •QOOH radical formed in isobutane oxidation, 2-hydroperoxy-2-methylprop-1-yl, •CH2(CH3)2COOH, is generated in the laboratory by H-atom abstraction from tert-butyl hydroperoxide (TBHP). IR spectral features of jet-cooled and stabilized •QOOH radicals are observed from 2950 to 7050 cm-1 at energies that lie below and above the transition state barrier leading to OH radical and cyclic ether products. The observed •QOOH features include overtone OH and CH stretch transitions, combination bands involving OH or CH stretch and a lower frequency mode, and fundamental OH and CH stretch transitions. Most features arise from a single vibrational transition with band contours well simulated at a rotational temperature of 10 K. In each case, the OH products resulting from unimolecular decay of vibrationally activated •QOOH are detected by UV laser-induced fluorescence. Assignments of observed •QOOH IR transitions are guided by anharmonic frequencies computed using second order vibrational perturbation theory, a 2 + 1 model that focuses on the coupling of the OH stretch with two low-frequency torsions, as well as recently predicted statistical •QOOH unimolecular decay rates that include heavy-atom tunneling. Most of the observed vibrational transitions of •QOOH are readily distinguished from those of the TBHP precursor. The distinctive IR transitions of •QOOH, including the strong fundamental OH stretch, provide a general means for detection of •QOOH under controlled laboratory and real-world conditions.
Collapse
Affiliation(s)
- Anne S Hansen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Trisha Bhagde
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Yujie Qian
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Alyssa Cavazos
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Rachel M Huchmala
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Mark A Boyer
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Coire F Gavin-Hanner
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Anne B McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| |
Collapse
|
27
|
Doner A, Zádor J, Rotavera B. Stereoisomer-dependent unimolecular kinetics of 2,4-dimethyloxetane peroxy radicals. Faraday Discuss 2022; 238:295-319. [DOI: 10.1039/d2fd00029f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2,4,dimethyloxetane is an important cyclic ether intermediate that is produced from hydroperoxyalkyl (QOOH) radicals in low-temperature combustion of n-pentane. However, reaction mechanisms and rates of consumption pathways remain unclear. In...
Collapse
|
28
|
Jasper A. Predicting third-body collision efficiencies for water and other polyatomic baths. Faraday Discuss 2022; 238:68-86. [DOI: 10.1039/d2fd00038e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low-pressure-limit microcanonical (collisional activation) and thermal rate constants are predicted using a combination of automated ab initio potential energy surface construction, classical trajectories, transition state theory, and a detailed kinetic...
Collapse
|
29
|
BHAGDE TRISHA, Hansen AS, Chen SG, Walsh P, Klippenstein SJ, Lester MI. Energy-resolved and time-dependent unimolecular dissociation of hydroperoxyalkyl radicals (•QOOH). Faraday Discuss 2022; 238:575-588. [DOI: 10.1039/d2fd00008c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroperoxyalkyl radicals (•QOOH) are transient intermediates in the atmospheric oxidation of volatile organic compounds and combustion of hydrocarbon fuels in low temperature (< 1000 K) environments. The carbon-centered •QOOH radicals...
Collapse
|
30
|
Klippenstein SJ. Spiers Memorial Lecture: theory of unimolecular reactions. Faraday Discuss 2022; 238:11-67. [DOI: 10.1039/d2fd00125j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One hundred years ago, at an earlier Faraday Discussion meeting, Lindemann presented a mechanism that provides the foundation for contemplating the pressure dependence of unimolecular reactions. Since that time, our...
Collapse
|
31
|
Hansen AS, Bhagde T, Moore KB, Moberg DR, Jasper AW, Georgievskii Y, Vansco MF, Klippenstein SJ, Lester MI. Watching a hydroperoxyalkyl radical (•QOOH) dissociate. Science 2021; 373:679-682. [PMID: 34353951 DOI: 10.1126/science.abj0412] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/22/2021] [Indexed: 11/02/2022]
Abstract
A prototypical hydroperoxyalkyl radical (•QOOH) intermediate, transiently formed in the oxidation of volatile organic compounds, was directly observed through its infrared fingerprint and energy-dependent unimolecular decay to hydroxyl radical and cyclic ether products. Direct time-domain measurements of •QOOH unimolecular dissociation rates over a wide range of energies were found to be in accord with those predicted theoretically using state-of-the-art electronic structure characterizations of the transition state barrier region. Unimolecular decay was enhanced by substantial heavy-atom tunneling involving O-O elongation and C-C-O angle contraction along the reaction pathway. Master equation modeling yielded a fully a priori prediction of the pressure-dependent thermal unimolecular dissociation rates for the •QOOH intermediate-again increased by heavy-atom tunneling-which are required for global models of atmospheric and combustion chemistry.
Collapse
Affiliation(s)
- Anne S Hansen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Trisha Bhagde
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin B Moore
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Daniel R Moberg
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Ahren W Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Yuri Georgievskii
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Michael F Vansco
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|