1
|
Ropón-Palacios G, Silva JP, Gervacio-Villarreal EA, Galarza JPR, Zuta MC, Otazu K, Del Aguila IN, Wong HD, Amay FS, Camps I. Integrated computational biophysics approach for drug discovery against Nipah virus. Biochem Biophys Res Commun 2024; 745:151140. [PMID: 39729673 DOI: 10.1016/j.bbrc.2024.151140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024]
Abstract
The Nipah virus (NiV) poses a pressing global threat to public health due to its high mortality rate, multiple modes of transmission, and lack of effective treatments. NiV glycoprotein G (NiV-G) emerges as a promising target for the discovery of NiV drugs because of its essential role in viral entry and membrane fusion. Therefore, in this study, we applied an integrated computational and biophysics approach to identify potential inhibitors of NiV-G within a curated dataset of Peruvian phytochemicals. The virtual screening results indicated that these compounds could represent a natural source of potential NiV-G inhibitors with ΔG values ranging from -8 to -11 kcal/mol. Among them, procyanidin B2, B3, B7, and C1 exhibited the highest binding affinities and formed the most molecular interactions with NiV-G. Molecular dynamics simulations revealed the induced-fit mechanism of NiV-G pocket interaction with these procyanidins, primarily driven by its hydrophobic nature. Non-equilibrium free energy calculations were used to determine binding affinities, highlighting Procyanidin B3 and B2 as the ligands with the most substantial interactions. In general, this work underscores the potential of Peruvian phytochemicals, particularly procyanidins B2, B3, B7, and C1, as lead compounds for developing anti-NiV drugs through an integrated computational biophysics approach.
Collapse
Affiliation(s)
- Georcki Ropón-Palacios
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas UNIFAL-MG, 37133-840, Alfenas, Minas Gerais, Brazil
| | - Jhon Pérez Silva
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas UNIFAL-MG, 37133-840, Alfenas, Minas Gerais, Brazil
| | - Edinson Alfonzo Gervacio-Villarreal
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas UNIFAL-MG, 37133-840, Alfenas, Minas Gerais, Brazil
| | - Jean Pierre Ramos Galarza
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas UNIFAL-MG, 37133-840, Alfenas, Minas Gerais, Brazil
| | | | - Kewin Otazu
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas UNIFAL-MG, 37133-840, Alfenas, Minas Gerais, Brazil
| | | | | | - Frida Sosa Amay
- Universidad Nacional de la Amazonía Peruana, 16001, Iquitos, Peru
| | - Ihosvany Camps
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas UNIFAL-MG, 37133-840, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
2
|
May AJ, Lella M, Lindenberger J, Berkman A, Dutta M, Barr M, Parks R, Newman A, Huang X, Kumar U, Song K, Ilevbare V, Sammour S, Park CS, Adhikari RD, Devkota P, Janowska K, Liu Y, Scapellato G, Spence TN, Mansouri K, Edwards RJ, Haynes BF, Acharya P. Structural and antigenic characterization of novel and diverse Henipavirus glycoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627382. [PMID: 39713338 PMCID: PMC11661166 DOI: 10.1101/2024.12.11.627382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Henipaviruses (HNVs), a genus within the Paramyxoviridae family, includes the highly virulent Nipah and Hendra viruses that cause yearly reoccurring outbreaks of deadly disease. Recent discoveries of several new Henipavirus species, including the zoonotic Langya virus, have revealed much higher antigenic diversity than currently characterized. Here, to explore the limits of structural and antigenic variation in HNVs, we construct an expanded, antigenically diverse panel of HNV fusion (F) and attachment (G) glycoproteins from 56 unique HNV strains that better reflects global HNV diversity. We expressed and purified the F ectodomains and the G head domains, characterized their biochemical, biophysical and structural properties. We performed immunization experiments in mice leading to the elicitation of antibodies reactive to multiple HNV F proteins. Cryo-EM structures of diverse F proteins elucidate molecular determinants of differential pre-fusion state metastability and higher order contacts. A crystal structure of the Gamak virus G head domain revealed an additional domain added to the conserved 6-bladed, β-propeller fold. Taken together, these studies expand the known structural and antigenic limits of the Henipavirus genus, reveal new cross-reactive epitopes within the HNV genus and provide foundational data needed for the development of broadly reactive countermeasures.
Collapse
Affiliation(s)
- Aaron J. May
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
- Duke University, Department of Biochemistry, Durham NC 27710, USA
| | | | | | - Alex Berkman
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | - Moumita Dutta
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | - Maggie Barr
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | - Rob Parks
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | - Amanda Newman
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | - Xiao Huang
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | - Ujjwal Kumar
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | - Kijun Song
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
- Duke University, Department of Biochemistry, Durham NC 27710, USA
| | - Victor Ilevbare
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | - Salam Sammour
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | - Chan Soo Park
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | | | - Priyanka Devkota
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | | | - Yanshun Liu
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | | | - Taylor N. Spence
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | | | - Robert J Edwards
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
- Duke University, Department of Medicine, Durham, NC 27710, USA
| | - Barton F. Haynes
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
- Duke University, Department of Medicine, Durham, NC 27710, USA
- Duke University, Department of Integrative Immunology, Durham NC 27710, USA
| | - Priyamvada Acharya
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
- Duke University, Department of Biochemistry, Durham NC 27710, USA
- Duke University, Department of Integrative Immunology, Durham NC 27710, USA
- Lead contact
| |
Collapse
|
3
|
Bergeron É, Chiang CF, Lo MK, Karaaslan E, Satter SM, Rahman MZ, Hossain ME, Aquib WR, Rahman DI, Sarwar SB, Montgomery JM, Klena JD, Spiropoulou CF. Streamlined detection of Nipah virus antibodies using a split NanoLuc biosensor. Emerg Microbes Infect 2024; 13:2398640. [PMID: 39194145 PMCID: PMC11391874 DOI: 10.1080/22221751.2024.2398640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 08/29/2024]
Abstract
Nipah virus (NiV) is an emerging zoonotic RNA virus that can cause fatal respiratory and neurological diseases in animals and humans. Accurate NiV diagnostics and surveillance tools are crucial for the identification of acute and resolved infections and to improve our understanding of NiV transmission and circulation. Here, we have developed and validated a split NanoLuc luciferase NiV glycoprotein (G) biosensor for detecting antibodies in clinical and animal samples. This assay is performed by simply mixing reagents and measuring luminescence, which depends on the complementation of the split NanoLuc luciferase G biosensor following its binding to antibodies. This anti-NiV-G "mix-and-read" assay was validated using the WHO's first international standard for anti-NiV antibodies and more than 700 serum samples from the NiV-endemic country of Bangladesh. Anti-NiV antibodies from survivors persisted for at least 8 years according to both ⍺NiV-G mix-and-read and NiV neutralization assays. The ⍺NiV-G mix-and-read assay sensitivity (98.6%) and specificity (100%) were comparable to anti-NiV IgG ELISA performance but failed to detect anti-NiV antibodies in samples collected less than a week following the appearance of symptoms. Overall, the anti-NiV-G biosensor represents a simple, fast, and reliable tool that could support the expansion of NiV surveillance and retrospective outbreak investigations.
Collapse
Affiliation(s)
- Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, USA
| | - Cheng-Feng Chiang
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Elif Karaaslan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | | | | | | | | | | | | | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - John D Klena
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| |
Collapse
|
4
|
Chen S, Zhang X, Yao Y, Wang S, Li K, Zhang B, Ye T, Chen L, Wu Y, Li E, Xu B, Zhang P, Chuai X, Ran Y, Gong R, Zhang H, Chiu S. Ferritin nanoparticle-based Nipah virus glycoprotein vaccines elicit potent protective immune responses in mice and hamsters. Virol Sin 2024; 39:909-916. [PMID: 39293542 DOI: 10.1016/j.virs.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Nipah virus (NiV) is a zoonotic paramyxovirus in the genus Henipavirus that is prevalent in Southeast Asia. NiV leads to severe respiratory disease and encephalitis in humans and animals, with a mortality rate of up to 75%. Despite the grave threat to public health and global biosecurity, no medical countermeasures are available for humans. Here, based on self-assembled ferritin nanoparticles (FeNPs), we successfully constructed two candidate FeNP vaccines by loading mammalian cells expressing NiV sG (residues 71-602, FeNP-sG) and Ghead (residues 182-602, FeNP-Ghead) onto E. coli-expressed FeNPs (FeNP-sG and FeNP-Ghead, respectively) through Spycatcher/Spytag technology. Compared with sG and Ghead alone, FeNP-sG and FeNP-Ghead elicited significant NiV specific neutralizing antibody levels and T-cell responses in mice, whereas the immune response in the FeNP-sG immunized group was greater than that in the FeNP-Ghead group. These results further demonstrate that sG possesses greater antigenicity than Ghead and that FeNPs can dramatically enhance immunogenicity. Furthermore, FeNP-sG provided 100% protection against NiV challenge in a hamster model when it was administered twice at a dose of 5 μg/per animal. Our study provides not only a promising candidate vaccine against NiV, but also a theoretical foundation for the design of a NiV immunogen for the development of novel strategies against NiV infection.
Collapse
Affiliation(s)
- Shaohong Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinghai Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Yanfeng Yao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shengdong Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangyin Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoyue Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianxi Ye
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei 230027, China
| | - Bichao Xu
- Institutional Center for Shared Technologies and Facilities of Wuhan Institute of Virology, CAS, Center for Instrumental Analysis and Metrology, Wuhan 430062, China
| | - Pei Zhang
- Institutional Center for Shared Technologies and Facilities of Wuhan Institute of Virology, CAS, Center for Instrumental Analysis and Metrology, Wuhan 430062, China
| | - Xia Chuai
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Yong Ran
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China.
| | - Huajun Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei 230027, China; Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
5
|
Chakraborty C, Saha S, Bhattacharya M. Recent Advances in Immunological Landscape and Immunotherapeutic Agent of Nipah Virus Infection. Cell Biochem Biophys 2024; 82:3053-3069. [PMID: 39052192 DOI: 10.1007/s12013-024-01424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Over the last two decades, the Nipah virus (NiV) emerged as a highly lethal zoonotic pathogen to humans. Outbreaks occurred occasionally in South and Southeast Asia. Therefore, a safe and effective vaccine against the virus is needed to fight against the deadly virus. Understanding the immunological landscape during this lethal virus infection is necessary in this direction. However, we found scattered information on the immunological landscape of the virus's reservoir, as well as hosts such as humans and livestock. The review provides a recent understanding of the immunological landscape of the virus's reservoir, human hosts, monoclonal antibodies, and vaccines for NiV infection. To describe the immunological landscape, we divided our review article into some points. Firstly, we illustrated bats' immune response as a reservoir during the NiV infection. Secondly, we illustrated an overview of the molecular mechanisms underlying the immune response to the NiV infection, various immune cells, humans' innate immune response, adaptive immunity, and the landscape of cytokines and chemokines. We also discussed INF escape, NET evasion, the T cell landscape, and the B cell landscape during virus infection. Thirdly, we also demonstrated the potential monoclonal antibody therapeutics, and vaccines. Finally, neutralizing antibodies (nAbs) of NiV and potentially other therapeutic strategies were discussed. The review will help researchers for better understanding the immunological landscape, mAbs, and vaccines, enabling them to develop their next-generation versions.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Sagnik Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| |
Collapse
|
6
|
Dsouza N, C SK. Predicting the changes in neutralizing antibody interaction with G protein derived from Bangladesh isolates of Nipah virus: molecular dynamics based approach. J Biomol Struct Dyn 2024; 42:9388-9398. [PMID: 37643003 DOI: 10.1080/07391102.2023.2252084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
The infectious Nipah virus (NiV) is categorized into NiV-M (Malaysia) and NiV-B (Bangladesh) groups based on its genome comparison, pathogenicity, and mortality rate. The development of therapeutic molecules has used NiV-M-derived data in multiple studies than NiV-B. In continuation with this, the protein level investigation is also less explored to understand the interaction with therapeutic neutralizing antibodies for NiV-B. So, this study focuses on understanding the impact of NiV-B-specific mutations on the interaction of therapeutic neutralizing antibodies with the G protein. The population-based comparative analysis of NiV-B G protein sequences with NiV-M sequence identified twenty-six mutations. These predominantly polar mutations were then used to model the mutant protein (G_MT). In a comparative study, the G protein G_MT and reference protein G_WT (Malaysian origin) were subjected to a protein docking with neutralizing human monoclonal antibody HENV26. The binding affinity and the free binding energy of the glycoprotein in complex with G-WT and G_MT were calculated using PRODIGY and MM/PBSA tools respectively. Based on the PRODIGY report, G-WT showed stronger binding (-13.8 kcal/mol) compared to that of the G_MT (-9.0 kcal/mol) with the HENV26 antibody. The stability of the complexes was evaluated using MM/PBSA which showed higher binding energy with HENV26 for G_WT (-75.11 kcal/mol) in contrast to G_MT (-41.66 kcal/mol). The results indicate that the mutant G protein has a reduced ability to bind to neutralizing antibodies, resulting in a decreased effectiveness against strains carrying these mutations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Norine Dsouza
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, CBD Belapur, Navi Mumbai, India
- Department of Biotechnology, St. Xavier's College, Mumbai, India
| | - Selvaa Kumar C
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, CBD Belapur, Navi Mumbai, India
| |
Collapse
|
7
|
Zhou D, Cheng R, Yao Y, Zhang G, Li X, Wang B, Wang Y, Yu F, Yang S, Liu H, Gao G, Peng Y, Chen M, Deng Z, Zhao H. An attachment glycoprotein nanoparticle elicits broadly neutralizing antibodies and protects against lethal Nipah virus infection. NPJ Vaccines 2024; 9:158. [PMID: 39217188 PMCID: PMC11365981 DOI: 10.1038/s41541-024-00954-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Nipah virus (NiV) is a zoonotic emergent paramyxovirus that can cause severe encephalitis and respiratory infections in humans, with a high fatality rate ranging from 40% to 75%. Currently, there are no approved human vaccines or antiviral drugs against NiV. Here, we designed a ferritin-based self-assembling nanoparticle displaying the NiV G head domain on the surface (NiV G-ferritin) and assessed immune responses elicited by the soluble NiV G head domain (NiV sG) or NiV G-ferritin. Immunization with NiV G-ferritin or NiV sG conferred complete protection against lethal NiV challenge without detection of viral RNA in Syrian golden hamsters. Compared to NiV sG, NiV G-ferritin induced significantly faster, broader, and higher serum neutralizing responses against three pathogenic henipaviruses (NiV-Malaysia, NiV-Bangladesh, and Hendra virus). Moreover, NiV G-ferritin induced a durable neutralizing immunity in mice as antisera potently inhibited NiV infection even after six months of the third immunization. Additionally, we isolated a panel of 27 NiV G-binding monoclonal antibodies (mAbs) from NiV G-ferritin immunized mice and found that these mAbs targeted four distinct antigenic sites on NiV G head domain with two sites that have not been defined previously. Notably, 25 isolated mAbs have potent neutralizing activity with 50% inhibitory concentrations less than 10 ng/mL against NiV pseudovirus. Collectively, these findings provide new insights into the immunogenicity of NiV G protein and reveal that NiV G-ferritin is a safe and highly effective vaccine candidate against Nipah virus infection.
Collapse
Affiliation(s)
- Dan Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Rao Cheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yanfeng Yao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Gan Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Bingjie Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yong Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Feiyang Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shangyu Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hang Liu
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ge Gao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yun Peng
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Miaoyu Chen
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zengqin Deng
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| | - Haiyan Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Wang Y, Sun Y, Shen Z, Wang C, Qian J, Mao Q, Wang Y, Song W, Kong Y, Zhan C, Chen Z, Dimitrov DS, Yang Z, Jiang S, Wu F, Lu L, Ying T, Sun L, Wu Y. Fully human single-domain antibody targeting a highly conserved cryptic epitope on the Nipah virus G protein. Nat Commun 2024; 15:6892. [PMID: 39134522 PMCID: PMC11319437 DOI: 10.1038/s41467-024-51066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Nipah virus infection, one of the top priority diseases recognized by the World Health Organization, underscores the urgent need to develop effective countermeasures against potential epidemics and pandemics. Here, we identify a fully human single-domain antibody that targets a highly conserved cryptic epitope situated at the dimeric interface of the Nipah virus G protein (receptor binding protein, RBP), as elucidated through structures by high-resolution cryo-electron microscopy (cryo-EM). This unique binding mode disrupts the tetramerization of the G protein, consequently obstructing the activation of the F protein and inhibiting viral membrane fusion. Furthermore, our investigations reveal that this compact antibody displays enhanced permeability across the blood-brain barrier (BBB) and demonstrates superior efficacy in eliminating pseudovirus within the brain in a murine model of Nipah virus infection, particularly compared to the well-characterized antibody m102.4 in an IgG1 format. Consequently, this single-domain antibody holds promise as a therapeutic candidate to prevent Nipah virus infections and has potential implications for vaccine development.
Collapse
Affiliation(s)
- Yulu Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yifang Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhaoling Shen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Cong Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jun Qian
- Key Laboratory of Smart Drug Delivery (MOE), School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qiyu Mao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yajie Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wenping Song
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yu Kong
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, China
| | - Zhenguo Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dimiter S Dimitrov
- University of Pittsburgh Department of Medicine, Pittsburgh, PA, 15261, USA
| | - Zhenlin Yang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Fan Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, 200032, China.
| | - Lei Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, 200032, China.
| | - Yanling Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, 200032, China.
| |
Collapse
|
9
|
Wang C, Li M, Wang Y, Ding Q, Fan S, Lan J. Structural insights into the Langya virus attachment glycoprotein. Structure 2024; 32:1090-1098.e3. [PMID: 38815575 DOI: 10.1016/j.str.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/23/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
Langya virus (LayV) was recently detected in patients with acute pneumonic diseases in China. Genome alignment indicated that LayV is a type of zoonotic henipavirus (HNV) that might also infect domestic animals. Previous studies revealed that HNVs mainly use ephrin-B1, ephrin-B2, or ephrin-B3 as cell receptors and the attachment glycoprotein (G) is the host cell receptor-binding protein. However, the LayV receptor remains unknown. Here, we present the 2.77 Å crystal structure of the LayV G C-terminal domain (CTD). We show that the LayV G protein CTD possesses a similar architecture as the Mojiang virus (MojV) G protein but is markedly different from the Nipah virus (NiV), Hendra virus (HeV), and Cedar virus (CedV) G proteins. Surface plasmon resonance (SPR) experiments indicate that LayV G does not bind ephrin-B proteins. Steric hindrance may prevent interactions between LayV G and ephrin-B. Our data might facilitate drug development targeting LayV.
Collapse
Affiliation(s)
- Chenghai Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Min Li
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yufan Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Shilong Fan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Jun Lan
- School of Biomedical Sciences, Hunan University, Changsha, China.
| |
Collapse
|
10
|
Fukuhara H, Yumoto K, Sako M, Kajikawa M, Ose T, Kawamura M, Yoda M, Chen S, Ito Y, Takeda S, Mwaba M, Wang J, Hashiguchi T, Kamishikiryo J, Maita N, Kitatsuji C, Takeda M, Kuroki K, Maenaka K. Glycan-shielded homodimer structure and dynamical features of the canine distemper virus hemagglutinin relevant for viral entry and efficient vaccination. eLife 2024; 12:RP88929. [PMID: 39046448 PMCID: PMC11268888 DOI: 10.7554/elife.88929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Canine distemper virus (CDV) belongs to morbillivirus, including measles virus (MeV) and rinderpest virus, which causes serious immunological and neurological disorders in carnivores, including dogs and rhesus monkeys, as recently reported, but their vaccines are highly effective. The attachment glycoprotein hemagglutinin (CDV-H) at the CDV surface utilizes signaling lymphocyte activation molecule (SLAM) and Nectin-4 (also called poliovirus-receptor-like-4; PVRL4) as entry receptors. Although fusion models have been proposed, the molecular mechanism of morbillivirus fusion entry is poorly understood. Here, we determined the crystal structure of the globular head domain of CDV-H vaccine strain at 3.2 Å resolution, revealing that CDV-H exhibits a highly tilted homodimeric form with a six-bladed β-propeller fold. While the predicted Nectin-4-binding site is well conserved with that of MeV-H, that of SLAM is similar but partially different, which is expected to contribute to host specificity. Five N-linked sugars covered a broad area of the CDV-H surface to expose receptor-binding sites only, supporting the effective production of neutralizing antibodies. These features are common to MeV-H, although the glycosylation sites are completely different. Furthermore, real-time observation using high-speed atomic force microscopy revealed highly mobile features of the CDV-H dimeric head via the connector region. These results suggest that sugar-shielded tilted homodimeric structure and dynamic conformational changes are common characteristics of morbilliviruses and ensure effective fusion entry and vaccination.
Collapse
Affiliation(s)
- Hideo Fukuhara
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
- Division of Pathogen Structure, Research Center for Zoonosis Control, Hokkaido UniversitySapporoJapan
| | - Kohei Yumoto
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Miyuki Sako
- Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Mizuho Kajikawa
- Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Toyoyuki Ose
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Mihiro Kawamura
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Mei Yoda
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Surui Chen
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Yuri Ito
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Shin Takeda
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Mwila Mwaba
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Jiaqi Wang
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Takao Hashiguchi
- Department of Virology, Faculty of Medicine, Kyushu UniversityFukuokaJapan
| | - Jun Kamishikiryo
- Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Nobuo Maita
- Institute for Enzyme Research, University of TokushimaTokushimaJapan
| | - Chihiro Kitatsuji
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Makoto Takeda
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of TokyoTokyoJapan
| | - Kimiko Kuroki
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
- Division of Pathogen Structure, Research Center for Zoonosis Control, Hokkaido UniversitySapporoJapan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido UniversitySapporoJapan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido UniversitySapporoJapan
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencySaitamaJapan
| |
Collapse
|
11
|
Wang C, Geng Y, Wang H, Ren Z, Hou Q, Fang A, Wu Q, Wu L, Shi X, Zhou M, Fu ZF, Lovell JF, Jin H, Zhao L. A broadly applicable protein-polymer adjuvant system for antiviral vaccines. EMBO Mol Med 2024; 16:1451-1483. [PMID: 38750307 PMCID: PMC11178928 DOI: 10.1038/s44321-024-00076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 06/16/2024] Open
Abstract
Although protein subunit vaccines generally have acceptable safety profiles with precise antigenic content, limited immunogenicity can lead to unsatisfactory humoral and cellular immunity and the need for vaccine adjuvants and delivery system. Herein, we assess a vaccine adjuvant system comprising Quillaja Saponaria-21(QS-21) and cobalt porphyrin polymeric micelles that enabling the display of His-tagged antigen on its surface. The nanoscale micelles promote antigen uptake and dendritic cell activation to induce robust cytotoxic T lymphocyte response and germinal center formation. Using the recombinant protein antigens from influenza A and rabies virus, the micelle adjuvant system elicited robust antiviral responses and protected mice from lethal challenge. In addition, this system could be combined with other antigens to induce high titers of neutralizing antibodies in models of three highly pathogenic viral pathogens: Ebola virus, Marburg virus, and Nipah virus. Collectively, our results demonstrate this polymeric micelle adjuvant system can be used as a potent nanoplatform for developing antiviral vaccine countermeasures that promote humoral and cellular immunity.
Collapse
Affiliation(s)
- Caiqian Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanyuan Geng
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haoran Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zeheng Ren
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingxiu Hou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - An Fang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiong Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liqin Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Fan P, Sun M, Zhang X, Zhang H, Liu Y, Yao Y, Li M, Fang T, Sun B, Chen Z, Chi X, Chen L, Peng C, Chen Z, Zhang G, Ren Y, Liu Z, Li Y, Li J, Li E, Guan W, Li S, Gong R, Zhang K, Yu C, Chiu S. A potent Henipavirus cross-neutralizing antibody reveals a dynamic fusion-triggering pattern of the G-tetramer. Nat Commun 2024; 15:4330. [PMID: 38773072 PMCID: PMC11109247 DOI: 10.1038/s41467-024-48601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
The Hendra and Nipah viruses (HNVs) are highly pathogenic pathogens without approved interventions for human use. In addition, the interaction pattern between the attachment (G) and fusion (F) glycoproteins required for virus entry remains unclear. Here, we isolate a panel of Macaca-derived G-specific antibodies that cross-neutralize HNVs via multiple mechanisms. The most potent antibody, 1E5, confers adequate protection against the Nipah virus challenge in female hamsters. Crystallography demonstrates that 1E5 has a highly similar binding pattern to the receptor. In cryo-electron microscopy studies, the tendency of 1E5 to bind to the upper or lower heads results in two distinct quaternary structures of G. Furthermore, we identify the extended outer loop β1S2-β1S3 of G and two pockets on the apical region of fusion (F) glycoprotein as the essential sites for G-F interactions. This work highlights promising drug candidates against HNVs and contributes deeper insights into the viruses.
Collapse
Grants
- the Defense Industrial Technology Development Program, Grant No. JCKY2020802B001
- the Ministry of Science and Technology of China,Grant No. 2022YFC2303700; the Fundamental Research Funds for the Central Universities, Grant No. WK9100000032
- Hubei Jiangxia Laboratory, Grant No. JXBS002
- the Ministry of Science and Technology of China,Grant No. 2022YFC2303700, Grant No. 2022YFA1302700; the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB0490000; the Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Grant No. QYPY20220019; the Fundamental Research Funds for the Central Universities, Grant No. WK9100000044
- the Strategic Priority Research Program of the Chinese Academy of Sciences,Grant No. XDB0490000
Collapse
Affiliation(s)
- Pengfei Fan
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China.
| | - Mengmeng Sun
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinghai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Huajun Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yujiao Liu
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Yanfeng Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Ming Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ting Fang
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Bingjie Sun
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Zhengshan Chen
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Xiangyang Chi
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Li Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Guanying Zhang
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Yi Ren
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Zixuan Liu
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Yaohui Li
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Jianmin Li
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wuxiang Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Shanshan Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rui Gong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
| | - Kaiming Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Changming Yu
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
| |
Collapse
|
13
|
Larsen BB, McMahon T, Brown JT, Wang Z, Radford CE, Crowe JE, Veesler D, Bloom JD. Functional and antigenic landscape of the Nipah virus receptor binding protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589977. [PMID: 38659959 PMCID: PMC11042328 DOI: 10.1101/2024.04.17.589977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nipah virus recurrently spills over to humans, causing fatal infections. The viral receptor-binding protein (RBP or G) attaches to host receptors and is a major target of neutralizing antibodies. Here we use deep mutational scanning to measure how all amino-acid mutations to the RBP affect cell entry, receptor binding, and escape from neutralizing antibodies. We identify functionally constrained regions of the RBP, including sites involved in oligomerization, along with mutations that differentially modulate RBP binding to its two ephrin receptors. We map escape mutations for six anti-RBP antibodies, and find that few antigenic mutations are present in natural Nipah strains. Our findings offer insights into the potential for functional and antigenic evolution of the RBP that can inform the development of antibody therapies and vaccines.
Collapse
Affiliation(s)
- Brendan B. Larsen
- Basic Sciences Division and Computational Biology Program, Fred Hutch Cancer Center, Seattle, WA 98109, USA
| | - Teagan McMahon
- Basic Sciences Division and Computational Biology Program, Fred Hutch Cancer Center, Seattle, WA 98109, USA
| | - Jack T. Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Zhaoqian Wang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Caelan E. Radford
- Basic Sciences Division and Computational Biology Program, Fred Hutch Cancer Center, Seattle, WA 98109, USA
| | - James E. Crowe
- Department of Pathology Microbiology and Immunology, The Vanderbilt Vaccine Center, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutch Cancer Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Wang Z, McCallum M, Yan L, Gibson CA, Sharkey W, Park YJ, Dang HV, Amaya M, Person A, Broder CC, Veesler D. Structure and design of Langya virus glycoprotein antigens. Proc Natl Acad Sci U S A 2024; 121:e2314990121. [PMID: 38593070 PMCID: PMC11032465 DOI: 10.1073/pnas.2314990121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
Langya virus (LayV) is a recently discovered henipavirus (HNV), isolated from febrile patients in China. HNV entry into host cells is mediated by the attachment (G) and fusion (F) glycoproteins which are the main targets of neutralizing antibodies. We show here that the LayV F and G glycoproteins promote membrane fusion with human, mouse, and hamster target cells using a different, yet unknown, receptor than Nipah virus (NiV) and Hendra virus (HeV) and that NiV- and HeV-elicited monoclonal and polyclonal antibodies do not cross-react with LayV F and G. We determined cryoelectron microscopy structures of LayV F, in the prefusion and postfusion states, and of LayV G, revealing their conformational landscape and distinct antigenicity relative to NiV and HeV. We computationally designed stabilized LayV G constructs and demonstrate the generalizability of an HNV F prefusion-stabilization strategy. Our data will support the development of vaccines and therapeutics against LayV and closely related HNVs.
Collapse
Affiliation(s)
- Zhaoqian Wang
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD20814
| | - Cecily A. Gibson
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - William Sharkey
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA98195
- HHMI, Seattle, WA98195
| | - Ha V. Dang
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD20814
| | - Ashley Person
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD20814
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA98195
- HHMI, Seattle, WA98195
| |
Collapse
|
15
|
Chen L, Sun M, Zhang H, Zhang X, Yao Y, Li M, Li K, Fan P, Zhang H, Qin Y, Zhang Z, Li E, Chen Z, Guan W, Li S, Yu C, Zhang K, Gong R, Chiu S. Potent human neutralizing antibodies against Nipah virus derived from two ancestral antibody heavy chains. Nat Commun 2024; 15:2987. [PMID: 38582870 PMCID: PMC10998907 DOI: 10.1038/s41467-024-47213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/18/2024] [Indexed: 04/08/2024] Open
Abstract
Nipah virus (NiV) is a World Health Organization priority pathogen and there are currently no approved drugs for clinical immunotherapy. Through the use of a naïve human phage-displayed Fab library, two neutralizing antibodies (NiV41 and NiV42) targeting the NiV receptor binding protein (RBP) were identified. Following affinity maturation, antibodies derived from NiV41 display cross-reactivity against both NiV and Hendra virus (HeV), whereas the antibody based on NiV42 is only specific to NiV. Results of immunogenetic analysis reveal a correlation between the maturation of antibodies and their antiviral activity. In vivo testing of NiV41 and its mature form (41-6) show protective efficacy against a lethal NiV challenge in hamsters. Furthermore, a 2.88 Å Cryo-EM structure of the tetrameric RBP and antibody complex demonstrates that 41-6 blocks the receptor binding interface. These findings can be beneficial for the development of antiviral drugs and the design of vaccines with broad spectrum against henipaviruses.
Collapse
Affiliation(s)
- Li Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Sun
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Huajun Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xinghai Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yanfeng Yao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ming Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kangyin Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Fan
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Haiwei Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ye Qin
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Zhen Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wuxiang Guan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shanshan Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Changming Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China.
| | - Kaiming Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China.
| |
Collapse
|
16
|
Zeitlin L, Cross RW, Woolsey C, West BR, Borisevich V, Agans KN, Prasad AN, Deer DJ, Stuart L, McCavitt-Malvido M, Kim DH, Pettitt J, Crowe JE, Whaley KJ, Veesler D, Dimitrov A, Abelson DM, Geisbert TW, Broder CC. Therapeutic administration of a cross-reactive mAb targeting the fusion glycoprotein of Nipah virus protects nonhuman primates. Sci Transl Med 2024; 16:eadl2055. [PMID: 38569014 DOI: 10.1126/scitranslmed.adl2055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/03/2024] [Indexed: 04/05/2024]
Abstract
No licensed vaccines or therapies exist for patients infected with Nipah virus (NiV), although an experimental human monoclonal antibody (mAb) cross-reactive to the NiV and Hendra virus (HeV) G glycoprotein, m102.4, has been tested in a phase 1 trial and has been provided under compassionate use for both HeV and NiV exposures. NiV is a highly pathogenic zoonotic paramyxovirus causing regular outbreaks in humans and animals in South and Southeast Asia. The mortality rate of NiV infection in humans ranges from 40% to more than 90%, making it a substantial public health concern. The NiV G glycoprotein mediates host cell attachment, and the F glycoprotein facilitates membrane fusion and infection. We hypothesized that a mAb against the prefusion conformation of the F glycoprotein may confer better protection than m102.4. To test this, two potent neutralizing mAbs against NiV F protein, hu1F5 and hu12B2, were compared in a hamster model. Hu1F5 provided superior protection to hu12B2 and was selected for comparison with m102.4 for the ability to protect African green monkeys (AGMs) from a stringent NiV challenge. AGMs were exposed intranasally to the Bangladesh strain of NiV and treated 5 days after exposure with either mAb (25 milligrams per kilogram). Whereas only one of six AGMs treated with m102.4 survived until the study end point, all six AGMs treated with hu1F5 were protected. Furthermore, a reduced 10 milligrams per kilogram dose of hu1F5 also provided complete protection against NiV challenge, supporting the upcoming clinical advancement of this mAb for postexposure prophylaxis and therapy.
Collapse
Affiliation(s)
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Courtney Woolsey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | | | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Krystle N Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Abhishek N Prasad
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Daniel J Deer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | | | | | - Do H Kim
- Mapp Biopharmaceutical, San Diego, CA 92121, USA
| | | | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Antony Dimitrov
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20814, USA
| | | | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
17
|
Ebrahimi M, Alijanianzadeh M. Evaluation of the interaction between potent small molecules against the Nipah virus Glycoprotein in Malaysia and Bangladesh strains, accompanied by the human Ephrin-B2 and Ephrin-B3 receptors; a simulation approach. Mol Divers 2024; 28:851-874. [PMID: 36808582 PMCID: PMC9939871 DOI: 10.1007/s11030-023-10624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Malaysia reported the first human case of Nipah virus (NiV) in late September 1998 with encephalitis and respiratory symptoms. As a result of viral genomic mutations, two main strains (NiV-Malaysia and NiV-Bangladesh) have spread around the world. There are no licensed molecular therapeutics available for this biosafety level 4 pathogen. NiV attachment glycoprotein plays a critical role in viral transmission through its human receptors (Ephrin-B2 and Ephrin-B3), so identifying small molecules that can be repurposed to inhibit them is crucial to developing anti-NiV drugs. Consequently, in this study annealing simulations, pharmacophore modeling, molecular docking, and molecular dynamics were used to evaluate seven potential drugs (Pemirolast, Nitrofurantoin, Isoniazid Pyruvate, Eriodictyol, Cepharanthine, Ergoloid, and Hypericin) against NiV-G, Ephrin-B2, and Ephrin-B3 receptors. Based on the annealing analysis, Pemirolast for efnb2 protein and Isoniazid Pyruvate for efnb3 receptor were repurposed as the most promising small molecule candidates. Furthermore, Hypericin and Cepharanthine, with notable interaction values, are the top Glycoprotein inhibitors in Malaysia and Bangladesh strains, respectively. In addition, docking calculations revealed that their binding affinity scores are related to efnb2-pem (- 7.1 kcal/mol), efnb3-iso (- 5.8 kcal/mol), gm-hyp (- 9.6 kcal/mol), gb-ceph (- 9.2 kcal/mol). Finally, our computational research minimizes the time-consuming aspects and provides options for dealing with any new variants of Nipah virus that might emerge in the future.
Collapse
Affiliation(s)
- Maryam Ebrahimi
- Department of Plant Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mahdi Alijanianzadeh
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
18
|
Tam EH, Peng Y, Cheah MXY, Yan C, Xiao T. Neutralizing antibodies to block viral entry and for identification of entry inhibitors. Antiviral Res 2024; 224:105834. [PMID: 38369246 DOI: 10.1016/j.antiviral.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Neutralizing antibodies (NAbs) are naturally produced by our immune system to combat viral infections. Clinically, neutralizing antibodies with potent efficacy and high specificity have been extensively used to prevent and treat a wide variety of viral infections, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Human Immunodeficiency Virus (HIV), Dengue Virus (DENV) and Hepatitis B Virus (HBV). An overwhelmingly large subset of clinically effective NAbs operates by targeting viral envelope proteins to inhibit viral entry into the host cell. Binding of viral envelope protein to the host receptor is a critical rate limiting step triggering a cascade of downstream events, including endocytosis, membrane fusion and pore formation to allow viral entry. In recent years, improved structural knowledge on these processes have allowed researchers to also leverage NAbs as an indispensable tool in guiding discovery of novel antiviral entry inhibitors, providing drug candidates with high efficacy and pan-genus specificity. This review will summarize the latest progresses on the applications of NAbs as effective entry inhibitors and as important tools to develop antiviral therapeutics by high-throughput drug screenings, rational design of peptidic entry inhibitor mimicking NAbs and in silico computational modeling approaches.
Collapse
Affiliation(s)
- Ee Hong Tam
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Yu Peng
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Megan Xin Yan Cheah
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Chuan Yan
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Tianshu Xiao
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore.
| |
Collapse
|
19
|
Pastor Y, Reynard O, Iampietro M, Surenaud M, Picard F, El Jahrani N, Lefebvre C, Hammoudi A, Dupaty L, Brisebard É, Reynard S, Moureaux É, Moroso M, Durand S, Gonzalez C, Amurri L, Gallouët AS, Marlin R, Baize S, Chevillard E, Raoul H, Hocini H, Centlivre M, Thiébaut R, Horvat B, Godot V, Lévy Y, Cardinaud S. A vaccine targeting antigen-presenting cells through CD40 induces protective immunity against Nipah disease. Cell Rep Med 2024; 5:101467. [PMID: 38471503 PMCID: PMC10983108 DOI: 10.1016/j.xcrm.2024.101467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Nipah virus (NiV) has been recently ranked by the World Health Organization as being among the top eight emerging pathogens likely to cause major epidemics, whereas no therapeutics or vaccines have yet been approved. We report a method to deliver immunogenic epitopes from NiV through the targeting of the CD40 receptor of antigen-presenting cells by fusing a selected humanized anti-CD40 monoclonal antibody to the Nipah glycoprotein with conserved NiV fusion and nucleocapsid peptides. In the African green monkey model, CD40.NiV induces specific immunoglobulin A (IgA) and IgG as well as cross-neutralizing responses against circulating NiV strains and Hendra virus and T cell responses. Challenge experiments using a NiV-B strain demonstrate the high protective efficacy of the vaccine, with all vaccinated animals surviving and showing no significant clinical signs or virus replication, suggesting that the CD40.NiV vaccine conferred sterilizing immunity. Overall, results obtained with the CD40.NiV vaccine are highly promising in terms of the breadth and efficacy against NiV.
Collapse
Affiliation(s)
- Yadira Pastor
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Olivier Reynard
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Mathieu Iampietro
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Mathieu Surenaud
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Florence Picard
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Nora El Jahrani
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Cécile Lefebvre
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Adele Hammoudi
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Léa Dupaty
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | | | - Stéphanie Reynard
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France; Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, Université Paris Cité, Paris, France
| | | | - Marie Moroso
- Laboratoire P4 Inserm Jean Mérieux, Lyon, France
| | - Stéphanie Durand
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Claudia Gonzalez
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Lucia Amurri
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, autoimmunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses, France
| | - Romain Marlin
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, autoimmunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses, France
| | - Sylvain Baize
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France; Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, Université Paris Cité, Paris, France
| | | | - Hervé Raoul
- Laboratoire P4 Inserm Jean Mérieux, Lyon, France
| | - Hakim Hocini
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Mireille Centlivre
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Rodolphe Thiébaut
- Vaccine Research Institute (VRI), Créteil, France; University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, Bordeaux, France; CHU Bordeaux, Department of Medical Information, Bordeaux, France
| | - Branka Horvat
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Véronique Godot
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Yves Lévy
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France; Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, Créteil, France.
| | - Sylvain Cardinaud
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France.
| |
Collapse
|
20
|
Oguntuyo KY, Haas GD, Azarm KD, Stevens CS, Brambilla L, Kowdle SS, Avanzato VA, Pryce R, Freiberg AN, Bowden TA, Lee B. Structure-guided mutagenesis of Henipavirus receptor-binding proteins reveals molecular determinants of receptor usage and antibody-binding epitopes. J Virol 2024; 98:e0183823. [PMID: 38426726 PMCID: PMC10949843 DOI: 10.1128/jvi.01838-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Nipah virus (NiV) is a highly lethal, zoonotic Henipavirus (HNV) that causes respiratory and neurological signs and symptoms in humans. Similar to other paramyxoviruses, HNVs mediate entry into host cells through the concerted actions of two surface glycoproteins: a receptor-binding protein (RBP) that mediates attachment and a fusion glycoprotein (F) that triggers fusion in an RBP-dependent manner. NiV uses ephrin-B2 (EFNB2) and ephrin-B3 (EFNB3) as entry receptors. Ghana virus (GhV), a novel HNV identified in a Ghanaian bat, uses EFNB2 but not EFNB3. In this study, we employ a structure-informed approach to identify receptor-interfacing residues and systematically introduce GhV-RBP residues into a NiV-RBP backbone to uncover the molecular determinants of EFNB3 usage. We reveal two regions that severely impair EFNB3 binding by NiV-RBP and EFNB3-mediated entry by NiV pseudotyped viral particles. Further analyses uncovered two-point mutations (NiVN557SGhV and NiVY581TGhV) pivotal for this phenotype. Moreover, we identify NiV interaction with Y120 of EFNB3 as important for the usage of this receptor. Beyond these EFNB3-related findings, we reveal two domains that restrict GhV binding of EFNB2, confirm the HNV-head as an immunodominant target for polyclonal and monoclonal antibodies, and describe putative epitopes for GhV- and NiV-specific monoclonal antibodies. Cumulatively, the work presented here generates useful reagents and tools that shed insight to residues important for NiV usage of EFNB3, reveal regions critical for GhV binding of EFNB2, and describe putative HNV antibody-binding epitopes. IMPORTANCE Hendra virus and Nipah virus (NiV) are lethal, zoonotic Henipaviruses (HNVs) that cause respiratory and neurological clinical features in humans. Since their initial outbreaks in the 1990s, several novel HNVs have been discovered worldwide, including Ghana virus. Additionally, there is serological evidence of zoonotic transmission, lending way to concerns about future outbreaks. HNV infection of cells is mediated by the receptor-binding protein (RBP) and the Fusion protein (F). The work presented here identifies NiV RBP amino acids important for the usage of ephrin-B3 (EFNB3), a receptor highly expressed in neurons and predicted to be important for neurological clinical features caused by NiV. This study also characterizes epitopes recognized by antibodies against divergent HNV RBPs. Together, this sheds insight to amino acids critical for HNV receptor usage and antibody binding, which is valuable for future studies investigating determinants of viral pathogenesis and developing antibody therapies.
Collapse
Affiliation(s)
| | - Griffin D. Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristopher D. Azarm
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christian S. Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Luca Brambilla
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shreyas S. Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Victoria A. Avanzato
- Division of Structural Biology, Wellcome Center for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Rhys Pryce
- Division of Structural Biology, Wellcome Center for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Center for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
21
|
Lederhofer J, Tsybovsky Y, Nguyen L, Raab JE, Creanga A, Stephens T, Gillespie RA, Syeda HZ, Fisher BE, Skertic M, Yap C, Schaub AJ, Rawi R, Kwong PD, Graham BS, McDermott AB, Andrews SF, King NP, Kanekiyo M. Protective human monoclonal antibodies target conserved sites of vulnerability on the underside of influenza virus neuraminidase. Immunity 2024; 57:574-586.e7. [PMID: 38430907 PMCID: PMC10962683 DOI: 10.1016/j.immuni.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/02/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Continuously evolving influenza viruses cause seasonal epidemics and pose global pandemic threats. Although viral neuraminidase (NA) is an effective drug and vaccine target, our understanding of the NA antigenic landscape still remains incomplete. Here, we describe NA-specific human antibodies that target the underside of the NA globular head domain, inhibit viral propagation of a wide range of human H3N2, swine-origin variant H3N2, and H2N2 viruses, and confer both pre- and post-exposure protection against lethal H3N2 infection in mice. Cryo-EM structures of two such antibodies in complex with NA reveal non-overlapping epitopes covering the underside of the NA head. These sites are highly conserved among N2 NAs yet inaccessible unless the NA head tilts or dissociates. Our findings help guide the development of effective countermeasures against ever-changing influenza viruses by identifying hidden conserved sites of vulnerability on the NA underside.
Collapse
Affiliation(s)
- Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Lam Nguyen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julie E Raab
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hubza Z Syeda
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michelle Skertic
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christina Yap
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Schaub
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Guo Y, Wu S, Li W, Yang H, Shi T, Ju B, Zhang Z, Yan R. The cryo-EM structure of homotetrameric attachment glycoprotein from langya henipavirus. Nat Commun 2024; 15:812. [PMID: 38280880 PMCID: PMC10821904 DOI: 10.1038/s41467-024-45202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/18/2024] [Indexed: 01/29/2024] Open
Abstract
Langya Henipavirus (LayV) infection is an emerging zoonotic disease that has been causing respiratory symptoms in China since 2019. For virus entry, LayV's genome encodes the fusion protein F and the attachment glycoprotein G. However, the structural and functional information regarding LayV-G remains unclear. In this study, we revealed that LayV-G cannot bind to the receptors found in other HNVs, such as ephrin B2/B3, and it shows different antigenicity from HeV-G and NiV-G. Furthermore, we determined the near full-length structure of LayV-G, which displays a distinct mushroom-shaped configuration, distinguishing it from other attachment glycoproteins of HNV. The stalk and transmembrane regions resemble the stem and root of mushroom and four downward-tilted head domains as mushroom cap potentially interact with the F protein and influence membrane fusion process. Our findings enhance the understanding of emerging HNVs that cause human diseases through zoonotic transmission and provide implication for LayV related vaccine development.
Collapse
Affiliation(s)
- Yingying Guo
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| | - Songyue Wu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Wenting Li
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Haonan Yang
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Tianhao Shi
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Bin Ju
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Renhong Yan
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
23
|
May AJ, Acharya P. Structural Studies of Henipavirus Glycoproteins. Viruses 2024; 16:195. [PMID: 38399971 PMCID: PMC10892422 DOI: 10.3390/v16020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Henipaviruses are a genus of emerging pathogens that includes the highly virulent Nipah and Hendra viruses that cause reoccurring outbreaks of disease. Henipaviruses rely on two surface glycoproteins, known as the attachment and fusion proteins, to facilitate entry into host cells. As new and divergent members of the genus have been discovered and structurally characterized, key differences and similarities have been noted. This review surveys the available structural information on Henipavirus glycoproteins, complementing this with information from related biophysical and structural studies of the broader Paramyxoviridae family of which Henipaviruses are members. The process of viral entry is a primary focus for vaccine and drug development, and this review aims to identify critical knowledge gaps in our understanding of the mechanisms that drive Henipavirus fusion.
Collapse
Affiliation(s)
- Aaron J. May
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA
| |
Collapse
|
24
|
Faus-Cotino J, Reina G, Pueyo J. Nipah Virus: A Multidimensional Update. Viruses 2024; 16:179. [PMID: 38399954 PMCID: PMC10891541 DOI: 10.3390/v16020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Nipah virus (NiV) is an emerging zoonotic paramyxovirus to which is attributed numerous high mortality outbreaks in South and South-East Asia; Bangladesh's Nipah belt accounts for the vast majority of human outbreaks, reporting regular viral emergency events. The natural reservoir of NiV is the Pteropus bat species, which covers a wide geographical distribution extending over Asia, Oceania, and Africa. Occasionally, human outbreaks have required the presence of an intermediate amplification mammal host between bat and humans. However, in Bangladesh, the viral transmission occurs directly from bat to human mainly by ingestion of contaminated fresh date palm sap. Human infection manifests as a rapidly progressive encephalitis accounting for extremely high mortality rates. Despite that, no therapeutic agents or vaccines have been approved for human use. An updated review of the main NiV infection determinants and current potential therapeutic and preventive strategies is exposed.
Collapse
Affiliation(s)
| | - Gabriel Reina
- Microbiology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
| | - Javier Pueyo
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
- Department of Anesthesia and Intensive Care, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
25
|
Chatterjee S, Zaia J. Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples. MASS SPECTROMETRY REVIEWS 2024; 43:193-229. [PMID: 36177493 PMCID: PMC9538640 DOI: 10.1002/mas.21813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the on-going global pandemic of coronavirus disease 2019 (COVID-19) that continues to pose a significant threat to public health worldwide. SARS-CoV-2 encodes four structural proteins namely membrane, nucleocapsid, spike, and envelope proteins that play essential roles in viral entry, fusion, and attachment to the host cell. Extensively glycosylated spike protein efficiently binds to the host angiotensin-converting enzyme 2 initiating viral entry and pathogenesis. Reverse transcriptase polymerase chain reaction on nasopharyngeal swab is the preferred method of sample collection and viral detection because it is a rapid, specific, and high-throughput technique. Alternate strategies such as proteomics and glycoproteomics-based mass spectrometry enable a more detailed and holistic view of the viral proteins and host-pathogen interactions and help in detection of potential disease markers. In this review, we highlight the use of mass spectrometry methods to profile the SARS-CoV-2 proteome from clinical nasopharyngeal swab samples. We also highlight the necessity for a comprehensive glycoproteomics mapping of SARS-CoV-2 from biological complex matrices to identify potential COVID-19 markers.
Collapse
Affiliation(s)
- Sayantani Chatterjee
- Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonMassachusettsUSA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonMassachusettsUSA
- Bioinformatics ProgramBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
26
|
Hoque AF, Rahman MM, Lamia AS, Islam A, Klena JD, Satter SM, Epstein JH, Montgomery JM, Hossain ME, Shirin T, Jahid IK, Rahman MZ. In silico prediction of interaction between Nipah virus attachment glycoprotein and host cell receptors Ephrin-B2 and Ephrin-B3 in domestic and peridomestic mammals. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105516. [PMID: 37924857 DOI: 10.1016/j.meegid.2023.105516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/11/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023]
Abstract
Nipah virus (NiV) is a lethal bat-borne zoonotic virus that causes mild to acute respiratory distress and neurological manifestations in humans with a high mortality rate. NiV transmission to humans occurs via consumption of bat-contaminated fruit and date palm sap (DPS), or through direct contact with infected individuals and livestock. Since NiV outbreaks were first reported in pigs from Malaysia and Singapore, non-neutralizing antibodies against NiV attachment Glycoprotein (G) have also been detected in a few domestic mammals. NiV infection is initiated after NiV G binds to the host cell receptors Ephrin-B2 and Ephrin-B3. In this study, we assessed the degree of NiV host tropism in domestic and peridomestic mammals commonly found in Bangladesh that may be crucial in the transmission of NiV by serving as intermediate hosts. We carried out a protein-protein docking analysis of NiV G complexes (n = 52) with Ephrin-B2 and B3 of 13 domestic and peridomestic species using bioinformatics tools. Protein models were generated by homology modelling and the structures were validated for model quality. The different protein-protein complexes in this study were stable, and their binding affinity (ΔG) scores ranged between -8.0 to -19.1 kcal/mol. NiV Bangladesh (NiV-B) strain displayed stronger binding to Ephrin receptors, especially with Ephrin-B3 than the NiV Malaysia (NiV-M) strain, correlating with the observed higher pathogenicity of NiV-B strains. From the docking result, we found that Ephrin receptors of domestic rat (R. norvegicus) had a higher binding affinity for NiV G, suggesting greater susceptibility to NiV infections compared to other study species. Investigations for NiV exposure to domestic/peridomestic animals will help us knowing more the possible role of rats and other animals as intermediate hosts of NiV and would improve future NiV outbreak control and prevention in humans and domestic animals.
Collapse
Affiliation(s)
- Ananya Ferdous Hoque
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh
| | - Md Mahfuzur Rahman
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh; Department of Microbiology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Ayeasha Siddika Lamia
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh
| | - Ariful Islam
- EcoHealth Alliance, 520 8th Ave Ste. 1200, New York, NY 10018, USA
| | - John D Klena
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333, USA
| | - Syed Moinuddin Satter
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh
| | | | - Joel M Montgomery
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333, USA
| | - Mohammad Enayet Hossain
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka 1212, Bangladesh
| | - Iqbal Kabir Jahid
- Department of Microbiology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Mohammed Ziaur Rahman
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh.
| |
Collapse
|
27
|
Narayanan KK, Amaya M, Tsang N, Yin R, Jays A, Broder CC, Shukla D, Procko E. Sequence basis for selectivity of ephrin-B2 ligand for Eph receptors and pathogenic henipavirus G glycoproteins. J Virol 2023; 97:e0062123. [PMID: 37931130 PMCID: PMC10688352 DOI: 10.1128/jvi.00621-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/13/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE Ephrin-B2 (EFNB2) is a ligand for six Eph receptors in humans and regulates multiple cell developmental and signaling processes. It also functions as the cell entry receptor for Nipah virus and Hendra virus, zoonotic viruses that can cause respiratory and/or neurological symptoms in humans with high mortality. Here, we investigate the sequence basis of EFNB2 specificity for binding the Nipah virus attachment G glycoprotein over Eph receptors. We then use this information to engineer EFNB2 as a soluble decoy receptor that specifically binds the attachment glycoproteins of the Nipah virus and other related henipaviruses to neutralize infection. These findings further mechanistic understanding of protein selectivity and may facilitate the development of diagnostics or therapeutics against henipavirus infection.
Collapse
Affiliation(s)
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Natalie Tsang
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | - Randy Yin
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Alka Jays
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois, Urbana, Illinois, USA
| | - Erik Procko
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois, Urbana, Illinois, USA
- Cyrus Biotechnology, Seattle, Washington, USA
| |
Collapse
|
28
|
Oguntuyo KY, Haas GD, Azarm KD, Stevens CS, Brambilla L, Kowdle S, Avanzato VA, Pryce R, Freiberg AN, Bowden TA, Lee B. Structure guided mutagenesis of Henipavirus Receptor Binding Proteins reveals molecular determinants of receptor usage and antibody binding epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568281. [PMID: 38045373 PMCID: PMC10690272 DOI: 10.1101/2023.11.22.568281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Nipah virus (NiV) is a highly lethal, zoonotic henipavirus (HNV) that causes respiratory and neurological signs and symptoms in humans. Similar to other paramyxoviruses, HNVs mediate entry into host cells through the concerted actions of two surface glycoproteins: a receptor binding protein (RBP) that mediates attachment and a fusion glycoprotein (F) that triggers fusion in an RBP-dependent manner. NiV uses ephrin-B2 (EFNB2) and ephrin-B3 (EFNB3) as entry receptors. Ghana virus (GhV), a novel HNV identified in a Ghanaian bat, use EFNB2 but not EFNB3. In this study, we employ a structure-informed approach to identify receptor interfacing residues and systematically introduce GhV-RBP residues into a NiV-RBP backbone to uncover the molecular determinants of EFNB3 usage. We reveal two regions that severely impair EFNB3 binding by NiV-RBP and EFNB3-mediated entry by NiV pseudotyped viral particles. Further analyses uncovered two point mutations (NiVN557SGhV and NiVY581TGhV) pivotal for this phenotype. Moreover, we identify NiV interaction with Y120 of EFNB3 as important for usage of this receptor. Beyond these EFNB3-related findings, we reveal two domains that restrict GhV binding of EFNB2, identify the HNV-head as an immunodominant target for polyclonal and monoclonal antibodies, and describe putative epitopes for GhV and NiV-specific monoclonal antibodies. Cumulatively, the work presented here generates useful reagents and tools that shed insight to residues important for NiV usage of EFNB3, reveals regions critical for GhV binding of EFNB2, and describes putative HNV antibody binding epitopes.
Collapse
Affiliation(s)
- K Y Oguntuyo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G D Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - K D Azarm
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - C S Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L Brambilla
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - V A Avanzato
- Division of Structural Biology, Wellcome Center for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - R Pryce
- Division of Structural Biology, Wellcome Center for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - A N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - T A Bowden
- Division of Structural Biology, Wellcome Center for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - B Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
29
|
Thadani NN, Gurev S, Notin P, Youssef N, Rollins NJ, Ritter D, Sander C, Gal Y, Marks DS. Learning from prepandemic data to forecast viral escape. Nature 2023; 622:818-825. [PMID: 37821700 PMCID: PMC10599991 DOI: 10.1038/s41586-023-06617-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/06/2023] [Indexed: 10/13/2023]
Abstract
Effective pandemic preparedness relies on anticipating viral mutations that are able to evade host immune responses to facilitate vaccine and therapeutic design. However, current strategies for viral evolution prediction are not available early in a pandemic-experimental approaches require host polyclonal antibodies to test against1-16, and existing computational methods draw heavily from current strain prevalence to make reliable predictions of variants of concern17-19. To address this, we developed EVEscape, a generalizable modular framework that combines fitness predictions from a deep learning model of historical sequences with biophysical and structural information. EVEscape quantifies the viral escape potential of mutations at scale and has the advantage of being applicable before surveillance sequencing, experimental scans or three-dimensional structures of antibody complexes are available. We demonstrate that EVEscape, trained on sequences available before 2020, is as accurate as high-throughput experimental scans at anticipating pandemic variation for SARS-CoV-2 and is generalizable to other viruses including influenza, HIV and understudied viruses with pandemic potential such as Lassa and Nipah. We provide continually revised escape scores for all current strains of SARS-CoV-2 and predict probable further mutations to forecast emerging strains as a tool for continuing vaccine development ( evescape.org ).
Collapse
Affiliation(s)
- Nicole N Thadani
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Sarah Gurev
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Pascal Notin
- OATML Group, Department of Computer Science, University of Oxford, Oxford, UK
| | - Noor Youssef
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Nathan J Rollins
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Seismic Therapeutic, Watertown, MA, USA
| | - Daniel Ritter
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Chris Sander
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Yarin Gal
- OATML Group, Department of Computer Science, University of Oxford, Oxford, UK
| | - Debora S Marks
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
30
|
Huang X, Li Y, Li R, Wang S, Yang L, Wang S, Yin Y, Zai X, Zhang J, Xu J. Nipah virus attachment glycoprotein ectodomain delivered by type 5 adenovirus vector elicits broad immune response against NiV and HeV. Front Cell Infect Microbiol 2023; 13:1180344. [PMID: 37577376 PMCID: PMC10413271 DOI: 10.3389/fcimb.2023.1180344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are newly emerging dangerous zoonotic pathogens of the Henipavirus genus of the Paramyxoviridae family. NiV and HeV (HNVs) which are transmitted by bats cause acute respiratory disease and fatal encephalitis in humans. To date, as there is a lack of antiviral drugs or effective antiviral therapies, the development of vaccines against those two viruses is of primary importance, and the immunogen design is crucial to the success of vaccines. In this study, the full-length protein (G), the ectodomain (Ge) and the head domain (Gs) of NiV attachment glycoprotein were delivered by the replication-defective type 5 adenovirus vector (Ad5) respectively, and the recombinant Ad5-NiV vaccine candidates (Ad5-NiVG, Ad5-NiVGe and Ad5-NiVGs) were constructed and their immunogenicity were evaluated in mice. The results showed that all the vaccine candidates stimulated specific humoral and cellular immune responses efficiently and rapidly against both NiV and HeV, and the Ad5-NiVGe elicited the strongest immune responses after a single-dose immunization. Furthermore, the potent conserved T-cell epitope DTLYFPAVGFL shared by NiV and HeV was identified in the study, which may provide valid information on the mechanism of HNVs-specific cellular immunity. In summary, this study demonstrates that the Ad5-NiVGe could be a potent vaccine candidate against HNVs by inducing robust humoral and cellular immune responses.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yaohui Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ruihua Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Shaoyan Wang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Lu Yang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuyi Wang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaodong Zai
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
31
|
Amaya M, Yin R, Yan L, Borisevich V, Adhikari BN, Bennett A, Malagon F, Cer RZ, Bishop-Lilly KA, Dimitrov AS, Cross RW, Geisbert TW, Broder CC. A Recombinant Chimeric Cedar Virus-Based Surrogate Neutralization Assay Platform for Pathogenic Henipaviruses. Viruses 2023; 15:1077. [PMID: 37243163 PMCID: PMC10223282 DOI: 10.3390/v15051077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
The henipaviruses, Nipah virus (NiV), and Hendra virus (HeV) can cause fatal diseases in humans and animals, whereas Cedar virus is a nonpathogenic henipavirus. Here, using a recombinant Cedar virus (rCedV) reverse genetics platform, the fusion (F) and attachment (G) glycoprotein genes of rCedV were replaced with those of NiV-Bangladesh (NiV-B) or HeV, generating replication-competent chimeric viruses (rCedV-NiV-B and rCedV-HeV), both with and without green fluorescent protein (GFP) or luciferase protein genes. The rCedV chimeras induced a Type I interferon response and utilized only ephrin-B2 and ephrin-B3 as entry receptors compared to rCedV. The neutralizing potencies of well-characterized cross-reactive NiV/HeV F and G specific monoclonal antibodies against rCedV-NiV-B-GFP and rCedV-HeV-GFP highly correlated with measurements obtained using authentic NiV-B and HeV when tested in parallel by plaque reduction neutralization tests (PRNT). A rapid, high-throughput, and quantitative fluorescence reduction neutralization test (FRNT) using the GFP-encoding chimeras was established, and monoclonal antibody neutralization data derived by FRNT highly correlated with data derived by PRNT. The FRNT assay could also measure serum neutralization titers from henipavirus G glycoprotein immunized animals. These rCedV chimeras are an authentic henipavirus-based surrogate neutralization assay that is rapid, cost-effective, and can be utilized outside high containment.
Collapse
Affiliation(s)
- Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Randy Yin
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20814, USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20814, USA
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bishwo N. Adhikari
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command–Frederick, Fort Detrick, Frederick, MD 21702, USA
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
| | - Andrew Bennett
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
- Leidos, Inc., Reston, VA 20190, USA
| | - Francisco Malagon
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
- Leidos, Inc., Reston, VA 20190, USA
| | - Regina Z. Cer
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command–Frederick, Fort Detrick, Frederick, MD 21702, USA
| | - Kimberly A. Bishop-Lilly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command–Frederick, Fort Detrick, Frederick, MD 21702, USA
| | - Antony S. Dimitrov
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20814, USA
| | - Robert W. Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W. Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
32
|
Narayanan KK, Amaya M, Tsang N, Yin R, Jays A, Broder CC, Shukla D, Procko E. The Sequence Basis for Selectivity of Ephrin-B2 Ligand for Eph Receptors and Pathogenic Henipavirus G Glycoproteins: Selective Ephrin-B2 Decoys for Nipah and Hendra Virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538420. [PMID: 37162958 PMCID: PMC10168364 DOI: 10.1101/2023.04.26.538420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ephrin-B2 (EFNB2) is a ligand for six Eph receptors in humans and functions as a cell entry receptor for several henipaviruses including Nipah virus (NiV), a pathogenic zoonotic virus with pandemic potential. To understand the sequence basis of promiscuity for EFNB2 binding to the attachment glycoprotein of NiV (NiV-G) and Eph receptors, we performed deep mutagenesis on EFNB2 to identify mutations that enhance binding to NiV-G over EphB2, one of the highest affinity Eph receptors. The mutations highlight how different EFNB2 conformations are selected by NiV-G versus EphB2. Specificity mutations are enriched at the base of the G-H binding loop of EFNB2, especially surrounding a phenylalanine hinge upon which the G-H loop pivots, and at a phenylalanine hook that rotates away from the EFNB2 core to engage Eph receptors. One EFNB2 mutant, D62Q, possesses pan-specificity to the attachment glycoproteins of closely related henipaviruses and has markedly diminished binding to the six Eph receptors. However, EFNB2-D62Q has high residual binding to EphB3 and EphB4. A second deep mutational scan of EFNB2 identified combinatorial mutations to further enhance specificity to NiV-G. A triple mutant of soluble EFNB2, D62Q-Q130L-V167L, has minimal binding to Eph receptors but maintains binding, albeit reduced, to NiV-G. Soluble EFNB2 decoy receptors carrying the specificity mutations were potent neutralizers of chimeric henipaviruses. These findings demonstrate how specific residue changes at the shared binding interface of a promiscuous ligand (EFNB2) can influence selectivity for multiple receptors, and may also offer insight towards the development of henipavirus therapeutics and diagnostics.
Collapse
Affiliation(s)
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda MD, USA
| | - Natalie Tsang
- Department of Biochemistry, University of Illinois, Urbana IL, USA
| | - Randy Yin
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda MD, USA
| | - Alka Jays
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda MD, USA
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda MD, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois, Urbana IL, USA
| | - Erik Procko
- Department of Biochemistry, University of Illinois, Urbana IL, USA
- Cancer Center at Illinois, University of Illinois, Urbana IL, USA
- Cyrus Biotechnology, Seattle WA, USA
| |
Collapse
|
33
|
Byrne PO, Fisher BE, Ambrozak DR, Blade EG, Tsybovsky Y, Graham BS, McLellan JS, Loomis RJ. Structural basis for antibody recognition of vulnerable epitopes on Nipah virus F protein. Nat Commun 2023; 14:1494. [PMID: 36932063 PMCID: PMC10021056 DOI: 10.1038/s41467-023-36995-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Nipah virus (NiV) is a pathogenic paramyxovirus that causes fatal encephalitis in humans. Two envelope glycoproteins, the attachment protein (G/RBP) and fusion protein (F), facilitate entry into host cells. Due to its vital role, NiV F presents an attractive target for developing vaccines and therapeutics. Several neutralization-sensitive epitopes on the NiV F apex have been described, however the antigenicity of most of the F protein's surface remains uncharacterized. Here, we immunize mice with prefusion-stabilized NiV F and isolate ten monoclonal antibodies that neutralize pseudotyped virus. Cryo-electron microscopy reveals eight neutralization-sensitive epitopes on NiV F, four of which have not previously been described. Novel sites span the lateral and basal faces of NiV F, expanding the known library of vulnerable epitopes. Seven of ten antibodies bind the Hendra virus (HeV) F protein. Multiple sequence alignment suggests that some of these newly identified neutralizing antibodies may also bind F proteins across the Henipavirus genus. This work identifies new epitopes as targets for therapeutics, provides a molecular basis for NiV neutralization, and lays a foundation for development of new cross-reactive antibodies targeting Henipavirus F proteins.
Collapse
Affiliation(s)
- Patrick O Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, 78712, Austin, TX, USA
| | - Brian E Fisher
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 20892, Bethesda, MD, USA
| | - David R Ambrozak
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 20892, Bethesda, MD, USA
| | - Elizabeth G Blade
- Department of Molecular Biosciences, The University of Texas at Austin, 78712, Austin, TX, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, 21701, Frederick, MD, USA
| | - Barney S Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 20892, Bethesda, MD, USA
- Morehouse School of Medicine, 30310, Atlanta, GA, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, 78712, Austin, TX, USA.
| | - Rebecca J Loomis
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 20892, Bethesda, MD, USA.
- GSK Global Health R&D Vaccines (GVGH), 53100, Siena, Italy.
| |
Collapse
|
34
|
Marcink TC, Zipursky G, Cheng W, Stearns K, Stenglein S, Golub K, Cohen F, Bovier F, Pfalmer D, Greninger AL, Porotto M, des Georges A, Moscona A. Subnanometer structure of an enveloped virus fusion complex on viral surface reveals new entry mechanisms. SCIENCE ADVANCES 2023; 9:eade2727. [PMID: 36763666 PMCID: PMC9917000 DOI: 10.1126/sciadv.ade2727] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Paramyxoviruses-including important pathogens like parainfluenza, measles, and Nipah viruses-use a receptor binding protein [hemagglutinin-neuraminidase (HN) for parainfluenza] and a fusion protein (F), acting in a complex, to enter cells. We use cryo-electron tomography to visualize the fusion complex of human parainfluenza virus 3 (HN/F) on the surface of authentic clinical viruses at a subnanometer resolution sufficient to answer mechanistic questions. An HN loop inserts in a pocket on F, showing how the fusion complex remains in a ready but quiescent state until activation. The globular HN heads are rotated with respect to each other: one downward to contact F, and the other upward to grapple cellular receptors, demonstrating how HN/F performs distinct steps before F activation. This depiction of viral fusion illuminates potentially druggable targets for paramyxoviruses and sheds light on fusion processes that underpin wide-ranging biological processes but have not been visualized in situ or at the present resolution.
Collapse
Affiliation(s)
- Tara C. Marcink
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Gillian Zipursky
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Wenjing Cheng
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kyle Stearns
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Shari Stenglein
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kate Golub
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Frances Cohen
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Francesca Bovier
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Daniel Pfalmer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli,” 81100 Caserta, Italy
| | - Amedee des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, NY, USA
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY, USA
- PhD Programs in Chemistry and Biochemistry, The Graduate Center, City University of New York, New York, NY, USA
| | - Anne Moscona
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
35
|
Woolsey C, Borisevich V, Fears AC, Agans KN, Deer DJ, Prasad AN, O’Toole R, Foster SL, Dobias NS, Geisbert JB, Fenton KA, Cross RW, Geisbert TW. Recombinant vesicular stomatitis virus-vectored vaccine induces long-lasting immunity against Nipah virus disease. J Clin Invest 2023; 133:e164946. [PMID: 36445779 PMCID: PMC9888376 DOI: 10.1172/jci164946] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
The emergence of the novel henipavirus, Langya virus, received global attention after the virus sickened over three dozen people in China. There is heightened concern that henipaviruses, as respiratory pathogens, could spark another pandemic, most notably the deadly Nipah virus (NiV). NiV causes near-annual outbreaks in Bangladesh and India and induces a highly fatal respiratory disease and encephalitis in humans. No licensed countermeasures against this pathogen exist. An ideal NiV vaccine would confer both fast-acting and long-lived protection. Recently, we reported the generation of a recombinant vesicular stomatitis virus-based (rVSV-based) vaccine expressing the NiV glycoprotein (rVSV-ΔG-NiVBG) that protected 100% of nonhuman primates from NiV-associated lethality within a week. Here, to evaluate the durability of rVSV-ΔG-NiVBG, we vaccinated African green monkeys (AGMs) one year before challenge with an uniformly lethal dose of NiV. The rVSV-ΔG-NiVBG vaccine induced stable and robust humoral responses, whereas cellular responses were modest. All immunized AGMs (whether receiving a single dose or prime-boosted) survived with no detectable clinical signs or NiV replication. Transcriptomic analyses indicated that adaptive immune signatures correlated with vaccine-mediated protection. While vaccines for certain respiratory infections (e.g., COVID-19) have yet to provide durable protection, our results suggest that rVSV-ΔG-NiVBG elicits long-lasting immunity.
Collapse
Affiliation(s)
- Courtney Woolsey
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alyssa C. Fears
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Krystle N. Agans
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Daniel J. Deer
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Abhishek N. Prasad
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rachel O’Toole
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Stephanie L. Foster
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Natalie S. Dobias
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Joan B. Geisbert
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Karla A. Fenton
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Robert W. Cross
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
36
|
The C-Terminal 300 Amino Acid Residues of the G Protein and Putative Open Reading Frame X of the G Gene of Tailam Paramyxovirus (TlmPV) Are Not Required for Replication in Tissue Culture Cells. J Virol 2023; 97:e0180222. [PMID: 36521070 PMCID: PMC9888184 DOI: 10.1128/jvi.01802-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tailam paramyxovirus (TlmPV) was identified in Sikkim Rats in Hong Kong, China in 2011. Its negative sense RNA genome is similar to J paramyxovirus (JPV) and Beilong paramyxovirus (BeiPV), the prototypes of the recently established genus Jeilongvirus. TlmPV genome is predicted to have eight genes in the order 3'-N-P/V/C-M-F-SH-TM-G/X-L-5'. The predicted size of the TlmPV G protein is 1,052 amino acid (aa) residues and much larger than G proteins of typical paramyxoviruses, which are often less than 800 aa. In addition to G open reading frame (ORF) in the G gene, another ORF, termed ORF-X exists in the G gene transcript. Similar ORF-X exists in JPV and BeiPV G gene, but their expression in virus-infected cells has not been confirmed. In this study, we generated infectious TlmPV using a newly developed reverse genetics system. We have found that the G protein of TlmPV is truncated in cultured cells: stop codons emerged in the G open reading frame, resulting in deletions of amino acid residues beyond residue 732. We have obtained infectious TlmPV lacking the C-terminal 307 aa (rTlmPV-G745) and TlmPV lacking the C-terminal 306 aa and the ORF-X (rTlmPV-GΔ746-X). The recombinant TlmPVs lacking the C-terminal 300 aa reach a higher peak viral titer and have improved genome stability in tissue cultured cells. The work indicates that the C-terminal of the G protein of TlmPV and ORF-X are not required for replication in tissue culture cells, and the deletion of the C-terminal confers a growth advantage in tissue culture cells. IMPORTANCE TlmPV is a member of the recently established genus Jeilongvirus. TlmPV encodes a large G protein and its G gene contains ORF-X. In this work, infectious TlmPV was recovered using reverse genetics. Using this system, we have demonstrated that 300 aa of C-terminal of G and the ORF-X are not required for viral replication in tissue culture cells.
Collapse
|
37
|
Bruno L, Nappo MA, Ferrari L, Di Lecce R, Guarnieri C, Cantoni AM, Corradi A. Nipah Virus Disease: Epidemiological, Clinical, Diagnostic and Legislative Aspects of This Unpredictable Emerging Zoonosis. Animals (Basel) 2022; 13:ani13010159. [PMID: 36611767 PMCID: PMC9817766 DOI: 10.3390/ani13010159] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Nipah virus (NiV) infection is a viral disease caused by a Henipavirus, belonging to the Paramyxoviridae family, responsible for a zoonosis. The course of the disease can be very serious and lead to death. NiV natural hosts are fruit bats (also known as megabats) belonging to the Pteropodidae family, especially those of the Pteropus genus. Natural infection in domestic animals has been described in farming pigs, horses, domestic and feral dogs and cats. Natural NiV transmission is possible intra-species (pig-to-pig, human-to-human) and inter-species (flying bat-to-human, pig-to-human, horse-to-human). The infection can be spread by humans or animals in different ways. It is peculiar how the viral transmission modes among different hosts also change depending on the geographical area for different reasons, including different breeding methods, eating habits and the recently identified genetic traits/molecular features of main virus proteins related to virulence. Outbreaks have been described in Malaysia, Singapore, Bangladesh, India and the Philippines with, in some cases, severe respiratory and neurological disease and high mortality in both humans and pigs. Diagnosis can be made using different methods including serological, molecular, virological and immunohistochemical methods. The cornerstones for control of the disease are biosecurity (via the correct management of reservoir and intermediate/amplifying hosts) and potential vaccines which are still under development. However, the evaluation of the potential influence of climate and anthropogenic changes on the NiV reservoir bats and their habitat as well as on disease spread and inter-specific infections is of great importance. Bats, as natural reservoirs of the virus, are responsible for the viral spread and, therefore, for the outbreaks of the disease in humans and animals. Due to the worldwide distribution of bats, potential new reports and spillovers are not to be dismissed in the future.
Collapse
Affiliation(s)
- Luigi Bruno
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, 80053 Castellammare di Stabia, Italy
- Correspondence: (L.B.); (L.F.)
| | - Maria Anna Nappo
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, 80053 Castellammare di Stabia, Italy
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
- Correspondence: (L.B.); (L.F.)
| | - Rosanna Di Lecce
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Chiara Guarnieri
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Anna Maria Cantoni
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Attilio Corradi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| |
Collapse
|
38
|
Omidian N, Mohammadi P, Sadeghalvad M, Mohammadi-Motlagh HR. Cerebral microvascular complications associated with SARS-CoV-2 infection: How did it occur and how should it be treated? Biomed Pharmacother 2022; 154:113534. [PMID: 35994816 PMCID: PMC9381434 DOI: 10.1016/j.biopha.2022.113534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 01/08/2023] Open
Abstract
Cerebral microvascular disease has been reported as a central feature of the neurological disorders in patients with SARS-CoV-2 infection that may be associated with an increased risk of ischemic stroke. The main pathomechanism in the development of cerebrovascular injury due to SARS-CoV-2 infection can be a consequence of endothelial cell dysfunction as a structural part of the blood-brain barrier (BBB), which may be accompanied by increased inflammatory response and thrombocytopenia along with blood coagulation disorders. In this review, we described the properties of the BBB, the neurotropism behavior of SARS-CoV-2, and the possible mechanisms of damage to the CNS microvascular upon SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Neda Omidian
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Sadeghalvad
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid-Reza Mohammadi-Motlagh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
39
|
Rahman MM, Puspo JA, Adib AA, Hossain ME, Alam MM, Sultana S, Islam A, Klena JD, Montgomery JM, Satter SM, Shirin T, Rahman MZ. An Immunoinformatics Prediction of Novel Multi-Epitope Vaccines Candidate Against Surface Antigens of Nipah Virus. Int J Pept Res Ther 2022; 28:123. [PMID: 35761851 PMCID: PMC9219388 DOI: 10.1007/s10989-022-10431-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
Nipah virus (NiV) is an emerging zoonotic virus causing outbreaks of encephalitis and respiratory illnesses in humans, with high mortality. NiV is considered endemic in Bangladesh and Southeast Asia. There are no licensed vaccines against NiV. This study aimed at predicting a dual-antigen multi-epitope subunit chimeric vaccine against surface-glycoproteins G and F of NiV. Targeted proteins were subjected to immunoinformatics analyses to predict antigenic B-cell and T-cell epitopes. The proposed vaccine designs were implemented based on the conservancy, population coverage, molecular docking, immune simulations, codon adaptation, secondary mRNA structure, and in-silico cloning. Total 40 T and B-cell epitopes were found to be conserved, antigenic (vaxijen-value > 0.4), non-toxic, non-allergenic, and human non-homologous. Of 12 hypothetical vaccines, two (NiV_BGD_V1 and NiV_BGD_V2) were strongly immunogenic, non-allergenic, and structurally stable. The proposed vaccine candidates show a negative Z-score (- 6.32 and - 6.67) and 83.6% and 89.3% of most rama-favored regions. The molecular docking confirmed the highest affinity of NiV_BGD_V1 and NiV_BGD_V2 with TLR-4 (ΔG = - 30.7) and TLR8 (ΔG = - 20.6), respectively. The vaccine constructs demonstrated increased levels of immunoglobulins and cytokines in humans and could be expressed properly using an adenoviral-based pAdTrack-CMV expression vector. However, more experimental investigations and clinical trials are needed to validate its efficacy and safety. Supplementary Information The online version contains supplementary material available at 10.1007/s10989-022-10431-z.
Collapse
Affiliation(s)
- Md. Mahfuzur Rahman
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212 Bangladesh
| | - Joynob Akter Puspo
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212 Bangladesh
| | - Ahmed Ahsan Adib
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212 Bangladesh
| | - Mohammad Enayet Hossain
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212 Bangladesh
| | - Mohammad Mamun Alam
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212 Bangladesh
| | - Sharmin Sultana
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka 1212 Bangladesh
| | | | - John D. Klena
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333 USA
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333 USA
| | - Syed M. Satter
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212 Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka 1212 Bangladesh
| | - Mohammed Ziaur Rahman
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212 Bangladesh
| |
Collapse
|
40
|
Liew YJM, Ibrahim PAS, Ong HM, Chong CN, Tan CT, Schee JP, Gómez Román R, Cherian NG, Wong WF, Chang LY. The Immunobiology of Nipah Virus. Microorganisms 2022; 10:microorganisms10061162. [PMID: 35744680 PMCID: PMC9228579 DOI: 10.3390/microorganisms10061162] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/23/2022] Open
Abstract
Nipah virus (NiV) is a highly lethal zoonotic paramyxovirus that emerged in Malaysia in 1998. It is a human pathogen capable of causing severe respiratory infection and encephalitis. The natural reservoir of NiV, Pteropus fruit bats, remains a continuous virus source for future outbreaks, although infection in the bats is largely asymptomatic. NiV provokes serious disease in various mammalian species. In the recent human NiV outbreaks in Bangladesh and India, both bats-to-human and human-to-human transmissions have been observed. NiV has been demonstrated to interfere with the innate immune response via interferon type I signaling, promoting viral dissemination and preventing antiviral response. Studies of humoral immunity in infected NiV patients and animal models have shown that NiV-specific antibodies were produced upon infection and were protective. Studies on cellular immunity response to NiV infection in human and animal models also found that the adaptive immune response, specifically CD4+ and CD8+ T cells, was stimulated upon NiV infection. The experimental vaccines and therapeutic strategies developed have provided insights into the immunological requirements for the development of successful medical countermeasures against NiV. This review summarizes the current understanding of NiV pathogenesis and innate and adaptive immune responses induced upon infection.
Collapse
Affiliation(s)
- Yvonne Jing Mei Liew
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
- Deputy Vice Chancellor’s Office (Research & Innovation), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Puteri Ainaa S. Ibrahim
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Hui Ming Ong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Chee Ning Chong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Chong Tin Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.T.T.); (J.P.S.)
| | - Jie Ping Schee
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.T.T.); (J.P.S.)
| | - Raúl Gómez Román
- Vaccine Research and Development, Coalition for Epidemic Preparedness Innovation (CEPI), Askekroken 11, 0277 Oslo, Norway; (R.G.R.); (N.G.C.)
| | - Neil George Cherian
- Vaccine Research and Development, Coalition for Epidemic Preparedness Innovation (CEPI), Askekroken 11, 0277 Oslo, Norway; (R.G.R.); (N.G.C.)
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
- Correspondence:
| |
Collapse
|
41
|
Wang Z, Dang HV, Amaya M, Xu Y, Yin R, Yan L, Hickey AC, Annand EJ, Horsburgh BA, Reid PA, Smith I, Eden JS, Xu K, Broder CC, Veesler D. Potent monoclonal antibody-mediated neutralization of a divergent Hendra virus variant. Proc Natl Acad Sci U S A 2022; 119:e2122769119. [PMID: 35617431 PMCID: PMC9295758 DOI: 10.1073/pnas.2122769119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/16/2022] [Indexed: 12/27/2022] Open
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic Henipaviruses (HNVs) responsible for recurrent outbreaks in humans and domestic species of highly fatal (50 to 95%) disease. A HeV variant (HeV-g2) of unprecedented genetic divergence has been identified in two fatally diseased horses, and in two flying fox species in regions of Australia not previously considered at risk for HeV spillover. Given the HeV-g2 divergence from HeV while retaining equivalent pathogenicity and spillover potential, understanding receptor usage and antigenic properties is urgently required to guide One Health biosecurity. Here, we show that the HeV-g2 G glycoprotein shares a conserved receptor tropism with prototypic HeV and that a panel of monoclonal antibodies recognizing the G and F glycoproteins potently neutralizes HeV-g2– and HeV G/F–mediated entry into cells. We determined a crystal structure of the Fab fragment of the hAH1.3 antibody bound to the HeV G head domain, revealing an antigenic site associated with potent cross-neutralization of both HeV-g2 and HeV. Structure-guided formulation of a tetravalent monoclonal antibody (mAb) mixture, targeting four distinct G head antigenic sites, results in potent neutralization of HeV and HeV-g2 and delineates a path forward for implementing multivalent mAb combinations for postexposure treatment of HNV infections.
Collapse
Affiliation(s)
- Zhaoqian Wang
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Ha V. Dang
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814
| | - Yan Xu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Randy Yin
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814
| | - Andrew C. Hickey
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814
- US Public Health Services Commissioned Corps, Rockville, MD 20852
| | - Edward J. Annand
- Sydney School of Veterinary Science, University of Sydney, Sydney, 2570 NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, 2006 NSW, Australia
- Black Mountain Laboratories, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, 2601 ACT, Australia
- Equine Veterinary and One Health Epidemiology, EquiEpiVet, Aireys Inlet, Surf Coast, 3231 VIC, Australia
| | - Bethany A. Horsburgh
- University of Sydney School of Medicine, Sydney, 2006 NSW, Australia
- Westmead Institute for Medical Research, Sydney, 2145 NSW, Australia
| | - Peter A. Reid
- Private Equine Veterinary Practice, Brisbane, 4034 QLD, Australia
| | - Ina Smith
- Black Mountain Laboratories, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, 2601 ACT, Australia
| | - John-Sebastian Eden
- University of Sydney School of Medicine, Sydney, 2006 NSW, Australia
- Westmead Institute for Medical Research, Sydney, 2145 NSW, Australia
| | - Kai Xu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- HHMI, University of Washington, Seattle, WA 98195
| |
Collapse
|
42
|
Lawrence P, Escudero-Pérez B. Henipavirus Immune Evasion and Pathogenesis Mechanisms: Lessons Learnt from Natural Infection and Animal Models. Viruses 2022; 14:v14050936. [PMID: 35632678 PMCID: PMC9146692 DOI: 10.3390/v14050936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Nipah henipavirus (NiV) and Hendra henipavirus (HeV) are zoonotic emerging paramyxoviruses causing severe disease outbreaks in humans and livestock, mostly in Australia, India, Malaysia, Singapore and Bangladesh. Both are bat-borne viruses and in humans, their mortality rates can reach 60% in the case of HeV and 92% for NiV, thus being two of the deadliest viruses known for humans. Several factors, including a large cellular tropism and a wide zoonotic potential, con-tribute to their high pathogenicity. This review provides an overview of HeV and NiV pathogenicity mechanisms and provides a summary of their interactions with the immune systems of their different host species, including their natural hosts bats, spillover-hosts pigs, horses, and humans, as well as in experimental animal models. A better understanding of the interactions between henipaviruses and their hosts could facilitate the development of new therapeutic strategies and vaccine measures against these re-emerging viruses.
Collapse
Affiliation(s)
- Philip Lawrence
- Science and Humanities Confluence Research Centre (EA 1598), Catholic University of Lyon (UCLy), 69002 Lyon, France
- Correspondence: (P.L.); (B.E.-P.)
| | - Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, 38124 Braunschweig, Germany
- Correspondence: (P.L.); (B.E.-P.)
| |
Collapse
|