1
|
Mou R, Ma J, Ju X, Wu Y, Chen Q, Li J, Shang T, Chen S, Yang Y, Li Y, Lv K, Chen X, Zhang Q, Liang T, Feng Y, Lu X. Vasopressin drives aberrant myeloid differentiation of hematopoietic stem cells, contributing to depression in mice. Cell Stem Cell 2024; 31:1794-1812.e10. [PMID: 39442524 DOI: 10.1016/j.stem.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Psychological stress is often linked to depression and can also impact the immune system, illustrating the interconnectedness of mental health and immune function. Hematopoietic stem cells (HSCs) can directly sense neuroendocrine signals in bone marrow and play a fundamental role in the maintenance of immune homeostasis. However, it is unclear how psychological stress impacts HSCs in depression. Here, we report that neuroendocrine factor arginine vasopressin (AVP) promotes myeloid-biased HSC differentiation by activating neutrophils. AVP administration increases neutrophil and Ly6Chi monocyte production by triggering HSCs that rely on intrinsic S100A9 in mice. When stimulated with AVP, neutrophils return to the bone marrow and release interleukin 36G (IL-36G), which interacts with interleukin 1 receptor-like 2 (IL-1RL2) on HSCs to produce neutrophils with high Elane expression that infiltrate the brain and induce neuroinflammation. Together, these findings define HSCs as a relay between psychological stress and myelopoiesis and identify the IL-36G-IL-1RL2 axis as a potential target for depression therapy.
Collapse
Affiliation(s)
- Rong Mou
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Junkai Ma
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xuan Ju
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China
| | - Yixin Wu
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Qiuli Chen
- Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Jinglin Li
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Tongyao Shang
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Siying Chen
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yue Yang
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yue Li
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Kaosheng Lv
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of BioMedical Sciences, Hunan University, Changsha 410028, Hunan, China
| | - Xuequn Chen
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Ye Feng
- Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China.
| | - Xinjiang Lu
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
2
|
Chang P, Ma J, Li K, Wang W, Chen D, Liu Z, Zhan W, Zeng Y, Zhan Y. 5-Hydroxytryptophan artificial synaptic vesicles across the blood-brain barrier for the rapid-acting treatment of depressive disorder. Mater Today Bio 2024; 29:101357. [PMID: 39659840 PMCID: PMC11629277 DOI: 10.1016/j.mtbio.2024.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
Conventional antidepressants are slow to work and have serious side effects and poor response rates. As a precursor to 5-hydroxytryptamine (5-HT), 5-hydroxytryptophan (5-HTP) can be safely increased in concentration and rapidly metabolized into 5-HT in the brain, but the effectiveness of 5-HTP is severely limited due to its short half-life and lack of targeting. To traverse the blood-brain barrier (BBB) and achieve effective targeting, we designed a near-infrared (NIR) light-responsive artificial synaptic vesicles functionalized with an aptamer and loaded with 5-HTP and IR780. Photothermal approaches could improve the BBB permeability, and photothermal-triggered 5-HTP release could also be achieved. The ability to penetrate the BBB and enhance cerebral drug enrichment could be observed by fluorescence imaging. In addition, the nanoplatform incorporating the NIR laser considerably reduced depressive-like behaviors in chronic unpredictable moderate stress model mice in only 4 weeks, suggesting a potential approach for rapid-acting depression treatment.
Collapse
Affiliation(s)
- Peng Chang
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, 710126, PR China
| | - Jingwen Ma
- Medical Imaging Center, Ninth Hospital of Xi'an, Xi'an, 710054, PR China
| | - Ke Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, PR China
| | - Wei Wang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, PR China
| | - Dan Chen
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, 710126, PR China
| | - Zhe Liu
- Department of Pathology, Ninth Hospital of Xi'an, Xi'an, 710054, PR China
| | - Wenhua Zhan
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, PR China
| | - Yun Zeng
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, 710126, PR China
| | - Yonghua Zhan
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, 710126, PR China
| |
Collapse
|
3
|
Zhou L, Zhang C, Xie Z, Yu Q, Wang J, Gong Y, Zhao J, Bai S, Yang L, Deng D, Zhang R, Shi Y. Neural Circuit Mechanisms of Sinisan formula for the Treatment of adolescent Depression: prefrontal cortex to dorsal raphe nucleus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118529. [PMID: 38972528 DOI: 10.1016/j.jep.2024.118529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sinisan formula (SNSF), documented in the classic books Shanghan Lun, is known for its ability to regulate liver-qi and treat depression. However, its underlying mechanism, particularly its effects on dynamic real-time neuron activity and circuits remains to be fully elucidated. AIM OF THE STUDY This study aimed to investigate the antidepressant effect of SNSF and its central nervous system mechanism on depression-like behaviors, focusing on the prefrontal cortex (PFC) to dorsal raphe nucleus (DRN) neural circuit in a stress-induced adolescent animal model. MATERIALS AND METHODS SNSF comprised four herbs, the root of Bupleurum chinense DC., the root of Paeonia lactiflora Pall., the fruit of Citrus aurantium L., the rhizome of Glycyrrhiza uralensis Fisch., in equal propotions. The adolescent depression animal model was induced by maternal separation (MS) and chronic restraint stress (CRS). In-vivo multichannel physiological electrodes were implanted into the PFC on PND 28 and animals were recorded 5 times during PND 35-46. From PND 47, the behavioral tests were performed to evaluate the antidepressant efficacy of SNSF. Subsequently, brain tissue was collected for Western blot and immunofluorescence staining analysis. Retro virus was injected into the DRN to explore sources of projections received by serotonergic (5-HTergic) neurons. And the PFC-to-DRN circuit was activated or inhibited through chemogenetic techniques to investigate the effects of SNSF on depression-like behaviors. RESULTS Administration of SNSF for 18 days effectively alleviated depression-like behaviors in MS&CRS adolescent mice. The PFC emerged as the primary glutamatergic projection source of the DRN5-HT neurons. Following SNSF administration for 13/15/18 days, there was an increase in the firing rate of excitatory neurons and excitatory/inhibitory (E/I) ratio in the PFC. MS&CRS stress let to a reduction in the density of 5-HT+ and CaMKII + neurons in the DRN, accompanied by an increase in the density of GAD + neurons in the DRN, while SNSF administration reversed the alterations. Chemogenetic activation of the PFC-to-DRN circuit rescued the depression-like behaviors induced by MS&CRS, whereas suppression of this circuit attenuated the antidepressant effect of SNSF. CONCLUSIONS SNSF significantly mitigated depression-like behaviors in MS&CRS mice. SNSF exerts its antidepressant effects by increasing the E/I ratio in the PFC and enhancing glutamatergic projections from the PFC to the DRN.
Collapse
Affiliation(s)
- Liuchang Zhou
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Caixia Zhang
- Outpatient Department, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zedan Xie
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qingying Yu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Junjie Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuwen Gong
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jinlan Zhao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shasha Bai
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lei Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Di Deng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Rong Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yafei Shi
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Shi HJ, Xue YR, Shao H, Wei C, Liu T, He J, Yang YH, Wang HM, Li N, Ren SQ, Chang L, Wang Z, Zhu LJ. Hippocampal excitation-inhibition balance underlies the 5-HT2C receptor in modulating depressive behaviours. Brain 2024; 147:3764-3779. [PMID: 38701344 DOI: 10.1093/brain/awae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
The implication of 5-hydroxytryptamine 2C receptor (5-HT2CR) activity in depression is a topic of debate, and the underlying mechanisms remain largely unclear. Here, we elucidate how hippocampal excitation-inhibition (E/I) balance underlies the regulatory effects of 5-HT2CR in depression. Molecular biological analyses showed that chronic mild stress (CMS) reduced the expression of 5-HT2CR in hippocampus. We revealed that inhibition of 5-HT2CR induced depressive-like behaviours, reduced GABA release and shifted the E/I balance towards excitation in CA3 pyramidal neurons using behavioural analyses, microdialysis coupled with mass spectrometry and electrophysiological recordings. Moreover, 5-HT2CR modulated the neuronal nitric oxide synthase (nNOS)-carboxy-terminal PDZ ligand of nNOS (CAPON) interaction by influencing intracellular Ca2+ release, as determined by fibre photometry and coimmunoprecipitation. Notably, disruption of nNOS-CAPON with the specific small molecule compound ZLc-002 or AAV-CMV-CAPON-125C-GFP abolished 5-HT2CR inhibition-induced depressive-like behaviours, as well as the impairment in soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly-mediated GABA vesicle release and consequent E/I imbalance. Importantly, optogenetic inhibition of CA3 GABAergic neurons prevented the effects of AAV-CMV-CAPON-125C-GFP on depressive behaviours in the presence of a 5-HT2CR antagonist. Conclusively, our findings disclose the regulatory role of 5-HT2CR in depressive-like behaviours and highlight hippocampal nNOS-CAPON coupling-triggered E/I imbalance as a pivotal cellular event underpinning the behavioural consequences of 5-HT2CR inhibition.
Collapse
Affiliation(s)
- Hu-Jiang Shi
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
| | - Yi-Ren Xue
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Hua Shao
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Cheng Wei
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ting Liu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Jie He
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yu-Hao Yang
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Hong-Mei Wang
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Na Li
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Si-Qiang Ren
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
| | - Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
| |
Collapse
|
5
|
Wang YY, Wu Y, Yu KW, Xie HY, Gui Y, Chen CR, Wang NH. Ginsenoside Rg1 promotes non-rapid eye movement sleep via inhibition of orexin neurons of the lateral hypothalamus and corticotropin-releasing hormone neurons of the paraventricular hypothalamic nucleus. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:719-728. [PMID: 39547824 DOI: 10.1016/j.joim.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE This study investigates the sleep-modulating effects of ginsenoside Rg1 (Rg1, C42H72O14), a key bioactive component of ginseng, and elucidates its underlying mechanisms. METHODS C57BL/6J mice were intraperitoneally administered doses of Rg1 ranging from 12.5 to 100 mg/kg. Sleep parameters were assessed to determine the average duration of each sleep stage by monitoring the electrical activity of the brain and muscles. Further, orexin neurons in the lateral hypothalamus (LH) and corticotropin-releasing hormone (CRH) neurons in the paraventricular hypothalamic nucleus (PVH) were ablated using viral vector surgery and electrode embedding. The excitability of LHorexin and PVHCRH neurons was evaluated through the measurement of cellular Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog (c-Fos) expression. RESULTS Rg1 (12.5-100 mg/kg) augmented the duration of non-rapid eye movement (NREM) sleep phases, while reducing the duration of wakefulness, in a dose dependent manner. The reduced latency from wakefulness to NREM sleep indicates an accelerated sleep initiation time. We found that these sleep-promoting effects were weakened in the LHorexin and PVHCRH neuron ablation groups, and disappeared in the orexin and CRH double-ablation group. Decreased c-Fos protein expression in the LH and PVH confirmed that Rg1 promoted NREM sleep by inhibiting orexin and CRH neurons. CONCLUSION Rg1 increases the duration of NREM sleep, underscoring the essential roles of LHorexin and PVHCRH neurons in facilitating the sleep-promoting effects of Rg1. Please cite this article as: Wang YY, Wu Y, Yu KW, Xie HY, Gui Y, Chen CR, Wang NH. Ginsenoside Rg1 promotes non-rapid eye movement sleep via inhibition of orexin neurons of the lateral hypothalamus and corticotropin-releasing hormone neurons of the paraventricular hypothalamic nucleus. J Integr Med. 2024; 22(6): 721-730.
Collapse
Affiliation(s)
- Yi-Yuan Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040, China; School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ke-Wei Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040, China
| | - Hong-Yu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040, China
| | - Yi Gui
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040, China
| | - Chang-Rui Chen
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200040, China.
| | - Nian-Hong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040, China; School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Zhang H, Li L, Zhang X, Ru G, Zang W. Role of the Dorsal Raphe Nucleus in Pain Processing. Brain Sci 2024; 14:982. [PMID: 39451996 PMCID: PMC11506261 DOI: 10.3390/brainsci14100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
The dorsal raphe nucleus (DRN) has gained attention owing to its involvement in various physiological functions, such as sleep-awake, feeding, and emotion, with its analgesic role being particularly significant. It is described as the "pain inhibitory nucleus" in the brain. The DRN has diverse projections from hypothalamus, midbrain, and pons. In turn, the DRN is a major source of projections to diverse cortex, limbic forebrain thalamus, and the midbrain and contains highly heterogeneous neuronal subtypes. The activation of DRN neurons in mice prevents the establishment of neuropathic, chronic pain symptoms. Chemogenetic or optogenetic inhibition neurons in the DRN are sufficient to establish pain phenotypes, including long-lasting tactile allodynia, that scale with the extent of stimulation, thereby promoting nociplastic pain. Recent progress has been made in identifying the neural circuits and cellular mechanisms in the DRN that are responsible for sensory modulation. However, there is still a lack of comprehensive review addressing the specific neuron types in the DRN involved in pain modulation. This review summarizes the function of specific cell types within DRN in the pain regulation, and aims to improve understanding of the mechanisms underlying pain regulation in the DRN, ultimately offering insights for further exploration.
Collapse
Affiliation(s)
- Huijie Zhang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (H.Z.); (L.L.)
| | - Lei Li
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (H.Z.); (L.L.)
| | - Xujie Zhang
- Department of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China;
| | - Guanqi Ru
- Department of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Weidong Zang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (H.Z.); (L.L.)
| |
Collapse
|
7
|
Li GX, Yan JZ, Sun SR, Hou XJ, Yin YY, Li YF. The role of 5-HTergic neuron activation in the rapid antidepressant-like effects of hypidone hydrochloride (YL-0919) in mice. Front Pharmacol 2024; 15:1428485. [PMID: 39309007 PMCID: PMC11412804 DOI: 10.3389/fphar.2024.1428485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Major depressive disorder (MDD) is a common and disabling mental health condition; the currently available treatments for MDD are insufficient to meet clinical needs due to their limited efficacy and slow onset of action. Hypidone hydrochloride (YL-0919) is a sigma-1 receptor agonist and a novel fast-acting antidepressant that is currently under clinical development. Methods To further understand the fast-acting antidepressant activity of YL-0919, this study focused on the role of 5-HTergic neurons in the dorsal raphe nucleus (DRN) in mice. Using fiber photometry to assess neural activity in vivo and two behavioral assays (tail suspension test and forced swimming test) to evaluate antidepressant-like activity. Results It was found that 3 or 7 days of YL-0919 treatment significantly activated serotonin (5-HT) neurons in the DRN and had significant antidepressant-like effects on mouse behaviors. Chemogenetic inhibition of 5-HTergic neurons in the DRN significantly blocked the antidepressant-like effect of YL-0919. In addition, YL-0919 treatment significantly increased the 5-HT levels in the prefrontal cortex (PFC). These changes were drastically different from those of the selective serotonin reuptake inhibitor (SSRI) fluoxetine, which suggested that the antidepressant-like effects of the two compounds were mechanistically different. Conclusion Together, these results reveal a novel role of 5-HTergic neurons in the DRN in mediating the fast-acting antidepressant-like effects of YL-0919, revealing that these neurons are potential novel targets for the development of fast-acting antidepressants for the clinical management of MDD.
Collapse
Affiliation(s)
- Guang-Xiang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Beijing Institute of Pharmacology and Toxicology, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Jiao-Zhao Yan
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Beijing Institute of Pharmacology and Toxicology, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Sun-Rui Sun
- Beijing Ditan Hospital Capital Medical University, Beijing, China
| | - Xiao-Juan Hou
- Department of Postgraduate, Hebei North University, Zhangjiakou, China
| | - Yong-Yu Yin
- Beijing Institute of Pharmacology and Toxicology, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Beijing Institute of Pharmacology and Toxicology, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| |
Collapse
|
8
|
Jankovic T, Bogicevic M, Knezevic NN. The role of nitric oxide and hormone signaling in chronic stress, anxiety, depression and post-traumatic stress disorder. Mol Cell Endocrinol 2024; 590:112266. [PMID: 38718853 DOI: 10.1016/j.mce.2024.112266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024]
Abstract
This paper provides a summary of the role of nitric oxide (NO) and hormones in the development of chronic stress, anxiety, depression, and post-traumatic stress disorder (PTSD). These mental health conditions are prevalent globally and involve complex molecular interactions. Although there is a significant amount of research and therapeutic options available, the underlying mechanisms of these disorders are still not fully understood. The primary pathophysiologic processes involved in chronic stress, anxiety, depression, and PTSD include dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, the intracellular influence of neuronal nitric oxide synthase (nNOS) on transcription factors, an inflammatory response with the formation of nitrergic oxidative species, and reduced serotonergic transmission in the dorsal raphe nucleus. Despite the extensive literature on this topic, there is a great need for further research to clarify the complexities inherent in these pathways, with the primary aim of improving psychiatric care.
Collapse
Affiliation(s)
- Tamara Jankovic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Marko Bogicevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Midwestern University Chicago College of Osteopathic Medicine, Downers Grove, IL, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Department of Anesthesiology, University of Illinois, Chicago, IL, USA; Department of Surgery, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
9
|
Bai S, Ying ZM, Ying JK, Zhang QY, Lv YH, Wu ZM. Inhibition of 5-HT alleviates PTSD-like behaviors and promotes hippocampal neuroplasticity by modulating hippocampal autophagy in rats. J Neurophysiol 2024; 132:979-990. [PMID: 39110517 DOI: 10.1152/jn.00291.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/12/2024] Open
Abstract
5-Hydroxytryptamine (5-HT) plays a substantial role in mitigating depression and anxiety. However, the potential effects of 5-HT against posttraumatic stress disorder (PTSD) and its underlying mechanisms remain unclear. Elevated plus maze test evaluates anxiety-related behaviors, and the open field test is used to assess overall activity levels and anxiety. Inflammatory cytokine levels were determined using ELISA. The levels of 5-HT and dopamine were measured using HPLC. mRNA and protein levels were examined by PCR and Western blot, respectively. Rats exposed to single prolonged stress (SPS) exhibited typical PTSD-like phenotypes, with decreased levels of 5-HT in the hippocampus and significant reductions in its downstream targets, brain-derived neurotrophic factor (BDNF) and TrkB. In addition, it was discovered that the autophagy signaling pathway might be involved in regulating hippocampal BDNF in rats exposed to SPS. Subsequent treatment with an intracerebral injection of sh-SERT significantly inhibited anxiety and cognitive dysfunction in rats. Moreover, sh-SERT treatment was observed to substantially reverse the increase in autophagy signaling protein expression and consequently improve the expression of BDNF and TrkB proteins, which had been reduced. The current study demonstrates that sh-SERT exhibits significant anti-PTSD effects, potentially mediated in part through the reduction of cellular autophagy to enhance hippocampal synaptic plasticity.NEW & NOTEWORTHY The study demonstrated that sh-SERT exhibits significant anti-posttraumatic stress disorder (PTSD) effects, potentially mediated in part through the reduction of cellular autophagy to enhance hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Shi Bai
- Department of Anatomy, School of Medicine, Taizhou University, Jiaojiang, China
| | - Zhong-Ming Ying
- Department of Neurology, Taizhou Integrated Traditional Chinese and Western Medicine Hospital, Wenling, China
| | - Jia-Kang Ying
- Department of Clinical Medicine, School of Medicine, Taizhou University, Jiaojiang, China
| | - Qin-Ying Zhang
- Department of Clinical Medicine, School of Medicine, Taizhou University, Jiaojiang, China
| | - Yu-Hang Lv
- Department of Clinical Medicine, School of Medicine, Taizhou University, Jiaojiang, China
| | - Zhong-Min Wu
- Department of Anatomy, School of Medicine, Taizhou University, Jiaojiang, China
| |
Collapse
|
10
|
Zhao Y, Wan J, Li Y. Genetically encoded sensors for in vivo detection of neurochemicals relevant to depression. J Neurochem 2024; 168:1721-1737. [PMID: 38468468 DOI: 10.1111/jnc.16046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/03/2023] [Accepted: 12/29/2023] [Indexed: 03/13/2024]
Abstract
Depressive disorders are a common and debilitating form of mental illness with significant impacts on individuals and society. Despite the high prevalence, the underlying causes and mechanisms of depressive disorders are still poorly understood. Neurochemical systems, including serotonin, norepinephrine, and dopamine, have been implicated in the development and perpetuation of depressive symptoms. Current treatments for depression target these neuromodulator systems, but there is a need for a better understanding of their role in order to develop more effective treatments. Monitoring neurochemical dynamics during depressive symptoms is crucial for gaining a better a understanding of their involvement in depressive disorders. Genetically encoded sensors have emerged recently that offer high spatial-temporal resolution and the ability to monitor neurochemical dynamics in real time. This review explores the neurochemical systems involved in depression and discusses the applications and limitations of current monitoring tools for neurochemical dynamics. It also highlights the potential of genetically encoded sensors for better characterizing neurochemical dynamics in depression-related behaviors. Furthermore, potential improvements to current sensors are discussed in order to meet the requirements of depression research.
Collapse
Affiliation(s)
- Yulin Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
11
|
Ma X, Xu S, Zhou Y, Zhang Q, Yang H, Wan B, Yang Y, Miao Z, Xu X. Targeting Nr2e3 to Modulate Tet2 Expression: Therapeutic Potential for Depression Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400726. [PMID: 38881534 PMCID: PMC11336902 DOI: 10.1002/advs.202400726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/01/2024] [Indexed: 06/18/2024]
Abstract
Epigenetic mechanisms such as DNA methylation and hydroxymethylation play a significant role in depression. This research has shown that Ten-eleven translocation 2 (Tet2) deficiency prompts depression-like behaviors, but Tet2's transcriptional regulation remains unclear. In the study, bioinformatics is used to identify nuclear receptor subfamily 2 group E member 3 (Nr2e3) as a potential Tet2 regulator. Nr2e3 is found to enhance Tet2's transcriptional activity by binding to its promoter region. Nr2e3 knockdown in mouse hippocampus leads to reduced Tet2 expression, depression-like behaviors, decreased hydroxymethylation of synaptic genes, and downregulation of synaptic proteins like postsynaptic density 95 KDa (PSD95) and N-methy-d-aspartate receptor 1 (NMDAR1). Fewer dendritic spines are also observed. Nr2e3 thus appears to play an antidepressant role under stress. In search of potential treatments, small molecule compounds to increase Nr2e3 expression are screened. Azacyclonal (AZA) is found to enhance the Nr2e3/Tet2 pathway and exhibited antidepressant effects in stressed mice, increasing PSD95 and NMDAR1 expression and dendritic spine density. This study illuminates Tet2's upstream regulatory mechanism, providing a new target for identifying early depression biomarkers and developing treatments.
Collapse
Affiliation(s)
- Xiaohua Ma
- Department of Neurologythe First Affiliated Hospital of Soochow UniversitySuzhou215000China
- Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Shiyao Xu
- Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Yaohui Zhou
- Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Qian Zhang
- Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Hao Yang
- Department of Fetologythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Bo Wan
- Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Yong Yang
- Department of Psychiatrythe Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsu215000China
| | - Zhigang Miao
- Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Xingshun Xu
- Department of Neurologythe First Affiliated Hospital of Soochow UniversitySuzhou215000China
- Institute of NeuroscienceSoochow UniversitySuzhou215123China
- Jiangsu Key Laboratory of Neuropsychiatric DiseasesSoochow UniversitySuzhouJiangsu215123China
| |
Collapse
|
12
|
Hu J, Lian Z, Weng Z, Xu Z, Gao J, Liu Y, Luo T, Wang X. Intranasal Delivery of Near-Infrared and Magnetic Dual-Response Nanospheres to Rapidly Produce Antidepressant-Like and Cognitive Enhancement Effects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405547. [PMID: 38778461 DOI: 10.1002/adma.202405547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Restricted by synaptic plasticity, dopamine receptor (DR) upregulation takes a long time to work. Moreover, the impact of the blood-brain barrier (BBB) on delivery efficiency restricts the development of drugs. Taking inspiration from snuff bottles, a convenient, fast-acting, and nonaddictive nasal drug delivery system has been developed to rapidly reshape the balance of synaptic transmitters. This optical and magnetic response system called CFs@DP, comprised of carbonized MIL-100 (Fe) frameworks (CFs) and domperidone (DP), which can enter the brain via nasal administration. Under dual stimulation of near-infrared (NIR) irradiation and catecholamine-induced complexation, CFs@DP disintegrates to release iron ions and DP, causing upregulation of the dopamine type 1 (D1), type 2 (D2) receptors, and brain-derived neurotrophic factor (BDNF) to achieve a therapeutic effect. In vivo experiments demonstrate that the DR density of mice (postnatal day 50-60) increased in the prefrontal cortex (PFC) and the hippocampus (HPC) after 10 days of therapy, resulting in antidepressant-like and cognitive enhancement effects. Interestingly, the cognitive enhancement effect of CFs@DP is even working in noniron deficiency (normal fed) mice, making it a promising candidate for application in enhancing learning ability.
Collapse
Affiliation(s)
- Jiangnan Hu
- Institute of Biomedical Innovation, Jiangxi Medical College, School of Life Sciences, Nanchang University, Nanchang, 330088, P. R. China
| | - Zhenglong Lian
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Zhenzhen Weng
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Zihao Xu
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Jie Gao
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Yuanyuan Liu
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Tao Luo
- Institute of Biomedical Innovation, Jiangxi Medical College, School of Life Sciences, Nanchang University, Nanchang, 330088, P. R. China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| |
Collapse
|
13
|
Xu H, Sun Z, Wang G, Li R. The Impact of Depression on Detrimental Changes in Bone Microstructure in Female Mice. Neuropsychiatr Dis Treat 2024; 20:1421-1433. [PMID: 39049938 PMCID: PMC11268775 DOI: 10.2147/ndt.s454865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
Background Several clinical studies have examined the connection between depression and bone loss, but the cause-and-effect relationship between the two conditions, especially in animal models, is not well-studied. Methods A total of 32 female mice were, randomly divided into control group (CON, n=19) and depression group (DEP, n=13). The mice in the DEP group were subjected to 21 consecutive days of restraint stress, following depressive-like behaviors were assessment. The femurs were collected using Micro-Computed Tomography (μCT) and histochemical staining. In parallel, levels of serotonin-related proteins in the brain were measured using Western blot analysis, and sex hormone profiles were determined through liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Results The mice in the DEP group exhibited clear signs of depressive-like behaviors and an increase in serotonin transporter levels (t=-2.435, P< 0.05). In comparison to the CON mice, the DEP mice showed a decrease in bone mineral density (t =3.741, P< 0.05), bone surface area density (t =8.009, P<0.01), percent bone volume (t =4.293, P< 0.05), trabecular number (t =5.844, P<0.01), and connected density (t =11.000, P< 0.05). Additionally, there was an increase in trabecular separation (t =-7.436, P<0.01) in DEP mice. Furthermore, the DEP mice displayed a significant reduction in serum estrogen levels (t =4.340, P< 0.05) and changes in its metabolite (t =-3.325, P< 0.05), while the levels of androgens remained unchanged. Conclusion The restraint stress not only led to the development of depressive-like behaviors but also disrupted the estrogen metabolism pathway, resulting in damage to bone mass and microstructure in female mice. These findings suggest that stress-induced depression may pose a risk for bone loss in female mice by altering estrogen metabolism pathways.
Collapse
Affiliation(s)
- Hong Xu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Gang Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Rena Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
14
|
Zhou X, Zhao C, Xu H, Xu Y, Zhan L, Wang P, He J, Lu T, Gu Y, Yang Y, Xu C, Chen Y, Liu Y, Zeng Y, Tian F, Chen Q, Xie X, Liu J, Hu H, Li J, Zheng Y, Guo J, Gao Z. Pharmacological inhibition of Kir4.1 evokes rapid-onset antidepressant responses. Nat Chem Biol 2024; 20:857-866. [PMID: 38355723 DOI: 10.1038/s41589-024-01555-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Major depressive disorder, a prevalent and severe psychiatric condition, necessitates development of new and fast-acting antidepressants. Genetic suppression of astrocytic inwardly rectifying potassium channel 4.1 (Kir4.1) in the lateral habenula ameliorates depression-like phenotypes in mice. However, Kir4.1 remains an elusive drug target for depression. Here, we discovered a series of Kir4.1 inhibitors through high-throughput screening. Lys05, the most potent one thus far, effectively suppressed native Kir4.1 channels while displaying high selectivity against established targets for rapid-onset antidepressants. Cryogenic-electron microscopy structures combined with electrophysiological characterizations revealed Lys05 directly binds in the central cavity of Kir4.1. Notably, a single dose of Lys05 reversed the Kir4.1-driven depression-like phenotype and exerted rapid-onset (as early as 1 hour) antidepressant actions in multiple canonical depression rodent models with efficacy comparable to that of (S)-ketamine. Overall, we provided a proof of concept that Kir4.1 is a promising target for rapid-onset antidepressant effects.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- College of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Zhao
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyan Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Li Zhan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Pei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingyi He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Henan University, Kaifeng, China
| | - Taotao Lu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yueling Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Yang
- Liangzhu Laboratory, Zhejiang University School of Medicine, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Chanjuan Xu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyang Chen
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxuan Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fuyun Tian
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Qian Chen
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hailan Hu
- Liangzhu Laboratory, Zhejiang University School of Medicine, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yueming Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Jiangtao Guo
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- College of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
- School of Pharmacy, Henan University, Kaifeng, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
| |
Collapse
|
15
|
Shi S, Ma D, Guo X, Chen Y, Yu J, Hu X, Wang X, Li T, Wang K, Zhi Y, Yang G, Lin L, Hao Q, Yang Y, Yang K, Wang J. Discovery of a Novel ASM Direct Inhibitor with a 1,5-Diphenyl-pyrazole Scaffold and Its Antidepressant Mechanism of Action. J Med Chem 2024; 67:10350-10373. [PMID: 38888140 DOI: 10.1021/acs.jmedchem.4c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Multiple studies have confirmed that acid sphingomyelinase (ASM) activity is associated with depression. The discovery of direct inhibitors against ASM is of great significance for exploring antidepressants and their mechanisms of action. Herein, a series of novel phenylpyrazole analogues were rationally designed and synthesized. Among them, compound 46 exhibited potent inhibitory activity (IC50 = 0.87 μM) and good drug-like properties. In vivo studies demonstrated that compound 46 was involved in multiple antidepressant mechanisms of action, which were associated with a decline of ceramide, including increasing the Bcl-2/Bax ratio and BDNF expression, down-regulating caspase-3 and caspase-9, ameliorating oxidative stress, reducing the levels of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6, and elevating 5-HT levels in the brains of mice, respectively. These meaningful results reveal for the first time that direct inhibitors exhibit remarkable antidepressant effects in the CUMS-induced mouse model through multiple mechanisms of antidepressant action.
Collapse
Affiliation(s)
- Shaochun Shi
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Dingchen Ma
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ximing Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinying Yu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Hu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xuan Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ke Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yunbao Zhi
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guoqing Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lizhi Lin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qingjing Hao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuqiao Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kan Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
16
|
Wu J, Zhang Z, Zhang Q, Li J. Design, synthesis, and biological evaluation of aralkyl piperazine and piperidine derivatives targeting SSRI/5-HT 1A/5-HT 7. Bioorg Med Chem 2024; 104:117698. [PMID: 38552597 DOI: 10.1016/j.bmc.2024.117698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
Serotonin reuptake inhibition combined with the action targeting 5-hydroxytryptamine receptor subtypes can serve as a potential target for the development of antidepressant drugs. Herein a series of new aralkyl piperazines and piperidines were designed and synthesized by the structural modifications of the previously discovered aralkyl piperidine compound 1, targeting SSRI/5-HT1A/5-HT7. The results exhibited that compound 5a showed strong binding to 5-HT1A and 5-HT7 (Ki of 0.46 nM, 2.7 nM, respectively) and a high level of serotonin reuptake inhibition (IC50 of 1.9 nM), all of which were significantly elevated compared to 1. In particular, compound 5a showed weaker inhibitory activity against hERG than 1, and demonstrated good stability in liver microsomes in vitro. The preliminary screening using FST indicated that orally administered 5a, at a high dose, could reduce immobility time in mice markedly, indicating potential antidepressant activity.
Collapse
Affiliation(s)
- Jianwei Wu
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China; National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co. Ltd., Shanghai 201203, China
| | - Zixue Zhang
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China; National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co. Ltd., Shanghai 201203, China
| | - Qingwei Zhang
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China; National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co. Ltd., Shanghai 201203, China; School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jianqi Li
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China; National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co. Ltd., Shanghai 201203, China.
| |
Collapse
|
17
|
Zhang L, Meng S, Huang E, Di T, Ding Z, Huang S, Chen W, Zhang J, Zhao S, Yuwen T, Chen Y, Xue Y, Wang F, Shi J, Shi Y. High frequency deep brain stimulation of the dorsal raphe nucleus prevents methamphetamine priming-induced reinstatement of drug seeking in rats. Transl Psychiatry 2024; 14:190. [PMID: 38622130 PMCID: PMC11018621 DOI: 10.1038/s41398-024-02895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
Drug addiction represents a multifaceted and recurrent brain disorder that possesses the capability to create persistent and ineradicable pathological memory. Deep brain stimulation (DBS) has shown a therapeutic potential for neuropsychological disorders, while the precise stimulation targets and therapeutic parameters for addiction remain deficient. Among the crucial brain regions implicated in drug addiction, the dorsal raphe nucleus (DRN) has been found to exert an essential role in the manifestation of addiction memory. Thus, we investigated the effects of DRN DBS in the treatment of addiction and whether it might produce side effects by a series of behavioral assessments, including methamphetamine priming-induced reinstatement of drug seeking behaviors, food-induced conditioned place preference (CPP), open field test and elevated plus-maze test, and examined brain activity and connectivity after DBS of DRN. We found that high-frequency DBS of the DRN significantly lowered the CPP scores and the number of active-nosepokes in the methamphetamine-primed CPP test and the self-administration model. Moreover, both high-frequency and sham DBS group rats were able to establish significant food-induced place preference, and no significant difference was observed in the open field test and in the elevated plus-maze test between the two groups. Immunofluorescence staining and functional magnetic resonance imaging revealed that high-frequency DBS of the DRN could alter the activity and functional connectivity of brain regions related to addiction. These results indicate that high-frequency DBS of the DRN effectively inhibits methamphetamine priming-induced relapse and seeking behaviors in rats and provides a new target for the treatment of drug addiction.
Collapse
Affiliation(s)
- Libo Zhang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Enze Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Tianqi Di
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Zengbo Ding
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Shihao Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Wenjun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Jiayi Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Shenghong Zhao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Ting Yuwen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Yang Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Feng Wang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
| | - Jie Shi
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen-PKU-HKUST Medical Center, Shenzhen, China.
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China.
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| | - Yu Shi
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen-PKU-HKUST Medical Center, Shenzhen, China.
| |
Collapse
|
18
|
Qian J, Zheng L, Huang M, Zhao M. Potential Mechanisms of Casein Hexapeptide YPVEPF on Stress-Induced Anxiety and Insomnia Mice and Its Molecular Effects and Key Active Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6189-6202. [PMID: 38501577 DOI: 10.1021/acs.jafc.3c05718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The hexapeptide YPVEPF with strong sleep-enhancing effects could be detected in rat brain after a single oral administration as we previously proved. In this study, the mechanism and molecular effects of YPVEPF in the targeted stress-induced anxiety mice were first investigated, and its key active structure was further explored. The results showed that YPVEPF could significantly prolong sleep duration and improve the anxiety indexes, including prolonging the time spent in the open arms and in the center. Meanwhile, YPVEPF showed strong sleep-enhancing effects by significantly increasing the level of the GABA/Glu ratio, 5-HT, and dopamine in brain and serum and regulating the anabolism of multiple targets, but the effects could be blocked by bicuculline and WAY100135. Moreover, the molecular simulation results showed that YPVEPF could stably bind to the vital GABAA and 5-HT1A receptors due to the vital structure of Tyr-Pro-Xaa-Xaa-Pro-, and the electrostatic and van der Waals energy played dominant roles in stabilizing the conformation. Therefore, YPVEPF displayed sleep-enhancing and anxiolytic effects by regulating the GABA-Glu metabolic pathway and serotoninergic system depending on distinctive self-folding structures with Tyr and two Pro repeats.
Collapse
Affiliation(s)
- Jingjing Qian
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
- Guangdong Huapeptides Biotechnology Co., Ltd, Zhaoqing 526000, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| |
Collapse
|
19
|
Jiang X, Shao Y, Liao Y, Zheng X, Peng M, Cai Y, Wang M, Liu H, Zeng C, Lin Y, Zhang W, Liu L. Mechanisms underlying the efficacy and limitation of dopa and tetrahydrobiopterin therapies for the deficiency of GTP cyclohydrolase 1 revealed in a novel mouse model. Eur J Pharmacol 2024; 967:176379. [PMID: 38342361 DOI: 10.1016/j.ejphar.2024.176379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Dopa and tetrahydrobiopterin (BH4) supplementation are recommended therapies for the dopa-responsive dystonia caused by GTP cyclohydrolase 1 (GCH1, also known as GTPCH) deficits. However, the efficacy and mechanisms of these therapies have not been intensively studied yet. In this study, we tested the efficacy of dopa and BH4 therapies by using a novel GTPCH deficiency mouse model, Gch1KI/KI, which manifested infancy-onset motor deficits and growth retardation similar to the patients. First, dopa supplementation supported Gch1KI/KI mouse survival to adulthood, but residual motor deficits and dwarfism remained. Interestingly, RNAseq analysis indicated that while the genes participating in BH4 biosynthesis and regeneration were significantly increased in the liver, no significant changes were observed in the brain. Second, BH4 supplementation alone restored the growth of Gch1KI/KI pups only in early postnatal developmental stage. High doses of BH4 supplementation indeed restored the total brain BH4 levels, but brain dopamine deficiency remained. While total brain TH levels were relatively increased in the BH4 treated Gch1KI/KI mice, the TH in the striatum were still almost undetectable, suggesting differential BH4 requirements among brain regions. Last, the growth of Gch1KI/KI mice under combined therapy outperformed dopa or BH4 therapy alone. Notably, dopamine was abnormally high in more than half, but not all, of the treated Gch1KI/KI mice, suggesting the existence of variable synergetic effects of dopa and BH4 supplementation. Our results provide not only experimental evidence but also novel mechanistic insights into the efficacy and limitations of dopa and BH4 therapies for GTPCH deficiency.
Collapse
Affiliation(s)
- Xiaoling Jiang
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| | - Yongxian Shao
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| | - Yongqiang Liao
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| | - Xiaoning Zheng
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| | - Minzhi Peng
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| | - Yanna Cai
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| | - Meiyi Wang
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| | - Huazhen Liu
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| | - Chunhua Zeng
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| | - Yunting Lin
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China.
| | - Wen Zhang
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China.
| | - Li Liu
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China.
| |
Collapse
|
20
|
Hou X, Jing J, Jiang Y, Huang X, Xian Q, Lei T, Zhu J, Wong KF, Zhao X, Su M, Li D, Liu L, Qiu Z, Sun L. Nanobubble-actuated ultrasound neuromodulation for selectively shaping behavior in mice. Nat Commun 2024; 15:2253. [PMID: 38480733 PMCID: PMC10937988 DOI: 10.1038/s41467-024-46461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Ultrasound is an acoustic wave which can noninvasively penetrate the skull to deep brain regions, enabling neuromodulation. However, conventional ultrasound's spatial resolution is diffraction-limited and low-precision. Here, we report acoustic nanobubble-mediated ultrasound stimulation capable of localizing ultrasound's effects to only the desired brain region in male mice. By varying the delivery site of nanobubbles, ultrasound could activate specific regions of the mouse motor cortex, evoking EMG signaling and limb movement, and could also, separately, activate one of two nearby deep brain regions to elicit distinct behaviors (freezing or rotation). Sonicated neurons displayed reversible, low-latency calcium responses and increased c-Fos expression in the sub-millimeter-scale region with nanobubbles present. Ultrasound stimulation of the relevant region also modified depression-like behavior in a mouse model. We also provide evidence of a role for mechanosensitive ion channels. Altogether, our treatment scheme allows spatially-targetable, repeatable and temporally-precise activation of deep brain circuits for neuromodulation without needing genetic modification.
Collapse
Affiliation(s)
- Xuandi Hou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Jianing Jing
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Yizhou Jiang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Xiaohui Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Quanxiang Xian
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Ting Lei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Jiejun Zhu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, Guangdong, China
| | - Kin Fung Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Xinyi Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Min Su
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Danni Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Langzhou Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Zhihai Qiu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, Guangdong, China
| | - Lei Sun
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China.
| |
Collapse
|
21
|
Wan C, Xia Y, Yan J, Lin W, Yao L, Zhang M, Gaisler-Salomon I, Mei L, Yin DM, Chen Y. nNOS in Erbb4-positive neurons regulates GABAergic transmission in mouse hippocampus. Cell Death Dis 2024; 15:167. [PMID: 38396027 PMCID: PMC10891175 DOI: 10.1038/s41419-024-06557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Neuronal nitric oxide synthase (nNOS, gene name Nos1) orchestrates the synthesis of nitric oxide (NO) within neurons, pivotal for diverse neural processes encompassing synaptic transmission, plasticity, neuronal excitability, learning, memory, and neurogenesis. Despite its significance, the precise regulation of nNOS activity across distinct neuronal types remains incompletely understood. Erb-b2 receptor tyrosine kinase 4 (ErbB4), selectively expressed in GABAergic interneurons and activated by its ligand neuregulin 1 (NRG1), modulates GABA release in the brain. Our investigation reveals the presence of nNOS in a subset of GABAergic interneurons expressing ErbB4. Notably, NRG1 activates nNOS via ErbB4 and its downstream phosphatidylinositol 3-kinase (PI3K), critical for NRG1-induced GABA release. Genetic removal of nNos from Erbb4-positive neurons impairs GABAergic transmission, partially rescued by the NO donor sodium nitroprusside (SNP). Intriguingly, the genetic deletion of nNos from Erbb4-positive neurons induces schizophrenia-relevant behavioral deficits, including hyperactivity, impaired sensorimotor gating, and deficient working memory and social interaction. These deficits are ameliorated by the atypical antipsychotic clozapine. This study underscores the role and regulation of nNOS within a specific subset of GABAergic interneurons, offering insights into the pathophysiological mechanisms of schizophrenia, given the association of Nrg1, Erbb4, Pi3k, and Nos1 genes with this mental disorder.
Collapse
Affiliation(s)
- Chaofan Wan
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Rehabilitation, School of Health Science, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yucen Xia
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jinglan Yan
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Weipeng Lin
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Lin Yao
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Meng Zhang
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Inna Gaisler-Salomon
- School of Psychological Sciences, The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Lin Mei
- Chinese Institute for Medical Research, Beijing, 100069, China
- Capital Medical University, Beijing, 100069, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Dong-Min Yin
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200062, China.
| | - Yongjun Chen
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
22
|
Yao H, Wang X, Chi J, Chen H, Liu Y, Yang J, Yu J, Ruan Y, Xiang X, Pi J, Xu JF. Exploring Novel Antidepressants Targeting G Protein-Coupled Receptors and Key Membrane Receptors Based on Molecular Structures. Molecules 2024; 29:964. [PMID: 38474476 DOI: 10.3390/molecules29050964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Major Depressive Disorder (MDD) is a complex mental disorder that involves alterations in signal transmission across multiple scales and structural abnormalities. The development of effective antidepressants (ADs) has been hindered by the dominance of monoamine hypothesis, resulting in slow progress. Traditional ADs have undesirable traits like delayed onset of action, limited efficacy, and severe side effects. Recently, two categories of fast-acting antidepressant compounds have surfaced, dissociative anesthetics S-ketamine and its metabolites, as well as psychedelics such as lysergic acid diethylamide (LSD). This has led to structural research and drug development of the receptors that they target. This review provides breakthroughs and achievements in the structure of depression-related receptors and novel ADs based on these. Cryo-electron microscopy (cryo-EM) has enabled researchers to identify the structures of membrane receptors, including the N-methyl-D-aspartate receptor (NMDAR) and the 5-hydroxytryptamine 2A (5-HT2A) receptor. These high-resolution structures can be used for the development of novel ADs using virtual drug screening (VDS). Moreover, the unique antidepressant effects of 5-HT1A receptors in various brain regions, and the pivotal roles of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and tyrosine kinase receptor 2 (TrkB) in regulating synaptic plasticity, emphasize their potential as therapeutic targets. Using structural information, a series of highly selective ADs were designed based on the different role of receptors in MDD. These molecules have the favorable characteristics of rapid onset and low adverse drug reactions. This review offers researchers guidance and a methodological framework for the structure-based design of ADs.
Collapse
Affiliation(s)
- Hanbo Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Xiaodong Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaxin Chi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiayi Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaqi Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xufu Xiang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
23
|
Dong B, Wang J, Wang M, Chen Q, Kong X, Chang J, Li X, Yue T, Wang Y. An FRET-based and ER-targeting fluorescent probe for tracking superoxide anion (O 2•-) in the hippocampus of the depressive mouse. Talanta 2024; 268:125272. [PMID: 37857106 DOI: 10.1016/j.talanta.2023.125272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Exploration of the pathway for the excessive generation of O2•- in hippocampus during depression is critical for the study on molecular mechanism of depression, and is currently still inconclusive. Herein, we put forward a hypothesis that depression increases the generation of O2•- in hippocampus by triggering ER stress, and verified this hypothesis by constructing an FRET-based ER-targeting fluorescent probe (ER-CRh) which can provide ratiometric detection of O2•- with high sensitivity and selectivity. The probe ER-CRh showed desirable ER-targeting capability, and could detect the endogenous O2•- in the ER of the hippocampal neuronal cells experiencing ER stress. Fluorescence imaging indicates that ER-CRh possesses the capability to penetrate the blood-brain barrier in mouse, and depression could promote the production of endogenous O2•- in hippocampus. Western blotting analysis reveals that the proteins GRP78 and CHOP from the hippocampus of depressive mouse show an up-regulated expression, and it suggests depression causes ER stress in hippocampal neurons. These findings prove our hypothesis, and could conduce to develop safe and effective antidepressants by the protection and repair of hippocampal neurons.
Collapse
Affiliation(s)
- Baoli Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Jingxian Wang
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250117, China
| | - Min Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Qingxian Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xiuqi Kong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Jia Chang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xiaobing Li
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250117, China
| | - Tao Yue
- Shandong Chemical Technology Academy, Qingdao University of Science and Technology (Jinan), Jinan, Shandong, 250014, China.
| | - Yue Wang
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250117, China.
| |
Collapse
|
24
|
Liu M, Fan Y, Ni N, Yu T, Mao Z, Huang H, Zhang J, Tang Y, He H, Meng F, You Y, Zhou Q. TERT mediates the U-shape of glucocorticoids effects in modulation of hippocampal neural stem cells and associated brain function. CNS Neurosci Ther 2024; 30:e14577. [PMID: 38421107 PMCID: PMC10850922 DOI: 10.1111/cns.14577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/17/2023] [Accepted: 12/07/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Glucocorticoids (GCs) are steroidal hormones produced by the adrenal cortex. A physiological-level GCs have a crucial function in maintaining many cognitive processes, like cognition, memory, and mood, however, both insufficient and excessive GCs impair these functions. Although this phenomenon could be explained by the U-shape of GC effects, the underlying mechanisms are still not clear. Therefore, understanding the underlying mechanisms of GCs may provide insight into the treatments for cognitive and mood-related disorders. METHODS Consecutive administration of corticosterone (CORT, 10 mg/kg, i.g.) proceeded for 28 days to mimic excessive GCs condition. Adrenalectomy (ADX) surgery was performed to ablate endogenous GCs in mice. Microinjection of 1 μL of Ad-mTERT-GFP virus into mouse hippocampus dentate gyrus (DG) and behavioral alterations in mice were observed 4 weeks later. RESULTS Different concentrations of GCs were shown to affect the cell growth and development of neural stem cells (NSCs) in a U-shaped manner. The physiological level of GCs (0.01 μM) promoted NSC proliferation in vitro, while the stress level of GCs (10 μM) inhibited it. The glucocorticoid synthesis blocker metyrapone (100 mg/kg, i.p.) and ADX surgery both decreased the quantity and morphological development of doublecortin (DCX)-positive immature cells in the DG. The physiological level of GCs activated mineralocorticoid receptor and then promoted the production of telomerase reverse transcriptase (TERT); in contrast, the stress level of GCs activated glucocorticoid receptor and then reduced the expression of TERT. Overexpression of TERT by AD-mTERT-GFP reversed both chronic stresses- and ADX-induced deficiency of TERT and the proliferation and development of NSCs, chronic stresses-associated depressive symptoms, and ADX-associated learning and memory impairment. CONCLUSION The bidirectional regulation of TERT by different GCs concentrations is a key mechanism mediating the U-shape of GC effects in modulation of hippocampal NSCs and associated brain function. Replenishment of TERT could be a common treatment strategy for GC dysfunction-associated diseases.
Collapse
Affiliation(s)
- Meng‐Ying Liu
- Department of Pharmacy, Nanjing Drum Tower HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Yixin Fan
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of PharmacyNanjing Medical UniversityNanjingChina
- Department of Pharmacy, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Ningjie Ni
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of PharmacyNanjing Medical UniversityNanjingChina
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Tao Yu
- School of PharmacyNanjing Medical UniversityNanjingChina
| | - Zhiyuan Mao
- Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Department of Human Anatomy, Research Centre for Bone and Stem CellsNanjing Medical UniversityNanjingChina
| | - Hanyu Huang
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of PharmacyNanjing Medical UniversityNanjingChina
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jing Zhang
- Department of Clinical Pharmacology, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Yulin Tang
- Department of Pharmacy, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Hongliang He
- Department of Pharmacy, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Fan Meng
- Department of Clinical Pharmacology, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Yongping You
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Qi‐Gang Zhou
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of PharmacyNanjing Medical UniversityNanjingChina
- Department of Pharmacy, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
- Department of Clinical Pharmacology, School of PharmacyNanjing Medical UniversityNanjingChina
| |
Collapse
|
25
|
Lu H, Wang Y, Shen D, Ruan J, Lu J, Wang L, Song Y, Fan J, Li D, Shi L, Xia M, Xu T. Effects and central mechanism of electroacupuncture and MRI-navigated rTMS for PSD: study protocol for an fMRI-based single-center, randomized, controlled, open-label trial. Front Psychiatry 2024; 14:1226777. [PMID: 38250275 PMCID: PMC10799680 DOI: 10.3389/fpsyt.2023.1226777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/27/2023] [Indexed: 01/23/2024] Open
Abstract
Background Post-stroke depression (PSD) is the most common mental complication after stroke and has a serious impact on functional outcomes and quality of life for stroke patients. Antidepressants are the first-line treatment for PSD; however, many reported side effects remain. Clinical research and practice guidelines have shown that electro-acupuncture (EA) or rTMS have a positive effect on PSD. However, there are few clinical studies on EA and MRI-navigated rTMS for PSD that explore the fMRI-based central mechanism in depression. Methods In this randomized, controlled, open-label trial, 64 patients with PSD will be randomly allocated into the experiment group (n = 32) or control group (n = 32). The experiment group will receive EA and MRI-navigated rTMS and the control group will receive MRI-navigated rTMS treatment, in 12-20 sessions over 4 weeks. In addition, 10 healthy people for fMRI scanning will be recruited as a healthy control group without any intervention. The primary outcome will be the change from baseline in the Hamilton Depression Scale-24 item (HAMD-24) scores at week 4. The primary analysis of the central mechanism will mainly involve cortical morphology, local spontaneous brain activity, and the default mode network (DMN) functional connectivity based on fMRI at 0 and 4 weeks. Secondary outcomes will include the neuro-patho-physiological and quality of life changes in cortical excitability, determined using the motor evoked potential test (MEP), National Institutes of Health Stroke Scale (NIHSS), EuroQol Five Dimensions Questionnaire (EQ-5D) Scale, Modified Barthel Index (MBI) Scale, and Health Scale of Traditional Chinese Medicine (HSTCM). Additional indicators will include the Acceptability Questionnaire and Health Economics Evaluation (cost-effectiveness analysis) to assess the acceptability and economic practicality of the treatment under study. Outcomes will be assessed at baseline and post intervention. Discussion EA and MRI-navigated rTMS therapy could become an alternative treatment for PSD, and it is expected that this trial will provide reliable clinical evidence and a potential central mechanism for the future use of EA and MRI-navigated rTMS for PSD. Clinical trial registration NCT05516680, ClinicalTrials.gov (registered in August 2022).
Collapse
Affiliation(s)
- Hai Lu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yang Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Diwen Shen
- Department of Medical Psychology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jianguo Ruan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jiaming Lu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Linlin Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yang Song
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jia Fan
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Dongna Li
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Lijing Shi
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Meng Xia
- Alberta College of Acupuncture & Traditional Chinese Medicine, Calgary, AB, Canada
| | - Tianshu Xu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
26
|
Gajeswski-Kurdziel PA, Walsh AE, Blakely RD. Functional and pathological consequences of being fast on the uptake: Protein kinase G and p38α MAPK regulation of serotonin transporters. Curr Res Physiol 2024; 7:100117. [PMID: 38298474 PMCID: PMC10825370 DOI: 10.1016/j.crphys.2024.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) signaling plays an important role in dynamic control of peripheral and central nervous system physiology, with altered 5-HT homeostasis implicated in a significant number of disorders, ranging from pulmonary, bowel, and metabolic disease to depression, obsessive-compulsive disorder, and autism spectrum disorder (ASD). The presynaptic, 5-HT transporter (SERT) has a well-established role in regulating 5-HT signaling and is a target of widely prescribed psychotherapeutics, the 5-HT selective reuptake inhibitors (SSRIs). Although SSRI therapy provides symptom relief for many suffering from mood and anxiety disorders, response to these medications is slow (weeks), and too many receive modest or no benefit. At present, all prescribed SSRIs act as competitive SERT antagonists. Although non-serotonergic therapeutics for mood disorders deserve aggressive investigation, the development of agents that target SERT regulatory pathways have yet to be considered for their possible utility and may possibly offer improved efficacy and more rapid onset. Here, we focus attention on a significant body of evidence that SERT transport activity can be rapidly elevated by protein kinase G (PKG) and p38α mitogen activated protein kinase (MAPK) linked pathways, mechanisms that are impacted by disease-associated genetic variation. Here, we provide a brief overview of kinase-linked, posttranslational regulation of SERT, with a particular focus on evidence from pharmacological and genetic studies that the transporter's regulation by PKG/p38α MAPK associated pathways offers an opportunity to more subtly adjust, rather than eliminate, SERT function as a therapeutic strategy.
Collapse
Affiliation(s)
| | - Allison E. Walsh
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Randy D. Blakely
- Stiles-Nicholson Brain Institute, Jupiter, FL, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
27
|
Ning B, Wang Z, He J, Wu Q, Deng Q, Yang Q, Gao J, Fu W, Deng Y, Wu B, Huang X, Mei J, Jiang F, Fu W. The rapid antidepressant effect of acupuncture on two animal models of depression by inhibiting M1-Ach receptors regulates synaptic plasticity in the prefrontal cortex. Brain Res 2024; 1822:148609. [PMID: 37783259 DOI: 10.1016/j.brainres.2023.148609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND It is unclear whether acupuncture has a rapid antidepressant effect and what is the main mechanism. METHODS In this study, forced swimming stress test (FST) in mice were divided into five groups: control group, acupuncture group, scopolamine group, arecoline group, and acupuncture + arecoline group. Chronic unpredictable mild stress (CUMS) model rats were divided into six groups: naïve (non-CUMS) group, CUMS group, acupuncture group, scopolamine group, arecoline group, and acupuncture + arecoline group. Twenty-four hours after the end of treatment, FST was conducted in mice and rats. The expression of M1-AchR, AMPA receptors (GluR1 and GluR2), BDNF, mTOR, p-mTOR, synapsin I, and PSD95 in the prefrontal cortex was determined by western blot. The spine density of neurons in the prefrontal cortex was detected by golgi staining. RESULTS The results showed that acupuncture reduced the immobility time of FST in two depression models. Acupuncture inhibited the expression of M1-AchR and promoted the expression of GluR1, GluR2, BDNF, p-mTOR, synapsin I, PSD95, and increased the density of neuron dendritic spine in the prefrontal cortex. CONCLUSIONS The rapid antidepressant effect of acupuncture may be activating the "glutamate tide" - AMPA receptor activation - BDNF release - mTORC1 pathway activation through inhibiting the expression of M1-AchR in the prefrontal cortex, thereby increasing the expression of synaptic proteins and regulating synaptic plasticity.
Collapse
Affiliation(s)
- Baile Ning
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhifang Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiangshan He
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiyue Deng
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Yang
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Gao
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Wen Fu
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ying Deng
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bingxin Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xichang Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jilin Mei
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fan Jiang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Wenbin Fu
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
28
|
Blumenfeld Z, Bera K, Castrén E, Lester HA. Antidepressants enter cells, organelles, and membranes. Neuropsychopharmacology 2024; 49:246-261. [PMID: 37783840 PMCID: PMC10700606 DOI: 10.1038/s41386-023-01725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023]
Abstract
We begin by summarizing several examples of antidepressants whose therapeutic actions begin when they encounter their targets in the cytoplasm or in the lumen of an organelle. These actions contrast with the prevailing view that most neuropharmacological actions begin when drugs engage their therapeutic targets at extracellular binding sites of plasma membrane targets-ion channels, receptors, and transporters. We review the chemical, pharmacokinetic, and pharmacodynamic principles underlying the movements of drugs into subcellular compartments. We note the relationship between protonation-deprotonation events and membrane permeation of antidepressant drugs. The key properties relate to charge and hydrophobicity/lipid solubility, summarized by the parameters LogP, pKa, and LogDpH7.4. The classical metric, volume of distribution (Vd), is unusually large for some antidepressants and has both supracellular and subcellular components. A table gathers structures, LogP, PKa, LogDpH7.4, and Vd data and/or calculations for most antidepressants and antidepressant candidates. The subcellular components, which can now be measured in some cases, are dominated by membrane binding and by trapping in the lumen of acidic organelles. For common antidepressants, such as selective serotonin reuptake inhibitors (SSRIs) and serotonin/norepinephrine reuptake inhibitors (SNRIs), the target is assumed to be the eponymous reuptake transporter(s), although in fact the compartment of target engagement is unknown. We review special aspects of the pharmacokinetics of ketamine, ketamine metabolites, and other rapidly acting antidepressants (RAADs) including methoxetamine and scopolamine, psychedelics, and neurosteroids. Therefore, the reader can assess properties that markedly affect a drug's ability to enter or cross membranes-and therefore, to interact with target sites that face the cytoplasm, the lumen of organelles, or a membrane. In the current literature, mechanisms involving intracellular targets are termed "location-biased actions" or "inside-out pharmacology". Hopefully, these general terms will eventually acquire additional mechanistic details.
Collapse
Affiliation(s)
- Zack Blumenfeld
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Kallol Bera
- Department of Neurosciences and Howard Hughes Medical Institute, University of California at San Diego, La Jolla, CA, USA
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
29
|
Shen ZC, Liu JM, Zheng JY, Li MD, Tian D, Pan Y, Tao WC, Gao SQ, Xia ZX. Regulation of anxiety-like behaviors by S-palmitoylation and S-nitrosylation in basolateral amygdala. Biomed Pharmacother 2023; 169:115859. [PMID: 37948993 DOI: 10.1016/j.biopha.2023.115859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Protein posttranslational modification regulates synaptic protein stability, sorting and trafficking, and is involved in emotional disorders. Yet the molecular mechanisms regulating emotional disorders remain unelucidated. Here we report unknown roles of protein palmitoylation/nitrosylation crosstalk in regulating anxiety-like behaviors in rats. According to the percentages of open arm duration in the elevated plus maze test, the rats were divided into high-, intermediate- and low-anxiety groups. The palmitoylation and nitrosylation levels were detected by acyl-biotin exchange assay, and we found low palmitoylation and high nitrosylation levels in the basolateral amygdala (BLA) of high-anxiety rats. Furthermore, we observed that 2-bromopalmitate (2-BP), a palmitoylation inhibitor, induced anxiety-like behaviors, accompanied with decreased amplitude and frequency of mEPSCs and mIPSCs in the BLA. Additionally, we also found that inhibiting nNOS activity with 7-nitroindazole (7-NI) in the BLA caused anxiolytic effects and reduced the synaptic transmission. Interestingly, diazepam (DZP) rapidly elevated the protein palmitoylation level and attenuated the protein nitrosylation level in the BLA. Specifically, similar to DZP, the voluntary wheel running exerted DZP-like anxiolytic action, and induced high palmitoylation and low nitrosylation levels in the BLA. Lastly, blocking the protein palmitoylation with 2-BP induced an increase in protein nitrosylation level, and attenuating the nNOS activity by 7-NI elevated the protein palmitoylation level. Collectively, these results show a critical role of protein palmitoylation/nitrosylation crosstalk in orchestrating anxiety behavior in rats, and it may serve as a potential target for anxiolytic intervention.
Collapse
Affiliation(s)
- Zu-Cheng Shen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou 350122, China.
| | - Jian-Min Liu
- Department of Pharmacy, Wuhan No. 1 Hospital, Wuhan 430000, China
| | - Jie-Yan Zheng
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Meng-Die Li
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Dan Tian
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yue Pan
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Wu-Cheng Tao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou 350122, China
| | - Shuang-Qi Gao
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Zhi-Xuan Xia
- Department of Pharmacology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
30
|
Xiao Y, Zhao L, Zang X, Xue S. Compressed primary-to-transmodal gradient is accompanied with subcortical alterations and linked to neurotransmitters and cellular signatures in major depressive disorder. Hum Brain Mapp 2023; 44:5919-5935. [PMID: 37688552 PMCID: PMC10619397 DOI: 10.1002/hbm.26485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
Major depressive disorder (MDD) has been shown to involve widespread changes in low-level sensorimotor and higher-level cognitive functions. Recent research found that a primary-to-transmodal gradient could capture a cortical hierarchical organization ranging from perception and action to cognition in healthy subjects, but a prominent gradient dysfunction in MDD patients. However, whether and how this cortical gradient is linked to subcortical impairments and whether it is reflected in the microscale neurotransmitter systems and cell type-specific transcriptional signatures remain largely unknown. Data were acquired from 323 MDD patients and 328 sex- and age-matched healthy controls derived from the REST-meta-MDD project, and the human brain neurotransmitter systems density maps and gene expression data were drawn from two publicly available datasets. We investigated alterations of the primary-to-transmodal gradient in MDD patients and their correlations with clinical symptoms of depression and anxiety, as well as their paralleled subcortical impairments. The correlations between MDD-related gradient alterations and densities of the neurotransmitter systems and gene expression information were assessed, respectively. The results demonstrated that MDD patients had a compressed primary-to-transmodal gradient accompanied by paralleled alterations in subcortical regions including the caudate, amygdala, and thalamus. The case-control gradient differences were spatially correlated with the densities of the neurotransmitter systems including the serotonin and dopamine receptors, and meanwhile with gene expression enriched in astrocytes, excitatory and inhibitory neuronal cells. These findings mapped the paralleled subcortical impairments in cortical hierarchical organization and also helped us understand the possible molecular and cellular substrates of the co-occurrence of high-level cognitive impairments with low-level sensorimotor abnormalities in MDD.
Collapse
Affiliation(s)
- Yang Xiao
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Institute of Psychological ScienceHangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiang ProvincePR China
| | - Lei Zhao
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Institute of Psychological ScienceHangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiang ProvincePR China
| | - Xuelian Zang
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Institute of Psychological ScienceHangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiang ProvincePR China
| | - Shao‐Wei Xue
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Institute of Psychological ScienceHangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiang ProvincePR China
| |
Collapse
|
31
|
Ma H, Gu L, Wang Y, Xu Q, Zhang Y, Shao W, Yu Q, Lian X, Liu L, Gu J, Ji N, Liu X, Nagayasu K, Zhang H. The States of Different 5-HT Receptors Located in the Dorsal Raphe Nucleus Are Crucial for Regulating the Awakening During General Anesthesia. Mol Neurobiol 2023; 60:6931-6948. [PMID: 37516665 DOI: 10.1007/s12035-023-03519-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/11/2023] [Indexed: 07/31/2023]
Abstract
General anesthesia is widely used in various clinical practices due to its ability to cause loss of consciousness. However, the exact mechanism of anesthesia-induced unconsciousness remains unclear. It is generally thought that arousal-related brain nuclei are involved. 5-Hydroxytryptamine (5-HT) is closely associated with sleep arousal. Here, we explore the role of the 5-HT system in anesthetic awakening through pharmacological interventions and optogenetic techniques. Our data showed that exogenous administration of 5-hydroxytryptophan (5-HTP) and optogenetic activation of 5-HT neurons in the dorsal raphe nucleus (DR) could significantly shorten the emergence time of sevoflurane anesthesia in mice, suggesting that regulation of the 5-HT system using both endogenous and exogenous approaches could mediate delayed emergence. In addition, we first discovered that the different 5-HT receptors located in the DR, known as 5-HT autoreceptors, are essential for the regulation of general anesthetic awakening, with 5-HT1A and 5-HT2A/C receptors playing a regulatory role. These results can provide a reliable theoretical basis as well as potential targets for clinical intervention to prevent delayed emergence and some postoperative risks.
Collapse
Affiliation(s)
- HaiXiang Ma
- Department of Anesthesiology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
- Medical College of Jining Medical University, Ningji, 272067, Shandong, China
| | - LeYuan Gu
- Department of Anesthesiology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - YuLing Wang
- Department of Anesthesiology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Qing Xu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yuanli Zhang
- Department of Anesthesiology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - WeiHui Shao
- Department of Anesthesiology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Qian Yu
- Department of Anesthesiology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - XiTing Lian
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lu Liu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - JiaXuan Gu
- Department of Anesthesiology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Na Ji
- Department of Anesthesia, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - XiaoLing Liu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - HongHai Zhang
- Department of Anesthesiology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China.
- Medical College of Jining Medical University, Ningji, 272067, Shandong, China.
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310006, China.
| |
Collapse
|
32
|
Huang J, Huang W, Yi J, Deng Y, Li R, Chen J, Shi J, Qiu Y, Wang T, Chen X, Zhang X, Xiang AP. Mesenchymal stromal cells alleviate depressive and anxiety-like behaviors via a lung vagal-to-brain axis in male mice. Nat Commun 2023; 14:7406. [PMID: 37973914 PMCID: PMC10654509 DOI: 10.1038/s41467-023-43150-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Major depressive disorder (MDD) is one of the most common and disabling mental disorders, and current strategies remain inadequate. Although mesenchymal stromal cells (MSCs) have shown beneficial effects in experimental models of depression, underlying mechanisms remain elusive. Here, using murine depression models, we demonstrated that MSCs could alleviate depressive and anxiety-like behaviors not due to a reduction in proinflammatory cytokines, but rather activation of dorsal raphe nucleus (DRN) 5-hydroxytryptamine (5-HT) neurons. Mechanistically, peripheral delivery of MSCs activated pulmonary innervating vagal sensory neurons, which projected to the nucleus tractus solitarius, inducing the release of 5-HT in DRN. Furthermore, MSC-secreted brain-derived neurotrophic factor activated lung sensory neurons through tropomyosin receptor kinase B (TrkB), and inhalation of a TrkB agonist also achieved significant therapeutic effects in male mice. This study reveals a role of peripheral MSCs in regulating central nervous system function and demonstrates a potential "lung vagal-to-brain axis" strategy for MDD.
Collapse
Affiliation(s)
- Jing Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Junzhe Yi
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Yiwen Deng
- Key Laboratory of Medical Transformation of Jiujiang, Jiujiang University, Jiujiang, Jiangxi, 332005, China
| | - Ruijie Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Jieying Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Jiahao Shi
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Yuan Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Department of Histoembryology and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Department of Histoembryology and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaoyong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Department of Histoembryology and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
- Department of Histoembryology and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
- Department of Histoembryology and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
33
|
Zihao L, Jinyun S, Shuanglin G, Xiuzhen C, Yonglin L, Hongyu Z. The relationship between COVID-19, depressive disorder, and anxiety: a bidirectional Mendelian randomization study. Front Psychiatry 2023; 14:1257553. [PMID: 37928923 PMCID: PMC10622770 DOI: 10.3389/fpsyt.2023.1257553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Background Previous clinical studies have found that negative mental states such as depression and anxiety are closely related to COVID-19 infection. We used Mendelian randomization (MR) to explore the relationship between depression, anxiety, and COVID-19 infection. Methods Our data were based on publicly available GWAS databases. The COVID-19 samples were obtained from the COVID-19 Host Genetics Initiative (HGI). The depression samples were obtained from the Psychiatric Genomics Consortium (PGC). The anxiety samples were derived from the Finngen database. We used inverse-variance weighting (IVW) as the primary analysis method, with weighted median, MR Egger, and multivariate MRI adjustment. Results There was no causal effect of different COVID-19 infection statuses on depression and anxiety as determined by MR analysis. In addition, in the reverse MR analysis, we found a significant causal effect of anxiety on severe symptoms after COVID-19 infection. The results of the MR Egger regression, weighted median, and weighted mode methods were consistent with the IVW method. Based on sensitivity analyses, horizontal pleiotropy was unlikely to influence the final results. Conclusion Our findings indicate that anxiety is a risk factor for severe symptoms following COVID-19 infection. However, the mechanism of interaction between the two needs further investigation.
Collapse
Affiliation(s)
- Liang Zihao
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Song Jinyun
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gu Shuanglin
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chen Xiuzhen
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Yonglin
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zhao Hongyu
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
34
|
Liu H, Du Y, Liu LL, Liu QS, Mao HH, Cheng Y. Anti-depression-like effect of Mogroside V is related to the inhibition of inflammatory and oxidative stress pathways. Eur J Pharmacol 2023; 955:175828. [PMID: 37364672 DOI: 10.1016/j.ejphar.2023.175828] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Siraitia grosvenorii (SG) is an edible medicinal plant found mainly in Guangxi, China, and Mogroside V (MGV) is the main component of SG extract. Previous research has shown that SG and MGV exert anti-inflammatory, antioxidative and neuroprotective effects. However, it is not clear whether MGV has anti-depression-like effect. In this study, we evaluated the neuroprotective effects and anti-depression-like effect of MGV both in vitro and in vivo. By performing in vitro tests, we evaluated the protective effects of MGV on PC12 cells with corticosterone-induced injury. In vivo tests, we used the chronic unpredictable mild stress (CUMS) depression model. Fluoxetine (10 mg/kg/day) and MGV (10 or 30 mg/kg/day) were administered by gavage for 21 days, and the open field test (OFT), novelty suppressed feeding test (NSFT), Tail suspension test (TST), and forced Swimming test (FST) were used to evaluate the depressive-like behaviors. In addition, we investigated the role of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and anti-inflammatory cytokine (IL-4) in the hippocampal and cortex tissues. The levels of Superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-PX) in hippocampal and cortex tissues were also measured. Pathological changes in the hippocampal dentate gyrus and cortex regions were detected by immunofluorescence and Western blotting was used to measure the protein expression of BDNF, TrkB, TNF-α, and AKT. The results showed that MGV had a protective effect on PC12 cells with corticosterone-induced incurred injury. In addition, MGV treatment relieved the depressive symptoms and significantly reduced inflammatory levels (IL-1β, IL-6, and TNF-α). MGV also significantly reduced oxidative stress damage and reduced the levels of apoptosis in hippocampal nerve cells. These results suggested that the anti-depressive effect of MGV may occur through the inhibition of inflammatory and oxidative stress pathways and the BDNF/TrkB/AKT pathway. These findings provide a new concept for the identification of new anti-depressive strategies.
Collapse
Affiliation(s)
- Hua Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine for Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lian Lin Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Qing Shan Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - He Hui Mao
- Department of Breast Surgery, School of Medicine, Women and Children's Hospital, China.
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China.
| |
Collapse
|
35
|
Zhu LJ, Li F, Zhu DY. nNOS and Neurological, Neuropsychiatric Disorders: A 20-Year Story. Neurosci Bull 2023; 39:1439-1453. [PMID: 37074530 PMCID: PMC10113738 DOI: 10.1007/s12264-023-01060-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/05/2023] [Indexed: 04/20/2023] Open
Abstract
In the central nervous system, nitric oxide (NO), a free gas with multitudinous bioactivities, is mainly produced from the oxidation of L-arginine by neuronal nitric oxide synthase (nNOS). In the past 20 years, the studies in our group and other laboratories have suggested a significant involvement of nNOS in a variety of neurological and neuropsychiatric disorders. In particular, the interactions between the PDZ domain of nNOS and its adaptor proteins, including post-synaptic density 95, the carboxy-terminal PDZ ligand of nNOS, and the serotonin transporter, significantly influence the subcellular localization and functions of nNOS in the brain. The nNOS-mediated protein-protein interactions provide new attractive targets and guide the discovery of therapeutic drugs for neurological and neuropsychiatric disorders. Here, we summarize the work on the roles of nNOS and its association with multiple adaptor proteins on neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
36
|
Ye Q, Lin SS, Ulrich H, Tang Y. Decoupling SERT-nNOS Interaction to Generate Fast-Onset Antidepressants. Neurosci Bull 2023; 39:1327-1329. [PMID: 36973477 PMCID: PMC10386981 DOI: 10.1007/s12264-023-01049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Affiliation(s)
- Qing Ye
- International Joint Research Centre on Purinergic Signalling/School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Si-Si Lin
- International Joint Research Centre on Purinergic Signalling/School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Henning Ulrich
- International Joint Research Centre on Purinergic Signalling/School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508, Brazil
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
37
|
Ren P, Wang JY, Chen HL, Chang HX, Zeng ZR, Li GX, Ma H, Zhao YQ, Li YF. Sigma-1 receptor agonist properties that mediate the fast-onset antidepressant effect of hypidone hydrochloride (YL-0919). Eur J Pharmacol 2023; 946:175647. [PMID: 36898424 DOI: 10.1016/j.ejphar.2023.175647] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
The most intriguing characteristic of the sigma-1 receptor is its ability to regulate multiple functional proteins directly via protein-protein interactions, giving the sigma-1 receptor the powerful ability to regulate several survival and metabolic functions in cells, fine tune neuronal excitability, and regulate the transmission of information within brain circuits. This characteristic makes sigma-1 receptors attractive candidates for the development of new drugs. Hypidone hydrochloride (YL-0919), a novel structured antidepressant candidate developed in our laboratory, possess a selective sigma-1 receptor agonist profile, as evidenced by molecular docking, radioligand receptor binding assays, and receptor functional experiments. In vivo studies have revealed that YL-0919 elicits a fast-onset antidepressant activity (within one week) that can be attenuated with pretreatment of the selective sigma-1 receptor antagonist, BD-1047. Taken together, the findings of the current study suggest that YL-0919 activates the sigma-1 receptor to partially mediate the rapid onset antidepressant effects of YL-0919. Thus, YL-0919 is a promising candidate as a fast-onset antidepressant that targets the sigma-1 receptor.
Collapse
Affiliation(s)
- Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Jing-Ya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Hong-Lei Chen
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China.
| | - Hai-Xia Chang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhi-Rui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Guang-Xiang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hui Ma
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yong-Qi Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| |
Collapse
|
38
|
Guan X, Pang T. Fast-onset antidepressant targeting the nNOS-SERT interaction in the DRN. Chin J Nat Med 2023; 21:1-2. [PMID: 36641228 DOI: 10.1016/s1875-5364(23)60380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Indexed: 01/15/2023]
Affiliation(s)
- Xin Guan
- State Key Laboratory of Natural Medicines, New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
39
|
Ji N, Lei M, Chen Y, Tian S, Li C, Zhang B. How Oxidative Stress Induces Depression? ASN Neuro 2023; 15:17590914231181037. [PMID: 37331994 DOI: 10.1177/17590914231181037] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Depression increasingly affects a wide range and a large number of people worldwide, both physically and psychologically, which makes it a social problem requiring prompt attention and management. Accumulating clinical and animal studies have provided us with substantial insights of disease pathogenesis, especially central monoamine deficiency, which considerably promotes antidepressant research and clinical treatment. The first-line antidepressants mainly target the monoamine system, whose drawbacks mainly include slow action and treatment resistant. The novel antidepressant esketamine, targeting on central glutamatergic system, rapidly and robustly alleviates depression (including treatment-resistant depression), whose efficiency is shadowed by potential addictive and psychotomimetic side effects. Thus, exploring novel depression pathogenesis is necessary, for seeking more safe and effective therapeutic methods. Emerging evidence has revealed vital involvement of oxidative stress (OS) in depression, which inspires us to pursue antioxidant pathway for depression prevention and treatment. Fully uncovering the underlying mechanisms of OS-induced depression is the first step towards the avenue, thus we summarize and expound possible downstream pathways of OS, including mitochondrial impairment and related ATP deficiency, neuroinflammation, central glutamate excitotoxicity, brain-derived neurotrophic factor/tyrosine receptor kinase B dysfunction and serotonin deficiency, the microbiota-gut-brain axis disturbance and hypothalamic-pituitary-adrenocortical axis dysregulation. We also elaborate on the intricate interactions between the multiple aspects, and molecular mechanisms mediating the interplay. Through reviewing the related research progress in the field, we hope to depict an integral overview of how OS induces depression, in order to provide fresh ideas and novel targets for the final goal of efficient treatment of the disease.
Collapse
Affiliation(s)
- Na Ji
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Mengzhu Lei
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Yating Chen
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Shaowen Tian
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Chuanyu Li
- The School of Public Health, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin Guangxi, China
| | - Bo Zhang
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| |
Collapse
|
40
|
Hu G, Zhang M, Wang Y, Yu M, Zhou Y. Potential of Heterogeneous Compounds as Antidepressants: A Narrative Review. Int J Mol Sci 2022; 23:ijms232213776. [PMID: 36430254 PMCID: PMC9692659 DOI: 10.3390/ijms232213776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Depression is a globally widespread disorder caused by a complicated interplay of social, psychological, and biological factors. Approximately 280 million people are suffering from depression worldwide. Traditional frontline antidepressants targeting monoamine neurotransmitters show unsatisfactory effects. The development and application of novel antidepressants for dissimilar targets are on the agenda. This review characterizes the antidepressant effects of multiple endogenous compounds and/or their targets to provide new insight into the working mechanism of antidepressants. We also discuss perspectives and challenges for the generation of novel antidepressants.
Collapse
Affiliation(s)
- Gonghui Hu
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
| | - Meng Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
| | - Yuyang Wang
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ming Yu
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Yu Zhou
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao 266000, China
- Correspondence:
| |
Collapse
|