1
|
Peng C, Wu F, Ma Y, Liu G, Huang Y, Tong R, Xu W. Ginkgolic acid inhibits Ebola virus transcription and replication by disrupting the interaction between nucleoprotein and VP30 protein. Antiviral Res 2025; 234:106074. [PMID: 39716669 DOI: 10.1016/j.antiviral.2024.106074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
The Ebola virus, a filovirus, has been responsible for significant human fatalities since its discovery. Despite extensive research, effective small-molecule drugs remain elusive due to its complex pathogenesis. Inhibition of RNA synthesis is a promising therapeutic target, and the VP30 protein plays a critical role in this process. The interaction between VP30 and the nucleoprotein (NP) is essential for viral replication. We identified ginkgolic acid as a small molecule with strong affinity for VP30, which was validated through multiple assays, including thermal shift, surface plasmon resonance, fluorescence polarization, pull-down, and co-immunoprecipitation. The antiviral efficacy of ginkgolic acid was demonstrated in the EBOV transcription- and replication-competent virus-like particle (trVLP) system. Furthermore, we resolved the crystal structure of the VP30-ginkgolic acid complex, revealing two ginkgolic acid molecules located at the VP30/NP interaction interface. This structural information provides insight into the molecular basis of ginkgolic acid's antiviral activity and suggests a novel therapeutic strategy targeting the VP30/NP interaction.
Collapse
Affiliation(s)
- Chiwei Peng
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Fang Wu
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Yanhong Ma
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Guolong Liu
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yin Huang
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Wei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Peng CC, Humeniuk R, Raut A, Kwan A, Mak L, Stacom C, Xiao D, Chen S, Davies S, Madera S, Koullias Y, Lichtman A, Llewellyn J, Amini E, Winter H, Caro L. Clinical Evaluation of Drug-Drug Interactions with Obeldesivir, an Orally Administered Antiviral Agent. Clin Pharmacol Ther 2025. [PMID: 39887351 DOI: 10.1002/cpt.3575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025]
Abstract
Obeldesivir is an oral nucleoside analog prodrug inhibitor of SARS-CoV-2 RNA-dependent RNA polymerase and other viral polymerases. Here, two Phase I studies evaluated potential drug-drug interactions between obeldesivir and substrates or inhibitors of cytochrome P450 and drug transporters in healthy participants. When obeldesivir was tested as a precipitant, pharmacokinetic parameter point estimates for midazolam (CYP3A4 inhibition/induction), caffeine (CYP1A2 inhibition), and metformin (organic cation transporter 1 inhibition) exposures were within 80-125% no-effect bounds representing the interval within which a systemic exposure change does not warrant clinical action based on EMA/FDA guidance. Dabigatran (P-glycoprotein substrate) and pitavastatin (organic anion transporting polypeptide 1B1/1B3 substrate) exposures decreased by approximately 25% and 30%, respectively, with obeldesivir coadministration; these were considered not clinically relevant, as these exposure changes are not associated with dose changes or precautions in the US prescribing information for these drugs. When obeldesivir was evaluated as an object, exposures of GS-441524, the parent nucleoside monophosphate metabolite of obeldesivir, were within the 80-125% no-effect bounds for ritonavir (P-glycoprotein inhibition) and cyclosporin A (breast cancer resistance protein inhibition) coadministration. Famotidine (gastric acid suppression) coadministration decreased GS-441524 exposure by approximately 26%; this was within the range of exposures observed in previous Phase III studies and was considered not clinically relevant. Obeldesivir was well tolerated, and adverse events were mild to moderate. These findings indicate that obeldesivir has low potential for drug-drug interactions. Obeldesivir remains a promising treatment against a broad spectrum of viruses given its antiviral activity and favorable safety profile.
Collapse
Affiliation(s)
- Chi-Chi Peng
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Anuja Raut
- Gilead Sciences, Inc., Foster City, California, USA
| | - Anna Kwan
- Gilead Sciences, Inc., Foster City, California, USA
| | - Lily Mak
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Deqing Xiao
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | | | | | | | | | - Elham Amini
- Gilead Sciences, Inc., Foster City, California, USA
| | - Helen Winter
- Gilead Sciences, Inc., Foster City, California, USA
| | | |
Collapse
|
3
|
Cross RW, Woolsey C, Prasad AN, Borisevich V, Agans KN, Deer DJ, Harrison MB, Dobias NS, Fenton KA, Cihlar T, Nguyen AQ, Babusis D, Bannister R, Vermillion MS, Chu VC, Geisbert TW. Oral obeldesivir provides postexposure protection against Marburg virus in nonhuman primates. Nat Med 2025:10.1038/s41591-025-03496-y. [PMID: 39805309 DOI: 10.1038/s41591-025-03496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
The recent outbreak of Marburg virus (MARV) in Rwanda underscores the need for effective countermeasures against this highly fatal pathogen, with case fatality rates reaching 90%. Currently, no vaccines or approved treatments exist for MARV infection, distinguishing it from related viruses such as Ebola. Our study demonstrates that the oral drug obeldesivir (ODV), a nucleoside analog prodrug, shows promising antiviral activity against filoviruses in vitro and offers significant protection in animal models. Here with cynomolgus macaques (n = 6), a 10 day regimen of once-daily ODV, initiated 24 h after exposure, provided 80% protection against a thousandfold lethal MARV challenge, delaying viral replication and disease onset. Transcriptome analysis revealed that early adaptive responses correlated with successful outcomes. Compared with intravenous options, oral antivirals such as ODV offer logistical advantages in outbreak settings, enabling easier administration and broader contact coverage. Our findings support the potential of ODV as a broad-spectrum, oral postexposure prophylaxis for filoviruses.
Collapse
Affiliation(s)
- Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Abhishek N Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel J Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mack B Harrison
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Natalie S Dobias
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Karla A Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
4
|
Roux HFG, Touret F, Rathelot P, Sciò P, Coluccia A, Vanelle P, Roche M. Non-Polio Enterovirus Inhibitors: Scaffolds, Targets, and Potency─What's New? ACS Infect Dis 2025; 11:21-46. [PMID: 39715453 DOI: 10.1021/acsinfecdis.4c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Enterovirus (EV) is a genus that includes a large diversity of viruses spread around the world. They are the main cause of numerous diseases with seasonal clusters, like hand-foot-mouth disease (HFMD). A vaccine is marketed in China for the prevention of HFMD caused by EV-A71. Despite the need, no antiviral is marketed to date. Therefore, several compounds have been currently evaluated to inhibit non-polio Enterovirus (NPEV), namely direct antiviral agents and host target inhibitor. We propose to make a review of the latest molecules evaluated as NPEV inhibitors and to summarize structure-activity relationships between these inhibitors and their target. We provide access to all recent information on Enterovirus inhibitors, regardless of the species, to facilitate the design of future broad-spectrum drugs.
Collapse
Affiliation(s)
| | - Franck Touret
- Unité des Virus Émergents (UVE: Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille 13284, France
| | - Pascal Rathelot
- Aix-Marseille Université, CNRS, ICR UMR_7273, LPCR, Faculté de Pharmacie, Marseille 13385, France
| | - Pietro Sciò
- Laboratory Affiliated with the Institute Pasteur Italy─Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Antonio Coluccia
- Laboratory Affiliated with the Institute Pasteur Italy─Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Patrice Vanelle
- Aix-Marseille Université, CNRS, ICR UMR_7273, LPCR, Faculté de Pharmacie, Marseille 13385, France
| | - Manon Roche
- Aix-Marseille Université, CNRS, ICR UMR_7273, LPCR, Faculté de Pharmacie, Marseille 13385, France
| |
Collapse
|
5
|
Spengler JR, Lo MK, Welch SR, Spiropoulou CF. Henipaviruses: epidemiology, ecology, disease, and the development of vaccines and therapeutics. Clin Microbiol Rev 2024:e0012823. [PMID: 39714175 DOI: 10.1128/cmr.00128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYHenipaviruses were first identified 30 years ago and have since been associated with over 30 outbreaks of disease in humans. Highly pathogenic henipaviruses include Hendra virus (HeV) and Nipah virus (NiV), classified as biosafety level 4 pathogens. In addition, NiV has been listed as a priority pathogen by the World Health Organization (WHO), the Coalition for Epidemic Preparedness Innovations (CEPI), and the UK Vaccines Research and Development Network (UKVN). Here, we re-examine epidemiological, ecological, clinical, and pathobiological studies of HeV and NiV to provide a comprehensive guide of the current knowledge and application to identify and evaluate countermeasures. We also discuss therapeutic and vaccine development efforts. Furthermore, with case identification, prevention, and treatment in mind, we highlight limitations in research and recognize gaps necessitating additional studies.
Collapse
Affiliation(s)
- Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Hoffmann Dahl E, Mbala P, Juchet S, Touré A, Montoyo A, Serra B, Kojan R, D'Ortenzio E, Blomberg B, Jaspard M. Improving Ebola virus disease outbreak control through targeted post-exposure prophylaxis. Lancet Glob Health 2024; 12:e1730-e1736. [PMID: 39270687 DOI: 10.1016/s2214-109x(24)00255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 09/15/2024]
Abstract
Ebola virus disease kills more than half of people infected. Since the disease is transmitted via close human contact, identifying individuals at the highest risk of developing the disease is possible on the basis of the type of contact (correlated with viral exposure). Different candidates for post-exposure prophylaxis (PEP; ie, vaccines, antivirals, and monoclonal antibodies) each have their specific benefits and limitations, which we discuss in this Viewpoint. Approved monoclonal antibodies have been found to reduce mortality in people with Ebola virus disease. As monoclonal antibodies act swiftly by directly targeting the virus, they are promising candidates for targeted PEP in contacts at high risk of developing disease. This intervention could save lives, halt viral transmission, and, ultimately, help curtail outbreak propagation. We explore how a strategic integration of monoclonal antibodies and vaccines as PEP could provide both immediate and long-term protection against Ebola virus disease, highlighting ongoing clinical research that aims to refine this approach, and discuss the transformative potential of a successful PEP strategy to help control viral haemorrhagic fever outbreaks.
Collapse
Affiliation(s)
- Elin Hoffmann Dahl
- Médecins Sans Frontières, Oslo, Norway; Department of Infectious Diseases, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Placide Mbala
- Kingebeni Institut National de Recherche Biomédicale and University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Sylvain Juchet
- The Alliance for International Medical Action, Dakar, Senegal; UMR 1219 GHiGS unit, University of Bordeaux, National Institute for Health and Medical Research, Research Institute for Sustainable Development, Bordeaux Population Health Center, Bordeaux, France
| | - Abdoulaye Touré
- Centre de recherche et de formation en infectiologie de Guinea, University Gamal Abdel Nasser de Conakry, Conakry, Guinée
| | - Alice Montoyo
- The Alliance for International Medical Action, Dakar, Senegal; UMR 1219 GHiGS unit, University of Bordeaux, National Institute for Health and Medical Research, Research Institute for Sustainable Development, Bordeaux Population Health Center, Bordeaux, France
| | - Beatrice Serra
- The Alliance for International Medical Action, Dakar, Senegal; UMR 1219 GHiGS unit, University of Bordeaux, National Institute for Health and Medical Research, Research Institute for Sustainable Development, Bordeaux Population Health Center, Bordeaux, France
| | - Richard Kojan
- The Alliance for International Medical Action, Dakar, Senegal
| | - Eric D'Ortenzio
- ANRS Emerging infectious diseases, National Institute for Health and Medical Research, Paris, France; Infectious and Tropical Diseases Department, Bichat-Claude-Bernard Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Bjorn Blomberg
- Department of Clinical Science, University of Bergen, Bergen, Norway; National Centre for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| | - Marie Jaspard
- UMR 1136 IPLESP unit, Sorbonne Université, Paris, France; Infectious Disease Department, Hopital Saint Antoine, Paris, France.
| |
Collapse
|
7
|
de La Vega MA, XIII A, Massey CS, Spengler JR, Kobinger GP, Woolsey C. An update on nonhuman primate usage for drug and vaccine evaluation against filoviruses. Expert Opin Drug Discov 2024; 19:1185-1211. [PMID: 39090822 PMCID: PMC11466704 DOI: 10.1080/17460441.2024.2386100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Due to their faithful recapitulation of human disease, nonhuman primates (NHPs) are considered the gold standard for evaluating drugs against Ebolavirus and other filoviruses. The long-term goal is to reduce the reliance on NHPs with more ethical alternatives. In silico simulations and organoid models have the potential to revolutionize drug testing by providing accurate, human-based systems that mimic disease processes and drug responses without the ethical concerns associated with animal testing. However, as these emerging technologies are still in their developmental infancy, NHP models are presently needed for late-stage evaluation of filovirus vaccines and drugs, as they provide critical insights into the efficacy and safety of new medical countermeasures. AREAS COVERED In this review, the authors introduce available NHP models and examine the existing literature on drug discovery for all medically significant filoviruses in corresponding models. EXPERT OPINION A deliberate shift toward animal-free models is desired to align with the 3Rs of animal research. In the short term, the use of NHP models can be refined and reduced by enhancing replicability and publishing negative data. Replacement involves a gradual transition, beginning with the selection and optimization of better small animal models; advancing organoid systems, and using in silico models to accurately predict immunological outcomes.
Collapse
Affiliation(s)
- Marc-Antoine de La Vega
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Ara XIII
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Christopher S. Massey
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Jessica R. Spengler
- Viral Special Pathogens Branch and Infectious Diseases
Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for
Disease Control and Prevention, Atlanta, GA
| | - Gary P. Kobinger
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Courtney Woolsey
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| |
Collapse
|
8
|
Morales-Tenorio M, Lasala F, Garcia-Rubia A, Aledavood E, Heung M, Olal C, Escudero-Pérez B, Alonso C, Martínez A, Muñoz-Fontela C, Delgado R, Gil C. Discovery of Thiophene Derivatives as Potent, Orally Bioavailable, and Blood-Brain Barrier-Permeable Ebola Virus Entry Inhibitors. J Med Chem 2024; 67:16381-16402. [PMID: 39248591 PMCID: PMC11440591 DOI: 10.1021/acs.jmedchem.4c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
The endemic nature of the Ebola virus disease in Africa underscores the need for prophylactic and therapeutic drugs that are affordable and easy to administer. Through a phenotypic screening employing viral pseudotypes and our in-house chemical library, we identified a promising hit featuring a thiophene scaffold, exhibiting antiviral activity in the micromolar range. Following up on this thiophene hit, a new series of compounds that retain the five-membered heterocyclic scaffold while modifying several substituents was synthesized. Initial screening using a pseudotype viral system and validation assays employing authentic Ebola virus demonstrated the potential of this new chemical class as viral entry inhibitors. Subsequent investigations elucidated the mechanism of action through site-directed mutagenesis. Furthermore, we conducted studies to assess the pharmacokinetic profile of selected compounds to confirm its pharmacological and therapeutic potential.
Collapse
Affiliation(s)
| | - Fátima Lasala
- Instituto
de Investigación Hospital 12 de Octubre,, Madrid 28041, Spain
| | - Alfonso Garcia-Rubia
- Centro
de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid 28040, Spain
| | - Elnaz Aledavood
- Centro
de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid 28040, Spain
| | - Michelle Heung
- Bernhard
Nocht Institute for Tropical Medicine, Hamburg 20359, Germany
| | - Catherine Olal
- Bernhard
Nocht Institute for Tropical Medicine, Hamburg 20359, Germany
| | | | - Covadonga Alonso
- Dpt.
Biotechnology, Instituto Nacional de Investigación
y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid 28040, Spain
| | - Ana Martínez
- Centro
de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid 28040, Spain
- CIBERNED, Instituto Salud Carlos III, Madrid 28029, Spain
| | | | - Rafael Delgado
- Instituto
de Investigación Hospital 12 de Octubre,, Madrid 28041, Spain
- CIBERINFEC, Instituto Salud Carlos III, Madrid 28029, Spain
- School
of Medicine, Universidad Complutense de
Madrid, Madrid 28040, Spain
| | - Carmen Gil
- Centro
de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid 28040, Spain
- CIBERNED, Instituto Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
9
|
Durante D, Bott R, Cooper L, Owen C, Morsheimer KM, Patten JJ, Zielinski C, Peet NP, Davey RA, Gaisina IN, Rong L, Moore TW. N-Substituted Pyrrole-Based Heterocycles as Broad-Spectrum Filoviral Entry Inhibitors. J Med Chem 2024; 67:13737-13764. [PMID: 39169825 DOI: 10.1021/acs.jmedchem.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Since the largest and most fatal Ebola virus epidemic during 2014-2016, there have been several consecutive filoviral outbreaks in recent years, including those in 2021, 2022, and 2023. Ongoing outbreak prevalence and limited FDA-approved filoviral therapeutics emphasize the need for novel small molecule treatments. Here, we showcase the structure-activity relationship development of N-substituted pyrrole-based heterocycles and their potent, submicromolar entry inhibition against diverse filoviruses in a target-based pseudovirus assay. Inhibitor antiviral activity was validated using replication-competent Ebola, Sudan, and Marburg viruses. Mutational analysis was used to map the targeted region within the Ebola virus glycoprotein. Antiviral counter-screen and phospholipidosis assays were performed to demonstrate the reduced off-target activity of these filoviral entry inhibitors. Favorable antiviral potency, selectivity, and drug-like properties of the N-substituted pyrrole-based heterocycles support their potential as broad-spectrum antifiloviral treatments.
Collapse
Affiliation(s)
- Destiny Durante
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Ryan Bott
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Laura Cooper
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Callum Owen
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, Massachusetts 02118, United States
| | - Kimberly M Morsheimer
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, Massachusetts 02118, United States
| | - J J Patten
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, Massachusetts 02118, United States
| | - Christian Zielinski
- UICentre: Drug Discovery, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Norton P Peet
- Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
| | - Robert A Davey
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, Massachusetts 02118, United States
| | - Irina N Gaisina
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
- UICentre: Drug Discovery, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
| | - Terry W Moore
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
10
|
Han A, Henderson DK. Postexposure prophylaxis for occupational exposure to selected pathogens for healthcare personnel. Curr Opin Infect Dis 2024; 37:296-303. [PMID: 38899948 PMCID: PMC11213494 DOI: 10.1097/qco.0000000000001029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
PURPOSE OF REVIEW Timely postexposure prophylaxis is important after an occupational exposure. Here we review select organisms, exposure opportunities in the healthcare setting, and postexposure prophylaxis regimens. RECENT FINDINGS Needlestick injuries pose a risk of exposure to bloodborne pathogens, such as HIV, Hepatitis B, and Hepatitis C. Risk mitigation strategies should be reexamined in light of newer vaccines and therapeutics. Increased vaccine hesitancy and vaccine denialisms may foster the re-emergence of some infections that have become extremely uncommon because of effective vaccines. With increasing occurrences of zoonotic infections and the ease of global spread as evidenced by COVID-19 and mpox, healthcare exposures must also consider risks related to emerging and re-emerging infectious diseases. SUMMARY Early recognition and reporting of occupational exposures to pathogens with available postexposure prophylaxis is key to mitigating the risk of transmission. Providers should be able to evaluate the exposure and associated risks to provide prompt and appropriate postexposure prophylaxis.
Collapse
Affiliation(s)
- Alison Han
- Hospital Epidemiology Service, Clinical Center, National Institutes of Health Service
| | - David K. Henderson
- Hospital Epidemiology Service, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Gordon CJ, Walker SM, Tchesnokov EP, Kocincova D, Pitts J, Siegel DS, Perry JK, Feng JY, Bilello JP, Götte M. Mechanism and spectrum of inhibition of a 4'-cyano modified nucleotide analog against diverse RNA polymerases of prototypic respiratory RNA viruses. J Biol Chem 2024; 300:107514. [PMID: 38945449 PMCID: PMC11345399 DOI: 10.1016/j.jbc.2024.107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024] Open
Abstract
The development of safe and effective broad-spectrum antivirals that target the replication machinery of respiratory viruses is of high priority in pandemic preparedness programs. Here, we studied the mechanism of action of a newly discovered nucleotide analog against diverse RNA-dependent RNA polymerases (RdRps) of prototypic respiratory viruses. GS-646939 is the active 5'-triphosphate metabolite of a 4'-cyano modified C-adenosine analog phosphoramidate prodrug GS-7682. Enzyme kinetics show that the RdRps of human rhinovirus type 16 (HRV-16) and enterovirus 71 incorporate GS-646939 with unprecedented selectivity; GS-646939 is incorporated 20-50-fold more efficiently than its natural ATP counterpart. The RdRp complex of respiratory syncytial virus and human metapneumovirus incorporate GS-646939 and ATP with similar efficiency. In contrast, influenza B RdRp shows a clear preference for ATP and human mitochondrial RNA polymerase does not show significant incorporation of GS-646939. Once incorporated into the nascent RNA strand, GS-646939 acts as a chain terminator although higher NTP concentrations can partially overcome inhibition for some polymerases. Modeling and biochemical data suggest that the 4'-modification inhibits RdRp translocation. Comparative studies with GS-443902, the active triphosphate form of the 1'-cyano modified prodrugs remdesivir and obeldesivir, reveal not only different mechanisms of inhibition, but also differences in the spectrum of inhibition of viral polymerases. In conclusion, 1'-cyano and 4'-cyano modifications of nucleotide analogs provide complementary strategies to target the polymerase of several families of respiratory RNA viruses.
Collapse
Affiliation(s)
- Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Simon M Walker
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Dana Kocincova
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jared Pitts
- Gilead Sciences, Inc, Foster City, California, USA
| | | | | | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
12
|
Sprecher A, Van Herp M. An oral antiviral for Ebola disease. Science 2024; 383:1181-1182. [PMID: 38484073 DOI: 10.1126/science.ado6257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
For those exposed to filovirus, such as Sudan virus and Ebola virus, a new study offers hope.
Collapse
|