1
|
Chen M, Wang R, Wang T. Gut microbiota and skin pathologies: Mechanism of the gut-skin axis in atopic dermatitis and psoriasis. Int Immunopharmacol 2024; 141:112658. [PMID: 39137625 DOI: 10.1016/j.intimp.2024.112658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024]
Abstract
Atopic dermatitis (AD) and psoriasis are chronic skin diseases with a global impact, posing significant challenges to public health systems and severely affecting patients' quality of life. This review delves into the key role of the gut microbiota in these diseases, emphasizing the importance of the gut-skin axis in inflammatory mediators and immune regulation and revealing a complex bidirectional communication system. We comprehensively assessed the pathogenesis, clinical manifestations, and treatment strategies for AD and psoriasis, with a particular focus on how the gut microbiota and their metabolites influence disease progression via the gut-skin axis. In addition, personalized treatment plans based on individual patient microbiome characteristics have been proposed, offering new perspectives for future treatment approaches. We call for enhanced interdisciplinary cooperation to further explore the interactions between gut microbiota and skin diseases and to assess the potential of drugs and natural products in modulating the gut-skin axis, aiming to advance the treatment of skin diseases.
Collapse
Affiliation(s)
- Meng Chen
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Rui Wang
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| | - Ting Wang
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| |
Collapse
|
2
|
Nishide M, Shimagami H, Kumanogoh A. Single-cell analysis in rheumatic and allergic diseases: insights for clinical practice. Nat Rev Immunol 2024; 24:781-797. [PMID: 38914790 DOI: 10.1038/s41577-024-01043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/26/2024]
Abstract
Since the advent of single-cell RNA sequencing (scRNA-seq) methodology, single-cell analysis has become a powerful tool for exploration of cellular networks and dysregulated immune responses in disease pathogenesis. Advanced bioinformatics tools have enabled the combined analysis of scRNA-seq data and information on various cell properties, such as cell surface molecular profiles, chromatin accessibility and spatial information, leading to a deeper understanding of pathology. This Review provides an overview of the achievements in single-cell analysis applied to clinical samples of rheumatic and allergic diseases, including rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, allergic airway diseases and atopic dermatitis, with an expanded scope beyond peripheral blood cells to include local diseased tissues. Despite the valuable insights that single-cell analysis has provided into disease pathogenesis, challenges remain in translating single-cell findings into clinical practice and developing personalized treatment strategies. Beyond understanding the atlas of cellular diversity, we discuss the application of data obtained in each study to clinical practice, with a focus on identifying biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Hiroshi Shimagami
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
3
|
Bieber T. The paradigm shift in drug development for atopic dermatitis: Addressing the variables of the equation leading to disease modification. Ann Allergy Asthma Immunol 2024:S1081-1206(24)01558-8. [PMID: 39383939 DOI: 10.1016/j.anai.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
The recent development of new therapies for atopic dermatitis (AD) has greatly benefited from the advances in understanding the mechanisms underlying this disease. This progress now allows one to envisage pushing the therapeutic boundaries beyond the simple symptomatic treatment of the exacerbations of AD and considering new therapeutic strategies aimed to allow an off-therapy long-term and deep remission, that is, disease modification. Owing to the complexity of the phenotype and underlying mechanisms of AD, it is expected that this will not fit to the current one-size-fits-all model in drug development. Thus, aiming at disease modification will lead to a paradigm shift in drug development strategy in AD requiring the consideration of a precision medicine approach with a phenotype-endotype (biomarker)-based stratification as well as a consensus definition of specific study endpoints for the clinical development program. This review addresses the scientific rationale for this strategy, some general aspects of the design of confirmatory clinical trials, and the variables along the Population, Intervention, Comparator, and Outcome framework to be addressed for reaching the ultimate goal of disease modification in AD.
Collapse
Affiliation(s)
- Thomas Bieber
- Christine Kühne-Center for Allergy Research and Education, Medicine Campus Davos, Davos, Switzerland; Davos Biosciences, Medicine Campus Davos, Davos, Switzerland; Department of Dermatology, University Hospital, Zürich, Switzerland; Bieber Dermatology Consulting, Bonn, Germany.
| |
Collapse
|
4
|
Ebisawa M, Kataoka Y, Tanaka A, Nagao M, Laws E, Mortensen E, Nawata H, Arima K, Watanabe D, Lu X, Maloney J, Dubost-Brama A, Bansal A, Yahata K. Efficacy and safety of dupilumab with concomitant topical corticosteroids in Japanese pediatric patients with moderate-to-severe atopic dermatitis: A randomized, double-blind, placebo-controlled phase 3 study. Allergol Int 2024; 73:532-542. [PMID: 38735810 DOI: 10.1016/j.alit.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND We investigated the efficacy and safety of dupilumab in Japanese patients aged ≥6 months to <18 years old with moderate-to-severe atopic dermatitis not adequately controlled with existing therapies. METHODS In this randomized, double-blind, phase 3 study, patients received dupilumab (n = 30) or placebo (n = 32) with concomitant topical corticosteroids for 16 weeks, then all patients received dupilumab from 16 to 52 weeks. The primary endpoint was the proportion of patients with ≥75% improvement in Eczema Area and Severity Index (EASI) score from baseline (EASI-75) to Week 16. Key secondary endpoints included changes in EASI score, proportion of patients with investigator global assessment (IGA) scores of 0/1, and changes in worst daily itch numerical rating scale (NRS) scores (evaluated in patients aged ≥6 to <12 years [n = 35]). RESULTS At Week 16, more patients achieved EASI-75 with dupilumab than placebo (43.3% vs 18.8%; P = 0.0304), and the least squares mean (LSM) difference in percent change in EASI scores at Week 16 of dupilumab vs placebo was -39.4% (P = 0.0003). However, no significant difference in the proportion of patients achieving IGA scores of 0/1 at Week 16 with dupilumab versus placebo were seen (10.0% vs 9.4%; P = 0.8476). The percent change in worst daily itch NRS scores at Week 16 was higher with dupilumab (LSM difference: -33.3%; nominal P = 0.0117). Dupilumab was well tolerated; no new safety signals were identified. CONCLUSIONS Dupilumab showed consistent efficacy and was well tolerated in Japanese patients aged ≥6 months to <18 years with moderate-to-severe atopic dermatitis previously insufficiently controlled with existing therapies.
Collapse
MESH Headings
- Humans
- Dermatitis, Atopic/drug therapy
- Child
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Male
- Female
- Child, Preschool
- Treatment Outcome
- Adrenal Cortex Hormones/therapeutic use
- Adrenal Cortex Hormones/administration & dosage
- Adolescent
- Severity of Illness Index
- Double-Blind Method
- Infant
- Japan
- Drug Therapy, Combination
- Administration, Topical
- East Asian People
Collapse
Affiliation(s)
- Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, NHO Sagamihara National Hospital, Sagamihara, Japan.
| | - Yoko Kataoka
- Department of Dermatology, Osaka Habikino Medical Center, Osaka, Japan
| | - Akio Tanaka
- Department of Dermatology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Mizuho Nagao
- Allergy Center and Infectious Disease Center, NHO Mie National Hospital, Tsu, Japan
| | | | | | | | | | | | - Xin Lu
- Sanofi, Bridgewater, NJ, USA
| | | | | | | | - Kenji Yahata
- Research and Development Division, Sanofi K.K., Tokyo, Japan
| |
Collapse
|
5
|
Traidl-Hoffmann C, Afghani J, Akdis CA, Akdis M, Aydin H, Bärenfaller K, Behrendt H, Bieber T, Bigliardi P, Bigliardi-Qi M, Bonefeld CM, Bösch S, Brüggen MC, Diemert S, Duchna HW, Fähndrich M, Fehr D, Fellmann M, Frei R, Garvey LH, Gharbo R, Gökkaya M, Grando K, Guillet C, Guler E, Gutermuth J, Herrmann N, Hijnen DJ, Hülpüsch C, Irvine AD, Jensen-Jarolim E, Kong HH, Koren H, Lang CCV, Lauener R, Maintz L, Mantel PY, Maverakis E, Möhrenschlager M, Müller S, Nadeau K, Neumann AU, O'Mahony L, Rabenja FR, Renz H, Rhyner C, Rietschel E, Ring J, Roduit C, Sasaki M, Schenk M, Schröder J, Simon D, Simon HU, Sokolowska M, Ständer S, Steinhoff M, Piccirillo DS, Taïeb A, Takaoka R, Tapparo M, Teixeira H, Thyssen JP, Traidl S, Uhlmann M, van de Veen W, van Hage M, Virchow C, Wollenberg A, Yasutaka M, Zink A, Schmid-Grendelmeier P. Navigating the evolving landscape of atopic dermatitis: Challenges and future opportunities: The 4th Davos declaration. Allergy 2024; 79:2605-2624. [PMID: 39099205 DOI: 10.1111/all.16247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
The 4th Davos Declaration was developed during the Global Allergy Forum in Davos which aimed to elevate the care of patients with atopic dermatitis (AD) by uniting experts and stakeholders. The forum addressed the high prevalence of AD, with a strategic focus on advancing research, treatment, and management to meet the evolving challenges in the field. This multidisciplinary forum brought together top leaders from research, clinical practice, policy, and patient advocacy to discuss the critical aspects of AD, including neuroimmunology, environmental factors, comorbidities, and breakthroughs in prevention, diagnosis, and treatment. The discussions were geared towards fostering a collaborative approach to integrate these advancements into practical, patient-centric care. The forum underlined the mounting burden of AD, attributing it to significant environmental and lifestyle changes. It acknowledged the progress in understanding AD and in developing targeted therapies but recognized a gap in translating these innovations into clinical practice. Emphasis was placed on the need for enhanced awareness, education, and stakeholder engagement to address this gap effectively and to consider environmental and lifestyle factors in a comprehensive disease management strategy. The 4th Davos Declaration marks a significant milestone in the journey to improve care for people with AD. By promoting a holistic approach that combines research, education, and clinical application, the Forum sets a roadmap for stakeholders to collaborate to improve patient outcomes in AD, reflecting a commitment to adapt and respond to the dynamic challenges of AD in a changing world.
Collapse
Affiliation(s)
- Claudia Traidl-Hoffmann
- Institute of Environmental Medicine and Integrative Health, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum München, Augsburg, Germany
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
| | - Jamie Afghani
- Institute of Environmental Medicine and Integrative Health, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Cezmi A Akdis
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - Mübecel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | | | - Katja Bärenfaller
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - Heidrun Behrendt
- Center for Allergy and Environment (ZAUM), Technische Universität München, Germany
| | - Thomas Bieber
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
- Davos Biosciences, Davos, Switzerland
| | | | | | - Charlotte Menné Bonefeld
- Department of Immunology and Microbiology, The LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Stefanie Bösch
- Department of Dermatology, Allergy Unit, University Hospital of Zürich, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Marie Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
- Department of Dermatology, Allergy Unit, University Hospital of Zürich, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | | | - Hans-Werner Duchna
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
- Hochgebirgsklinik Davos, Davos, Switzerland
| | | | - Danielle Fehr
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
- Department of Dermatology, Allergy Unit, University Hospital of Zürich, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | | | - Remo Frei
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Bern University Hospital, Bern, Switzerland
- Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Lena H Garvey
- Department of Dermatology and Allergy, Allergy Clinic, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Raschid Gharbo
- Psychosomatic Department, Hochgebirgsklinik, Davos, Switzerland
| | - Mehmet Gökkaya
- Institute of Environmental Medicine and Integrative Health, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum München, Augsburg, Germany
| | - Karin Grando
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
- Department of Dermatology, Allergy Unit, University Hospital of Zürich, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Carole Guillet
- Department of Dermatology, Allergy Unit, University Hospital of Zürich, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | | | | | - Nadine Herrmann
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Dirk Jan Hijnen
- Diakonessenhuis Utrecht Zeist Doorn Locatie Utrecht, Erasmus MC, University Medical Center Utrecht, Utrecht, Netherlands
| | - Claudia Hülpüsch
- Institute of Environmental Medicine and Integrative Health, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum München, Augsburg, Germany
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
| | - Alan D Irvine
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - Erika Jensen-Jarolim
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Heidi H Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hillel Koren
- Environmental Health, LLC, Durham, North Carolina, USA
| | - Claudia C V Lang
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
- Department of Immunology and Microbiology, The LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology, Allergy Unit, University Hospital of Zürich, Zürich, Switzerland
| | - Roger Lauener
- Ostschweizer Kinderspital St. Gallen, St.Gallen, Switzerland
| | - Laura Maintz
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Pierre-Yves Mantel
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
| | - Emanuel Maverakis
- Department of Dermatology, University of California Davis, Sacramento, California, USA
| | | | - Svenja Müller
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Kari Nadeau
- Stanford University School of Medicine, Stanford, California, USA
| | - Avidan U Neumann
- Institute of Environmental Medicine and Integrative Health, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum München, Augsburg, Germany
| | - Liam O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine and School of Microbiology, University College Cork, Cork, Ireland
| | | | - Harald Renz
- Institute of Laboratory Medicine, Philipps University, Marburg, Germany
| | - Claudio Rhyner
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
| | - Ernst Rietschel
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
| | - Johannes Ring
- Klinik und Poliklinik für Dermatologie und Allergologie am Biederstein, Technische Universität München, Munich, Germany
| | - Caroline Roduit
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Bern University Hospital, Bern, Switzerland
- Ostschweizer Kinderspital St. Gallen, St.Gallen, Switzerland
| | - Mari Sasaki
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Bern University Hospital, Bern, Switzerland
| | - Mirjam Schenk
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Jens Schröder
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Schleswig-Holstein (UK-SH), Kiel, Germany
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Milena Sokolowska
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - Sonja Ständer
- Center for Chronic Pruritus and Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- School of Medicine, Weill Cornell Medicine-Qatar, Ar-Rayyan, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Dermatology, Weill Cornell Medicine, New York, New York, USA
| | - Doris Straub Piccirillo
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
| | - Alain Taïeb
- INSERM 1312, University of Bordeaux, Bordeaux, France
| | - Roberto Takaoka
- Department of Dermatology, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | | | - Jacob Pontoppidan Thyssen
- Department of Dermatology and Venerology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Stephan Traidl
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Miriam Uhlmann
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institute and Karolinska University Hospital Stockholm, Solna, Sweden
| | - Christian Virchow
- Department of Pneumology, Intensive Care Medicine, Center for Internal Medicine, Universitätsmedizin Rostock, Rostock, Germany
| | - Andreas Wollenberg
- Department of Dermatology and Allergy, Ludwig-Maximilian-University, Munich, Germany
- Department of Dermatology and Allergy, University Hospital Augsburg, Augsburg, Germany
- Comprehensive Center of Inflammation Medicine, University Hospital Schleswig Holstein Campus Luebeck, Lubeck, Germany
| | - Mitamura Yasutaka
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - Alexander Zink
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Medicine Solna, Division of Dermatology and Venereology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Schmid-Grendelmeier
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
- Department of Immunology and Microbiology, The LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology, Allergy Unit, University Hospital of Zürich, Zürich, Switzerland
| |
Collapse
|
6
|
Ding X, Zhang J, Wan S, Wang X, Wang Z, Pu K, Wang M, Cao Y, Weng L, Zhu H, Peng F, Chao J, Pei R, Leong DT, Wang L. Non-discriminating engineered masking of immuno-evasive ligands on tumour-derived extracellular vesicles enhances tumour vaccination outcomes. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01783-2. [PMID: 39327512 DOI: 10.1038/s41565-024-01783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 08/08/2024] [Indexed: 09/28/2024]
Abstract
The success of personalized cancer immunotherapy depends on the initial tumour antigenic presentation to dendritic cells and macrophages. Tumour-derived extracellular vesicles (TEVs) contain abundant tumour antigenic molecules. The presence of anti-phagocytotic signals such as cluster of differentiation 47 (CD47) on the surface of the TEVs, however, leads to evasion of the same dendritic cells and macrophages. Here we show that iron oxide hydroxide nanocomposites can successfully mask TEV surfaces and unblock phagocytosis without affecting extracellular vesicles' elicited immune goals. After internalization, the mask disintegrates in the lysosome, releasing the tumour antigenic cargo. This triggers antigen presentation and promotes dendritic cell activation and maturation and macrophage reprogramming in animal models, leading to a drastic reduction of tumour volume and metastasis, and in human malignant pleural effusion clinical samples. This straightforward masking strategy eliminates the ubiquitous anti-phagocytosis block found in clinical samples and can be applied universally across all patient-specific TEVs as tumour antigenic agents for enhanced immunotherapy.
Collapse
Affiliation(s)
- Xianguang Ding
- Institute of Advanced Materials, State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, Nanjing, China.
| | - JingJing Zhang
- Institute of Advanced Materials, State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Shuangshuang Wan
- Institute of Advanced Materials, State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Xu Wang
- Department of Anesthesiology and Intensive Care Unit Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiyu Wang
- Institute of Advanced Materials, State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Kefeng Pu
- CAS Key Laboratory of Nano-Bio Interface, Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Mao Wang
- CAS Key Laboratory of Nano-Bio Interface, Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Lixing Weng
- Institute of Advanced Materials, State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Houjuan Zhu
- Agency for Science Technology and Research, Singapore, Singapore
| | - Fei Peng
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jie Chao
- Institute of Advanced Materials, State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
| | - Lianhui Wang
- Institute of Advanced Materials, State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, Nanjing, China.
| |
Collapse
|
7
|
Ronchese F, Webb GR, Ochiai S, Lamiable O, Brewerton M. How type-2 dendritic cells induce Th2 differentiation: Instruction, repression, or fostering T cell-T cell communication? Allergy 2024. [PMID: 39324367 DOI: 10.1111/all.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Allergic disease is caused by the activation of allergen-specific CD4+ type-2 T follicular helper cells (Tfh2) and T helper 2 (Th2) effector cells that secrete the cytokines IL-4, IL-5, IL-9, and IL-13 upon allergen encounter, thereby inducing IgE production by B cells and tissue inflammation. While it is accepted that the priming and differentiation of naïve CD4+ T cells into Th2 requires allergen presentation by type 2 dendritic cells (DC2s), the underlying signals remain unidentified. In this review we focus on the interaction between allergen-presenting DC2s and naïve CD4+ T cells in lymph node (LN), and the potential mechanisms by which DC2s might instruct Th2 differentiation. We outline recent advances in characterizing DC2 development and heterogeneity. We review mechanisms of allergen sensing and current proposed mechanisms of Th2 differentiation, with specific consideration of the role of DC2s and how they might contribute to each mechanism. Finally, we assess recent publications reporting a detailed analysis of DC-T cell interactions in LNs and how they support Th2 differentiation. Together, these studies are starting to shape our understanding of this key initial step of the allergic immune response.
Collapse
Affiliation(s)
- Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Greta R Webb
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Sotaro Ochiai
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Maia Brewerton
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Clinical Immunology and Allergy, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
8
|
Alkon N, Chennareddy S, Cohenour ER, Ruggiero JR, Stingl G, Bangert C, Rindler K, Bauer WM, Weninger W, Griss J, Jonak C, Brunner PM. Single-cell sequencing delineates T-cell clonality and pathogenesis of the parapsoriasis disease group. J Allergy Clin Immunol 2024:S0091-6749(24)00942-4. [PMID: 39278361 DOI: 10.1016/j.jaci.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/30/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Mycosis fungoides (MF), the most common cutaneous T-cell lymphoma, is often underdiagnosed in early stages because of similarities with benign dermatoses such as atopic dermatitis (AD). Furthermore, the delineation from what is called "parapsoriasis en plaque", a disease that can appear either in a small- or large-plaque form, is still controversial. OBJECTIVE We sought to characterize the parapsoriasis disease spectrum. METHODS We performed single-cell RNA sequencing of skin biopsies from patients within the parapsoriasis-to-early-stage MF spectrum, stratified for small and large plaques, and compared them to AD, psoriasis, and healthy control skin. RESULTS Six of 8 large-plaque lesions harbored either an expanded alpha/beta or gamma/delta T-cell clone with downregulation of CD7 expression, consistent with a diagnosis of early-stage MF. In contrast, 6 of 7 small-plaque lesions were polyclonal in nature, thereby lacking a lymphomatous phenotype, and also revealed a less inflammatory microenvironment than early-stage MF or AD. Of note, polyclonal small- and large-plaque lesions characteristically harbored a population of NPY+ innate lymphoid cells and displayed a stromal signature of complement upregulation and antimicrobial hyperresponsiveness in fibroblasts and sweat gland cells, respectively. These conditions were clearly distinct from AD or psoriasis, which uniquely harbored CD3+CRTH2+ IL-13 expressing "TH2A" cells, or strong type 17 inflammation, respectively. CONCLUSION These data position polyclonal small- and large-plaque parapsoriasis lesions as a separate disease entity that characteristically harbors a so far undescribed innate lymphoid cell population. We thus propose a new term, "polyclonal parapsoriasis en plaque", for this kind of lesion because they can be clearly differentiated from early- and advanced-stage MF, psoriasis, and AD on several cellular and molecular levels.
Collapse
Affiliation(s)
- Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sumanth Chennareddy
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emry R Cohenour
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John R Ruggiero
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Georg Stingl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
9
|
Sati S, Huang J, Kersh AE, Jones P, Ahart O, Murphy C, Prouty SM, Hedberg ML, Jain V, Gregory SG, Leung DH, Seykora JT, Rosenbach M, Leung TH. Recruitment of CXCR4+ type 1 innate lymphoid cells distinguishes sarcoidosis from other skin granulomatous diseases. J Clin Invest 2024; 134:e178711. [PMID: 39225100 PMCID: PMC11364400 DOI: 10.1172/jci178711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/25/2024] [Indexed: 09/04/2024] Open
Abstract
Sarcoidosis is a multiorgan granulomatous disease that lacks diagnostic biomarkers and targeted treatments. Using blood and skin from patients with sarcoid and non-sarcoid skin granulomas, we discovered that skin granulomas from different diseases exhibit unique immune cell recruitment and molecular signatures. Sarcoid skin granulomas were specifically enriched for type 1 innate lymphoid cells (ILC1s) and B cells and exhibited molecular programs associated with formation of mature tertiary lymphoid structures (TLSs), including increased CXCL12/CXCR4 signaling. Lung sarcoidosis granulomas also displayed similar immune cell recruitment. Thus, granuloma formation was not a generic molecular response. In addition to tissue-specific effects, patients with sarcoidosis exhibited an 8-fold increase in circulating ILC1s, which correlated with treatment status. Multiple immune cell types induced CXCL12/CXCR4 signaling in sarcoidosis, including Th1 T cells, macrophages, and ILCs. Mechanistically, CXCR4 inhibition reduced sarcoidosis-activated immune cell migration, and targeting CXCR4 or total ILCs attenuated granuloma formation in a noninfectious mouse model. Taken together, our results show that ILC1s are a tissue and circulating biomarker that distinguishes sarcoidosis from other skin granulomatous diseases. Repurposing existing CXCR4 inhibitors may offer a new targeted treatment for this devastating disease.
Collapse
Affiliation(s)
- Satish Sati
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jianhe Huang
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Anna E. Kersh
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Parker Jones
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Olivia Ahart
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christina Murphy
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stephen M. Prouty
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matthew L. Hedberg
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | - Simon G. Gregory
- Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | | | - John T. Seykora
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Misha Rosenbach
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Thomas H. Leung
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
- Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Nakajima S, Nakamizo S, Nomura T, Ishida Y, Sawada Y, Kabashima K. Integrating multi-omics approaches in deciphering atopic dermatitis pathogenesis and future therapeutic directions. Allergy 2024; 79:2366-2379. [PMID: 38837434 DOI: 10.1111/all.16183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Atopic dermatitis (AD), a complex and heterogeneous chronic inflammatory skin disorder, manifests in a spectrum of clinical subtypes. The application of genomics has elucidated the role of genetic variations in predisposing individuals to AD. Transcriptomics, analyzing gene expression alterations, sheds light on the molecular underpinnings of AD. Proteomics explores the involvement of proteins in AD pathophysiology, while epigenomics examines the impact of environmental factors on gene expression. Lipidomics, which investigates lipid profiles, enhances our understanding of skin barrier functionalities and their perturbations in AD. This review synthesizes insights from these omics approaches, highlighting their collective importance in unraveling the intricate pathogenesis of AD. The review culminates by projecting future trajectories in AD research, particularly the promise of multi-omics in forging personalized medicine and novel therapeutic interventions. Such an integrated multi-omics strategy is poised to transform AD comprehension and management, steering towards more precise and efficacious treatment modalities.
Collapse
Affiliation(s)
- Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Drug Discovery for Inflammatory Skin Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Nakamizo
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Alliance Laboratory for Advanced Medical Research, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Drug Development for Intractable Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshihiro Ishida
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
11
|
Feng S, Wang Z, Jin Y, Xu S. TabDEG: Classifying differentially expressed genes from RNA-seq data based on feature extraction and deep learning framework. PLoS One 2024; 19:e0305857. [PMID: 39037985 PMCID: PMC11262683 DOI: 10.1371/journal.pone.0305857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/05/2024] [Indexed: 07/24/2024] Open
Abstract
Traditional differential expression genes (DEGs) identification models have limitations in small sample size datasets because they require meeting distribution assumptions, otherwise resulting high false positive/negative rates due to sample variation. In contrast, tabular data model based on deep learning (DL) frameworks do not need to consider the data distribution types and sample variation. However, applying DL to RNA-Seq data is still a challenge due to the lack of proper labeling and the small sample size compared to the number of genes. Data augmentation (DA) extracts data features using different methods and procedures, which can significantly increase complementary pseudo-values from limited data without significant additional cost. Based on this, we combine DA and DL framework-based tabular data model, propose a model TabDEG, to predict DEGs and their up-regulation/down-regulation directions from gene expression data obtained from the Cancer Genome Atlas database. Compared to five counterpart methods, TabDEG has high sensitivity and low misclassification rates. Experiment shows that TabDEG is robust and effective in enhancing data features to facilitate classification of high-dimensional small sample size datasets and validates that TabDEG-predicted DEGs are mapped to important gene ontology terms and pathways associated with cancer.
Collapse
Affiliation(s)
- Sifan Feng
- School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Zhenyou Wang
- School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Yinghua Jin
- School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Shengbin Xu
- School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Mastorino L, Borrelli R, Macagno N, Gelato F, Baima E, Richiardi I, Cavaliere G, Quaglino P, Ortoncelli M, Ribero S. Therapeutic Modulation of Dupilumab in Patients with Severe Atopic Dermatitis: Clinical Effectiveness in Real Life. Dermatitis 2024. [PMID: 39037922 DOI: 10.1089/derm.2024.0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Background: De-escalation strategies have become increasingly used in the treatment of atopic dermatitis (AD) patients with dupilumab. Dose spacing (DS) refers to dose reduction by dosage elongation strategies from 2 to 8 weeks between dupilumab injections, in patients with stable response to treatment or affected by numerous adverse events. Objectives: Investigate safety and clinical effectiveness of DS strategy in AD patients treated with dupilumab. Methods: A retrospective cohort study was conducted on AD patients aged ≥18 years treated with dupilumab undergoing DS. Pre-post analyses were conducted on this cohort, termed cohort A, between effectiveness outcomes at baseline, at 16 weeks of treatment, at the index date identified as the mean follow-up time between dupilumab initiation and DS, and at subsequent two follow-up visits: T1 and T2. Based on the index date, a cohort B of AD patients on dupilumab treatment not experiencing DS was then compared with cohort A for the same outcomes at the same time points. Results: Seventy-three out of 452 patients treated with dupilumab underwent DS. The mean time since treatment initiation was 28.6 months. Mean Eczema Area Severity Index (EASI) from the index date remained stable until the second follow-up visit (T2) 0.2-0.8 with no significant pre-post differences (P > 0.05). Similar considerations can be made for mean number rating scale worst pruritus (NRSp), numerical rating scale disturbs of sleeping/sleeping disturb (NRSsd), mean Dermatology Life Quality Index (DLQI), and EASI Head and Neck. Attainment of relative outcomes remained stable for EASI75, 90, ≤ 7, DLQI ≤ 5, and NRSp ≤ 4. When compared with cohort B, no clinically significant differences were observed in mean reductions in all outcomes analyzed. Conclusions: DS in our study appears to be an effective and safe strategy in treating patients with severe AD after the initial therapeutic response.
Collapse
Affiliation(s)
- Luca Mastorino
- From the Dermatologic Clinic, Department of Medical Science, University of Turin, Turin, Italy
| | - Richard Borrelli
- SCDU Immunologia e Allergologia, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Nicole Macagno
- From the Dermatologic Clinic, Department of Medical Science, University of Turin, Turin, Italy
| | - Federica Gelato
- From the Dermatologic Clinic, Department of Medical Science, University of Turin, Turin, Italy
| | - Erica Baima
- From the Dermatologic Clinic, Department of Medical Science, University of Turin, Turin, Italy
| | - Irene Richiardi
- From the Dermatologic Clinic, Department of Medical Science, University of Turin, Turin, Italy
| | - Giovanni Cavaliere
- From the Dermatologic Clinic, Department of Medical Science, University of Turin, Turin, Italy
| | - Pietro Quaglino
- From the Dermatologic Clinic, Department of Medical Science, University of Turin, Turin, Italy
| | - Michela Ortoncelli
- From the Dermatologic Clinic, Department of Medical Science, University of Turin, Turin, Italy
| | - Simone Ribero
- From the Dermatologic Clinic, Department of Medical Science, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Bier K, Senajova Z, Henrion F, Wang Y, Bruno S, Rauld C, Hörmann LC, Barske C, Delucis-Bronn C, Bergling S, Altorfer M, Hägele J, Knehr J, Junt T, Roediger B, Röhn TA, Kolbinger F. IL-26 Potentiates Type 2 Skin Inflammation in the Presence of IL-1β. J Invest Dermatol 2024; 144:1544-1556.e9. [PMID: 38237730 DOI: 10.1016/j.jid.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 06/24/2024]
Abstract
Atopic dermatitis (AD) is a debilitating inflammatory skin disorder. Biologics targeting the IL-4/IL-13 axis are effective in AD, but there is still a large proportion of patients who do not respond to IL-4R blockade. Further exploration of potentially pathogenic T-cell-derived cytokines in AD may lead to new effective treatments. This study aimed to investigate the downstream effects of IL-26 on skin in the context of type 2 skin inflammation. We found that IL-26 alone exhibited limited inflammatory activity in the skin. However, in the presence of IL-1β, IL-26 potentiated the secretion of TSLP, CXCL1, and CCL20 from human epidermis through Jak/signal transducer and activator of transcription signaling. Moreover, in an in vivo AD-like skin inflammation model, IL-26 exacerbated skin pathology and locally increased type 2 cytokines, most notably of IL13 in skin T helper cells. Neutralization of IL-1β abrogated IL-26-mediated effects, indicating that the presence of IL-1β is required for full IL-26 downstream action in vivo. These findings suggest that the presence of IL-1β enables IL-26 to be a key amplifier of inflammation in the skin. As such, IL-26 may contribute to the development and pathogenesis of inflammatory skin disorders such as AD.
Collapse
Affiliation(s)
- Katharina Bier
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland.
| | - Zuzana Senajova
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Fanny Henrion
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Yichen Wang
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Sandro Bruno
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Celine Rauld
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Lisa C Hörmann
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Carmen Barske
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Corinne Delucis-Bronn
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Sebastian Bergling
- Discovery Science, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Marc Altorfer
- Discovery Science, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Jasmin Hägele
- Discovery Science, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Judith Knehr
- Discovery Science, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Tobias Junt
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Ben Roediger
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Till A Röhn
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Frank Kolbinger
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
14
|
Gorenjak M, Gole B, Goričan L, Jezernik G, Prosenc Zmrzljak U, Pernat C, Skok P, Potočnik U. Single-Cell Transcriptomic and Targeted Genomic Profiling Adjusted for Inflammation and Therapy Bias Reveal CRTAM and PLCB1 as Novel Hub Genes for Anti-Tumor Necrosis Factor Alpha Therapy Response in Crohn's Disease. Pharmaceutics 2024; 16:835. [PMID: 38931955 PMCID: PMC11207411 DOI: 10.3390/pharmaceutics16060835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The lack of reliable biomarkers in response to anti-TNFα biologicals hinders personalized therapy for Crohn's disease (CD) patients. The motivation behind our study is to shift the paradigm of anti-TNFα biomarker discovery toward specific immune cell sub-populations using single-cell RNA sequencing and an innovative approach designed to uncover PBMCs gene expression signals, which may be masked due to the treatment or ongoing inflammation; Methods: The single-cell RNA sequencing was performed on PBMC samples from CD patients either naïve to biological therapy, in remission while on adalimumab, or while on ustekinumab but previously non-responsive to adalimumab. Sieves for stringent downstream gene selection consisted of gene ontology and independent cohort genomic profiling. Replication and meta-analyses were performed using publicly available raw RNA sequencing files of sorted immune cells and an association analysis summary. Machine learning, Mendelian randomization, and oligogenic risk score methods were deployed to validate DEGs highly relevant to anti-TNFα therapy response; Results: This study found PLCB1 in CD4+ T cells and CRTAM in double-negative T cells, which met the stringent statistical thresholds throughout the analyses. An additional assessment proved causal inference of both genes in response to anti-TNFα therapy; Conclusions: This study, jointly with an innovative design, uncovered novel candidate genes in the anti-TNFα response landscape of CD, potentially obscured by therapy or inflammation.
Collapse
Affiliation(s)
- Mario Gorenjak
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (B.G.); (L.G.); (G.J.); (U.P.)
| | - Boris Gole
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (B.G.); (L.G.); (G.J.); (U.P.)
| | - Larisa Goričan
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (B.G.); (L.G.); (G.J.); (U.P.)
| | - Gregor Jezernik
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (B.G.); (L.G.); (G.J.); (U.P.)
| | | | - Cvetka Pernat
- Department of Gastroenterology, Division of Internal Medicine, Maribor University Medical Centre, Ljubljanska ulica 5, SI-2000 Maribor, Slovenia; (C.P.); (P.S.)
| | - Pavel Skok
- Department of Gastroenterology, Division of Internal Medicine, Maribor University Medical Centre, Ljubljanska ulica 5, SI-2000 Maribor, Slovenia; (C.P.); (P.S.)
| | - Uroš Potočnik
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (B.G.); (L.G.); (G.J.); (U.P.)
- Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty for Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| |
Collapse
|
15
|
Jin SP, Lee K, Bang YJ, Jeon YH, Jung S, Choi SJ, Lee JS, Kim J, Guttman-Yassky E, Park CG, Kim HJ, Hong S, Lee DH. Mapping the immune cell landscape of severe atopic dermatitis by single-cell RNA-seq. Allergy 2024; 79:1584-1597. [PMID: 38817208 DOI: 10.1111/all.16121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Efforts to profile atopic dermatitis (AD) tissues have intensified, yet comprehensive analysis of systemic immune landscapes in severe AD remains crucial. METHODS Employing single-cell RNA sequencing, we analyzed over 300,000 peripheral blood mononuclear cells from 12 severe AD patients (Eczema area and severity index (EASI) > 21) and six healthy controls. RESULTS Results revealed significant immune cell shifts in AD patients, including increased Th2 cell abundance, reduced NK cell clusters with compromised cytotoxicity, and correlated Type 2 innate lymphoid cell proportions with disease severity. Moreover, unique monocyte clusters reflecting activated innate immunity emerged in very severe AD (EASI > 30). While overall dendritic cells (DCs) counts decreased, a distinct Th2-priming subset termed "Th2_DC" correlated strongly with disease severity, validated across skin tissue data, and flow cytometry with additional independent severe AD samples. Beyond the recognized role of Th2 adaptive immunity, our findings highlight significant innate immune cell alterations in severe AD, implicating their roles in disease pathogenesis and therapeutic potentials. CONCLUSION Apart from the widely recognized role of Th2 adaptive immunity in AD pathogenesis, alterations in innate immune cells and impaired cytotoxic cells have also been observed in severe AD. The impact of these alterations on disease pathogenesis and the effectiveness of potential therapeutic targets requires further investigation.
Collapse
Affiliation(s)
- Seon-Pil Jin
- Department of Dermatology, Seoul National University Hospital, Seoul, Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Kyungchun Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, Korea
| | - Yoon Ji Bang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Yun-Hui Jeon
- Department of Dermatology, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Sunyoung Jung
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - So-Jung Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Ji Su Lee
- Department of Dermatology, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Junhan Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, Korea
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Chung-Gyu Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Seoul National University Hospital, Seoul, Korea
| | - Hyun Je Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Seoul National University Hospital, Seoul, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
| | - Seunghee Hong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University Hospital, Seoul, Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea
| |
Collapse
|
16
|
Zhang Z, Bahabayi A, Liu D, Hasimu A, Zhang Y, Guo S, Liu R, Zhang K, Li Q, Xiong Z, Wang P, Liu C. KLRB1 defines an activated phenotype of CD4+ T cells and shows significant upregulation in patients with primary Sjögren's syndrome. Int Immunopharmacol 2024; 133:112072. [PMID: 38636371 DOI: 10.1016/j.intimp.2024.112072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVE This study aimed to investigate the role of KLRB1 (CD161) in human CD4+ T cells and elucidate its significance in primary Sjögren's syndrome (pSS). METHODS Peripheral blood samples from 37 healthy controls and 44 pSS patients were collected. The publicly available single-cell RNA-Seq data from pSS patient PBMCs were utilized to analyse KLRB1 expression in T cells. KLRB1-expressing T lymphocyte subset proportions in pSS patients and healthy controls were determined by flow cytometry. CD25, Ki-67, cytokine secretion, and chemokine receptor expression in CD4+ KLRB1+ T cells were detected and compared with those in CD4+ KLRB1- T cells. Correlation analysis was conducted between KLRB1-related T-cell subsets and clinical indicators. ROC curves were generated to explore the diagnostic potential of KLRB1 for pSS. RESULTS KLRB1 was significantly upregulated following T-cell activation, and Ki-67 and CD25 expression was significantly greater in CD4+ KLRB1+ T cells than in CD4+ KLRB1- T cells. KLRB1+ CD4+ T cells exhibited greater IL-17A, IL-21, IL-22, and IFN-γ secretion upon stimulation, and there were significantly greater proportions of CCR5+, CCR2+, CX3CR1+, CCR6+, and CXCR3+ cells among CD4+ KLRB1+ T cells than among CD4+ KLRB1- T cells. Compared with that in HCs, KLRB1 expression in CD4+ T cells was markedly elevated in pSS patients and significantly correlated with clinical disease indicators. CONCLUSION KLRB1 is a characteristic molecule of the CD4+ T-cell activation phenotype. The increased expression of KLRB1 in the CD4+ T cells of pSS patients suggests its potential involvement in the pathogenesis of pSS and its utility as an auxiliary diagnostic marker for pSS.
Collapse
Affiliation(s)
- Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Danni Liu
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ainizati Hasimu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yangyang Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Siyu Guo
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ruiqing Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ke Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ziqi Xiong
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Peking University Center for Human Disease Genomics, Peking University Health Science Center, Beijing, China.
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
17
|
Kratchmarov R, Djeddi S, Dunlap G, He W, Jia X, Burk CM, Ryan T, McGill A, Allegretti JR, Kataru RP, Mehrara BJ, Taylor EM, Agarwal S, Bhattacharyya N, Bergmark RW, Maxfield AZ, Lee S, Roditi R, Dwyer DF, Boyce JA, Buchheit KM, Laidlaw TM, Shreffler WG, Rao DA, Gutierrez-Arcelus M, Brennan PJ. TCF1-LEF1 co-expression identifies a multipotent progenitor cell (T H2-MPP) across human allergic diseases. Nat Immunol 2024; 25:902-915. [PMID: 38589618 DOI: 10.1038/s41590-024-01803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
Repetitive exposure to antigen in chronic infection and cancer drives T cell exhaustion, limiting adaptive immunity. In contrast, aberrant, sustained T cell responses can persist over decades in human allergic disease. To understand these divergent outcomes, we employed bioinformatic, immunophenotyping and functional approaches with human diseased tissues, identifying an abundant population of type 2 helper T (TH2) cells with co-expression of TCF7 and LEF1, and features of chronic activation. These cells, which we termed TH2-multipotent progenitors (TH2-MPP) could self-renew and differentiate into cytokine-producing effector cells, regulatory T (Treg) cells and follicular helper T (TFH) cells. Single-cell T-cell-receptor lineage tracing confirmed lineage relationships between TH2-MPP, TH2 effectors, Treg cells and TFH cells. TH2-MPP persisted despite in vivo IL-4 receptor blockade, while thymic stromal lymphopoietin (TSLP) drove selective expansion of progenitor cells and rendered them insensitive to glucocorticoid-induced apoptosis in vitro. Together, our data identify TH2-MPP as an aberrant T cell population with the potential to sustain type 2 inflammation and support the paradigm that chronic T cell responses can be coordinated over time by progenitor cells.
Collapse
Affiliation(s)
- Radomir Kratchmarov
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah Djeddi
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Garrett Dunlap
- Division of Rheumatology, Inflammation, Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wenqin He
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaojiong Jia
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caitlin M Burk
- Center for Immunology and Inflammatory Diseases and Food Allergy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tessa Ryan
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alanna McGill
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica R Allegretti
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raghu P Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Babak J Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin M Taylor
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, USA
| | - Shailesh Agarwal
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, USA
| | - Neil Bhattacharyya
- Massachusetts Eye & Ear Institute, Harvard Medical School, Boston, MA, USA
| | - Regan W Bergmark
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Surgery and Public Health, Brigham and Women's Hospital, Boston, MA, USA
| | - Alice Z Maxfield
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stella Lee
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel Roditi
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel F Dwyer
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua A Boyce
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathleen M Buchheit
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tanya M Laidlaw
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wayne G Shreffler
- Center for Immunology and Inflammatory Diseases and Food Allergy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Patrick J Brennan
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Gupta RK, Fung K, Figueroa DS, Ay F, Croft M. Integrative Keratinocyte Responses to TWEAK with IL-13 and IL-22 Reveal Pathogenic Transcriptomes Associated with Atopic Dermatitis. J Invest Dermatol 2024; 144:1071-1074.e6. [PMID: 38072390 PMCID: PMC11034708 DOI: 10.1016/j.jid.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 01/27/2024]
Affiliation(s)
- Rinkesh K Gupta
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Kai Fung
- Bioinformatics Core, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Daniela Salgado Figueroa
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, California, USA; Bioinformatics and Systems Biology Program, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Ferhat Ay
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, California, USA; Bioinformatics and Systems Biology Program, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA; Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, California, USA; Department of Medicine, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
19
|
Croft M, Esfandiari E, Chong C, Hsu H, Kabashima K, Kricorian G, Warren RB, Wollenberg A, Guttman-Yassky E. OX40 in the Pathogenesis of Atopic Dermatitis-A New Therapeutic Target. Am J Clin Dermatol 2024; 25:447-461. [PMID: 38236520 PMCID: PMC11070399 DOI: 10.1007/s40257-023-00838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/19/2024]
Abstract
Atopic dermatitis (AD) is a chronic, heterogeneous, inflammatory disease characterized by skin lesions, pruritus, and pain. Patients with moderate-to-severe AD experience chronic symptoms, intensified by unpredictable flares, and often have comorbidities and secondary complications, which can result in significant clinical burden that impacts the patient's overall quality of life. The complex interplay of immune dysregulation and skin barrier disruption drives AD pathogenesis, of which T-cell-dependent inflammation plays a critical role in patients with AD. Despite new targeted therapies, many patients with moderate-to-severe AD fail to achieve or sustain their individual treatment goals and/or may not be suitable for or tolerate these therapies. There remains a need for a novel, efficacious, well-tolerated therapeutic option that can deliver durable benefits across a heterogeneous AD patient population. Expression of OX40 [tumor necrosis factor receptor superfamily, member 4 (TNFRSF4)], a prominent T-cell co-stimulatory molecule, and its ligand [OX40L; tumor necrosis factor superfamily, member 4 (TNFSF4)] is increased in AD. As the OX40 pathway is critical for expansion, differentiation, and survival of effector and memory T cells, its targeting might be a promising therapeutic approach to provide sustained inhibition of pathogenic T cells and associated inflammation and broad disease control. Antibodies against OX40 [rocatinlimab (AMG 451/KHK4083) and telazorlimab (GBR 830)] or OX40L [amlitelimab (KY1005)] have shown promising results in early-phase clinical studies of moderate-to-severe AD, highlighting the importance of OX40 signaling as a new therapeutic target in AD.
Collapse
Affiliation(s)
- Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
| | | | | | | | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Richard B Warren
- Dermatology Centre, Northern Care Alliance NHS Foundation Trust, NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Andreas Wollenberg
- Department of Dermatology and Allergy, Ludwig-Maximilian-University, Munich, Germany
- Department of Dermatology and Allergy, University Hospital Augsburg, Augsburg, Germany
| | - Emma Guttman-Yassky
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1047, New York, NY, 10029-6574, USA.
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY, USA.
| |
Collapse
|
20
|
Guttman-Yassky E, Facheris P, Gomez-Arias PJ, Del Duca E, Da Rosa JC, Weidinger S, Bissonnette R, Armstrong AW, Seneschal J, Eyerich K, Estrada YD, Bose SN, Xu D, Chen A, Tatulych S, Güler E, Chan G, Page KM, Kerkmann U. Effect of abrocitinib on skin biomarkers in patients with moderate-to-severe atopic dermatitis. Allergy 2024; 79:1258-1270. [PMID: 38108208 DOI: 10.1111/all.15969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND This is the first report on the effects of abrocitinib, a Janus kinase 1-selective inhibitor, on the expression of skin biomarkers in patients with moderate-to-severe atopic dermatitis (AD). METHODS JADE MOA (NCT03915496) was a double-blind Phase 2a trial. Adults were randomly assigned 1:1:1 to receive monotherapy with once-daily abrocitinib 200 mg, abrocitinib 100 mg, or placebo for 12 weeks. The primary endpoint was change from baseline in markers of inflammation (matrix metalloproteinase [MMP]-12), epidermal hyperplasia (keratin-16 [KRT16]), T-helper 2 (Th2) immune response (C-C motif chemokine ligand [CCL]17, CCL18, and CCL26), and Th22 immune response (S100 calcium binding protein A8, A9, and A12 [S100A8, S100A9, and S100A12]) in skin through 12 weeks. RESULTS A total of 46 patients received abrocitinib 200 mg (n = 14), abrocitinib 100 mg (n = 16), or placebo (n = 16). Abrocitinib improved AD clinical signs and reduced itch. Gene expression of MMP-12, KRT16, S100A8, S100A9, and S100A12 was significantly decreased from baseline with abrocitinib 200 mg (at Weeks 2, 4, and 12) and abrocitinib 100 mg (at Weeks 4 and 12) in a dose-dependent manner. Abrocitinib 200 mg resulted in significant decreases from baseline in CCL17 expression at Week 12 and CCL18 expression at Weeks 2, 4, and 12; no significant decreases were observed for CCL26. CONCLUSIONS Alongside improvements in clinical signs and symptoms of AD, 12 weeks of abrocitinib treatment resulted in downregulation of genes associated with inflammation, epidermal hyperplasia, and Th2 and Th22 immune responses in the skin of patients with moderate-to-severe AD.
Collapse
Affiliation(s)
- Emma Guttman-Yassky
- Icahn School of Medicine at Mount Sinai Medical Center, New York, New York, USA
| | - Paola Facheris
- Icahn School of Medicine at Mount Sinai Medical Center, New York, New York, USA
| | | | - Ester Del Duca
- Icahn School of Medicine at Mount Sinai Medical Center, New York, New York, USA
| | - Joel Correa Da Rosa
- Icahn School of Medicine at Mount Sinai Medical Center, New York, New York, USA
| | | | | | | | - Julien Seneschal
- Department of Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hospital Saint-André, Bordeaux, France
- Bordeaux University, CNRS UMR 5164, Immunoconcept, Bordeaux, France
| | | | - Yeriel D Estrada
- Icahn School of Medicine at Mount Sinai Medical Center, New York, New York, USA
| | - Swaroop N Bose
- Icahn School of Medicine at Mount Sinai Medical Center, New York, New York, USA
| | - Dan Xu
- Pfizer Inc., San Diego, California, USA
| | | | | | | | - Gary Chan
- Pfizer Inc., Groton, Connecticut, USA
| | | | | |
Collapse
|
21
|
Obi A, Rothenberg-Lausell C, Levit S, Del Duca E, Guttman-Yassky E. Proteomic alterations in patients with atopic dermatitis. Expert Rev Proteomics 2024; 21:247-257. [PMID: 38753434 DOI: 10.1080/14789450.2024.2350938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/31/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Atopic Dermatitis (AD) is the most common inflammatory skin disease with a complex and multifactorial pathogenesis. The use of proteomics in understanding AD has yielded the discovery of novel biomarkers and may further expand therapeutic options. AREAS COVERED This review summarizes the most recent proteomic studies and the methodologies used in AD. It describes novel biomarkers that may monitor disease course and therapeutic response. The review also highlights skin and blood biomarkers characterizing different AD phenotypes and differentiates AD from other inflammatory skin disorders. A literature search was conducted by querying Scopus, Google Scholar, Pubmed/Medline, and Clinicaltrials.gov up to June 2023. EXPERT OPINION The integration of proteomics into research efforts in atopic dermatitis has broadened our understanding of the molecular profile of AD through the discovery of new biomarkers. In addition, proteomics may contribute to the development of targeted treatments ultimately improving personalized medicine. An increasing number of studies are utilizing proteomics to explore this heterogeneous disease.
Collapse
Affiliation(s)
- Ashley Obi
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Camille Rothenberg-Lausell
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophia Levit
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ester Del Duca
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma Guttman-Yassky
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
22
|
Qiao X, Yin J, Zheng Z, Li L, Feng X. Endothelial cell dynamics in sepsis-induced acute lung injury and acute respiratory distress syndrome: pathogenesis and therapeutic implications. Cell Commun Signal 2024; 22:241. [PMID: 38664775 PMCID: PMC11046830 DOI: 10.1186/s12964-024-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis, a prevalent critical condition in clinics, continues to be the leading cause of death from infections and a global healthcare issue. Among the organs susceptible to the harmful effects of sepsis, the lungs are notably the most frequently affected. Consequently, patients with sepsis are predisposed to developing acute lung injury (ALI), and in severe cases, acute respiratory distress syndrome (ARDS). Nevertheless, the precise mechanisms associated with the onset of ALI/ARDS remain elusive. In recent years, there has been a growing emphasis on the role of endothelial cells (ECs), a cell type integral to lung barrier function, and their interactions with various stromal cells in sepsis-induced ALI/ARDS. In this comprehensive review, we summarize the involvement of endothelial cells and their intricate interplay with immune cells and stromal cells, including pulmonary epithelial cells and fibroblasts, in the pathogenesis of sepsis-induced ALI/ARDS, with particular emphasis placed on discussing the several pivotal pathways implicated in this process. Furthermore, we discuss the potential therapeutic interventions for modulating the functions of endothelial cells, their interactions with immune cells and stromal cells, and relevant pathways associated with ALI/ARDS to present a potential therapeutic strategy for managing sepsis and sepsis-induced ALI/ARDS.
Collapse
Affiliation(s)
- Xinyu Qiao
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Liangge Li
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
23
|
Bangert C, Alkon N, Chennareddy S, Arnoldner T, Levine JP, Pilz M, Medjimorec MA, Ruggiero J, Cohenour ER, Jonak C, Damsky W, Griss J, Brunner PM. Dupilumab-associated head and neck dermatitis shows a pronounced type 22 immune signature mediated by oligoclonally expanded T cells. Nat Commun 2024; 15:2839. [PMID: 38565563 PMCID: PMC10987549 DOI: 10.1038/s41467-024-46540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Dupilumab, an IL4R-blocking antibody, has shown clinical efficacy for atopic dermatitis (AD) treatment. In addition to conjunctivitis/blepharitis, the de novo appearance of head/neck dermatitis is now recognized as a distinct side effect, occurring in up to 10% of patients. Histopathological features distinct from AD suggest a drug effect, but exact underlying mechanisms remain unknown. We profiled punch biopsies from dupilumab-associated head and neck dermatitis (DAHND) by using single-cell RNA sequencing and compared data with untreated AD and healthy control skin. We show that dupilumab treatment was accompanied by normalization of IL-4/IL-13 downstream activity markers such as CCL13, CCL17, CCL18 and CCL26. By contrast, we found strong increases in type 22-associated markers (IL22, AHR) especially in oligoclonally expanded T cells, accompanied by enhanced keratinocyte activation and IL-22 receptor upregulation. Taken together, we demonstrate that dupilumab effectively dampens conventional type 2 inflammation in DAHND lesions, with concomitant hyperactivation of IL22-associated responses.
Collapse
Affiliation(s)
- Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Tamara Arnoldner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Jasmine P Levine
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- New York Medical College, Valhalla, NY, USA
| | - Magdalena Pilz
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Marco A Medjimorec
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - John Ruggiero
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Emry R Cohenour
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - William Damsky
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
24
|
Gupta RK, Figueroa DS, Fung K, Miki H, Miller J, Ay F, Croft M. LIGHT signaling through LTβR and HVEM in keratinocytes promotes psoriasis and atopic dermatitis-like skin inflammation. J Autoimmun 2024; 144:103177. [PMID: 38368767 DOI: 10.1016/j.jaut.2024.103177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Psoriasis (PS) and atopic dermatitis (AD) are common skin inflammatory diseases characterized by hyper-responsive keratinocytes. Although, some cytokines have been suggested to be specific for each disease, other cytokines might be central to both diseases. Here, we show that Tumor necrosis factor superfamily member 14 (TNFSF14), known as LIGHT, is required for experimental PS, similar to its requirement in experimental AD. Mice devoid of LIGHT, or deletion of either of its receptors, lymphotoxin β receptor (LTβR) and herpesvirus entry mediator (HVEM), in keratinocytes, were protected from developing imiquimod-induced psoriatic features, including epidermal thickening and hyperplasia, and expression of PS-related genes. Correspondingly, in single cell RNA-seq analysis of PS patient biopsies, LTβR transcripts were found strongly expressed with HVEM in keratinocytes, and LIGHT was upregulated in T cells. Similar transcript expression profiles were also seen in AD biopsies, and LTβR deletion in keratinocytes also protected mice from allergen-induced AD features. Moreover, in vitro, LIGHT upregulated a broad spectrum of genes in human keratinocytes that are clinical features of both PS and AD skin lesions. Our data suggest that agents blocking LIGHT activity might be useful for therapeutic intervention in PS as well as in AD.
Collapse
Affiliation(s)
- Rinkesh K Gupta
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Daniela Salgado Figueroa
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Kai Fung
- Bioinformatics Core, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Haruka Miki
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Jacqueline Miller
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Ferhat Ay
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
25
|
Migayron L, Merhi R, Seneschal J, Boniface K. Resident memory T cells in nonlesional skin and healed lesions of patients with chronic inflammatory diseases: Appearances can be deceptive. J Allergy Clin Immunol 2024; 153:606-614. [PMID: 37995858 DOI: 10.1016/j.jaci.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Tissue-resident memory T (TRM) cells serve as a first line of defense in peripheral tissues to protect the organism against foreign pathogens. However, autoreactive TRM cells are increasingly implicated in autoimmunity, as evidenced in chronic autoimmune and inflammatory skin conditions. This highlights the need to characterize their phenotype and understand their role for the purpose of targeting them specifically without affecting local immunity. To date, the investigation of TRM cells in human skin diseases has focused mainly on lesional tissues of patients. Accumulating evidence suggests that self-reactive TRM cells are still present in clinically healed lesions of patients and play a role in disease flares, but TRM cells also populate skin that is apparently normal. This review discusses the ontogeny of TRM cells in the skin as well as recent insights regarding the presence of self-reactive TRM cells in both clinically healed skin and nonlesional skin of patients with autoimmune and inflammatory skin conditions, with a particular focus on psoriasis, atopic dermatitis, and vitiligo.
Collapse
Affiliation(s)
- Laure Migayron
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR5164, F-33000, Bordeaux, France; R&D Department, SILAB, Brive-la-Gaillarde, France
| | - Ribal Merhi
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR5164, F-33000, Bordeaux, France
| | - Julien Seneschal
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR5164, F-33000, Bordeaux, France; CHU de Bordeaux, Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hôpital Saint-André, UMR Bordeaux, Bordeaux, France
| | - Katia Boniface
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR5164, F-33000, Bordeaux, France.
| |
Collapse
|
26
|
Long B, Zhou S, Gao Y, Fan K, Lai J, Yao C, Li J, Xu X, Yu S. Tissue-Resident Memory T Cells in Allergy. Clin Rev Allergy Immunol 2024; 66:64-75. [PMID: 38381299 DOI: 10.1007/s12016-024-08982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Tissue-resident memory T (TRM) cells constitute a distinct subset within the memory T cell population, serving as the vanguard against invading pathogens and antigens in peripheral non-lymphoid tissues, including the respiratory tract, intestines, and skin. Notably, TRM cells adapt to the specific microenvironment of each tissue, predominantly maintaining a sessile state with distinctive phenotypic and functional attributes. Their role is to ensure continuous immunological surveillance and protection. Recent findings have highlighted the pivotal contribution of TRM cells to the modulation of adaptive immune responses in allergic disorders such as allergic rhinitis, asthma, and dermatitis. A comprehensive understanding of the involvement of TRM cells in allergic diseases bears profound implications for allergy prevention and treatment. This review comprehensively explores the phenotypic characteristics, developmental mechanisms, and functional roles of TRM cells, focusing on their intricate relationship with allergic diseases.
Collapse
Affiliation(s)
- Bojin Long
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Shican Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yawen Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Kai Fan
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Ju Lai
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Chunyan Yao
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jingwen Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xiayue Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Shaoqing Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
27
|
Ahuja K, Issa CJ, Nedorost ST, Lio PA. Is Food-Triggered Atopic Dermatitis a Form of Systemic Contact Dermatitis? Clin Rev Allergy Immunol 2024; 66:1-13. [PMID: 38285165 DOI: 10.1007/s12016-023-08977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
Food allergy in atopic dermatitis is mediated by complex immune interactions between genetics, diet, environment, and the microbiome. When contact between inflamed skin and food antigens occurs, contact hypersensitivity can develop. Consequently, systemic contact dermatitis (SCD) can occur after ingestion of allergenic foods or food additives in the setting of a Th2 response with CLA-positive T cells, triggering dermatitis where skin resident memory lymphocytes reside. This phenomenon explains food-triggered dermatitis. Atopy patch tests (APTs) detect sensitization to food proteins responsible for SCD, which in turn can be confirmed by oral food challenge with delayed interpretation. We summarize the literature on using APTs to identify foods for oral challenge with dermatitis as an outcome. In dermatitis patients at risk for Th2 skewing based on a history of childhood-onset flexural dermatitis, shared decision-making should include a discussion of identifying and avoiding food and food additive triggers, as well as identifying and avoiding all contact allergens, prior to initiation of systemic therapy for dermatitis.
Collapse
Affiliation(s)
- Kripa Ahuja
- Eastern Virginia Medical School, Norfolk, USA.
| | - Christopher J Issa
- Oakland University William Beaumont School of Medicine, Rochester, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Susan T Nedorost
- Dermatologists of the Central States, Case Western Reserve University, Columbus, OH, USA
| | - Peter A Lio
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
28
|
Francis L, McCluskey D, Ganier C, Jiang T, Du-Harpur X, Gabriel J, Dhami P, Kamra Y, Visvanathan S, Barker JN, Smith CH, Capon F, Mahil SK. Single-cell analysis of psoriasis resolution demonstrates an inflammatory fibroblast state targeted by IL-23 blockade. Nat Commun 2024; 15:913. [PMID: 38291032 PMCID: PMC10828502 DOI: 10.1038/s41467-024-44994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Biologic therapies targeting the IL-23/IL-17 axis have transformed the treatment of psoriasis. However, the early mechanisms of action of these drugs remain poorly understood. Here, we perform longitudinal single-cell RNA-sequencing in affected individuals receiving IL-23 inhibitor therapy. By profiling skin at baseline, day 3 and day 14 of treatment, we demonstrate that IL-23 blockade causes marked gene expression shifts, with fibroblast and myeloid populations displaying the most extensive changes at day 3. We also identify a transient WNT5A+/IL24+ fibroblast state, which is only detectable in lesional skin. In-silico and in-vitro studies indicate that signals stemming from these WNT5A+/IL24+ fibroblasts upregulate multiple inflammatory genes in keratinocytes. Importantly, the abundance of WNT5A+/IL24+ fibroblasts is significantly reduced after treatment. This observation is validated in-silico, by deconvolution of multiple transcriptomic datasets, and experimentally, by RNA in-situ hybridization. These findings demonstrate that the evolution of inflammatory fibroblast states is a key feature of resolving psoriasis skin.
Collapse
Affiliation(s)
- Luc Francis
- St John's Institute of Dermatology, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Daniel McCluskey
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Clarisse Ganier
- Center of Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Treasa Jiang
- St John's Institute of Dermatology, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Xinyi Du-Harpur
- Center of Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Jeyrroy Gabriel
- Center of Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Pawan Dhami
- Genomics Research Platform, King's College London NIHR Biomedical Research Centre, London, UK
| | - Yogesh Kamra
- Genomics Research Platform, King's College London NIHR Biomedical Research Centre, London, UK
| | | | - Jonathan N Barker
- St John's Institute of Dermatology, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Catherine H Smith
- St John's Institute of Dermatology, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Francesca Capon
- Department of Medical and Molecular Genetics, King's College London, London, UK.
| | - Satveer K Mahil
- St John's Institute of Dermatology, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
29
|
Yuan H, Tang Y, Zhang S, Yan S, Li A, Yu Y, Sun Y, Zheng F. NLRP3 neuroinflammatory intervention of Mahuang-Lianqiao-Chixiaodou decoction for mental disorders in atopic dermatitis mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117263. [PMID: 37783411 DOI: 10.1016/j.jep.2023.117263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mahuang-Lianqiao-Chixiaodou decoction (MLCD) is a traditional Chinese medicinal (TCM) formula recorded in the Treatise on Febrile Diseases. It is commonly used for clinical treatment of atopic dermatitis (AD). However, the potential mechanisms of MLCD intervention in AD combined with mental disorders behaviors such as anxiety and depression remain elusive and deserves further investigation. AIM OF THE STUDY The study aims to observe the effect of MLCD on anxiety- and depression-like behaviors in AD mice and explore the possible neuroinflammatory mechanism of NOD-like receptor 3 (NLRP3) inflammasome. MATERIALS AND METHODS The chemical components of MLCD extracts were identified using UHPLC-MS. The AD mice were induced by 2,4-dinitrofluorobenzene and treated with MLCD or mometasone furoate (MF, as a positive control) for 7 days. The pathological changes in their skin tissue and brain hippocampus were observed by hematoxylin-eosin staining. Elevated plus-maze test (EPM), open field test (OFT), and the suspended tail (TST) were used to measure the anxiety- and depressive-like behaviors in AD mice. Expression of NLRP3 inflammasome-related proteins in brain hippocampus were measured by the quantitative real-time polymerase chain reaction (qPCR) and western blotting (WB). RESULTS We found that MLCD contain many active ingredients, including ephedrine, Forsythoside A, phillyrin, glycyrrhizic acid, etc. Both MLCD and MF alleviated skin lesions and promoted positive histopathological changes in the hippocampus of AD mince to varying degrees. MLCD however, could further increase their proportion of open arm entry times (Oentries%) in EPM, residence time in the central area (Ctime) and the proportion of the number of times in the central area (Centries%) in OFT significantly. MLCD also reduces their immobility time in TST considerably. Mechanistically, MLCD downregulated the relative mRNA expression and protein level of NLRP3, Caspase-1, IL-1β, and IL-18 in hippocampal tissue compared to the model group. CONCLUSIONS MLCD can alleviate anxiety-like and depression-like behaviors in AD mice by intervening in the gene and protein expression of NLRP3 inflammasome-related factors, thus treating AD.
Collapse
Affiliation(s)
- Huimin Yuan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shujing Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuxin Yan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Aorou Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yanru Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yan Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Fengjie Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
30
|
Wu D, Hailer AA, Wang S, Yuan M, Chan J, El Kurdi A, Rahim M, Kondo A, Han D, Ali H, D'Angio B, Mayer A, Klufas D, Kim E, Shain AH, Choi J, Bhutani T, Simpson G, Grekin RC, Ricardo-Gonzalez R, Purdom E, North JP, Cheng JB, Cho RJ. A single-cell atlas of IL-23 inhibition in cutaneous psoriasis distinguishes clinical response. Sci Immunol 2024; 9:eadi2848. [PMID: 38277466 DOI: 10.1126/sciimmunol.adi2848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/22/2023] [Indexed: 01/28/2024]
Abstract
Psoriasis vulgaris and other chronic inflammatory diseases improve markedly with therapeutic blockade of interleukin-23 (IL-23) signaling, but the genetic mechanisms underlying clinical responses remain poorly understood. Using single-cell transcriptomics, we profiled immune cells isolated from lesional psoriatic skin before and during IL-23 blockade. In clinically responsive patients, a psoriatic transcriptional signature in skin-resident memory T cells was strongly attenuated. In contrast, poorly responsive patients were distinguished by persistent activation of IL-17-producing T (T17) cells, a mechanism distinct from alternative cytokine signaling or resistance isolated to epidermal keratinocytes. Even in IL-23 blockade-responsive patients, we detected a recurring set of recalcitrant, disease-specific transcriptional abnormalities. This irreversible immunological state may necessitate ongoing IL-23 inhibition. Spatial transcriptomic analyses also suggested that successful IL-23 blockade requires dampening of >90% of IL-17-induced response in lymphocyte-adjacent keratinocytes, an unexpectedly high threshold. Collectively, our data establish a patient-level paradigm for dissecting responses to immunomodulatory treatments.
Collapse
Affiliation(s)
- David Wu
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Ashley A Hailer
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA 94121, USA
| | - Sijia Wang
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA 94121, USA
- Department of Dermatology, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - Michelle Yuan
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Jamie Chan
- Dermatopathology Service, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Abdullah El Kurdi
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Maha Rahim
- Enable Medicine, Menlo Park, CA 94025, USA
| | | | - David Han
- Enable Medicine, Menlo Park, CA 94025, USA
| | - Hira Ali
- Enable Medicine, Menlo Park, CA 94025, USA
| | | | | | - Daniel Klufas
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Esther Kim
- Department of Plastic Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - A Hunter Shain
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Jaehyuk Choi
- Departments of Dermatology and Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tina Bhutani
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Gregory Simpson
- Department of Dermatology, University of California, Fresno, CA 93701,USA
| | - Roy C Grekin
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Roberto Ricardo-Gonzalez
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeffrey P North
- Dermatopathology Service, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Jeffrey B Cheng
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA 94121, USA
| | - Raymond J Cho
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| |
Collapse
|
31
|
Li Y, Wu Q. KRT6A Inhibits IL-1β-Mediated Pyroptosis of Keratinocytes via Blocking IL-17 Signaling. Crit Rev Eukaryot Gene Expr 2024; 34:1-11. [PMID: 38505868 DOI: 10.1615/critreveukaryotgeneexpr.2023050039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Keratin 6A (KRT6A) is involved in the pathogenesis of various skin diseases. However, the reports on the roles of KRT6A in atopic dermatitis (AD) are limited. This study aimed to investigate the potentials of KRT6A in AD. mRNA levels were detected by RT-PCR. Cytokine release was determined by ELISA. Protein expression was determined using Western blot. Cell viability was determined by CCK-8. Cytotoxicity was detected by LDH assay. Cell death was determined by TUNEL. The pyroptosis of keratinocytes was detected using flow cytometry. We found that KRT6A was overexpressed in AD patients. Moreover, KRT6A was stimulated after exposed to proinflammatory cytokines. Overexpressed KRT6A suppressed inflammatory response, while KRT6A knockdown exerted the opposite effects. Overexpressed KRT6A suppressed inflammation-induced pyroptosis of keratinocytes. Additionally, KRT6A negatively regulated interleukin-17a (IL-17a) expression, blocking IL-17 signaling. IL-17a overexpression antagonized the effects of KRT6A and promoted pyroptosis of keratinocytes. In conclusion, KRT6A exerted protective functions in AD via regulating IL-17 signaling. This KRT6A/IL-17 may be a novel target for AD.
Collapse
Affiliation(s)
- Yuan Li
- Department of Dermatology, Union Jiangbei Hospital Huazhong University of Science and Technology (Caidian District People's Hospital of Wuhan), Wuhan City, Hubei Province 430100, China
| | - Qi Wu
- Wuhan Jiangxia District Traditional Chinese Medicine Hospital
| |
Collapse
|
32
|
Wang X, Chen L, Chen X, Liu C, Qiu W, Guo K. Identification of potential miR‑155 target genes in epidermal immune microenvironment of atopic dermatitis patients and their inflammatory effects on HaCaT cells. Exp Ther Med 2024; 27:25. [PMID: 38125354 PMCID: PMC10728954 DOI: 10.3892/etm.2023.12313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/22/2023] [Indexed: 12/23/2023] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory skin condition and the leading cause of morbidity associated with skin conditions worldwide. For the majority of patients, AD is a lifelong disease that cannot be cured completely. Therefore, in the present study, differentially expressed genes (DEGs) in the epidermal immune microenvironment were screened using bioinformatic techniques. Subsequently, an in vitro cellular model was constructed to investigate the role of microRNA (miR)-155 in immune infiltration during AD. In the present study, two datasets (GSE121212 and GSE157194) were downloaded from Gene Expression Omnibus, before the DEGs were screened and subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses. miRNet was used to predict the possible target genes of miR-155 among the differentially expressed genes found. Consequently, peptidase inhibitor 3 (PI3), FOS-like 1, AP-1 transcription factor subunit (FOSL1), C-X-C motif chemokine ligand (CXCL)1 and CXCL8 were selected to be the potential target genes of miR-155 in the epidermal immune microenvironment of patients with AD. Concurrently, an inflammatory cell model using HaCaT cells was constructed by TNF-α and IFN-γ treatment. The effects of miR-155 on HaCaT cell proliferation and secretion of IL-1β, IL-6, IL-10, IL-15, PI3, FOSL1, CXCL1 and CXCL8 under inflammatory and non-inflammatory conditions were then analyzed. The results showed that after the HaCaT cells were transfected with miR-155, miR-155 inhibited HaCaT cell proliferation and decreased the mRNA expression levels of PI3 and CXCL8, increased the mRNA levels of FOSL1 and secretion levels of IL-1β, IL-6, IL-15 and CXCL1. By contrast, miR-155 decreased the secretion levels of IL-10 and CXCL8. In the inflammatory cell model of HaCaT cells, miR-155 was found to significantly inhibit the proliferation of HaCaT cells during inflammation whilst significantly increasing the secretion of IL-1β, IL-6, IL-10 and IL-15. In addition, miR-155 increased the mRNA expression and secretion levels of CXCL1 and CXCL8, whilst also increasing the mRNA expression levels of PI3. Results from the current study suggest that miR-155 can stimulate keratinocytes to produce inflammatory cytokines and proteins to enhance the inflammatory response in AD.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Lu Chen
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Xiaoqing Chen
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Chang Liu
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Wenhong Qiu
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Kaiwen Guo
- Department of Pathogenic Biology, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
33
|
Tai LR, Chiang YF, Huang KC, Chen HY, Ali M, Hsia SM. Hinokitiol as a modulator of TLR4 signaling and apoptotic pathways in atopic dermatitis. Biomed Pharmacother 2024; 170:116026. [PMID: 38128179 DOI: 10.1016/j.biopha.2023.116026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Atopic dermatitis (AD) poses a significant global health challenge, characterized by dysregulated inflammation and apoptotic processes. This study explores the therapeutic efficacy of hinokitiol, employing a comprehensive in vivo and in vitro approach. Assessment of inflammation-related markers in the animal model included observation of physical appearance, Western blotting, ELISA, and H&E staining. Additionally, the cell culture model enabled the evaluation of apoptosis and ROS levels using MTT assay, crystal violet staining, Western blot, and DCFDA assays. The results revealed hinokitiol's proficiency in ameliorating ear and skin morphology in the DNCB-induced AD model, mediated through the TLR4/MyD88 pathway. Notably, hinokitiol intervention led to a reduction in both M1 and M2 macrophage phenotypes. In vitro investigations demonstrated hinokitiol's ability to enhance cell viability and morphology under TNF-α and IFN-γ induction. Mechanistically, hinokitiol exhibited regulatory effects on apoptosis-related proteins, including Bax, Cytochrome c, Caspase-3, and PARP, thereby averting cellular damage. These findings suggest that hinokitiol is a promising natural compound with significant potential for alleviating inflammation and apoptosis in AD, indicating potential avenues for future therapeutic developments.
Collapse
Affiliation(s)
- Ling-Ray Tai
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt; Deaprtment of Obstertrics and Gynecology, University of Chicago, 60637, Chicago, IL, USA
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; School of Food Safety, Taipei Medical University, Taipei 11031, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
34
|
Yazici D, Ogulur I, Pat Y, Babayev H, Barletta E, Ardicli S, Bel Imam M, Huang M, Koch J, Li M, Maurer D, Radzikowska U, Satitsuksanoa P, Schneider SR, Sun N, Traidl S, Wallimann A, Wawrocki S, Zhakparov D, Fehr D, Ziadlou R, Mitamura Y, Brüggen MC, van de Veen W, Sokolowska M, Baerenfaller K, Nadeau K, Akdis M, Akdis CA. The epithelial barrier: The gateway to allergic, autoimmune, and metabolic diseases and chronic neuropsychiatric conditions. Semin Immunol 2023; 70:101846. [PMID: 37801907 DOI: 10.1016/j.smim.2023.101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Since the 1960 s, our health has been compromised by exposure to over 350,000 newly introduced toxic substances, contributing to the current pandemic in allergic, autoimmune and metabolic diseases. The "Epithelial Barrier Theory" postulates that these diseases are exacerbated by persistent periepithelial inflammation (epithelitis) triggered by exposure to a wide range of epithelial barrier-damaging substances as well as genetic susceptibility. The epithelial barrier serves as the body's primary physical, chemical, and immunological barrier against external stimuli. A leaky epithelial barrier facilitates the translocation of the microbiome from the surface of the afflicted tissues to interepithelial and even deeper subepithelial locations. In turn, opportunistic bacterial colonization, microbiota dysbiosis, local inflammation and impaired tissue regeneration and remodelling follow. Migration of inflammatory cells to susceptible tissues contributes to damage and inflammation, initiating and aggravating many chronic inflammatory diseases. The objective of this review is to highlight and evaluate recent studies on epithelial physiology and its role in the pathogenesis of chronic diseases in light of the epithelial barrier theory.
Collapse
Affiliation(s)
- Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Elena Barletta
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Swiss Institute of Bioinformatics (SIB), Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mengting Huang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Jana Koch
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Swiss Institute of Bioinformatics (SIB), Davos, Switzerland
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Debbie Maurer
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | | | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Na Sun
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Stephan Traidl
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Alexandra Wallimann
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sebastian Wawrocki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Damir Zhakparov
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Danielle Fehr
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Reihane Ziadlou
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marie-Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Katja Baerenfaller
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Swiss Institute of Bioinformatics (SIB), Davos, Switzerland
| | - Kari Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland.
| |
Collapse
|
35
|
Koh CH, Lee S, Kwak M, Kim BS, Chung Y. CD8 T-cell subsets: heterogeneity, functions, and therapeutic potential. Exp Mol Med 2023; 55:2287-2299. [PMID: 37907738 PMCID: PMC10689838 DOI: 10.1038/s12276-023-01105-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 11/02/2023] Open
Abstract
CD8 T cells play crucial roles in immune surveillance and defense against infections and cancer. After encountering antigenic stimulation, naïve CD8 T cells differentiate and acquire effector functions, enabling them to eliminate infected or malignant cells. Traditionally, cytotoxic T cells, characterized by their ability to produce effector cytokines and release cytotoxic granules to directly kill target cells, have been recognized as the constituents of the predominant effector T-cell subset. However, emerging evidence suggests distinct subsets of effector CD8 T cells that each exhibit unique effector functions and therapeutic potential. This review highlights recent advancements in our understanding of CD8 T-cell subsets and the contributions of these cells to various disease pathologies. Understanding the diverse roles and functions of effector CD8 T-cell subsets is crucial to discern the complex dynamics of immune responses in different disease settings. Furthermore, the development of immunotherapeutic approaches that specifically target and regulate the function of distinct CD8 T-cell subsets holds great promise for precision medicine.
Collapse
Affiliation(s)
- Choong-Hyun Koh
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suyoung Lee
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minkyeong Kwak
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Seok Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon, 25159, Republic of Korea.
| |
Collapse
|
36
|
Fiskin E, Eraslan G, Alora-Palli MB, Leyva-Castillo JM, Kim S, Choe H, Lareau CA, Lau H, Finan EP, Teixeira-Soldano I, LaBere B, Chu A, Woods B, Chou J, Slyper M, Waldman J, Islam S, Schneider L, Phipatanakul W, Platt C, Rozenblatt-Rosen O, Delorey TM, Deguine J, Smith GP, Geha R, Regev A, Xavier R. Multi-modal skin atlas identifies a multicellular immune-stromal community associated with altered cornification and specific T cell expansion in atopic dermatitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.29.563503. [PMID: 37961084 PMCID: PMC10634929 DOI: 10.1101/2023.10.29.563503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In healthy skin, a cutaneous immune system maintains the balance between tolerance towards innocuous environmental antigens and immune responses against pathological agents. In atopic dermatitis (AD), barrier and immune dysfunction result in chronic tissue inflammation. Our understanding of the skin tissue ecosystem in AD remains incomplete with regard to the hallmarks of pathological barrier formation, and cellular state and clonal composition of disease-promoting cells. Here, we generated a multi-modal cell census of 310,691 cells spanning 86 cell subsets from whole skin tissue of 19 adult individuals, including non-lesional and lesional skin from 11 AD patients, and integrated it with 396,321 cells from four studies into a comprehensive human skin cell atlas in health and disease. Reconstruction of human keratinocyte differentiation from basal to cornified layers revealed a disrupted cornification trajectory in AD. This disrupted epithelial differentiation was associated with signals from a unique immune and stromal multicellular community comprised of MMP12 + dendritic cells (DCs), mature migratory DCs, cycling ILCs, NK cells, inflammatory CCL19 + IL4I1 + fibroblasts, and clonally expanded IL13 + IL22 + IL26 + T cells with overlapping type 2 and type 17 characteristics. Cell subsets within this immune and stromal multicellular community were connected by multiple inter-cellular positive feedback loops predicted to impact community assembly and maintenance. AD GWAS gene expression was enriched both in disrupted cornified keratinocytes and in cell subsets from the lesional immune and stromal multicellular community including IL13 + IL22 + IL26 + T cells and ILCs, suggesting that epithelial or immune dysfunction in the context of the observed cellular communication network can initiate and then converge towards AD. Our work highlights specific, disease-associated cell subsets and interactions as potential targets in progression and resolution of chronic inflammation.
Collapse
|
37
|
Makiya MA, Brown T, Holland N, Wetzler L, Ware JAM, Khoury P, Frischmeyer-Guerrerio PA, Klion AD, Kuang FL. Distinct CRTH2+CD161+ (peTh2) memory CD4+ T-cell cytokine profiles in food allergy and eosinophilic gastrointestinal disorders. Clin Exp Allergy 2023; 53:1031-1040. [PMID: 37487654 PMCID: PMC10592354 DOI: 10.1111/cea.14376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/20/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Although IgE-mediated food allergy (FA) and eosinophilic gastrointestinal disorders (EGID) are clinically distinct and treated differently, pathogenic effector Th2 (peTh2) cells are implicated in the pathogenesis of both FA and EGID. The aim of this study was to better characterize peTh2 cells in the context of FA and EGID and the overlap between these two conditions. METHODS Peripheral blood peTh2 cells (CD3+CD4+CD27-CD49d+CRTH2+CD161+) were profiled by intracellular cytokine flow cytometry in the following patient cohorts: patients with FA alone (n = 8), FA and food-triggered EGID (EGID+FA+FT, n = 7), food-triggered EGID alone (EGID+FT, n = 7), EGID without FA or specific food triggers (ONLY_EGID, n = 9), and healthy volunteers (HV, n = 7). Overnight peripheral blood mononuclear cell (PBMC) culture supernatants were assessed for cytokine production by multiplex analysis. RESULTS CRTH2+CD161+ (peTh2) memory CD4+ T cells were significantly increased in both patients with FA and those with ALL_EGID (inclusive of EGID+FA+FT, EGID+FT and ONLY_EGID) when compared to HV. However, ALL_EGID patients, particularly those with EGID+FA+FT, had significantly elevated IL-5+IL-13+ peTh2 cells, whereas FA patients had significantly elevated IFN-γ or IL-17A-expressing peTh2 cells. This finding was supported by increased spontaneous IL-5 and IL-13 production in overnight cultures of PBMC from EGID+FA+FT patients compared to spontaneous IL-10 and IFN-γ production by PBMC from FA patients. FA patients had increased IL-9, IL-10, IL-17A, and IFN-γ production in overnight cultures of stimulated PBMC. CONCLUSIONS EGID and IgE-mediated FA share a common cell subtype defined by specific surface markers and termed CRTH2+CD161+ (peTh2) memory CD4+ T cells. However, the cytokine profiles of these CRTH2+CD161+ (peTh2) memory CD4+ T cells are markedly different between the two disorders.
Collapse
Affiliation(s)
| | - Thomas Brown
- Clinical Parasitology Section, LPD, NIAID, NIH, Bethesda, MD
| | - Nicole Holland
- Clinical Parasitology Section, LPD, NIAID, NIH, Bethesda, MD
| | - Lauren Wetzler
- Clinical Parasitology Section, LPD, NIAID, NIH, Bethesda, MD
| | | | - Paneez Khoury
- Human Eosinophil Section, LPD, NIAID, NIH, Bethesda, MD
| | | | - Amy D. Klion
- Human Eosinophil Section, LPD, NIAID, NIH, Bethesda, MD
| | - Fei Li Kuang
- Human Eosinophil Section, LPD, NIAID, NIH, Bethesda, MD
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
38
|
Dainichi T, Iwata M. Inflammatory loops in the epithelial-immune microenvironment of the skin and skin appendages in chronic inflammatory diseases. Front Immunol 2023; 14:1274270. [PMID: 37841246 PMCID: PMC10568311 DOI: 10.3389/fimmu.2023.1274270] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
The epithelial-immune microenvironment (EIME) of epithelial tissues has five common elements: (1) microbial flora, (2) barrier, (3) epithelial cells, (4) immune cells, and (5) peripheral nerve endings. EIME provides both constant defense and situation-specific protective responses through three-layered mechanisms comprising barriers, innate immunity, and acquired immunity. The skin is one of the largest organs in the host defense system. The interactions between the five EIME elements of the skin protect against external dangers from the environment. This dysregulation can result in the generation of inflammatory loops in chronic inflammatory skin diseases. Here, we propose an understanding of EIME in chronic skin diseases, such as atopic dermatitis, psoriasis, systemic lupus erythematosus, alopecia areata, and acne vulgaris. We discuss the current treatment strategies targeting their inflammatory loops and propose possible therapeutic targets in the future.
Collapse
Affiliation(s)
- Teruki Dainichi
- Department of Dermatology, Kagawa University Faculty of Medicine, Kagawa, Japan
| | | |
Collapse
|
39
|
Wang Y, Wu Y, Gu C, Wang S, Yin H, Zhu R, Wang C, Li Z, Yao X, Li W. Peripheral blood mononuclear cell- transcriptome signatures of atopic dermatitis and prediction for the efficacy of dupilumab. J Dermatol Sci 2023; 111:83-92. [PMID: 37349237 DOI: 10.1016/j.jdermsci.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Few studies have explored transcriptome of the peripheral blood mononuclear cells (PBMCs) of atopic dermatitis (AD). Parameters for prediction of the efficacy of dupilumab in AD remain obscure. OBJECTIVE To explore transcriptome signature of the PBMCs from Chinese AD patients and the usage in predication for the efficacy of dupilumab. METHODS A total of 56 moderate-to-severe adult AD patients were enrolled and followed up for 16 week-dupilumab treatment. PBMCs samples were collected at baseline and 16 weeks after dupilumab treatment. Thirty-five patients were subjected to RNA-sequencing. Weighted gene co-expression network analysis (WGCNA) was used to find genes for prediction of dupilumab efficacy, which was validated in the rest 21 AD patients. Another 30 healthy individuals were enrolled and subjected to RNA-sequencing as healthy controls. RESULTS Upregulation of the T helper (Th) 2/Th22 pathway, Th17 antimicrobial genes, and natural T-regulatory cell abundance in the PBMCs of AD cases was observed, whereas TGF-β signaling and NK-cell signaling were decreased. Dupilumab treatment reversed the increase in the expression of Th2 cytokine receptors. WGCNA identified two immune-related modules that were correlated significantly with the efficacy of dupilumab. Hub gene MAP2K3 and UBE2L3 of these two modules demonstrated potential predictive ability for efficacy in the RNA-sequencing group by Spearman correlation, ROC analysis, and regression analysis, which was further validated in additional 21 AD cases. CONCLUSION We firstly revealed the molecular phenotype of PBMCs in Chinese patients with AD, and uncovered two molecules that might be useful for prediction of the efficacy of dupilumab.
Collapse
Affiliation(s)
- Yu Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Yuemeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Chaoying Gu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Shangshang Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Huibin Yin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Ronghui Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Ce Wang
- Department of Biostatistics, School of Public Health, and The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, PR China
| | - Zheng Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China.
| | - Wei Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China.
| |
Collapse
|
40
|
Spekhorst LS, Boesjes CM, Loman L, Zuithoff NPA, Bakker DS, Kamphuis E, Kamsteeg M, Haeck IM, Oosting AJ, van Lumig PPM, van Lynden-van Nes AMT, Tupker RA, Flinterman A, Garritsen FM, Touwslager WRH, de Bruin-Weller MS, Schuttelaar MLA, de Graaf M. Successful tapering of dupilumab in patients with atopic dermatitis with low disease activity: a large pragmatic daily practice study from the BioDay registry. Br J Dermatol 2023; 189:327-335. [PMID: 37177895 DOI: 10.1093/bjd/ljad159] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/05/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Limited data are available regarding patient-centred dosing of dupilumab for atopic dermatitis (AD) in daily practice. OBJECTIVES To evaluate our patient-centred dupilumab dosing regimen in daily practice, to assess prognostic factors for successful tapering and to estimate medication-related cost savings. METHODS This prospective multicentre study included adult patients with AD, participating in the BioDay registry, treated with dupilumab for ≥ 1.3 years. Interval prolongation was considered in the case of dupilumab standard dose for ≥ 1 year and persistent controlled AD [Eczema Area and Severity Index (EASI) ≤ 7; ≥ 6 months]. Primary endpoints were the mean EASI and Numeric Rating Scale (NRS)-pruritus after the start of tapering. Prognostic factors for successful tapering were analysed with logistic regression and a cost-savings analysis was performed. RESULTS A total of 595 patients were included, of whom 401 patients [mean EASI 2.5 (SD 2.3); NRS-pruritus of 2.4 (SD 1.9) at the start of tapering] prolonged their dupilumab interval. In 83.3% of these patients tapering was successful; most patients used dupilumab every 3 or 4 weeks (Q3W/Q4W). A significant small increase was observed for EASI (highest mean 3.5) and NRS-pruritus (highest mean 3.2) (P < 0.001); however, scores remained low. Predicting successful tapering showed nonsignificant odds ratios for all incorporated variables. The estimated cost savings was €3 977 033.98 for 401 patients between January 2019 and June 2022. CONCLUSIONS This study showed successful tapering of dupilumab in 83.3% of patients with AD who attempted tapering, while maintaining controlled disease and with the majority using Q3W/Q4W. Interval prolongation can be beneficial both for the patient and from a socio-economic perspective.
Collapse
Affiliation(s)
- Lotte S Spekhorst
- National Expertise Center for Atopic Dermatitis, Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Celeste M Boesjes
- National Expertise Center for Atopic Dermatitis, Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Laura Loman
- Department of Dermatology, University Medical Center Groningen, Groningen, the Netherlands
| | - Nicolaas P A Zuithoff
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Daphne S Bakker
- National Expertise Center for Atopic Dermatitis, Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Esmé Kamphuis
- Department of Dermatology, University Medical Center Groningen, Groningen, the Netherlands
| | - Marijke Kamsteeg
- Department of Dermatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Inge M Haeck
- Department of Dermatology, Reinier de Graaf Hospital, Delft, the Netherlands
| | - Albert J Oosting
- Department of Dermatology, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Paula P M van Lumig
- Department of Dermatology, University Medical Center Maastricht, Maastricht, the Netherlands
| | | | - Ron A Tupker
- Department of Dermatology, St Antonius Hospital, Nieuwegein, the Netherlands
| | | | | | | | - Marjolein S de Bruin-Weller
- National Expertise Center for Atopic Dermatitis, Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Marlies de Graaf
- National Expertise Center for Atopic Dermatitis, Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
41
|
Bieber T. Disease modification in inflammatory skin disorders: opportunities and challenges. Nat Rev Drug Discov 2023; 22:662-680. [PMID: 37443275 DOI: 10.1038/s41573-023-00735-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 07/15/2023]
Abstract
Progress in understanding of the mechanisms underlying chronic inflammatory skin disorders, such as atopic dermatitis and psoriasis vulgaris, has led to new treatment options with the primary goal of alleviating symptoms. In addition, this knowledge has the potential to inform on new strategies aimed at inducing deep and therapy-free remission, that is, disease modification, potentially impacting on associated comorbidities. However, to reach this goal, key areas require further exploration, including the definitions of disease modification and disease activity index, further understanding of disease mechanisms and systemic spillover effects, potential windows of opportunity, biomarkers for patient stratification and successful intervention, as well as appropriate study design. This Perspective article assesses the opportunities and challenges in the discovery and development of disease-modifying therapies for chronic inflammatory skin disorders.
Collapse
Affiliation(s)
- Thomas Bieber
- Department of Dermatology and Allergy, University Hospital, Bonn, Germany.
- Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland.
- Davos Biosciences, Davos, Switzerland.
| |
Collapse
|
42
|
Alkon N, Assen FP, Arnoldner T, Bauer WM, Medjimorec MA, Shaw LE, Rindler K, Holzer G, Weber P, Weninger W, Freystätter C, Chennareddy S, Kinaciyan T, Farlik M, Jonak C, Griss J, Bangert C, Brunner PM. Single-cell RNA sequencing defines disease-specific differences between chronic nodular prurigo and atopic dermatitis. J Allergy Clin Immunol 2023; 152:420-435. [PMID: 37210042 DOI: 10.1016/j.jaci.2023.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/12/2023] [Accepted: 04/19/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Chronic nodular prurigo (CNPG) is an inflammatory skin disease that is maintained by a chronic itch-scratch cycle likely rooted in neuroimmunological dysregulation. This condition may be associated with atopy in some patients, and there are now promising therapeutic results from blocking type 2 cytokines such as IL-4, IL-13, and IL-31. OBJECTIVES This study aimed to improve the understanding of pathomechanisms underlying CNPG as well as molecular relationships between CNPG and atopic dermatitis (AD). METHODS We profiled skin lesions from patients with CNPG in comparison with AD and healthy control individuals using single-cell RNA sequencing combined with T-cell receptor sequencing. RESULTS We found type 2 immune skewing in both CNPG and AD, as evidenced by CD4+ helper T cells expressing IL13. However, only AD harbored an additional, oligoclonally expanded CD8A+IL9R+IL13+ cytotoxic T-cell population, and immune activation pathways were highly upregulated in AD, but less so in CNPG. Conversely, CNPG showed signatures of extracellular matrix organization, collagen synthesis, and fibrosis, including a unique population of CXCL14-IL24+ secretory papillary fibroblasts. Besides known itch mediators such as IL31 and oncostatin M, we also detected increased levels of neuromedin B in fibroblasts of CNPG lesions compared with AD and HC, with neuromedin B receptors detectable on some nerve endings. CONCLUSIONS These data show that CNPG does not harbor the strong disease-specific immune activation pathways that are typically found in AD but is rather characterized by upregulated stromal remodeling mechanisms that might have a direct impact on itch fibers.
Collapse
Affiliation(s)
- Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Frank P Assen
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Tamara Arnoldner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Marco A Medjimorec
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Lisa E Shaw
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Gregor Holzer
- Department of Dermatology, Klinik Donaustadt, Vienna, Austria
| | - Philipp Weber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christian Freystätter
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Sumanth Chennareddy
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tamar Kinaciyan
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Patrick M Brunner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
43
|
Houser AE, Kazmi A, Nair AK, Ji AL. The Use of Single-Cell RNA-Sequencing and Spatial Transcriptomics in Understanding the Pathogenesis and Treatment of Skin Diseases. JID INNOVATIONS 2023; 3:100198. [PMID: 37205302 PMCID: PMC10186616 DOI: 10.1016/j.xjidi.2023.100198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 05/21/2023] Open
Abstract
The development of multiomic profiling tools has rapidly expanded in recent years, along with their use in profiling skin tissues in various contexts, including dermatologic diseases. Among these tools, single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics (ST) have emerged as widely adopted and powerful assays for elucidating key cellular components and their spatial arrangement within skin disease. In this paper, we review the recent biological insights gained from the use of scRNA-seq and ST and the advantages of combining both for profiling skin diseases, including aberrant wound healing, inflammatory skin diseases, and cancer. We discuss the role of scRNA-seq and ST in improving skin disease treatments and moving toward the goal of achieving precision medicine in dermatology, whereby patients can be optimally matched to treatments that maximize therapeutic response.
Collapse
Affiliation(s)
- Aubrey E. Houser
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Abiha Kazmi
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Arjun K. Nair
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew L. Ji
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
44
|
Strobl J, Haniffa M. Functional heterogeneity of human skin-resident memory T cells in health and disease. Immunol Rev 2023; 316:104-119. [PMID: 37144705 PMCID: PMC10952320 DOI: 10.1111/imr.13213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The human skin is populated by a diverse pool of memory T cells, which can act rapidly in response to pathogens and cancer antigens. Tissue-resident memory T cells (TRM ) have been implicated in range of allergic, autoimmune and inflammatory skin diseases. Clonal expansion of cells with TRM properties is also known to contribute to cutaneous T-cell lymphoma. Here, we review the heterogeneous phenotypes, transcriptional programs, and effector functions of skin TRM . We summarize recent studies on TRM formation, longevity, plasticity, and retrograde migration and contextualize the findings to skin TRM and their role in maintaining skin homeostasis and altered functions in skin disease.
Collapse
Affiliation(s)
- Johanna Strobl
- Department of DermatologyMedical University of ViennaViennaAustria
- CeMM Research Center for Molecular MedicineViennaAustria
| | - Muzlifah Haniffa
- Wellcome Sanger InstituteCambridgeUK
- Department of Dermatology and NIHR Newcastle Biomedical Research CentreNewcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
45
|
Harker JA, Lloyd CM. T helper 2 cells in asthma. J Exp Med 2023; 220:214104. [PMID: 37163370 PMCID: PMC10174188 DOI: 10.1084/jem.20221094] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/10/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023] Open
Abstract
Allergic asthma is among the most common immune-mediated diseases across the world, and type 2 immune responses are thought to be central to pathogenesis. The importance of T helper 2 (Th2) cells as central regulators of type 2 responses in asthma has, however, become less clear with the discovery of other potent innate sources of type 2 cytokines and innate mediators of inflammation such as the alarmins. This review provides an update of our current understanding of Th2 cells in human asthma, highlighting their many guises and functions in asthma, both pathogenic and regulatory, and how these are influenced by the tissue location and disease stage and severity. It also explores how biologics targeting type 2 immune pathways are impacting asthma, and how these have the potential to reveal hitherto underappreciated roles for Th2 cell in lung inflammation.
Collapse
Affiliation(s)
- James A Harker
- National Heart and Lung Institute, Imperial College London , London, UK
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London , London, UK
| |
Collapse
|
46
|
Alladina J, Smith NP, Kooistra T, Slowikowski K, Kernin IJ, Deguine J, Keen HL, Manakongtreecheep K, Tantivit J, Rahimi RA, Sheng SL, Nguyen ND, Haring AM, Giacona FL, Hariri LP, Xavier RJ, Luster AD, Villani AC, Cho JL, Medoff BD. A human model of asthma exacerbation reveals transcriptional programs and cell circuits specific to allergic asthma. Sci Immunol 2023; 8:eabq6352. [PMID: 37146132 PMCID: PMC10440046 DOI: 10.1126/sciimmunol.abq6352] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/13/2023] [Indexed: 05/07/2023]
Abstract
Asthma is a chronic disease most commonly associated with allergy and type 2 inflammation. However, the mechanisms that link airway inflammation to the structural changes that define asthma are incompletely understood. Using a human model of allergen-induced asthma exacerbation, we compared the lower airway mucosa in allergic asthmatics and allergic non-asthmatic controls using single-cell RNA sequencing. In response to allergen, the asthmatic airway epithelium was highly dynamic and up-regulated genes involved in matrix degradation, mucus metaplasia, and glycolysis while failing to induce injury-repair and antioxidant pathways observed in controls. IL9-expressing pathogenic TH2 cells were specific to asthmatic airways and were only observed after allergen challenge. Additionally, conventional type 2 dendritic cells (DC2 that express CD1C) and CCR2-expressing monocyte-derived cells (MCs) were uniquely enriched in asthmatics after allergen, with up-regulation of genes that sustain type 2 inflammation and promote pathologic airway remodeling. In contrast, allergic controls were enriched for macrophage-like MCs that up-regulated tissue repair programs after allergen challenge, suggesting that these populations may protect against asthmatic airway remodeling. Cellular interaction analyses revealed a TH2-mononuclear phagocyte-basal cell interactome unique to asthmatics. These pathogenic cellular circuits were characterized by type 2 programming of immune and structural cells and additional pathways that may sustain and amplify type 2 signals, including TNF family signaling, altered cellular metabolism, failure to engage antioxidant responses, and loss of growth factor signaling. Our findings therefore suggest that pathogenic effector circuits and the absence of proresolution programs drive structural airway disease in response to type 2 inflammation.
Collapse
Affiliation(s)
- Jehan Alladina
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Neal P. Smith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Tristan Kooistra
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kamil Slowikowski
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Isabela J. Kernin
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jacques Deguine
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Henry L. Keen
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Kasidet Manakongtreecheep
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jessica Tantivit
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Rod A. Rahimi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Susan L. Sheng
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nhan D. Nguyen
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexis M. Haring
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Francesca L. Giacona
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lida P. Hariri
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Ramnik J. Xavier
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew D. Luster
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Josalyn L. Cho
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Benjamin D. Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Rizzi A, Lo Presti E, Chini R, Gammeri L, Inchingolo R, Lohmeyer FM, Nucera E, Gangemi S. Emerging Role of Alarmins in Food Allergy: An Update on Pathophysiological Insights, Potential Use as Disease Biomarkers, and Therapeutic Implications. J Clin Med 2023; 12:jcm12072699. [PMID: 37048784 PMCID: PMC10094851 DOI: 10.3390/jcm12072699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Food allergies are immuno-mediated adverse reactions to ingestion or contact with foods, representing a widespread health problem. The immune response can be IgE-mediated, non-IgE-mediated, or with a mixed mechanism. The role of innate immunity and alarmins in the pathogenesis of diseases such as asthma and atopic dermatitis is well known. Some authors have investigated the correlation between alarmins and food allergies, often obtaining interesting results. We analyzed articles published in English from the last 22 years present on PubMed concerning the role of alarmins in the pathogenesis of food allergies and their potential use as disease biomarkers, response biomarkers to therapy, or potential therapeutic targets. Nuclear alarmins (TSLP, IL-33, IL-25) appear to have a critical role in IgE-mediated allergies but are also implicated in entities such as eosinophilic esophagitis. Calprotectin and defensins may play a role as disease biomarkers and could help predict response to therapy, although results in the literature are often conflicting. Despite the promising results, more studies on humans still need to be conducted. Deepening our knowledge regarding alarmins and their involvement in food allergies could lead to the development of new biological therapies, significantly impacting patients' quality of life.
Collapse
Affiliation(s)
- Angela Rizzi
- UOSD Allergologia e Immunologia Clinica, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Elena Lo Presti
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), 90146 Palermo, Italy
| | - Raffaella Chini
- UOSD Allergologia e Immunologia Clinica, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Luca Gammeri
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Riccardo Inchingolo
- Pulmonary Medicine Unit, Department of Neurosciences, Sense Organs and Thorax, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Eleonora Nucera
- UOSD Allergologia e Immunologia Clinica, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
48
|
Zhang X, Ding C, Zhao Z. Identification of diagnostic molecules and potential therapeutic agents for atopic dermatitis by single-cell RNA sequencing combined with a systematic computing framework that integrates network pharmacology. Funct Integr Genomics 2023; 23:95. [PMID: 36944896 DOI: 10.1007/s10142-023-01005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Atopic dermatitis (AD) is composed of highly flexible cellular participants. To better understand its pathobiology and molecular regulation mechanisms, it is necessary to combine single-cell RNA sequencing (scRNA-seq) with new computing frameworks or specific technologies, which may contribute to the development of better treatments for AD. The scRNA-seq data of GSE180885 and bulk RNA-seq data of GSE193309 were obtained from Gene Expression Omnibus (GEO) database, and the scRNA-seq data was analyzed by Seurat package to identify the cell types in AD. The genes related to the activity of AD topical drugs were obtained from the ChEMBL database, which provided a variety of bioactivity data such as multiple drugs and targets. AD-related genes were obtained from DisGeNET and CTD databases synthesizing human disease-related genes; the intersection of AD-related genes from these three sources with differentially expressed genes (DEGs) between non-diseased AD and normal human skin (NHS) samples and differential cell type marker genes was taken. The proximity analysis of drug gene network was performed based on the gene with the largest area of receiver operating characteristic (ROC) curve. Ten distinct cell types of AD and NHS were identified, except for phagocytes cells. Three hub genes, F10 and CALCRL and CTSB, were obtained. The area under the curve of ROC based on CTSB expression was the largest, which was 60.15%. By binding drug CTSB-related gene interaction network, we identified 145 potential drugs. Among them, the score of DB07045 and CTSB docking was the lowest, and molecular docking and molecular dynamics (MD) simulation confirmed the close and stable binding of DB07045 and cathepsin B. This work identified diagnostic molecules and potential therapeutic drugs of AD by scRNA-seq combined with a systematic computing framework of network pharmacology, which may provide valuable clues for drug design.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Dermatology, The First Medical Center of PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 110000, China
| | - Changrui Ding
- Department of Dermatology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar, 230200, China
| | - Zigang Zhao
- Department of Dermatology, The First Medical Center of PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 110000, China.
- Department of Dermatology, Hainan Hospital of PLA General Hospital, Sanya, 460200, China.
| |
Collapse
|
49
|
Lytvyn Y, Gooderham M. Targeting Interleukin 13 for the Treatment of Atopic Dermatitis. Pharmaceutics 2023; 15:568. [PMID: 36839890 PMCID: PMC9966769 DOI: 10.3390/pharmaceutics15020568] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin condition that has a significant impact on a patient's quality of life and requires ongoing management. Conventional topical and systemic therapies do not target specific components of AD pathogenesis and, therefore, have limited efficacy and may be associated with long-term toxicity. Thus, AD management is challenging, with a significant proportion of patients not achieving clear skin or a reduction in pruritus. There remains a large unmet need for effective therapeutic strategies with favorable safety profiles that can be used long-term in patients with refractory AD. The emergence of targeted biological and small molecule therapies has effectively broadened available treatment options for moderate-to-severe AD. Most recently, interleukin 13 (IL-13) inhibitors were shown to be efficacious and well-tolerated, with tralokinumab already approved for use in this patient population. It is important for dermatologists to be aware of the evidence behind this emerging class of biologic agents to guide treatment choices and improve outcomes in patients with AD. The main objective of this paper is to review the current literature regarding the efficacy and safety of current and emerging anti-IL-13 monoclonal antibodies, including tralokinumab, lebrikizumab, cendakimab, and eblasakimab, for the treatment of moderate-to-severe AD.
Collapse
Affiliation(s)
- Yuliya Lytvyn
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Melinda Gooderham
- SKiN Centre for Dermatology, Peterborough, ON K9J 5K2, Canada
- Probity Medical Research, Waterloo, ON N2J 1C4, Canada
- Department of Family Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
50
|
Bauer J. Dermatologie und Venerologie 2021-2022: Eine persönliche Sicht. J Dtsch Dermatol Ges 2023; 21:219-220. [PMID: 36808455 DOI: 10.1111/ddg.15017_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|