1
|
Hiraga T. Immune microenvironment of cancer bone metastasis. Bone 2025; 191:117328. [PMID: 39549899 DOI: 10.1016/j.bone.2024.117328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Bone is a common and frequent site of metastasis in cancer patients, leading to a significant reduction in quality of life and increased mortality. Bone marrow, the primary site of hematopoiesis, also serves as both a primary and secondary lymphoid organ. It harbors and supports a diverse array of immune cells, thereby creating a distinct immune microenvironment. These immune cells engage in a range of activities, including anti-tumor, pro-tumor, or a combination of both, which influence the development and progression of bone metastases. Rapid advances in cancer immunotherapy have underscored its potential to eradicate bone metastases. However, clinical outcomes have not yet met expectations. To improve the efficacy of immunotherapy, it is crucial to gain a comprehensive and in-depth understanding of the immune microenvironment within bone metastases. This review provides an overview of the current understanding of the role of different immune cells, their anti-tumor and pro-tumor activities, and their overall contribution to bone metastasis.
Collapse
Affiliation(s)
- Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, Shiojiri, Nagano, Japan.
| |
Collapse
|
2
|
Ferkel SAM, Holman EA, Sojwal RS, Rubin SJS, Rogalla S. Tumor-Infiltrating Immune Cells in Colorectal Cancer. Neoplasia 2025; 59:101091. [PMID: 39642846 DOI: 10.1016/j.neo.2024.101091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
Colorectal cancer encompasses a heterogeneous group of malignancies that differ in pathophysiological mechanisms, immune response and infiltration, therapeutic response, and clinical prognosis. Numerous studies have highlighted the clinical relevance of tumor-infiltrating immune cells among different types of colorectal tumors yet vary in cell type definitions and cell identification strategies. The distinction of immune signatures is particularly challenging when several immune subtypes are involved but crucial to identify novel intercellular mechanisms within the tumor microenvironment. In this review, we compile human and non-human studies on tumor-infiltrating immune cells and provide an overview of immune subtypes, their pathophysiological functions, and their prognostic role in colorectal cancer. We discuss how differentiating immune signatures can guide the development of immunotherapeutic targets and personalized treatment regimens. We analyzed comprehensive human protein biomarker profiles across the entire immune spectrum to improve interpretability and application of tumor studies and to ultimately enhance immunotherapy and advance precision medicine for colorectal cancer patients.
Collapse
Affiliation(s)
- Sonia A M Ferkel
- Stanford University, School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, USA
| | - Elizabeth A Holman
- Stanford University, School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, USA
| | - Raoul S Sojwal
- Stanford University, School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, USA
| | - Samuel J S Rubin
- Stanford University, School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, USA
| | - Stephan Rogalla
- Stanford University, School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, USA.
| |
Collapse
|
3
|
Cuenca-Escalona J, Bödder J, Subtil B, Sánchez-Sánchez M, Vidal-Manrique M, Sweep MWD, Fauerbach JA, Cambi A, Flórez-Grau G, de Vries JM. EP2/EP4 targeting prevents tumor-derived PGE2-mediated immunosuppression in cDC2s. J Leukoc Biol 2024; 116:1554-1567. [PMID: 39041661 DOI: 10.1093/jleuko/qiae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/11/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024] Open
Abstract
Tumor-derived prostaglandin E2 (PGE2) impairs antitumor immunity by priming suppressive functions on various immune cell types, including dendritic cells (DCs). In this way, tumors mediate DC dysfunction and hamper their antitumoral activity. PGE2 is known to modulate DC function via signaling through the E-type prostanoid receptor 2 (EP2) and EP4. Preclinical studies have demonstrated the therapeutic value of targeting EP2/4 receptor signaling in DCs. Ongoing phase 1 clinical trials with EP antagonists have shown immunomodulation in cancer patients. However, the systemic drug administration leads to off-target events and subsequent side effects. To limit the off-target effects of EP targeting, EP2 and EP4 antagonists were encapsulated in polymeric nanoparticles (NPs). In this study, we evaluated the efficacy of EP2/4-specific antagonists encapsulated in NPs to protect conventional type 2 DCs (cDC2s) from suppressive effects of tumor-derived PGE2 in different tumor models. We show that tumor-derived PGE2 signals via EP2/4 to mediate the acquisition of a suppressive phenotype of cDC2s. EP2/4 antagonists encapsulated in NPs impaired the conversion of cDC2s toward a suppressive state and inhibited the occurrence of suppressive features such as interleukin-10 production or the ability to expand regulatory T cells. Importantly, the NPs abolished the transition toward this suppressive state in different tumor models: melanoma-conditioned media, ascites fluid derived from ovarian cancer patients (2-dimensional), and upon coculture with colorectal cancer patient-derived organoids (3-dimensional). We propose that targeting the PGE2-EP2/4 axis using NPs can achieve immunomodulation in the immune system of cancer patients, alleviate tumor-derived suppression, and thus facilitate the development of potent antitumor immunity in cancer patients.
Collapse
MESH Headings
- Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Dinoprostone/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/drug effects
- Animals
- Mice
- Cell Line, Tumor
- Female
- Humans
- Mice, Inbred C57BL
- Immune Tolerance/drug effects
- Nanoparticles/chemistry
Collapse
Affiliation(s)
- Jorge Cuenca-Escalona
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Johanna Bödder
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Beatriz Subtil
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Marta Sánchez-Sánchez
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Marcos Vidal-Manrique
- Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Mark W D Sweep
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
- Department of Medical Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Jonathan A Fauerbach
- R&D Reagents, Chemical Biology Department; Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Alessandra Cambi
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Georgina Flórez-Grau
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Jolanda M de Vries
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| |
Collapse
|
4
|
Xiao K, Zhang S, Peng Q, Du Y, Yao X, Ng II, Tang H. PD-L1 protects tumor-associated dendritic cells from ferroptosis during immunogenic chemotherapy. Cell Rep 2024; 43:114868. [PMID: 39423128 DOI: 10.1016/j.celrep.2024.114868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/13/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024] Open
Abstract
Dendritic cells (DCs) express high levels of PD-L1 in the tumor microenvironment. However, the physiological functions of PD-L1 on DCs remain incompletely understood. Here, we explored the roles of PD-L1 signaling during immunogenic chemotherapy. We found that antitumor efficacy was dramatically reduced in the absence of PD-L1 on DCs. Chemotherapy reshaped the tumor immune microenvironment, particularly the DC compartment. In the absence of PD-L1, DCs were more susceptible to the cytotoxicity induced by chemotherapy. Mechanistically, loss of PD-L1 led to the downregulation of SLC7A11, resulting in increased lipid peroxidation that caused DCs to succumb to ferroptosis and dampened antitumor immune responses. Mice with Pdl1-deficient DCs were less efficient at priming T cells during chemotherapy. In cancer patients, a higher level of PD-L1 on DCs correlated with better prognosis after immunogenic chemotherapy. Collectively, these findings reveal an underappreciated role of PD-L1 in orchestrating DC survival, which is critical during chemoimmunotherapy.
Collapse
Affiliation(s)
- Kaimin Xiao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Silin Zhang
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Qi Peng
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuxia Du
- Department of General Practice, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province 362000, China
| | - Xiyue Yao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Ian-Ian Ng
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Haidong Tang
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Yamazaki S. Diverse roles of dendritic cell and regulatory T cell crosstalk in controlling health and disease. Int Immunol 2024; 37:5-14. [PMID: 38953561 DOI: 10.1093/intimm/dxae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024] Open
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells for lymphocytes, including regulatory T (Treg) cells, a subset of CD4+ T cells expressing CD25 and Foxp3, a transcription factor. Treg cells maintain immunological self-tolerance in mice and humans, and suppress autoimmunity and other various immune responses such as tumor immunity, transplant rejection, allergy, responses to microbes, and inflammation. Treg-cell proliferation is controlled by antigen-presenting DCs. On the other hand, Treg cells suppress the function of DCs by restraining DC maturation. Therefore, the interaction between DCs and Treg cells, DC-Treg crosstalk, could contribute to controlling health and disease. We recently found that unique DC-Treg crosstalk plays a role in several conditions. First, Treg cells are expanded in ultraviolet B (UVB)-exposed skin by interacting with DCs, and the UVB-expanded Treg cells have a healing function. Second, manipulating DC-Treg crosstalk can induce effective acquired immune responses against severe acute respiratory syndrome coronavirus 2 antigens without adjuvants. Third, Treg cells with a special feature interact with DCs in the tumor microenvironment of human head and neck cancer, which may contribute to the prognosis. Understanding the underlying mechanisms of DC-Treg crosstalk may provide a novel strategy to control health and disease.
Collapse
Affiliation(s)
- Sayuri Yamazaki
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| |
Collapse
|
6
|
Lubin R, Patel AA, Mackerodt J, Zhang Y, Gvili R, Mulder K, Dutertre CA, Jalali P, Glanville JR, Hazan I, Sridharan N, Rivkin G, Akarca A, Marafioti T, Gilroy DW, Kandel L, Mildner A, Wilensky A, Asquith B, Ginhoux F, Macallan D, Yona S. The lifespan and kinetics of human dendritic cell subsets and their precursors in health and inflammation. J Exp Med 2024; 221:e20220867. [PMID: 39417994 PMCID: PMC11488382 DOI: 10.1084/jem.20220867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Dendritic cells (DC) are specialized mononuclear phagocytes that link innate and adaptive immunity. They comprise two principal subsets: plasmacytoid DC (pDC) and conventional DC (cDC). Understanding the generation, differentiation, and migration of cDC is critical for immune homeostasis. Through human in vivo deuterium-glucose labeling, we observed the rapid appearance of AXL+ Siglec6+ DC (ASDC) in the bloodstream. ASDC circulate for ∼2.16 days, while cDC1 and DC2 circulate for ∼1.32 and ∼2.20 days, respectively, upon release from the bone marrow. Interestingly, DC3, a cDC subset that shares several similarities with monocytes, exhibits a labeling profile closely resembling that of DC2. In a human in vivo model of cutaneous inflammation, ASDC were recruited to the inflammatory site, displaying a distinctive effector signature. Taken together, these results quantify the ephemeral circulating lifespan of human cDC and propose functions of cDC and their precursors that are rapidly recruited to sites of inflammation.
Collapse
Affiliation(s)
- Ruth Lubin
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Amit A. Patel
- Division of Medicine, University College London, London, UK
| | - Jonas Mackerodt
- Department of Infectious Disease, Imperial College London, London, UK
| | - Yan Zhang
- Institute for Infection and Immunity, St. George’s, University of London, London, UK
| | - Rotem Gvili
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Kevin Mulder
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
| | - Charles-Antoine Dutertre
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, Villejuif, France
| | | | | | - Idit Hazan
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Nikhila Sridharan
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Gurion Rivkin
- Department of Orthopaedic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | - Leonid Kandel
- Department of Orthopaedic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alexander Mildner
- MediCity Research Laboratory, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Asaf Wilensky
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Becca Asquith
- Department of Infectious Disease, Imperial College London, London, UK
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong, University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
| | - Derek Macallan
- Institute for Infection and Immunity, St. George’s, University of London, London, UK
- St. George’s University Hospitals NHS Foundation Trust, London, UK
| | - Simon Yona
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
7
|
Zhang X, Yao J, Xie M, Liang Y, Lin X, Song J, Bao X, Ma X, Wang Y, Zhang Y, Liu Y, Han W, Pan L, Xue X. Tertiary lymphoid structures as potential biomarkers for cancer prediction and prognosis. Int Immunopharmacol 2024; 140:112790. [PMID: 39088920 DOI: 10.1016/j.intimp.2024.112790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphocyte aggregates formed in non-lymphoid tissues, including cancers, and are loci for the generation of in situ anti-tumor immune responses, which play a crucial role in cancer control. The state of TLS presence in cancer and its composition can significantly impact the treatment response and prognosis of patients. TLSs have the potential to serve as predictive and prognostic biomarkers for cancer. However, the mechanisms underlying TLS formation in cancer and how the essential components of TLSs affect cancer are not fully understood. In this review, we summarized TLS formation in cancer, the value of the TLS in different states of existence, and its key constituents for cancer prediction and prognosis. Finally, we discussed the impact of cancer treatment on TLSs.
Collapse
Affiliation(s)
- Xin Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Jie Yao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Mei Xie
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing, 100835, China
| | - Yiran Liang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xuwen Lin
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Jialin Song
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Xinyu Bao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Xidong Ma
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, Shanxi, 710038, China
| | - Yinguang Zhang
- Department of Thoracic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yiming Liu
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing, 100835, China
| | - Wenya Han
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Lei Pan
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| | - Xinying Xue
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, China; Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
8
|
Bonine N, Zanzani V, Van Hemelryk A, Vanneste B, Zwicker C, Thoné T, Roelandt S, Bekaert SL, Koster J, Janoueix-Lerosey I, Thirant C, Van Haver S, Roberts SS, Mus LM, De Wilde B, Van Roy N, Everaert C, Speleman F, Vermeirssen V, Scott CL, De Preter K. NBAtlas: A harmonized single-cell transcriptomic reference atlas of human neuroblastoma tumors. Cell Rep 2024; 43:114804. [PMID: 39368085 DOI: 10.1016/j.celrep.2024.114804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024] Open
Abstract
Neuroblastoma, a rare embryonic tumor arising from neural crest development, is responsible for 15% of pediatric cancer-related deaths. Recently, several single-cell transcriptome studies were performed on neuroblastoma patient samples to investigate the cell of origin and tumor heterogeneity. However, these individual studies involved a small number of tumors and cells, limiting the conclusions that could be drawn. To overcome this limitation, we integrated seven single-cell or single-nucleus datasets into a harmonized cell atlas covering 362,991 cells across 61 patients. We use this atlas to decipher the transcriptional landscape of neuroblastoma at single-cell resolution, revealing associations between transcriptomic profiles and clinical outcomes within the tumor compartment. In addition, we characterize the complex immune-cell landscape and uncover considerable heterogeneity among tumor-associated macrophages. Finally, we showcase the utility of our atlas as a resource by expanding it with additional data and using it as a reference for data-driven cell-type annotation.
Collapse
Affiliation(s)
- Noah Bonine
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Vittorio Zanzani
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Ghent University, Ghent, Belgium
| | - Annelies Van Hemelryk
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Bavo Vanneste
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Christian Zwicker
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Tinne Thoné
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Sofie Roelandt
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sarah-Lee Bekaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jan Koster
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Isabelle Janoueix-Lerosey
- Inserm U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
| | - Cécile Thirant
- Inserm U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
| | - Stéphane Van Haver
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen S Roberts
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Liselot M Mus
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Bram De Wilde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Nadine Van Roy
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Celine Everaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frank Speleman
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Vanessa Vermeirssen
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Ghent University, Ghent, Belgium
| | - Charlotte L Scott
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
9
|
Baharom F, Hermans D, Delamarre L, Seder RA. Vax-Innate: improving therapeutic cancer vaccines by modulating T cells and the tumour microenvironment. Nat Rev Immunol 2024:10.1038/s41577-024-01091-9. [PMID: 39433884 DOI: 10.1038/s41577-024-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
T cells have a critical role in mediating antitumour immunity. The success of immune checkpoint inhibitors (ICIs) for cancer treatment highlights how enhancing endogenous T cell responses can mediate tumour regression. However, mortality remains high for many cancers, especially in the metastatic setting. Based on advances in the genetic characterization of tumours and identification of tumour-specific antigens, individualized therapeutic cancer vaccines targeting mutated tumour antigens (neoantigens) are being developed to generate tumour-specific T cells for improved therapeutic responses. Early clinical trials using individualized neoantigen vaccines for patients with advanced disease had limited clinical efficacy despite demonstrated induction of T cell responses. Therefore, enhancing T cell activity by improving the magnitude, quality and breadth of T cell responses following vaccination is one current goal for improving outcome against metastatic tumours. Another major consideration is how T cells can be further optimized to function within the tumour microenvironment (TME). In this Perspective, we focus on neoantigen vaccines and propose a new approach, termed Vax-Innate, in which vaccination through intravenous delivery or in combination with tumour-targeting immune modulators may improve antitumour efficacy by simultaneously increasing the magnitude, quality and breadth of T cells while transforming the TME into a largely immunostimulatory environment for T cells.
Collapse
Affiliation(s)
| | - Dalton Hermans
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Robert A Seder
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Reste M, Ajazi K, Sayi-Yazgan A, Jankovic R, Bufan B, Brandau S, Bækkevold ES, Petitprez F, Lindstedt M, Adema GJ, Almeida CR. The role of dendritic cells in tertiary lymphoid structures: implications in cancer and autoimmune diseases. Front Immunol 2024; 15:1439413. [PMID: 39483484 PMCID: PMC11526390 DOI: 10.3389/fimmu.2024.1439413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024] Open
Abstract
Tertiary Lymphoid Structures (TLS) are organized aggregates of immune cells such as T cells, B cells, and Dendritic Cells (DCs), as well as fibroblasts, formed postnatally in response to signals from cytokines and chemokines. Central to the function of TLS are DCs, professional antigen-presenting cells (APCs) that coordinate the adaptive immune response, and which can be classified into different subsets, with specific functions, and markers. In this article, we review current data on the contribution of different DC subsets to TLS function in cancer and autoimmunity, two opposite sides of the immune response. Different DC subsets can be found in different tumor types, correlating with cancer prognosis. Moreover, DCs are also present in TLS found in autoimmune and inflammatory conditions, contributing to disease development. Broadly, the presence of DCs in TLS appears to be associated with favorable clinical outcomes in cancer while in autoimmune pathologies these cells are associated with unfavorable prognosis. Therefore, it is important to analyze the complex functions of DCs within TLS in order to enhance our fundamental understanding of immune regulation but also as a possible route to create innovative clinical interventions designed for the specific needs of patients with diverse pathological diseases.
Collapse
Affiliation(s)
- Mariana Reste
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Kristi Ajazi
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Ayca Sayi-Yazgan
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Türkiye
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Radmila Jankovic
- Faculty of Medicine, Institute of Pathology, University of Belgrade, Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Sven Brandau
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Espen S. Bækkevold
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Florent Petitprez
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Gosse J. Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Catarina R. Almeida
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
11
|
Borges F, Laureano RS, Vanmeerbeek I, Sprooten J, Demeulenaere O, Govaerts J, Kinget L, Saraswat S, Beuselinck B, De Vleeschouwer S, Clement P, De Smet F, Sorg RV, Datsi A, Vigneron N, Naulaerts S, Garg AD. Trial watch: anticancer vaccination with dendritic cells. Oncoimmunology 2024; 13:2412876. [PMID: 39398476 PMCID: PMC11469433 DOI: 10.1080/2162402x.2024.2412876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Dendritic cells (DCs) are critical players at the intersection of innate and adaptive immunity, making them ideal candidates for anticancer vaccine development. DC-based immunotherapies typically involve isolating patient-derived DCs, pulsing them with tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs), and utilizing maturation cocktails to ensure their effective activation. These matured DCs are then reinfused to elicit tumor-specific T-cell responses. While this approach has demonstrated the ability to generate potent immune responses, its clinical efficacy has been limited due to the immunosuppressive tumor microenvironment. Recent efforts have focused on enhancing the immunogenicity of DC-based vaccines, particularly through combination therapies with T cell-targeting immunotherapies. This Trial Watch summarizes recent advances in DC-based cancer treatments, including the development of new preclinical and clinical strategies, and discusses the future potential of DC-based vaccines in the evolving landscape of immuno-oncology.
Collapse
Affiliation(s)
- Francisca Borges
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S. Laureano
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Octavie Demeulenaere
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Kinget
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Saurabh Saraswat
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Benoit Beuselinck
- Department of Medical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Paul Clement
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Institute for Single-Cell Omics (LISCO), KU Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Rüdiger V. Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université de Louvain, Brussels, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Abhishek D. Garg
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Li S, Xiao B, Zhan Y, Wu Z, Zhang W, Pan H, Luo W. Rps3 Attenuates Gastric Precancerous Lesions by Promoting Dendritic Cells Maturation via AKT/β-Catenin Pathway. J Proteome Res 2024; 23:4579-4588. [PMID: 39307995 DOI: 10.1021/acs.jproteome.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
This study aimed to investigate the dysregulated proteins and the underlying mechanisms of gastric precancerous lesions. Proteomic and phosphoproteomic methods were used to characterize the proteome and phosphoproteome profiles of N-methyl-N-nitro-N-nitrosoguanidine (MNNG)-induced gastric precancerous lesions. The hub differentially expressed proteins (DEPs) and phosphoproteins (DEPPs) were identified by using differential expression and protein-protein interaction network analyses. Western blot assay, quantitative reverse transcription (qRT)-PCR, and CCK-8 assays detected the expression of Rps3, N-cadherin, E-cadherin, AKT, p-AKT, and β-catenin and verified the roles of Rps3 on the MNNG-induced human gastric epithelial cell line (GES-1) cells. Hub DEPs and phosphoproteins Rps3, Akt1, and Ctnnb1 were significantly correlated with five dendritic cells (DCs) pathways, and Akt1 and Ctnnb1 were significantly negatively correlated with Rps3. MNNG administration markedly reduced the Rps3 mRNA and protein expression levels (all P < 0.05). Overexpression of Rps3 significantly inhibited tumorigenesis of MNNG-induced GES-1 cells (all P < 0.01) and changed the protein levels of N-cadherin, E-cadherin, AKT, p-AKT, and β-catenin. Similarly, SC79 treatment substantially increased the expression of interleukin (IL)-6, IL-10, and vascular endothelial growth factor (all P < 0.05). Rps3 was poorly expressed in precancerous gastric lesions. Correspondingly, overexpression of Rps3 promoted DC maturation via the AKT/β-catenin pathway, inhibiting the progression of gastric precancerous lesions.
Collapse
Affiliation(s)
- Siyi Li
- Department of Traditional Chinese Medicine, People's Hospital of Longhua, Shenzhen, Guangdong 518109, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 518100, China
| | - Bijuan Xiao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 518100, China
| | - Yuting Zhan
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 518100, China
| | - Zhulin Wu
- Department of Traditional Chinese Medicine, People's Hospital of Longhua, Shenzhen, Guangdong 518109, China
| | - Weiqing Zhang
- Department of Traditional Chinese Medicine, People's Hospital of Longhua, Shenzhen, Guangdong 518109, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 518100, China
| | - Weijun Luo
- Department of Traditional Chinese Medicine, People's Hospital of Longhua, Shenzhen, Guangdong 518109, China
| |
Collapse
|
13
|
Liu P, Zhao L, Kroemer G, Kepp O. Elimination of cDC1 cells by regulatory T cells jeopardizes cancer immunotherapy. Oncoimmunology 2024; 13:2412874. [PMID: 39376580 PMCID: PMC11457612 DOI: 10.1080/2162402x.2024.2412874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024] Open
Abstract
Recent findings revealed that neoantigen-specific cytotoxic type 1 regulatory T (TR1) CD4 T cells can subvert cancer immunotherapy by killing type 1 conventional dendritic cells (cDC1s) that present tumor antigens bound to MHC class II. This underlines the importance of cDC1s for eliciting anticancer immunity but poses a novel clinical challenge.
Collapse
Affiliation(s)
- Peng Liu
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| |
Collapse
|
14
|
Kim KH, Kim SJ, Eccles JD, Ascoli C, Park GY. Tumor immunogenicity regulates host immune responses, and conventional dendritic cell type 2 uptakes the majority of tumor antigens in an orthotopic lung cancer model. Cancer Immunol Immunother 2024; 73:237. [PMID: 39358651 PMCID: PMC11447165 DOI: 10.1007/s00262-024-03828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024]
Abstract
Human lung cancer carries high genetic alterations, expressing high tumor-specific neoantigens. Although orthotopic murine lung cancer models recapitulate many characteristics of human lung cancers, genetically engineered mouse models have fewer somatic mutations than human lung cancer, resulting in scarce immune cell infiltration and deficient immune responses. The endogenous mouse lung cancer model driven by Kras mutation and Trp53 deletion (KP model) has minimal immune infiltration because of a scarcity of neoantigens. Fine-tuning tumor antigenicity to trigger the appropriate level of antitumor immunity would be key to investigating immune responses against human lung cancer. We engineered the KP model to express antigens of OVA peptides (minOVA) as neoantigens along with ZsGreen, a traceable fluorescent conjugate. The KP model expressing minOVA exhibited stronger immunogenicity with higher immune cell infiltration comprised of CD8+ T cells and CD11c+ dendritic cells (DCs). Consequently, the KP model expressing minOVA exhibits suppressed tumor growth compared to its origin. We further analyzed tumor-infiltrated DCs. The majority of ZsGreen conjugated with minOVA was observed in the conventional type 2 DCs (cDC2), whereas cDC1 has minimal. These data indicate that tumor immunogenicity regulates host immune responses, and tumor neoantigen is mostly recognized by cDC2 cells, which may play a critical role in initiating antitumor immune responses in an orthotopic murine lung cancer model.
Collapse
Affiliation(s)
- Ki-Hyun Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St. CSB-920N, M/C719, Chicago, IL, 60612, USA
| | - Seung-Jae Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St. CSB-920N, M/C719, Chicago, IL, 60612, USA
| | - Jacob D Eccles
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St. CSB-920N, M/C719, Chicago, IL, 60612, USA
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St. CSB-920N, M/C719, Chicago, IL, 60612, USA
| | - Gye Young Park
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St. CSB-920N, M/C719, Chicago, IL, 60612, USA.
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| |
Collapse
|
15
|
Dong M, Lu L, Xu H, Ruan Z. DC-derived CXCL10 promotes CTL activation to suppress ovarian cancer. Transl Res 2024; 272:126-139. [PMID: 38823437 DOI: 10.1016/j.trsl.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
This study investigates the role of dendritic cells (DCs), with a focus on their CXCL10 marker gene, in the activation of cytotoxic T lymphocytes (CTLs) within the ovarian cancer microenvironment and its impact on disease progression. Utilizing scRNA-seq data and immune infiltration analysis, we identified a diminished DC presence in ovarian cancer. Gene analysis pinpointed CXCL10 as a key regulator in OV progression via its influence on DCs and CTLs. Prognostic analysis and in vitro experiments substantiated this role. Our findings reveal that DC-derived CXCL10 significantly affects CTL activation and proliferation. Reduced CXCL10 levels hinder CTL cytotoxicity, promoting ovarian cancer cell migration and invasion. Experimental studies using animal models have provided further evidence that the capacity of CTLs to suppress tumor development is significantly diminished when treated with DCs that have low expression of CXCL10. Dendritic cell-derived CXCL10 emerges as a pivotal factor in restraining ovarian cancer growth and metastasis through the activation of cytotoxic T lymphocytes. This study sheds light on the crucial interplay within the ovarian cancer microenvironment, offering potential therapeutic targets for ovarian cancer treatment.
Collapse
Affiliation(s)
- Ming Dong
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, No.639, Zhi Zaoju Road, Huangpu District, Shanghai 200011, PR China
| | - Lili Lu
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, No.639, Zhi Zaoju Road, Huangpu District, Shanghai 200011, PR China
| | - Hui Xu
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, No.639, Zhi Zaoju Road, Huangpu District, Shanghai 200011, PR China
| | - Zhengyi Ruan
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, No.639, Zhi Zaoju Road, Huangpu District, Shanghai 200011, PR China.
| |
Collapse
|
16
|
Yang Y, Qin S, Yang M, Wang T, Feng R, Zhang C, Zheng E, Li Q, Xiang P, Ning S, Xu X, Zuo X, Zhang S, Yun X, Zhou X, Wang Y, He L, Shang Y, Sun L, Liu H. Reconstitution of the Multiple Myeloma Microenvironment Following Lymphodepletion with BCMA CAR-T Therapy. Clin Cancer Res 2024; 30:4201-4214. [PMID: 39024031 PMCID: PMC11393544 DOI: 10.1158/1078-0432.ccr-24-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE The purpose of this study was to investigate the remodeling of the multiple myeloma microenvironment after B-cell maturation antigen (BCMA)-targeted chimeric antigen receptor T (CAR-T) cell therapy. EXPERIMENTAL DESIGN We performed single-cell RNA sequencing on paired bone marrow specimens (n = 14) from seven patients with multiple myeloma before (i.e., baseline, "day -4") and after (i.e., "day 28") lymphodepleted BCMA CAR-T cell therapy. RESULTS Our analysis revealed heterogeneity in gene expression profiles among multiple myeloma cells, even those harboring the same cytogenetic abnormalities. The best overall responses of patients over the 15-month follow-up are positively correlated with the abundance and targeted cytotoxic activity of CD8+ effector CAR-T cells on day 28 after CAR-T cell infusion. Additionally, favorable responses are associated with attenuated immunosuppression mediated by regulatory T cells, enhanced CD8+ effector T-cell cytotoxic activity, and elevated type 1 conventional dendritic cell (DC) antigen presentation ability. DC re-clustering inferred intramedullary-originated type 3 conventional DCs with extramedullary migration. Cell-cell communication network analysis indicated that BCMA CAR-T therapy mitigates BAFF/GALECTIN/MK pathway-mediated immunosuppression and activates MIF pathway-mediated anti-multiple myeloma immunity. CONCLUSIONS Our study sheds light on multiple myeloma microenvironment dynamics after BCMA CAR-T therapy, offering clues for predicting treatment responsivity.
Collapse
Affiliation(s)
- Yazi Yang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Mengyu Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Ting Wang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ru Feng
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunli Zhang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Enrun Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Qinghua Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Pengyu Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Shangyong Ning
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaodong Xu
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Zuo
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuai Zhang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoya Yun
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuehong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lin He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China
| | - Hui Liu
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Protti G, Spreafico R. A primer on single-cell RNA-seq analysis using dendritic cells as a case study. FEBS Lett 2024. [PMID: 39245787 DOI: 10.1002/1873-3468.15009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
Recent advances in single-cell (sc) transcriptomics have revolutionized our understanding of dendritic cells (DCs), pivotal players of the immune system. ScRNA-sequencing (scRNA-seq) has unraveled a previously unrecognized complexity and heterogeneity of DC subsets, shedding light on their ontogeny and specialized roles. However, navigating the rapid technological progress and computational methods can be daunting for researchers unfamiliar with the field. This review aims to provide immunologists with a comprehensive introduction to sc transcriptomic analysis, offering insights into recent developments in DC biology. Addressing common analytical queries, we guide readers through popular tools and methodologies, supplemented with references to benchmarks and tutorials for in-depth understanding. By examining findings from pioneering studies, we illustrate how computational techniques have expanded our knowledge of DC biology. Through this synthesis, we aim to equip researchers with the necessary tools and knowledge to navigate and leverage scRNA-seq for unraveling the intricacies of DC biology and advancing immunological research.
Collapse
Affiliation(s)
- Giulia Protti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Roberto Spreafico
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Wang X, Zhang H, XinZhang, Liu Y. Abscopal effect: from a rare phenomenon to a new frontier in cancer therapy. Biomark Res 2024; 12:98. [PMID: 39228005 PMCID: PMC11373306 DOI: 10.1186/s40364-024-00628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Radiotherapy (RT) controls local lesions, meantime it has the capability to induce systemic response to inhibit distant, metastatic, non-radiated tumors, which is referred to as the "abscopal effect". It is widely recognized that radiotherapy can stimulate systemic immune response. This provides a compelling theoretical basis for the combination of immune therapy combined with radiotherapy(iRT). Indeed, this phenomenon has also been observed in clinical treatment, bringing significant clinical benefits to patients, and a series of basic studies are underway to amplify this effect. However, the molecular mechanisms of immune response induced by RT, determination of the optimal treatment regimen for iRT, and how to amplify the abscopal effect. In order to amplify and utilize this effect in clinical management, these key issues require to be well addressed; In this review, we comprehensively summarize the growing consensus and emphasize the emerging limitations of enhancing the abscopal effect with radiotherapy or immunotherapy. Finally, we discuss the prospects and barriers to the current clinical translational applications.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Haoyu Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - XinZhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| |
Collapse
|
19
|
Cornillet M, Geanon D, Bergquist A, Björkström NK. Immunobiology of primary sclerosing cholangitis. Hepatology 2024:01515467-990000000-01014. [PMID: 39226402 DOI: 10.1097/hep.0000000000001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic inflammatory progressive cholestatic liver disease. Genetic risk factors, the presence of autoantibodies, the strong clinical link with inflammatory bowel disease, and associations with other autoimmune disorders all suggest a pivotal role for the immune system in PSC pathogenesis. In this review, we provide a comprehensive overview of recent immunobiology insights in PSC. A particular emphasis is given to immunological concepts such as tissue residency and knowledge gained from novel technologies, including single-cell RNA sequencing and spatial transcriptomics. This review of the immunobiological landscape of PSC covers major immune cell types known to be enriched in PSC-diseased livers as well as recently described cell types whose biliary localization and contribution to PSC immunopathogenesis remain incompletely described. Finally, we emphasize the importance of time and space in relation to PSC heterogeneity as a key consideration for future studies interrogating the role of the immune system in PSC.
Collapse
Affiliation(s)
- Martin Cornillet
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Geanon
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Annika Bergquist
- Unit of Gastroenterology, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Niveau C, Sosa Cuevas E, Saas P, Aspord C. Glycans in melanoma: Drivers of tumour progression but sweet targets to exploit for immunotherapy. Immunology 2024; 173:33-52. [PMID: 38742251 DOI: 10.1111/imm.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Aberrant glycosylation recently emerged as an unmissable hallmark of cancer progression in many cancers. In melanoma, there is growing evidence that the tumour 'glycocode' plays a major role in promoting cell proliferation, invasion, migration, but also dictates the nature of the immune infiltrate, which strongly affects immune cell function, and clinical outcome. Aberrant glycosylation patterns dismantle anti-tumour defence through interactions with lectins on immune cells, which are crucial to shape anti-tumour immunity but also to trigger immune evasion. The glycan/lectin axis represents a new immune subversion pathway that is exploited by melanoma to hijack immune cells and escape from immune control. In this review, we describe the glycosylation features of melanoma tumour cells, and further gather findings related to the role of glycosylation in melanoma tumour progression, deciphering in detail its impact on immunity. We also depict glycan-based strategies aiming at restoring a functional anti-tumour response in melanoma patients. Glycans/lectins emerge as key immune checkpoints with promising translational properties. Exploitation of these pathways could reshape potent anti-tumour immunity while impeding immunosuppressive circuits triggered by aberrant tumour glycosylation patterns, holding great promise for cancer therapy.
Collapse
Affiliation(s)
- Camille Niveau
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Philippe Saas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| |
Collapse
|
21
|
Zheng J, Wang M, Pang L, Wang S, Kong Y, Zhu X, Zhou X, Wang X, Chen C, Ning H, Zhao W, Zhai W, Qi Y, Wu Y, Gao Y. Identification of a novel DEC-205 binding peptide to develop dendritic cell-targeting nanovaccine for cancer immunotherapy. J Control Release 2024; 373:568-582. [PMID: 39067792 DOI: 10.1016/j.jconrel.2024.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Cancer vaccine is regarded as an effective immunotherapy approach mediated by dendritic cells (DCs) which are crucial for antigen presentation and the initiation of adaptive immune responses. However, lack of DC-targeting properties significantly hampers the efficacy of cancer vaccines. Here, by using the phage display technique, peptides targeting the endocytic receptor DEC-205 primarily found on cDC1s were initially screened. An optimized hydrolysis-resistant peptide, hr-8, was identified and conjugated to PLGA-loaded antigen (Ag) and CpG adjuvant nanoparticles, resulting in a DC-targeting nanovaccine. The nanovaccine hr-8-PLGA@Ag/CpG facilitates dendritic cell maturation and improves antigen cross-presentation. The nanovaccine can enhance the antitumor immune response mediated by CD8+ T cells by encapsulating the nanovaccine with either exogenous OVA protein antigen or endogenous gp100/E7 antigenic peptide. As a result, strong antitumor effects are observed in both anti-PD-1 responsive B16-OVA and anti-PD-1 non-responsive B16 and TC1 immunocompetent tumor models. In summary, this study presents the initial documentation of a nanovaccine that targets dendritic cells via the novel DEC-205 binding peptide. This approach offers a new method for developing cancer vaccines that can potentially improve the effectiveness of cancer immunotherapy.
Collapse
Affiliation(s)
- Jie Zheng
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingshuang Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Liwei Pang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shuai Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanan Kong
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xueqin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoxi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chunxia Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haoming Ning
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China.
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
22
|
Liu C, Han X, Zhang S, Huang M, Guo B, Zhao Z, Yang S, Jin J, Pu W, Yu H. The role of NCAPH in cancer treatment. Cell Signal 2024; 121:111262. [PMID: 38901722 DOI: 10.1016/j.cellsig.2024.111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Many solid tumors frequently overexpress Non-SMC Condensin I Complex Subunit H (NCAPH), and new studies suggest that NCAPH may be a target gene for clinical cancer therapy. Numerous investigations have shown that a variety of transcription factors, including as MYBL2, FOXP3, GATA3, and OTC1, can stimulate the transcription of NCAPH. Additionally, NCAPH stimulates many oncogenic signaling pathways, such as β-Catenin/PD-L1, PI3K/AKT/SGK3, MEK/ERK, AURKB/AKT/mTOR, PI3K/PDK1/AKT, and Chk1/Chk2. Tumor immune microenvironment modification and tumor growth, apoptosis, metastasis, stemness, and treatment resistance all depend on these signals. NCAPH has the ability to form complexes with other proteins that are involved in glycolysis, DNA damage repair, and chromatin remodeling. This review indicates that NCAPH expression in most malignant tumors is associated with poor prognosis and low recurrence-free survival.
Collapse
Affiliation(s)
- Caiyan Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao Han
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Siqi Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Manru Huang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bin Guo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zixuan Zhao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shenshen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun Jin
- International Education College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Weiling Pu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Haiyang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
23
|
Habib S, Osborn G, Willsmore Z, Chew MW, Jakubow S, Fitzpatrick A, Wu Y, Sinha K, Lloyd-Hughes H, Geh JLC, MacKenzie-Ross AD, Whittaker S, Sanz-Moreno V, Lacy KE, Karagiannis SN, Adams R. Tumor associated macrophages as key contributors and targets in current and future therapies for melanoma. Expert Rev Clin Immunol 2024; 20:895-911. [PMID: 38533720 PMCID: PMC11286214 DOI: 10.1080/1744666x.2024.2326626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
INTRODUCTION Despite the success of immunotherapies for melanoma in recent years, there remains a significant proportion of patients who do not yet derive benefit from available treatments. Immunotherapies currently licensed for clinical use target the adaptive immune system, focussing on Tcell interactions and functions. However, the most prevalent immune cells within the tumor microenvironment (TME) of melanoma are macrophages, a diverse immune cell subset displaying high plasticity, to which no current therapies are yet directly targeted. Macrophages have been shown not only to activate the adaptive immune response, and enhance cancer cell killing, but, when influenced by factors within the TME of melanoma, these cells also promote melanoma tumorigenesis and metastasis. AREAS COVERED We present a review of the most up-to-date literatureavailable on PubMed, focussing on studies from within the last 10 years. We also include data from ongoing and recent clinical trials targeting macrophages in melanoma listed on clinicaltrials.gov. EXPERT OPINION Understanding the multifaceted role of macrophages in melanoma, including their interactions with immune and cancer cells, the influence of current therapies on macrophage phenotype and functions and how macrophages could be targeted with novel treatment approaches, are all critical for improving outcomes for patients with melanoma.
Collapse
Affiliation(s)
- Shabana Habib
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Gabriel Osborn
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Zena Willsmore
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Min Waye Chew
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Sophie Jakubow
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Amanda Fitzpatrick
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
- Oncology Department, Guy’s and St Thomas’ Hospital, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London, UK
| | - Yin Wu
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
- Oncology Department, Guy’s and St Thomas’ Hospital, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Khushboo Sinha
- St John’s Institute of Dermatology, Guy’s, King’s and St. Thomas’ Hospitals NHS Foundation Trust, London, England
| | - Hawys Lloyd-Hughes
- Department of Plastic Surgery, Guy’s, King’s and St. Thomas’ Hospitals, London, England
| | - Jenny L. C. Geh
- St John’s Institute of Dermatology, Guy’s, King’s and St. Thomas’ Hospitals NHS Foundation Trust, London, England
- Department of Plastic Surgery, Guy’s, King’s and St. Thomas’ Hospitals, London, England
| | | | - Sean Whittaker
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Victoria Sanz-Moreno
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London
| | - Katie E. Lacy
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Sophia N Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London, UK
| | - Rebecca Adams
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| |
Collapse
|
24
|
Wang C, Chen L, Fu D, Liu W, Puri A, Kellis M, Yang J. Antigen presenting cells in cancer immunity and mediation of immune checkpoint blockade. Clin Exp Metastasis 2024; 41:333-349. [PMID: 38261139 PMCID: PMC11374820 DOI: 10.1007/s10585-023-10257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Antigen-presenting cells (APCs) are pivotal mediators of immune responses. Their role has increasingly been spotlighted in the realm of cancer immunology, particularly as our understanding of immunotherapy continues to evolve and improve. There is growing evidence that these cells play a non-trivial role in cancer immunity and have roles dependent on surface markers, growth factors, transcription factors, and their surrounding environment. The main dendritic cell (DC) subsets found in cancer are conventional DCs (cDC1 and cDC2), monocyte-derived DCs (moDC), plasmacytoid DCs (pDC), and mature and regulatory DCs (mregDC). The notable subsets of monocytes and macrophages include classical and non-classical monocytes, macrophages, which demonstrate a continuum from a pro-inflammatory (M1) phenotype to an anti-inflammatory (M2) phenotype, and tumor-associated macrophages (TAMs). Despite their classification in the same cell type, each subset may take on an immune-activating or immunosuppressive phenotype, shaped by factors in the tumor microenvironment (TME). In this review, we introduce the role of DCs, monocytes, and macrophages and recent studies investigating them in the cancer immunity context. Additionally, we review how certain characteristics such as abundance, surface markers, and indirect or direct signaling pathways of DCs and macrophages may influence tumor response to immune checkpoint blockade (ICB) therapy. We also highlight existing knowledge gaps regarding the precise contributions of different myeloid cell subsets in influencing the response to ICB therapy. These findings provide a summary of our current understanding of myeloid cells in mediating cancer immunity and ICB and offer insight into alternative or combination therapies that may enhance the success of ICB in cancers.
Collapse
Affiliation(s)
- Cassia Wang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lee Chen
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Doris Fu
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wendi Liu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Anusha Puri
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jiekun Yang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
25
|
Calderon-Espinosa E, De Ridder K, Benoot T, Jansen Y, Vanhonacker D, Heestermans R, De Becker A, Van Riet I, Decoster L, Goyvaerts C. The crosstalk between lung cancer and the bone marrow niche fuels emergency myelopoiesis. Front Immunol 2024; 15:1397469. [PMID: 39148724 PMCID: PMC11324509 DOI: 10.3389/fimmu.2024.1397469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Modest response rates to immunotherapy observed in advanced lung cancer patients underscore the need to identify reliable biomarkers and targets, enhancing both treatment decision-making and efficacy. Factors such as PD-L1 expression, tumor mutation burden, and a 'hot' tumor microenvironment with heightened effector T cell infiltration have consistently been associated with positive responses. In contrast, the predictive role of the abundantly present tumor-infiltrating myeloid cell (TIMs) fraction remains somewhat uncertain, partly explained by their towering variety in terms of ontogeny, phenotype, location, and function. Nevertheless, numerous preclinical and clinical studies established a clear link between lung cancer progression and alterations in intra- and extramedullary hematopoiesis, leading to emergency myelopoiesis at the expense of megakaryocyte/erythroid and lymphoid differentiation. These observations affirm that a continuous crosstalk between solid cancers such as lung cancer and the bone marrow niche (BMN) must take place. However, the BMN, encompassing hematopoietic stem and progenitor cells, differentiated immune and stromal cells, remains inadequately explored in solid cancer patients. Subsequently, no clear consensus has been reached on the exact breadth of tumor installed hematopoiesis perturbing cues nor their predictive power for immunotherapy. As the current era of single-cell omics is reshaping our understanding of the hematopoietic process and the subcluster landscape of lung TIMs, we aim to present an updated overview of the hierarchical differentiation process of TIMs within the BMN of solid cancer bearing subjects. Our comprehensive overview underscores that lung cancer should be regarded as a systemic disease in which the cues governing the lung tumor-BMN crosstalk might bolster the definition of new biomarkers and druggable targets, potentially mitigating the high attrition rate of leading immunotherapies for NSCLC.
Collapse
Affiliation(s)
- Evelyn Calderon-Espinosa
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel, Brussels, Belgium
- Department of Chemistry, University of Warwick, Warwick, United Kingdom
| | - Kirsten De Ridder
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas Benoot
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel, Brussels, Belgium
| | - Yanina Jansen
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Domien Vanhonacker
- Department of Anesthesiology, Perioperative and Pain Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Robbe Heestermans
- Department of Hematology, Team Hematology and Immunology (HEIM), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Ann De Becker
- Department of Hematology, Team Hematology and Immunology (HEIM), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Ivan Van Riet
- Department of Hematology, Team Hematology and Immunology (HEIM), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Lore Decoster
- Department of Medical Oncology, Team Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
26
|
Schioppa T, Gaudenzi C, Zucchi G, Piserà A, Vahidi Y, Tiberio L, Sozzani S, Del Prete A, Bosisio D, Salvi V. Extracellular vesicles at the crossroad between cancer progression and immunotherapy: focus on dendritic cells. J Transl Med 2024; 22:691. [PMID: 39075551 PMCID: PMC11288070 DOI: 10.1186/s12967-024-05457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/29/2024] [Indexed: 07/31/2024] Open
Abstract
Extracellular vesicles (EVs) are nanosized heat-stable vesicles released by virtually all cells in the body, including tumor cells and tumor-infiltrating dendritic cells (DCs). By carrying molecules from originating cells, EVs work as cell-to-cell communicators in both homeostasis and cancer but may also represent valuable therapeutic and diagnostic tools. This review focuses on the role of tumor-derived EVs (TEVs) in the modulation of DC functions and on the therapeutic potential of both tumor- and DC-derived EVs in the context of immunotherapy and DC-based vaccine design. TEVs were originally characterized for their capability to transfer tumor antigens to DCs but are currently regarded as mainly immunosuppressive because of the expression of DC-inhibiting molecules such as PD-L1, HLA-G, PGE2 and others. However, TEVs may still represent a privileged system to deliver antigenic material to DCs upon appropriate engineering to reduce their immunosuppressive cargo or increase immunogenicity. DC-derived EVs are more promising than tumor-derived EVs since they expose antigen-loaded MHC, costimulatory molecules and NK cell-activating ligands in the absence of an immunosuppressive cargo. Moreover, DC-derived EVs possess several advantages as compared to cell-based drugs such as a higher antigen/MHC concentration and ease of manipulation and a lower sensitivity to immunosuppressive microenvironments. Preclinical models showed that DC-derived EVs efficiently activate tumor-specific NK and T cell responses either directly or indirectly by transferring antigens to tumor-infiltrating DCs. By contrast, however, phase I and II trials showed a limited clinical efficacy of EV-based anticancer vaccines. We discuss that the future of EV-based therapy depends on our capability to overcome major challenges such as a still incomplete understanding of their biology and pharmacokinetic and the lack of standardized methods for high-throughput isolation and purification. Despite this, EVs remain in the limelight as candidates for cancer immunotherapy which may outmatch cell-based strategies in the fullness of their time.
Collapse
Affiliation(s)
- Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Carolina Gaudenzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Giovanni Zucchi
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur- Italia, Rome, Italy
| | - Arianna Piserà
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur- Italia, Rome, Italy
| | - Yasmin Vahidi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur- Italia, Rome, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy.
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| |
Collapse
|
27
|
Alteber Z, Cojocaru G, Granit RZ, Barbiro I, Wool A, Frenkel M, Novik A, Shuchami A, Liang Y, Carmi VD, Sabath N, Foreman R, Petrenko N, He J, Kliger Y, Levy-Barda A, Eitan R, Raban O, Sadot E, Sulimani O, Nathan AA, Adewoye H, Ferre P, Levine Z, Ophir E. PVRIG is Expressed on Stem-Like T Cells in Dendritic Cell-Rich Niches in Tumors and Its Blockade May Induce Immune Infiltration in Non-Inflamed Tumors. Cancer Immunol Res 2024; 12:876-890. [PMID: 38752503 DOI: 10.1158/2326-6066.cir-23-0752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/29/2024] [Accepted: 05/10/2024] [Indexed: 07/03/2024]
Abstract
Cancers that are poorly immune infiltrated pose a substantial challenge, with current immunotherapies yielding limited clinical success. Stem-like memory T cells (TSCM) have been identified as a subgroup of T cells that possess strong proliferative capacity and that can expand and differentiate following interactions with dendritic cells (DCs). In this study, we explored the pattern of expression of a recently discovered inhibitory receptor poliovirus receptor-related immunoglobulin domain protein (PVRIG) and its ligand, poliovirus receptor-related ligand 2 (PVRL2), in the human tumor microenvironment. Using spatial and single-cell RNA transcriptomics data across diverse cancer indications, we found that among the T-cell checkpoints, PVRIG is uniquely expressed on TSCM and PVRL2 is expressed on DCs in immune aggregate niches in tumors. PVRIG blockade could therefore enhance TSCM-DC interactions and efficiently drive T-cell infiltration to tumors. Consistent with these data, following PVRIG blockade in patients with poorly infiltrated tumors, we observed immune modulation including increased tumor T-cell infiltration, T-cell receptor (TCR) clonality, and intratumoral T-cell expansion, all of which were associated with clinical benefit. These data suggest PVRIG blockade as a promising strategy to induce potent antitumor T-cell responses, providing a novel approach to overcome resistance to immunotherapy in immune-excluded tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jiang He
- Vizgen Inc., Cambridge, Massachusetts
| | | | - Adva Levy-Barda
- Biobank, Department of Pathology, Rabin Medical Center, Petah Tikva, Israel
| | - Ram Eitan
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
- Gynecologic Oncology Division, Helen Schneider Hospital for Women, Rabin Medical Center, Petah Tikva, Israel
| | - Oded Raban
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
- Gynecologic Oncology Division, Helen Schneider Hospital for Women, Rabin Medical Center, Petah Tikva, Israel
| | - Eran Sadot
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
- Department of Surgery, Rabin Medical Center, Petach Tikva, Israel
| | - Omri Sulimani
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
- Department of Surgery, Rabin Medical Center, Petach Tikva, Israel
| | | | | | | | | | | |
Collapse
|
28
|
Zeng X, Chen Q, Chen T. Nanomaterial-assisted oncolytic bacteria in solid tumor diagnosis and therapeutics. Bioeng Transl Med 2024; 9:e10672. [PMID: 39036084 PMCID: PMC11256190 DOI: 10.1002/btm2.10672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 07/23/2024] Open
Abstract
Cancer presents a formidable challenge in modern medicine due to the intratumoral heterogeneity and the dynamic microenvironmental niche. Natural or genetically engineered oncolytic bacteria have always been hailed by scientists for their intrinsic tumor-targeting and oncolytic capacities. However, the immunogenicity and low toxicity inevitably constrain their application in clinical practice. When nanomaterials, characterized by distinctive physicochemical properties, are integrated with oncolytic bacteria, they achieve mutually complementary advantages and construct efficient and safe nanobiohybrids. In this review, we initially analyze the merits and drawbacks of conventional tumor therapeutic approaches, followed by a detailed examination of the precise oncolysis mechanisms employed by oncolytic bacteria. Subsequently, we focus on harnessing nanomaterial-assisted oncolytic bacteria (NAOB) to augment the effectiveness of tumor therapy and utilizing them as nanotheranostic agents for imaging-guided tumor treatment. Finally, by summarizing and analyzing the current deficiencies of NAOB, this review provides some innovative directions for developing nanobiohybrids, intending to infuse novel research concepts into the realm of solid tumor therapy.
Collapse
Affiliation(s)
- Xiangdi Zeng
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
- The First Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Qi Chen
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Tingtao Chen
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
- National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational Medicine, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
- School of PharmacyJiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| |
Collapse
|
29
|
De Sá Fernandes C, Novoszel P, Gastaldi T, Krauß D, Lang M, Rica R, Kutschat AP, Holcmann M, Ellmeier W, Seruggia D, Strobl H, Sibilia M. The histone deacetylase HDAC1 controls dendritic cell development and anti-tumor immunity. Cell Rep 2024; 43:114308. [PMID: 38829740 DOI: 10.1016/j.celrep.2024.114308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/17/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Dendritic cell (DC) progenitors adapt their transcriptional program during development, generating different subsets. How chromatin modifications modulate these processes is unclear. Here, we investigate the impact of histone deacetylation on DCs by genetically deleting histone deacetylase 1 (HDAC1) or HDAC2 in hematopoietic progenitors and CD11c-expressing cells. While HDAC2 is not critical for DC development, HDAC1 deletion impairs pro-pDC and mature pDC generation and affects ESAM+cDC2 differentiation from tDCs and pre-cDC2s, whereas cDC1s are unchanged. HDAC1 knockdown in human hematopoietic cells also impairs cDC2 development, highlighting its crucial role across species. Multi-omics analyses reveal that HDAC1 controls expression, chromatin accessibility, and histone acetylation of the transcription factors IRF4, IRF8, and SPIB required for efficient development of cDC2 subsets. Without HDAC1, DCs switch immunologically, enhancing tumor surveillance through increased cDC1 maturation and interleukin-12 production, driving T helper 1-mediated immunity and CD8+ T cell recruitment. Our study reveals the importance of histone acetylation in DC development and anti-tumor immunity, suggesting DC-targeted therapeutic strategies for immuno-oncology.
Collapse
Affiliation(s)
- Cristiano De Sá Fernandes
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Philipp Novoszel
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Tommaso Gastaldi
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Dana Krauß
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Magdalena Lang
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Ramona Rica
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ana P Kutschat
- St. Anna Children's Cancer Research Institute, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Martin Holcmann
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Wilfried Ellmeier
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Davide Seruggia
- St. Anna Children's Cancer Research Institute, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Herbert Strobl
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Maria Sibilia
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria.
| |
Collapse
|
30
|
Fu YC, Das A, Wang D, Braun R, Yi R. scHolography: a computational method for single-cell spatial neighborhood reconstruction and analysis. Genome Biol 2024; 25:164. [PMID: 38915088 PMCID: PMC11197379 DOI: 10.1186/s13059-024-03299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/04/2024] [Indexed: 06/26/2024] Open
Abstract
Spatial transcriptomics has transformed our ability to study tissue complexity. However, it remains challenging to accurately dissect tissue organization at single-cell resolution. Here we introduce scHolography, a machine learning-based method designed to reconstruct single-cell spatial neighborhoods and facilitate 3D tissue visualization using spatial and single-cell RNA sequencing data. scHolography employs a high-dimensional transcriptome-to-space projection that infers spatial relationships among cells, defining spatial neighborhoods and enhancing analyses of cell-cell communication. When applied to both human and mouse datasets, scHolography enables quantitative assessments of spatial cell neighborhoods, cell-cell interactions, and tumor-immune microenvironment. Together, scHolography offers a robust computational framework for elucidating 3D tissue organization and analyzing spatial dynamics at the cellular level.
Collapse
Affiliation(s)
- Yuheng C Fu
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Arpan Das
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Dongmei Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Rosemary Braun
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, 60208, USA.
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208, USA.
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, 60208, USA.
| | - Rui Yi
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
31
|
Jing ZQ, Luo ZQ, Chen SR, Sun ZJ. Heterogeneity of myeloid cells in common cancers: Single cell insights and targeting strategies. Int Immunopharmacol 2024; 134:112253. [PMID: 38735257 DOI: 10.1016/j.intimp.2024.112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Tumor microenvironment (TME), is characterized by a complex and heterogenous composition involving a substantial population of immune cells. Myeloid cells comprising over half of the solid tumor mass, are undoubtedly one of the most prominent cell populations associated with tumors. Studies have unambiguously established that myeloid cells play a key role in tumor development, including immune suppression, pro-inflammation, promote tumor metastasis and angiogenesis, for example, tumor-associated macrophages promote tumor progression in a variety of common tumors, including lung cancer, through direct or indirect interactions with the TME. However, due to previous technological constraints, research on myeloid cells often tended to be conducted as studies with low throughput and limited resolution. For example, the conventional categorization of macrophages into M1-like and M2-like subsets based solely on their anti-tumor and pro-tumor roles has disregarded their continuum of states, resulting in an inadequate analysis of the high heterogeneity characterizing myeloid cells. The widespread adoption of single-cell RNA sequencing (scRNA-seq) in tumor immunology has propelled researchers into a new realm of understanding, leading to the establishment of novel subsets and targets. In this review, the origin of myeloid cells in high-incidence cancers, the functions of myeloid cell subsets examined through traditional and single-cell perspectives, as well as specific targeting strategies, are comprehensively outlined. As a result of this endeavor, we will gain a better understanding of myeloid cell heterogeneity, as well as contribute to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Zhi-Qian Jing
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China
| | - Zhi-Qi Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China
| | - Si-Rui Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
32
|
Mazzoccoli L, Liu B. Dendritic Cells in Shaping Anti-Tumor T Cell Response. Cancers (Basel) 2024; 16:2211. [PMID: 38927916 PMCID: PMC11201542 DOI: 10.3390/cancers16122211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Among professional antigen-presenting cells, dendritic cells (DCs) orchestrate innate and adaptive immunity and play a pivotal role in anti-tumor immunity. DCs are a heterogeneous population with varying functions in the tumor microenvironment (TME). Tumor-associated DCs differentiate developmentally and functionally into three main subsets: conventional DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived DCs (MoDCs). There are two major subsets of cDCs in TME, cDC1 and cDC2. cDC1 is critical for cross-presenting tumor antigens to activate cytotoxic CD8+ T cells and is also required for priming earlier CD4+ T cells in certain solid tumors. cDC2 is vital for priming anti-tumor CD4+ T cells in multiple tumor models. pDC is a unique subset of DCs and produces type I IFN through TLR7 and TLR9. Studies have shown that pDCs are related to immunosuppression in the TME through the secretion of immunosuppressive cytokines and by promoting regulatory T cells. MoDCs differentiate separately from monocytes in response to inflammatory cues and infection. Also, MoDCs can cross-prime CD8+ T cells. In this review, we summarize the subsets and functions of DCs. We also discuss the role of different DC subsets in shaping T cell immunity in TME and targeting DCs for potential immunotherapeutic benefits against cancer.
Collapse
Affiliation(s)
- Luciano Mazzoccoli
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
33
|
Yu H, Chen Q, Zheng M, Wang R, Wang H, Cheng L, Hu Y, Dai M, Du C, Luo W, Tan M, Cao Y, Guo Y, Ran H. Combination of MHI148 Targeted Photodynamic Therapy and STING Activation Inhibits Tumor Metastasis and Recurrence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29672-29685. [PMID: 38813586 DOI: 10.1021/acsami.4c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Metastasis and recurrence are notable contributors to mortality associated with breast cancer. Although immunotherapy has shown promise in mitigating these risks after conventional treatments, its effectiveness remains constrained by significant challenges, such as impaired antigen presentation by dendritic cells (DCs) and inadequate T cell infiltration into tumor tissues. To address these limitations, we developed a multifunctional nanoparticle platform, termed GM@P, which consisted of a hydrophobic shell encapsulating the photosensitizer MHI148 and a hydrophilic core containing the STING agonist 2'3'-cGAMP. This design elicited robust type I interferon responses to activate antitumor immunity. The GM@P nanoparticles loaded with MHI148 specifically targeted breast cancer cells. Upon exposure to 808 nm laser irradiation, the MHI148-loaded nanoparticles produced toxic reactive oxygen species (ROS) to eradicate tumor cells through photodynamic therapy (PDT). Notably, PDT stimulated immunogenic cell death (ICD) to foster the potency of antitumor immune responses. Furthermore, the superior photoacoustic imaging (PAI) capabilities of MHI148 enabled the simultaneous visualization of diagnostic and therapeutic procedures. Collectively, our findings uncovered that the combination of PDT and STING activation facilitated a more conducive immune microenvironment, characterized by enhanced DC maturation, infiltration of CD8+ T cells, and proinflammatory cytokine release. This strategy stimulated local immune responses to augment systemic antitumor effects, offering a promising approach to suppress tumor growth, inhibit metastasis, and prevent recurrence.
Collapse
Affiliation(s)
- Huilin Yu
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Qiaoqi Chen
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Min Zheng
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Ruoyao Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Haiyang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
- Department of Abdominal Wall, Hernia and Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Long Cheng
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yaqin Hu
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Mingyuan Dai
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Chier Du
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Wenpei Luo
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Mixiao Tan
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yuan Guo
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Haitao Ran
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| |
Collapse
|
34
|
Poženel P, Zajc K, Švajger U. Factor of time in dendritic cell (DC) maturation: short-term activation of DCs significantly improves type 1 cytokine production and T cell responses. J Transl Med 2024; 22:541. [PMID: 38845003 PMCID: PMC11155046 DOI: 10.1186/s12967-024-05368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
Dendritic cells (DCs) have been intensively studied in correlation to tumor immunology and for the development DC-based cancer vaccines. Here, we present the significance of the temporal aspect of DC maturation for the most essential subsequent timepoint, namely at interaction with responding T cells or after CD40-Ligand restimulation. Mostly, DC maturation is still being achieved by activation processes which lasts 24 h to 48 h. We hypothesized this amount of time is excessive from a biological standpoint and could be the underlying cause for functional exhaustion. Indeed, shorter maturation periods resulted in extensive capacity of monocyte-derived DCs to produce inflammatory cytokines after re-stimulation with CD40-Ligand. This effect was most evident for the primary type 1 polarizing cytokine, IL-12p70. This capacity reached peak at 6 h and dropped sharply with longer exposure to initial maturation stimuli (up to 48 h). The 6 h maturation protocol reflected superiority in subsequent functionality tests. Namely, DCs displayed twice the allostimulatory capacity of 24 h- and 48 h-matured DCs. Similarly, type 1 T cell response measured by IFN-γ production was 3-fold higher when CD4+ T cells had been stimulated with shortly matured DC and over 8-fold greater in case of CD8+ T cells, compared to longer matured DCs. The extent of melanoma-specific CD8+ cytotoxic T cell induction was also greater in case of 6 h DC maturation. The major limitation of the study is that it lacks in vivo evidence, which we aim to examine in the future. Our findings show an unexpectedly significant impact of temporal exposure to activation signals for subsequent DC functionality, which we believe can be readily integrated into existing knowledge on in vitro/ex vivo DC manipulation for various uses. We also believe this has important implications for DC vaccine design for future clinical trials.
Collapse
Affiliation(s)
- Primož Poženel
- Slovenian Institute for Transfusion Medicine, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
- Faculty of Medicine, University of Ljubljana, Korytkova ulica 2, Ljubljana, 1000, Slovenia
| | - Kaja Zajc
- Slovenian Institute for Transfusion Medicine, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| | - Urban Švajger
- Slovenian Institute for Transfusion Medicine, Šlajmerjeva 6, Ljubljana, 1000, Slovenia.
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana, 1000, Slovenia.
| |
Collapse
|
35
|
Hesnard L, Thériault C, Cahuzac M, Durette C, Vincent K, Hardy MP, Lanoix J, Lavallée GO, Humeau J, Thibault P, Perreault C. Immunogenicity of Non-Mutated Ovarian Cancer-Specific Antigens. Curr Oncol 2024; 31:3099-3121. [PMID: 38920720 PMCID: PMC11203340 DOI: 10.3390/curroncol31060236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Epithelial ovarian cancer (EOC) has not significantly benefited from advances in immunotherapy, mainly because of the lack of well-defined actionable antigen targets. Using proteogenomic analyses of primary EOC tumors, we previously identified 91 aberrantly expressed tumor-specific antigens (TSAs) originating from unmutated genomic sequences. Most of these TSAs derive from non-exonic regions, and their expression results from cancer-specific epigenetic changes. The present study aimed to evaluate the immunogenicity of 48 TSAs selected according to two criteria: presentation by highly prevalent HLA allotypes and expression in a significant fraction of EOC tumors. Using targeted mass spectrometry analyses, we found that pulsing with synthetic TSA peptides leads to a high-level presentation on dendritic cells. TSA abundance correlated with the predicted binding affinity to the HLA allotype. We stimulated naïve CD8 T cells from healthy blood donors with TSA-pulsed dendritic cells and assessed their expansion with two assays: MHC-peptide tetramer staining and TCR Vβ CDR3 sequencing. We report that these TSAs can expand sizeable populations of CD8 T cells and, therefore, represent attractive targets for EOC immunotherapy.
Collapse
Affiliation(s)
- Leslie Hesnard
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Catherine Thériault
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Maxime Cahuzac
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Chantal Durette
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Krystel Vincent
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Joël Lanoix
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Gabriel Ouellet Lavallée
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Juliette Humeau
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
- Department of Chemistry, University of Montreal, Montreal, QC H2V 0B3, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
- Department of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
36
|
Kim KH, Park GY, Kim SJ, Eccles JD, Ascoli C. Tumor immunogenicity regulates host immune responses, and conventional dendritic cell type 2 uptakes the majority of tumor antigens in an orthotopic lung cancer model. RESEARCH SQUARE 2024:rs.3.rs-4438402. [PMID: 38853999 PMCID: PMC11160902 DOI: 10.21203/rs.3.rs-4438402/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Human lung cancer carries high genetic alterations, expressing high tumor-specific neoantigens. Although orthotopic murine lung cancer models recapitulate many characteristics of human lung cancers, genetically engineered mouse models have fewer somatic mutations than human lung cancer, resulting in scarce immune cell infiltration and deficient immune responses. The endogenous mouse lung cancer model driven by Kras mutation and Trp53 deletion (KP model) has minimal immune infiltration because of a scarcity of neoantigens. Fine-tuning tumor antigenicity to trigger the appropriate level of antitumor immunity would be key to investigating immune responses against human lung cancer. We engineered the KP model to express antigens of OVA peptides (minOVA) as neoantigens along with ZsGreen, a traceable fluorescent conjugate. The KP model expressing minOVA exhibited stronger immunogenicity with higher immune cell infiltration comprised of CD8+ T cells and CD11c+ dendritic cells (DCs). Consequentially, the KP model expressing minOVA exhibits suppressed tumor growth compared to its origin. We further analyzed tumor-infiltrated DCs. The majority of ZsGreen conjugated with minOVA was observed in the conventional type 2 DCs (cDC2), where cDC1 has minimal. These data indicate that tumor immunogenicity regulates host immune responses, and tumor neoantigen is mostly recognized by cDC2 cells, which may play a critical role in initiating anti-tumor immune responses in an orthotopic murine lung cancer model.
Collapse
Affiliation(s)
- Ki-Hyun Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Gye Young Park
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Seung-Jae Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jacob D Eccles
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
37
|
Andersson H, Nyesiga B, Hermodsson T, Enell Smith K, Hägerbrand K, Lindstedt M, Ellmark P. Next-generation CD40 agonists for cancer immunotherapy. Expert Opin Biol Ther 2024; 24:351-363. [PMID: 38764393 DOI: 10.1080/14712598.2024.2357714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION There is a need for new therapies that can enhance response rates and broaden the number of cancer indications where immunotherapies provide clinical benefit. CD40 targeting therapies provide an opportunity to meet this need by promoting priming of tumor-specific T cells and reverting the suppressive tumor microenvironment. This is supported by emerging clinical evidence demonstrating the benefits of immunotherapy with CD40 antibodies in combination with standard of care chemotherapy. AREAS COVERED This review is focused on the coming wave of next-generation CD40 agonists aiming to improve efficacy and safety, using new approaches and formats beyond monospecific antibodies. Further, the current understanding of the role of different CD40 expressing immune cell populations in the tumor microenvironment is reviewed. EXPERT OPINION There are multiple promising next-generation approaches beyond monospecific antibodies targeting CD40 in immuno-oncology. Enhancing efficacy is the most important driver for this development, and approaches that maximize the ability of CD40 to both remodel the tumor microenvironment and boost the anti-tumor T cell response provide great opportunities to benefit cancer patients. Enhanced understanding of the role of different CD40 expressing immune cells in the tumor microenvironment may facilitate more efficient clinical development of these compounds.
Collapse
Affiliation(s)
- Hampus Andersson
- Alligator Bioscience, Alligator Bioscience AB, Lund, Sweden
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Barnabas Nyesiga
- Alligator Bioscience, Alligator Bioscience AB, Lund, Sweden
- Department of Biomedical Science, Malmö University, Malmö, Sweden
| | - Tova Hermodsson
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | | | | - Malin Lindstedt
- Alligator Bioscience, Alligator Bioscience AB, Lund, Sweden
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Peter Ellmark
- Alligator Bioscience, Alligator Bioscience AB, Lund, Sweden
- Department of Immunotechnology, Lund University, Lund, Sweden
| |
Collapse
|
38
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Advances in Therapeutic Cancer Vaccines, Their Obstacles, and Prospects Toward Tumor Immunotherapy. Mol Biotechnol 2024:10.1007/s12033-024-01144-3. [PMID: 38625508 DOI: 10.1007/s12033-024-01144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Over the past few decades, cancer immunotherapy has experienced a significant revolution due to the advancements in immune checkpoint inhibitors (ICIs) and adoptive cell therapies (ACTs), along with their regulatory approvals. In recent times, there has been hope in the effectiveness of cancer vaccines for therapy as they have been able to stimulate de novo T-cell reactions against tumor antigens. These tumor antigens include both tumor-associated antigen (TAA) and tumor-specific antigen (TSA). Nevertheless, the constant quest to fully achieve these abilities persists. Therefore, this review offers a broad perspective on the existing status of cancer immunizations. Cancer vaccine design has been revolutionized due to the advancements made in antigen selection, the development of antigen delivery systems, and a deeper understanding of the strategic intricacies involved in effective antigen presentation. In addition, this review addresses the present condition of clinical tests and deliberates on their approaches, with a particular emphasis on the immunogenicity specific to tumors and the evaluation of effectiveness against tumors. Nevertheless, the ongoing clinical endeavors to create cancer vaccines have failed to produce remarkable clinical results as a result of substantial obstacles, such as the suppression of the tumor immune microenvironment, the identification of suitable candidates, the assessment of immune responses, and the acceleration of vaccine production. Hence, there are possibilities for the industry to overcome challenges and enhance patient results in the coming years. This can be achieved by recognizing the intricate nature of clinical issues and continuously working toward surpassing existing limitations.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
39
|
Xiang M, Li H, Zhan Y, Ma D, Gao Q, Fang Y. Functional CRISPR screens in T cells reveal new opportunities for cancer immunotherapies. Mol Cancer 2024; 23:73. [PMID: 38581063 PMCID: PMC10996278 DOI: 10.1186/s12943-024-01987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
T cells are fundamental components in tumour immunity and cancer immunotherapies, which have made immense strides and revolutionized cancer treatment paradigm. However, recent studies delineate the predicament of T cell dysregulation in tumour microenvironment and the compromised efficacy of cancer immunotherapies. CRISPR screens enable unbiased interrogation of gene function in T cells and have revealed functional determinators, genetic regulatory networks, and intercellular interactions in T cell life cycle, thereby providing opportunities to revamp cancer immunotherapies. In this review, we briefly described the central roles of T cells in successful cancer immunotherapies, comprehensively summarised the studies of CRISPR screens in T cells, elaborated resultant master genes that control T cell activation, proliferation, fate determination, effector function, and exhaustion, and highlighted genes (BATF, PRDM1, and TOX) and signalling cascades (JAK-STAT and NF-κB pathways) that extensively engage in multiple branches of T cell responses. In conclusion, this review bridged the gap between discovering element genes to a specific process of T cell activities and apprehending these genes in the global T cell life cycle, deepened the understanding of T cell biology in tumour immunity, and outlined CRISPR screens resources that might facilitate the development and implementation of cancer immunotherapies in the clinic.
Collapse
Affiliation(s)
- Minghua Xiang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong Fang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
40
|
Qian ZY, Pan YQ, Li XX, Chen YX, Wu HX, Liu ZX, Kosar M, Bartek J, Wang ZX, Xu RH. Modulator of TMB-associated immune infiltration (MOTIF) predicts immunotherapy response and guides combination therapy. Sci Bull (Beijing) 2024; 69:803-822. [PMID: 38320897 DOI: 10.1016/j.scib.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/04/2023] [Accepted: 12/07/2023] [Indexed: 02/08/2024]
Abstract
Patients with high tumor mutational burden (TMB) levels do not consistently respond to immune checkpoint inhibitors (ICIs), possibly because a high TMB level does not necessarily result in adequate infiltration of CD8+ T cells. Using bulk ribonucleic acid sequencing (RNA-seq) data from 9311 tumor samples across 30 cancer types, we developed a novel tool called the modulator of TMB-associated immune infiltration (MOTIF), which comprises genes that can determine the extent of CD8+ T cell infiltration prompted by a certain TMB level. We confirmed that MOTIF can accurately reflect the integrity and defects of the cancer-immunity cycle. By analyzing 84 human single-cell RNA-seq datasets from 32 types of solid tumors, we revealed that MOTIF can provide insights into the diverse roles of various cell types in the modulation of CD8+ T cell infiltration. Using pretreatment RNA-seq data from 13 ICI-treated cohorts, we validated the use of MOTIF in predicting CD8+ T cell infiltration and ICI efficacy. Among the components of MOTIF, we identified EMC3 as a negative regulator of CD8+ T cell infiltration, which was validated via in vivo studies. Additionally, MOTIF provided guidance for the potential combinations of programmed death 1 blockade with certain immunostimulatory drugs to facilitate CD8+ T cell infiltration and improve ICI efficacy.
Collapse
Affiliation(s)
- Zheng-Yu Qian
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Yi-Qian Pan
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Xue-Xin Li
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm S-171 21, Sweden; Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Yan-Xing Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Hao-Xiang Wu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Ze-Xian Liu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China; Bioinformatics Platform, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Laboratory of Artificial Intelligence and Data Science, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Martin Kosar
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm S-171 21, Sweden; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China; Edinburgh Medical School, Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH1 1LT, UK
| | - Jiri Bartek
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm S-171 21, Sweden; Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark.
| | - Zi-Xian Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China; Laboratory of Artificial Intelligence and Data Science, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China; Laboratory of Artificial Intelligence and Data Science, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
41
|
Visnyaiová K, Varga I, Feitscherová C, Pavlíková L, Záhumenský J, Mikušová R. Morphology of the immune cells in the wall of the human uterine tube and their possible impact on reproduction-uterine tube as a possible immune privileged organ. Front Cell Dev Biol 2024; 12:1325565. [PMID: 38516130 PMCID: PMC10955054 DOI: 10.3389/fcell.2024.1325565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
The uterine tube, as well as other parts of the upper female reproductive system, is immunologically unique in its requirements for tolerance to allogenic sperm and semi-allogenic embryos, yet responds to an array of sexually transmitted pathogens. To understand this dichotomy, there is a need to understand the functional morphology of immune cells in the wall of the uterine tube. Thus, we reviewed scientific literature regarding immune cells and the human uterine tube by using the scientific databases. The human uterine tube has a diverse population of immunocompetent cells representing both the innate and adaptive immune systems. We describe in detail the possible roles of cells of the mononuclear phagocyte system (macrophages and dendritic cells), T and B lymphocytes, natural killer cells, neutrophils and mast cells in association with the reproductive functions of uterine tubes. We are also discussing about the possible "immune privilege" of the uterine tube, as another mechanism to tolerate sperm and embryo without eliciting an inflammatory immune response. In uterine tube is not present an anatomical blood-tissue barrier between antigens and circulation. However, the immune cells of the uterine tube probably represent a type of "immunological barrier," which probably includes the uterine tube among the immunologically privileged organs. Understanding how immune cells in the female reproductive tract play roles in reproduction is essential to understand not only the mechanisms of gamete transport and fertilization as well as embryo transport through the uterine tube, but also in improving results from assisted reproduction.
Collapse
Affiliation(s)
- Kristína Visnyaiová
- Second Department of Gynecology and Obstetrics, Faculty of Medicine, Comenius University in Bratislava and University Hospital, Bratislava, Slovakia
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Claudia Feitscherová
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lada Pavlíková
- Department of Rehabilitation Studies, Faculty of Health Care Studies, University of Western Bohemia, Pilsen, Czechia
| | - Jozef Záhumenský
- Second Department of Gynecology and Obstetrics, Faculty of Medicine, Comenius University in Bratislava and University Hospital, Bratislava, Slovakia
| | - Renáta Mikušová
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
42
|
Cuenca-Escalona J, Flórez-Grau G, van den Dries K, Cambi A, de Vries IJM. PGE2-EP4 signaling steers cDC2 maturation toward the induction of suppressive T-cell responses. Eur J Immunol 2024; 54:e2350770. [PMID: 38088451 DOI: 10.1002/eji.202350770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Dendritic cells (DCs) shape adaptive immunity in response to environmental cues such as cytokines or lipid mediators, including prostaglandin E2 (PGE2). In cancer, tumors are known to establish an enriched PGE2 microenvironment. Tumor-derived PGE2 primes regulatory features across immune cells, including DCs, facilitating tumor progression. PGE2 shapes DC function by providing signaling via its two so-called E-prostanoid receptors (EPs) EP2 and EP4. Although studies with monocyte-derived DCs have shown the importance of PGE2 signaling, the role of PGE2-EP2/EP4 on conventional DCs type 2 (cDC2s), is still poorly defined. In this study, we investigated the function of EP2 and EP4 using specific EP antagonists on human cDC2s. Our results show that EP2 and EP4 exhibit different functions in cDC2s, with EP4 modulating the upregulation of activation markers (CD80, CD86, CD83, MHC class II) and the production of IL-10 and IL-23. Furthermore, PGE2-EP4 boosts CCR type 7-based migration as well as a higher T-cell expansion capacity, characterized by the enrichment of suppressive rather than pro-inflammatory T-cell populations. Our findings are relevant to further understanding the role of EP receptors in cDC2s, underscoring the benefit of targeting the PGE2-EP2/4 axis for therapeutic purposes in diseases such as cancer.
Collapse
Affiliation(s)
- Jorge Cuenca-Escalona
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| | - Georgina Flórez-Grau
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| | - Koen van den Dries
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| | - Alessandra Cambi
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| | - I Jolanda M de Vries
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| |
Collapse
|
43
|
Sun Z, Sun Z, Liu J, Gao X, Jiao L, Zhao Q, Chu Y, Wang X, Deng G, Cai L. Engineered Extracellular Vesicles Expressing Siglec-10 Camouflaged AIE Photosensitizer to Reprogram Macrophages to Active M1 Phenotype and Present Tumor-Associated Antigens for Photodynamic Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307147. [PMID: 37941517 DOI: 10.1002/smll.202307147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/15/2023] [Indexed: 11/10/2023]
Abstract
Cancer immunotherapy has attracted considerable attention due to its advantages of persistence, targeting, and ability to kill tumor cells. However, the efficacy of tumor immunotherapy in practical applications is limited by tumor heterogeneity and complex tumor immunosuppressive microenvironments in which abundant of M2 macrophages and immune checkpoints (ICs) are present. Herein, two type-I aggregation-induced emission (AIE)-active photosensitizers with various reactive oxygen species (ROS)-generating efficiencies are designed and synthesized. Engineered extracellular vesicles (EVs) that express ICs Siglec-10 are first obtained from 4T1 tumor cells. The engineered EVs are then fused with the AIE photosensitizer-loaded lipidic nanosystem to form SEx@Fc-NPs. The ROS generated by the inner type-I AIE photosensitizer of the SEx@Fc-NPs through photodynamic therapy (PDT) can convert M2 macrophages into M1 macrophages to improve tumor immunosuppressive microenvironment. The outer EV-antigens that carry 4T1 tumor-associated antigens directly stimulate dendritic cells maturation to activate different types of tumor-specific T cells in overcoming tumor heterogeneity. In addition, blocking Siglec-10 reversed macrophage exhaustion for enhanced antitumor ability. This study presents that a combination of PDT, immune checkpoints, and EV-antigens can greatly improve the efficiency of tumor immunotherapy and is expected to serve as an emerging strategy to improve tumor immunosuppressive microenvironment and overcome immune escape.
Collapse
Affiliation(s)
- Zhihong Sun
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
- Queen Mary School, Nanchang University, Nanchang, 330031, P. R. China
| | - Zhuokai Sun
- Queen Mary School, Nanchang University, Nanchang, 330031, P. R. China
| | - Jie Liu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Xiaohan Gao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Liping Jiao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Qi Zhao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Yongli Chu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Xiaozhong Wang
- The Second Affiliated Hospital of Nanchang University, Nanchang, 330031, P. R. China
- School of Public Health, Nanchang University, Nanchang, 330031, P. R. China
| | - Guanjun Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Sino-Euro Center of Biomedicine and Health, Shenzhen, 518024, P. R. China
| |
Collapse
|
44
|
Tittes J, Brell J, Fritz P, Jonak C, Stary G, Ressler JM, Künig S, Weninger W, Stöckl J. Regulation of the Immune Cell Repertoire in Psoriasis Patients Upon Blockade of IL-17A or TNFα. Dermatol Ther (Heidelb) 2024; 14:613-626. [PMID: 38459237 PMCID: PMC10965886 DOI: 10.1007/s13555-024-01112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/08/2024] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION Targeting of the proinflammatory cytokine interleukin 17A (IL-17A) or tumor necrosis factor alpha (TNFα) with the monoclonal antibodies (mAbs) ixekizumab or adalimumab, respectively, is a successful therapy for chronic plaque psoriasis. The effects of these treatments on immune cell populations in the skin are largely unknown. METHODS In this study, we compared the composition of cutaneous, lesional and non-lesional immune cells and blood immune cells in ixekizumab- or adalimumab-treated patients with psoriasis. RESULTS Our data reveal that both treatments efficiently downregulate T cells, macrophages and different subsets of dendritic cells (DCs) in lesional skin towards levels of healthy skin. In contrast to lesional skin, non-lesional areas in patients harbor only few or no detectable DCs compared to the skin of healthy subjects. Treatment with neither ixekizumab nor adalimumab reversed this DC imbalance in non-lesional skin of psoriatic patients. CONCLUSION Our study shows that anti-IL-17A and anti-TNFα therapy rebalances the immune cell repertoire of lesional skin in psoriatic patients but fails to restore the disturbed immune cell repertoire in non-lesional skin.
Collapse
Affiliation(s)
- Julia Tittes
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Jennifer Brell
- Institute of Immunology, Medical University of Vienna, Lazarettgasse 19, 1090, Vienna, Austria
| | - Pia Fritz
- Institute of Immunology, Medical University of Vienna, Lazarettgasse 19, 1090, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Julia M Ressler
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Sarojinidevi Künig
- Institute of Immunology, Medical University of Vienna, Lazarettgasse 19, 1090, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Johannes Stöckl
- Institute of Immunology, Medical University of Vienna, Lazarettgasse 19, 1090, Vienna, Austria
| |
Collapse
|
45
|
Deng X, Liu T, Zhu Y, Chen J, Song Z, Shi Z, Chen H. Ca & Mn dual-ion hybrid nanostimulator boosting anti-tumor immunity via ferroptosis and innate immunity awakening. Bioact Mater 2024; 33:483-496. [PMID: 38125638 PMCID: PMC10730349 DOI: 10.1016/j.bioactmat.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Limited by low tumor immunogenicity and the immunosuppressive tumor microenvironment (TME), triple-negative breast cancer (TNBC) has been poorly responsive to immunotherapy so far. Herein, a Ca & Mn dual-ion hybrid nanostimulator (CMS) is constructed to enhance anti-tumor immunity through ferroptosis inducing and innate immunity awakening, which can serve as a ferroptosis inducer and immunoadjuvant for TNBC concurrently. On one hand, glutathione (GSH) depletion and reactive oxygen species (ROS) generation can be achieved due to the mixed valence state of Mn in CMS. On the other hand, as an exotic Ca2+ supplier, CMS causes mitochondrial Ca2+ overload, which further amplifies the oxidative stress. Significantly, tumor cells undergo ferroptosis because of the inactivation of glutathione peroxidase 4 (GPX4) and accumulation of lipid peroxidation (LPO). More impressively, CMS can act as an immunoadjuvant to awaken innate immunity by alleviating intra-tumor hypoxia and Mn2+-induced activation of the STING signaling pathway, which promotes polarization of tumor-associated macrophages (TAMs) and activation of dendritic cells (DCs) for antigen presentation and subsequent infiltration of tumor-specific cytotoxic T lymphocytes (CTLs) into tumor tissues. Taken together, this work demonstrates a novel strategy of simultaneously inducing ferroptosis and awakening innate immunity, offering a new perspective for effective tumor immunotherapy of TNBC.
Collapse
Affiliation(s)
- Xi Deng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tianzhi Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yutong Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jufeng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ze Song
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhangpeng Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| |
Collapse
|
46
|
Kvedaraite E, Lourda M, Mouratidou N, Düking T, Padhi A, Moll K, Czarnewski P, Sinha I, Xagoraris I, Kokkinou E, Damdimopoulos A, Weigel W, Hartwig O, Santos TE, Soini T, Van Acker A, Rahkonen N, Flodström Tullberg M, Ringqvist E, Buggert M, Jorns C, Lindforss U, Nordenvall C, Stamper CT, Unnersjö-Jess D, Akber M, Nadisauskaite R, Jansson J, Vandamme N, Sorini C, Grundeken ME, Rolandsdotter H, Rassidakis G, Villablanca EJ, Ideström M, Eulitz S, Arnell H, Mjösberg J, Henter JI, Svensson M. Intestinal stroma guides monocyte differentiation to macrophages through GM-CSF. Nat Commun 2024; 15:1752. [PMID: 38409190 PMCID: PMC10897309 DOI: 10.1038/s41467-024-46076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024] Open
Abstract
Stromal cells support epithelial cell and immune cell homeostasis and play an important role in inflammatory bowel disease (IBD) pathogenesis. Here, we quantify the stromal response to inflammation in pediatric IBD and reveal subset-specific inflammatory responses across colon segments and intestinal layers. Using data from a murine dynamic gut injury model and human ex vivo transcriptomic, protein and spatial analyses, we report that PDGFRA+CD142-/low fibroblasts and monocytes/macrophages co-localize in the intestine. In primary human fibroblast-monocyte co-cultures, intestinal PDGFRA+CD142-/low fibroblasts foster monocyte transition to CCR2+CD206+ macrophages through granulocyte-macrophage colony-stimulating factor (GM-CSF). Monocyte-derived CCR2+CD206+ cells from co-cultures have a phenotype similar to intestinal CCR2+CD206+ macrophages from newly diagnosed pediatric IBD patients, with high levels of PD-L1 and low levels of GM-CSF receptor. The study describes subset-specific changes in stromal responses to inflammation and suggests that the intestinal stroma guides intestinal macrophage differentiation.
Collapse
Affiliation(s)
- Egle Kvedaraite
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden.
| | - Magda Lourda
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Natalia Mouratidou
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Tim Düking
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Avinash Padhi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Dermatology and Venereology Section, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kirsten Moll
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Paulo Czarnewski
- Science for Life Laboratory, Department of Biochemistry and Biophysics and National Bioinformatics Infrastructure Sweden, Stockholm University, Solna, Sweden
| | - Indranil Sinha
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ioanna Xagoraris
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Efthymia Kokkinou
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anastasios Damdimopoulos
- Bioinformatics and Expression Analysis Core Facility, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Whitney Weigel
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Olga Hartwig
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Telma E Santos
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Tea Soini
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Aline Van Acker
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Tech Watch, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Nelly Rahkonen
- Integrated Cardio Metabolic Centre, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Malin Flodström Tullberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Ringqvist
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Carl Jorns
- Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ulrik Lindforss
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Pelvic Cancer, GI Oncology and Colorectal Surgery Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Nordenvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Pelvic Cancer, GI Oncology and Colorectal Surgery Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher T Stamper
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - David Unnersjö-Jess
- Science for Life Laboratory, Dept. of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Mira Akber
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ruta Nadisauskaite
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jessica Jansson
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Niels Vandamme
- VIB Single Cell Core, VIB, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, 9052, Ghent, Belgium
| | - Chiara Sorini
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Marijke Elise Grundeken
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Helena Rolandsdotter
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs' Children and Youth Hospital, Department of Gastroenterology, Södersjukhuset, Stockholm, Sweden
| | - George Rassidakis
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Eduardo J Villablanca
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Maja Ideström
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Eulitz
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Henrik Arnell
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Theme of Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Svensson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
47
|
Becker AMD, Decker AH, Flórez-Grau G, Bakdash G, Röring RJ, Stelloo S, Vermeulen M, Piet B, Aarntzen EHJG, Verdoes M, de Vries IJM. Inhibition of CSF-1R and IL-6R prevents conversion of cDC2s into immune incompetent tumor-induced DC3s boosting DC-driven therapy potential. Cell Rep Med 2024; 5:101386. [PMID: 38242119 PMCID: PMC10897516 DOI: 10.1016/j.xcrm.2023.101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/29/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
The human dendritic cell (DC) family has recently been expanded by CD1c+CD14+CD163+ DCs, introduced as DC3s. DC3s are found in tumors and peripheral blood of cancer patients. Here, we report elevated frequencies of CD14+ cDC2s, which restore to normal frequencies after tumor resection, in non-small cell lung cancer patients. These CD14+ cDC2s phenotypically resemble DC3s and exhibit increased PD-L1, MERTK, IL-10, and IDO expression, consistent with inferior T cell activation ability compared with CD14- cDC2s. In melanoma patients undergoing CD1c+ DC vaccinations, increased CD1c+CD14+ DC frequencies correlate with reduced survival. We demonstrate conversion of CD5+/-CD1c+CD14- cDC2s to CD14+ cDC2s by tumor-associated factors, whereas monocytes failed to express CD1c under similar conditions. Targeted proteomics identified IL-6 and M-CSF as dominant drivers, and we show that IL-6R and CSF1R inhibition prevents tumor-induced CD14+ cDC2s. Together, this indicates cDC2s as direct pre-cursors of DC3-like CD1c+CD14+ DCs and provides insights into the importance and modulation of CD14+ DC3s in anti-tumor immune responses.
Collapse
Affiliation(s)
- Anouk M D Becker
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Annika H Decker
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Georgina Flórez-Grau
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Ghaith Bakdash
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Rutger J Röring
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Suzan Stelloo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Berber Piet
- Department of Pulmonology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Erik H J G Aarntzen
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Institute for Chemical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
48
|
Gaballa A, Gebhardt-Wolf A, Krenz B, Mattavelli G, John M, Cossa G, Andreani S, Schülein-Völk C, Montesinos F, Vidal R, Kastner C, Ade CP, Kneitz B, Gasteiger G, Gallant P, Rosenfeldt M, Riedel A, Eilers M. PAF1c links S-phase progression to immune evasion and MYC function in pancreatic carcinoma. Nat Commun 2024; 15:1446. [PMID: 38365788 PMCID: PMC10873513 DOI: 10.1038/s41467-024-45760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
In pancreatic ductal adenocarcinoma (PDAC), endogenous MYC is required for S-phase progression and escape from immune surveillance. Here we show that MYC in PDAC cells is needed for the recruitment of the PAF1c transcription elongation complex to RNA polymerase and that depletion of CTR9, a PAF1c subunit, enables long-term survival of PDAC-bearing mice. PAF1c is largely dispensable for normal proliferation and regulation of MYC target genes. Instead, PAF1c limits DNA damage associated with S-phase progression by being essential for the expression of long genes involved in replication and DNA repair. Surprisingly, the survival benefit conferred by CTR9 depletion is not due to DNA damage, but to T-cell activation and restoration of immune surveillance. This is because CTR9 depletion releases RNA polymerase and elongation factors from the body of long genes and promotes the transcription of short genes, including MHC class I genes. The data argue that functionally distinct gene sets compete for elongation factors and directly link MYC-driven S-phase progression to tumor immune evasion.
Collapse
Affiliation(s)
- Abdallah Gaballa
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Anneli Gebhardt-Wolf
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Bastian Krenz
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
- Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Greta Mattavelli
- Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Mara John
- Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Giacomo Cossa
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Silvia Andreani
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christina Schülein-Völk
- Core Unit High-Content Microscopy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Francisco Montesinos
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Raphael Vidal
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Carolin Kastner
- Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Carsten P Ade
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Burkhard Kneitz
- Department of Urology and Pediatric Urology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius Maximilian University Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| | - Peter Gallant
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Mathias Rosenfeldt
- Institute of Pathology, Julius Maximilian University Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Angela Riedel
- Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Martin Eilers
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany.
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.
| |
Collapse
|
49
|
Tai Y, Chen M, Wang F, Fan Y, Zhang J, Cai B, Yan L, Luo Y, Li Y. The role of dendritic cells in cancer immunity and therapeutic strategies. Int Immunopharmacol 2024; 128:111548. [PMID: 38244518 DOI: 10.1016/j.intimp.2024.111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Dendritic cells (DCs) are asserted as the most potent antigen-presenting cells (APCs) that orchestrate both innate and adaptive immunity, being extremely effective in the induction of robust anti-cancer T cell responses. Hence, the modulation of DCs function represents an attractive target for improving cancer immunotherapy efficacy. A better understanding of the immunobiology of DCs, the interaction among DCs, immune effector cells and tumor cells in tumor microenvironment (TME) and the latest advances in biomedical engineering technology would be required for the design of optimal DC-based immunotherapy. In this review, we focus on elaborating the immunobiology of DCs in healthy and cancer environments, the recent advances in the development of enhancing endogenous DCs immunocompetence via immunomodulators as well as DC-based vaccines. The rapidly developing field of applying nanotechnology to improve DC-based immunotherapy is also highlighted.
Collapse
Affiliation(s)
- Yunze Tai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Man Chen
- Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Fang Wang
- Department of Medical Laboratory, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Yu Fan
- Department of Urology, National Clinical Research Center for Geriatrics and Organ Transplantation Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Yan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
50
|
Palomares F, Pina A, Dakhaoui H, Leiva-Castro C, Munera-Rodriguez AM, Cejudo-Guillen M, Granados B, Alba G, Santa-Maria C, Sobrino F, Lopez-Enriquez S. Dendritic Cells as a Therapeutic Strategy in Acute Myeloid Leukemia: Vaccines. Vaccines (Basel) 2024; 12:165. [PMID: 38400148 PMCID: PMC10891551 DOI: 10.3390/vaccines12020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/11/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Dendritic cells (DCs) serve as professional antigen-presenting cells (APC) bridging innate and adaptive immunity, playing an essential role in triggering specific cellular and humoral responses against tumor and infectious antigens. Consequently, various DC-based antitumor therapeutic strategies have been developed, particularly vaccines, and have been intensively investigated specifically in the context of acute myeloid leukemia (AML). This hematological malignancy mainly affects the elderly population (those aged over 65), which usually presents a high rate of therapeutic failure and an unfavorable prognosis. In this review, we examine the current state of development and progress of vaccines in AML. The findings evidence the possible administration of DC-based vaccines as an adjuvant treatment in AML following initial therapy. Furthermore, the therapy demonstrates promising outcomes in preventing or delaying tumor relapse and exhibits synergistic effects when combined with other treatments during relapses or disease progression. On the other hand, the remarkable success observed with RNA vaccines for COVID-19, delivered in lipid nanoparticles, has revealed the efficacy and effectiveness of these types of vectors, prompting further exploration and their potential application in AML, as well as other neoplasms, loading them with tumor RNA.
Collapse
Affiliation(s)
- Francisca Palomares
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.P.); (H.D.); (C.L.-C.); (A.M.M.-R.); (G.A.); (F.S.)
- Institute of Biomedicine of Seville (IBiS) HUVR/CSIC/University of Seville, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - Alejandra Pina
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.P.); (H.D.); (C.L.-C.); (A.M.M.-R.); (G.A.); (F.S.)
| | - Hala Dakhaoui
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.P.); (H.D.); (C.L.-C.); (A.M.M.-R.); (G.A.); (F.S.)
| | - Camila Leiva-Castro
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.P.); (H.D.); (C.L.-C.); (A.M.M.-R.); (G.A.); (F.S.)
| | - Ana M. Munera-Rodriguez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.P.); (H.D.); (C.L.-C.); (A.M.M.-R.); (G.A.); (F.S.)
| | - Marta Cejudo-Guillen
- Institute of Biomedicine of Seville (IBiS) HUVR/CSIC/University of Seville, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Department of Pharmacology, Pediatry, and Radiology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Beatriz Granados
- Distrito Sanitario de Atención Primaria Málaga, Sistema Sanitario Público de Andalucía, 29004 Malaga, Spain;
| | - Gonzalo Alba
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.P.); (H.D.); (C.L.-C.); (A.M.M.-R.); (G.A.); (F.S.)
| | - Consuelo Santa-Maria
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Francisco Sobrino
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.P.); (H.D.); (C.L.-C.); (A.M.M.-R.); (G.A.); (F.S.)
| | - Soledad Lopez-Enriquez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.P.); (H.D.); (C.L.-C.); (A.M.M.-R.); (G.A.); (F.S.)
- Institute of Biomedicine of Seville (IBiS) HUVR/CSIC/University of Seville, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| |
Collapse
|