1
|
The association of Chlamydia trachomatis and human papillomavirus co-infection with abnormal cervical cytology among women in south of Morocco. Microb Pathog 2023; 175:105971. [PMID: 36626946 DOI: 10.1016/j.micpath.2023.105971] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
PURPOSE Evidence indicates that human papillomavirus (HPV) and Chlamydia trachomatis (CT) co-infection increases the risk of developing cervical pathogenesis. This study aims to assess the prevalence and possible risk factors of CT and HPV/CT co-infection in women from South of Morocco with normal and abnormal cytology. METHODS Participants were recruited after signing an informed consent. Cervical samples were collected and analysed for the presence of HPV or CT. Detection of genomic DNA of both pathogens was performed by nested polymerase chain reaction. HPV genotypes defined by Sanger sequencing method. The association between demographic features and co-infection status was determined using a logistic regression model. A possible association between the presence of HPV and CT and cytological abnormality patterns was also investigated. RESULTS We recruited n = 438 women, aged between 18 and 86 years. Around 59% of participants underwent a pap smear test for the first-time. Genomic DNA of HPV, CT and HPV/CT co-infection was detected in 32.3%, 17.7%, and 13.4% of the total samples, respectively. The identified risk factors associated with CT infection were history of sexually transmitted infections and marital status. By contrast, only smoking was found to be associated with HPV/CT co-infection. Evidence showed that co-infection was associated with an increased risk of developing cervical abnormalities (OR 3.18, 95% CI 0.96-9.21; p = 0.040). CONCLUSION HPV and CT rates were high among the studied population. Evidence suggests that HPV/CT co-infected women were more susceptible to developing abnormal cytology.
Collapse
|
2
|
Patient-derived and mouse endo-ectocervical organoid generation, genetic manipulation and applications to model infection. Nat Protoc 2022; 17:1658-1690. [PMID: 35546639 DOI: 10.1038/s41596-022-00695-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
The cervix is the gateway to the upper female reproductive tract, connecting the uterus and vagina. It plays crucial roles in fertility and pregnancy maintenance from onset until delivery of the fetus, and prevents pathogen ascension. Compromised functionality of the cervix can lead to disorders, including infertility, chronic infections and cancers. The cervix comprises two regions: columnar epithelium-lined endocervix and stratified squamous epithelium-lined ectocervix, meeting at the squamocolumnar transition zone. So far, two-dimensional cultures of genetically unstable immortalized or cancer cell lines have been primarily used to study cervix biology in vitro. The lack of an in vitro system that reflects the cellular, physiological and functional properties of the two epithelial types has hampered the study of normal physiology, disease development and infection processes. Here we describe a protocol for cell isolation, establishment, long-term culture and expansion of adult epithelial stem cell-derived endocervical and ectocervical organoids from human biopsies and mouse tissue. These two organoid types require unique combinations of growth factors reminiscent of their in vivo tissue niches and different culturing procedures. They recapitulate native three-dimensional tissue architecture and patterning. The protocol to generate these organoids takes 4-6 weeks. We also describe procedures to introduce human papillomavirus oncogenes into the cervical stem cells by genetic manipulation to model cervical cancer and infection of the organoids with the highly prevalent sexually transmitted bacterial pathogen Chlamydia trachomatis. These organoid systems open new possibilities to study cervix biology, infections and cancer evolution, and have potential applications in personalized medicine, drug screening, genome editing and disease modeling.
Collapse
|
3
|
Prasad SK, Bhat S, Shashank D, C R A, R S, Rachtanapun P, Devegowda D, Santhekadur PK, Sommano SR. Bacteria-Mediated Oncogenesis and the Underlying Molecular Intricacies: What We Know So Far. Front Oncol 2022; 12:836004. [PMID: 35480118 PMCID: PMC9036991 DOI: 10.3389/fonc.2022.836004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/22/2022] [Indexed: 01/10/2023] Open
Abstract
Cancers are known to have multifactorial etiology. Certain bacteria and viruses are proven carcinogens. Lately, there has been in-depth research investigating carcinogenic capabilities of some bacteria. Reports indicate that chronic inflammation and harmful bacterial metabolites to be strong promoters of neoplasticity. Helicobacter pylori-induced gastric adenocarcinoma is the best illustration of the chronic inflammation paradigm of oncogenesis. Chronic inflammation, which produces excessive reactive oxygen species (ROS) is hypothesized to cause cancerous cell proliferation. Other possible bacteria-dependent mechanisms and virulence factors have also been suspected of playing a vital role in the bacteria-induced-cancer(s). Numerous attempts have been made to explore and establish the possible relationship between the two. With the growing concerns on anti-microbial resistance and over-dependence of mankind on antibiotics to treat bacterial infections, it must be deemed critical to understand and identify carcinogenic bacteria, to establish their role in causing cancer.
Collapse
Affiliation(s)
- Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Smitha Bhat
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Dharini Shashank
- Department of General Surgery, Adichunchanagiri Institute of Medical Sciences, Mandya, India
| | - Akshatha C R
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Sindhu R
- Department of Microbiology, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Devananda Devegowda
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Prasanna K Santhekadur
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Sarana Rose Sommano
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
He L, Wang L, Zhao L, Zhuang Z, Wang X, Huang H, Fu Q, Huang L, Qin Y, Wang P, Yan Q. Integration of RNA-seq and RNAi reveals the contribution of znuA gene to the pathogenicity of Pseudomonas plecoglossicida and to the immune response of Epinephelus coioides. JOURNAL OF FISH DISEASES 2021; 44:1831-1841. [PMID: 34339054 DOI: 10.1111/jfd.13502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Pseudomonas plecoglossicida is an important pathogen in aquaculture and causes serious economic losses. Our previous study indicated that znuA gene might play an important role in the pathogenicity of P. plecoglossicida. Five shRNAs were designed and synthesized to silence the znuA gene of P. plecoglossicida. Two of the five mutants of P. plecoglossicida exhibited significant reduction in the expression level of znuA mRNA with different efficiencies. The mutant with the highest silencing efficiency of 89.2% was chosen for further studies. Intrapleural injection of the znuA-RNAi strain at a dose of 105 cfu/fish did not cause the death of Epinephelus coioides, and no significant signs were observed at the spleen surface of infected E. coioides, while the counterpart E. coioides infected by the same dose of wild-type strain of P. plecoglossicida all died in 5 days post-infection (dpi). The expression of znuA gene of znuA-RNAi strain in E. coioides was always lower than that in wild-type strain of P. plecoglossicida. The pathogen load in the early stage of infection was higher than that in the later stage of infection. Although the infection of the znuA-RNAi strain of P. plecoglossicida could induce the production of antibodies in E. coioides, it failed to produce a good immune protection against the infection of wild-type strain of P. plecoglossicida. Compared with the transcriptome data of E. coioides infected by the wild-type strain of P. plecoglossicida, the transcriptome data of E. coioides infected by the znuA-RNAi strain of P. plecoglossicida have altered significantly. Among them, KEGG enrichment analysis showed that the focal adhesion pathway was significantly enriched and exhibited the largest number of 302 DEMs (differentially expressed mRNAs). These results showed that the immune response of E. coioides to P. plecoglossicida infection was significantly affected by the RNAi of znuA gene.
Collapse
Affiliation(s)
- Le He
- Fisheries College, Jimei University, Xiamen, China
| | - Luying Wang
- Fisheries College, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, China
| | - Zhixia Zhuang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Xiaoru Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Huabin Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Qi Fu
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, China
| | - Pan Wang
- Key Laboratory of Aquatic Functional Feed and Environmental Regulation of Fujian Province, Fujian Dabeinong Aquatic Sci. & Tech. Co., Ltd., Zhangzhou, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
5
|
Yang X, Siddique A, Khan AA, Wang Q, Malik A, Jan AT, Rudayni HA, Chaudhary AA, Khan S. Chlamydia Trachomatis Infection: Their potential implication in the Etiology of Cervical Cancer. J Cancer 2021; 12:4891-4900. [PMID: 34234859 PMCID: PMC8247366 DOI: 10.7150/jca.58582] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Pathogenic bacterial strains can alter the normal function of cells and induce different levels of inflammatory responses that are connected to the development of different diseases, such as tuberculosis, diarrhea, cancer etc. Chlamydia trachomatis (C. trachomatis) is an intracellular obligate gram-negative bacterium which has been connected with the cervical cancer etiology. Nevertheless, establishment of causality and the underlying mechanisms of carcinogenesis of cervical cancer associated with C. trachomatis remain unclear. Studies reveal the existence of C. trachomatis in cervical cancer patients. The DNA repair pathways including mismatch repair, nucleotide excision, and base excision are vital in the abatement of accumulated mutations that can direct to the process of carcinogenesis. C. trachomatis recruits DDR proteins away from sites of DNA damage and, in this way, impedes the DDR. Therefore, by disturbing host cell-cycle control, chromatin and DDR repair, C. trachomatis makes a situation favorable for malignant transformation. Inflammation originated due to infection directs over production of reactive oxygen species (ROS) and consequent oxidative DNA damage. This review may aid our current understanding of the etiology of cervical cancer in C. trachomatis-infected patients.
Collapse
Affiliation(s)
- Xingju Yang
- Department of Nursing, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 271199, China
| | - Anam Siddique
- Department of Biosciences, Shri Ram Group of College (SRGC), Muzaffarnagar 251001, India
| | - Abdul Arif Khan
- Division of Microbiology, Indian Council of Medical Research-National AIDS Research Institute, Pune, Maharashtra, India
| | - Qian Wang
- Department of Obstetrics and Gynecology, Jinan Fifth People's Hospital, Jinan, Shandong, 250022, China
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, P.O. Box 2457, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185236, India
| | - Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Shahanavaj Khan
- Department of Biosciences, Shri Ram Group of College (SRGC), Muzaffarnagar 251001, India
- Department of Pharmaceutics, College of Pharmacy, P.O. Box 2457, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Health Sciences, Novel Global Community Educational Foundation, Australia
| |
Collapse
|
6
|
Andersen SE, Bulman LM, Steiert B, Faris R, Weber MM. Got mutants? How advances in chlamydial genetics have furthered the study of effector proteins. Pathog Dis 2021; 79:ftaa078. [PMID: 33512479 PMCID: PMC7862739 DOI: 10.1093/femspd/ftaa078] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Chlamydia trachomatis is the leading cause of infectious blindness and a sexually transmitted infection. All chlamydiae are obligate intracellular bacteria that replicate within a membrane-bound vacuole termed the inclusion. From the confines of the inclusion, the bacteria must interact with many host organelles to acquire key nutrients necessary for replication, all while promoting host cell viability and subverting host defense mechanisms. To achieve these feats, C. trachomatis delivers an arsenal of virulence factors into the eukaryotic cell via a type 3 secretion system (T3SS) that facilitates invasion, manipulation of host vesicular trafficking, subversion of host defense mechanisms and promotes bacteria egress at the conclusion of the developmental cycle. A subset of these proteins intercalate into the inclusion and are thus referred to as inclusion membrane proteins. Whereas others, referred to as conventional T3SS effectors, are released into the host cell where they localize to various eukaryotic organelles or remain in the cytosol. Here, we discuss the functions of T3SS effector proteins with a focus on how advances in chlamydial genetics have facilitated the identification and molecular characterization of these important factors.
Collapse
Affiliation(s)
- Shelby E Andersen
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Lanci M Bulman
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Brianna Steiert
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Robert Faris
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Mary M Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
7
|
Dzakah EE, Huang L, Xue Y, Wei S, Wang X, Chen H, Shui J, Kyei F, Rashid F, Zheng H, Yang B, Tang S. Host cell response and distinct gene expression profiles at different stages of Chlamydia trachomatis infection reveals stage-specific biomarkers of infection. BMC Microbiol 2021; 21:3. [PMID: 33397284 PMCID: PMC7784309 DOI: 10.1186/s12866-020-02061-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/24/2020] [Indexed: 02/01/2023] Open
Abstract
Background Chlamydia trachomatis is the most common sexually transmitted infection and the bacterial agent of trachoma globally. C. trachomatis undergoes a biphasic developmental cycle involving an infectious elementary body and a replicative reticulate body. Little is currently known about the gene expression dynamics of host cell mRNAs, lncRNAs, and miRNAs at different stages of C. trachomatis development. Results Here, we performed RNA-seq and miR-seq on HeLa cells infected with C. trachomatis serovar E at 20 h post-infection (hpi) and 44 hpi with or without IFN-γ treatment. Our study identified and validated differentially expressed host cell mRNAs, lncRNAs, and miRNAs during infection. Host cells at 20 hpi showed the most differential upregulation of both coding and non-coding genes while at 44 hpi in the presence of IFN-γ resulted in a dramatic downregulation of a large proportion of host genes. Using RT-qPCR, we validated the top 5 upregulated mRNAs and miRNAs, which are specific for different stages of C. trachomatis development. One of the commonly expressed miRNAs at all three stages of C. trachomatis development, miR-193b-5p, showed significant expression in clinical serum samples of C. trachomatis-infected patients as compared to sera from healthy controls and HIV-1-infected patients. Furthermore, we observed significant upregulation of antigen processing and presentation, and T helper cell differentiation pathways at 20 hpi whereas T cell receptor, mTOR, and Rap1 pathways were modulated at 44 hpi. Treatment with IFN-γ at 44 hpi showed the upregulation of cytokine-cytokine receptor interaction, FoxO signaling, and Ras signaling pathways. Conclusions Our study documented transcriptional manipulation of the host cell genomes and the upregulation of stage-specific signaling pathways necessary for the survival of the pathogen and could serve as potential biomarkers in the diagnosis and management of the disease.
Collapse
Affiliation(s)
- Emmanuel Enoch Dzakah
- Dermatology Hospital of Southern Medical University, Guangzhou, China.,Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Liping Huang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yaohua Xue
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Shuai Wei
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiaolin Wang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hongliang Chen
- The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, China
| | - Jingwei Shui
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Foster Kyei
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Farooq Rashid
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Heping Zheng
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Bing Yang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Shixing Tang
- Dermatology Hospital of Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Hijacking and Use of Host Kinases by Chlamydiae. Pathogens 2020; 9:pathogens9121034. [PMID: 33321710 PMCID: PMC7763869 DOI: 10.3390/pathogens9121034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Chlamydia species are causative agents of sexually transmitted infections, blinding trachoma, and animal infections with zoonotic potential. Being an obligate intracellular pathogen, Chlamydia relies on the host cell for its survival and development, subverting various host cell processes throughout the infection cycle. A key subset of host proteins utilized by Chlamydia include an assortment of host kinase signaling networks which are vital for many chlamydial processes including entry, nutrient acquisition, and suppression of host cell apoptosis. In this review, we summarize the recent advancements in our understanding of host kinase subversion by Chlamydia.
Collapse
|
9
|
Xue Y, Chen W, Mai Z, Yu X, Wu Q, Wan C, Su X, Wu Y, Rong Z, Zheng H. Inhibition of the Extracellular Signal-Regulated Kinase/Ribosomal S6 Kinase Cascade Limits Chlamydia trachomatis Infection. J Invest Dermatol 2020; 141:852-862.e6. [PMID: 32918951 DOI: 10.1016/j.jid.2020.07.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/01/2020] [Accepted: 07/15/2020] [Indexed: 10/23/2022]
Abstract
Chlamydiatrachomatis is the cause of the most common bacterial sexually transmitted infection worldwide. Azithromycin is effective in treating chlamydial infection; however, resistance to this antibiotic is increasing, and it is important that new therapeutic strategies are developed. In this study, we demonstrated that inhibitors targeting each kinase in the extracellular signal-regulated kinase/ribosomal S6 kinase cascade significantly decreased the size and number of inclusions as well as the number of infectious progeny. The suppressive effects of the inhibitors were observed across the Chlamydia serotypes D, E, F, and L1 and across HeLa, McCoy, and Vero host cells. When combined with azithromycin, all the inhibitors exerted a synergistic suppressive effect on chlamydial infection. Knockdown experiments using small interfering RNA demonstrated that extracellular signal-regulated kinase 1/2 and ribosomal S6 kinase 1 were crucial for chlamydial infection. Moreover, BVD-523, a first-in-class extracellular signal-regulated kinase 1/2 inhibitor currently undergoing a phase II clinical trial, suppressed chlamydial infection both in cell culture and in a mouse model. These observations demonstrated not only that the extracellular signal-regulated kinase/ribosomal S6 kinase pathway plays a critical role in chlamydial infection but also that these kinases have potential as targets for host-directed therapy against C. trachomatis.
Collapse
Affiliation(s)
- Yaohua Xue
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wentao Chen
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zhida Mai
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xueying Yu
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Qian Wu
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Chengsong Wan
- Department of Microbiology, Southern Medical University, Guangzhou, China
| | - Xin Su
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yiquan Wu
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Research Center, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Heping Zheng
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Kehl A, Göser V, Reuter T, Liss V, Franke M, John C, Richter CP, Deiwick J, Hensel M. A trafficome-wide RNAi screen reveals deployment of early and late secretory host proteins and the entire late endo-/lysosomal vesicle fusion machinery by intracellular Salmonella. PLoS Pathog 2020; 16:e1008220. [PMID: 32658937 PMCID: PMC7377517 DOI: 10.1371/journal.ppat.1008220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 07/23/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022] Open
Abstract
The intracellular lifestyle of Salmonella enterica is characterized by the formation of a replication-permissive membrane-bound niche, the Salmonella-containing vacuole (SCV). As a further consequence of the massive remodeling of the host cell endosomal system, intracellular Salmonella establish a unique network of various Salmonella-induced tubules (SIT). The bacterial repertoire of effector proteins required for the establishment for one type of these SIT, the Salmonella-induced filaments (SIF), is rather well-defined. However, the corresponding host cell proteins are still poorly understood. To identify host factors required for the formation of SIF, we performed a sub-genomic RNAi screen. The analyses comprised high-resolution live cell imaging to score effects on SIF induction, dynamics and morphology. The hits of our functional RNAi screen comprise: i) The late endo-/lysosomal SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex, consisting of STX7, STX8, VTI1B, and VAMP7 or VAMP8, which is, in conjunction with RAB7 and the homotypic fusion and protein sorting (HOPS) tethering complex, a complete vesicle fusion machinery. ii) Novel interactions with the early secretory GTPases RAB1A and RAB1B, providing a potential link to coat protein complex I (COPI) vesicles and reinforcing recently identified ties to the endoplasmic reticulum. iii) New connections to the late secretory pathway and/or the recycling endosome via the GTPases RAB3A, RAB8A, and RAB8B and the SNAREs VAMP2, VAMP3, and VAMP4. iv) An unprecedented involvement of clathrin-coated structures. The resulting set of hits allowed us to characterize completely new host factor interactions, and to strengthen observations from several previous studies. The facultative intracellular pathogen Salmonella enterica serovar Typhimurium induces the reorganization of the endosomal system of mammalian host cells. This activity is dependent on translocated effector proteins of the pathogen. The host cell factors required for endosomal remodeling are only partially known. To identify such factors for the formation and dynamics of endosomal compartments in Salmonella-infected cells, we performed a live cell imaging-based RNAi screen to investigate the role of 496 mammalian proteins involved in cellular logistics. We identified that endosomal remodeling by intracellular Salmonella is dependent on host factors in the following functional classes: i) the late endo-/lysosomal SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex, ii) the early secretory pathway, represented by regulator GTPases RAB1A and RAB1B, iii) the late secretory pathway and/or recycling endosomes represented by GTPases RAB3A, RAB8A, RAB8B, and the SNAREs VAMP2, VAMP3, and VAMP4, and iv) clathrin-coated structures. The identification of these new host factors provides further evidence for the complex manipulation of host cell transport functions by intracellular Salmonella and should enable detailed follow-up studies on the mechanisms involved.
Collapse
Affiliation(s)
- Alexander Kehl
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
- Division of Biophysics, University of Osnabrück, Osnabrück, Germany
- * E-mail: (AK); (MH)
| | - Vera Göser
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Tatjana Reuter
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Viktoria Liss
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Maximilian Franke
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Christopher John
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | | | - Jörg Deiwick
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
- CellNanOs–Center for Cellular Nanoanalytics, Fachbereich Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany
- * E-mail: (AK); (MH)
| |
Collapse
|
11
|
Epidermal Growth Factor Receptor and Transforming Growth Factor β Signaling Pathways Cooperate To Mediate Chlamydia Pathogenesis. Infect Immun 2020; 88:IAI.00819-19. [PMID: 31964750 DOI: 10.1128/iai.00819-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Human genital Chlamydia infection is a major public health concern due to the serious reproductive system complications. Chlamydia binds several receptor tyrosine kinases (RTKs) on host cells, including the epidermal growth factor receptor (EGFR), and activates cellular signaling cascades for host invasion, cytoskeletal remodeling, optimal inclusion development, and induction of pathogenic epithelial-mesenchyme transition (EMT). Chlamydia also upregulates transforming growth factor beta (TGF-β) expression, whose signaling pathway synergizes with the EGFR cascade, but its role in infectivity, inclusions, and EMT induction is unknown. We hypothesized that the EGFR and TGF-β signaling pathways cooperate during chlamydial infection for optimal inclusion development and stable EMT induction. The results revealed that Chlamydia upregulated TGF-β expression as early as 6 h postinfection of epithelial cells and stimulated both the EGFR and TGF-β signaling pathways. Inhibition of either the EGFR or TGF-βR1 signaling substantially reduced inclusion development; however, the combined inhibition of both EGFR and TGF-βR1 signaling reduced inclusions by over 90% and prevented EMT induction. Importantly, EGFR inhibition suppressed TGF-β expression, and an inhibitory thrombospondin-1 (Tsp1)-based peptide inhibited chlamydia-induced EMT, revealing a major source of active TGF-β during infection. Finally, TGF-βR signaling inhibition suppressed the expression of transforming acidic coiled-coil protein-3 (TACC3), which stabilizes EGFR signaling, suggesting reciprocal regulation between TGF-β and EGFR signaling during chlamydial infection. Thus, RTK-mediated host invasion by chlamydia upregulated TGF-β expression and signaling, which cooperated with other cellular signaling cascades and cytoskeletal remodeling to support optimal inclusion development and EMT induction. This finding may provide new targets for chlamydial disease biomarkers and prevention.
Collapse
|
12
|
Zadora PK, Chumduri C, Imami K, Berger H, Mi Y, Selbach M, Meyer TF, Gurumurthy RK. Integrated Phosphoproteome and Transcriptome Analysis Reveals Chlamydia-Induced Epithelial-to-Mesenchymal Transition in Host Cells. Cell Rep 2020; 26:1286-1302.e8. [PMID: 30699355 DOI: 10.1016/j.celrep.2019.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 10/05/2018] [Accepted: 12/31/2018] [Indexed: 12/26/2022] Open
Abstract
Chlamydia trachomatis (Ctr) causes a range of infectious diseases and is epidemiologically associated with cervical and ovarian cancers. To obtain a panoramic view of Ctr-induced signaling, we performed global phosphoproteomic and transcriptomic analyses. We identified numerous Ctr phosphoproteins and Ctr-regulated host phosphoproteins. Bioinformatics analysis revealed that these proteins were predominantly related to transcription regulation, cellular growth, proliferation, and cytoskeleton organization. In silico kinase substrate motif analysis revealed that MAPK and CDK were the most overrepresented upstream kinases for upregulated phosphosites. Several of the regulated host phosphoproteins were transcription factors, including ETS1 and ERF, that are downstream targets of MAPK. Functional analysis of phosphoproteome and transcriptome data confirmed their involvement in epithelial-to-mesenchymal transition (EMT), a phenotype that was validated in infected cells, along with the essential role of ERK1/2, ETS1, and ERF for Ctr replication. Our data reveal the extent of Ctr-induced signaling and provide insights into its pro-carcinogenic potential.
Collapse
Affiliation(s)
- Piotr K Zadora
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Cindrilla Chumduri
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany; Department of Hepatology and Gastroenterology, Charité University Medicine, 13353 Berlin, Germany
| | - Koshi Imami
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Hilmar Berger
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Yang Mi
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Matthias Selbach
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany.
| | | |
Collapse
|
13
|
Saez D, Dushime R, Wu H, Ramos Cordova LB, Shukla K, Brown-Harding H, Furdui CM, Tsang AW. Sulforaphane promotes chlamydial infection by suppressing mitochondrial protein oxidation and activation of complement C3. Protein Sci 2020; 28:216-227. [PMID: 30367535 DOI: 10.1002/pro.3536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/30/2022]
Abstract
Sulforaphane (SFN), a phytochemical found in broccoli and other cruciferous vegetables, is a potent antioxidant and anti-inflammatory agent with reported effects in cancer chemoprevention and suppression of infection with intracellular pathogens. Here we report on the impact of SFN on infection with Chlamydia trachomatis (Ct), a common sexually transmitted pathogen responsible for 131 million new cases annually worldwide. Astoundingly, we find that SFN as well as broccoli sprouts extract (BSE) promote Ct infection of human host cells. Both the number and size of Ct inclusions were increased when host cells were pretreated with SFN or BSE. The initial investigations presented here point to both the antioxidant and thiol alkylating properties of SFN as regulators of Ct infection. SFN decreased mitochondrial protein sulfenylation and promoted Ct development, which were both reversed by treatment with mitochondria-targeted paraquat (MitoPQ). Inhibition of the complement component 3 (complement C3) by SFN was also identified as a mechanism by which SFN promotes Ct infections. Mass spectrometry analysis found alkylation of cysteine 1010 (Cys1010) in complement C3 by SFN. The studies reported here raise awareness of the Ct infection promoting activity of SFN, and also identify potential mechanisms underlying this activity.
Collapse
Affiliation(s)
- Daniel Saez
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, North Carolina
| | - Rosine Dushime
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, North Carolina
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, North Carolina
| | - Lourdes B Ramos Cordova
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, North Carolina
| | - Kirtikar Shukla
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, North Carolina
| | | | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, North Carolina
| | - Allen W Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, North Carolina
| |
Collapse
|
14
|
Affiliation(s)
- Sidhant Jain
- Department of Zoology, University of Delhi, North Campus, New Delhi, India
| | - Madhumita Sengupta
- Department of Zoology, University of Delhi, North Campus, New Delhi, India
| | - Pooja Jain
- Department of Obstetrics and Gynaecology, Bhagwati Hospital, New Delhi, India
| |
Collapse
|
15
|
Capmany A, Gambarte Tudela J, Alonso Bivou M, Damiani MT. Akt/AS160 Signaling Pathway Inhibition Impairs Infection by Decreasing Rab14-Controlled Sphingolipids Delivery to Chlamydial Inclusions. Front Microbiol 2019; 10:666. [PMID: 31001235 PMCID: PMC6456686 DOI: 10.3389/fmicb.2019.00666] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/18/2019] [Indexed: 12/26/2022] Open
Abstract
Chlamydia trachomatis, an obligate intracellular bacterium, intercepts different trafficking pathways of the host cell to acquire essential lipids for its survival and replication, particularly from the Golgi apparatus via a Rab14-mediated transport. Molecular mechanisms underlying how these bacteria manipulate intracellular transport are a matter of intense study. Here, we show that C. trachomatis utilizes Akt/AS160 signaling pathway to promote sphingolipids delivery to the chlamydial inclusion through Rab14-controlled vesicular transport. C. trachomatis provokes Akt phosphorylation along its entire developmental life cycle and recruits phosphorylated Akt (pAkt) to the inclusion membrane. As a consequence, Akt Substrate of 160 kDa (AS160), also known as TBC1D4, a GTPase Activating Protein (GAP) for Rab14, is phosphorylated and therefore inactivated. Phosphorylated AS160 (pAS160) loses its ability to promote GTP hydrolysis, favoring Rab14 binding to GTP. Akt inhibition by an allosteric isoform-specific Akt inhibitor (iAkt) prevents AS160 phosphorylation and reduces Rab14 recruitment to chlamydial inclusions. iAkt further impairs sphingolipids acquisition by C. trachomatis-inclusion and provokes lipid retention at the Golgi apparatus. Consequently, treatment with iAkt decreases chlamydial inclusion size, bacterial multiplication, and infectivity in a dose-dependent manner. Similar results were found in AS160-depleted cells. By electron microscopy, we observed that iAkt generates abnormal bacterial forms as those reported after sphingolipids deprivation or Rab14 silencing. Taken together, our findings indicate that targeting the Akt/AS160/Rab14 axis could constitute a novel strategy to limit chlamydial infections, mainly for those caused by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Anahí Capmany
- Laboratorio de Bioquímica e Inmunidad, Área de Química Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
| | - Julián Gambarte Tudela
- Laboratorio de Bioquímica e Inmunidad, Área de Química Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
| | - Mariano Alonso Bivou
- Laboratorio de Bioquímica e Inmunidad, Área de Química Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
| | - María T Damiani
- Laboratorio de Bioquímica e Inmunidad, Área de Química Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
| |
Collapse
|
16
|
Dickinson MS, Anderson LN, Webb-Robertson BJM, Hansen JR, Smith RD, Wright AT, Hybiske K. Proximity-dependent proteomics of the Chlamydia trachomatis inclusion membrane reveals functional interactions with endoplasmic reticulum exit sites. PLoS Pathog 2019; 15:e1007698. [PMID: 30943267 PMCID: PMC6464245 DOI: 10.1371/journal.ppat.1007698] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 04/15/2019] [Accepted: 03/12/2019] [Indexed: 11/18/2022] Open
Abstract
Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infection, responsible for millions of infections each year. Despite this high prevalence, the elucidation of the molecular mechanisms of Chlamydia pathogenesis has been difficult due to limitations in genetic tools and its intracellular developmental cycle. Within a host epithelial cell, chlamydiae replicate within a vacuole called the inclusion. Many Chlamydia-host interactions are thought to be mediated by the Inc family of type III secreted proteins that are anchored in the inclusion membrane, but their array of host targets are largely unknown. To investigate how the inclusion membrane proteome changes over the course of an infected cell, we have adapted the APEX2 system of proximity-dependent biotinylation. APEX2 is capable of specifically labeling proteins within a 20 nm radius in living cells. We transformed C. trachomatis to express the enzyme APEX2 fused to known inclusion membrane proteins, allowing biotinylation and purification of inclusion-associated proteins. Using quantitative mass spectrometry against APEX2 labeled samples, we identified over 400 proteins associated with the inclusion membrane at early, middle, and late stages of epithelial cell infection. This system was sensitive enough to detect inclusion interacting proteins early in the developmental cycle, at 8 hours post infection, a previously intractable time point. Mass spectrometry analysis revealed a novel, early association between C. trachomatis inclusions and endoplasmic reticulum exit sites (ERES), functional regions of the ER where COPII-coated vesicles originate. Pharmacological and genetic disruption of ERES function severely restricted early chlamydial growth and the development of infectious progeny. APEX2 is therefore a powerful in situ approach for identifying critical protein interactions on the membranes of pathogen-containing vacuoles. Furthermore, the data derived from proteomic mapping of Chlamydia inclusions has illuminated an important functional role for ERES in promoting chlamydial developmental growth.
Collapse
Affiliation(s)
- Mary S. Dickinson
- Department of Global Health, Graduate Program in Pathobiology, University of Washington, Seattle, WA, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, WA, United States of America
| | - Lindsey N. Anderson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | | | - Joshua R. Hansen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Aaron T. Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
- The Gene and Linda Voiland College of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, United States of America
| | - Kevin Hybiske
- Department of Global Health, Graduate Program in Pathobiology, University of Washington, Seattle, WA, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, WA, United States of America
| |
Collapse
|
17
|
Triboulet S, Subtil A. Make It a Sweet Home: Responses of Chlamydia trachomatis to the Challenges of an Intravacuolar Lifestyle. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0005-2019. [PMID: 30848236 PMCID: PMC11588157 DOI: 10.1128/microbiolspec.bai-0005-2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Indexed: 01/24/2023] Open
Abstract
Intravacuolar development has been adopted by several bacteria that grow inside a host cell. Remaining in a vacuole, as opposed to breaching the cytosol, protects the bacteria from some aspects of the cytosolic innate host defense and allows them to build an environment perfectly adapted to their needs. However, this raises new challenges: the host resources are separated from the bacteria by a lipid bilayer that is nonpermeable to most nutrients. In addition, the area of this lipid bilayer needs to expand to accommodate bacterial multiplication. This requires building material and energy that are not directly invested in bacterial growth. This article describes the strategies acquired by the obligate intracellular pathogen Chlamydia trachomatis to circumvent the difficulties raised by an intravacuolar lifestyle. We start with an overview of the origin and composition of the vacuolar membrane. Acquisition of host resources is largely, although not exclusively, mediated by interactions with membranous compartments of the eukaryotic cell, and we describe how the inclusion modifies the architecture of the cell and distribution of the neighboring compartments. The second part of this review describes the four mechanisms characterized so far by which the bacteria acquire resources from the host: (i) transport/diffusion across the vacuole membrane, (ii) fusion of this membrane with host compartments, (iii) direct transfer of lipids at membrane contact sites, and (iv) engulfment by the vacuole membrane of large cytoplasmic entities.
Collapse
Affiliation(s)
| | - Agathe Subtil
- Institut Pasteur, Cell Biology of Microbial Infection, 75015 Paris, France
| |
Collapse
|
18
|
CPn0572, the C. pneumoniae ortholog of TarP, reorganizes the actin cytoskeleton via a newly identified F-actin binding domain and recruitment of vinculin. PLoS One 2019; 14:e0210403. [PMID: 30629647 PMCID: PMC6328165 DOI: 10.1371/journal.pone.0210403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/21/2018] [Indexed: 11/19/2022] Open
Abstract
Chlamydia pneumoniae is one of the two major species of the Chlamydiaceae family that have a profound effect on human health. C. pneumoniae is linked to a number of severe acute and chronic diseases of the upper and lower respiratory tract including pneumonia, asthma, bronchitis and infection by the pathogen might play a role in lung cancer. Following adhesion, Chlamydiae secrete effector proteins into the host cytoplasm that modulate the actin cytoskeleton facilitating internalization and infection. Members of the conserved TarP protein family comprise such effector proteins that polymerize actin, and in the case of the C. trachomatis TarP protein, has been shown to play a critical role in pathogenesis. In a previous study, we demonstrated that, upon bacterial invasion, the C. pneumoniae TarP family member CPn0572 is secreted into the host cytoplasm and recruits and associates with actin via an actin-binding domain conserved in TarP proteins. We have now extended our analysis of CPn0572 and found that the CPn0572 actin binding and modulating capability is more complex. With the help of the fission yeast system, a second actin modulating domain was identified independent of the actin binding domain. Microscopic analysis of HEp-2 cells expressing different CPn0572 deletion variants mapped this domain to the C-terminal part of the protein as CPn0572536-755 binds F-actin in vitro and colocalizes with aberrantly thickened actin cables in vivo. Finally, microscopic and bioinformatic analysis revealed the existence of a vinculin binding sequence in CPn0572. Our findings contribute to the understanding of the function of the TarP family and underscore the existence of several actin binding domains and a vinculin binding site for host actin modulation.
Collapse
|
19
|
Park JS, Helble JD, Lazarus JE, Yang G, Blondel CJ, Doench JG, Starnbach MN, Waldor MK. A FACS-Based Genome-wide CRISPR Screen Reveals a Requirement for COPI in Chlamydia trachomatis Invasion. iScience 2018; 11:71-84. [PMID: 30590252 PMCID: PMC6308251 DOI: 10.1016/j.isci.2018.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/20/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
The invasion of Chlamydia trachomatis, an obligate intracellular bacterium, into epithelial cells is driven by a complex interplay of host and bacterial factors. To comprehensively define the host genes required for pathogen invasion, we undertook a fluorescence-activated cell sorting (FACS)-based CRISPR screen in human cells. A genome-wide loss-of-function library was infected with fluorescent C. trachomatis and then sorted to enrich for invasion-deficient mutants. The screen identified heparan sulfate, a known pathogen receptor, as well as coatomer complex I (COPI). We found that COPI, through a previously unappreciated role, promotes heparan sulfate cell surface presentation, thereby facilitating C. trachomatis attachment. The heparan sulfate defect does not fully account for the resistance of COPI mutants. COPI also promotes the activity of the pathogen's type III secretion system. Together, our findings establish the requirement for COPI in C. trachomatis invasion and the utility of FACS-based CRISPR screening for the elucidation of host factors required for pathogen invasion. FACS-based CRISPR screen to identify host factors required for C. trachomatis invasion Candidate genes comprise heparan sulfate biosynthesis, actin remodeling, and COPI COPI regulates heparan sulfate cell surface presentation and C. trachomatis attachment COPI is also required for efficient C. trachomatis T3SS translocation
Collapse
Affiliation(s)
- Joseph S Park
- Howard Hughes Medical Institute, Boston, MA 02215, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA; Boston University School of Medicine, Boston, MA 02120, USA
| | - Jennifer D Helble
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jacob E Lazarus
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Guanhua Yang
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA
| | - Carlos J Blondel
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael N Starnbach
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew K Waldor
- Howard Hughes Medical Institute, Boston, MA 02215, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
20
|
Mi Y, Gurumurthy RK, Zadora PK, Meyer TF, Chumduri C. Chlamydia trachomatis Inhibits Homologous Recombination Repair of DNA Breaks by Interfering with PP2A Signaling. mBio 2018; 9:e01465-18. [PMID: 30401777 PMCID: PMC6222135 DOI: 10.1128/mbio.01465-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/01/2018] [Indexed: 12/05/2022] Open
Abstract
Cervical and ovarian cancers exhibit characteristic mutational signatures that are reminiscent of mutational processes, including defective homologous recombination (HR) repair. How these mutational processes are initiated during carcinogenesis is largely unclear. Chlamydia trachomatis infections are epidemiologically associated with cervical and ovarian cancers. Previously, we showed that C. trachomatis induces DNA double-strand breaks (DSBs) but suppresses Ataxia-telangiectasia mutated (ATM) activation and cell cycle checkpoints. The mechanisms by which ATM regulation is modulated and its consequences for the repair pathway in C. trachomatis-infected cells remain unknown. Here, we found that Chlamydia bacteria interfere with the usual response of PP2A to DSBs. As a result, PP2A activity remains high, as the level of inhibitory phosphorylation at Y307 remains unchanged following C. trachomatis-induced DSBs. Protein-protein interaction analysis revealed that C. trachomatis facilitates persistent interactions of PP2A with ATM, thus suppressing ATM activation. This correlated with a remarkable lack of homologous recombination (HR) repair in C. trachomatis-infected cells. Chemical inhibition of PP2A activity in infected cells released ATM from PP2A, resulting in ATM phosphorylation. Activated ATM was then recruited to DSBs and initiated downstream signaling, including phosphorylation of MRE11 and NBS1 and checkpoint kinase 2 (Chk2)-mediated activation of the G2/M cell cycle checkpoint in C. trachomatis-infected cells. Further, PP2A inhibition led to the restoration of C. trachomatis-suppressed HR DNA repair function. Taking the data together, this study revealed that C. trachomatis modulates PP2A signaling to suppress ATM activation to prevent cell cycle arrest, thus contributing to a deficient high-fidelity HR pathway and a conducive environment for mutagenesis.IMPORTANCEChlamydia trachomatis induces DNA double-strand breaks in host cells but simultaneously inhibits proper DNA damage response and repair mechanisms. This may render host cells prone to loss of genetic integrity and transformation. Here we show that C. trachomatis prevents activation of the key DNA damage response mediator ATM by preventing the release from PP2A, leading to a complete absence of homologous recombination repair in host cells.
Collapse
Affiliation(s)
- Yang Mi
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Key Laboratory of H. pylori and Gastrointestinal Microecology of Henan Province, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | | | - Piotr K Zadora
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Cindrilla Chumduri
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Department of Hepatology and Gastroenterology, Charité University Medicine, Berlin, Germany
| |
Collapse
|
21
|
Husein A, Jamal A, Ahmed MZ, Arish M, Ali R, Tabrez S, Rasool F, Rub A. Leishmania donovani infection differentially regulates small G-proteins. J Cell Biochem 2018; 119:7844-7854. [PMID: 29943842 DOI: 10.1002/jcb.27186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/24/2018] [Indexed: 01/28/2023]
Abstract
Leishmania is a protozoan parasite that resides and replicates in macrophages and causes leishmaniasis. The parasite alters the signaling cascade in host macrophages and evades the host machinery. Small G-proteins are GTPases, grouped in 5 different families that play a crucial role in the regulation of cell proliferation, cell survival, apoptosis, intracellular trafficking, and transport. In particular, the Ras family of small G-proteins has been identified to play a significant role in the cellular functions mentioned before. Here, we studied the differential expression of the most important small G-proteins during Leishmania infection. We found major changes in the expression of different isoforms of Ras, mainly in N-Ras. We observed that Leishmania donovani infection led to enhanced N-Ras expression, whereas it inhibited K-Ras and H-Ras expression. Furthermore, an active N-Ras pull-down assay showed enhanced N-Ras activity. L donovani infection also increased extracellular signal-regulated kinase 1/2 phosphorylation and simultaneously decreased p38 phosphorylation. In contrast, pharmacological inhibition of Ras led to reduction in the phosphorylation of extracellular signal-regulated kinase 1/2 and enhanced the phosphorylation of p38 in Leishmania-infected cells, which could lead to increased interleukin-12 expression and decreased interleukin-10 expression. Indeed, farnesylthiosalicyclic acid (a Ras inhibitor), when used at the effective level in L donovani-infected macrophages, reduced amastigotes in the host macrophages. Thus, upregulated N-Ras expression during L donovani infection could be a novel immune evasion strategy of Leishmania and would be a potential target for antileishmanial immunotherapy.
Collapse
Affiliation(s)
- Atahar Husein
- Infection and Immunity Lab (Lab No. 414), Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Azfar Jamal
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Mohammad Zulfazal Ahmed
- Infection and Immunity Lab (Lab No. 414), Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Arish
- Infection and Immunity Lab (Lab No. 414), Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Rahat Ali
- Infection and Immunity Lab (Lab No. 414), Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Shams Tabrez
- Infection and Immunity Lab (Lab No. 414), Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Fayyaz Rasool
- Infection and Immunity Lab (Lab No. 414), Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Abdur Rub
- Infection and Immunity Lab (Lab No. 414), Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.,Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| |
Collapse
|
22
|
Karim S, Souho T, Benlemlih M, Bennani B. Cervical Cancer Induction Enhancement Potential of Chlamydia Trachomatis: A Systematic Review. Curr Microbiol 2018; 75:1667-1674. [PMID: 29356877 DOI: 10.1007/s00284-018-1439-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/16/2018] [Indexed: 01/15/2023]
Abstract
Human papillomavirus (HPV) persistent infection is the necessary but not sufficient cause of cervical cancer. Other co-factors are required to induce cell transformation that will evolve to malignant cervical cancer. These co-factors include physical elements, other sexually transmitted infections, and immune response. Chlamydia trachomatis the most common bacterial sexually transmitted infection is often asymptomatic but causes various syndromes such as cervicitis, endometritis, pelvic inflammatory disease, and infertility. It is established that this bacterium is involved in cell proliferation process and inhibit apoptosis. Furthermore, C. trachomatis may induce chronic inflammation, interfere with immune response by decreasing the number of antigen presenting cells, and reduce the cell-mediated immunity allowing the persistence of HPV. However, it is unclear whether this bacterium plays a particular role in cervical cancer induction. We therefore aimed at enlightening the actual knowledge about the relationship between C. trachomatis and cervical cancer or precursor lesions through a systematic literature review. We summarized and analyzed the epidemiological data on C. trachomatis and its co-infection with HPV and their association to cervical cancer.
Collapse
Affiliation(s)
- Safae Karim
- Laboratory of Microbiology and Molecular Biology, Faculty of Medicine and Pharmacy of Fez (FMPF), Sidi Mohammed Ben Abdellah University (USMBA), Fez, Morocco
- Laboratory of Biotechnologies, Faculty of Sciences Dhar El Mahraz, USMBA, Fez, Morocco
| | - Tiatou Souho
- Faculty of Science and Technology, University of Kara, Kara, Togo
| | - Mohamed Benlemlih
- Laboratory of Biotechnologies, Faculty of Sciences Dhar El Mahraz, USMBA, Fez, Morocco
| | - Bahia Bennani
- Laboratory of Microbiology and Molecular Biology, Faculty of Medicine and Pharmacy of Fez (FMPF), Sidi Mohammed Ben Abdellah University (USMBA), Fez, Morocco.
- Team of Microorganisms, Genomic and Oncogene Factors, Laboratory of Human Pathology, Biomedicine and Environmental, FMP, USMBA, Fez, Morocco.
| |
Collapse
|
23
|
Banhart S, Rose L, Aeberhard L, Koch-Edelmann S, Heuer D. Chlamydia trachomatis and its interaction with the cellular retromer. Int J Med Microbiol 2017; 308:197-205. [PMID: 29122514 DOI: 10.1016/j.ijmm.2017.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/16/2017] [Accepted: 10/24/2017] [Indexed: 11/26/2022] Open
Abstract
Chlamydia trachomatis is an important human pathogen. This obligate intracellular bacterium grows inside the eukaryotic cell in a membrane-bound compartment, the inclusion. Recent global approaches describe the interactions of C. trachomatis with its host cell and indicate the inclusion is an intracellular trafficking hub embedded into the cellular vesicular trafficking pathways recruiting subunits of the retromer protein complex of the host cell. Here we review these recent developments in deciphering Chlamydia-host cell interactions with emphasis on the role of the retromer complex.
Collapse
Affiliation(s)
- Sebastian Banhart
- Division "Sexually Transmitted Bacterial Infections" (FG 19), Robert Koch Institute, Berlin, Germany
| | - Laura Rose
- Division "Sexually Transmitted Bacterial Infections" (FG 19), Robert Koch Institute, Berlin, Germany
| | - Lukas Aeberhard
- Division "Sexually Transmitted Bacterial Infections" (FG 19), Robert Koch Institute, Berlin, Germany
| | - Sophia Koch-Edelmann
- Division "Sexually Transmitted Bacterial Infections" (FG 19), Robert Koch Institute, Berlin, Germany
| | - Dagmar Heuer
- Division "Sexually Transmitted Bacterial Infections" (FG 19), Robert Koch Institute, Berlin, Germany.
| |
Collapse
|
24
|
De Filippis A, Buommino E, Domenico MD, Feola A, Brunetti-Pierri R, Rizzo A. Chlamydia trachomatis induces an upregulation of molecular biomarkers podoplanin, Wilms' tumour gene 1, osteopontin and inflammatory cytokines in human mesothelial cells. MICROBIOLOGY-SGM 2017; 163:654-663. [PMID: 28535856 DOI: 10.1099/mic.0.000465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chlamydia trachomatis is the most prevalent infection of the genital tract in women worldwide. C. trachomatis has a tendency to cause persistent infection and induce a state of chronic inflammation, which has been reported to play a role in carcinogenesis. We report that persistent C. trachomatis infection increases the expression of inflammatory tumour cytokines and upregulates molecular biomarkers such as podoplanin, Wilms' tumour gene 1 and osteopontin in primary cultures of mesothelial cells (Mes1) and human mesothelioma cells (NCI). Infection experiments showed that Mes1 and NCI supported the growth of C. trachomatisin vitro, and at an m.o.i. of 4, the inclusion-forming units/cell showed many intracellular inclusion bodies after 3 days of infection. However, after 7 days of incubation, increased proliferative and invasive activity was also observed in Mes1 cells, which was more evident after 14 days of incubation. ELISA analysis revealed an increase in vascular endothelial growth factor, IL-6, IL-8, and TNF-α release in Mes1 cells infected for a longer period (14 days). Finally, real-time PCR analysis revealed a strong induction of podoplanin, Wilms' tumour gene 1 and osteopontin gene expression in infected Mes1 cells. The aim of the present study was to investigate the inflammatory response elicited by C. trachomatis persistent infection and the role played by inflammation in cell proliferation, secretion of proinflammatory cytokines and molecular biomarkers of cancer. The results of this study suggest that increased molecular biomarkers of cancer by persistent inflammation from C. trachomatis infection might support cellular transformation, thus increasing the risk of cancer.
Collapse
Affiliation(s)
- Anna De Filippis
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Faculty of Medicine and Surgery - Second University of Naples, Via Santa Maria di Costantinopoli, 16 - 80138 Naples, Italy
| | - Elisabetta Buommino
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Faculty of Medicine and Surgery - Second University of Naples, Via Santa Maria di Costantinopoli, 16 - 80138 Naples, Italy
| | - Marina Di Domenico
- Department of Biochemistry, Biophysics and General Pathology - Second University of Naples, Via Santa Maria di Costantinopoli, 16 - 80138 Naples, Italy
| | - Antonia Feola
- Department of Biochemistry, Biophysics and General Pathology - Second University of Naples, Via Santa Maria di Costantinopoli, 16 - 80138 Naples, Italy
| | - Raffaella Brunetti-Pierri
- Multidisciplinary Department of Medical-Surgical and Dental Specialties - Second University of Naples, Via Pansini, 5 - 80131 Naples, Italy
| | - Antonietta Rizzo
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Faculty of Medicine and Surgery - Second University of Naples, Via Santa Maria di Costantinopoli, 16 - 80138 Naples, Italy
| |
Collapse
|
25
|
|
26
|
Thwaites TR, Pedrosa AT, Peacock TP, Carabeo RA. Vinculin Interacts with the Chlamydia Effector TarP Via a Tripartite Vinculin Binding Domain to Mediate Actin Recruitment and Assembly at the Plasma Membrane. Front Cell Infect Microbiol 2015; 5:88. [PMID: 26649283 PMCID: PMC4663276 DOI: 10.3389/fcimb.2015.00088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022] Open
Abstract
The mammalian protein vinculin is often a target of bacterial pathogens to subvert locally host cell actin dynamics. In Chlamydia infection, vinculin has been implicated in RNA interference screens, but the molecular basis for vinculin requirement has not been characterized. In this report, we show that vinculin was involved in the actin recruitment and F-actin assembly at the plasma membrane to facilitate invasion. Vinculin was recruited to the plasma membrane via its interaction with a specific tripartite motif within TarP that resembles the vinculin-binding domain (VBD) found in the Shigella invasion factor IpaA. The TarP-mediated plasma membrane recruitment of vinculin resulted in the localized recruitment of actin. In vitro pulldown assays for protein-protein interaction and imaging-based evaluation of recruitment to the plasma membrane demonstrated the essential role of the vinculin-binding site 1 (VBS1), and the dispensability of VBS2 and VBS3. As further support for the functionality of VBD-vinculin interaction, VBD-mediated actin recruitment required vinculin. Interestingly, while both vinculin and the focal adhesion kinase (FAK) colocalized at the sites of adhesion, the recruitment of one was independent of the other; and the actin recruitment function of the VBD/vinculin signaling axis was independent of the LD/FAK pathway.
Collapse
Affiliation(s)
- Tristan R Thwaites
- Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK ; Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London London, UK
| | - Antonio T Pedrosa
- Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK ; Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London London, UK ; School of Molecular Biosciences, Washington State University Pullman, WA, USA
| | - Thomas P Peacock
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London London, UK
| | - Rey A Carabeo
- Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK ; Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London London, UK ; School of Molecular Biosciences, Washington State University Pullman, WA, USA
| |
Collapse
|
27
|
Patel AL, Chen X, Wood ST, Stuart ES, Arcaro KF, Molina DP, Petrovic S, Furdui CM, Tsang AW. Activation of epidermal growth factor receptor is required for Chlamydia trachomatis development. BMC Microbiol 2014; 14:277. [PMID: 25471819 PMCID: PMC4269859 DOI: 10.1186/s12866-014-0277-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023] Open
Abstract
Background Chlamydia trachomatis (C. trachomatis) is a clinically significant human pathogen and one of the leading causative agents of sexually transmitted diseases. As obligate intracellular bacteria, C. trachomatis has evolved strategies to redirect the host’s signaling and resources for its own survival and propagation. Despite the clinical notoriety of Chlamydia infections, the molecular interactions between C. trachomatis and its host cell proteins remain elusive. Results In this study, we focused on the involvement of the host cell epidermal growth factor receptor (EGFR) in C. trachomatis attachment and development. A combination of molecular approaches, pharmacological agents and cell lines were used to demonstrate distinct functional requirements of EGFR in C. trachomatis infection. We show that C. trachomatis increases the phosphorylation of EGFR and of its downstream effectors PLCγ1, Akt and STAT5. While both EGFR and platelet-derived growth factor receptor-β (PDGFRβ) are partially involved in bacterial attachment to the host cell surface, it is only the knockdown of EGFR and not PDGFRβ that affects the formation of C. trachomatis inclusions in the host cells. Inhibition of EGFR results in small immature inclusions, and prevents C. trachomatis-induced intracellular calcium mobilization and the assembly of the characteristic F-actin ring at the inclusion periphery. By using complementary approaches, we demonstrate that the coordinated regulation of both calcium mobilization and F-actin assembly by EGFR are necessary for maturation of chlamydial inclusion within the host cells. A particularly important finding of this study is the co-localization of EGFR with the F-actin at the periphery of C. trachomatis inclusion where it may function to nucleate the assembly of signaling protein complexes for cytoskeletal remodeling required for C. trachomatis development. Conclusion Cumulatively, the data reported here connect the function of EGFR to C. trachomatis attachment and development in the host cells, and this could lead to new venues for targeting C. trachomatis infections and associated diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0277-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Achchhe L Patel
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA.
| | - Xiaofei Chen
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA.
| | - Scott T Wood
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA.
| | - Elizabeth S Stuart
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Kathleen F Arcaro
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Doris P Molina
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA.
| | - Snezana Petrovic
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA.
| | - Cristina M Furdui
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA.
| | - Allen W Tsang
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
28
|
Thwaites T, Nogueira AT, Campeotto I, Silva AP, Grieshaber SS, Carabeo RA. The Chlamydia effector TarP mimics the mammalian leucine-aspartic acid motif of paxillin to subvert the focal adhesion kinase during invasion. J Biol Chem 2014; 289:30426-30442. [PMID: 25193659 PMCID: PMC4215226 DOI: 10.1074/jbc.m114.604876] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Host cell signal transduction pathways are often targets of bacterial pathogens, especially during the process of invasion when robust actin remodeling is required. We demonstrate that the host cell focal adhesion kinase (FAK) was necessary for the invasion by the obligate intracellular pathogen Chlamydia caviae. Bacterial adhesion triggered the transient recruitment of FAK to the plasma membrane to mediate a Cdc42- and Arp2/3-dependent actin assembly. FAK recruitment was via binding to a domain within the virulence factor TarP that mimicked the LD2 motif of the FAK binding partner paxillin. Importantly, bacterial two-hybrid and quantitative imaging assays revealed a similar level of interaction between paxillin-LD2 and TarP-LD. The conserved leucine residues within the L(D/E)XLLXXL motif were essential to the recruitment of FAK, Cdc42, p34Arc, and actin to the plasma membrane. In the absence of FAK, TarP-LD-mediated F-actin assembly was reduced, highlighting the functional relevance of this interaction. Together, the data indicate that a prokaryotic version of the paxillin LD2 domain targets the FAK signaling pathway, with TarP representing the first example of an LD-containing Type III virulence effector.
Collapse
Affiliation(s)
- Tristan Thwaites
- Centre for Molecular Microbiology and Infection, Imperial College, London SW7 2AZ, United Kingdom,; Bacteriology Section, Programme in Microbiology, Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom, and
| | - Ana T Nogueira
- Centre for Molecular Microbiology and Infection, Imperial College, London SW7 2AZ, United Kingdom,; Bacteriology Section, Programme in Microbiology, Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom, and
| | - Ivan Campeotto
- Centre for Molecular Microbiology and Infection, Imperial College, London SW7 2AZ, United Kingdom
| | - Ana P Silva
- Bacteriology Section, Programme in Microbiology, Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom, and
| | - Scott S Grieshaber
- Department of Oral Biology, University of Florida School of Dentistry, Gainesville, Florida 32610
| | - Rey A Carabeo
- Centre for Molecular Microbiology and Infection, Imperial College, London SW7 2AZ, United Kingdom,; Bacteriology Section, Programme in Microbiology, Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom, and.
| |
Collapse
|
29
|
Gurumurthy RK, Chumduri C, Karlas A, Kimmig S, Gonzalez E, Machuy N, Rudel T, Meyer TF. Dynamin-mediated lipid acquisition is essential for Chlamydia trachomatis development. Mol Microbiol 2014; 94:186-201. [PMID: 25116793 DOI: 10.1111/mmi.12751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2014] [Indexed: 11/28/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen responsible for a high burden of human disease. Here, a loss-of-function screen using a set of lentivirally transduced shRNAs identified 14 human host cell factors that modulate C. trachomatis infectivity. Notably, knockdown of dynamin, a host GTPase, decreased C. trachomatis infectivity. Dynamin functions in multiple cytoplasmic locations, including vesicle formation at the plasma membrane and the trans-Golgi network. However, its role in C. trachomatis infection remains unclear. Here we report that dynamin is essential for homotypic fusion of C. trachomatis inclusions but not for C. trachomatis internalization into the host cell. Further, dynamin activity is necessary for lipid transport into C. trachomatis inclusions and for normal re-differentiation from reticulate to elementary bodies. Fragmentation of the Golgi apparatus is proposed to be an important strategy used by C. trachomatis for efficient lipid acquisition and replication within the host. Here we show that a subset of C. trachomatis-infected cells displayed Golgi fragmentation, which was concurrent with increased mitotic accumulation. Golgi fragmentation was dispensable for dynamin-mediated lipid acquisition into C. trachomatis inclusions, irrespective of the cell cycle phase. Thus, our study reveals a critical role of dynamin in host-derived lipid acquisition for C. trachomatis development.
Collapse
|
30
|
Chlamydia trachomatis-induced alterations in the host cell proteome are required for intracellular growth. Cell Host Microbe 2014; 15:113-24. [PMID: 24439903 DOI: 10.1016/j.chom.2013.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/11/2013] [Accepted: 12/11/2013] [Indexed: 11/20/2022]
Abstract
Intracellular pathogens directly alter host cells in order to replicate and survive. While infection-induced changes in host transcription can be readily assessed, posttranscriptional alterations are more difficult to catalog. We applied the global protein stability (GPS) platform, which assesses protein stability based on relative changes in an adjoining fluorescent tag, to identify changes in the host proteome following infection with the obligate intracellular bacteria Chlamydia trachomatis. Our results indicate that C. trachomatis profoundly remodels the host proteome independently of changes in transcription. Additionally, C. trachomatis replication depends on a subset of altered proteins, such as Pin1 and Men1, that regulate the host transcription factor AP-1 controlling host inflammation, stress, and cell survival. Furthermore, AP-1-dependent transcription is activated during infection and required for efficient Chlamydia growth. In summary, this experimental approach revealed that C. trachomatis broadly alters host proteins and can be applied to examine host-pathogen interactions and develop host-based therapeutics.
Collapse
|
31
|
Pegoraro G, Eaton BP, Ulrich RL, Lane DJ, Ojeda JF, Bavari S, DeShazer D, Panchal RG. A high-content imaging assay for the quantification of the Burkholderia pseudomallei induced multinucleated giant cell (MNGC) phenotype in murine macrophages. BMC Microbiol 2014; 14:98. [PMID: 24750902 PMCID: PMC4077104 DOI: 10.1186/1471-2180-14-98] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/11/2014] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Burkholderia pseudomallei (Bp), a Gram-negative, motile, facultative intracellular bacterium is the causative agent of melioidosis in humans and animals. The Bp genome encodes a repertoire of virulence factors, including the cluster 3 type III secretion system (T3SS-3), the cluster 1 type VI secretion system (T6SS-1), and the intracellular motility protein BimA, that enable the pathogen to invade both phagocytic and non-phagocytic cells. A unique hallmark of Bp infection both in vitro and in vivo is its ability to induce cell-to-cell fusion of macrophages to form multinucleated giant cells (MNGCs), which to date are semi-quantitatively reported following visual inspection. RESULTS In this study we report the development of an automated high-content image acquisition and analysis assay to quantitate the Bp induced MNGC phenotype. Validation of the assay was performed using T6SS-1 (∆hcp1) and T3SS-3 (∆bsaZ) mutants of Bp that have been previously reported to exhibit defects in their ability to induce MNGCs. Finally, screening of a focused small molecule library identified several Histone Deacetylase (HDAC) inhibitors that inhibited Bp-induced MNGC formation of macrophages. CONCLUSIONS We have successfully developed an automated HCI assay to quantitate MNGCs induced by Bp in macrophages. This assay was then used to characterize the phenotype of the Bp mutants for their ability to induce MNGC formation and identify small molecules that interfere with this process. Successful application of chemical genetics and functional reverse genetics siRNA approaches in the MNGC assay will help gain a better understanding of the molecular targets and cellular mechanisms responsible for the MNGC phenotype induced by Bp, by other bacteria such as Mycobacterium tuberculosis, or by exogenously added cytokines.
Collapse
Affiliation(s)
- Gianluca Pegoraro
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA
- Perkin Elmer, Waltham, MA 02451, USA
- Present Address: Center for Cancer Research, National Cancer Institute/NIH, Bethesda, MD 20892, USA
| | - Brett P Eaton
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA
| | - Ricky L Ulrich
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA
| | - Douglas J Lane
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA
| | - Jenifer F Ojeda
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA
| | - Sina Bavari
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA
| | - David DeShazer
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA
| | - Rekha G Panchal
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA
| |
Collapse
|
32
|
A CREB3-ARF4 signalling pathway mediates the response to Golgi stress and susceptibility to pathogens. Nat Cell Biol 2013; 15:1473-85. [PMID: 24185178 DOI: 10.1038/ncb2865] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 09/20/2013] [Indexed: 02/07/2023]
Abstract
Treatment of cells with brefeldin A (BFA) blocks secretory vesicle transport and causes a collapse of the Golgi apparatus. To gain more insight into the cellular mechanisms mediating BFA toxicity, we conducted a genome-wide haploid genetic screen that led to the identification of the small G protein ADP-ribosylation factor 4 (ARF4). ARF4 depletion preserves viability, Golgi integrity and cargo trafficking in the presence of BFA, and these effects depend on the guanine nucleotide exchange factor GBF1 and other ARF isoforms including ARF1 and ARF5. ARF4 knockdown cells show increased resistance to several human pathogens including Chlamydia trachomatis and Shigella flexneri. Furthermore, ARF4 expression is induced when cells are exposed to several Golgi-disturbing agents and requires the CREB3 (also known as Luman or LZIP) transcription factor, whose downregulation mimics ARF4 loss. Thus, we have uncovered a CREB3-ARF4 signalling cascade that may be part of a Golgi stress response set in motion by stimuli compromising Golgi capacity.
Collapse
|
33
|
Chumduri C, Gurumurthy R, Zadora P, Mi Y, Meyer T. Chlamydia Infection Promotes Host DNA Damage and Proliferation but Impairs the DNA Damage Response. Cell Host Microbe 2013; 13:746-58. [DOI: 10.1016/j.chom.2013.05.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 02/04/2013] [Accepted: 05/03/2013] [Indexed: 02/08/2023]
|
34
|
Bastidas RJ, Elwell CA, Engel JN, Valdivia RH. Chlamydial intracellular survival strategies. Cold Spring Harb Perspect Med 2013; 3:a010256. [PMID: 23637308 DOI: 10.1101/cshperspect.a010256] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen and the causative agent of blinding trachoma. Although Chlamydia is protected from humoral immune responses by residing within remodeled intracellular vacuoles, it still must contend with multilayered intracellular innate immune defenses deployed by its host while scavenging for nutrients. Here we provide an overview of Chlamydia biology and highlight recent findings detailing how this vacuole-bound pathogen manipulates host-cellular functions to invade host cells and maintain a replicative niche.
Collapse
Affiliation(s)
- Robert J Bastidas
- Department of Molecular Genetics and Microbiology, Center for Microbial Pathogenesis, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
35
|
Kota KP, Eaton B, Lane D, Ulrich M, Ulrich R, Peyser BD, Robinson CG, Jaissle JG, Pegoraro G, Bavari S, Panchal RG. Integrating high-content imaging and chemical genetics to probe host cellular pathways critical for Yersinia pestis infection. PLoS One 2013; 8:e55167. [PMID: 23383093 PMCID: PMC3559335 DOI: 10.1371/journal.pone.0055167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 12/19/2012] [Indexed: 01/14/2023] Open
Abstract
The molecular machinery that regulates the entry and survival of Yersinia pestis in host macrophages is poorly understood. Here, we report the development of automated high-content imaging assays to quantitate the internalization of virulent Y. pestis CO92 by macrophages and the subsequent activation of host NF-κB. Implementation of these assays in a focused chemical screen identified kinase inhibitors that inhibited both of these processes. Rac-2-ethoxy-3 octadecanamido-1-propylphosphocholine (a protein Kinase C inhibitor), wortmannin (a PI3K inhibitor), and parthenolide (an IκB kinase inhibitor), inhibited pathogen-induced NF-κB activation and reduced bacterial entry and survival within macrophages. Parthenolide inhibited NF-κB activation in response to stimulation with Pam3CSK4 (a TLR2 agonist), E. coli LPS (a TLR4 agonist) or Y. pestis infection, while the PI3K and PKC inhibitors were selective only for Y. pestis infection. Together, our results suggest that phagocytosis is the major stimulus for NF-κB activation in response to Y. pestis infection, and that Y. pestis entry into macrophages may involve the participation of protein kinases such as PI3K and PKC. More importantly, the automated image-based screening platform described here can be applied to the study of other bacteria in general and, in combination with chemical genetic screening, can be used to identify host cell functions facilitating the identification of novel antibacterial therapeutics.
Collapse
Affiliation(s)
- Krishna P. Kota
- Perkin Elmer, Waltham, Massachusetts, United States of America
| | - Brett Eaton
- Department of Target Discovery and Cellular Microbiology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Douglas Lane
- Target Structure Based Drug Discovery Group, SAIC-Frederick, NCI-Frederick, Frederick, Maryland, United States of America
| | - Melanie Ulrich
- Department of Target Discovery and Cellular Microbiology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Ricky Ulrich
- Department of Target Discovery and Cellular Microbiology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Brian D. Peyser
- Target Structure Based Drug Discovery Group, SAIC-Frederick, NCI-Frederick, Frederick, Maryland, United States of America
| | - Camenzind G. Robinson
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - James G. Jaissle
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | | | - Sina Bavari
- Department of Target Discovery and Cellular Microbiology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Rekha G. Panchal
- Department of Target Discovery and Cellular Microbiology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
siRNA Genome Screening Approaches to Therapeutic Drug Repositioning. Pharmaceuticals (Basel) 2013; 6:124-60. [PMID: 24275945 PMCID: PMC3816683 DOI: 10.3390/ph6020124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/10/2013] [Accepted: 01/22/2013] [Indexed: 01/21/2023] Open
Abstract
Bridging high-throughput screening (HTS) with RNA interference (RNAi) has allowed for rapid discovery of the molecular basis of many diseases, and identification of potential pathways for developing safe and effective treatments. These features have identified new host gene targets for existing drugs paving the pathway for therapeutic drug repositioning. Using RNAi to discover and help validate new drug targets has also provided a means to filter and prioritize promising therapeutics. This review summarizes these approaches across a spectrum of methods and targets in the host response to pathogens. Particular attention is given to the utility of drug repurposing utilizing the promiscuous nature of some drugs that affect multiple molecules or pathways, and how these biological pathways can be targeted to regulate disease outcome.
Collapse
|
37
|
Attachment of Chlamydia trachomatis L2 to host cells requires sulfation. Proc Natl Acad Sci U S A 2012; 109:10059-64. [PMID: 22675117 DOI: 10.1073/pnas.1120244109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chlamydia trachomatis is a pathogen responsible for a prevalent sexually transmitted disease. It is also the most common cause of infectious blindness in the developing world. We performed a loss-of-function genetic screen in human haploid cells to identify host factors important in C. trachomatis L2 infection. We identified and confirmed B3GAT3, B4GALT7, and SLC35B2, which encode glucuronosyltransferase I, galactosyltransferase I, and the 3'-phosphoadenosine 5'-phosphosulfate transporter 1, respectively, as important in facilitating Chlamydia infection. Knockout of any of these three genes inhibits Chlamydia attachment. In complementation studies, we found that the introduction of functional copies of these three genes into the null clones restored full susceptibility to Chlamydia infection. The degree of attachment of Chlamydia strongly correlates with the level of sulfation of the host cell, not simply with the amount of heparan sulfate. Thus, other, as-yet unidentified sulfated macromolecules must contribute to infection. These results demonstrate the utility of screens in haploid cells to study interactions of human cells with bacteria. Furthermore, the human null clones generated can be used to investigate the role of heparan sulfate and sulfation in other settings not limited to infectious disease.
Collapse
|
38
|
Kim JH, Jiang S, Elwell CA, Engel JN. Chlamydia trachomatis co-opts the FGF2 signaling pathway to enhance infection. PLoS Pathog 2011; 7:e1002285. [PMID: 21998584 PMCID: PMC3188521 DOI: 10.1371/journal.ppat.1002285] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 08/10/2011] [Indexed: 12/12/2022] Open
Abstract
The molecular details of Chlamydia trachomatis binding, entry, and spread are incompletely understood, but heparan sulfate proteoglycans (HSPGs) play a role in the initial binding steps. As cell surface HSPGs facilitate the interactions of many growth factors with their receptors, we investigated the role of HSPG-dependent growth factors in C. trachomatis infection. Here, we report a novel finding that Fibroblast Growth Factor 2 (FGF2) is necessary and sufficient to enhance C. trachomatis binding to host cells in an HSPG-dependent manner. FGF2 binds directly to elementary bodies (EBs) where it may function as a bridging molecule to facilitate interactions of EBs with the FGF receptor (FGFR) on the cell surface. Upon EB binding, FGFR is activated locally and contributes to bacterial uptake into non-phagocytic cells. We further show that C. trachomatis infection stimulates fgf2 transcription and enhances production and release of FGF2 through a pathway that requires bacterial protein synthesis and activation of the Erk1/2 signaling pathway but that is independent of FGFR activation. Intracellular replication of the bacteria results in host proteosome-mediated degradation of the high molecular weight (HMW) isoforms of FGF2 and increased amounts of the low molecular weight (LMW) isoforms, which are released upon host cell death. Finally, we demonstrate the in vivo relevance of these findings by showing that conditioned medium from C. trachomatis infected cells is enriched for LMW FGF2, accounting for its ability to enhance C. trachomatis infectivity in additional rounds of infection. Together, these results demonstrate that C. trachomatis utilizes multiple mechanisms to co-opt the host cell FGF2 pathway to enhance bacterial infection and spread. Chlamydia trachomatis is an obligate intracellular bacterium that is an important cause of human disease, including sexually transmitted diseases and acquired blindness in developing countries. The inability to carry out conventional genetic manipulations limits our understanding of the mechanisms of C. trachomatis binding, entry, and spread. Previous studies have shown that heparan sulfate proteoglycans (HSPGs) play a role in early binding events. As cell surface HSPGs facilitate the interactions of many growth factors with their receptors, we investigated whether HSPG-associated growth factors affect C. trachomatis binding or entry. Here, we report the novel finding that Fibroblast Growth Factor 2 (FGF2), a ubiquitously expressed growth factor, enhances C. trachomatis binding to host cells in an HSPG-dependent manner. Furthermore, C. trachomatis infection stimulates production and release of FGF2 through distinct signaling pathways. Released FGF2 is sufficient to enhance the subsequent rounds of infection. Together, these results demonstrate that C. trachomatis utilizes multiple mechanisms to co-opt the host cell FGF2 pathway that sets up a positive feedback loop to enhance bacterial infection and spread.
Collapse
Affiliation(s)
- Jung Hwa Kim
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Microbial Pathogenesis and Host Defense Program, University of California San Francisco, San Francisco, California, United States of America
| | - Shaobo Jiang
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Microbial Pathogenesis and Host Defense Program, University of California San Francisco, San Francisco, California, United States of America
| | - Cherilyn A. Elwell
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Microbial Pathogenesis and Host Defense Program, University of California San Francisco, San Francisco, California, United States of America
| | - Joanne N. Engel
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Microbial Pathogenesis and Host Defense Program, University of California San Francisco, San Francisco, California, United States of America
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
Sharma M, Machuy N, Böhme L, Karunakaran K, Mäurer AP, Meyer TF, Rudel T. HIF-1α is involved in mediating apoptosis resistance to Chlamydia trachomatis-infected cells. Cell Microbiol 2011; 13:1573-85. [PMID: 21824245 DOI: 10.1111/j.1462-5822.2011.01642.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chlamydiae are obligate intracellular Gram-negative bacteria that cause widespread diseases in humans. Due to the intimate association between bacterium and host, Chlamydia evolved various strategies to protect their host cell against death-inducing stimuli, allowing the bacterium to complete its development cycle. An RNA interference (RNAi)-based screen was used to identify host cell factors required for apoptosis resistance of human epithelial cells infected with Chlamydia trachomatis serovar L2. Among the 32 validated hits, the anti-apoptotic Bcl-2 family member Mcl-1 was identified as a target. Protein network analyses implicated the transcription factor hypoxia-induced factor 1 alpha (HIF-1α) to be central to the regulation of many of the identified targets. Further mechanistic investigations showed that HIF-1α was stabilized within the host cell cytoplasm during early infection time points, followed by its translocation to the nucleus and eventual transcriptional activation of Mcl-1. siRNA-mediated depletion of HIF-1α led to a drastic decrease in Mcl-1, rendering the cell sensitive to apoptosis induction. Taken together, our findings identify HIF-1α as responsible for upregulation of Mcl-1 and the maintenance of apoptosis resistance during Chlamydia infection.
Collapse
Affiliation(s)
- Manu Sharma
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Miller M, Dreisbach A, Otto A, Becher D, Bernhardt J, Hecker M, Peppelenbosch MP, van Dijl JM. Mapping of interactions between human macrophages and Staphylococcus aureus reveals an involvement of MAP kinase signaling in the host defense. J Proteome Res 2011; 10:4018-32. [PMID: 21736355 DOI: 10.1021/pr200224x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Staphylococcus aureus is a dangerous opportunistic human pathogen that causes serious invasive diseases when it reaches the bloodstream. Recent studies have shown that S. aureus is highly resistant to killing by professional phagocytes and that such cells even provide a favorable environment for intracellular survival of S. aureus. Importantly, the reciprocal interactions between phagocytes and S. aureus have remained largely elusive. Here we have employed kinase profiling to define the nature and time resolution of the human THP-1 macrophage response toward S. aureus and proteomics to identify the response of S. aureus toward macrophages. The results of these studies reveal major macrophage signaling pathways triggered by S. aureus and proteomic signatures of the responses of S. aureus to macrophages. We also identify human proteins bound to S. aureus that have potential roles in bacterial killing and internalization. Most noticeably, our observations challenge the classical concept that macrophage responses are mainly mediated through Toll-like receptor 2 and NF-κB signaling and highlight the important role of the stress-activated MAP kinase signaling in orchestrating the host defense.
Collapse
Affiliation(s)
- Malgorzata Miller
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen , Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Recent advances in Chlamydia subversion of host cytoskeletal and membrane trafficking pathways. Microbes Infect 2011; 13:527-35. [PMID: 21334451 DOI: 10.1016/j.micinf.2011.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 01/31/2011] [Accepted: 02/02/2011] [Indexed: 11/24/2022]
Abstract
Chlamydia species are obligate intracellular bacteria that cause sexually transmitted disease, ocular infections and atypical pneumonia. This review highlights recent advances describing the mechanisms by which Chlamydia subvert host cytoskeleton and membrane trafficking pathways to create a replication competent niche.
Collapse
|
42
|
Mehlitz A, Banhart S, Mäurer AP, Kaushansky A, Gordus AG, Zielecki J, MacBeath G, Meyer TF. Tarp regulates early Chlamydia-induced host cell survival through interactions with the human adaptor protein SHC1. J Cell Biol 2010; 190:143-57. [PMID: 20624904 PMCID: PMC2911661 DOI: 10.1083/jcb.200909095] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 06/14/2010] [Indexed: 12/28/2022] Open
Abstract
Many bacterial pathogens translocate effector proteins into host cells to manipulate host cell functions. Here, we used a protein microarray comprising virtually all human SRC homology 2 (SH2) and phosphotyrosine binding domains to comprehensively and quantitatively assess interactions between host cell proteins and the early phase Chlamydia trachomatis effector protein translocated actin-recruiting phosphoprotein (Tarp), which is rapidly tyrosine phosphorylated upon host cell entry. We discovered numerous novel interactions between human SH2 domains and phosphopeptides derived from Tarp. The adaptor protein SHC1 was among Tarp's strongest interaction partners. Transcriptome analysis of SHC1-dependent gene regulation during infection indicated that SHC1 regulates apoptosis- and growth-related genes. SHC1 knockdown sensitized infected host cells to tumor necrosis factor-induced apoptosis. Collectively, our findings reveal a critical role for SHC1 in early C. trachomatis-induced cell survival and suggest that Tarp functions as a multivalent phosphorylation-dependent signaling hub that is important during the early phase of chlamydial infection.
Collapse
Affiliation(s)
- Adrian Mehlitz
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
- Department of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Sebastian Banhart
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - André P. Mäurer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Alexis Kaushansky
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Andrew G. Gordus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Julia Zielecki
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Gavin MacBeath
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Thomas F. Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| |
Collapse
|
43
|
Vignola MJ, Kashatus DF, Taylor GA, Counter CM, Valdivia RH. cPLA2 regulates the expression of type I interferons and intracellular immunity to Chlamydia trachomatis. J Biol Chem 2010; 285:21625-35. [PMID: 20452986 DOI: 10.1074/jbc.m110.103010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Infection with the obligate bacterial intracellular pathogen Chlamydia trachomatis leads to the sustained activation of the small GTPase RAS and many of its downstream signaling components. In particular, the mitogen-activated protein kinase ERK and the calcium-dependent phospholipase cPLA(2) are activated and are important for the onset of inflammatory responses. In this study we tested if activation of ERK and cPLA(2) occurred as a result of RAS signaling during infection and determined the relative contribution of these signaling components to chlamydial replication and survival. We provide genetic and pharmacological evidence that during infection RAS, ERK, and, to a lesser extent, cPLA(2) activation are uncoupled, suggesting that Chlamydia activates individual components of this signaling pathway in a non-canonical manner. In human cell lines, inhibition of ERK or cPLA(2) signaling did not adversely impact C. trachomatis replication. In contrast, in murine cells, inhibition of ERK and cPLA(2) played a significant protective role against C. trachomatis. We determined that cPLA(2)-deficient murine cells are permissive for C. trachomatis replication because of their impaired expression of beta interferon and the induction of immunity-related GTPases (IRG) important for the containment of intracellular pathogens. Furthermore, the MAPK p38 was primarily responsible for cPLA(2) activation in Chlamydia-infected cells and IRG expression. Overall, these findings define a previously unrecognized role for cPLA(2) in the induction of cell autonomous cellular immunity to Chlamydia and highlight the many non-canonical signaling pathways engaged during infection.
Collapse
Affiliation(s)
- Mark J Vignola
- Departments of Molecular Genetics and Microbiology, Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|