1
|
Dhaka N, Misra S, Sahoo S, Mukherjee SP. Biophysical characterization of RelA-p52 NF-κB dimer-A link between the canonical and the non-canonical NF-κB pathway. Protein Sci 2024; 33:e5184. [PMID: 39412374 PMCID: PMC11481211 DOI: 10.1002/pro.5184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
The NF-κB family consists of the key transcription factors of the NF-κB signaling pathway, well known for its role in innate immune response, organogenesis, and a variety of cellular processes. The five NF-κB subunits-RelA, RelB, c-Rel, p50, and p52-are functional dimers, each of which share a conserved DNA binding domain which contains the dimerization domain (DD) as well. The NF-κB subunits can form 15 potential dimers among themselves of which, RelA-p50 is extensively studied and has largely become synonymous with NF-κB for transcription activation. While various reports have highlighted the importance of NF-κB subunit specificity in the transcription regulation of certain target genes, the dynamic nature of the NF-κB dimer composition is not well understood. In this study, we biophysically characterized six combinatorial dimers from three NF-κB subunits: RelA, p50, and p52, using NMR spectroscopy and differential scanning calorimetry. We show that the dimer composition is dynamic and can readily undergo exchange although at varied rates. Among the six dimers formed, RelA-p52 is found to be the most stable dimer with RelA-RelA being the least. Our results provide a plausible explanation as to why the RelA-p52 heterodimer is active during the later stages of the NF-κB activation and serve as a link between the canonical and non-canonical NF-κB pathway.
Collapse
Affiliation(s)
- Nitin Dhaka
- Department of Biosciences and BioengineeringIndian Institute of Technology RoorkeeRoorkeeUttarakhandIndia
| | - Subhranil Misra
- Department of Chemical SciencesIndian Institute of Science Education and Research BerhampurBerhampurOdishaIndia
| | - Sunirmala Sahoo
- Department of Chemical SciencesIndian Institute of Science Education and Research BerhampurBerhampurOdishaIndia
| | - Sulakshana P. Mukherjee
- Department of Chemical SciencesIndian Institute of Science Education and Research BerhampurBerhampurOdishaIndia
| |
Collapse
|
2
|
Lin S, Shu Y, Shen R, Zhou Y, Pan H, He L, Fang F, Zhu X, Wang X, Wang Y, Xu W, Ding J. The regulation of NFKB1 on CD200R1 expression and their potential roles in Parkinson's disease. J Neuroinflammation 2024; 21:229. [PMID: 39294682 PMCID: PMC11409543 DOI: 10.1186/s12974-024-03231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Overactivated microglia are a key contributor to Parkinson's disease (PD) by inducing neuroinflammation. CD200R1, a membrane glycoprotein mainly found on microglia, is crucial for maintaining quiescence with its dysregulation linked to microglia's abnormal activation. We and other groups have reported a decline in CD200R1 levels in several neurological disorders including PD. However, the mechanism regulating CD200R1 expression and the specific reasons for its reduction in PD remain largely unexplored. Given the pivotal role of transcription factors in gene expression, this study aimed to elucidate the transcriptional regulation of CD200R1 and its implications in PD. METHODS The CD200R1 promoter core region was identified via luciferase assays. Potential transcription factors were predicted using the UCSC ChIP-seq database and JASPAR. NFKB1 binding to the CD200R1 core promoter was substantiated through electrophoretic mobility shift and chromatin immunoprecipitation assays. Knocking-down or overexpressing NFKB1 validated its regulatory effect on CD200R1. Correlation between decreased CD200R1 and deficient NFKB1 was studied using Genotype-Tissue Expression database. The clinical samples of the peripheral blood mononuclear cells were acquired from 44 PD patients (mean age 64.13 ± 9.78, 43.2% male, median Hoehn-Yahr stage 1.77) and 45 controls (mean age 64.70 ± 9.41, 52.1% male). NFKB1 knockout mice were utilized to study the impact of NFKB1 on CD200R1 expression and to assess their roles in PD pathophysiology. RESULTS The study identified the CD200R1 core promoter region, located 482 to 146 bp upstream of its translation initiation site, was directly regulated by NFKB1. Significant correlation between NFKB1 and CD200R1 expression was observed in human PMBCs. Both NFKB1 and CD200R1 were significantly decreased in PD patient samples. Furthermore, NFKB1-/- mice exhibited exacerbated microglia activation and dopaminergic neuron loss after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. CONCLUSION Our study identified that NFKB1 served as a direct regulator of CD200R1. Reduced NFKB1 played a critical role in CD200R1 dysregulation and subsequent microglia overactivation in PD. These findings provide evidence that targeting the NFKB1-CD200R1 axis would be a novel therapeutic strategy for PD.
Collapse
Affiliation(s)
- Suzhen Lin
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yimei Shu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruinan Shen
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yifan Zhou
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Pan
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lu He
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fang Fang
- Department of Aging, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xue Zhu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinrui Wang
- Maternity and child care centers, Fuzhou, Fujian, China
| | - Ying Wang
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Xu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianqing Ding
- Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Shanghai, 200135, China.
| |
Collapse
|
3
|
Bosteels V, Janssens S. Striking a balance: new perspectives on homeostatic dendritic cell maturation. Nat Rev Immunol 2024:10.1038/s41577-024-01079-5. [PMID: 39289483 DOI: 10.1038/s41577-024-01079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/19/2024]
Abstract
Dendritic cells (DCs) are crucial gatekeepers of the balance between immunity and tolerance. They exist in two functional states, immature or mature, that refer to an information-sensing versus an information-transmitting state, respectively. Historically, the term DC maturation was used to describe the acquisition of immunostimulatory capacity by DCs following their triggering by pathogens or tissue damage signals. As such, immature DCs were proposed to mediate tolerance, whereas mature DCs were associated with the induction of protective T cell immunity. Later studies have challenged this view and unequivocally demonstrated that two distinct modes of DC maturation exist, homeostatic and immunogenic DC maturation, each with a distinct functional outcome. Therefore, the mere expression of maturation markers cannot be used to predict immunogenicity. How DCs become activated in homeostatic conditions and maintain tolerance remains an area of intense debate. Several recent studies have shed light on the signals driving the homeostatic maturation programme, especially in the conventional type 1 DC (cDC1) compartment. Here, we highlight our growing understanding of homeostatic DC maturation and the relevance of this process for immune tolerance.
Collapse
Affiliation(s)
- Victor Bosteels
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sophie Janssens
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium.
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Laska J, Tota M, Łacwik J, Sędek Ł, Gomułka K. IL-22 in Atopic Dermatitis. Cells 2024; 13:1398. [PMID: 39195286 PMCID: PMC11353104 DOI: 10.3390/cells13161398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Atopic dermatitis (AD) is a prevalent and chronic inflammatory skin condition characterized by a multifaceted pathophysiology that gives rise to diverse clinical manifestations. The management of AD remains challenging due to the suboptimal efficacy of existing treatment options. Nonetheless, recent progress in elucidating the underlying mechanisms of the disease has facilitated the identification of new potential therapeutic targets and promising drug candidates. In this review, we summarize the newest data, considering multiple connections between IL-22 and AD. The presence of circulating IL-22 has been found to correlate with the severity of AD and is identified as a critical factor driving the inflammatory response associated with the condition. Elevated levels of IL-22 in patients with AD are correlated with increased proliferation of keratinocytes, alterations in the skin microbiota, and impaired epidermal barrier function. Collectively, these factors contribute to the manifestation of the characteristic symptoms observed in AD.
Collapse
Affiliation(s)
- Julia Laska
- Student Research Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Maciej Tota
- Student Research Group of Internal Medicine and Allergology, Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Łacwik
- Student Research Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
5
|
Li RZ, Han CZ, Glass CK. TIANA: transcription factors cooperativity inference analysis with neural attention. BMC Bioinformatics 2024; 25:274. [PMID: 39174927 PMCID: PMC11342676 DOI: 10.1186/s12859-024-05852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/01/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Growing evidence suggests that distal regulatory elements are essential for cellular function and states. The sequences within these distal elements, especially motifs for transcription factor binding, provide critical information about the underlying regulatory programs. However, cooperativities between transcription factors that recognize these motifs are nonlinear and multiplexed, rendering traditional modeling methods insufficient to capture the underlying mechanisms. Recent development of attention mechanism, which exhibit superior performance in capturing dependencies across input sequences, makes them well-suited to uncover and decipher intricate dependencies between regulatory elements. RESULT We present Transcription factors cooperativity Inference Analysis with Neural Attention (TIANA), a deep learning framework that focuses on interpretability. In this study, we demonstrated that TIANA could discover biologically relevant insights into co-occurring pairs of transcription factor motifs. Compared with existing tools, TIANA showed superior interpretability and robust performance in identifying putative transcription factor cooperativities from co-occurring motifs. CONCLUSION Our results suggest that TIANA can be an effective tool to decipher transcription factor cooperativities from distal sequence data. TIANA can be accessed through: https://github.com/rzzli/TIANA .
Collapse
Affiliation(s)
- Rick Z Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Claudia Z Han
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
6
|
Daly AE, Yeh G, Soltero S, Smale ST. Selective regulation of a defined subset of inflammatory and immunoregulatory genes by an NF-κB p50-IκBζ pathway. Genes Dev 2024; 38:536-553. [PMID: 38918046 PMCID: PMC11293394 DOI: 10.1101/gad.351630.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
The five NF-κB family members and three nuclear IκB proteins play important biological roles, but the mechanisms by which distinct members of these protein families contribute to selective gene transcription remain poorly understood, especially at a genome-wide scale. Using nascent transcript RNA-seq, we observed considerable overlap between p50-dependent and IκBζ-dependent genes in Toll-like receptor 4 (TLR4)-activated macrophages. Key immunoregulatory genes, including Il6, Il1b, Nos2, Lcn2, and Batf, are among the p50-IκBζ-codependent genes. IκBζ-bound genomic sites are occupied at earlier time points by NF-κB dimers. However, p50-IκBζ codependence does not coincide with preferential binding of either p50 or IκBζ, as RelA co-occupies hundreds of genomic sites with the two proteins. A common feature of p50-IκBζ-codependent genes is a nearby p50/RelA/IκBζ-cobound site exhibiting p50-dependent binding of both RelA and IκBζ. This and other results suggest that IκBζ acts in concert with RelA:p50 heterodimers. Notably, p50-IκBζ-codependent genes comprise a high percentage of genes exhibiting the greatest differential expression between TLR4-stimulated and tumor necrosis factor receptor (TNFR)-stimulated macrophages. Thus, our genome-centric analysis reveals a defined p50-IκBζ pathway that selectively activates a set of key immunoregulatory genes and serves as an important contributor to differential TNFR and TLR4 responses.
Collapse
Affiliation(s)
- Allison E Daly
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - George Yeh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Sofia Soltero
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA;
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
7
|
Gautam P, Sinha SK. The Blueprint of Logical Decisions in a NF-κB Signaling System. ACS OMEGA 2024; 9:22625-22634. [PMID: 38826544 PMCID: PMC11137707 DOI: 10.1021/acsomega.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 06/04/2024]
Abstract
Nearly identical cells can exhibit substantially different responses to the same stimulus that causes phenotype diversity. Such interplay between phenotype diversity and the architecture of regulatory circuits is crucial since it determines the state of a biological cell. Here, we theoretically analyze how the circuit blueprints of NF-κB in cellular environments are formed and their role in determining the cells' metabolic state. The NF-κB is a collective name for a developmental conserved family of five different transcription factors that can form homodimers or heterodimers and often promote DNA looping to reprogram the inflammatory gene response. The NF-κB controls many biological functions, including cellular differentiation, proliferation, migration, and survival. Our model shows that nuclear localization of NF-κB differentially promotes logic operations such as AND, NAND, NOR, and OR in its regulatory network. Through the quantitative thermodynamic model of transcriptional regulation and systematic variation of promoter-enhancer interaction modes, we can account for the origin of various logic gates as formed in the NF-κB system. We further show that the interconversion or switching of logic gates yielded under systematic variations of the stimuli activity and DNA looping parameters. Such computation occurs in regulatory and signaling pathways in individual cells at a molecular scale, which one can exploit to design a biomolecular computer.
Collapse
Affiliation(s)
- Pankaj Gautam
- Theoretical and Computational
Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Sudipta Kumar Sinha
- Theoretical and Computational
Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
8
|
Nurmi K, Silventoinen K, Keskitalo S, Rajamäki K, Kouri VP, Kinnunen M, Jalil S, Maldonado R, Wartiovaara K, Nievas EI, Denita-Juárez SP, Duncan CJA, Kuismin O, Saarela J, Romo I, Martelius T, Parantainen J, Beklen A, Bilicka M, Matikainen S, Nordström DC, Kaustio M, Wartiovaara-Kautto U, Kilpivaara O, Klein C, Hauck F, Jahkola T, Hautala T, Varjosalo M, Barreto G, Seppänen MRJ, Eklund KK. Truncating NFKB1 variants cause combined NLRP3 inflammasome activation and type I interferon signaling and predispose to necrotizing fasciitis. Cell Rep Med 2024; 5:101503. [PMID: 38593810 PMCID: PMC11031424 DOI: 10.1016/j.xcrm.2024.101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/04/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
In monogenic autoinflammatory diseases, mutations in genes regulating innate immune responses often lead to uncontrolled activation of inflammasome pathways or the type I interferon (IFN-I) response. We describe a mechanism of autoinflammation potentially predisposing patients to life-threatening necrotizing soft tissue inflammation. Six unrelated families are identified in which affected members present with necrotizing fasciitis or severe soft tissue inflammations. Exome sequencing reveals truncating monoallelic loss-of-function variants of nuclear factor κ light-chain enhancer of activated B cells (NFKB1) in affected patients. In patients' macrophages and in NFKB1-variant-bearing THP-1 cells, activation increases both interleukin (IL)-1β secretion and IFN-I signaling. Truncation of NF-κB1 impairs autophagy, accompanied by the accumulation of reactive oxygen species and reduced degradation of inflammasome receptor nucleotide-binding oligomerization domain, leucine-rich repeat-containing protein 3 (NLRP3), and Toll/IL-1 receptor domain-containing adaptor protein inducing IFN-β (TRIF), thus leading to combined excessive inflammasome and IFN-I activity. Many of the patients respond to anti-inflammatory treatment, and targeting IL-1β and/or IFN-I signaling could represent a therapeutic approach for these patients.
Collapse
Affiliation(s)
- Katariina Nurmi
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Kristiina Silventoinen
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Salla Keskitalo
- Systems Biology/Pathology Research Group, iCAN Digital Precision Cancer Medicine Flagship, Institute of Biotechnology, HiLIFE, UH, 00014 Helsinki, Finland
| | - Kristiina Rajamäki
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland; Department of Medical and Clinical Genetics, Applied Tumor Genomics Research Program, RPU, UH, 00014 Helsinki, Finland
| | - Vesa-Petteri Kouri
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Matias Kinnunen
- Systems Biology/Pathology Research Group, iCAN Digital Precision Cancer Medicine Flagship, Institute of Biotechnology, HiLIFE, UH, 00014 Helsinki, Finland
| | - Sami Jalil
- Clinical Genetics UH and Helsinki University Hospital (HUH), 00014 Helsinki, Finland
| | - Rocio Maldonado
- Clinical Genetics UH and Helsinki University Hospital (HUH), 00014 Helsinki, Finland
| | - Kirmo Wartiovaara
- Clinical Genetics UH and Helsinki University Hospital (HUH), 00014 Helsinki, Finland
| | | | | | - Christopher J A Duncan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 4HH, UK
| | - Outi Kuismin
- Department of Clinical Genetics, Oulu University Hospital (OUH), 90014 Oulu, Finland; PEDEGO Research Unit and Medical Research Center Oulu, OUH and University of Oulu (OU), 90014 Oulu, Finland
| | - Janna Saarela
- Institute for Molecular Medicine Finland, HiLIFE, UH, 00014 Helsinki, Finland; Centre for Molecular Medicine Norway, University of Oslo, 0313 Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Inka Romo
- Inflammation Center, Department of Infectious Disease, HUH, 00029 Helsinki, Finland
| | - Timi Martelius
- Inflammation Center, Department of Infectious Disease, HUH, 00029 Helsinki, Finland
| | - Jukka Parantainen
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Arzu Beklen
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Marcelina Bilicka
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Sampsa Matikainen
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Dan C Nordström
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland; Department of Internal Medicine and Rehabilitation, HUH and UH, 00029 Helsinki, Finland
| | - Meri Kaustio
- Institute for Molecular Medicine Finland, HiLIFE, UH, 00014 Helsinki, Finland
| | - Ulla Wartiovaara-Kautto
- Department of Hematology, HUH, Comprehensive Cancer Center, UH, 00029 Helsinki, Finland; Applied Tumor Genomics Research Program, RPU, Faculty of Medicine, UH, 00014 Helsinki, Finland
| | - Outi Kilpivaara
- Applied Tumor Genomics Research Program, RPU, Faculty of Medicine, UH, 00014 Helsinki, Finland; Department of Medical and Clinical Genetics/Medicum, Faculty of Medicine, UH, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, UH, 00014 Helsinki, Finland; HUS Diagnostic Center, HUSLAB Laboratory of Genetics, HUH, 00029 Helsinki, Finland
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Tiina Jahkola
- Department of Plastic Surgery, HUH, 00029 Helsinki, Finland
| | - Timo Hautala
- Research Unit of Internal Medicine and Biomedicine, OU, and Infectious Diseases Clinic, OUH, 90014 Oulu, Finland
| | - Markku Varjosalo
- Systems Biology/Pathology Research Group, iCAN Digital Precision Cancer Medicine Flagship, Institute of Biotechnology, HiLIFE, UH, 00014 Helsinki, Finland
| | - Goncalo Barreto
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Mikko R J Seppänen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, HUH and UH, 00029 Helsinki, Finland; Rare Disease Center, Children and Adolescents, HUH and UH, 00029 Helsinki, Finland.
| | - Kari K Eklund
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland; Department of Rheumatology, HUH and UH, 00029 Helsinki, Finland; Orton Orthopaedic Hospital, 00280 Helsinki, Finland.
| |
Collapse
|
9
|
Wang Y, Song Y, He Y, Wang Y, Maurer J, Kiessling F, Lammers T, Wang F, Shi Y. Direct immunoactivation by chemotherapeutic drugs in cancer treatment. ADVANCED THERAPEUTICS 2023; 6:2300209. [PMID: 38249990 PMCID: PMC7615547 DOI: 10.1002/adtp.202300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Indexed: 01/23/2024]
Abstract
The immune system plays a crucial role in recognizing and eliminating pathogenic substances and malignant cells in the body. For cancer treatment, immunotherapy is becoming the standard treatment for many types of cancer and is often combined with chemotherapy. Although chemotherapeutic agents are often reported to have adverse effects, including immunosuppression, they can also play a positive role in immunotherapy by directly stimulating the immune system. This has been demonstrated in preclinical and clinical studies in the past decades. Chemotherapeutics can activate immune cells through different immune receptors and signaling pathways depending on their chemical structure and formulation. In this review, we summarize and discuss the direct immunoactivation effects of chemotherapeutics and possible mechanisms behind these effects. Finally, we prospect chemo-immunotherapeutic combinations for the more effective and safer treatment of cancer.
Collapse
Affiliation(s)
- Yurui Wang
- Department of Polymer Therapeutics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Yiran Song
- Department of Gastroenterology, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai 200040, PR China
| | - Yazhi He
- Department of Gastroenterology, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai 200040, PR China
| | - Yang Wang
- Department of Gastroenterology, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai 200040, PR China
| | - Jochen Maurer
- Department of Gynecology and Obstetrics, Uniklinik RWTH Aachen, Aachen 52074, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Feng Wang
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, PR China
| | - Yang Shi
- Department of Polymer Therapeutics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen 52074, Germany
| |
Collapse
|
10
|
Navarro HI, Liu Y, Fraser A, Lefaudeux D, Chia JJ, Vong L, Roifman CM, Hoffmann A. RelB-deficient autoinflammatory pathology presents as interferonopathy, but in mice is interferon-independent. J Allergy Clin Immunol 2023; 152:1261-1272. [PMID: 37460023 PMCID: PMC10858800 DOI: 10.1016/j.jaci.2023.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Autoimmune diseases are leading causes of ill health and morbidity and have diverse etiology. Two signaling pathways are key drivers of autoimmune pathology, interferon and nuclear factor-κB (NF-κB)/RelA, defining the 2 broad labels of interferonopathies and relopathies. Prior work has established that genetic loss of function of the NF-κB subunit RelB leads to autoimmune and inflammatory pathology in mice and humans. OBJECTIVE We sought to characterize RelB-deficient autoimmunity by unbiased profiling of the responses of immune sentinel cells to stimulus and to determine the functional role of dysregulated gene programs in the RelB-deficient pathology. METHODS Transcriptomic profiling was performed on fibroblasts and dendritic cells derived from patients with RelB deficiency and knockout mice, and transcriptomic responses and pathology were assessed in mice deficient in both RelB and the type I interferon receptor. RESULTS We found that loss of RelB in patient-derived fibroblasts and mouse myeloid cells results in elevated induction of hundreds of interferon-stimulated genes. Removing hyperexpression of the interferon-stimulated gene program did not ameliorate the autoimmune pathology of RelB knockout mice. Instead, we found that RelB suppresses a different set of inflammatory response genes in a manner that is independent of interferon signaling but associated with NF-κB binding motifs. CONCLUSION Although transcriptomic profiling would describe RelB-deficient autoimmune disease as an interferonopathy, the genetic evidence indicates that the pathology in mice is interferon-independent.
Collapse
Affiliation(s)
- Héctor I Navarro
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, Calif; Molecular Biology Institute, Los Angeles, Calif
| | - Yi Liu
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, Calif; Molecular Biology Institute, Los Angeles, Calif; DeepKinase Biotechnologies, Ltd, Beijing, China
| | - Anna Fraser
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, Calif; Molecular Biology Institute, Los Angeles, Calif; Institute for Quantitative and Computational Biosciences, Los Angeles, Calif
| | - Diane Lefaudeux
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, Calif; Institute for Quantitative and Computational Biosciences, Los Angeles, Calif
| | - Jennifer J Chia
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, Calif; Molecular Biology Institute, Los Angeles, Calif; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Calif
| | - Linda Vong
- Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Division of Immunology/Allergy, Department of Pediatrics, Hospital for Sick Children, and the University of Toronto, Toronto, Canada
| | - Chaim M Roifman
- Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Division of Immunology/Allergy, Department of Pediatrics, Hospital for Sick Children, and the University of Toronto, Toronto, Canada
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, Calif; Molecular Biology Institute, Los Angeles, Calif; Institute for Quantitative and Computational Biosciences, Los Angeles, Calif.
| |
Collapse
|
11
|
Chen S, Wang N, Xiong S, Xia X. The correlation between primary open-angle glaucoma (POAG) and gut microbiota: a pilot study towards predictive, preventive, and personalized medicine. EPMA J 2023; 14:539-552. [PMID: 37605653 PMCID: PMC10439875 DOI: 10.1007/s13167-023-00336-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/29/2023] [Indexed: 08/23/2023]
Abstract
Background Glaucoma is the leading cause of irreversible blindness worldwide. Emerged evidence has shown that glaucoma is considered an immune system related disorder. The gut is the largest immune organ in the human body and the gut microbiota (GM) plays an irreversible role in maintaining immune homeostasis. But, how the GM influences glaucoma remains unrevealed. This study aimed at investigating the key molecules/pathways mediating the GM and the glaucoma to provide new biomarkers for future predictive, preventive, and personalized medicine. Methods Datasets from the primary open-angle glaucoma (POAG) patients (GSE138125) and datasets for target genes of GM/GM metabolites were downloaded from a public database. For GSE138125, the differentially expressed genes (DEGs) between healthy and POAG samples were identified. And the online Venn diagram tool was used to obtain the DEGs from POAG related to GM. After which GM-related DEGs were analyzed by correlation analysis, pathway enrichment analysis, and protein-protein interaction (PPI) network analysis. Human trabecular meshwork cells were used for validation, and the mRNA level of hub genes was verified by quantitative real-time polymerase chain reaction (RT-qPCR) in the in vitro glaucoma model. Results A total of 16 GM-related DEGs in POAG were identified from the above 2 datasets (9 upregulated genes and 7 downregulated genes). Pathway enrichment analysis indicated that these genes are mostly enriched in immune regulation especially macrophages-related pathways. Then 6 hub genes were identified by PPI network analysis and construction of key modules. Finally, RT-qPCR confirmed that the expression of the hub genes in the in vitro glaucoma model was consistent with the results of bioinformatics analysis of the mRNA chip. Conclusion This bioinformatic study elucidates NFKB1, IL18, KITLG, TLR9, FKBP2, and HDAC4 as hub genes for POAG and GM regulation. Immune response modulated by macrophages plays an important role in POAG and may be potential targets for future predictive, preventive, and personalized diagnosis and treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00336-2.
Collapse
Affiliation(s)
- Si Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Nan Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Siqi Xiong
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| |
Collapse
|
12
|
Zhu N, Mealka M, Mitchel S, Milani C, Acuña LM, Rogers E, Lahana AN, Huxford T. X-ray Crystallographic Study of Preferred Spacing by the NF-κB p50 Homodimer on κB DNA. Biomolecules 2023; 13:1310. [PMID: 37759710 PMCID: PMC10527052 DOI: 10.3390/biom13091310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Though originally characterized as an inactive or transcriptionally repressive factor, the NF-κB p50 homodimer has become appreciated as a physiologically relevant driver of specific target gene expression. By virtue of its low affinity for cytoplasmic IκB protein inhibitors, p50 accumulates in the nucleus of resting cells, where it is a binding target for the transcriptional co-activator IκBζ. In this study, we employed X-ray crystallography to analyze the structure of the p50 homodimer on κB DNA from the promoters of human interleukin-6 (IL-6) and neutrophil-gelatinase-associated lipocalin (NGAL) genes, both of which respond to IκBζ. The NF-κB p50 homodimer binds 11-bp on IL-6 κB DNA, while, on NGAL κB DNA, the spacing is 12-bp. This begs the question: what DNA binding mode is preferred by NF-κB p50 homodimer? To address this, we engineered a "Test" κB-like DNA containing the core sequence 5'-GGGGAATTCCCC-3' and determined its X-ray crystal structure in complex with p50. This revealed that, when presented with multiple options, NF-κB p50 homodimer prefers to bind 11-bp, which necessarily imposes asymmetry on the complex despite the symmetry inherent in both the protein and its target DNA, and that the p50 dimerization domain can contact DNA via distinct modes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182-1030, USA; (N.Z.); (M.M.); (S.M.); (C.M.); (L.M.A.); (E.R.); (A.N.L.)
| |
Collapse
|
13
|
Xue Y, Pan L, Vlahopoulos S, Wang K, Zheng X, Radak Z, Bacsi A, Tanner L, Brasier AR, Ba X, Boldogh I. Epigenetic control of type III interferon expression by 8-oxoguanine and its reader 8-oxoguanine DNA glycosylase1. Front Immunol 2023; 14:1161160. [PMID: 37600772 PMCID: PMC10436556 DOI: 10.3389/fimmu.2023.1161160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/23/2023] [Indexed: 08/22/2023] Open
Abstract
Interferons (IFNs) are secreted cytokines with the ability to activate expression of IFN stimulated genes that increase resistance of cells to virus infections. Activated transcription factors in conjunction with chromatin remodelers induce epigenetic changes that reprogram IFN responses. Unexpectedly, 8-oxoguanine DNA glycosylase1 (Ogg1) knockout mice show enhanced stimuli-driven IFN expression that confers increased resistance to viral and bacterial infections and allergen challenges. Here, we tested the hypothesis that the DNA repair protein OGG1 recognizes 8-oxoguanine (8-oxoGua) in promoters modulating IFN expression. We found that functional inhibition, genetic ablation, and inactivation by post-translational modification of OGG1 significantly augment IFN-λ expression in epithelial cells infected by human respiratory syncytial virus (RSV). Mechanistically, OGG1 bound to 8-oxoGua in proximity to interferon response elements, which inhibits the IRF3/IRF7 and NF-κB/RelA DNA occupancy, while promoting the suppressor NF-κB1/p50-p50 homodimer binding to the IFN-λ2/3 promoter. In a mouse model of bronchiolitis induced by RSV infection, functional ablation of OGG1 by a small molecule inhibitor (TH5487) enhances IFN-λ production, decreases immunopathology, neutrophilia, and confers antiviral protection. These findings suggest that the ROS-generated epigenetic mark 8-oxoGua via its reader OGG1 serves as a homeostatic thresholding factor in IFN-λ expression. Pharmaceutical targeting of OGG1 activity may have clinical utility in modulating antiviral response.
Collapse
Affiliation(s)
- Yaoyao Xue
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, China
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Spiros Vlahopoulos
- Horemeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian, University of Athens, Athens, Greece
| | - Ke Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, China
| | - Xu Zheng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, China
| | - Zsolt Radak
- Research Institute of Molecular Exercise Science, University of Sport Science, Budapest, Hungary
| | - Attila Bacsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lloyd Tanner
- Respiratory Medicine, Allergology & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Allan R. Brasier
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, China
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
14
|
Pan W, Meshcheryakov VA, Li T, Wang Y, Ghosh G, Wang VYF. Structures of NF-κB p52 homodimer-DNA complexes rationalize binding mechanisms and transcription activation. eLife 2023; 12:e86258. [PMID: 36779700 PMCID: PMC9991059 DOI: 10.7554/elife.86258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 02/14/2023] Open
Abstract
The mammalian NF-κB p52:p52 homodimer together with its cofactor Bcl3 activates transcription of κB sites with a central G/C base pair (bp), while it is inactive toward κB sites with a central A/T bp. To understand the molecular basis for this unique property of p52, we have determined the crystal structures of recombinant human p52 protein in complex with a P-selectin(PSel)-κB DNA (5'-GGGGTGACCCC-3') (central bp is underlined) and variants changing the central bp to A/T or swapping the flanking bp. The structures reveal a nearly two-fold widened minor groove in the central region of the DNA as compared to all other currently available NF-κB-DNA complex structures, which have a central A/T bp. Microsecond molecular dynamics (MD) simulations of free DNAs and p52 bound complexes reveal that free DNAs exhibit distinct preferred conformations, and p52:p52 homodimer induces the least amount of DNA conformational changes when bound to the more transcriptionally active natural G/C-centric PSel-κB, but adopts closed conformation when bound to the mutant A/T and swap DNAs due to their narrowed minor grooves. Our binding assays further demonstrate that the fast kinetics favored by entropy is correlated with higher transcriptional activity. Overall, our studies have revealed a novel conformation for κB DNA in complex with NF-κB and pinpoint the importance of binding kinetics, dictated by DNA conformational and dynamic states, in controlling transcriptional activation for NF-κB.
Collapse
Affiliation(s)
- Wenfei Pan
- Faculty of Health Sciences, University of MacauTaipaChina
| | | | - Tianjie Li
- Department of Physics, Chinese University of Hong KongShatinHong Kong
| | - Yi Wang
- Department of Physics, Chinese University of Hong KongShatinHong Kong
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San DiegoLa JollaUnited States
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of MacauTaipaChina
- MoE Frontiers Science Center for Precision Oncology, University of MacauTaipaMacao
- Cancer Centre, Faculty of Health Sciences, University of MacauTaipaChina
| |
Collapse
|
15
|
Singh A, Martinez-Yamout MA, Wright PE, Dyson H. Structural and dynamic studies of DNA recognition by NF-κB p50 RHR homodimer using methyl NMR spectroscopy. Nucleic Acids Res 2022; 50:7147-7160. [PMID: 35748866 PMCID: PMC9262625 DOI: 10.1093/nar/gkac535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
Protein dynamics involving higher-energy sparsely populated conformational substates are frequently critical for protein function. This study describes the dynamics of the homodimer (p50)2 of the p50 Rel homology region (RHR) of the transcription factor NF-κB, using 13C relaxation dispersion experiments with specifically (13C, 1H)-labeled methyl groups of Ile (δ), Leu and Val. Free (p50)2 is highly dynamic in solution, showing μs-ms relaxation dispersion consistent with exchange between the ground state and higher energy substates. These fluctuations propagate from the DNA-binding loops through the core of the domain. The motions are damped in the presence of κB DNA, but the NMR spectra of the DNA complexes reveal multiple local conformations of the p50 RHR homodimer bound to certain κB DNA sequences. Varying the length and sequence of κB DNA revealed two factors that promote a single bound conformation for the complex: the length of the κB site in the duplex and a symmetrical sequence of guanine nucleotides at both ends of the recognition motif. The dynamic nature of the DNA-binding loops, together with the multiple bound conformations of p50 RHR with certain κB sites, is consistent with variations in the transcriptional activity of the p50 homodimer with different κB sequences.
Collapse
Affiliation(s)
- Amrinder Singh
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla CA 92037, USA
| | - Maria A Martinez-Yamout
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla CA 92037, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla CA 92037, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla CA 92037, USA
| |
Collapse
|
16
|
Liu H, Zeng L, Yang Y, Guo C, Wang H. Bcl-3: A Double-Edged Sword in Immune Cells and Inflammation. Front Immunol 2022; 13:847699. [PMID: 35355979 PMCID: PMC8959985 DOI: 10.3389/fimmu.2022.847699] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
The NF-κB transcription factor family controls the transcription of many genes and regulates a number of pivotal biological processes. Its activity is regulated by the IκB family of proteins. Bcl-3 is an atypical member of the IκB protein family that regulates the activity of nuclear factor NF-κB. It can promote or inhibit the expression of NF-κB target genes according to the received cell type and stimulation, impacting various cell functions, such as proliferation and differentiation, induction of apoptosis and immune response. Bcl-3 is also regarded as an environment-dependent cell response regulator that has dual roles in the development of B cells and the differentiation, survival and proliferation of Th cells. Moreover, it also showed a contradictory role in inflammation. At present, in addition to the work aimed at studying the molecular mechanism of Bcl-3, an increasing number of studies have focused on the effects of Bcl-3 on inflammation, immunity and malignant tumors in vivo. In this review, we focus on the latest progress of Bcl-3 in the regulation of the NF-κB pathway and its extensive physiological role in inflammation and immune cells, which may help to provide new ideas and targets for the early diagnosis or targeted treatment of various inflammatory diseases, immunodeficiency diseases and malignant tumors.
Collapse
Affiliation(s)
- Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lin Zeng
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunlei Guo
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
17
|
Li D, Luo F, Guo T, Han S, Wang H, Lin Q. Targeting NF-κB pathway by dietary lignans in inflammation: expanding roles of gut microbiota and metabolites. Crit Rev Food Sci Nutr 2022; 63:5967-5983. [PMID: 35068283 DOI: 10.1080/10408398.2022.2026871] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammation is a major factor affecting human health. Nuclear factor-kappa B (NF-κB) plays a vital role in the development of inflammation, and the promoters of most inflammatory cytokine genes have NF-κB-binding sites. Targeting NF-κB could be an exciting route for the prevention and treatment of inflammatory diseases. As important constituents of natural plants, lignans are proved to have numerous biological functions. There are growing pieces of evidence demonstrate that lignans have the potential anti-inflammatory activities. In this work, the type, structure and source of lignans and the influence on mitigating the inflammation are systematically summarized. This review focuses on the targeting NF-κB signaling pathway in the inflammatory response by different lignans and their molecular mechanisms. Lignans also regulate gut microflora and change gut microbial metabolites, which exert novel pathway to prevent NF-κB activation. Taken together, lignans target NF-κB with various mechanisms to inhibit inflammatory cytokine expressions in the inflammatory response. It will provide a scientific theoretical basis for further research on the anti-inflammatory effects of lignans and the development of functional foods.
Collapse
Affiliation(s)
- Dan Li
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Hanqing Wang
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
18
|
Stimulus-specific responses in innate immunity: Multilayered regulatory circuits. Immunity 2021; 54:1915-1932. [PMID: 34525335 DOI: 10.1016/j.immuni.2021.08.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/07/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
Immune sentinel cells initiate immune responses to pathogens and tissue injury and are capable of producing highly stimulus-specific responses. Insight into the mechanisms underlying such specificity has come from the identification of regulatory factors and biochemical pathways, as well as the definition of signaling circuits that enable combinatorial and temporal coding of information. Here, we review the multi-layered molecular mechanisms that underlie stimulus-specific gene expression in macrophages. We categorize components of inflammatory and anti-pathogenic signaling pathways into five layers of regulatory control and discuss unifying mechanisms determining signaling characteristics at each layer. In this context, we review mechanisms that enable combinatorial and temporal encoding of information, identify recurring regulatory motifs and principles, and present strategies for integrating experimental and computational approaches toward the understanding of signaling specificity in innate immunity.
Collapse
|
19
|
Burns VE, Kerppola TK. Virus Infection Induces Keap1 Binding to Cytokine Genes, Which Recruits NF-κB p50 and G9a-GLP and Represses Cytokine Transcription. THE JOURNAL OF IMMUNOLOGY 2021; 207:1437-1447. [PMID: 34400522 DOI: 10.4049/jimmunol.2100355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022]
Abstract
Proinflammatory cytokine gene transcription must be moderated to avoid the pathological consequences of excess cytokine production. The relationships between virus infection and the mechanisms that moderate cytokine transcription are incompletely understood. We investigated the influence of Keap1 on cytokine gene induction by Sendai virus infection in mouse embryo fibroblasts. Virus infection induced Keap1 binding to the Ifnb1, Tnf, and Il6 genes. Keap1 moderated viral induction of their transcription by mechanisms that did not require Nrf2. Keap1 was required for NF-κB p50 recruitment, but not for NF-κB p65 or IRF3 recruitment, to these genes. Keap1 formed complexes with NF-κB p50 and NF-κB p65, which were visualized using bimolecular fluorescence complementation analysis. These bimolecular fluorescence complementation complexes bound chromosomes in live cells, suggesting that Keap1 could bind chromatin in association with NF-κB proteins. Keap1 was required for viral induction of G9a-GLP lysine methyltransferase binding and H3K9me2 modification at cytokine genes. G9a-GLP inhibitors counteracted transcription repression by Keap1 and enhanced Keap1 and NF-κB recruitment to cytokine genes. The interrelationships among Keap1, NF-κB, and G9a-GLP recruitment, activities, and transcriptional effects suggest that they form a feedback circuit, which moderates viral induction of cytokine transcription. Nrf2 counteracted Keap1 binding to cytokine genes and the recruitment of NF-κB p50 and G9a-GLP by Keap1. Whereas Keap1 has been reported to influence cytokine expression indirectly through its functions in the cytoplasm, these findings provide evidence that Keap1 regulates cytokine transcription directly in the nucleus. Keap1 binds to cytokines genes upon virus infection and moderates their induction by recruiting NF-κB p50 and G9a-GLP.
Collapse
Affiliation(s)
| | - Tom Klaus Kerppola
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI
| |
Collapse
|
20
|
Suresh R, Barakat DJ, Barberi T, Zheng L, Jaffee E, Pienta KJ, Friedman AD. NF-κB p50-deficient immature myeloid cell (p50-IMC) adoptive transfer slows the growth of murine prostate and pancreatic ductal carcinoma. J Immunother Cancer 2021; 8:jitc-2019-000244. [PMID: 31940589 PMCID: PMC7057444 DOI: 10.1136/jitc-2019-000244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2019] [Indexed: 12/26/2022] Open
Abstract
Background Macrophages and dendritic cells lacking the transcription factor nuclear factor kappa B p50 are skewed toward a proinflammatory phenotype, with increased cytokine expression and enhanced T cell activation; additionally, murine melanoma, fibrosarcoma, colon carcinoma, and glioblastoma grow slower in p50−/− mice. We therefore evaluated the efficacy of p50-negative immature myeloid cells (p50-IMCs) adoptively transferred into tumor-bearing hosts. Immature cells were used to maximize tumor localization, and pretreatment with 5-fluorouracil (5FU) was examined due to its potential to impair marrow production of myeloid cells, to target tumor myeloid cells and to release tumor neoantigens. Methods Wild-type (WT)-IMC or p50-IMC were generated by culturing lineage-negative marrow cells from WT or p50−/− mice in media containing thrombopoietin, stem cell factor and Flt3 ligand for 6 days followed by monocyte colony-stimulating factor for 1 day on ultralow attachment plates. Mice inoculated with Hi-Myc prostate cancer (PCa) cells or K-RasG12D pancreatic ductal carcinoma (PDC)-luciferase cells received 5FU followed 5 days later by three doses of 107 immature myeloid cells (IMC) every 3–4 days. Results PCa cells grew slower in p50−/− mice, and absence of host p50 prolonged the survival of mice inoculated orthotopically with PDC cells. IMC from Cytomegalovirus (CMV)-luciferase mice localized to tumor, nodes, spleen, marrow, and lung. 5FU followed by p50-IMC slowed PCa and PDC tumor growth, ~3-fold on average, in contrast to 5FU followed by WT-IMC, 5FU alone or p50-IMC alone. Slowed tumor growth was evident for 93% of PCa but only 53% of PDC tumors; we therefore focused on PCa for additional IMC analyses. In PCa, p50-IMC matured into F4/80+ macrophages, as well as CD11b+F4/80−CD11c+ conventional dendritic cells (cDCs). In both tumor and draining lymph nodes, p50-IMC generated more macrophages and cDCs than WT-IMC. Activated tumor CD8+ T cells were increased fivefold by p50-IMC compared with WT-IMC, and antibody-mediated CD8+ T cell depletion obviated slower tumor growth induced by 5FU followed by p50-IMC. Conclusions 5FU followed by p50-IMC slows the growth of murine prostate and pancreatic carcinoma and depends on CD8+ T cell activation. Deletion of p50 in patient-derived marrow CD34+ cells and subsequent production of IMC for adoptive transfer may contribute to the therapy of these and additional cancers.
Collapse
Affiliation(s)
- Rahul Suresh
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David J Barakat
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Theresa Barberi
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lei Zheng
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth Jaffee
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth J Pienta
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alan D Friedman
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Raza T, Dhaka N, Joseph D, Dadhwal P, Kakita VMR, Atreya HS, Mukherjee SP. Insights into the NF-κB-DNA Interaction through NMR Spectroscopy. ACS OMEGA 2021; 6:12877-12886. [PMID: 34056439 PMCID: PMC8154232 DOI: 10.1021/acsomega.1c01299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Transcription factors bind specifically to their target elements in the genome, eliciting specific gene expression programs. The nuclear factor-κB (NF-κB) system is a family of proteins comprising inducible transcription activators, which play a critical role in inflammation and cancer. The NF-κB members function as dimers with each monomeric unit binding the κB-DNA. Despite the available structures of the various NF-κB dimers in complex with the DNA, the structural features of these dimers in the nucleic acid-free form are not well-characterized. Using solution NMR spectroscopy, we characterize the structural features of 73.1 kDa p50 subunit of the NF-κB homodimer in the DNA-free form and compare it with the κB DNA-bound form of the protein. The study further reveals that in the nucleic acid-free form, the two constituent domains of p50, the N-terminal and the dimerization domains, are structurally independent of each other. However, in a complex with the κB DNA, both the domains of p50 act as a single unit. The study also provides insights into the mechanism of κB DNA recognition by the p50 subunit of NF-κB.
Collapse
Affiliation(s)
- Tahseen Raza
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee, Uttarakhand 247667, India
| | - Nitin Dhaka
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee, Uttarakhand 247667, India
| | - David Joseph
- NMR
Research Centre, Indian Institute of Science
Bengaluru, Bengaluru, Karnataka 560012, India
| | - Prikshat Dadhwal
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee, Uttarakhand 247667, India
| | - Veera Mohana Rao Kakita
- UM-DAE-Centre
for Excellence in Basic Sciences, University
of Mumbai, Kalina Campus, Mumbai, Maharashtra 400098, India
| | - Hanudatta S. Atreya
- NMR
Research Centre, Indian Institute of Science
Bengaluru, Bengaluru, Karnataka 560012, India
| | - Sulakshana P. Mukherjee
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
22
|
Eriksen AZ, Møller R, Makovoz B, Uhl SA, tenOever BR, Blenkinsop TA. SARS-CoV-2 infects human adult donor eyes and hESC-derived ocular epithelium. Cell Stem Cell 2021; 28:1205-1220.e7. [PMID: 34022129 PMCID: PMC8126605 DOI: 10.1016/j.stem.2021.04.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/19/2020] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
The SARS-CoV-2 pandemic has caused unparalleled disruption of global behavior and significant loss of life. To minimize SARS-CoV-2 spread, understanding the mechanisms of infection from all possible routes of entry is essential. While aerosol transmission is thought to be the primary route of spread, viral particles have been detected in ocular fluid, suggesting that the eye may be a vulnerable point of viral entry. To this end, we confirmed SARS-CoV-2 entry factor and antigen expression in post-mortem COVID-19 patient ocular surface tissue and observed productive viral replication in cadaver samples and eye organoid cultures, most notably in limbal regions. Transcriptional analysis of ex vivo infected ocular surface cells and hESC-derived eye cultures revealed robust induction of NF-κB in infected cells as well as diminished type I/III interferon signaling. Together these data suggest that the eye can be directly infected by SARS-CoV-2 and implicate limbus as a portal for viral entry.
Collapse
Affiliation(s)
- Anne Z Eriksen
- Department of Cell Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Rasmus Møller
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bar Makovoz
- Department of Cell Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Skyler A Uhl
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Timothy A Blenkinsop
- Department of Cell Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
23
|
Ngo KA, Kishimoto K, Davis-Turak J, Pimplaskar A, Cheng Z, Spreafico R, Chen EY, Tam A, Ghosh G, Mitchell S, Hoffmann A. Dissecting the Regulatory Strategies of NF-κB RelA Target Genes in the Inflammatory Response Reveals Differential Transactivation Logics. Cell Rep 2021; 30:2758-2775.e6. [PMID: 32101750 PMCID: PMC7061728 DOI: 10.1016/j.celrep.2020.01.108] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/23/2019] [Accepted: 01/30/2020] [Indexed: 01/22/2023] Open
Abstract
Nuclear factor κB (NF-κB) RelA is the potent transcriptional activator of inflammatory response genes. We stringently defined a list of direct RelA target genes by integrating physical (chromatin immunoprecipitation sequencing [ChIP-seq]) and functional (RNA sequencing [RNA-seq] in knockouts) datasets. We then dissected each gene’s regulatory strategy by testing RelA variants in a primary-cell genetic-complementation assay. All endogenous target genes require RelA to make DNA-base-specific contacts, and none are activatable by the DNA binding domain alone. However, endogenous target genes differ widely in how they employ the two transactivation domains. Through model-aided analysis of the dynamic time-course data, we reveal the gene-specific synergy and redundancy of TA1 and TA2. Given that post-translational modifications control TA1 activity and intrinsic affinity for coactivators determines TA2 activity, the differential TA logics suggests context-dependent versus context-independent control of endogenous RelA-target genes. Although some inflammatory initiators appear to require co-stimulatory TA1 activation, inflammatory resolvers are a part of the NF-κB RelA core response. Ngo et al. developed a genetic complementation system for NF-κB RelA that reveals that NF-κB target-gene selection requires high-affinity RelA binding and transcriptional activation domains for gene induction. The synergistic and redundant functions of two transactivation domains define pro-inflammatory and inflammation-response genes.
Collapse
Affiliation(s)
- Kim A Ngo
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kensei Kishimoto
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jeremy Davis-Turak
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aditya Pimplaskar
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhang Cheng
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Roberto Spreafico
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emily Y Chen
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy Tam
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92037, USA
| | - Simon Mitchell
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Shen Z, Hoeksema MA, Ouyang Z, Benner C, Glass CK. MAGGIE: leveraging genetic variation to identify DNA sequence motifs mediating transcription factor binding and function. Bioinformatics 2021; 36:i84-i92. [PMID: 32657363 PMCID: PMC7355228 DOI: 10.1093/bioinformatics/btaa476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MOTIVATION Genetic variation in regulatory elements can alter transcription factor (TF) binding by mutating a TF binding motif, which in turn may affect the activity of the regulatory elements. However, it is unclear which motifs are prone to impact transcriptional regulation if mutated. Current motif analysis tools either prioritize TFs based on motif enrichment without linking to a function or are limited in their applications due to the assumption of linearity between motifs and their functional effects. RESULTS We present MAGGIE (Motif Alteration Genome-wide to Globally Investigate Elements), a novel method for identifying motifs mediating TF binding and function. By leveraging measurements from diverse genotypes, MAGGIE uses a statistical approach to link mutations of a motif to changes of an epigenomic feature without assuming a linear relationship. We benchmark MAGGIE across various applications using both simulated and biological datasets and demonstrate its improvement in sensitivity and specificity compared with the state-of-the-art motif analysis approaches. We use MAGGIE to gain novel insights into the divergent functions of distinct NF-κB factors in pro-inflammatory macrophages, revealing the association of p65-p50 co-binding with transcriptional activation and the association of p50 binding lacking p65 with transcriptional repression. AVAILABILITY AND IMPLEMENTATION The Python package for MAGGIE is freely available at https://github.com/zeyang-shen/maggie. The accession number for the NF-κB ChIP-seq data generated for this study is Gene Expression Omnibus: GSE144070. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zeyang Shen
- Department of Cellular and Molecular Medicine, School of Medicine.,Department of Bioengineering, Jacobs School of Engineering
| | | | - Zhengyu Ouyang
- Department of Cellular and Molecular Medicine, School of Medicine
| | - Christopher Benner
- Department of Medicine, School of Medicine, University of California, San Diego, CA 92093, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, School of Medicine.,Department of Medicine, School of Medicine, University of California, San Diego, CA 92093, USA
| |
Collapse
|
25
|
Kumar M, Dhaka N, Raza T, Dadhwal P, Atreya HS, Mukherjee SP. Domain Stability Regulated through the Dimer Interface Controls the Formation Kinetics of a Specific NF-κB Dimer. Biochemistry 2021; 60:513-523. [PMID: 33555182 DOI: 10.1021/acs.biochem.0c00837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The NF-κB family of transcription factors is a key regulator of the immune response in the vertebrates. The family comprises five proteins that function as dimers formed in various combinations among the members, with the RelA-p50 dimer being physiologically the most abundant. While most of the 15 possible dimers are scarcely present in the cell with some remaining experimentally undetected to date, there are specific gene sets that are only activated by certain sparsely populated NF-κB dimers. The mechanism of transcription activation of such specific genes that are activated only by specific NF-κB dimers remains unclear. Here we show that the dimer interfacial residues control the stabilization of the global hydrogen bond network of the NF-κB dimerization domain, which, in turn, controls the thermodynamic stabilization of different NF-κB dimers. The relatively low thermodynamic stability of the RelA-RelA homodimer is critical as it facilitates the formation of the more stable RelA-p50 heterodimer. Through the modulation of the thermodynamic stability of the RelA-RelA homodimer, the kinetics of the RelA-p50 heterodimer formation can be regulated. This phenomenon provides an insight into the mechanism of RelA-RelA specific target gene regulation in physiology.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Nitin Dhaka
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Tahseen Raza
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Prikshat Dadhwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Hanudatta S Atreya
- NMR Research Centre, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sulakshana P Mukherjee
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
26
|
Makovoz B, Møller R, Eriksen AZ, tenOever BR, Blenkinsop TA. SARS-CoV-2 Infection of Ocular Cells from Human Adult Donor Eyes and hESC-Derived Eye Organoids. SSRN 2020:3650574. [PMID: 32742243 PMCID: PMC7385483 DOI: 10.2139/ssrn.3650574] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/15/2020] [Indexed: 01/10/2023]
Abstract
The outbreak of COVID-19 caused by the SARS-CoV-2 virus has created an unparalleled disruption of global behavior and a significant loss of human lives. To minimize SARS-CoV-2 spread, understanding the mechanisms of infection from all possible viral entry routes is essential. As aerosol transmission is thought to be the primary route of spread, we sought to investigate whether the eyes are potential entry portals for SARS-CoV-2. While virus has been detected in the eye, in order for this mucosal membrane to be a bone fide entry source SARS-CoV-2 would need the capacity to productively infect ocular surface cells. As such, we conducted RNA sequencing in ocular cells isolated from adult human cadaver donor eyes as well as from a pluripotent stem cell-derived whole eye organoid model to evaluate the expression of ACE2 and TMPRSS2, essential proteins that mediate SARS-CoV-2 viral entry. We also infected eye organoids and adult human ocular cells with SARS-CoV-2 and evaluated virus replication and the host response to infection. We found the limbus was most susceptible to infection, whereas the central cornea exhibited only low levels of replication. Transcriptional profiling of the limbus upon SARS-CoV-2 infection, found that while type I or III interferons were not detected in the lung epithelium, a significant inflammatory response was mounted. Together these data suggest that the human eye can be directly infected by SARS-CoV-2 and thus is a route warranting protection. Funding: The National Eye Institute (NEI), Bethesda, MD, USA, extramural grant 1R21EY030215-01 and the Icahn School of Medicine at Mount Sinai supported this study.
Collapse
Affiliation(s)
- Bar Makovoz
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rasmus Møller
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anne Zebitz Eriksen
- Department of Cell Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin R. tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Timothy A Blenkinsop
- Department of Cell Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
27
|
Schwanke H, Stempel M, Brinkmann MM. Of Keeping and Tipping the Balance: Host Regulation and Viral Modulation of IRF3-Dependent IFNB1 Expression. Viruses 2020; 12:E733. [PMID: 32645843 PMCID: PMC7411613 DOI: 10.3390/v12070733] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
The type I interferon (IFN) response is a principal component of our immune system that allows to counter a viral attack immediately upon viral entry into host cells. Upon engagement of aberrantly localised nucleic acids, germline-encoded pattern recognition receptors convey their find via a signalling cascade to prompt kinase-mediated activation of a specific set of five transcription factors. Within the nucleus, the coordinated interaction of these dimeric transcription factors with coactivators and the basal RNA transcription machinery is required to access the gene encoding the type I IFN IFNβ (IFNB1). Virus-induced release of IFNβ then induces the antiviral state of the system and mediates further mechanisms for defence. Due to its key role during the induction of the initial IFN response, the activity of the transcription factor interferon regulatory factor 3 (IRF3) is tightly regulated by the host and fiercely targeted by viral proteins at all conceivable levels. In this review, we will revisit the steps enabling the trans-activating potential of IRF3 after its activation and the subsequent assembly of the multi-protein complex at the IFNβ enhancer that controls gene expression. Further, we will inspect the regulatory mechanisms of these steps imposed by the host cell and present the manifold strategies viruses have evolved to intervene with IFNβ transcription downstream of IRF3 activation in order to secure establishment of a productive infection.
Collapse
Affiliation(s)
- Hella Schwanke
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Markus Stempel
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
28
|
Sen S, Cheng Z, Sheu KM, Chen YH, Hoffmann A. Gene Regulatory Strategies that Decode the Duration of NFκB Dynamics Contribute to LPS- versus TNF-Specific Gene Expression. Cell Syst 2020; 10:169-182.e5. [PMID: 31972132 DOI: 10.1016/j.cels.2019.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/20/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022]
Abstract
Pathogen-derived lipopolysaccharide (LPS) and cytokine tumor necrosis factor (TNF) activate NFκB with distinct duration dynamics, but how immune response genes decode NFκB duration to produce stimulus-specific expression remains unclear. Here, detailed transcriptomic profiling of combinatorial and temporal control mutants identified 81 genes that depend on stimulus-specific NFκB duration for their stimulus-specificity. Combining quantitative experimentation with mathematical modeling, we found that for some genes a long mRNA half-life allowed effective decoding, but for many genes this was insufficient to account for the data; instead, we found that chromatin mechanisms, such as a slow transition rate between inactive and RelA-bound enhancer states, could also decode NFκB dynamics. Chromatin-mediated decoding is favored by genes acting as immune effectors (e.g., tissue remodelers and T cell recruiters) rather than immune regulators (e.g., signaling proteins and monocyte recruiters). Overall, our results delineate two gene regulatory strategies that decode stimulus-specific NFκB dynamics and determine distinct biological functions.
Collapse
Affiliation(s)
- Supriya Sen
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhang Cheng
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences (QCB), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Katherine M Sheu
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu Hsin Chen
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences (QCB), University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
29
|
Sheu K, Luecke S, Hoffmann A. Stimulus-specificity in the Responses of Immune Sentinel Cells. ACTA ACUST UNITED AC 2019; 18:53-61. [PMID: 32864512 DOI: 10.1016/j.coisb.2019.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Innate immune sentinel cells must initiate and orchestrate appropriate immune responses for myriad pathogens. These stimulus-specific gene expression responses are mediated by combinatorial and temporal coding within a handful of immune response signaling pathways. We outline the scope of our current understanding and indicate pressing outstanding questions. The innate immune response is a first-line defense against invading pathogens and coordinates the activation and recruitment of specialized immune cells, thereby initiating the adaptive immune response. While the adaptive immune system is capable of highly pathogen-specific immunity through the process of genetic recombination and clonal selection, innate immunity is frequently viewed as a catch-all system that initiates general immune activation. In this review, we are re-examining this view, as we are distinguishing between immune sentinel functions mediated by macrophages and dendritic cells and innate immune effector functions mediated by cells such as neutrophils, NK cells, etc. Given pathogen diversity, including modes of entry, replication cycles, and strategies of immune evasion and spread, all successive waves of the immune response ought to be tailored to the specific immune threat, leading us to postulate that immune sentinel functions by macrophages and dendritic cells ought to be highly stimulus-specific. Here we review the experimental evidence for stimulus-specific responses by immune sentinel cells which initiate and coordinate immune responses, as well as the mechanisms by which this specificity may be achieved.
Collapse
Affiliation(s)
- Katherine Sheu
- Institute for Quantitative and Computational Biosciences and Department for Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Stefanie Luecke
- Institute for Quantitative and Computational Biosciences and Department for Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Alexander Hoffmann
- Institute for Quantitative and Computational Biosciences and Department for Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
30
|
Mulero MC, Wang VYF, Huxford T, Ghosh G. Genome reading by the NF-κB transcription factors. Nucleic Acids Res 2019; 47:9967-9989. [PMID: 31501881 PMCID: PMC6821244 DOI: 10.1093/nar/gkz739] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 12/25/2022] Open
Abstract
The NF-κB family of dimeric transcription factors regulates transcription by selectively binding to DNA response elements present within promoters or enhancers of target genes. The DNA response elements, collectively known as κB sites or κB DNA, share the consensus 5'-GGGRNNNYCC-3' (where R, Y and N are purine, pyrimidine and any nucleotide base, respectively). In addition, several DNA sequences that deviate significantly from the consensus have been shown to accommodate binding by NF-κB dimers. X-ray crystal structures of NF-κB in complex with diverse κB DNA have helped elucidate the chemical principles that underlie target selection in vitro. However, NF-κB dimers encounter additional impediments to selective DNA binding in vivo. Work carried out during the past decades has identified some of the barriers to sequence selective DNA target binding within the context of chromatin and suggests possible mechanisms by which NF-κB might overcome these obstacles. In this review, we first highlight structural features of NF-κB:DNA complexes and how distinctive features of NF-κB proteins and DNA sequences contribute to specific complex formation. We then discuss how native NF-κB dimers identify DNA binding targets in the nucleus with support from additional factors and how post-translational modifications enable NF-κB to selectively bind κB sites in vivo.
Collapse
Affiliation(s)
- Maria Carmen Mulero
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
31
|
Kabacaoglu D, Ruess DA, Ai J, Algül H. NF-κB/Rel Transcription Factors in Pancreatic Cancer: Focusing on RelA, c-Rel, and RelB. Cancers (Basel) 2019; 11:E937. [PMID: 31277415 PMCID: PMC6679104 DOI: 10.3390/cancers11070937] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/Rel transcription factors (TFs) is extremely cell-type-specific owing to their ability to act disparately in the context of cellular homeostasis driven by cellular fate and the microenvironment. This is also valid for tumor cells in which every single component shows heterogenic effects. Whereas many studies highlighted a per se oncogenic function for NF-κB/Rel TFs across cancers, recent advances in the field revealed their additional tumor-suppressive nature. Specifically, pancreatic ductal adenocarcinoma (PDAC), as one of the deadliest malignant diseases, shows aberrant canonical-noncanonical NF-κB signaling activity. Although decades of work suggest a prominent oncogenic activity of NF-κB signaling in PDAC, emerging evidence points to the opposite including anti-tumor effects. Considering the dual nature of NF-κB signaling and how it is closely linked to many other cancer related signaling pathways, it is essential to dissect the roles of individual Rel TFs in pancreatic carcinogenesis and tumor persistency and progression. Here, we discuss recent knowledge highlighting the role of Rel TFs RelA, RelB, and c-Rel in PDAC development and maintenance. Next to providing rationales for therapeutically harnessing Rel TF function in PDAC, we compile strategies currently in (pre-)clinical evaluation.
Collapse
Affiliation(s)
- Derya Kabacaoglu
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Dietrich A Ruess
- Department of Surgery, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Jiaoyu Ai
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| |
Collapse
|
32
|
Mitchell S, Mercado EL, Adelaja A, Ho JQ, Cheng QJ, Ghosh G, Hoffmann A. An NFκB Activity Calculator to Delineate Signaling Crosstalk: Type I and II Interferons Enhance NFκB via Distinct Mechanisms. Front Immunol 2019; 10:1425. [PMID: 31293585 PMCID: PMC6604663 DOI: 10.3389/fimmu.2019.01425] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 06/05/2019] [Indexed: 01/22/2023] Open
Abstract
Nuclear factor kappa B (NFκB) is a transcription factor that controls inflammation and cell survival. In clinical histology, elevated NFκB activity is a hallmark of poor prognosis in inflammatory disease and cancer, and may be the result of a combination of diverse micro-environmental constituents. While previous quantitative studies of NFκB focused on its signaling dynamics in single cells, we address here how multiple stimuli may combine to control tissue level NFκB activity. We present a novel, simplified model of NFκB (SiMoN) that functions as an NFκB activity calculator. We demonstrate its utility by exploring how type I and type II interferons modulate NFκB activity in macrophages. Whereas, type I IFNs potentiate NFκB activity by inhibiting translation of IκBα and by elevating viral RNA sensor (RIG-I) expression, type II IFN amplifies NFκB activity by increasing the degradation of free IκB through transcriptional induction of proteasomal cap components (PA28). Both cross-regulatory mechanisms amplify NFκB activation in response to weaker (viral) inducers, while responses to stronger (bacterial or cytokine) inducers remain largely unaffected. Our work demonstrates how the NFκB calculator can reveal distinct mechanisms of crosstalk on NFκB activity in interferon-containing microenvironments.
Collapse
Affiliation(s)
- Simon Mitchell
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, and Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, United States
| | - Ellen L Mercado
- Signaling Systems Laboratory, San Diego Center for Systems Biology, La Jolla, CA, United States
| | - Adewunmi Adelaja
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, and Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, United States
| | - Jessica Q Ho
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Quen J Cheng
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, and Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, United States
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, and Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, United States.,Signaling Systems Laboratory, San Diego Center for Systems Biology, La Jolla, CA, United States
| |
Collapse
|
33
|
Brignall R, Moody AT, Mathew S, Gaudet S. Considering Abundance, Affinity, and Binding Site Availability in the NF-κB Target Selection Puzzle. Front Immunol 2019; 10:609. [PMID: 30984185 PMCID: PMC6450194 DOI: 10.3389/fimmu.2019.00609] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
The NF-κB transcription regulation system governs a diverse set of responses to various cytokine stimuli. With tools from in vitro biochemical characterizations, to omics-based whole genome investigations, great strides have been made in understanding how NF-κB transcription factors control the expression of specific sets of genes. Nonetheless, these efforts have also revealed a very large number of potential binding sites for NF-κB in the human genome, and a puzzle emerges when trying to explain how NF-κB selects from these many binding sites to direct cell-type- and stimulus-specific gene expression patterns. In this review, we surmise that target gene transcription can broadly be thought of as a function of the nuclear abundance of the various NF-κB dimers, the affinity of NF-κB dimers for the regulatory sequence and the availability of this regulatory site. We use this framework to place quantitative information that has been gathered about the NF-κB transcription regulation system into context and thus consider questions it answers, and questions it raises. We end with a brief discussion of some of the future prospects that new approaches could bring to our understanding of how NF-κB transcription factors orchestrate diverse responses in different biological contexts.
Collapse
Affiliation(s)
- Ruth Brignall
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| | - Amy T Moody
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States.,Laboratory for Systems Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA, United States.,Department of Microbiology, Tufts University School of Medicine, Boston, MA, United States
| | - Shibin Mathew
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| | - Suzanne Gaudet
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| |
Collapse
|
34
|
Reactive oxygen species modulate macrophage immunosuppressive phenotype through the up-regulation of PD-L1. Proc Natl Acad Sci U S A 2019; 116:4326-4335. [PMID: 30770442 DOI: 10.1073/pnas.1819473116] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The combination of immune checkpoint blockade with chemotherapy is currently under investigation as a promising strategy for the treatment of triple negative breast cancer (TNBC). Tumor-associated macrophages (TAMs) are the most prominent component of the breast cancer microenvironment because they influence tumor progression and the response to therapies. Here we show that macrophages acquire an immunosuppressive phenotype and increase the expression of programmed death ligand-1 (PD-L1) when treated with reactive oxygen species (ROS) inducers such as the glutathione synthesis inhibitor, buthionine sulphoximine (BSO), and paclitaxel. Mechanistically, these agents cause accumulation of ROS that in turn activate NF-κB signaling to promote PD-L1 transcription and the release of immunosuppressive chemokines. Systemic in vivo administration of paclitaxel promotes PD-L1 accumulation on the surface of TAMS in a mouse model of TNBC, consistent with in vitro results. Combinatorial treatment with paclitaxel and an anti-mouse PD-L1 blocking antibody significantly improved the therapeutic efficacy of paclitaxel by reducing tumor burden and increasing the number of tumor-associated cytotoxic T cells. Our results provide a strong rationale for the use of anti-PD-L1 blockade in the treatment of TNBC patients. Furthermore, interrogation of chemotherapy-induced PD-L1 expression in TAMs is warranted to define appropriate patient selection in the use of PD-L1 blockade.
Collapse
|
35
|
Vonderach M, Byrne DP, Barran PE, Eyers PA, Eyers CE. DNA Binding and Phosphorylation Regulate the Core Structure of the NF-κB p50 Transcription Factor. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:128-138. [PMID: 29873020 PMCID: PMC6318249 DOI: 10.1007/s13361-018-1984-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 05/07/2023]
Abstract
The NF-κB transcription factors are known to be extensively phosphorylated, with dynamic site-specific modification regulating their ability to dimerize and interact with DNA. p50, the proteolytic product of p105 (NF-κB1), forms homodimers that bind DNA but lack intrinsic transactivation function, functioning as repressors of transcription from κB promoters. Here, we examine the roles of specific phosphorylation events catalysed by either protein kinase A (PKAc) or Chk1, in regulating the functions of p50 homodimers. LC-MS/MS analysis of proteolysed p50 following in vitro phosphorylation allows us to define Ser328 and Ser337 as PKAc- and Chk1-mediated modifications, and pinpoint an additional four Chk1 phosphosites: Ser65, Thr152, Ser242 and Ser248. Native mass spectrometry (MS) reveals Chk1- and PKAc-regulated disruption of p50 homodimer formation through Ser337. Additionally, we characterise the Chk1-mediated phosphosite, Ser242, as a regulator of DNA binding, with a S242D p50 phosphomimetic exhibiting a > 10-fold reduction in DNA binding affinity. Conformational dynamics of phosphomimetic p50 variants, including S242D, are further explored using ion-mobility MS (IM-MS). Finally, comparative theoretical modelling with experimentally observed p50 conformers, in the absence and presence of DNA, reveals that the p50 homodimer undergoes conformational contraction during electrospray ionisation that is stabilised by complex formation with κB DNA. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Matthias Vonderach
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Perdita E Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Claire E Eyers
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| |
Collapse
|
36
|
Mulero MC, Huxford T, Ghosh G. NF-κB, IκB, and IKK: Integral Components of Immune System Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:207-226. [PMID: 31628658 DOI: 10.1007/978-981-13-9367-9_10] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The NF-κB (Nuclear Factor kappa B) transcription factor plays crucial roles in the regulation of numerous biological processes including development of the immune system, inflammation, and innate and adaptive immune responses. Control over the immune cell functions of NF-κB results from signaling through one of two different routes: the canonical and noncanonical NF-κB signaling pathways. Present at the end of both pathways are the proteins NF-κB, IκB, and the IκB kinase (IKK). These proteins work together to deliver the myriad outcomes that influence context-dependent transcriptional control in immune cells. In the present chapter, we review the structural information available on NF-κB, IκB, and IKK, the critical terminal components of the NF-κB signaling, in relation to their physiological function.
Collapse
Affiliation(s)
- Maria Carmen Mulero
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Gourisankar Ghosh
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
37
|
O'Reilly LA, Putoczki TL, Mielke LA, Low JT, Lin A, Preaudet A, Herold MJ, Yaprianto K, Tai L, Kueh A, Pacini G, Ferrero RL, Gugasyan R, Hu Y, Christie M, Wilcox S, Grumont R, Griffin MDW, O'Connor L, Smyth GK, Ernst M, Waring P, Gerondakis S, Strasser A. Loss of NF-κB1 Causes Gastric Cancer with Aberrant Inflammation and Expression of Immune Checkpoint Regulators in a STAT-1-Dependent Manner. Immunity 2018; 48:570-583.e8. [PMID: 29562203 DOI: 10.1016/j.immuni.2018.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/04/2017] [Accepted: 02/28/2018] [Indexed: 12/13/2022]
Abstract
Polymorphisms in NFKB1 that diminish its expression have been linked to human inflammatory diseases and increased risk for epithelial cancers. The underlying mechanisms are unknown, and the link is perplexing given that NF-κB signaling reportedly typically exerts pro-tumorigenic activity. Here we have shown that NF-κB1 deficiency, even loss of a single allele, resulted in spontaneous invasive gastric cancer (GC) in mice that mirrored the histopathological progression of human intestinal-type gastric adenocarcinoma. Bone marrow chimeras revealed that NF-κB1 exerted tumor suppressive functions in both epithelial and hematopoietic cells. RNA-seq analysis showed that NF-κB1 deficiency resulted in aberrant JAK-STAT signaling, which dysregulated expression of effectors of inflammation, antigen presentation, and immune checkpoints. Concomitant loss of STAT1 prevented these immune abnormalities and GC development. These findings provide mechanistic insight into how polymorphisms that attenuate NFKB1 expression predispose humans to epithelial cancers, highlighting the pro-tumorigenic activity of STAT1 and identifying targetable vulnerabilities in GC.
Collapse
Affiliation(s)
- Lorraine A O'Reilly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Tracy L Putoczki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lisa A Mielke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jun T Low
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ann Lin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Adele Preaudet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kelvin Yaprianto
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Lin Tai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Andrew Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Guido Pacini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Richard L Ferrero
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Raffi Gugasyan
- Healthy Ageing, Life Sciences Discipline, The Burnet Institute, Melbourne, Victoria 3004, Australia; Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Yifang Hu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Michael Christie
- Centre for Translational Pathology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stephen Wilcox
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Raelene Grumont
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Victoria, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Liam O'Connor
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mathias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Paul Waring
- Department of Pathology, The University of Melbourne, Parkville 3052, Victoria, Australia
| | - Steve Gerondakis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Victoria, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
38
|
Jennings E, Esposito D, Rittinger K, Thurston TLM. Structure-function analyses of the bacterial zinc metalloprotease effector protein GtgA uncover key residues required for deactivating NF-κB. J Biol Chem 2018; 293:15316-15329. [PMID: 30049795 PMCID: PMC6166728 DOI: 10.1074/jbc.ra118.004255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/23/2018] [Indexed: 12/03/2022] Open
Abstract
The closely related type III secretion system zinc metalloprotease effector proteins GtgA, GogA, and PipA are translocated into host cells during Salmonella infection. They then cleave nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) transcription factor subunits, dampening activation of the NF-κB signaling pathway and thereby suppressing host immune responses. We demonstrate here that GtgA, GogA, and PipA cleave a subset of NF-κB subunits, including p65, RelB, and cRel but not NF-κB1 and NF-κB2, whereas the functionally similar type III secretion system effector NleC of enteropathogenic and enterohemorrhagic Escherichia coli cleaved all five NF-κB subunits. Mutational analysis of NF-κB subunits revealed that a single nonconserved residue in NF-κB1 and NF-κB2 that corresponds to the P1' residue Arg-41 in p65 prevents cleavage of these subunits by GtgA, GogA, and PipA, explaining the observed substrate specificity of these enzymes. Crystal structures of GtgA in its apo-form and in complex with the p65 N-terminal domain explained the importance of the P1' residue. Furthermore, the pattern of interactions suggested that GtgA recognizes NF-κB subunits by mimicking the shape and negative charge of the DNA phosphate backbone. Moreover, structure-based mutational analysis of GtgA uncovered amino acids that are required for the interaction of GtgA with p65, as well as those that are required for full activity of GtgA in suppressing NF-κB activation. This study therefore provides detailed and critical insight into the mechanism of substrate recognition by this family of proteins important for bacterial virulence.
Collapse
Affiliation(s)
- Elliott Jennings
- From the Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ and
| | - Diego Esposito
- the Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Katrin Rittinger
- the Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Teresa L M Thurston
- From the Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ and
| |
Collapse
|
39
|
Mulero MC, Shahabi S, Ko MS, Schiffer JM, Huang DB, Wang VYF, Amaro RE, Huxford T, Ghosh G. Protein Cofactors Are Essential for High-Affinity DNA Binding by the Nuclear Factor κB RelA Subunit. Biochemistry 2018; 57:2943-2957. [PMID: 29708732 DOI: 10.1021/acs.biochem.8b00158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transcription activator proteins typically contain two functional domains: a DNA binding domain (DBD) that binds to DNA with sequence specificity and an activation domain (AD) whose established function is to recruit RNA polymerase. In this report, we show that purified recombinant nuclear factor κB (NF-κB) RelA dimers bind specific κB DNA sites with an affinity significantly lower than that of the same dimers from nuclear extracts of activated cells, suggesting that additional nuclear cofactors might facilitate DNA binding by the RelA dimers. Additionally, recombinant RelA binds DNA with relatively low affinity at a physiological salt concentration in vitro. The addition of p53 or RPS3 (ribosomal protein S3) increases RelA:DNA binding affinity 2- to >50-fold depending on the protein and ionic conditions. These cofactor proteins do not form stable ternary complexes, suggesting that they stabilize the RelA:DNA complex through dynamic interactions. Surprisingly, the RelA-DBD alone fails to bind DNA under the same solution conditions even in the presence of cofactors, suggesting an important role of the RelA-AD in DNA binding. Reduced RelA:DNA binding at a physiological ionic strength suggests that multiple cofactors might be acting simultaneously to mitigate the electrolyte effect and stabilize the RelA:DNA complex in vivo. Overall, our observations suggest that the RelA-AD and multiple cofactor proteins function cooperatively to prime the RelA-DBD and stabilize the RelA:DNA complex in cells. Our study provides a mechanism for nuclear cofactor proteins in NF-κB-dependent gene regulation.
Collapse
Affiliation(s)
- Maria Carmen Mulero
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Shandy Shahabi
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Myung Soo Ko
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - Jamie M Schiffer
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - De-Bin Huang
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences , University of Macau , Avenida da Universidade , Taipa , Macau SAR , China
| | - Rommie E Amaro
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - Gourisankar Ghosh
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| |
Collapse
|
40
|
Clayton K, Vallejo AF, Davies J, Sirvent S, Polak ME. Langerhans Cells-Programmed by the Epidermis. Front Immunol 2017; 8:1676. [PMID: 29238347 PMCID: PMC5712534 DOI: 10.3389/fimmu.2017.01676] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
Langerhans cells (LCs) reside in the epidermis as a dense network of immune system sentinels. These cells determine the appropriate adaptive immune response (inflammation or tolerance) by interpreting the microenvironmental context in which they encounter foreign substances. In a normal physiological, "non-dangerous" situation, LCs coordinate a continuous state of immune tolerance, preventing unnecessary and harmful immune activation. Conversely, when they sense a danger signal, for example during infection or when the physical integrity of skin has been compromised as a result of a trauma, they instruct T lymphocytes of the adaptive immune system to mount efficient effector responses. Recent advances investigating the molecular mechanisms underpinning the cross talk between LCs and the epidermal microenvironment reveal its importance for programming LC biology. This review summarizes the novel findings describing LC origin and function through the analysis of the transcriptomic programs and gene regulatory networks (GRNs). Review and meta-analysis of publicly available datasets clearly delineates LCs as distinct from both conventional dendritic cells (DCs) and macrophages, suggesting a primary role for the epidermal microenvironment in programming LC biology. This concept is further supported by the analysis of the effect of epidermal pro-inflammatory signals, regulating key GRNs in human and murine LCs. Applying whole transcriptome analyses and in silico analysis has advanced our understanding of how LCs receive, integrate, and process signals from the steady-state and diseased epidermis. Interestingly, in homeostasis and under immunological stress, the molecular network in LCs remains relatively stable, reflecting a key evolutionary need related to tissue localization. Importantly, to fulfill their key role in orchestrating antiviral adaptive immune responses, LC share specific transcriptomic modules with other DC types able to cross-present antigens to cytotoxic CD8+ T cells, pointing to a possible evolutionary convergence mechanism. With the development of more advanced technologies allowing delineation of the molecular networks at the level of chromatin organization, histone modifications, protein translation, and phosphorylation, future "omics" investigations will bring in-depth understanding of the complex molecular mechanisms underpinning human LC biology.
Collapse
Affiliation(s)
- Kalum Clayton
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andres F Vallejo
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - James Davies
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sofia Sirvent
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Marta E Polak
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
41
|
Mulero MC, Huang DB, Nguyen HT, Wang VYF, Li Y, Biswas T, Ghosh G. DNA-binding affinity and transcriptional activity of the RelA homodimer of nuclear factor κB are not correlated. J Biol Chem 2017; 292:18821-18830. [PMID: 28935669 DOI: 10.1074/jbc.m117.813980] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/15/2017] [Indexed: 01/05/2023] Open
Abstract
The nuclear factor κB (NF-κB) transcription factor family regulates genes involved in cell proliferation and inflammation. The promoters of these genes often contain NF-κB-binding sites (κB sites) arranged in tandem. How NF-κB activates transcription through these multiple sites is incompletely understood. We report here an X-ray crystal structure of homodimers comprising the RelA DNA-binding domain containing the Rel homology region (RHR) in NF-κB bound to an E-selectin promoter fragment with tandem κB sites. This structure revealed that two dimers bind asymmetrically to the symmetrically arranged κB sites at which multiple cognate contacts between one dimer to the corresponding DNA are broken. Because simultaneous RelA-RHR dimer binding to tandem sites in solution was anti-cooperative, we inferred that asymmetric RelA-RHR binding with fewer contacts likely indicates a dissociative binding mode. We found that both κB sites are essential for reporter gene activation by full-length RelA homodimer, suggesting that dimers facilitate DNA binding to each other even though their stable co-occupation is not promoted. Promoter variants with altered spacing and orientation of tandem κB sites displayed unexpected reporter activities that were not explained by the solution-binding pattern of RelA-RHR. Remarkably, full-length RelA bound all DNAs with a weaker affinity and specificity. Moreover, the transactivation domain played a negative role in DNA binding. These observations suggest that other nuclear factors influence full-length RelA binding to DNA by neutralizing the transactivation domain negative effect. We propose that DNA binding by NF-κB dimers is highly complex and modulated by facilitated association-dissociation processes.
Collapse
Affiliation(s)
- Maria Carmen Mulero
- From the Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 and
| | - De-Bin Huang
- From the Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 and
| | - H Thien Nguyen
- From the Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 and
| | - Vivien Ya-Fan Wang
- From the Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 and.,the Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yidan Li
- From the Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 and
| | - Tapan Biswas
- From the Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 and
| | - Gourisankar Ghosh
- From the Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 and
| |
Collapse
|
42
|
Cheng CS, Behar MS, Suryawanshi GW, Feldman KE, Spreafico R, Hoffmann A. Iterative Modeling Reveals Evidence of Sequential Transcriptional Control Mechanisms. Cell Syst 2017; 4:330-343.e5. [PMID: 28237795 PMCID: PMC5434763 DOI: 10.1016/j.cels.2017.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/30/2016] [Accepted: 01/13/2017] [Indexed: 02/03/2023]
Abstract
Combinatorial control of gene expression is presumed to be mediated by molecular interactions between coincident transcription factors (TFs). While information on the genome-wide locations of TFs is available, the genes they regulate and whether they function combinatorially often remain open questions. Here, we developed a mechanistic, rather than statistical, modeling approach to elucidate TF control logic from gene expression data. Applying this approach to hundreds of genes in 85 datasets measuring the transcriptional responses of murine fibroblasts and macrophages to cytokines and pathogens, we found that stimulus-responsive TFs generally function sequentially in logical OR gates or singly. Logical AND gates were found between NF-κB-responsive mRNA synthesis and MAPKp38-responsive control of mRNA half-life, but not between temporally coincident TFs. Our analyses identified the functional target genes of each of the pathogen-responsive TFs and prompt a revision of the conceptual underpinnings of combinatorial control of gene expression to include sequentially acting molecular mechanisms that govern mRNA synthesis and decay.
Collapse
Affiliation(s)
- Christine S Cheng
- Signaling Systems Laboratory, San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Marcelo S Behar
- Signaling Systems Laboratory, San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences (QCBio) and Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90025, USA
| | - Gajendra W Suryawanshi
- Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences (QCBio) and Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90025, USA
| | - Kristyn E Feldman
- Signaling Systems Laboratory, San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Roberto Spreafico
- Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences (QCBio) and Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90025, USA
| | - Alexander Hoffmann
- Signaling Systems Laboratory, San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences (QCBio) and Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90025, USA.
| |
Collapse
|
43
|
Choubey D, Panchanathan R. Absent in Melanoma 2 proteins in SLE. Clin Immunol 2017; 176:42-48. [PMID: 28062222 DOI: 10.1016/j.clim.2016.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/29/2016] [Accepted: 12/31/2016] [Indexed: 12/13/2022]
Abstract
Type I interferons (IFN-α/β)-inducible PYRIN and HIN domain-containing protein family includes Absent in Melanoma 2 (murine Aim2 and human AIM2), murine p202, and human PYRIN-only protein 3 (POP3). The generation of Aim2-deficient mice indicated that the Aim2 protein is essential for inflammasome activation, resulting in the secretion of interleukin-1β (IL-1β) and IL-18 and cell death by pyroptosis. Further, Aim2-deficiency also increased constitutive expression of the IFN-β and expression of the p202 protein. Notably, an increased expression of p202 protein in female mice associated with the development of systemic lupus erythematosus (SLE). SLE in patients is characterized by a constitutive increase in serum levels of IFN-α and an increase in the expression IFN-stimulated genes. Recent studies indicate that p202 and POP3 proteins inhibit activation of the Aim2/AIM2 inflammasome and promote IFN-β expression. Therefore, we discuss the role of Aim2/AIM2 proteins in the suppression of type I IFNs production and lupus susceptibility.
Collapse
Affiliation(s)
- Divaker Choubey
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, P. O. Box-670056, Cincinnati, OH 45267, United States; Research Service, ML-151, Cincinnati VA Medical Center, 3200 Vine Street, Cincinnati, OH 45220, United States.
| | - Ravichandran Panchanathan
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, P. O. Box-670056, Cincinnati, OH 45267, United States; Research Service, ML-151, Cincinnati VA Medical Center, 3200 Vine Street, Cincinnati, OH 45220, United States
| |
Collapse
|
44
|
Anderson WD, Makadia HK, Greenhalgh AD, Schwaber JS, David S, Vadigepalli R. Computational modeling of cytokine signaling in microglia. MOLECULAR BIOSYSTEMS 2016; 11:3332-46. [PMID: 26440115 DOI: 10.1039/c5mb00488h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neuroinflammation due to glial activation has been linked to many CNS diseases. We developed a computational model of a microglial cytokine interaction network to study the regulatory mechanisms of microglia-mediated neuroinflammation. We established a literature-based cytokine network, including TNFα, TGFβ, and IL-10, and fitted a mathematical model to published data from LPS-treated microglia. The addition of a previously unreported TGFβ autoregulation loop to our model was required to account for experimental data. Global sensitivity analysis revealed that TGFβ- and IL-10-mediated inhibition of TNFα was critical for regulating network behavior. We assessed the sensitivity of the LPS-induced TNFα response profile to the initial TGFβ and IL-10 levels. The analysis showed two relatively shifted TNFα response profiles within separate domains of initial condition space. Further analysis revealed that TNFα exhibited adaptation to sustained LPS stimulation. We simulated the effects of functionally inhibiting TGFβ and IL-10 on TNFα adaptation. Our analysis showed that TGFβ and IL-10 knockouts (TGFβ KO and IL-10 KO) exert divergent effects on adaptation. TFGβ KO attenuated TNFα adaptation whereas IL-10 KO enhanced TNFα adaptation. We experimentally tested the hypothesis that IL-10 KO enhances TNFα adaptation in murine macrophages and found supporting evidence. These opposing effects could be explained by differential kinetics of negative feedback. Inhibition of IL-10 reduced early negative feedback that results in enhanced TNFα-mediated TGFβ expression. We propose that differential kinetics in parallel negative feedback loops constitute a novel mechanism underlying the complex and non-intuitive pro- versus anti-inflammatory effects of individual cytokine perturbations.
Collapse
Affiliation(s)
- Warren D Anderson
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA. and Graduate Program in Neuroscience, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hirenkumar K Makadia
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA. and Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew D Greenhalgh
- Center for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA. and Graduate Program in Neuroscience, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Samuel David
- Center for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA. and Graduate Program in Neuroscience, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
45
|
Zhao D, Zhang Q, Liu Y, Li X, Zhao K, Ding Y, Li Z, Shen Q, Wang C, Li N, Cao X. H3K4me3 Demethylase Kdm5a Is Required for NK Cell Activation by Associating with p50 to Suppress SOCS1. Cell Rep 2016; 15:288-99. [PMID: 27050510 DOI: 10.1016/j.celrep.2016.03.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/21/2016] [Accepted: 03/09/2016] [Indexed: 01/25/2023] Open
Abstract
The H3K4me3 demethylase Kdm5a regulates gene transcription and is implicated in carcinogenesis. However, the role of Kdm5a in innate immune response remains poorly understood. Here, we demonstrate that Kdm5a deficiency impairs activation of natural killer (NK) cells, with decreased IFN-γ production. Accordingly, Kdm5a(-/-) mice are highly susceptible to Listeria monocytogenes (Lm) infection. During NK cell activation, loss of Kdm5a profoundly impairs phosphorylation and nuclear localization of STAT4, along with increased expression of suppressor of cytokine signaling 1 (SOCS1). Mechanistic studies reveal that Kdm5a associates with p50 and binds to the Socs1 promoter region in resting NK cells, leading to a substantial decrease in H3K4me3 modification and repressive chromatin configuration at the Socs1 promoter. Thus, Kdm5a is required for priming activation of NK cells by suppressing the suppressor, SOCS1. Our study provides insights into the epigenetic regulation of innate immune response of NK cells.
Collapse
Affiliation(s)
- Dezhi Zhao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qian Zhang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Yiqi Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xia Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kai Zhao
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuanyuan Ding
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhiqing Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qicong Shen
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Chunmei Wang
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Nan Li
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China; National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
46
|
Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:227-41. [PMID: 26990581 DOI: 10.1002/wsbm.1331] [Citation(s) in RCA: 680] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 12/25/2022]
Abstract
The nuclear factor kappa B (NFκB) family of transcription factors is a key regulator of immune development, immune responses, inflammation, and cancer. The NFκB signaling system (defined by the interactions between NFκB dimers, IκB regulators, and IKK complexes) is responsive to a number of stimuli, and upon ligand-receptor engagement, distinct cellular outcomes, appropriate to the specific signal received, are set into motion. After almost three decades of study, many signaling mechanisms are well understood, rendering them amenable to mathematical modeling, which can reveal deeper insights about the regulatory design principles. While other reviews have focused on upstream, receptor proximal signaling (Hayden MS, Ghosh S. Signaling to NF-κB. Genes Dev 2004, 18:2195-2224; Verstrepen L, Bekaert T, Chau TL, Tavernier J, Chariot A, Beyaert R. TLR-4, IL-1R and TNF-R signaling to NF-κB: variations on a common theme. Cell Mol Life Sci 2008, 65:2964-2978), and advances through computational modeling (Basak S, Behar M, Hoffmann A. Lessons from mathematically modeling the NF-κB pathway. Immunol Rev 2012, 246:221-238; Williams R, Timmis J, Qwarnstrom E. Computational models of the NF-KB signalling pathway. Computation 2014, 2:131), in this review we aim to summarize the current understanding of the NFκB signaling system itself, the molecular mechanisms, and systems properties that are key to its diverse biological functions, and we discuss remaining questions in the field. WIREs Syst Biol Med 2016, 8:227-241. doi: 10.1002/wsbm.1331 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Simon Mitchell
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jesse Vargas
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
47
|
Cartwright T, Perkins ND, L Wilson C. NFKB1: a suppressor of inflammation, ageing and cancer. FEBS J 2016; 283:1812-22. [PMID: 26663363 DOI: 10.1111/febs.13627] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/23/2015] [Accepted: 12/08/2015] [Indexed: 12/18/2022]
Abstract
The pleiotropic consequences of nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) pathway activation result from the combinatorial effects of the five subunits that form the homo- and heterodimeric NF-κB complexes. Although biochemical and gene knockout studies have demonstrated overlapping and distinct functions for these proteins, much is still not known about the mechanisms determining context-dependent functions, the formation of different dimer complexes and transcriptional control in response to diverse stimuli. Here we discuss recent results that reveal that the nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1) (p105/p50) subunit is an important regulator of NF-κB activity in vivo. These effects are not restricted to being a dimer partner for other NF-κB subunits. Rather p50 homodimers have a critical role as suppressors of the NF-κB response, while the p105 precursor has a variety of NF-κB-independent functions. The importance of Nfkb1 function can be seen in mouse models, where Nfkb1(-/-) mice display increased inflammation and susceptibility to certain forms of DNA damage, leading to cancer, and a rapid ageing phenotype. In humans, low expression of Kip1 ubiquitination-promoting complex 1 (KPC1), a ubiquitin ligase required for p105 to p50 processing, was shown to correlate with a reduction in p50 and glioblastoma incidence. Therefore, while the majority of research in this field has focused on the upstream signalling pathways leading to NF-κB activation or the function of other NF-κB subunits, such as RelA (p65), these data demonstrate a critical role for NFKB1, potentially revealing new strategies for targeting this pathway in inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Tyrell Cartwright
- Fibrosis Laboratory, Institute of Cellular Medicine, Newcastle University, UK
| | - Neil D Perkins
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, UK
| | - Caroline L Wilson
- Fibrosis Laboratory, Institute of Cellular Medicine, Newcastle University, UK
| |
Collapse
|
48
|
Russo I, Berti G, Plotegher N, Bernardo G, Filograna R, Bubacco L, Greggio E. Leucine-rich repeat kinase 2 positively regulates inflammation and down-regulates NF-κB p50 signaling in cultured microglia cells. J Neuroinflammation 2015; 12:230. [PMID: 26646749 PMCID: PMC4673731 DOI: 10.1186/s12974-015-0449-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/01/2015] [Indexed: 01/12/2023] Open
Abstract
Background Over-activated microglia and chronic neuroinflammation contribute to dopaminergic neuron degeneration and progression of Parkinson’s disease (PD). Leucine-rich repeat kinase 2 (LRRK2), a kinase mutated in autosomal dominantly inherited and sporadic PD cases, is highly expressed in immune cells, in which it regulates inflammation through a yet unclear mechanism. Methods Here, using pharmacological inhibition and cultured Lrrk2−/− primary microglia cells, we validated LRRK2 as a positive modulator of inflammation and we investigated its specific function in microglia cells. Results Inhibition or genetic deletion of LRRK2 causes reduction of interleukin-1β and cyclooxygenase-2 expression upon lipopolysaccharide-mediated inflammation. LRRK2 also takes part of the signaling trigged by α-synuclein fibrils, which culminates in induction of inflammatory mediators. At the molecular level, loss of LRRK2 or inhibition of its kinase activity results in increased phosphorylation of nuclear factor kappa-B (NF-κB) inhibitory subunit p50 at S337, a protein kinase A (PKA)-specific phosphorylation site, with consequent accumulation of p50 in the nucleus. Conclusions Taken together, these findings point to a role of LRRK2 in microglia activation and sustainment of neuroinflammation and in controlling of NF-κB p50 inhibitory signaling. Understanding the molecular pathways coordinated by LRRK2 in activated microglia cells after pathological stimuli such us fibrillar α-synuclein holds the potential to provide novel targets for PD therapeutics.
Collapse
Affiliation(s)
- Isabella Russo
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Giulia Berti
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Nicoletta Plotegher
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy.,Current address: Department of Cell and Developmental Biology, University College London, London, UK
| | - Greta Bernardo
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Roberta Filograna
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy.,Current address: Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Luigi Bubacco
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
49
|
Ourthiague DR, Birnbaum H, Ortenlöf N, Vargas JD, Wollman R, Hoffmann A. Limited specificity of IRF3 and ISGF3 in the transcriptional innate-immune response to double-stranded RNA. J Leukoc Biol 2015; 98:119-28. [PMID: 25896227 DOI: 10.1189/jlb.4a1014-483rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/02/2015] [Indexed: 11/24/2022] Open
Abstract
The innate immune response is largely initiated by pathogen-responsive activation of the transcription factor IRF3. Among other target genes, IRF3 controls the expression of IFN-β, which triggers the activation of the transcription factor ISGF3 via the IFNAR. IRF3 and ISGF3 have been reported to control many of the same target genes and together, control the antimicrobial innate-immune program; however, their respective contributions and specificities remain unclear. Here, we used genomic technologies to characterize their specificity in terms of their physical DNA-binding and genetic function. With the use of ChiP-seq and transcriptomic measurements in WT versus ifnar(-/-) versus ifnar(-/-)irf3(-/-) macrophages responding to intracellular dsRNA, we confirmed the known ISGF3 DNA-binding motif and further specified a distinct IRF3 consensus sequence. The functional specificity of IRF3 is particularly pronounced in cytokine/chemokine regulation; yet, even in the control of IFN-β, that specificity is not absolute. By mathematically modeling IFN-β production within an abstracted tissue layer, we find that IRF3 versus ISGF3 specificity may be critical to limiting IFN-β production and ISGF3 activation, temporally and spatially, but that partial overlap in their specificity is tolerable and may enhance the effectiveness of the innate-immune response.
Collapse
Affiliation(s)
- Diana R Ourthiague
- *Signaling Systems Laboratory and Department of Chemistry and Biochemistry and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, California, USA; and Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Harry Birnbaum
- *Signaling Systems Laboratory and Department of Chemistry and Biochemistry and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, California, USA; and Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Niklas Ortenlöf
- *Signaling Systems Laboratory and Department of Chemistry and Biochemistry and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, California, USA; and Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Jesse D Vargas
- *Signaling Systems Laboratory and Department of Chemistry and Biochemistry and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, California, USA; and Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Roy Wollman
- *Signaling Systems Laboratory and Department of Chemistry and Biochemistry and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, California, USA; and Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Alexander Hoffmann
- *Signaling Systems Laboratory and Department of Chemistry and Biochemistry and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, California, USA; and Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
50
|
Wilson CL, Jurk D, Fullard N, Banks P, Page A, Luli S, Elsharkawy AM, Gieling RG, Chakraborty JB, Fox C, Richardson C, Callaghan K, Blair GE, Fox N, Lagnado A, Passos JF, Moore AJ, Smith GR, Tiniakos DG, Mann J, Oakley F, Mann DA. NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat Commun 2015; 6:6818. [PMID: 25879839 PMCID: PMC4410629 DOI: 10.1038/ncomms7818] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/02/2015] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) develops on the background of chronic hepatitis.
Leukocytes found within the HCC microenvironment are implicated as regulators of
tumour growth. We show that diethylnitrosamine (DEN)-induced murine HCC is
attenuated by antibody-mediated depletion of hepatic neutrophils, the latter
stimulating hepatocellular ROS and telomere DNA damage. We additionally report a
previously unappreciated tumour suppressor function for hepatocellular nfkb1
operating via p50:p50 dimers and the co-repressor HDAC1. These anti-inflammatory
proteins combine to transcriptionally repress hepatic expression of a S100A8/9,
CXCL1 and CXCL2 neutrophil chemokine network. Loss of nfkb1 promotes
ageing-associated chronic liver disease (CLD), characterized by steatosis,
neutrophillia, fibrosis, hepatocyte telomere damage and HCC.
Nfkb1S340A/S340Amice carrying a mutation
designed to selectively disrupt p50:p50:HDAC1 complexes are more susceptible to HCC;
by contrast, mice lacking S100A9 express reduced neutrophil chemokines and are
protected from HCC. Inhibiting neutrophil accumulation in CLD or targeting their
tumour-promoting activities may offer therapeutic opportunities in HCC. The role of neutrophils in cancer development is not widely
appreciated. Here, the authors show that NF-κB-deficient hepatocytes
overproduce chemokines, leading to hepatocellular carcinoma due to excessive neutrophil
recruitment, and that neutrophil depletion prevents liver cancer in these
mice.
Collapse
Affiliation(s)
- C L Wilson
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - D Jurk
- Newcastle University Institute for Ageing and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK
| | - N Fullard
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - P Banks
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - A Page
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - S Luli
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - A M Elsharkawy
- Liver Unit, University Hospitals Birmingham, Birmingham B15 2TH, UK
| | - R G Gieling
- Hypoxia and Therapeutics Group, Manchester Pharmacy School, University of Manchester, Manchester M13 9PT, UK
| | - J Bagchi Chakraborty
- Department of Medicine, Immunology and Inflammation, Imperial College of Science, Technology and Medicine, Hammersmith Hospital, London W12 0NN, UK
| | - C Fox
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - C Richardson
- Centre for Behaviour and Evolution/Institute of Neuroscience, Medical School, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - K Callaghan
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - G E Blair
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Garstang Building, Leeds LS2 9JT, UK
| | - N Fox
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Garstang Building, Leeds LS2 9JT, UK
| | - A Lagnado
- Newcastle University Institute for Ageing and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK
| | - J F Passos
- Newcastle University Institute for Ageing and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK
| | - A J Moore
- Institute for Cell and Molecular Biosciences, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - G R Smith
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - D G Tiniakos
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - J Mann
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - F Oakley
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - D A Mann
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|