1
|
Singer A, Ramos A, Keating AE. Elaboration of the Homer1 recognition landscape reveals incomplete divergence of paralogous EVH1 domains. Protein Sci 2024; 33:e5094. [PMID: 38989636 PMCID: PMC11237882 DOI: 10.1002/pro.5094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024]
Abstract
Short sequences that mediate interactions with modular binding domains are ubiquitous throughout eukaryotic proteomes. Networks of short linear motifs (SLiMs) and their corresponding binding domains orchestrate many cellular processes, and the low mutational barrier to evolving novel interactions provides a way for biological systems to rapidly sample selectable phenotypes. Mapping SLiM binding specificity and the rules that govern SLiM evolution is fundamental to uncovering the pathways regulated by these networks and developing the tools to manipulate them. We used high-throughput screening of the human proteome to identify sequences that bind to the Enabled/VASP homology 1 (EVH1) domain of the postsynaptic density scaffolding protein Homer1. This expanded our understanding of the determinants of Homer EVH1 binding preferences and defined a new motif that can facilitate the discovery of additional Homer-mediated interactions. Interestingly, the Homer1 EVH1 domain preferentially binds to sequences containing an N-terminally overlapping motif that is bound by the paralogous family of Ena/VASP actin polymerases, and many of these sequences can bind to EVH1 domains from both protein families. We provide evidence from orthologous EVH1 domains in pre-metazoan organisms that the overlap in human Ena/VASP and Homer binding preferences corresponds to an incomplete divergence from a common Ena/VASP ancestor. Given this overlap in binding profiles, promiscuous sequences that can be recognized by both families either achieve specificity through extrinsic regulatory strategies or may provide functional benefits via multi-specificity. This may explain why these paralogs incompletely diverged despite the accessibility of further diverged isoforms.
Collapse
Affiliation(s)
- Avinoam Singer
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Alejandra Ramos
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Amy E. Keating
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
2
|
Yu Q, Wang Z, Tu Y, Cao Y, Zhu H, Shao J, Zhuang R, Zhou Y, Zhang J. Proteasome activation: A novel strategy for targeting undruggable intrinsically disordered proteins. Bioorg Chem 2024; 145:107217. [PMID: 38368657 DOI: 10.1016/j.bioorg.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Intrinsically disordered proteins (IDPs) are characterized by their inability to adopt well-defined tertiary structures under physiological conditions. Nonetheless, they often play pivotal roles in the progression of various diseases, including cancer, neurodegenerative disorders, and cardiovascular ailments. Owing to their inherent dynamism, conventional drug design approaches based on structural considerations encounter substantial challenges when applied to IDPs. Consequently, the pursuit of therapeutic interventions directed towards IDPs presents a complex endeavor. While there are indeed existing methodologies for targeting IDPs, they are encumbered by noteworthy constrains. Hence, there exists an imminent imperative to investigate more efficacious and universally applicable strategies for modulating IDPs. Here, we present an overview of the latest advancements in the research pertaining to IDPs, along with the indirect regulation approach involving the modulation of IDP degradation through proteasome. By comprehending these advancements in research, novel insights can be generated to facilitate the development of new drugs targeted at addressing the accumulation of IDPs in diverse pathological conditions.
Collapse
Affiliation(s)
- Qian Yu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Zheng Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yutong Tu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu Cao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Huajian Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Jiaan Shao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China.
| | - Yubo Zhou
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jiankang Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|
3
|
Zeke A, Alexa A, Reményi A. Discovery and Characterization of Linear Motif Mediated Protein-Protein Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:59-71. [PMID: 38507200 DOI: 10.1007/978-3-031-52193-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
There are myriads of protein-protein complexes that form within the cell. In addition to classical binding events between globular domains, many protein-protein interactions involve short disordered protein regions. The latter contain so-called linear motifs binding specifically to ordered protein domain surfaces. Linear binding motifs are classified based on their consensus sequence, where only a few amino acids are conserved. In this chapter we will review experimental and in silico techniques that can be used for the discovery and characterization of linear motif mediated protein-protein complexes involved in cellular signaling, protein level and gene expression regulation.
Collapse
Affiliation(s)
- András Zeke
- Institute of Organic Chemistry, HUN-REN Research Center for Natural Sciences, Budapest, Hungary
| | - Anita Alexa
- Institute of Organic Chemistry, HUN-REN Research Center for Natural Sciences, Budapest, Hungary
| | - Attila Reményi
- Institute of Organic Chemistry, HUN-REN Research Center for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
4
|
Kliche J, Garvanska DH, Simonetti L, Badgujar D, Dobritzsch D, Nilsson J, Davey NE, Ivarsson Y. Large-scale phosphomimetic screening identifies phospho-modulated motif-based protein interactions. Mol Syst Biol 2023; 19:e11164. [PMID: 37219487 PMCID: PMC10333884 DOI: 10.15252/msb.202211164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Phosphorylation is a ubiquitous post-translation modification that regulates protein function by promoting, inhibiting or modulating protein-protein interactions. Hundreds of thousands of phosphosites have been identified but the vast majority have not been functionally characterised and it remains a challenge to decipher phosphorylation events modulating interactions. We generated a phosphomimetic proteomic peptide-phage display library to screen for phosphosites that modulate short linear motif-based interactions. The peptidome covers ~13,500 phospho-serine/threonine sites found in the intrinsically disordered regions of the human proteome. Each phosphosite is represented as wild-type and phosphomimetic variant. We screened 71 protein domains to identify 248 phosphosites that modulate motif-mediated interactions. Affinity measurements confirmed the phospho-modulation of 14 out of 18 tested interactions. We performed a detailed follow-up on a phospho-dependent interaction between clathrin and the mitotic spindle protein hepatoma-upregulated protein (HURP), demonstrating the essentiality of the phospho-dependency to the mitotic function of HURP. Structural characterisation of the clathrin-HURP complex elucidated the molecular basis for the phospho-dependency. Our work showcases the power of phosphomimetic ProP-PD to discover novel phospho-modulated interactions required for cellular function.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry, BMCUppsala UniversityUppsalaSweden
| | - Dimitriya Hristoforova Garvanska
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | | | - Dilip Badgujar
- Department of Chemistry, BMCUppsala UniversityUppsalaSweden
| | | | - Jakob Nilsson
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Norman E Davey
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
| | - Ylva Ivarsson
- Department of Chemistry, BMCUppsala UniversityUppsalaSweden
| |
Collapse
|
5
|
Paul AA, Szulc NA, Kobiela A, Brown SJ, Pokrzywa W, Gutowska-Owsiak D. In silico analysis of the profilaggrin sequence indicates alterations in the stability, degradation route, and intracellular protein fate in filaggrin null mutation carriers. Front Mol Biosci 2023; 10:1105678. [PMID: 37200867 PMCID: PMC10185843 DOI: 10.3389/fmolb.2023.1105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/19/2023] [Indexed: 05/20/2023] Open
Abstract
Background: Loss of function mutation in FLG is the major genetic risk factor for atopic dermatitis (AD) and other allergic manifestations. Presently, little is known about the cellular turnover and stability of profilaggrin, the protein encoded by FLG. Since ubiquitination directly regulates the cellular fate of numerous proteins, their degradation and trafficking, this process could influence the concentration of filaggrin in the skin. Objective: To determine the elements mediating the interaction of profilaggrin with the ubiquitin-proteasome system (i.e., degron motifs and ubiquitination sites), the features responsible for its stability, and the effect of nonsense and frameshift mutations on profilaggrin turnover. Methods: The effect of inhibition of proteasome and deubiquitinases on the level and modifications of profilaggrin and processed products was assessed by immunoblotting. Wild-type profilaggrin sequence and its mutated variants were analysed in silico using the DEGRONOPEDIA and Clustal Omega tool. Results: Inhibition of proteasome and deubiquitinases stabilizes profilaggrin and its high molecular weight of presumably ubiquitinated derivatives. In silico analysis of the sequence determined that profilaggrin contains 18 known degron motifs as well as multiple canonical and non-canonical ubiquitination-prone residues. FLG mutations generate products with increased stability scores, altered usage of the ubiquitination marks, and the frequent appearance of novel degrons, including those promoting C-terminus-mediated degradation routes. Conclusion: The proteasome is involved in the turnover of profilaggrin, which contains multiple degrons and ubiquitination-prone residues. FLG mutations alter those key elements, affecting the degradation routes and the mutated products' stability.
Collapse
Affiliation(s)
- Argho Aninda Paul
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Natalia A. Szulc
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Adrian Kobiela
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Sara J. Brown
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Danuta Gutowska-Owsiak
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| |
Collapse
|
6
|
Agrahari AK, Srivastava M, Singh M, Asthana S. SARS-CoV-2 envelope protein attain K ac mediated dynamical interaction network to adopt 'histone mimic' at BRD4 interface. J Biomol Struct Dyn 2023; 41:15305-15319. [PMID: 36907648 DOI: 10.1080/07391102.2023.2188430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023]
Abstract
Interface mimicry, achieved by recognition of host-pathogen interactions, is the basis by which pathogen proteins can hijack the host machinery. The envelope (E) protein of SARS-CoV-2 is reported to mimic the histones at the BRD4 surface via establishing the structural mimicry; however, the underlying mechanism of E protein mimicking the histones is still elusive. To explore the mimics at dynamic and structural residual network level an extensive docking, and MD simulations were carried out in a comparative manner between complexes of H3-, H4-, E-, and apo-BRD4. We identified that E peptide is able to attain an 'interaction network mimicry', as its acetylated lysine (Kac) achieves orientation and residual fingerprint similar to histones, including water-mediated interactions for both the Kac positions. We identified Y59 of E, playing an anchor role to escort lysine positioning inside the binding site. Furthermore, the binding site analysis confirms that E peptide needs a higher volume, similar to the H4-BRD4 where both the lysine's (Kac5 and Kac8) can accommodate nicely, however, the position of Kac8 is mimicked by two additional water molecules other than four water-mediated bridging's, strengthening the possibility that E peptide could hijack host BRD4 surface. These molecular insights seem pivotal for mechanistic understanding and BRD4-specific therapeutic intervention. KEY POINTSMolecular mimicry is reported in hijacking and then outcompeting the host counterparts so that pathogens can rewire their cellular function by overcoming the host defense mechanism.The molecular recognition process is the basis of molecular mimicry. The E peptide of SARS-CoV-2 is reported to mimic host histone at the BRD4 surface by utilizing its C-terminally placed acetylated lysine (Kac63) to mimic the N-terminally placed acetylated lysine Kac5GGKac8 histone (H4) by interaction network mimicry identified through microsecond molecular dynamics (MD) simulations and post-processing extensive analysis.There are two steps to mimic: firstly, tyrosine residues help E to anchor at the BRD4 surface to position Kac and increase the volume of the pocket. Secondary, after positioning of Kac, a common durable interaction network N140:Kac5; Kac5:W1; W1:Y97; W1:W2; W2:W3; W3:W4; W4:P82 is established between Kac5, with key residues P82, Y97, N140, and four water molecules through water mediate bridge. Furthermore, the second acetylated lysine Kac8 position and its interaction as polar contact with Kac5 were also mimicked by E peptide through interaction network P82:W5; W5:Kac63; W5:W6; W6:Kac63.The binding event at BRD4/BD1 seems an induced-fit mechanism as a bigger binding site volume was identified at H4-BRD4 on which E peptide attains its better stability than H3-BRD4.We identified the tyrosine residue Y59 of E that acts like an anchor on the BRD4 surface to position Kac inside the pocket and attain the interaction network by using aromatic residues of the BRD4 surface.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Mitul Srivastava
- Translational Health Science and Technology Institute (THSTI), Haryana, India
| | - Mrityunjay Singh
- Translational Health Science and Technology Institute (THSTI), Haryana, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Haryana, India
| |
Collapse
|
7
|
Saibu OA, Hammed SO, Oladipo OO, Odunitan TT, Ajayi TM, Adejuyigbe AJ, Apanisile BT, Oyeneyin OE, Oluwafemi AT, Ayoola T, Olaoba OT, Alausa AO, Omoboyowa DA. Protein-protein interaction and interference of carcinogenesis by supramolecular modifications. Bioorg Med Chem 2023; 81:117211. [PMID: 36809721 DOI: 10.1016/j.bmc.2023.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
Protein-protein interactions (PPIs) are essential in normal biological processes, but they can become disrupted or imbalanced in cancer. Various technological advancements have led to an increase in the number of PPI inhibitors, which target hubs in cancer cell's protein networks. However, it remains difficult to develop PPI inhibitors with desired potency and specificity. Supramolecular chemistry has only lately become recognized as a promising method to modify protein activities. In this review, we highlight recent advances in the use of supramolecular modification approaches in cancer therapy. We make special note of efforts to apply supramolecular modifications, such as molecular tweezers, to targeting the nuclear export signal (NES), which can be used to attenuate signaling processes in carcinogenesis. Finally, we discuss the strengths and weaknesses of using supramolecular approaches to targeting PPIs.
Collapse
Affiliation(s)
- Oluwatosin A Saibu
- Department of Environmental Toxicology, Universitat Duisburg-Essen, NorthRhine-Westphalia, Germany
| | - Sodiq O Hammed
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oladapo O Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Tope T Odunitan
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Temitope M Ajayi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Aderonke J Adejuyigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Boluwatife T Apanisile
- Department of Nutrition and Dietetics, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oluwatoba E Oyeneyin
- Theoretical and Computational Chemistry Unit, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Adenrele T Oluwafemi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Tolulope Ayoola
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Olamide T Olaoba
- Department of Molecular Pathogenesis and Therapeutics, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Abdullahi O Alausa
- Department of Molecular Biology and Biotechnology, ITMO University, St Petersburg, Russia
| | - Damilola A Omoboyowa
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| |
Collapse
|
8
|
Intrinsically Disordered Proteins: An Overview. Int J Mol Sci 2022; 23:ijms232214050. [PMID: 36430530 PMCID: PMC9693201 DOI: 10.3390/ijms232214050] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Many proteins and protein segments cannot attain a single stable three-dimensional structure under physiological conditions; instead, they adopt multiple interconverting conformational states. Such intrinsically disordered proteins or protein segments are highly abundant across proteomes, and are involved in various effector functions. This review focuses on different aspects of disordered proteins and disordered protein regions, which form the basis of the so-called "Disorder-function paradigm" of proteins. Additionally, various experimental approaches and computational tools used for characterizing disordered regions in proteins are discussed. Finally, the role of disordered proteins in diseases and their utility as potential drug targets are explored.
Collapse
|
9
|
Handa T, Kundu D, Dubey VK. Perspectives on evolutionary and functional importance of intrinsically disordered proteins. Int J Biol Macromol 2022; 224:243-255. [DOI: 10.1016/j.ijbiomac.2022.10.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
10
|
Hou C, Li Y, Wang M, Wu H, Li T. Systematic prediction of degrons and E3 ubiquitin ligase binding via deep learning. BMC Biol 2022; 20:162. [PMID: 35836176 PMCID: PMC9281121 DOI: 10.1186/s12915-022-01364-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/29/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Degrons are short linear motifs, bound by E3 ubiquitin ligase to target protein substrates to be degraded by the ubiquitin-proteasome system. Mutations leading to deregulation of degron functionality disrupt control of protein abundance due to mistargeting of proteins destined for degradation and often result in pathologies. Targeting degrons by small molecules also emerges as an exciting drug design strategy to upregulate the expression of specific proteins. Despite their essential function and disease targetability, reliable identification of degrons remains a conundrum. Here, we developed a deep learning-based model named Degpred that predicts general degrons directly from protein sequences. RESULTS We showed that the BERT-based model performed well in predicting degrons singly from protein sequences. Then, we used the deep learning model Degpred to predict degrons proteome-widely. Degpred successfully captured typical degron-related sequence properties and predicted degrons beyond those from motif-based methods which use a handful of E3 motifs to match possible degrons. Furthermore, we calculated E3 motifs using predicted degrons on the substrates in our collected E3-substrate interaction dataset and constructed a regulatory network of protein degradation by assigning predicted degrons to specific E3s with calculated motifs. Critically, we experimentally verified that a predicted SPOP binding degron on CBX6 prompts CBX6 degradation and mediates the interaction with SPOP. We also showed that the protein degradation regulatory system is important in tumorigenesis by surveying degron-related mutations in TCGA. CONCLUSIONS Degpred provides an efficient tool to proteome-wide prediction of degrons and binding E3s singly from protein sequences. Degpred successfully captures typical degron-related sequence properties and predicts degrons beyond those from previously used motif-based methods, thus greatly expanding the degron landscape, which should advance the understanding of protein degradation, and allow exploration of uncharacterized alterations of proteins in diseases. To make it easier for readers to access collected and predicted datasets, we integrated these data into the website http://degron.phasep.pro/ .
Collapse
Affiliation(s)
- Chao Hou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191 China
| | - Yuxuan Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191 China
| | - Mengyao Wang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Hong Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191 China
| |
Collapse
|
11
|
Guharoy M, Lazar T, Macossay-Castillo M, Tompa P. Degron masking outlines degronons, co-degrading functional modules in the proteome. Commun Biol 2022; 5:445. [PMID: 35545699 PMCID: PMC9095673 DOI: 10.1038/s42003-022-03391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
Effective organization of proteins into functional modules (networks, pathways) requires systems-level coordination between transcription, translation and degradation. Whereas the cooperation between transcription and translation was extensively studied, the cooperative degradation regulation of protein complexes and pathways has not been systematically assessed. Here we comprehensively analyzed degron masking, a major mechanism by which cellular systems coordinate degron recognition and protein degradation. For over 200 substrates with characterized degrons (E3 ligase targeting motifs, ubiquitination sites and disordered proteasomal entry sequences), we demonstrate that degrons extensively overlap with protein-protein interaction sites. Analysis of binding site information and protein abundance comparisons show that regulatory partners effectively outcompete E3 ligases, masking degrons from the ubiquitination machinery. Protein abundance variations between normal and cancer cells highlight the dynamics of degron masking components. Finally, integrative analysis of gene co-expression, half-life correlations and functional relationships between interacting proteins point towards higher-order, co-regulated degradation modules (‘degronons’) in the proteome. Systematic bioinformatics analysis of cooperative degradation of protein complexes indicates that degrons extensively overlap with protein-protein interaction sites, hiding degrons from ubiquitination machinery and suggesting the existence of co-degrading functional modules in the proteome.
Collapse
Affiliation(s)
- Mainak Guharoy
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium. .,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium. .,VIB Bioinformatics Core, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium.
| | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium.,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Mauricio Macossay-Castillo
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium.,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium. .,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium. .,Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, 1117, Budapest, Hungary.
| |
Collapse
|
12
|
Kliche J, Ivarsson Y. Orchestrating serine/threonine phosphorylation and elucidating downstream effects by short linear motifs. Biochem J 2022; 479:1-22. [PMID: 34989786 PMCID: PMC8786283 DOI: 10.1042/bcj20200714] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Cellular function is based on protein-protein interactions. A large proportion of these interactions involves the binding of short linear motifs (SLiMs) by folded globular domains. These interactions are regulated by post-translational modifications, such as phosphorylation, that create and break motif binding sites or tune the affinity of the interactions. In addition, motif-based interactions are involved in targeting serine/threonine kinases and phosphatases to their substrate and contribute to the specificity of the enzymatic actions regulating which sites are phosphorylated. Here, we review how SLiM-based interactions assist in determining the specificity of serine/threonine kinases and phosphatases, and how phosphorylation, in turn, affects motif-based interactions. We provide examples of SLiM-based interactions that are turned on/off, or are tuned by serine/threonine phosphorylation and exemplify how this affects SLiM-based protein complex formation.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| |
Collapse
|
13
|
Fas BA, Maiani E, Sora V, Kumar M, Mashkoor M, Lambrughi M, Tiberti M, Papaleo E. The conformational and mutational landscape of the ubiquitin-like marker for autophagosome formation in cancer. Autophagy 2021; 17:2818-2841. [PMID: 33302793 PMCID: PMC8525936 DOI: 10.1080/15548627.2020.1847443] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Macroautophagy/autophagy is a cellular process to recycle damaged cellular components, and its modulation can be exploited for disease treatments. A key autophagy player is the ubiquitin-like protein MAP1LC3B/LC3B. Mutations and changes in MAP1LC3B expression occur in cancer samples. However, the investigation of the effects of these mutations on MAP1LC3B protein structure is still missing. Despite many LC3B structures that have been solved, a comprehensive study, including dynamics, has not yet been undertaken. To address this knowledge gap, we assessed nine physical models for biomolecular simulations for their capabilities to describe the structural ensemble of MAP1LC3B. With the resulting MAP1LC3B structural ensembles, we characterized the impact of 26 missense mutations from pan-cancer studies with different approaches, and we experimentally validated our prediction for six variants using cellular assays. Our findings shed light on damaging or neutral mutations in MAP1LC3B, providing an atlas of its modifications in cancer. In particular, P32Q mutation was found detrimental for protein stability with a propensity to aggregation. In a broader context, our framework can be applied to assess the pathogenicity of protein mutations or to prioritize variants for experimental studies, allowing to comprehensively account for different aspects that mutational events alter in terms of protein structure and function.Abbreviations: ATG: autophagy-related; Cα: alpha carbon; CG: coarse-grained; CHARMM: Chemistry at Harvard macromolecular mechanics; CONAN: contact analysis; FUNDC1: FUN14 domain containing 1; FYCO1: FYVE and coiled-coil domain containing 1; GABARAP: GABA type A receptor-associated protein; GROMACS: Groningen machine for chemical simulations; HP: hydrophobic pocket; LIR: LC3 interacting region; MAP1LC3B/LC3B microtubule associated protein 1 light chain 3 B; MD: molecular dynamics; OPTN: optineurin; OSF: open software foundation; PE: phosphatidylethanolamine, PLEKHM1: pleckstrin homology domain-containing family M 1; PSN: protein structure network; PTM: post-translational modification; SA: structural alphabet; SLiM: short linear motif; SQSTM1/p62: sequestosome 1; WT: wild-type.
Collapse
Affiliation(s)
- Burcu Aykac Fas
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Emiliano Maiani
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Valentina Sora
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Mukesh Kumar
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Maliha Mashkoor
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Lambrughi
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Tiberti
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
- Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Characterization of Rheumatoid Arthritis Risk-Associated SNPs and Identification of Novel Therapeutic Sites Using an In-Silico Approach. BIOLOGY 2021; 10:biology10060501. [PMID: 34199962 PMCID: PMC8227790 DOI: 10.3390/biology10060501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/28/2022]
Abstract
Simple Summary Rheumatoid arthritis (RA) is a complex disease resulting from multiple genetic and environmental pathogenic factors. The genetic factors include single-nucleotide polymorphisms (SNPs), which have been reported to be associated with RA, but their specific role in the pathogenesis of RA remains unexplained. This study explains the potential role of RA risk-associated SNPs in its pathogenesis in order to provide a basis for understanding the genetic complexity of RA. Several roles of these SNPs are described in this study, and may also aid in the design of a therapeutic strategy for RA. Furthermore, novel potential therapeutic sites have also been researched, resulting in the identification of three novel therapeutic targets. The therapeutic strategies for the treatment of RA include inflammatory pathway-targeting drugs, which alleviate inflammation in joints. There is always a need for novel therapeutic targets that can play a role in alleviating inflammation in autoimmune diseases including RA. Therefore, these novel therapeutic sites are very important, and further experimental studies are required. Abstract Single-nucleotide polymorphisms (SNPs) are reported to be associated with many diseases, including autoimmune diseases. In rheumatoid arthritis (RA), about 152 SNPs are reported to account for ~15% of its heritability. These SNPs may result in the alteration of gene expression and may also affect the stability of mRNA, resulting in diseased protein. Therefore, in order to predict the underlying mechanism of these SNPs and identify novel therapeutic sites for the treatment of RA, several bioinformatics tools were used. The damaging effect of 23 non-synonymous SNPs on proteins using different tools suggested four SNPs, including rs2476601 in PTPN22, rs5029941 and rs2230926 in TNFAIP3, and rs34536443 in TYK2, to be the most damaging. In total, 42 of 76 RA-associated intronic SNPs were predicted to create or abolish potential splice sites. Moreover, the analysis of 11 RA-associated UTR SNPs indicated that only one SNP, rs1128334, located in 3′UTR of ETS1, caused functional pattern changes in BRD-BOX. For the identification of novel therapeutics sites to treat RA, extensive gene–gene interaction network interactive pathways were established, with the identification of 13 potential target sites for the development of RA drugs, including three novel target genes. The anticipated effect of these findings on RA pathogenesis may be further validated in both in vivo and in vitro studies.
Collapse
|
15
|
Sharma R, Kumar S, Song M. Fundamental gene network rewiring at the second order within and across mammalian systems. Bioinformatics 2021; 37:3293-3301. [PMID: 33950233 DOI: 10.1093/bioinformatics/btab240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 02/24/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION Genetic or epigenetic events can rewire molecular networks to induce extraordinary phenotypical divergences. Among the many network rewiring approaches, no model-free statistical methods can differentiate gene-gene pattern changes not attributed to marginal changes. This may obscure fundamental rewiring from superficial changes. RESULTS Here we introduce a model-free Sharma-Song test to determine if patterns differ in the second order, meaning that the deviation of the joint distribution from the product of marginal distributions is unequal across conditions. We prove an asymptotic chi-squared null distribution for the test statistic. Simulation studies demonstrate its advantage over alternative methods in detecting second-order differential patterns. Applying the test on three independent mammalian developmental transcriptome datasets, we report a lower frequency of co-expression network rewiring between human and mouse for the same tissue group than the frequency of rewiring between tissue groups within the same species. We also find secondorder differential patterns between microRNA promoters and genes contrasting cerebellum and liver development in mice. These patterns are enriched in the spliceosome pathway regulating tissue specificity. Complementary to previous mammalian comparative studies mostly driven by first-order effects, our findings contribute an understanding of system-wide second-order gene network rewiring within and across mammalian systems. Second-order differential patterns constitute evidence for fundamentally rewired biological circuitry due to evolution, environment, or disease. AVAILABILITY The generic Sharma-Song test is available from the R package 'DiffXTables' at https://cran.rproject.org/package=DiffXTables. Other code and data are described in Methods. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ruby Sharma
- Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA
| | - Sajal Kumar
- Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA
| | - Mingzhou Song
- Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA.,Molecular Biology and Interdisciplinary Life Science Graduate Program New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
16
|
Bulavka D, Aptekmann AA, Méndez NA, Krick T, Sánchez IE. Thousands of protein linear motif classes may still be undiscovered. PLoS One 2021; 16:e0248841. [PMID: 33939703 PMCID: PMC8092775 DOI: 10.1371/journal.pone.0248841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/06/2021] [Indexed: 12/04/2022] Open
Abstract
Linear motifs are short protein subsequences that mediate protein interactions. Hundreds of motif classes including thousands of motif instances are known. Our theory estimates how many motif classes remain undiscovered. As commonly done, we describe motif classes as regular expressions specifying motif length and the allowed amino acids at each motif position. We measure motif specificity for a pair of motif classes by quantifying how many motif-discriminating positions prevent a protein subsequence from matching the two classes at once. We derive theorems for the maximal number of motif classes that can simultaneously maintain a certain number of motif-discriminating positions between all pairs of classes in the motif universe, for a given amino acid alphabet. We also calculate the fraction of all protein subsequences that would belong to a motif class if all potential motif classes came into existence. Naturally occurring pairs of motif classes present most often a single motif-discriminating position. This mild specificity maximizes the potential number of coexisting motif classes, the expansion of the motif universe due to amino acid modifications and the fraction of amino acid sequences that code for a motif instance. As a result, thousands of linear motif classes may remain undiscovered.
Collapse
Affiliation(s)
- Denys Bulavka
- Laboratorio de Fisiología de Proteínas, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de lnvestigaciones Cientificas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Matematica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ariel A. Aptekmann
- Laboratorio de Fisiología de Proteínas, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de lnvestigaciones Cientificas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, United States of America
| | - Nicolás A. Méndez
- Laboratorio de Fisiología de Proteínas, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de lnvestigaciones Cientificas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Teresa Krick
- Departamento de Matematica, Facultad de Ciencias Exactas y Naturales and IMAS—CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ignacio E. Sánchez
- Laboratorio de Fisiología de Proteínas, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de lnvestigaciones Cientificas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
17
|
Ruiz-Saenz A, Zahedi F, Peterson E, Yoo A, Dreyer CA, Spassov DS, Oses-Prieto J, Burlingame A, Moasser MM. Proteomic Analysis of Src Family Kinase Phosphorylation States in Cancer Cells Suggests Deregulation of the Unique Domain. Mol Cancer Res 2021; 19:957-967. [PMID: 33727342 DOI: 10.1158/1541-7786.mcr-20-0825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/03/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
The Src family kinases (SFK) are homologs of retroviral oncogenes, earning them the label of proto-oncogenes. Their functions are influenced by positive and negative regulatory tyrosine phosphorylation events and inhibitory and activating intramolecular and extramolecular interactions. This regulation is disrupted in their viral oncogene counterparts. However, in contrast to most other proto-oncogenes, the genetic alteration of these genes does not seem to occur in human tumors and how and whether their functions are altered in human cancers remain to be determined. To look for proteomic-level alterations, we took a more granular look at the activation states of SFKs based on their two known regulatory tyrosine phosphorylations, but found no significant differences in their activity states when comparing immortalized epithelial cells with cancer cells. SFKs are known to have other less well-studied phosphorylations, particularly within their unstructured N-terminal unique domains (UD), although their role in cancers has not been explored. In comparing panels of epithelial cells with cancer cells, we found a decrease in S17 phosphorylation in the UD of Src in cancer cells. Dephosphorylated S17 favors the dimerization of Src that is mediated through the UD and suggests increased Src dimerization in cancers. These data highlight the important role of the UD of Src and suggest that a deeper understanding of proteomic-level alterations of the unstructured UD of SFKs may provide considerable insights into how SFKs are deregulated in cancers. IMPLICATIONS: This work highlights the role of the N-terminal UD of Src kinases in regulating their signaling functions and possibly in their deregulation in human cancers.
Collapse
Affiliation(s)
- Ana Ruiz-Saenz
- Departments of Cell Biology & Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Farima Zahedi
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Elliott Peterson
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Ashley Yoo
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California
| | | | - Juan Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Mark M Moasser
- Department of Medicine, University of California, San Francisco, San Francisco, California. .,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| |
Collapse
|
18
|
Mészáros B, Sámano-Sánchez H, Alvarado-Valverde J, Čalyševa J, Martínez-Pérez E, Alves R, Shields DC, Kumar M, Rippmann F, Chemes LB, Gibson TJ. Short linear motif candidates in the cell entry system used by SARS-CoV-2 and their potential therapeutic implications. Sci Signal 2021; 14:eabd0334. [PMID: 33436497 PMCID: PMC7928535 DOI: 10.1126/scisignal.abd0334] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The first reported receptor for SARS-CoV-2 on host cells was the angiotensin-converting enzyme 2 (ACE2). However, the viral spike protein also has an RGD motif, suggesting that cell surface integrins may be co-receptors. We examined the sequences of ACE2 and integrins with the Eukaryotic Linear Motif (ELM) resource and identified candidate short linear motifs (SLiMs) in their short, unstructured, cytosolic tails with potential roles in endocytosis, membrane dynamics, autophagy, cytoskeleton, and cell signaling. These SLiM candidates are highly conserved in vertebrates and may interact with the μ2 subunit of the endocytosis-associated AP2 adaptor complex, as well as with various protein domains (namely, I-BAR, LC3, PDZ, PTB, and SH2) found in human signaling and regulatory proteins. Several motifs overlap in the tail sequences, suggesting that they may act as molecular switches, such as in response to tyrosine phosphorylation status. Candidate LC3-interacting region (LIR) motifs are present in the tails of integrin β3 and ACE2, suggesting that these proteins could directly recruit autophagy components. Our findings identify several molecular links and testable hypotheses that could uncover mechanisms of SARS-CoV-2 attachment, entry, and replication against which it may be possible to develop host-directed therapies that dampen viral infection and disease progression. Several of these SLiMs have now been validated to mediate the predicted peptide interactions.
Collapse
Affiliation(s)
- Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Jesús Alvarado-Valverde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Jelena Čalyševa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Elizabeth Martínez-Pérez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Laboratorio de bioinformática estructural, Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
| | - Renato Alves
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Denis C Shields
- School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Friedrich Rippmann
- Computational Chemistry & Biology, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, CP1650 San Martín, Buenos Aires, Argentina.
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| |
Collapse
|
19
|
Kumar M, Papaleo E. A pan-cancer assessment of alterations of the kinase domain of ULK1, an upstream regulator of autophagy. Sci Rep 2020; 10:14874. [PMID: 32913252 PMCID: PMC7483646 DOI: 10.1038/s41598-020-71527-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a key clearance process to recycle damaged cellular components. One important upstream regulator of autophagy is ULK1 kinase. Several three-dimensional structures of the ULK1 catalytic domain are available, but a comprehensive study, including molecular dynamics, is missing. Also, an exhaustive description of ULK1 alterations found in cancer samples is presently lacking. We here applied a framework which links -omics data to structural protein ensembles to study ULK1 alterations from genomics data available for more than 30 cancer types. We predicted the effects of mutations on ULK1 function and structural stability, accounting for protein dynamics, and the different layers of changes that a mutation can induce in a protein at the functional and structural level. ULK1 is down-regulated in gynecological tumors. In other cancer types, ULK2 could compensate for ULK1 downregulation and, in the majority of the cases, no marked changes in expression have been found. 36 missense mutations of ULK1, not limited to the catalytic domain, are co-occurring with mutations in a large number of ULK1 interactors or substrates, suggesting a pronounced effect of the upstream steps of autophagy in many cancer types. Moreover, our results pinpoint that more than 50% of the mutations in the kinase domain of ULK1, here investigated, are predicted to affect protein stability. Three mutations (S184F, D102N, and A28V) are predicted with only impact on kinase activity, either modifying the functional dynamics or the capability to exert effects from distal sites to the functional and catalytic regions. The framework here applied could be extended to other protein targets to aid the classification of missense mutations from cancer genomics studies, as well as to prioritize variants for experimental validation, or to select the appropriate biological readouts for experiments.
Collapse
Affiliation(s)
- Mukesh Kumar
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.
- Translational Disease System Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
20
|
Upadhyayula RS. Computational Investigation of Structural Interfaces of Protein Complexes with Short Linear Motifs. J Proteome Res 2020; 19:3254-3263. [DOI: 10.1021/acs.jproteome.0c00212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Raghavender Surya Upadhyayula
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research (BISR), Jaipur, Rajasthan 302001, India
| |
Collapse
|
21
|
Palopoli N, Iserte JA, Chemes LB, Marino-Buslje C, Parisi G, Gibson TJ, Davey NE. The articles.ELM resource: simplifying access to protein linear motif literature by annotation, text-mining and classification. Database (Oxford) 2020; 2020:baaa040. [PMID: 32507889 PMCID: PMC7276420 DOI: 10.1093/database/baaa040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 11/12/2022]
Abstract
Modern biology produces data at a staggering rate. Yet, much of these biological data is still isolated in the text, figures, tables and supplementary materials of articles. As a result, biological information created at great expense is significantly underutilised. The protein motif biology field does not have sufficient resources to curate the corpus of motif-related literature and, to date, only a fraction of the available articles have been curated. In this study, we develop a set of tools and a web resource, 'articles.ELM', to rapidly identify the motif literature articles pertinent to a researcher's interest. At the core of the resource is a manually curated set of about 8000 motif-related articles. These articles are automatically annotated with a range of relevant biological data allowing in-depth search functionality. Machine-learning article classification is used to group articles based on their similarity to manually curated motif classes in the Eukaryotic Linear Motif resource. Articles can also be manually classified within the resource. The 'articles.ELM' resource permits the rapid and accurate discovery of relevant motif articles thereby improving the visibility of motif literature and simplifying the recovery of valuable biological insights sequestered within scientific articles. Consequently, this web resource removes a critical bottleneck in scientific productivity for the motif biology field. Database URL: http://slim.icr.ac.uk/articles/.
Collapse
Affiliation(s)
- N Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Roque Saenz Peña 352, Bernal, Buenos Aires B1876BXD, Argentina
| | - J A Iserte
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Av. Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina
| | - L B Chemes
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, IIB-INTECH-CONICET, Av. 25 de Mayo y Francia, San Martín, Buenos Aires B1650, Argentina
| | - C Marino-Buslje
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Av. Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina
| | - G Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Roque Saenz Peña 352, Bernal, Buenos Aires B1876BXD, Argentina
| | - T J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - N E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
22
|
Gouw M, Alvarado-Valverde J, Čalyševa J, Diella F, Kumar M, Michael S, Van Roey K, Dinkel H, Gibson TJ. How to Annotate and Submit a Short Linear Motif to the Eukaryotic Linear Motif Resource. Methods Mol Biol 2020; 2141:73-102. [PMID: 32696353 DOI: 10.1007/978-1-0716-0524-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the past few years, it has become apparent that approximately 35% of the human proteome consists of intrinsically disordered regions. Many of these disordered regions are rich in short linear motifs (SLiMs) which mediate protein-protein interactions. Although these motifs are short and often partially conserved, they are involved in many important aspects of protein function, including cleavage, targeting, degradation, docking, phosphorylation, and other posttranslational modifications. The Eukaryotic Linear Motif resource (ELM) was established over 15 years ago as a repository to store and catalogue the scientific discoveries of motifs. Each motif in the database is annotated and curated manually, based on the experimental evidence gathered from publications. The entries themselves are submitted to ELM by filling in two annotation templates designed for motif class and motif instance annotation. In this protocol, we describe the steps involved in annotating new motifs and how to submit them to ELM.
Collapse
Affiliation(s)
- Marc Gouw
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jesús Alvarado-Valverde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Jelena Čalyševa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Francesca Diella
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sushama Michael
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Kim Van Roey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Holger Dinkel
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
23
|
Hraber P, O'Maille PE, Silberfarb A, Davis-Anderson K, Generous N, McMahon BH, Fair JM. Resources to Discover and Use Short Linear Motifs in Viral Proteins. Trends Biotechnol 2020; 38:113-127. [PMID: 31427097 PMCID: PMC7114124 DOI: 10.1016/j.tibtech.2019.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/23/2022]
Abstract
Viral proteins evade host immune function by molecular mimicry, often achieved by short linear motifs (SLiMs) of three to ten consecutive amino acids (AAs). Motif mimicry tolerates mutations, evolves quickly to modify interactions with the host, and enables modular interactions with protein complexes. Host cells cannot easily coordinate changes to conserved motif recognition and binding interfaces under selective pressure to maintain critical signaling pathways. SLiMs offer potential for use in synthetic biology, such as better immunogens and therapies, but may also present biosecurity challenges. We survey viral uses of SLiMs to mimic host proteins, and information resources available for motif discovery. As the number of examples continues to grow, knowledge management tools are essential to help organize and compare new findings.
Collapse
Affiliation(s)
- Peter Hraber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Paul E O'Maille
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Andrew Silberfarb
- Artificial Intelligence Center, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Katie Davis-Anderson
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Nicholas Generous
- Global Security Directorate, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Benjamin H McMahon
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jeanne M Fair
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
24
|
Spassov DS, Ruiz-Saenz A, Piple A, Moasser MM. A Dimerization Function in the Intrinsically Disordered N-Terminal Region of Src. Cell Rep 2019; 25:449-463.e4. [PMID: 30304684 PMCID: PMC6226010 DOI: 10.1016/j.celrep.2018.09.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/09/2018] [Accepted: 09/12/2018] [Indexed: 01/30/2023] Open
Abstract
The mode of regulation of Src kinases has been elucidated by crystallographic studies identifying conserved structured protein modules involved in an orderly set of intramolecular associations and ligand interactions. Despite these detailed insights, much of the complex behavior and diversity in the Src family remains unexplained. A key missing piece is the function of the unstructured N-terminal region. We report here the function of the N-terminal region in binding within a hydrophobic pocket in the kinase domain of a dimerization partner. Dimerization substantially enhances autophosphorylation and phosphorylation of selected substrates, and interfering with dimerization is disruptive to these functions. Dimerization and Y419 phosphorylation are codependent events creating a bistable switch. Given the versatility inherent in this intrinsically disordered region, its multisite phosphorylations, and its divergence within the family, the unique domain likely functions as a central signaling hub overseeing much of the activities and unique functions of Src family kinases. Spassov et al. report that Src exists in cells and functions as a dimer and that dimerization and autophosphorylation are codependent events. Through a comprehensive structure-function analysis, they show that the dimer is an asymmetric dimer held through the interaction of the myristoylated N-terminal unique domain of one partner with a hydrophobic pocket in the kinase domain of another.
Collapse
Affiliation(s)
- Danislav S Spassov
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ana Ruiz-Saenz
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amit Piple
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark M Moasser
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
25
|
Zanzoni A, Ribeiro DM, Brun C. Understanding protein multifunctionality: from short linear motifs to cellular functions. Cell Mol Life Sci 2019; 76:4407-4412. [PMID: 31432235 PMCID: PMC11105236 DOI: 10.1007/s00018-019-03273-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/28/2022]
Abstract
Moonlighting proteins perform multiple unrelated functions without any change in polypeptide sequence. They can coordinate cellular activities, serving as switches between pathways and helping to respond to changes in the cellular environment. Therefore, regulation of the multiple protein activities, in space and time, is likely to be important for the homeostasis of biological systems. Some moonlighting proteins may perform their multiple functions simultaneously while others alternate between functions due to certain triggers. The switch of the moonlighting protein's functions can be regulated by several distinct factors, including the binding of other molecules such as proteins. We here review the approaches used to identify moonlighting proteins and existing repositories. We particularly emphasise the role played by short linear motifs and PTMs as regulatory switches of moonlighting functions.
Collapse
Affiliation(s)
- Andreas Zanzoni
- Aix Marseille Univ, INSERM, TAGC, UMR_S1090, Marseille, France
| | - Diogo M Ribeiro
- Aix Marseille Univ, INSERM, TAGC, UMR_S1090, Marseille, France
| | - Christine Brun
- Aix Marseille Univ, INSERM, TAGC, UMR_S1090, Marseille, France.
- CNRS, Marseille, France.
| |
Collapse
|
26
|
Davey NE, Babu MM, Blackledge M, Bridge A, Capella-Gutierrez S, Dosztanyi Z, Drysdale R, Edwards RJ, Elofsson A, Felli IC, Gibson TJ, Gutmanas A, Hancock JM, Harrow J, Higgins D, Jeffries CM, Le Mercier P, Mészáros B, Necci M, Notredame C, Orchard S, Ouzounis CA, Pancsa R, Papaleo E, Pierattelli R, Piovesan D, Promponas VJ, Ruch P, Rustici G, Romero P, Sarntivijai S, Saunders G, Schuler B, Sharan M, Shields DC, Sussman JL, Tedds JA, Tompa P, Turewicz M, Vondrasek J, Vranken WF, Wallace BA, Wichapong K, Tosatto SCE. An intrinsically disordered proteins community for ELIXIR. F1000Res 2019; 8. [PMID: 31824649 PMCID: PMC6880265 DOI: 10.12688/f1000research.20136.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 01/20/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) are now recognised as major determinants in cellular regulation. This white paper presents a roadmap for future e-infrastructure developments in the field of IDP research within the ELIXIR framework. The goal of these developments is to drive the creation of high-quality tools and resources to support the identification, analysis and functional characterisation of IDPs. The roadmap is the result of a workshop titled “An intrinsically disordered protein user community proposal for ELIXIR” held at the University of Padua. The workshop, and further consultation with the members of the wider IDP community, identified the key priority areas for the roadmap including the development of standards for data annotation, storage and dissemination; integration of IDP data into the ELIXIR Core Data Resources; and the creation of benchmarking criteria for IDP-related software. Here, we discuss these areas of priority, how they can be implemented in cooperation with the ELIXIR platforms, and their connections to existing ELIXIR Communities and international consortia. The article provides a preliminary blueprint for an IDP Community in ELIXIR and is an appeal to identify and involve new stakeholders.
Collapse
Affiliation(s)
- Norman E Davey
- Division of Cancer Biology, Institute of Cancer Research, UK, London, SW3 6JB, UK
| | - M Madan Babu
- MRC Laboratory of Molecular Biology,, Cambridge, CB2 0QH, UK
| | - Martin Blackledge
- Institut de Biologie Structurale, Université Grenoble Alpes, Grenoble, 38000, France
| | - Alan Bridge
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | | | - Zsuzsanna Dosztanyi
- Department of Biochemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | | | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Arne Elofsson
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Isabella C Felli
- Department of Chemistry and CERM "Ugo Schiff", University of Florence, Florence, Italy
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Aleksandras Gutmanas
- Protein Data Bank in Europe, European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Cambridge, CB10 1SD, UK
| | - John M Hancock
- ELIXIR Hub, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Jen Harrow
- ELIXIR Hub, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Desmond Higgins
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin, D4, Ireland
| | - Cy M Jeffries
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Philippe Le Mercier
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Balint Mészáros
- Department of Biochemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Marco Necci
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cedric Notredame
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sandra Orchard
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Cambridge, CB10 1SD, UK
| | - Christos A Ouzounis
- BCPL-CPERI, Centre for Research & Technology Hellas (CERTH), Thessalonica, 57001, Greece
| | - Rita Pancsa
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, H-1117, Hungary
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, 2100, Denmark
| | - Roberta Pierattelli
- Department of Chemistry and CERM "Ugo Schiff", University of Florence, Florence, Italy
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Vasilis J Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, CY-1678, Cyprus
| | - Patrick Ruch
- HES-SO/HEG and SIB Text Mining, Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Gabriella Rustici
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Pedro Romero
- University of Wisconsin-Madison, Madison, WI, 53706-1544, USA
| | | | - Gary Saunders
- ELIXIR Hub, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Malvika Sharan
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Denis C Shields
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin, D4, Ireland
| | - Joel L Sussman
- Department of Structural Biology and the Israel Structural Proteomics, Center (ISPC), Weizmann Institute of Science, Reḥovot, 7610001, Israel
| | | | - Peter Tompa
- VIB Center for Structural Biology (CSB), VIB Flemish Institute for Biotechnology, Brussels, 1050, Belgium
| | - Michael Turewicz
- Faculty of Medicine, Medizinisches Proteom-Center, Ruhr University Bochum, GesundheitsCampus 4, Bochum, 44801, Germany
| | - Jiri Vondrasek
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic
| | - Wim F Vranken
- VUB/ULB Interuniversity Institute of Bioinformatics in Brussels and Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, B-1050, Belgium
| | - Bonnie Ann Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1H 0HA, UK
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
27
|
Combinatorial Avidity Selection of Mosaic Landscape Phages Targeted at Breast Cancer Cells-An Alternative Mechanism of Directed Molecular Evolution. Viruses 2019; 11:v11090785. [PMID: 31454976 PMCID: PMC6784196 DOI: 10.3390/v11090785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 02/08/2023] Open
Abstract
Low performance of actively targeted nanomedicines required revision of the traditional drug targeting paradigm and stimulated the development of novel phage-programmed, self-navigating drug delivery vehicles. In the proposed smart vehicles, targeting peptides, selected from phage libraries using traditional principles of affinity selection, are substituted for phage proteins discovered through combinatorial avidity selection. Here, we substantiate the potential of combinatorial avidity selection using landscape phage in the discovery of Short Linear Motifs (SLiMs) and their partner domains. We proved an algorithm for analysis of phage populations evolved through multistage screening of landscape phage libraries against the MDA-MB-231 breast cancer cell line. The suggested combinatorial avidity selection model proposes a multistage accumulation of Elementary Binding Units (EBU), or Core Motifs (CorMs), in landscape phage fusion peptides, serving as evolutionary initiators for formation of SLiMs. Combinatorial selection has the potential to harness directed molecular evolution to create novel smart materials with diverse novel, emergent properties.
Collapse
|
28
|
Krystkowiak I, Davey NE. SLiMSearch: a framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions. Nucleic Acids Res 2019; 45:W464-W469. [PMID: 28387819 PMCID: PMC5570202 DOI: 10.1093/nar/gkx238] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
Abstract
The extensive intrinsically disordered regions of higher eukaryotic proteomes contain vast numbers of functional interaction modules known as short linear motifs (SLiMs). Here, we present SLiMSearch, a motif discovery tool that scans a motif consensus, representing the specificity determinants of a motif-binding domain, against a proteome to discover putative novel motif instances. SLiMSearch applies several distinct and complementary approaches exploiting the common properties of SLiMs to predict novel motifs. Consensus matches are annotated with overlapping sequence annotation, including feature information describing protein modular architecture, post-translational modification, structure, sequence variation and experimental characterisation of functional regions. Discriminatory motif attributes such as conservation and accessibility are also calculated. In addition, SLiMSearch provides functional enrichment and evolutionary analysis tools. The enrichment tool analyses GO terms, keywords and interacting partner enrichment to indicate possible motif function. The evolutionary tool evaluates motif taxonomic range and the conservation of motif sequence context. Consensus matches can be filtered based on motif attributes such as accessibility and taxonomic range; or by the localisation, interacting partners or ontology annotation of the peptide-containing protein. SLiMSearch supports a range of species of experimental and therapeutic relevance and is available online at http://slim.ucd.ie/slimsearch/.
Collapse
Affiliation(s)
- Izabella Krystkowiak
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.,UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Norman E Davey
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.,UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
29
|
Davey NE. The functional importance of structure in unstructured protein regions. Curr Opin Struct Biol 2019; 56:155-163. [DOI: 10.1016/j.sbi.2019.03.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022]
|
30
|
Ichikawa DM, Corbi-Verge C, Shen MJ, Snider J, Wong V, Stagljar I, Kim PM, Noyes MB. A Multireporter Bacterial 2-Hybrid Assay for the High-Throughput and Dynamic Assay of PDZ Domain-Peptide Interactions. ACS Synth Biol 2019; 8:918-928. [PMID: 30969105 DOI: 10.1021/acssynbio.8b00499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accurate determination of protein-protein interactions has been an important focus of molecular biology toward which much progress has been made due to the continuous development of existing and new technologies. However, current methods can have limitations, including scale and restriction to high affinity interactions, limiting our understanding of a large subset of these interactions. Here, we describe a modified bacterial-hybrid assay that employs combined selectable and scalable reporters that enable the sensitive screening of large peptide libraries followed by the sorting of positive interactions by the level of reporter output. We have applied this tool to characterize a set of human and E. coli PDZ domains. Our results are consistent with prior characterization of these proteins, and the improved sensitivity increases our ability to predict known and novel in vivo binding partners. This approach allows for the recovery of a wide range of affinities with a high throughput method that does not sacrifice the scale of the screen.
Collapse
Affiliation(s)
- David M. Ichikawa
- Department of Biochemistry Molecular Pharmacology and Institute for Systems Genetics, NYU Langone Health, New York, New York 10016, United States
| | - Carles Corbi-Verge
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Michael J. Shen
- Department of Biochemistry Molecular Pharmacology and Institute for Systems Genetics, NYU Langone Health, New York, New York 10016, United States
| | - Jamie Snider
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Victoria Wong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Igor Stagljar
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Philip M. Kim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Marcus B. Noyes
- Department of Biochemistry Molecular Pharmacology and Institute for Systems Genetics, NYU Langone Health, New York, New York 10016, United States
| |
Collapse
|
31
|
Tsytlonok M, Sanabria H, Wang Y, Felekyan S, Hemmen K, Phillips AH, Yun MK, Waddell MB, Park CG, Vaithiyalingam S, Iconaru L, White SW, Tompa P, Seidel CAM, Kriwacki R. Dynamic anticipation by Cdk2/Cyclin A-bound p27 mediates signal integration in cell cycle regulation. Nat Commun 2019; 10:1676. [PMID: 30976006 PMCID: PMC6459857 DOI: 10.1038/s41467-019-09446-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/06/2019] [Indexed: 01/07/2023] Open
Abstract
p27Kip1 is an intrinsically disordered protein (IDP) that inhibits cyclin-dependent kinase (Cdk)/cyclin complexes (e.g., Cdk2/cyclin A), causing cell cycle arrest. Cell division progresses when stably Cdk2/cyclin A-bound p27 is phosphorylated on one or two structurally occluded tyrosine residues and a distal threonine residue (T187), triggering degradation of p27. Here, using an integrated biophysical approach, we show that Cdk2/cyclin A-bound p27 samples lowly-populated conformations that provide access to the non-receptor tyrosine kinases, BCR-ABL and Src, which phosphorylate Y88 or Y88 and Y74, respectively, thereby promoting intra-assembly phosphorylation (of p27) on distal T187. Even when tightly bound to Cdk2/cyclin A, intrinsic flexibility enables p27 to integrate and process signaling inputs, and generate outputs including altered Cdk2 activity, p27 stability, and, ultimately, cell cycle progression. Intrinsic dynamics within multi-component assemblies may be a general mechanism of signaling by regulatory IDPs, which can be subverted in human disease. The cyclin-dependent kinase (Cdk) inhibitor p27Kip1 (p27) folds upon binding to Cdk/cyclin complexes and during cell cycle progression p27 becomes phosphorylated, which triggers its ubiquitination and degradation. Here the authors use an integrated approach and show that Cdk2/cyclin A-bound p27 samples lowly-populated conformations that dynamically anticipate the sequential steps of the signaling cascade.
Collapse
Affiliation(s)
- Maksym Tsytlonok
- VIB Center for Structural Biology, Vrije Universiteit Brussel, Pleinlaan, 2 1050, Brussels, Belgium
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA.,Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Yuefeng Wang
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.,Department of Radiation Oncology, West Cancer Center and Research Institute, Memphis, TN, 38138, USA
| | - Suren Felekyan
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Katherina Hemmen
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Aaron H Phillips
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Mi-Kyung Yun
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - M Brett Waddell
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.,Molecular Interaction Analysis Shared Resource, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38103, USA
| | - Cheon-Gil Park
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Sivaraja Vaithiyalingam
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.,Molecular Interaction Analysis Shared Resource, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38103, USA
| | - Luigi Iconaru
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Peter Tompa
- VIB Center for Structural Biology, Vrije Universiteit Brussel, Pleinlaan, 2 1050, Brussels, Belgium. .,Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary.
| | - Claus A M Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany.
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA. .,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA.
| |
Collapse
|
32
|
Choi UB, Sanabria H, Smirnova T, Bowen ME, Weninger KR. Spontaneous Switching among Conformational Ensembles in Intrinsically Disordered Proteins. Biomolecules 2019; 9:biom9030114. [PMID: 30909517 PMCID: PMC6468417 DOI: 10.3390/biom9030114] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/08/2023] Open
Abstract
The common conception of intrinsically disordered proteins (IDPs) is that they stochastically sample all possible configurations driven by thermal fluctuations. This is certainly true for many IDPs, which behave as swollen random coils that can be described using polymer models developed for homopolymers. However, the variability in interaction energy between different amino acid sequences provides the possibility that some configurations may be strongly preferred while others are forbidden. In compact globular IDPs, core hydration and packing density can vary between segments of the polypeptide chain leading to complex conformational dynamics. Here, we describe a growing number of proteins that appear intrinsically disordered by biochemical and bioinformatic characterization but switch between restricted regions of conformational space. In some cases, spontaneous switching between conformational ensembles was directly observed, but few methods can identify when an IDP is acting as a restricted chain. Such switching between disparate corners of conformational space could bias ligand binding and regulate the volume of IDPs acting as structural or entropic elements. Thus, mapping the accessible energy landscape and capturing dynamics across a wide range of timescales are essential to recognize when an IDP is acting as such a switch.
Collapse
Affiliation(s)
- Ucheor B Choi
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA.
| | - Tatyana Smirnova
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Keith R Weninger
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
33
|
Veggiani G, Sidhu SS. Peptides meet ubiquitin: Simple interactions regulating complex cell signaling. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Gianluca Veggiani
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research; University of Toronto; Toronto Ontario Canada
- Department of Molecular Genetics; University of Toronto; Toronto Ontario Canada
| | - Sachdev S. Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research; University of Toronto; Toronto Ontario Canada
- Department of Molecular Genetics; University of Toronto; Toronto Ontario Canada
- Department of Biochemistry; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
34
|
Weerasekera D, Stengel F, Sticht H, de Mattos Guaraldi AL, Burkovski A, Azevedo Antunes C. The C-terminal coiled-coil domain of Corynebacterium diphtheriae DIP0733 is crucial for interaction with epithelial cells and pathogenicity in invertebrate animal model systems. BMC Microbiol 2018; 18:106. [PMID: 30180805 PMCID: PMC6123952 DOI: 10.1186/s12866-018-1247-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 08/23/2018] [Indexed: 02/06/2023] Open
Abstract
Background Corynebacterium diphtheriae is the etiologic agent of diphtheria and different systemic infections. The bacterium has been classically described as an extracellular pathogen. However, a number of studies revealed its ability to invade epithelial cells, indicating a more complex pathogen-host interaction. The molecular mechanisms controlling and facilitating internalization of C. diphtheriae still remains unclear. Recently, the DIP0733 transmembrane protein was found to play an important role in the interaction with matrix proteins and cell surfaces, nematode colonization, cellular internalization and induction of cell death. Results In this study, we identified a number of short linear motifs and structural elements of DIP0733 with putative importance in virulence, using bioinformatic approaches. A C-terminal coiled-coil region of the protein was considered particularly important, since it was found only in DIP0733 homologs in pathogenic Corynebacterium species but not in non-pathogenic corynebacteria. Infections of epithelial cells and transepithelial resistance assays revealed that bacteria expressing the truncated form of C. diphtheriae DIP0733 and C. glutamicum DIP0733 homolog are less virulent, while the fusion of the coiled-coil sequence to the DIP0733 homolog from C. glutamicum resulted in increased pathogenicity. These results were supported by nematode killing assays and experiments using wax moth larvae as invertebrate model systems. Conclusions Our data indicate that the coil-coiled domain of DIP0733 is crucial for interaction with epithelial cells and pathogenicity in invertebrate animal model systems. Electronic supplementary material The online version of this article (10.1186/s12866-018-1247-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dulanthi Weerasekera
- Microbiology Division, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Franziska Stengel
- Microbiology Division, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Ana Luíza de Mattos Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Andreas Burkovski
- Microbiology Division, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Camila Azevedo Antunes
- Microbiology Division, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany. .,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
35
|
Sundell GN, Arnold R, Ali M, Naksukpaiboon P, Orts J, Güntert P, Chi CN, Ivarsson Y. Proteome-wide analysis of phospho-regulated PDZ domain interactions. Mol Syst Biol 2018; 14:e8129. [PMID: 30126976 PMCID: PMC6100724 DOI: 10.15252/msb.20178129] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
A key function of reversible protein phosphorylation is to regulate protein-protein interactions, many of which involve short linear motifs (3-12 amino acids). Motif-based interactions are difficult to capture because of their often low-to-moderate affinities. Here, we describe phosphomimetic proteomic peptide-phage display, a powerful method for simultaneously finding motif-based interaction and pinpointing phosphorylation switches. We computationally designed an oligonucleotide library encoding human C-terminal peptides containing known or predicted Ser/Thr phosphosites and phosphomimetic variants thereof. We incorporated these oligonucleotides into a phage library and screened the PDZ (PSD-95/Dlg/ZO-1) domains of Scribble and DLG1 for interactions potentially enabled or disabled by ligand phosphorylation. We identified known and novel binders and characterized selected interactions through microscale thermophoresis, isothermal titration calorimetry, and NMR We uncover site-specific phospho-regulation of PDZ domain interactions, provide a structural framework for how PDZ domains accomplish phosphopeptide binding, and discuss ligand phosphorylation as a switching mechanism of PDZ domain interactions. The approach is readily scalable and can be used to explore the potential phospho-regulation of motif-based interactions on a large scale.
Collapse
Affiliation(s)
- Gustav N Sundell
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Roland Arnold
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Muhammad Ali
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Piangfan Naksukpaiboon
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Julien Orts
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Peter Güntert
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
- Institute of Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
36
|
Krystkowiak I, Manguy J, Davey NE. PSSMSearch: a server for modeling, visualization, proteome-wide discovery and annotation of protein motif specificity determinants. Nucleic Acids Res 2018; 46:W235-W241. [PMID: 29873773 PMCID: PMC6030969 DOI: 10.1093/nar/gky426] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/11/2018] [Accepted: 05/15/2018] [Indexed: 11/29/2022] Open
Abstract
There is a pressing need for in silico tools that can aid in the identification of the complete repertoire of protein binding (SLiMs, MoRFs, miniMotifs) and modification (moiety attachment/removal, isomerization, cleavage) motifs. We have created PSSMSearch, an interactive web-based tool for rapid statistical modeling, visualization, discovery and annotation of protein motif specificity determinants to discover novel motifs in a proteome-wide manner. PSSMSearch analyses proteomes for regions with significant similarity to a motif specificity determinant model built from a set of aligned motif-containing peptides. Multiple scoring methods are available to build a position-specific scoring matrix (PSSM) describing the motif specificity determinant model. This model can then be modified by a user to add prior knowledge of specificity determinants through an interactive PSSM heatmap. PSSMSearch includes a statistical framework to calculate the significance of specificity determinant model matches against a proteome of interest. PSSMSearch also includes the SLiMSearch framework's annotation, motif functional analysis and filtering tools to highlight relevant discriminatory information. Additional tools to annotate statistically significant shared keywords and GO terms, or experimental evidence of interaction with a motif-recognizing protein have been added. Finally, PSSM-based conservation metrics have been created for taxonomic range analyses. The PSSMSearch web server is available at http://slim.ucd.ie/pssmsearch/.
Collapse
Affiliation(s)
- Izabella Krystkowiak
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jean Manguy
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
- Food for Health Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Norman E Davey
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
37
|
Krishnarjuna B, Sugiki T, Morales RAV, Seow J, Fujiwara T, Wilde KL, Norton RS, MacRaild CA. Transient antibody-antigen interactions mediate the strain-specific recognition of a conserved malaria epitope. Commun Biol 2018; 1:58. [PMID: 30271940 PMCID: PMC6123721 DOI: 10.1038/s42003-018-0063-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/07/2018] [Indexed: 01/09/2023] Open
Abstract
Transient interactions in which binding partners retain substantial conformational disorder play an essential role in regulating biological networks, challenging the expectation that specificity demands structurally defined and unambiguous molecular interactions. The monoclonal antibody 6D8 recognises a completely conserved continuous nine-residue epitope within the intrinsically disordered malaria antigen, MSP2, yet it has different affinities for the two allelic forms of this antigen. NMR chemical shift perturbations, relaxation rates and paramagnetic relaxation enhancements reveal the presence of transient interactions involving polymorphic residues immediately C-terminal to the structurally defined epitope. A combination of these experimental data with molecular dynamics simulations shows clearly that the polymorphic C-terminal extension engages in multiple transient interactions distributed across much of the accessible antibody surface. These interactions are determined more by topographical features of the antibody surface than by sequence-specific interactions. Thus, specificity arises as a consequence of subtle differences in what are highly dynamic and essentially non-specific interactions.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Toshihiko Sugiki
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Rodrigo A V Morales
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jeffrey Seow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Toshimichi Fujiwara
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Karyn L Wilde
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, NSW, 2234, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - Christopher A MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
38
|
Kasahara K, Shiina M, Higo J, Ogata K, Nakamura H. Phosphorylation of an intrinsically disordered region of Ets1 shifts a multi-modal interaction ensemble to an auto-inhibitory state. Nucleic Acids Res 2018; 46:2243-2251. [PMID: 29309620 PMCID: PMC5861456 DOI: 10.1093/nar/gkx1297] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/28/2022] Open
Abstract
Multi-modal interactions are frequently observed in intrinsically disordered regions (IDRs) of proteins upon binding to their partners. In many cases, post-translational modifications in IDRs are accompanied by coupled folding and binding. From both molecular simulations and biochemical experiments with mutational studies, we show that the IDR including a Ser rich region (SRR) of the transcription factor Ets1, just before the DNA-binding core domain, undergoes multi-modal interactions when the SRR is not phosphorylated. In the phosphorylated state, the SRR forms a few specific complex structures with the Ets1 core, covering the recognition helix in the core and drastically reducing the DNA binding affinities as the auto-inhibitory state. The binding kinetics of mutated Ets1 indicates that aromatic residues in the SRR can be substituted with other hydrophobic residues for the interactions with the Ets1 core.
Collapse
Affiliation(s)
- Kota Kasahara
- College of Life Sciences, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, Shiga 525-8577, Japan
| | - Masaaki Shiina
- Graduate School of Medicine, Yokohama City University, Fuku-ura 3–9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Junichi Higo
- Institute for Protein Research, Osaka University, Yamada-oka 3-2, Suita, Osaka 565-0871, Japan
| | - Kazuhiro Ogata
- Graduate School of Medicine, Yokohama City University, Fuku-ura 3–9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Haruki Nakamura
- Institute for Protein Research, Osaka University, Yamada-oka 3-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
39
|
15N detection harnesses the slow relaxation property of nitrogen: Delivering enhanced resolution for intrinsically disordered proteins. Proc Natl Acad Sci U S A 2018; 115:E1710-E1719. [PMID: 29432148 DOI: 10.1073/pnas.1717560115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Studies over the past decade have highlighted the functional significance of intrinsically disordered proteins (IDPs). Due to conformational heterogeneity and inherent dynamics, structural studies of IDPs have relied mostly on NMR spectroscopy, despite IDPs having characteristics that make them challenging to study using traditional 1H-detected biomolecular NMR techniques. Here, we develop a suite of 3D 15N-detected experiments that take advantage of the slower transverse relaxation property of 15N nuclei, the associated narrower linewidth, and the greater chemical shift dispersion compared with those of 1H and 13C resonances. The six 3D experiments described here start with aliphatic 1H magnetization to take advantage of its higher initial polarization, and are broadly applicable for backbone assignment of proteins that are disordered, dynamic, or have unfavorable amide proton exchange rates. Using these experiments, backbone resonance assignments were completed for the unstructured regulatory domain (residues 131-294) of the human transcription factor nuclear factor of activated T cells (NFATC2), which includes 28 proline residues located in functionally important serine-proline (SP) repeats. The complete assignment of the NFATC2 regulatory domain enabled us to study phosphorylation of NFAT by kinase PKA and phosphorylation-dependent binding of chaperone protein 14-3-3 to NFAT, providing mechanistic insight on how 14-3-3 regulates NFAT nuclear translocation.
Collapse
|
40
|
Gouw M, Michael S, Sámano-Sánchez H, Kumar M, Zeke A, Lang B, Bely B, Chemes LB, Davey NE, Deng Z, Diella F, Gürth CM, Huber AK, Kleinsorg S, Schlegel LS, Palopoli N, Roey KV, Altenberg B, Reményi A, Dinkel H, Gibson TJ. The eukaryotic linear motif resource - 2018 update. Nucleic Acids Res 2018; 46:D428-D434. [PMID: 29136216 PMCID: PMC5753338 DOI: 10.1093/nar/gkx1077] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 11/14/2022] Open
Abstract
Short linear motifs (SLiMs) are protein binding modules that play major roles in almost all cellular processes. SLiMs are short, often highly degenerate, difficult to characterize and hard to detect. The eukaryotic linear motif (ELM) resource (elm.eu.org) is dedicated to SLiMs, consisting of a manually curated database of over 275 motif classes and over 3000 motif instances, and a pipeline to discover candidate SLiMs in protein sequences. For 15 years, ELM has been one of the major resources for motif research. In this database update, we present the latest additions to the database including 32 new motif classes, and new features including Uniprot and Reactome integration. Finally, to help provide cellular context, we present some biological insights about SLiMs in the cell cycle, as targets for bacterial pathogenicity and their functionality in the human kinome.
Collapse
Affiliation(s)
- Marc Gouw
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Sushama Michael
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - András Zeke
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Benjamin Lang
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Benoit Bely
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Lucía B Chemes
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires CP 1405, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires CP 2160, Argentina
- Instituto de Investigaciones Biotecnoltógicas, Universidad Nacional de General San Martín, IIB-INTECH-CONICET, San Martín, Buenos Aires CP 1650, Argentina
| | - Norman E Davey
- UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ziqi Deng
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Francesca Diella
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | | | | | | | | | - Nicolás Palopoli
- Department of Science and Technology, Universidad Nacional de Quilmes, CONICET, Bernal B1876BXD, Buenos Aires, Argentina
| | - Kim V Roey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Brigitte Altenberg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Attila Reményi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Holger Dinkel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Leibniz-Institute on Aging, Fritz Lipmann Institute (FLI), Jena D-07745, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|
41
|
Dahal L, Shammas SL, Clarke J. Phosphorylation of the IDP KID Modulates Affinity for KIX by Increasing the Lifetime of the Complex. Biophys J 2018; 113:2706-2712. [PMID: 29262363 PMCID: PMC5770967 DOI: 10.1016/j.bpj.2017.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 11/17/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are known to undergo a range of posttranslational modifications, but by what mechanism do such modifications affect the binding of an IDP to its partner protein? We investigate this question using one such IDP, the kinase inducible domain (KID) of the transcription factor CREB, which interacts with the KIX domain of CREB-binding protein upon phosphorylation. As with many other IDPs, KID undergoes coupled folding and binding to form α-helical structure upon interacting with KIX. This single site phosphorylation plays an important role in the control of transcriptional activation in vivo. Here we show that, contrary to expectation, phosphorylation has no effect on association rates—unphosphorylated KID binds just as rapidly as pKID, the phosphorylated form—but rather, acts by increasing the lifetime of the complex. We propose that by controlling the lifetime of the bound complex of pKID:KIX via altering the dissociation rate, phosphorylation can facilitate effective control of transcription regulation.
Collapse
Affiliation(s)
- Liza Dahal
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Sarah L Shammas
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
42
|
Functional Analysis of Human Hub Proteins and Their Interactors Involved in the Intrinsic Disorder-Enriched Interactions. Int J Mol Sci 2017; 18:ijms18122761. [PMID: 29257115 PMCID: PMC5751360 DOI: 10.3390/ijms18122761] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022] Open
Abstract
Some of the intrinsically disordered proteins and protein regions are promiscuous interactors that are involved in one-to-many and many-to-one binding. Several studies have analyzed enrichment of intrinsic disorder among the promiscuous hub proteins. We extended these works by providing a detailed functional characterization of the disorder-enriched hub protein-protein interactions (PPIs), including both hubs and their interactors, and by analyzing their enrichment among disease-associated proteins. We focused on the human interactome, given its high degree of completeness and relevance to the analysis of the disease-linked proteins. We quantified and investigated numerous functional and structural characteristics of the disorder-enriched hub PPIs, including protein binding, structural stability, evolutionary conservation, several categories of functional sites, and presence of over twenty types of posttranslational modifications (PTMs). We showed that the disorder-enriched hub PPIs have a significantly enlarged number of disordered protein binding regions and long intrinsically disordered regions. They also include high numbers of targeting, catalytic, and many types of PTM sites. We empirically demonstrated that these hub PPIs are significantly enriched among 11 out of 18 considered classes of human diseases that are associated with at least 100 human proteins. Finally, we also illustrated how over a dozen specific human hubs utilize intrinsic disorder for their promiscuous PPIs.
Collapse
|
43
|
Latysheva NS, Oates ME, Maddox L, Flock T, Gough J, Buljan M, Weatheritt RJ, Babu MM. Molecular Principles of Gene Fusion Mediated Rewiring of Protein Interaction Networks in Cancer. Mol Cell 2017; 63:579-592. [PMID: 27540857 PMCID: PMC5003813 DOI: 10.1016/j.molcel.2016.07.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/14/2016] [Accepted: 07/14/2016] [Indexed: 11/26/2022]
Abstract
Gene fusions are common cancer-causing mutations, but the molecular principles by which fusion protein products affect interaction networks and cause disease are not well understood. Here, we perform an integrative analysis of the structural, interactomic, and regulatory properties of thousands of putative fusion proteins. We demonstrate that genes that form fusions (i.e., parent genes) tend to be highly connected hub genes, whose protein products are enriched in structured and disordered interaction-mediating features. Fusion often results in the loss of these parental features and the depletion of regulatory sites such as post-translational modifications. Fusion products disproportionately connect proteins that did not previously interact in the protein interaction network. In this manner, fusion products can escape cellular regulation and constitutively rewire protein interaction networks. We suggest that the deregulation of central, interaction-prone proteins may represent a widespread mechanism by which fusion proteins alter the topology of cellular signaling pathways and promote cancer.
Collapse
Affiliation(s)
- Natasha S Latysheva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Matt E Oates
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK
| | - Louis Maddox
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Tilman Flock
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Julian Gough
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK
| | - Marija Buljan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Robert J Weatheritt
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
44
|
Du Z, Uversky VN. Functional roles of intrinsic disorder in CRISPR-associated protein Cas9. MOLECULAR BIOSYSTEMS 2017; 13:1770-1780. [PMID: 28692085 DOI: 10.1039/c7mb00279c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein intrinsic disorder is an important characteristic commonly detected in multifunctional or RNA- and DNA-binding proteins. Due to their high conformational flexibility and solvent accessibility, intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) execute diverse functions including interaction with multiple partners, and are frequently subjected to various post-translational modifications. Recent studies on the components comprising the CRISPR (clustered regularly interspaced short palindromic repeats) system have elucidated the crystal structure of Cas9 proteins and the mechanism by which the Cas9-sgRNA complex recognizes and cleaves its target DNA. Yet the extent and functional implications of intrinsic disorder in the Cas9 protein have never been fully assessed. Here, we present a comprehensive computational analysis based on both sequence and structural data in an attempt to investigate the roles of IDPRs in the functioning of Cas9 proteins of different origin. We conclude that among the functional roles of IDPRs in Cas9 proteins are recognition of the target DNA and mediation of nucleic acid and protein binding.
Collapse
Affiliation(s)
- Zhihua Du
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, Florida, USA
| | | |
Collapse
|
45
|
The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochem Soc Trans 2017; 44:1185-1200. [PMID: 27911701 PMCID: PMC5095923 DOI: 10.1042/bst20160172] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/23/2022]
Abstract
In the 1960s, Christian Anfinsen postulated that the unique three-dimensional structure of a protein is determined by its amino acid sequence. This work laid the foundation for the sequence–structure–function paradigm, which states that the sequence of a protein determines its structure, and structure determines function. However, a class of polypeptide segments called intrinsically disordered regions does not conform to this postulate. In this review, I will first describe established and emerging ideas about how disordered regions contribute to protein function. I will then discuss molecular principles by which regulatory mechanisms, such as alternative splicing and asymmetric localization of transcripts that encode disordered regions, can increase the functional versatility of proteins. Finally, I will discuss how disordered regions contribute to human disease and the emergence of cellular complexity during organismal evolution.
Collapse
|
46
|
|
47
|
Pancsa R, Tompa P. Coding Regions of Intrinsic Disorder Accommodate Parallel Functions. Trends Biochem Sci 2016; 41:898-906. [DOI: 10.1016/j.tibs.2016.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 02/01/2023]
|
48
|
Persico M, Di Dato A, Orteca N, Cimino P, Novellino E, Fattorusso C. Use of Integrated Computational Approaches in the Search for New Therapeutic Agents. Mol Inform 2016; 35:309-25. [DOI: 10.1002/minf.201501028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/21/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Marco Persico
- Department of Pharmacy, University of Naples “Federico II”; Via D. Montesano 49 80131 Napoli Italy
- Italian Malaria Network - Centro Interuniversitario di Ricerche Sulla Malaria (CIRM); Department of Experimental Medicine and Biochemical Sciences; Via Del Giochetto 06126 Perugia Italy
| | - Antonio Di Dato
- Department of Pharmacy, University of Naples “Federico II”; Via D. Montesano 49 80131 Napoli Italy
- Italian Malaria Network - Centro Interuniversitario di Ricerche Sulla Malaria (CIRM); Department of Experimental Medicine and Biochemical Sciences; Via Del Giochetto 06126 Perugia Italy
| | - Nausicaa Orteca
- Department of Pharmacy, University of Naples “Federico II”; Via D. Montesano 49 80131 Napoli Italy
- Italian Malaria Network - Centro Interuniversitario di Ricerche Sulla Malaria (CIRM); Department of Experimental Medicine and Biochemical Sciences; Via Del Giochetto 06126 Perugia Italy
| | - Paola Cimino
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano, Salerno Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples “Federico II”; Via D. Montesano 49 80131 Napoli Italy
| | - Caterina Fattorusso
- Department of Pharmacy, University of Naples “Federico II”; Via D. Montesano 49 80131 Napoli Italy
- Italian Malaria Network - Centro Interuniversitario di Ricerche Sulla Malaria (CIRM); Department of Experimental Medicine and Biochemical Sciences; Via Del Giochetto 06126 Perugia Italy
| |
Collapse
|
49
|
Gordley RM, Bugaj LJ, Lim WA. Modular engineering of cellular signaling proteins and networks. Curr Opin Struct Biol 2016; 39:106-114. [PMID: 27423114 DOI: 10.1016/j.sbi.2016.06.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/16/2016] [Accepted: 06/15/2016] [Indexed: 12/31/2022]
Abstract
Living cells respond to their environment using networks of signaling molecules that act as sensors, information processors, and actuators. These signaling systems are highly modular at both the molecular and network scales, and much evidence suggests that evolution has harnessed this modularity to rewire and generate new physiological behaviors. Conversely, we are now finding that, following nature's example, signaling modules can be recombined to form synthetic tools for monitoring, interrogating, and controlling the behavior of cells. Here we highlight recent progress in the modular design of synthetic receptors, optogenetic switches, and phospho-regulated proteins and circuits, and discuss the expanding role of combinatorial design in the engineering of cellular signaling proteins and networks.
Collapse
Affiliation(s)
- Russell M Gordley
- Howard Hughes Medical Institute, United States; Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States
| | - Lukasz J Bugaj
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States
| | - Wendell A Lim
- Howard Hughes Medical Institute, United States; Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States.
| |
Collapse
|
50
|
von Stechow L, Francavilla C, Olsen JV. Recent findings and technological advances in phosphoproteomics for cells and tissues. Expert Rev Proteomics 2016; 12:469-87. [PMID: 26400465 PMCID: PMC4819829 DOI: 10.1586/14789450.2015.1078730] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Site-specific phosphorylation is a fast and reversible covalent post-translational modification that is tightly regulated in cells. The cellular machinery of enzymes that write, erase and read these modifications (kinases, phosphatases and phospho-binding proteins) is frequently deregulated in different diseases, including cancer. Large-scale studies of phosphoproteins – termed phosphoproteomics – strongly rely on the use of high-performance mass spectrometric instrumentation. This powerful technology has been applied to study a great number of phosphorylation-based phenotypes. Nevertheless, many technical and biological challenges have to be overcome to identify biologically relevant phosphorylation sites in cells and tissues. This review describes different technological strategies to identify and quantify phosphorylation sites with high accuracy, without significant loss of analysis speed and reproducibility in tissues and cells. Moreover, computational tools for analysis, integration and biological interpretation of phosphorylation events are discussed.
Collapse
Affiliation(s)
- Louise von Stechow
- a Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Chiara Francavilla
- a Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | | |
Collapse
|