1
|
Vinogradova TM, Lakatta EG. Ca 2+/Calmodulin-Dependent Protein Kinase II (CaMKII) Regulates Basal Cardiac Pacemaker Function: Pros and Cons. Cells 2024; 14:3. [PMID: 39791704 PMCID: PMC11719954 DOI: 10.3390/cells14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/14/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025] Open
Abstract
The spontaneous firing of the sinoatrial (SA) node, the physiological pacemaker of the heart, is generated within sinoatrial nodal cells (SANCs) and is regulated by a "coupled-clock" pacemaker system, which integrates a "membrane clock", the ensemble of ion channel currents, and an intracellular "Ca2+ clock", sarcoplasmic reticulum-generated local submembrane Ca2+ releases via ryanodine receptors. The interactions within a "coupled-clock" system are modulated by phosphorylation of surface membrane and sarcoplasmic reticulum proteins. Though the essential role of a high basal cAMP level and PKA-dependent phosphorylation for basal spontaneous SANC firing is well recognized, the role of basal CaMKII-dependent phosphorylation remains uncertain. This is a critical issue with respect to how cardiac pacemaker cells fire spontaneous action potentials. This review aspires to explain and unite apparently contradictory results of pharmacological studies in the literature that have demonstrated a fundamental role of basal CaMKII activation for basal cardiac pacemaker function, as well as studies in mice with genetic CaMKII inhibition which have been interpreted to indicate that basal spontaneous SANC firing is independent of CaMKII activation. The assessment of supporting and opposing data regarding CaMKII effects on phosphorylation of Ca2+-cycling proteins and spontaneous firing of SANC in the basal state leads to the necessary conclusion that CaMKII activity and CaMKII-dependent phosphorylation do regulate basal cardiac pacemaker function.
Collapse
Affiliation(s)
- Tatiana M. Vinogradova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institute of Health, Baltimore, MD 21224, USA;
| | | |
Collapse
|
2
|
Maltsev VA, Stern MD. The paradigm shift: Heartbeat initiation without "the pacemaker cell". Front Physiol 2022; 13:1090162. [PMID: 36569749 PMCID: PMC9780451 DOI: 10.3389/fphys.2022.1090162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
The current dogma about the heartbeat origin is based on "the pacemaker cell," a specialized cell residing in the sinoatrial node (SAN) that exhibits spontaneous diastolic depolarization triggering rhythmic action potentials (APs). Recent high-resolution imaging, however, demonstrated that Ca signals and APs in the SAN are heterogeneous, with many cells generating APs of different rates and rhythms or even remaining non-firing (dormant cells), i.e., generating only subthreshold signals. Here we numerically tested a hypothesis that a community of dormant cells can generate normal automaticity, i.e., "the pacemaker cell" is not required to initiate rhythmic cardiac impulses. Our model includes 1) non-excitable cells generating oscillatory local Ca releases and 2) an excitable cell lacking automaticity. While each cell in isolation was not "the pacemaker cell", the cell system generated rhythmic APs: The subthreshold signals of non-excitable cells were transformed into respective membrane potential oscillations via electrogenic Na/Ca exchange and further transferred and integrated (computed) by the excitable cells to reach its AP threshold, generating rhythmic pacemaking. Cardiac impulse is an emergent property of the SAN cellular network and can be initiated by cells lacking intrinsic automaticity. Cell heterogeneity, weak coupling, subthreshold signals, and their summation are critical properties of the new pacemaker mechanism, i.e., cardiac pacemaker can operate via a signaling process basically similar to that of "temporal summation" happening in a neuron with input from multiple presynaptic cells. The new mechanism, however, does not refute the classical pacemaker cell-based mechanism: both mechanisms can co-exist and interact within SAN tissue.
Collapse
|
3
|
Moen JM, Morrell CH, Matt MG, Ahmet I, Tagirova S, Davoodi M, Petr M, Charles S, de Cabo R, Yaniv Y, Lakatta EG. Emergence of heartbeat frailty in advanced age I: perspectives from life-long EKG recordings in adult mice. GeroScience 2022; 44:2801-2830. [PMID: 35759167 PMCID: PMC9768068 DOI: 10.1007/s11357-022-00605-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/06/2022] [Indexed: 01/07/2023] Open
Abstract
The combined influences of sinoatrial nodal (SAN) pacemaker cell automaticity and its response to autonomic input determine the heart's beating interval variability and mean beating rate. To determine the intrinsic SAN and autonomic signatures buried within EKG RR interval time series change in advanced age, we measured RR interval variability before and during double autonomic blockade at 3-month intervals from 6 months of age until the end of life in long-lived (those that achieved the total cohort median life span of 24 months and beyond) C57/BL6 mice. Prior to 21 months of age, time-dependent changes in intrinsic RR interval variability and mean RR interval were relatively minor. Between 21 and 30 months of age, however, marked changes emerged in intrinsic SAN RR interval variability signatures, pointing to a reduction in the kinetics of pacemaker clock mechanisms, leading to reduced synchronization of molecular functions within and among SAN cells. This loss of high-frequency signal processing within intrinsic SAN signatures resulted in a marked increase in the mean intrinsic RR interval. The impact of autonomic signatures on RR interval variability were net sympathetic and partially compensated for the reduced kinetics of the intrinsic SAN RR interval variability signatures, and partially, but not completely, shifted the EKG RR time series intervals to a more youthful pattern. Cross-sectional analyses of other subsets of C57/BL6 ages indicated that at or beyond the median life span of our longitudinal cohort, noncardiac, constitutional, whole-body frailty was increased, energetic efficiency was reduced, and the respiratory exchange ratio increased. We interpret the progressive reduction in kinetics in intrinsic SAN RR interval variability signatures in this context of whole-body frailty beyond 21 months of age to be a manifestation of "heartbeat frailty."
Collapse
Affiliation(s)
- Jack M Moen
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
| | - Christopher H Morrell
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michael G Matt
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
- Pediatric Residency Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ismayil Ahmet
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Syevda Tagirova
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Moran Davoodi
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | - Michael Petr
- Laboratory of Experimental Gerontology Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Shaquille Charles
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yael Yaniv
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
4
|
A novel small positive allosteric modulator of neuropeptide receptor PAC1-R exerts neuroprotective effects in MPTP mouse Parkinson's disease model. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1349-1364. [PMID: 36082935 PMCID: PMC9909460 DOI: 10.3724/abbs.2022126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
As a neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP)-preferring receptor, PAC1-R mediates effective neuroprotective activity. Based on the finding that the antibiotic doxycycline (DOX) with clinical neuroprotective activity functions as a positive allosteric modulator (PAM) of neuropeptide PACAP receptor 1 (PAC1-R), we use virtual and laboratory screening to search for novel small molecule PAMs of PAC1-R. Virtual screening is carried out using a small-molecule library TargetMol. After two-level precision screening with Glide, the top five compounds with the best predicted affinities for PAC1-R are selected and named small positive allosteric modulator 1‒5 (SPAM1‒5). Our results show that only 4-{[4-(4-Oxo-3,4-2-yl)butanamido]methyl}benzoic acid (SPAM1) has stronger neuroprotective activity than DOX in the MPP+ PD cell model and MPTP PD mouse model. SPAM1 has a higher affinity for PAC1-R than DOX, but has no antibiotic activity. Moreover, both SPAM1 and DOX block the decrease of PAC1-R level in mouse brain tissues induced by MPTP. The successful screening of SPAM1 offers a novel drug for the treatment of neurodegenerative disease targeting the PAC1-R.
Collapse
|
5
|
Glutamate drives 'local Ca 2+ release' in cardiac pacemaker cells. Cell Res 2022; 32:843-854. [PMID: 35840807 PMCID: PMC9437105 DOI: 10.1038/s41422-022-00693-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
The sinoatrial node (SAN) is the origin of the electrical signals for rhythmic heartbeats in mammals. The spontaneous firing of SAN pacemaker cells (SANPCs) triggers cardiac contraction. ‘Local Ca2+ release’ (LCR), a unique cellular activity, acts as the ‘engine’ of the spontaneous firing of SANPCs. However, the mechanism of LCR initiation remains unclear. Here, we report that endogenous glutamate drives LCRs in SANPCs. Using a glutamate sensor, we unraveled a tight correlation between glutamate accumulation and LCR occurrence, indicating a potential relationship between glutamate and LCRs. Intracellular application of glutamate significantly enhanced the LCRs in both intact and permeabilized SANPCs. Mechanistically, we revealed that mitochondrial excitatory amino acid transporter 1 (EAAT1)-dependent mitochondrial glutamate import promoted ROS generation, which in turn led to the oxidation of Ca2+-handling proteins, ultimately resulting in enhanced LCRs. Importantly, EAAT1 depletion reduced both the spontaneous firing rates of isolated SANPCs and the heart rate in vitro and in vivo, suggesting the central role of EAAT1 as a glutamate transporter in the regulation of cardiac autonomic rhythm. In conclusion, our results indicate that glutamate serves as an LCR igniter in SANPCs, adding a potentially important element to the coupled-clock theory that explains the origin of spontaneous firing. These findings shed new light on the future prevention and treatment of cardiac pacemaker cell-related arrhythmias.
Collapse
|
6
|
Hu S, Luo L, Bian X, Liu RH, Zhao S, Chen Y, Sun K, Jiang J, Liu Z, Zeng L. Pu-erh Tea Restored Circadian Rhythm Disruption by Regulating Tryptophan Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5610-5623. [PMID: 35475616 DOI: 10.1021/acs.jafc.2c01883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pu-erh tea is a healthy beverage rich in phytochemicals, and its effect on the risk of inducing circadian rhythm disorders (CRD) is unclear. In this study, healthy mice were given water or 0.25% (w/v) Pu-erh tea for 7 weeks, followed by a 40 day disruption of the light/dark cycle. CRD caused dysregulation of neurotransmitter secretion and clock gene oscillations, intestinal inflammation, and disruption of intestinal microbes and metabolites. Pu-erh tea boosted the indole and 5-hydroxytryptamine pathways of tryptophan metabolism via the gut-liver-brain axis. Furthermore, its metabolites (e.g., IAA, Indole, 5-HT) enhanced hepatic glycolipid metabolism and down-regulated intestinal oxidative stress by improving the brain hormone release. Tryptophan metabolites and bile acids also promoted liver lipid metabolism and inhibited intestinal inflammation (MyD88/NF-κB) via the enterohepatic circulation. Collectively, 0.25% (w/v) Pu-erh tea has the potential to prevent CRD by promoting indole and 5-HT pathways of tryptophan metabolism and signaling interactions in the gut-liver-brain axis.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Xintong Bian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine Chongqing Medical University, Chongqing 400016, China
| | - Rui Hai Liu
- Department of Food Science, Cornell University, Ithaca, New York 14850-7201, United States
| | - Sibo Zhao
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Chen
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Kang Sun
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Jielin Jiang
- Menghai Tea Factory·TAETEA Group, Xishuangbanna Dai Autonomous Prefecture, Yunnan 666200, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
7
|
What keeps us ticking? Sinoatrial node mechano-sensitivity: the grandfather clock of cardiac rhythm. Biophys Rev 2021; 13:707-716. [PMID: 34777615 DOI: 10.1007/s12551-021-00831-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023] Open
Abstract
The rhythmic and spontaneously generated electrical excitation that triggers the heartbeat originates in the sinoatrial node (SAN). SAN automaticity has been thoroughly investigated, which has uncovered fundamental mechanisms involved in cardiac pacemaking that are generally categorised into two interacting and overlapping systems: the 'membrane' and 'Ca2+ clock'. The principal focus of research has been on these two systems of oscillators, which have been studied primarily in single cells and isolated tissue, experimental preparations that do not consider mechanical factors present in the whole heart. SAN mechano-sensitivity has long been known to be a contributor to SAN pacemaking-both as a driver and regulator of automaticity-but its essential nature has been underappreciated. In this review, following a description of the traditional 'clocks' of SAN automaticity, we describe mechanisms of SAN mechano-sensitivity and its vital role for SAN function, making the argument that the 'mechanics oscillator' is, in fact, the 'grandfather clock' of cardiac rhythm.
Collapse
|
8
|
Sirenko ST, Zahanich I, Li Y, Lukyanenko YO, Lyashkov AE, Ziman BD, Tarasov KV, Younes A, Riordon DR, Tarasova YS, Yang D, Vinogradova TM, Maltsev VA, Lakatta EG. Phosphoprotein Phosphatase 1 but Not 2A Activity Modulates Coupled-Clock Mechanisms to Impact on Intrinsic Automaticity of Sinoatrial Nodal Pacemaker Cells. Cells 2021; 10:cells10113106. [PMID: 34831329 PMCID: PMC8623309 DOI: 10.3390/cells10113106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/02/2022] Open
Abstract
Spontaneous AP (action potential) firing of sinoatrial nodal cells (SANC) is critically dependent on protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent protein phosphorylation, which are required for the generation of spontaneous, diastolic local Ca2+ releases (LCRs). Although phosphoprotein phosphatases (PP) regulate protein phosphorylation, the expression level of PPs and phosphatase inhibitors in SANC and the impact of phosphatase inhibition on the spontaneous LCRs and other players of the oscillatory coupled-clock system is unknown. Here, we show that rabbit SANC express both PP1, PP2A, and endogenous PP inhibitors I-1 (PPI-1), dopamine and cyclic adenosine 3′,5′-monophosphate (cAMP)-regulated phosphoprotein (DARPP-32), kinase C-enhanced PP1 inhibitor (KEPI). Application of Calyculin A, (CyA), a PPs inhibitor, to intact, freshly isolated single SANC: (1) significantly increased phospholamban (PLB) phosphorylation (by 2–3-fold) at both CaMKII-dependent Thr17 and PKA-dependent Ser16 sites, in a time and concentration dependent manner; (2) increased ryanodine receptor (RyR) phosphorylation at the Ser2809 site; (3) substantially increased sarcoplasmic reticulum (SR) Ca2+ load; (4) augmented L-type Ca2+ current amplitude; (5) augmented LCR’s characteristics and decreased LCR period in intact and permeabilized SANC, and (6) increased the spontaneous basal AP firing rate. In contrast, the selective PP2A inhibitor okadaic acid (100 nmol/L) had no significant effect on spontaneous AP firing, LCR parameters, or PLB phosphorylation. Application of purified PP1 to permeabilized SANC suppressed LCR, whereas purified PP2A had no effect on LCR characteristics. Our numerical model simulations demonstrated that PP inhibition increases AP firing rate via a coupled-clock mechanism, including respective increases in the SR Ca2+ pumping rate, L-type Ca2+ current, and Na+/Ca2+-exchanger current. Thus, PP1 and its endogenous inhibitors modulate the basal spontaneous firing rate of cardiac pacemaker cells by suppressing SR Ca2+ cycling protein phosphorylation, the SR Ca2+ load and LCRs, and L-type Ca2+ current.
Collapse
|
9
|
Yang D, Morrell CH, Lyashkov AE, Tagirova Sirenko S, Zahanich I, Yaniv Y, Vinogradova TM, Ziman BD, Maltsev VA, Lakatta EG. Ca 2+ and Membrane Potential Transitions During Action Potentials Are Self-Similar to Each Other and to Variability of AP Firing Intervals Across the Broad Physiologic Range of AP Intervals During Autonomic Receptor Stimulation. Front Physiol 2021; 12:612770. [PMID: 34566668 PMCID: PMC8456031 DOI: 10.3389/fphys.2021.612770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/02/2021] [Indexed: 12/02/2022] Open
Abstract
Ca2+ and V m transitions occurring throughout action potential (AP) cycles in sinoatrial nodal (SAN) cells are cues that (1) not only regulate activation states of molecules operating within criticality (Ca2+ domain) and limit-cycle (V m domain) mechanisms of a coupled-clock system that underlies SAN cell automaticity, (2) but are also regulated by the activation states of the clock molecules they regulate. In other terms, these cues are both causes and effects of clock molecular activation (recursion). Recently, we demonstrated that Ca2+ and V m transitions during AP cycles in single SAN cells isolated from mice, guinea pigs, rabbits, and humans are self-similar (obey a power law) and are also self-similar to trans-species AP firing intervals (APFIs) of these cells in vitro, to heart rate in vivo, and to body mass. Neurotransmitter stimulation of β-adrenergic receptor or cholinergic receptor-initiated signaling in SAN cells modulates their AP firing rate and rhythm by impacting on the degree to which SAN clocks couple to each other, creating the broad physiologic range of SAN cell mean APFIs and firing interval variabilities. Here we show that Ca2+ and V m domain kinetic transitions (time to AP ignition in diastole and 90% AP recovery) occurring within given AP, the mean APFIs, and APFI variabilities within the time series of APs in 230 individual SAN cells are self-similar (obey power laws). In other terms, these long-range correlations inform on self-similar distributions of order among SAN cells across the entire broad physiologic range of SAN APFIs, regardless of whether autonomic receptors of these cells are stimulated or not and regardless of the type (adrenergic or cholinergic) of autonomic receptor stimulation. These long-range correlations among distributions of Ca2+ and V m kinetic functions that regulate SAN cell clock coupling during each AP cycle in different individual, isolated SAN cells not in contact with each other. Our numerical model simulations further extended our perspectives to the molecular scale and demonstrated that many ion currents also behave self-similar across autonomic states. Thus, to ensure rapid flexibility of AP firing rates in response to different types and degrees of autonomic input, nature "did not reinvent molecular wheels within the coupled-clock system of pacemaker cells," but differentially engaged or scaled the kinetics of gears that regulate the rate and rhythm at which the "wheels spin" in a given autonomic input context.
Collapse
Affiliation(s)
- Dongmei Yang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Christopher H. Morrell
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
- Department of Mathematics and Statistics, Loyola University Maryland, Baltimore, MD, United States
| | - Alexey E. Lyashkov
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Syevda Tagirova Sirenko
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Ihor Zahanich
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Yael Yaniv
- Biomedical Engineering Faculty, Technion–Israel Institute of Technology, Haifa, Israel
| | - Tatiana M. Vinogradova
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Bruce D. Ziman
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Victor A. Maltsev
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
10
|
Vinogradova TM, Lakatta EG. Dual Activation of Phosphodiesterase 3 and 4 Regulates Basal Cardiac Pacemaker Function and Beyond. Int J Mol Sci 2021. [PMID: 34445119 DOI: 10.3390/ijms22168414.pmid:34445119;pmcid:pmc8395138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The sinoatrial (SA) node is the physiological pacemaker of the heart, and resting heart rate in humans is a well-known risk factor for cardiovascular disease and mortality. Consequently, the mechanisms of initiating and regulating the normal spontaneous SA node beating rate are of vital importance. Spontaneous firing of the SA node is generated within sinoatrial nodal cells (SANC), which is regulated by the coupled-clock pacemaker system. Normal spontaneous beating of SANC is driven by a high level of cAMP-mediated PKA-dependent protein phosphorylation, which rely on the balance between high basal cAMP production by adenylyl cyclases and high basal cAMP degradation by cyclic nucleotide phosphodiesterases (PDEs). This diverse class of enzymes includes 11 families and PDE3 and PDE4 families dominate in both the SA node and cardiac myocardium, degrading cAMP and, consequently, regulating basal cardiac pacemaker function and excitation-contraction coupling. In this review, we will demonstrate similarities between expression, distribution, and colocalization of various PDE subtypes in SANC and cardiac myocytes of different species, including humans, focusing on PDE3 and PDE4. Here, we will describe specific targets of the coupled-clock pacemaker system modulated by dual PDE3 + PDE4 activation and provide evidence that concurrent activation of PDE3 + PDE4, operating in a synergistic manner, regulates the basal cardiac pacemaker function and provides control over normal spontaneous beating of SANCs through (PDE3 + PDE4)-dependent modulation of local subsarcolemmal Ca2+ releases (LCRs).
Collapse
Affiliation(s)
- Tatiana M Vinogradova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institute of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institute of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
11
|
Dual Activation of Phosphodiesterase 3 and 4 Regulates Basal Cardiac Pacemaker Function and Beyond. Int J Mol Sci 2021; 22:ijms22168414. [PMID: 34445119 PMCID: PMC8395138 DOI: 10.3390/ijms22168414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
The sinoatrial (SA) node is the physiological pacemaker of the heart, and resting heart rate in humans is a well-known risk factor for cardiovascular disease and mortality. Consequently, the mechanisms of initiating and regulating the normal spontaneous SA node beating rate are of vital importance. Spontaneous firing of the SA node is generated within sinoatrial nodal cells (SANC), which is regulated by the coupled-clock pacemaker system. Normal spontaneous beating of SANC is driven by a high level of cAMP-mediated PKA-dependent protein phosphorylation, which rely on the balance between high basal cAMP production by adenylyl cyclases and high basal cAMP degradation by cyclic nucleotide phosphodiesterases (PDEs). This diverse class of enzymes includes 11 families and PDE3 and PDE4 families dominate in both the SA node and cardiac myocardium, degrading cAMP and, consequently, regulating basal cardiac pacemaker function and excitation-contraction coupling. In this review, we will demonstrate similarities between expression, distribution, and colocalization of various PDE subtypes in SANC and cardiac myocytes of different species, including humans, focusing on PDE3 and PDE4. Here, we will describe specific targets of the coupled-clock pacemaker system modulated by dual PDE3 + PDE4 activation and provide evidence that concurrent activation of PDE3 + PDE4, operating in a synergistic manner, regulates the basal cardiac pacemaker function and provides control over normal spontaneous beating of SANCs through (PDE3 + PDE4)-dependent modulation of local subsarcolemmal Ca2+ releases (LCRs).
Collapse
|
12
|
Tsutsui K, Florio MC, Yang A, Wirth AN, Yang D, Kim MS, Ziman BD, Bychkov R, Monfredi OJ, Maltsev VA, Lakatta EG. cAMP-Dependent Signaling Restores AP Firing in Dormant SA Node Cells via Enhancement of Surface Membrane Currents and Calcium Coupling. Front Physiol 2021; 12:596832. [PMID: 33897445 PMCID: PMC8063038 DOI: 10.3389/fphys.2021.596832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/09/2021] [Indexed: 11/24/2022] Open
Abstract
Action potential (AP) firing rate and rhythm of sinoatrial nodal cells (SANC) are controlled by synergy between intracellular rhythmic local Ca2+ releases (LCRs) ("Ca2+ clock") and sarcolemmal electrogenic mechanisms ("membrane clock"). However, some SANC do not fire APs (dormant SANC). Prior studies have shown that β-adrenoceptor stimulation can restore AP firing in these cells. Here we tested whether this relates to improvement of synchronization of clock coupling. We characterized membrane potential, ion currents, Ca2+ dynamics, and phospholamban (PLB) phosphorylation, regulating Ca2+ pump in enzymatically isolated single guinea pig SANC prior to, during, and following β-adrenoceptor stimulation (isoproterenol) or application of cell-permeant cAMP (CPT-cAMP). Phosphorylation of PLB (Serine 16) was quantified in the same cells following Ca2+ measurement. In dormant SANC LCRs were small and disorganized at baseline, membrane potential was depolarized (-38 ± 1 mV, n = 46), and ICaL, If, and IK densities were smaller vs SANC firing APs. β-adrenoceptor stimulation or application of CPT-cAMP led to de novo spontaneous AP generation in 44 and 46% of dormant SANC, respectively. The initial response was an increase in size, rhythmicity and synchronization of LCRs, paralleled with membrane hyperpolarization and small amplitude APs (rate ∼1 Hz). During the transition to steady-state AP firing, LCR size further increased, while LCR period shortened. LCRs became more synchronized resulting in the growth of an ensemble LCR signal peaked in late diastole, culminating in AP ignition; the rate of diastolic depolarization, AP amplitude, and AP firing rate increased. ICaL, IK, and If amplitudes in dormant SANC increased in response to β-adrenoceptor stimulation. During washout, all changes reversed in order. Total PLB was higher, but the ratio of phosphorylated PLB (Serine 16) to total PLB was lower in dormant SANC. β-adrenoceptor stimulation increased this ratio in AP-firing cells. Thus, transition of dormant SANC to AP firing is linked to the increased functional coupling of membrane and Ca2+ clock proteins. The transition occurs via (i) an increase in cAMP-mediated phosphorylation of PLB accelerating Ca2+ pumping, (ii) increased spatiotemporal LCR synchronization, yielding a larger diastolic LCR ensemble signal resulting in an earlier increase in diastolic INCX; and (iii) increased current densities of If, ICaL, and IK.
Collapse
Affiliation(s)
- Kenta Tsutsui
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States
- Department of Cardiovascular Medicine, Faculty of Medicine, Saitama Medical University International Medical Center, Saitama, Japan
| | - Maria Cristina Florio
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Annie Yang
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Ashley N. Wirth
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Dongmei Yang
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Mary S. Kim
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Bruce D. Ziman
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Rostislav Bychkov
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Oliver J. Monfredi
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States
- Heart and Vascular Center, University of Virginia, Charlottesville, VA, United States
| | - Victor A. Maltsev
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States
| |
Collapse
|
13
|
Zhao R, Liu X, Qi Z, Yao X, Tsang SY. TRPV1 channels regulate the automaticity of embryonic stem cell-derived cardiomyocytes through stimulating the Na + /Ca 2+ exchanger current. J Cell Physiol 2021; 236:6806-6823. [PMID: 33782967 DOI: 10.1002/jcp.30369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Calcium controls the excitation-contraction coupling in cardiomyocytes. Embryonic stem cell-derived cardiomyocytes (ESC-CMs) are an important cardiomyocyte source for regenerative medicine and drug screening. Transient receptor potential vanilloid 1 (TRPV1) channels are nonselective cation channels that permeate sodium and calcium. This study aimed to investigate whether TRPV1 channels regulate the electrophysiological characteristics of ESC-CMs. If yes, what is the mechanism behind? By immunostaining and subcellular fractionation, followed by western blotting, TRPV1 was found to locate intracellularly. The staining pattern of TRPV1 was found to largely overlap with that of the sarco/endoplasmic reticulum Ca2+ -ATPase, the sarcoplasmic reticulum (SR) marker. By electrophysiology and calcium imaging, pharmacological blocker of TRPV1 and the molecular tool TRPV1β (which could functionally knockdown TRPV1) were found to decrease the rate and diastolic depolarization slope of spontaneous action potentials, and the amplitude and frequency of global calcium transients. By calcium imaging, in the absence of external calcium, TRPV1-specific opener increased intracellular calcium; this increase was abolished by preincubation with caffeine, which could deplete SR calcium store. The results suggest that TRPV1 controls calcium release from the SR. By electrophysiology, TRPV1 blockade and functional knockdown of TRPV1 decreased the Na+ /Ca2+ exchanger (NCX) currents from both the forward and reverse modes, suggesting that sodium and calcium through TRPV1 stimulate the NCX activity. Our novel findings suggest that TRPV1 activity is important for regulating the spontaneous activity of ESC-CMs and reveal a novel interplay between TRPV1 and NCX in regulating the physiological functions of ESC-CMs.
Collapse
Affiliation(s)
- Rui Zhao
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xianji Liu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zenghua Qi
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.,Key Laboratory for Regenerative Medicine, Ministry of Education, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Signatures of the autonomic nervous system and the heart's pacemaker cells in canine electrocardiograms and their applications to humans. Sci Rep 2020; 10:9971. [PMID: 32561798 PMCID: PMC7305326 DOI: 10.1038/s41598-020-66709-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/13/2020] [Indexed: 01/21/2023] Open
Abstract
Heart rate and heart rate variability (HRV) are mainly determined by the autonomic nervous system (ANS), which interacts with receptors on the sinoatrial node (SAN; the heart’s primary pacemaker), and by the “coupled-clock” system within the SAN cells. HRV changes are associated with cardiac diseases. However, the relative contributions of the ANS and SAN to HRV are not clear, impeding effective treatment. To discern the SAN’s contribution, we performed HRV analysis on canine electrocardiograms containing basal and ANS-blockade segments. We also analyzed human electrocardiograms of atrial fibrillation and heart failure patients, as well as healthy aged subjects. Finally, we used a mathematical model to simulate HRV under decreased “coupled-clock” regulation. We found that (a) in canines, the SAN and ANS contribute mainly to long- and short-term HRV, respectively; (b) there is evidence suggesting a similar relative SAN contribution in humans; (c) SAN features can be calculated from beat-intervals obtained in-vivo, without intervention; (d) ANS contribution can be modeled by sines embedded in white noise; (e) HRV changes associated with cardiac diseases and aging can be interpreted as deterioration of both SAN and ANS; and (f) SAN clock-coupling can be estimated from changes in HRV. This may enable future non-invasive diagnostic applications.
Collapse
|
15
|
Kohajda Z, Loewe A, Tóth N, Varró A, Nagy N. The Cardiac Pacemaker Story-Fundamental Role of the Na +/Ca 2+ Exchanger in Spontaneous Automaticity. Front Pharmacol 2020; 11:516. [PMID: 32410993 PMCID: PMC7199655 DOI: 10.3389/fphar.2020.00516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/01/2020] [Indexed: 01/01/2023] Open
Abstract
The electrophysiological mechanism of the sinus node automaticity was previously considered exclusively regulated by the so-called "funny current". However, parallel investigations increasingly emphasized the importance of the Ca2+-homeostasis and Na+/Ca2+ exchanger (NCX). Recently, increasing experimental evidence, as well as insight through mechanistic in silico modeling demonstrates the crucial role of the exchanger in sinus node pacemaking. NCX had a key role in the exciting story of discovery of sinus node pacemaking mechanisms, which recently settled with a consensus on the coupled-clock mechanism after decades of debate. This review focuses on the role of the Na+/Ca2+ exchanger from the early results and concepts to recent advances and attempts to give a balanced summary of the characteristics of the local, spontaneous, and rhythmic Ca2+ releases, the molecular control of the NCX and its role in the fight-or-flight response. Transgenic animal models and pharmacological manipulation of intracellular Ca2+ concentration and/or NCX demonstrate the pivotal function of the exchanger in sinus node automaticity. We also highlight where specific hypotheses regarding NCX function have been derived from computational modeling and require experimental validation. Nonselectivity of NCX inhibitors and the complex interplay of processes involved in Ca2+ handling render the design and interpretation of these experiments challenging.
Collapse
Affiliation(s)
- Zsófia Kohajda
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Noémi Tóth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - András Varró
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Nagy
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
16
|
MacDonald EA, Rose RA, Quinn TA. Neurohumoral Control of Sinoatrial Node Activity and Heart Rate: Insight From Experimental Models and Findings From Humans. Front Physiol 2020; 11:170. [PMID: 32194439 PMCID: PMC7063087 DOI: 10.3389/fphys.2020.00170] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
The sinoatrial node is perhaps one of the most important tissues in the entire body: it is the natural pacemaker of the heart, making it responsible for initiating each-and-every normal heartbeat. As such, its activity is heavily controlled, allowing heart rate to rapidly adapt to changes in physiological demand. Control of sinoatrial node activity, however, is complex, occurring through the autonomic nervous system and various circulating and locally released factors. In this review we discuss the coupled-clock pacemaker system and how its manipulation by neurohumoral signaling alters heart rate, considering the multitude of canonical and non-canonical agents that are known to modulate sinoatrial node activity. For each, we discuss the principal receptors involved and known intracellular signaling and protein targets, highlighting gaps in our knowledge and understanding from experimental models and human studies that represent areas for future research.
Collapse
Affiliation(s)
- Eilidh A. MacDonald
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Robert A. Rose
- Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - T. Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
17
|
Vinogradova TM, Sirenko S, Lukyanenko YO, Yang D, Tarasov KV, Lyashkov AE, Varghese NJ, Li Y, Chakir K, Ziman B, Lakatta EG. Basal Spontaneous Firing of Rabbit Sinoatrial Node Cells Is Regulated by Dual Activation of PDEs (Phosphodiesterases) 3 and 4. Circ Arrhythm Electrophysiol 2019; 11:e005896. [PMID: 29880528 DOI: 10.1161/circep.117.005896] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/27/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Spontaneous firing of sinoatrial node cells (SANCs) is regulated by cAMP-mediated, PKA (protein kinase A)-dependent (cAMP/PKA) local subsarcolemmal Ca2+ releases (LCRs) from RyRs (ryanodine receptors). LCRs occur during diastolic depolarization and activate an inward Na+/Ca2+ exchange current that accelerates diastolic depolarization rate prompting the next action potential. PDEs (phosphodiesterases) regulate cAMP-mediated signaling; PDE3/PDE4 represent major PDE activities in SANC, but how they modulate LCRs and basal spontaneous SANC firing remains unknown. METHODS Real-time polymerase chain reaction, Western blot, immunostaining, cellular perforated patch clamping, and confocal microscopy were used to elucidate mechanisms of PDE-dependent regulation of cardiac pacemaking. RESULTS PDE3A, PDE4B, and PDE4D were the major PDE subtypes expressed in rabbit SANC, and PDE3A was colocalized with α-actinin, PDE4D, SERCA (sarcoplasmic reticulum Ca2+ ATP-ase), and PLB (phospholamban) in Z-lines. Inhibition of PDE3 (cilostamide) or PDE4 (rolipram) alone increased spontaneous SANC firing by ≈20% (P<0.05) and ≈5% (P>0.05), respectively, but concurrent PDE3+PDE4 inhibition increased spontaneous firing by ≈45% (P<0.01), indicating synergistic effect. Inhibition of PDE3 or PDE4 alone increased L-type Ca2+ current (ICa,L) by ≈60% (P<0.01) or ≈5% (P>0.05), respectively, and PLB phosphorylation by ≈20% (P>0.05) each, but dual PDE3+PDE4 inhibition increased ICa,L by ≈100% (P<0.01) and PLB phosphorylation by ≈110% (P<0.05). Dual PDE3+PDE4 inhibition increased the LCR number and size (P<0.01) and reduced the SR (sarcoplasmic reticulum) Ca2+ refilling time (P<0.01) and the LCR period (time from action potential-induced Ca2+ transient to subsequent LCR; P<0.01), leading to decrease in spontaneous SANC cycle length (P<0.01). When RyRs were disabled by ryanodine and LCRs ceased, dual PDE3+PDE4 inhibition failed to increase spontaneous SANC firing. CONCLUSIONS Basal cardiac pacemaker function is regulated by concurrent PDE3+PDE4 activation which operates in a synergistic manner via decrease in cAMP/PKA phosphorylation, suppression of LCR parameters, and prolongation of the LCR period and spontaneous SANC cycle length.
Collapse
Affiliation(s)
- Tatiana M Vinogradova
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD.
| | - Syevda Sirenko
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Yevgeniya O Lukyanenko
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Dongmei Yang
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Kirill V Tarasov
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Alexey E Lyashkov
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Nevin J Varghese
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Yue Li
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Khalid Chakir
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Bruce Ziman
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| |
Collapse
|
18
|
Segal S, Kirschner Peretz N, Arbel-Ganon L, Liang J, Li L, Marbach D, Yang D, Wang SQ, Yaniv Y. Eliminating contraction during culture maintains global and local Ca 2+ dynamics in cultured rabbit pacemaker cells. Cell Calcium 2018; 78:35-47. [PMID: 30594820 DOI: 10.1016/j.ceca.2018.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
Abstract
Pacemaker cells residing in the sinoatrial node generate the regular heartbeat. Ca2+ signaling controls the heartbeat rate-directly, through the effect on membrane molecules (NCX exchange, K+ channel), and indirectly, through activation of calmodulin-AC-cAMP-PKA signaling. Thus, the physiological role of signaling in pacemaker cells can only be assessed if the Ca2+ dynamics are in the physiological range. Cultured cells that can be genetically manipulated and/or virally infected with probes are required for this purpose. Because rabbit pacemaker cells in culture experience a decrease in their spontaneous action potential (AP) firing rate below the physiological range, Ca2+ dynamics are expected to be affected. However, Ca2+ dynamics in cultured pacemaker cells have not been reported before. We aim to a develop a modified culture method that sustains the global and local Ca2+ kinetics along with the AP firing rate of rabbit pacemaker cells. We used experimental and computational tools to test the viability of rabbit pacemaker cells in culture under various conditions. We tested the effect of culture dish coating, pH, phosphorylation, and energy balance on cultured rabbit pacemaker cells function. The cells were maintained in culture for 48 h in two types of culture media: one without the addition of a contraction uncoupler and one enriched with either 10 mM BDM (2,3-Butanedione 2-monoxime) or 25 μM blebbistatin. The uncoupler was washed out from the medium prior to the experiments. Cells were successfully infected with a GFP adenovirus cultured with either BDM or blebbistatin. Using either uncoupler during culture led to the cell surface area being maintained at the same level as fresh cells. Moreover, the phospholamban and ryanodine receptor densities and their phosphorylation level remained intact in culture when either blebbistatin or BDM were present. Spontaneous AP firing rate, spontaneous Ca2+ kinetics, and spontaneous local Ca2+ release parameters were similar in the cultured cells with blebbistatin as in fresh cells. However, BDM affects these parameters. Using experimental and a computational model, we showed that by eliminating contraction, phosphorylation activity is preserved and energy is reduced. However, the side-effects of BDM render it less effective than blebbistatin.
Collapse
Affiliation(s)
- Sofia Segal
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | | | | | - Jinghui Liang
- College of Life Sciences, Peking University, Beijing, China
| | - Linlin Li
- College of Life Sciences, Peking University, Beijing, China
| | - Daphna Marbach
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | - Dongmei Yang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Shi-Qiang Wang
- College of Life Sciences, Peking University, Beijing, China
| | - Yael Yaniv
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel.
| |
Collapse
|
19
|
Vinogradova TM, Tagirova Sirenko S, Lakatta EG. Unique Ca 2+-Cycling Protein Abundance and Regulation Sustains Local Ca 2+ Releases and Spontaneous Firing of Rabbit Sinoatrial Node Cells. Int J Mol Sci 2018; 19:ijms19082173. [PMID: 30044420 PMCID: PMC6121616 DOI: 10.3390/ijms19082173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 11/16/2022] Open
Abstract
Spontaneous beating of the heart pacemaker, the sinoatrial node, is generated by sinoatrial node cells (SANC) and caused by gradual change of the membrane potential called diastolic depolarization (DD). Submembrane local Ca2+ releases (LCR) from sarcoplasmic reticulum (SR) occur during late DD and activate an inward Na+/Ca2+ exchange current, which accelerates the DD rate leading to earlier occurrence of an action potential. A comparison of intrinsic SR Ca2+ cycling revealed that, at similar physiological Ca2+ concentrations, LCRs are large and rhythmic in permeabilized SANC, but small and random in permeabilized ventricular myocytes (VM). Permeabilized SANC spontaneously released more Ca2+ from SR than VM, despite comparable SR Ca2+ content in both cell types. In this review we discuss specific patterns of expression and distribution of SR Ca2+ cycling proteins (SR Ca2+ ATPase (SERCA2), phospholamban (PLB) and ryanodine receptors (RyR)) in SANC and ventricular myocytes. We link ability of SANC to generate larger and rhythmic LCRs with increased abundance of SERCA2, reduced abundance of the SERCA inhibitor PLB. In addition, an increase in intracellular [Ca2+] increases phosphorylation of both PLB and RyR exclusively in SANC. The differences in SR Ca2+ cycling protein expression between SANC and VM provide insights into diverse regulation of intrinsic SR Ca2+ cycling that drives automaticity of SANC.
Collapse
Affiliation(s)
- Tatiana M Vinogradova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Blvd, Room 8B-123, Baltimore, MD 21224, USA.
| | - Syevda Tagirova Sirenko
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Blvd, Room 8B-123, Baltimore, MD 21224, USA.
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Blvd, Room 8B-123, Baltimore, MD 21224, USA.
| |
Collapse
|
20
|
Tsutsui K, Monfredi OJ, Sirenko-Tagirova SG, Maltseva LA, Bychkov R, Kim MS, Ziman BD, Tarasov KV, Tarasova YS, Zhang J, Wang M, Maltsev AV, Brennan JA, Efimov IR, Stern MD, Maltsev VA, Lakatta EG. A coupled-clock system drives the automaticity of human sinoatrial nodal pacemaker cells. Sci Signal 2018; 11:eaap7608. [PMID: 29895616 PMCID: PMC6138244 DOI: 10.1126/scisignal.aap7608] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The spontaneous rhythmic action potentials generated by the sinoatrial node (SAN), the primary pacemaker in the heart, dictate the regular and optimal cardiac contractions that pump blood around the body. Although the heart rate of humans is substantially slower than that of smaller experimental animals, current perspectives on the biophysical mechanisms underlying the automaticity of sinoatrial nodal pacemaker cells (SANCs) have been gleaned largely from studies of animal hearts. Using human SANCs, we demonstrated that spontaneous rhythmic local Ca2+ releases generated by a Ca2+ clock were coupled to electrogenic surface membrane molecules (the M clock) to trigger rhythmic action potentials, and that Ca2+-cAMP-protein kinase A (PKA) signaling regulated clock coupling. When these clocks became uncoupled, SANCs failed to generate spontaneous action potentials, showing a depolarized membrane potential and disorganized local Ca2+ releases that failed to activate the M clock. β-Adrenergic receptor (β-AR) stimulation, which increases cAMP concentrations and clock coupling in other species, restored spontaneous, rhythmic action potentials in some nonbeating "arrested" human SANCs by increasing intracellular Ca2+ concentrations and synchronizing diastolic local Ca2+ releases. When β-AR stimulation was withdrawn, the clocks again became uncoupled, and SANCs reverted to a nonbeating arrested state. Thus, automaticity of human pacemaker cells is driven by a coupled-clock system driven by Ca2+-cAMP-PKA signaling. Extreme clock uncoupling led to failure of spontaneous action potential generation, which was restored by recoupling of the clocks. Clock coupling and action potential firing in some of these arrested cells can be restored by β-AR stimulation-induced augmentation of Ca2+-cAMP-PKA signaling.
Collapse
Affiliation(s)
- Kenta Tsutsui
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Oliver J Monfredi
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
- Institute of Cardiovascular Sciences, University of Manchester, Manchester M13 9NT, UK
- Department of Cardiovascular Electrophysiology, Johns Hopkins Hospital, 1800 Orleans Street, Baltimore, MD 21287, USA
| | | | - Larissa A Maltseva
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Rostislav Bychkov
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Mary S Kim
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Bruce D Ziman
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Kirill V Tarasov
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Yelena S Tarasova
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Jing Zhang
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Alexander V Maltsev
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Jaclyn A Brennan
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA
| | - Michael D Stern
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Victor A Maltsev
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA.
| |
Collapse
|
21
|
Aziz Q, Li Y, Tinker A. Potassium channels in the sinoatrial node and their role in heart rate control. Channels (Austin) 2018; 12:356-366. [PMID: 30301404 PMCID: PMC6207292 DOI: 10.1080/19336950.2018.1532255] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022] Open
Abstract
Potassium currents determine the resting membrane potential and govern repolarisation in cardiac myocytes. Here, we review the various currents in the sinoatrial node focussing on their molecular and cellular properties and their role in pacemaking and heart rate control. We also describe how our recent finding of a novel ATP-sensitive potassium channel population in these cells fits into this picture.
Collapse
Affiliation(s)
- Qadeer Aziz
- William Harvey Heart Centre, Barts & The London School of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - Yiwen Li
- William Harvey Heart Centre, Barts & The London School of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - Andrew Tinker
- William Harvey Heart Centre, Barts & The London School of Medicine & Dentistry, Queen Mary, University of London, London, UK
| |
Collapse
|
22
|
Kaneko M, Yamamoto H, Sakai H, Kamada Y, Tanaka T, Fujiwara S, Yamamoto S, Takahagi H, Igawa H, Kasai S, Noda M, Inui M, Nishimoto T. A pyridone derivative activates SERCA2a by attenuating the inhibitory effect of phospholamban. Eur J Pharmacol 2017; 814:1-8. [DOI: 10.1016/j.ejphar.2017.07.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 01/26/2023]
|
23
|
Comlekoglu T, Weinberg SH. Memory in a fractional-order cardiomyocyte model alters properties of alternans and spontaneous activity. CHAOS (WOODBURY, N.Y.) 2017; 27:093904. [PMID: 28964143 DOI: 10.1063/1.4999351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cardiac memory is the dependence of electrical activity on the prior history of one or more system state variables, including transmembrane potential (Vm), ionic current gating, and ion concentrations. While prior work has represented memory either phenomenologically or with biophysical detail, in this study, we consider an intermediate approach of a minimal three-variable cardiomyocyte model, modified with fractional-order dynamics, i.e., a differential equation of order between 0 and 1, to account for history-dependence. Memory is represented via both capacitive memory, due to fractional-order Vm dynamics, that arises due to non-ideal behavior of membrane capacitance; and ionic current gating memory, due to fractional-order gating variable dynamics, that arises due to gating history-dependence. We perform simulations for varying Vm and gating variable fractional-orders and pacing cycle length and measure action potential duration (APD) and incidence of alternans, loss of capture, and spontaneous activity. In the absence of ionic current gating memory, we find that capacitive memory, i.e., decreased Vm fractional-order, typically shortens APD, suppresses alternans, and decreases the minimum cycle length (MCL) for loss of capture. However, in the presence of ionic current gating memory, capacitive memory can prolong APD, promote alternans, and increase MCL. Further, we find that reduced Vm fractional order (typically less than 0.75) can drive phase 4 depolarizations that promote spontaneous activity. Collectively, our results demonstrate that memory reproduced by a fractional-order model can play a role in alternans formation and pacemaking, and in general, can greatly increase the range of electrophysiological characteristics exhibited by a minimal model.
Collapse
Affiliation(s)
- T Comlekoglu
- Virginia Commonwealth University, 401 West Main Street, Richmond, Virginia 23284, USA
| | - S H Weinberg
- Virginia Commonwealth University, 401 West Main Street, Richmond, Virginia 23284, USA
| |
Collapse
|
24
|
Computer algorithms for automated detection and analysis of local Ca2+ releases in spontaneously beating cardiac pacemaker cells. PLoS One 2017; 12:e0179419. [PMID: 28683095 PMCID: PMC5500000 DOI: 10.1371/journal.pone.0179419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 05/29/2017] [Indexed: 11/25/2022] Open
Abstract
Local Ca2+ Releases (LCRs) are crucial events involved in cardiac pacemaker cell function. However, specific algorithms for automatic LCR detection and analysis have not been developed in live, spontaneously beating pacemaker cells. In the present study we measured LCRs using a high-speed 2D-camera in spontaneously contracting sinoatrial (SA) node cells isolated from rabbit and guinea pig and developed a new algorithm capable of detecting and analyzing the LCRs spatially in two-dimensions, and in time. Our algorithm tracks points along the midline of the contracting cell. It uses these points as a coordinate system for affine transform, producing a transformed image series where the cell does not contract. Action potential-induced Ca2+ transients and LCRs were thereafter isolated from recording noise by applying a series of spatial filters. The LCR birth and death events were detected by a differential (frame-to-frame) sensitivity algorithm applied to each pixel (cell location). An LCR was detected when its signal changes sufficiently quickly within a sufficiently large area. The LCR is considered to have died when its amplitude decays substantially, or when it merges into the rising whole cell Ca2+ transient. Ultimately, our algorithm provides major LCR parameters such as period, signal mass, duration, and propagation path area. As the LCRs propagate within live cells, the algorithm identifies splitting and merging behaviors, indicating the importance of locally propagating Ca2+-induced-Ca2+-release for the fate of LCRs and for generating a powerful ensemble Ca2+ signal. Thus, our new computer algorithms eliminate motion artifacts and detect 2D local spatiotemporal events from recording noise and global signals. While the algorithms were developed to detect LCRs in sinoatrial nodal cells, they have the potential to be used in other applications in biophysics and cell physiology, for example, to detect Ca2+ wavelets (abortive waves), sparks and embers in muscle cells and Ca2+ puffs and syntillas in neurons.
Collapse
|
25
|
Li Y, Sirenko S, Riordon DR, Yang D, Spurgeon H, Lakatta EG, Vinogradova TM. CaMKII-dependent phosphorylation regulates basal cardiac pacemaker function via modulation of local Ca2+ releases. Am J Physiol Heart Circ Physiol 2016; 311:H532-44. [PMID: 27402669 DOI: 10.1152/ajpheart.00765.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 06/22/2016] [Indexed: 11/22/2022]
Abstract
Spontaneous beating of the heart pacemaker, the sinoatrial node, is generated by sinoatrial node cells (SANC) due to gradual change of the membrane potential called diastolic depolarization (DD). Spontaneous, submembrane local Ca(2+) releases (LCR) from ryanodine receptors (RyR) occur during late DD and activate an inward Na(+)/Ca(2+)exchange current to boost the DD rate and fire an action potential (AP). Here we studied the extent of basal Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activation and the role of basal CaMKII-dependent protein phosphorylation in generation of LCRs and regulation of normal automaticity of intact rabbit SANC. The basal level of activated (autophosphorylated) CaMKII in rabbit SANC surpassed that in ventricular myocytes (VM) by approximately twofold, and this was accompanied by high basal level of protein phosphorylation. Specifically, phosphorylation of phospholamban (PLB) at the CaMKII-dependent Thr(17) site was approximately threefold greater in SANC compared with VM, and RyR phosphorylation at CaMKII-dependent Ser(2815) site was ∼10-fold greater in the SA node, compared with that in ventricle. CaMKII inhibition reduced phosphorylation of PLB and RyR, decreased LCR size, increased LCR periods (time from AP-induced Ca(2+) transient to subsequent LCR), and suppressed spontaneous SANC firing. Graded changes in CaMKII-dependent phosphorylation (indexed by PLB phosphorylation at the Thr(17)site) produced by CaMKII inhibition, β-AR stimulation or phosphodiesterase inhibition were highly correlated with changes in SR Ca(2+) replenishment times and LCR periods and concomitant changes in spontaneous SANC cycle lengths (R(2) = 0.96). Thus high basal CaMKII activation modifies the phosphorylation state of Ca(2+) cycling proteins PLB, RyR, L-type Ca(2+) channels (and likely others), adjusting LCR period and characteristics, and ultimately regulates both normal and reserve cardiac pacemaker function.
Collapse
Affiliation(s)
- Yue Li
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Syevda Sirenko
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Daniel R Riordon
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Dongmei Yang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Harold Spurgeon
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Tatiana M Vinogradova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
26
|
Lukyanenko YO, Younes A, Lyashkov AE, Tarasov KV, Riordon DR, Lee J, Sirenko SG, Kobrinsky E, Ziman B, Tarasova YS, Juhaszova M, Sollott SJ, Graham DR, Lakatta EG. Ca(2+)/calmodulin-activated phosphodiesterase 1A is highly expressed in rabbit cardiac sinoatrial nodal cells and regulates pacemaker function. J Mol Cell Cardiol 2016; 98:73-82. [PMID: 27363295 DOI: 10.1016/j.yjmcc.2016.06.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/23/2016] [Accepted: 06/23/2016] [Indexed: 11/29/2022]
Abstract
Constitutive Ca(2+)/calmodulin (CaM)-activation of adenylyl cyclases (ACs) types 1 and 8 in sinoatrial nodal cells (SANC) generates cAMP within lipid-raft-rich microdomains to initiate cAMP-protein kinase A (PKA) signaling, that regulates basal state rhythmic action potential firing of these cells. Mounting evidence in other cell types points to a balance between Ca(2+)-activated counteracting enzymes, ACs and phosphodiesterases (PDEs) within these cells. We hypothesized that the expression and activity of Ca(2+)/CaM-activated PDE Type 1A is higher in SANC than in other cardiac cell types. We found that PDE1A protein expression was 5-fold higher in sinoatrial nodal tissue than in left ventricle, and its mRNA expression was 12-fold greater in the corresponding isolated cells. PDE1 activity (nimodipine-sensitive) accounted for 39% of the total PDE activity in SANC lysates, compared to only 4% in left ventricular cardiomyocytes (LVC). Additionally, total PDE activity in SANC lysates was lowest (10%) in lipid-raft-rich and highest (76%) in lipid-raft-poor fractions (equilibrium sedimentation on a sucrose density gradient). In intact cells PDE1A immunolabeling was not localized to the cell surface membrane (structured illumination microscopy imaging), but located approximately within about 150nm inside of immunolabeling of hyperpolarization-activated cyclic nucleotide-gated potassium channels (HCN4), which reside within lipid-raft-rich microenvironments. In permeabilized SANC, in which surface membrane ion channels are not functional, nimodipine increased spontaneous SR Ca(2+) cycling. PDE1A mRNA silencing in HL-1 cells increased the spontaneous beating rate, reduced the cAMP, and increased cGMP levels in response to IBMX, a broad spectrum PDE inhibitor (detected via fluorescence resonance energy transfer microscopy). We conclude that signaling via cAMP generated by Ca(2+)/CaM-activated AC in SANC lipid raft domains is limited by cAMP degradation by Ca(2+)/CaM-activated PDE1A in non-lipid raft domains. This suggests that local gradients of [Ca(2+)]-CaM or different AC and PDE1A affinity regulate both cAMP production and its degradation, and this balance determines the intensity of Ca(2+)-AC-cAMP-PKA signaling that drives SANC pacemaker function.
Collapse
Affiliation(s)
- Yevgeniya O Lukyanenko
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Antoine Younes
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Alexey E Lyashkov
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, 733 N. Broadway, MRB 835, Baltimore, MD 21205, USA.
| | - Kirill V Tarasov
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Daniel R Riordon
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Joonho Lee
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Syevda G Sirenko
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Evgeny Kobrinsky
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Bruce Ziman
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Yelena S Tarasova
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Magdalena Juhaszova
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Steven J Sollott
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - David R Graham
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, 733 N. Broadway, MRB 835, Baltimore, MD 21205, USA.
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| |
Collapse
|
27
|
Sirenko SG, Maltsev VA, Yaniv Y, Bychkov R, Yaeger D, Vinogradova T, Spurgeon HA, Lakatta EG. Electrochemical Na+ and Ca2+ gradients drive coupled-clock regulation of automaticity of isolated rabbit sinoatrial nodal pacemaker cells. Am J Physiol Heart Circ Physiol 2016; 311:H251-67. [PMID: 27208164 DOI: 10.1152/ajpheart.00667.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 05/11/2016] [Indexed: 11/22/2022]
Abstract
Coupling of an intracellular Ca(2+) clock to surface membrane ion channels, i.e., a "membrane clock, " via coupling of electrochemical Na(+) and Ca(2+) gradients (ENa and ECa, respectively) has been theorized to regulate sinoatrial nodal cell (SANC) normal automaticity. To test this hypothesis, we measured responses of [Na(+)]i, [Ca(2+)]i, membrane potential, action potential cycle length (APCL), and rhythm in rabbit SANCs to Na(+)/K(+) pump inhibition by the digitalis glycoside, digoxigenin (DG, 10-20 μmol/l). Initial small but significant increases in [Na(+)]i and [Ca(2+)]i and reductions in ENa and ECa in response to DG led to a small reduction in maximum diastolic potential (MDP), significantly enhanced local diastolic Ca(2+) releases (LCRs), and reduced the average APCL. As [Na(+)]i and [Ca(2+)]i continued to increase at longer times following DG exposure, further significant reductions in MDP, ENa, and ECa occurred; LCRs became significantly reduced, and APCL became progressively and significantly prolonged. This was accompanied by increased APCL variability. We also employed a coupled-clock numerical model to simulate changes in ENa and ECa simultaneously with ion currents not measured experimentally. Numerical modeling predicted that, as the ENa and ECa monotonically reduced over time in response to DG, ion currents (ICaL, ICaT, If, IKr, and IbNa) monotonically decreased. In parallel with the biphasic APCL, diastolic INCX manifested biphasic changes; initial INCX increase attributable to enhanced LCR ensemble Ca(2+) signal was followed by INCX reduction as ENCX (ENCX = 3ENa - 2ECa) decreased. Thus SANC automaticity is tightly regulated by ENa, ECa, and ENCX via a complex interplay of numerous key clock components that regulate SANC clock coupling.
Collapse
Affiliation(s)
- Syevda G Sirenko
- Laboratory of Cardiovascular Science, National Institutes of Health, National Institute on Aging, Intramural Research Program, Baltimore, Maryland
| | - Victor A Maltsev
- Laboratory of Cardiovascular Science, National Institutes of Health, National Institute on Aging, Intramural Research Program, Baltimore, Maryland
| | - Yael Yaniv
- Laboratory of Cardiovascular Science, National Institutes of Health, National Institute on Aging, Intramural Research Program, Baltimore, Maryland; Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | - Rostislav Bychkov
- Laboratory of Cardiovascular Science, National Institutes of Health, National Institute on Aging, Intramural Research Program, Baltimore, Maryland; Universidad Central del Caribe, Santa Juanita, Bayamon Puerto Rico
| | - Daniel Yaeger
- Laboratory of Cardiovascular Science, National Institutes of Health, National Institute on Aging, Intramural Research Program, Baltimore, Maryland
| | - Tatiana Vinogradova
- Laboratory of Cardiovascular Science, National Institutes of Health, National Institute on Aging, Intramural Research Program, Baltimore, Maryland
| | - Harold A Spurgeon
- Laboratory of Cardiovascular Science, National Institutes of Health, National Institute on Aging, Intramural Research Program, Baltimore, Maryland
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institutes of Health, National Institute on Aging, Intramural Research Program, Baltimore, Maryland;
| |
Collapse
|
28
|
Qi Z, Wong CK, Suen CH, Wang J, Long C, Sauer H, Yao X, Tsang SY. TRPC3 regulates the automaticity of embryonic stem cell-derived cardiomyocytes. Int J Cardiol 2016; 203:169-81. [DOI: 10.1016/j.ijcard.2015.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/29/2015] [Accepted: 10/03/2015] [Indexed: 10/22/2022]
|
29
|
Spatiotemporal stability of neonatal rat cardiomyocyte monolayers spontaneous activity is dependent on the culture substrate. PLoS One 2015; 10:e0127977. [PMID: 26035822 PMCID: PMC4452796 DOI: 10.1371/journal.pone.0127977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 04/21/2015] [Indexed: 11/27/2022] Open
Abstract
In native conditions, cardiac cells must continuously comply with diverse stimuli necessitating a perpetual adaptation. Polydimethylsiloxane (PDMS) is commonly used in cell culture to study cellular response to changes in the mechanical environment. The aim of this study was to evaluate the impact of using PDMS substrates on the properties of spontaneous activity of cardiomyocyte monolayer cultures. We compared PDMS to the gold standard normally used in culture: a glass substrate. Although mean frequency of spontaneous activity remained unaltered, incidence of reentrant activity was significantly higher in samples cultured on glass compared to PDMS substrates. Higher spatial and temporal instability of the spontaneous rate activation was found when cardiomyocytes were cultured on PDMS, and correlated with decreased connexin-43 and increased CaV3.1 and HCN2 mRNA levels. Compared to cultures on glass, cultures on PDMS were associated with the strongest response to isoproterenol and acetylcholine. These results reveal the importance of carefully selecting the culture substrate for studies involving mechanical stimulation, especially for tissue engineering or pharmacological high-throughput screening of cardiac tissue analog.
Collapse
|
30
|
Zhang Y, Ying J, Jiang D, Chang Z, Li H, Zhang G, Gong S, Jiang X, Tao J. Urotensin-II receptor stimulation of cardiac L-type Ca2+ channels requires the βγ subunits of Gi/o-protein and phosphatidylinositol 3-kinase-dependent protein kinase C β1 isoform. J Biol Chem 2015; 290:8644-55. [PMID: 25678708 DOI: 10.1074/jbc.m114.615021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent studies have demonstrated that urotensin-II (U-II) plays important roles in cardiovascular actions including cardiac positive inotropic effects and increasing cardiac output. However, the mechanisms underlying these effects of U-II in cardiomyocytes still remain unknown. We show by electrophysiological studies that U-II dose-dependently potentiates L-type Ca(2+) currents (ICa,L) in adult rat ventricular myocytes. This effect was U-II receptor (U-IIR)-dependent and was associated with a depolarizing shift in the voltage dependence of inactivation. Intracellular application of guanosine-5'-O-(2-thiodiphosphate) and pertussis toxin pretreatment both abolished the stimulatory effects of U-II. Dialysis of cells with the QEHA peptide, but not scrambled peptide SKEE, blocked the U-II-induced response. The phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin as well as the class I PI3K antagonist CH132799 blocked the U-II-induced ICa,L response. Protein kinase C antagonists calphostin C and chelerythrine chloride as well as dialysis of cells with 1,2bis(2aminophenoxy)ethaneN,N,N',N'-tetraacetic acid abolished the U-II-induced responses, whereas PKCα inhibition or PKA blockade had no effect. Exposure of ventricular myocytes to U-II markedly increased membrane PKCβ1 expression, whereas inhibition of PKCβ1 pharmacologically or by shRNA targeting abolished the U-II-induced ICa,L response. Functionally, we observed a significant increase in the amplitude of sarcomere shortening induced by U-II; blockade of U-IIR as well as PKCβ inhibition abolished this effect, whereas Bay K8644 mimicked the U-II response. Taken together, our results indicate that U-II potentiates ICa,L through the βγ subunits of Gi/o-protein and downstream activation of the class I PI3K-dependent PKCβ1 isoform. This occurred via the activation of U-IIR and contributes to the positive inotropic effect on cardiomyocytes.
Collapse
Affiliation(s)
- Yuan Zhang
- From the Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou 215123, China, Department of Geriatrics and Institute of Neuroscience, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jiaoqian Ying
- From the Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou 215123, China, Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Dongsheng Jiang
- From the Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou 215123, China, Department of Dermatology and Allergic Diseases, University of Ulm, Ulm 89081, Germany, and
| | - Zhigang Chang
- From the Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou 215123, China
| | - Hua Li
- From the Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou 215123, China, National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai 201203, China
| | - Guoqiang Zhang
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shan Gong
- From the Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou 215123, China
| | - Xinghong Jiang
- From the Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou 215123, China
| | - Jin Tao
- From the Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou 215123, China,
| |
Collapse
|
31
|
Wu Y, Rasmussen TP, Koval OM, Joiner MLA, Hall DD, Chen B, Luczak ED, Wang Q, Rokita AG, Wehrens XHT, Song LS, Anderson ME. The mitochondrial uniporter controls fight or flight heart rate increases. Nat Commun 2015; 6:6081. [PMID: 25603276 PMCID: PMC4398998 DOI: 10.1038/ncomms7081] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 12/10/2014] [Indexed: 01/13/2023] Open
Abstract
Heart rate increases are a fundamental adaptation to physiological stress, while inappropriate heart rate increases are resistant to current therapies. However, the metabolic mechanisms driving heart rate acceleration in cardiac pacemaker cells remain incompletely understood. The mitochondrial calcium uniporter (MCU) facilitates calcium entry into the mitochondrial matrix to stimulate metabolism. We developed mice with myocardial MCU inhibition by transgenic expression of a dominant negative (DN) MCU. Here we show that DN-MCU mice had normal resting heart rates but were incapable of physiological fight or flight heart rate acceleration. We found MCU function was essential for rapidly increasing mitochondrial calcium in pacemaker cells and that MCU enhanced oxidative phoshorylation was required to accelerate reloading of an intracellular calcium compartment prior to each heartbeat. Our findings show the MCU is necessary for complete physiological heart rate acceleration and suggest MCU inhibition could reduce inappropriate heart rate increases without affecting resting heart rate.
Collapse
Affiliation(s)
- Yuejin Wu
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Tyler P Rasmussen
- 1] Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA [2] Department of Molecular Physiology and Biophysics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Olha M Koval
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Mei-Ling A Joiner
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Duane D Hall
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Biyi Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Elizabeth D Luczak
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Qiongling Wang
- Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics and Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Adam G Rokita
- 1] Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA [2] Department of Internal Medicine II, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics and Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Mark E Anderson
- 1] Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA [2] Department of Molecular Physiology and Biophysics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
32
|
Liu J, Sirenko S, Juhaszova M, Sollott SJ, Shukla S, Yaniv Y, Lakatta EG. Age-associated abnormalities of intrinsic automaticity of sinoatrial nodal cells are linked to deficient cAMP-PKA-Ca(2+) signaling. Am J Physiol Heart Circ Physiol 2014; 306:H1385-97. [PMID: 24633551 DOI: 10.1152/ajpheart.00088.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A reduced sinoatrial node (SAN) functional reserve underlies the age-associated decline in heart rate acceleration in response to stress. SAN cell function involves an oscillatory coupled-clock system: the sarcoplasmic reticulum (SR), a Ca(2+) clock, and the electrogenic-sarcolemmal membrane clock. Ca(2+)-activated-calmodulin-adenylyl cyclase/CaMKII-cAMP/PKA-Ca(2+) signaling regulated by phosphodiesterase activity drives SAN cells automaticity. SR-generated local calcium releases (LCRs) activate Na(+)/Ca(2+) exchanger in the membrane clock, which initiates the action potential (AP). We hypothesize that SAN cell dysfunctions accumulate with age. We found a reduction in single SAN cell AP firing in aged (20-24 mo) vs. adult (3-4 mo) mice. The sensitivity of the SAN beating rate responses to both muscarinic and adrenergic receptor activation becomes decreased in advanced age. Additionally, age-associated coincident dysfunctions occur stemming from compromised clock functions, including a reduced SR Ca(2+) load and a reduced size, number, and duration of spontaneous LCRs. Moreover, the sensitivity of SAN beating rate to a cAMP stress induced by phosphodiesterase inhibitor is reduced, as are the LCR size, amplitude, and number in SAN cells from aged vs. adult mice. These functional changes coincide with decreased expression of crucial SR Ca(2+)-cycling proteins, including SR Ca(2+)-ATPase pump, ryanodine receptors, and Na(+)/Ca(2+) exchanger. Thus a deterioration in intrinsic Ca(2+) clock kinetics in aged SAN cells, due to deficits in intrinsic SR Ca(2+) cycling and its response to a cAMP-dependent pathway activation, is involved in the age-associated reduction in intrinsic resting AP firing rate, and in the reduction in the acceleration of heart rate during exercise.
Collapse
Affiliation(s)
- Jie Liu
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland; and Department of Physiology, University of Sydney, Sydney, New South Wales, Australia
| | - Syevda Sirenko
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland; and
| | - Magdalena Juhaszova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland; and
| | - Steven J Sollott
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland; and
| | - Shweta Shukla
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland; and
| | - Yael Yaniv
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland; and
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland; and
| |
Collapse
|
33
|
Carvalho de Lima D, Guimarães JB, Rodovalho GV, Silveira SA, Haibara AS, Coimbra CC. Exercise training starting at weaning age preserves cardiac pacemaker function in adulthood of diet-induced obese rats. Appl Physiol Nutr Metab 2014; 39:888-94. [PMID: 24806307 DOI: 10.1139/apnm-2013-0529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Peripheral sympathetic overdrive in young obese subjects contributes to further aggravation of insulin resistance, diabetes, and hypertension, thus inducing worsening clinical conditions in adulthood. Exercise training has been considered a strategy to repair obesity autonomic dysfunction, thereby reducing the cardiometabolic risk. Therefore, the aim of this study was to assess the effect of early exercise training, starting immediately after weaning, on cardiac autonomic control in diet-induced obese rats. Male Wistar rats (weaning) were divided into four groups: (i) a control group (n = 6); (ii) an exercise-trained control group (n = 6); (iii) a diet-induced obesity group (n = 6); and (iv) an exercise-trained diet-induced obesity group (n = 6). The development of obesity was induced by 9 weeks of palatable diet intake, and the training program was implemented in a motor-driven treadmill (5 times per week) during the same period. After this period, animals were submitted to vein and artery catheter implantation to assess cardiac autonomic balance by methylatropine (3 mg/kg) and propranolol (4 mg/kg) administration. Exercise training increased running performance in both groups (p < 0.05). Exercise training also prevented the increased resting heart rate in obese rats, which seemed to be related to cardiac pacemaker activity preservation (p < 0.05). Additionally, the training program preserved the pressure and bradycardia responses to autonomic blockade in obese rats (p < 0.05). An exercise program beginning at weaning age prevents cardiovascular dysfunction in obese rats, indicating that exercise training may be used as a nonpharmacological therapeutic strategy for the treatment of cardiometabolic diseases.
Collapse
Affiliation(s)
- Daniel Carvalho de Lima
- a Department of Physiology and Biophysics, Institute of Biological Sciences; Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | | | | | | | | | | |
Collapse
|
34
|
Ramirez JM. The integrative role of the sigh in psychology, physiology, pathology, and neurobiology. PROGRESS IN BRAIN RESEARCH 2014; 209:91-129. [PMID: 24746045 DOI: 10.1016/b978-0-444-63274-6.00006-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
"Sighs, tears, grief, distress" expresses Johann Sebastian Bach in a musical example for the relationship between sighs and deep emotions. This review explores the neurobiological basis of the sigh and its relationship with psychology, physiology, and pathology. Sighs monitor changes in brain states, induce arousal, and reset breathing variability. These behavioral roles homeostatically regulate breathing stability under physiological and pathological conditions. Sighs evoked in hypoxia evoke arousal and thereby become critical for survival. Hypoarousal and failure to sigh have been associated with sudden infant death syndrome. Increased breathing irregularity may provoke excessive sighing and hyperarousal, a behavioral sequence that may play a role in panic disorders. Essential for generating sighs and breathing is the pre-Bötzinger complex. Modulatory and synaptic interactions within this local network and between networks located in the brainstem, cerebellum, cortex, hypothalamus, amygdala, and the periaqueductal gray may govern the relationships between physiology, psychology, and pathology. Unraveling these circuits will lead to a better understanding of how we balance emotions and how emotions become pathological.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Neurological Surgery, University of Washington, Seattle, WA, USA.
| |
Collapse
|
35
|
Sirenko S, Maltsev VA, Maltseva LA, Yang D, Lukyanenko Y, Vinogradova TM, Jones LR, Lakatta EG. Sarcoplasmic reticulum Ca2+ cycling protein phosphorylation in a physiologic Ca2+ milieu unleashes a high-power, rhythmic Ca2+ clock in ventricular myocytes: relevance to arrhythmias and bio-pacemaker design. J Mol Cell Cardiol 2014; 66:106-15. [PMID: 24274954 PMCID: PMC3896924 DOI: 10.1016/j.yjmcc.2013.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 11/07/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
Abstract
Basal phosphorylation of sarcoplasmic reticulum (SR) Ca(2+) proteins is high in sinoatrial nodal cells (SANC), which generate partially synchronized, spontaneous, rhythmic, diastolic local Ca(2+) releases (LCRs), but low in ventricular myocytes (VM), which exhibit rare diastolic, stochastic SR-generated Ca(2+) sparks. We tested the hypothesis that in a physiologic Ca(2+) milieu, and independent of increased Ca(2+) influx, an increase in basal phosphorylation of SR Ca(2+) cycling proteins will convert stochastic Ca(2+) sparks into periodic, high-power Ca(2+) signals of the type that drives SANC normal automaticity. We measured phosphorylation of SR-associated proteins, phospholamban (PLB) and ryanodine receptors (RyR), and spontaneous local Ca(2+) release characteristics (LCR) in permeabilized single, rabbit VM in physiologic [Ca(2+)], prior to and during inhibition of protein phosphatase (PP) and phosphodiesterase (PDE), or addition of exogenous cAMP, or in the presence of an antibody (2D12), that specifically inhibits binding of the PLB to SERCA-2. In the absence of the aforementioned perturbations, VM could only generate stochastic local Ca(2+) releases of low power and low amplitude, as assessed by confocal Ca(2+) imaging and spectral analysis. When the kinetics of Ca(2+) pumping into the SR were increased by an increase in PLB phosphorylation (via PDE and PP inhibition or addition of cAMP) or by 2D12, self-organized, "clock-like" local Ca(2+) releases, partially synchronized in space and time (Ca(2+) wavelets), emerged, and the ensemble of these rhythmic local Ca(2+) wavelets generated a periodic high-amplitude Ca(2+) signal. Thus, a Ca(2+) clock is not specific to pacemaker cells, but can also be unleashed in VM when SR Ca(2+) cycling increases and spontaneous local Ca(2+) release becomes partially synchronized. This unleashed Ca(2+) clock that emerges in a physiological Ca(2+) milieu in VM has two faces, however: it can provoke ventricular arrhythmias; or if harnessed, can be an important feature of novel bio-pacemaker designs.
Collapse
Affiliation(s)
- Syevda Sirenko
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Victor A Maltsev
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Larissa A Maltseva
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Dongmei Yang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yevgeniya Lukyanenko
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Tatiana M Vinogradova
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Larry R Jones
- Department of Medicine, Krannert Institute of Cardiology, Indianapolis, IN, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|