1
|
Xu L, Tan C, Barr J, Talaba N, Verheyden J, Chin JS, Gaboyan S, Kasaraneni N, Elgamal RM, Gaulton KJ, Lin G, Afshar K, Golts E, Meier A, Alexander LEC, Borok Z, Shen Y, Chung WK, McCulley DJ, Sun X. Context-dependent roles of mitochondrial LONP1 in orchestrating the balance between airway progenitor versus progeny cells. Cell Stem Cell 2024; 31:1465-1483.e6. [PMID: 39181129 DOI: 10.1016/j.stem.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 06/12/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
While all eukaryotic cells are dependent on mitochondria for function, in a complex tissue, which cell type and which cell behavior are more sensitive to mitochondrial deficiency remain unpredictable. Here, we show that in the mouse airway, compromising mitochondrial function by inactivating mitochondrial protease gene Lonp1 led to reduced progenitor proliferation and differentiation during development, apoptosis of terminally differentiated ciliated cells and their replacement by basal progenitors and goblet cells during homeostasis, and failed airway progenitor migration into damaged alveoli following influenza infection. ATF4 and the integrated stress response (ISR) pathway are elevated and responsible for the airway phenotypes. Such context-dependent sensitivities are predicted by the selective expression of Bok, which is required for ISR activation. Reduced LONP1 expression is found in chronic obstructive pulmonary disease (COPD) airways with squamous metaplasia. These findings illustrate a cellular energy landscape whereby compromised mitochondrial function could favor the emergence of pathological cell types.
Collapse
Affiliation(s)
- Le Xu
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chunting Tan
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Justinn Barr
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole Talaba
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jamie Verheyden
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ji Sun Chin
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samvel Gaboyan
- Pulmonary and Critical Care Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nikita Kasaraneni
- Pulmonary and Critical Care Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ruth M Elgamal
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kyle J Gaulton
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Grace Lin
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Kamyar Afshar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Eugene Golts
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Angela Meier
- Department of Anesthesiology, Division of Critical Care, University of California, San Diego, La Jolla, CA, USA
| | - Laura E Crotty Alexander
- Pulmonary and Critical Care Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA; JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David J McCulley
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Sun
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Elmusrati A, Wang CY. The expression of immune checkpoint proteins PD-L1 and TIM3 in mouse and human head and neck squamous cell carcinoma. Eur J Oral Sci 2024; 132:e13010. [PMID: 39090710 PMCID: PMC11436301 DOI: 10.1111/eos.13010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
The aim of this study was to examine the expression of programmed death-ligand 1 (PD-L1) and of T cell immunoglobulin and mucin domain-containing protein (TIM3) in oral epithelial dysplasia and head and neck squamous cell carcinoma (HNSCC). Mouse HNSCC was induced with 4-nitroquinoline-1 oxide (4NQO). Oral epithelial dysplastic lesions, carcinoma in situ and HNSCC lesions were stained with anti-PD-L1 and TIM3 antibodies. The expression of PD-L1 and TIM3 in tumor cells and immune cells was semiquantitatively measured and compared. In parallel, human dysplasia and HNSCC were stained with anti-PD-L1 and anti-TIM3. The expression pattern of PD-L1+ and TIM3+ cells was further compared. In human and mouse samples both PD-L1 and TIM3 were found to be expressed in neoplastic and immune cells in HNSCC, but not in dysplasia. There was no significant difference in PD-L1 and TIM3 expression between metastatic and nonmetastatic HNSCC. We conclude that the 4NQO-induced mouse HNSCC model may be an excellent preclinical model for immune checkpoint therapy.
Collapse
Affiliation(s)
- Areeg Elmusrati
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Jaiswal A, Shrivastav S, Kushwaha HR, Chaturvedi R, Singh RP. Oncogenic potential of SARS-CoV-2-targeting hallmarks of cancer pathways. Cell Commun Signal 2024; 22:447. [PMID: 39327555 PMCID: PMC11426004 DOI: 10.1186/s12964-024-01818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
The 2019 outbreak of SARS-CoV-2 has caused a major worldwide health crisis with high rates of morbidity and death. Interestingly, it has also been linked to cancer, which begs the issue of whether it plays a role in carcinogenesis. Recent studies have revealed various mechanisms by which SARS-CoV-2 can influence oncogenic pathways, potentially promoting cancer development. The virus encodes several proteins that alter key signaling pathways associated with cancer hallmarks. Unlike classical oncogenic viruses, which transform cells through viral oncogenes or by activating host oncogenes, SARS-CoV-2 appears to promote tumorigenesis by inhibiting tumor suppressor genes and pathways while activating survival, proliferation, and inflammation-associated signaling cascades. Bioinformatic analyses and experimental studies have identified numerous interactions between SARS-CoV-2 proteins and cellular components involved in cancer-related processes. This review explores the intricate relationship between SARS-CoV-2 infection and cancer, focusing on the regulation of key hallmarks driving initiation, promotion and progression of cancer by viral proteins. By elucidating the underlying mechanisms driving cellular transformation, the potential of SARS-CoV-2 as an oncovirus is highlighted. Comprehending these interplays is essential to enhance our understanding of COVID-19 and cancer biology and further formulating strategies to alleviate SARS-CoV-2 influence on cancer consequences.
Collapse
Affiliation(s)
- Aishwarya Jaiswal
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sanah Shrivastav
- SRM Institute of Science and Technology, Delhi-NCR Campus, Ghaziabad, Uttar Pradesh, India
| | - Hemant R Kushwaha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India.
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
4
|
Liu W, Cao H, Wang J, Elmusrati A, Han B, Chen W, Zhou P, Li X, Keysar S, Jimeno A, Wang CY. Histone-methyltransferase KMT2D deficiency impairs the Fanconi anemia/BRCA pathway upon glycolytic inhibition in squamous cell carcinoma. Nat Commun 2024; 15:6755. [PMID: 39117659 PMCID: PMC11310337 DOI: 10.1038/s41467-024-50861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Histone lysine methyltransferase 2D (KMT2D) is the most frequently mutated epigenetic modifier in head and neck squamous cell carcinoma (HNSCC). However, the role of KMT2D in HNSCC tumorigenesis and whether its mutations confer any therapeutic vulnerabilities remain unknown. Here we show that KMT2D deficiency promotes HNSCC growth through increasing glycolysis. Additionally, KMT2D loss decreases the expression of Fanconi Anemia (FA)/BRCA pathway genes under glycolytic inhibition. Mechanistically, glycolytic inhibition facilitates the occupancy of KMT2D to the promoter/enhancer regions of FA genes. KMT2D loss reprograms the epigenomic landscapes of FA genes by transiting their promoter/enhancer states from active to inactive under glycolytic inhibition. Therefore, combining the glycolysis inhibitor 2-DG with DNA crosslinking agents or poly (ADP-ribose) polymerase (PARP) inhibitors preferentially inhibits tumor growth of KMT2D-deficient mouse HNSCC and patient-derived xenografts (PDXs) harboring KMT2D-inactivating mutations. These findings provide an epigenomic basis for developing targeted therapies for HNSCC patients with KMT2D-inactivating mutations.
Collapse
Affiliation(s)
- Wei Liu
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hongchao Cao
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jing Wang
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Areeg Elmusrati
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bing Han
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wei Chen
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ping Zhou
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiyao Li
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephen Keysar
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cun-Yu Wang
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Yang G, Li C, Tao F, Liu Y, Zhu M, Du Y, Fei C, She Q, Chen J. The emerging roles of lysine-specific demethylase 4A in cancer: Implications in tumorigenesis and therapeutic opportunities. Genes Dis 2024; 11:645-663. [PMID: 37692513 PMCID: PMC10491877 DOI: 10.1016/j.gendis.2022.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/28/2022] [Indexed: 09/12/2023] Open
Abstract
Lysine-specific demethylase 4 A (KDM4A, also named JMJD2A, KIA0677, or JHDM3A) is a demethylase that can remove methyl groups from histones H3K9me2/3, H3K36me2/3, and H1.4K26me2/me3. Accumulating evidence suggests that KDM4A is not only involved in body homeostasis (such as cell proliferation, migration and differentiation, and tissue development) but also associated with multiple human diseases, especially cancers. Recently, an increasing number of studies have shown that pharmacological inhibition of KDM4A significantly attenuates tumor progression in vitro and in vivo in a range of solid tumors and acute myeloid leukemia. Although there are several reviews on the roles of the KDM4 subfamily in cancer development and therapy, all of them only briefly introduce the roles of KDM4A in cancer without systematically summarizing the specific mechanisms of KDM4A in various physiological and pathological processes, especially in tumorigenesis, which greatly limits advances in the understanding of the roles of KDM4A in a variety of cancers, discovering targeted selective KDM4A inhibitors, and exploring the adaptive profiles of KDM4A antagonists. Herein, we present the structure and functions of KDM4A, simply outline the functions of KDM4A in homeostasis and non-cancer diseases, summarize the role of KDM4A and its distinct target genes in the development of a variety of cancers, systematically classify KDM4A inhibitors, summarize the difficulties encountered in the research of KDM4A and the discovery of related drugs, and provide the corresponding solutions, which would contribute to understanding the recent research trends on KDM4A and advancing the progression of KDM4A as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Guanjun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Changyun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yanjun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Minghui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yu Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenjie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiusheng She
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
6
|
Wang W, Yun B, Hoyle RG, Ma Z, Zaman SU, Xiong G, Yi C, Xie N, Zhang M, Liu X, Bandyopadhyay D, Li J, Wang C. CYTOR Facilitates Formation of FOSL1 Phase Separation and Super Enhancers to Drive Metastasis of Tumor Budding Cells in Head and Neck Squamous Cell Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305002. [PMID: 38032139 PMCID: PMC10811474 DOI: 10.1002/advs.202305002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/31/2023] [Indexed: 12/01/2023]
Abstract
Tumor budding (TB) is a small tumor cell cluster with highly aggressive behavior located ahead of the invasive tumor front. However, the molecular and biological characteristics of TB and the regulatory mechanisms governing TB phenotypes remain unclear. This study reveals that TB exhibits a particular dynamic gene signature with stemness and partial epithelial-mesenchymal transition (p-EMT). Importantly, nuclear expression of CYTOR is identified to be the key regulator governing stemness and the p-EMT phenotype of TB cells, and targeting CYTOR significantly inhibits TB formation, tumor growth and lymph node metastasis in head and neck squamous cell carcinoma (HNSCC). Mechanistically, CYTOR promotes tumorigenicity and metastasis of TB cells by facilitating the formation of FOSL1 phase-separated condensates to establish FOSL1-dependent super enhancers (SEs). Depletion of CYTOR leads to the disruption of FOSL1-dependent SEs, which results in the inactivation of cancer stemness and pro-metastatic genes. In turn, activation of FOSL1 promotes the transcription of CYTOR. These findings indicate that CYTOR is a super-lncRNA that controls the stemness and metastasis of TB cells through facilitating the formation of FOSL1 phase separation and SEs, which may be an attractive target for therapeutic interventions in HNSCC.
Collapse
Affiliation(s)
- Wenjin Wang
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510055China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510080China
- Guanghua School of StomatologySun Yat‐sen UniversityGuangzhou510055China
| | - Bokai Yun
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510055China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510080China
- Guanghua School of StomatologySun Yat‐sen UniversityGuangzhou510055China
| | - Rosalie G Hoyle
- Department of Medicinal ChemistrySchool of PharmacyVirginia Commonwealth UniversityRichmondVA23298‐0540USA
| | - Zhikun Ma
- Department of Medicinal ChemistrySchool of PharmacyVirginia Commonwealth UniversityRichmondVA23298‐0540USA
| | - Shadid Uz Zaman
- Department of Medicinal ChemistrySchool of PharmacyVirginia Commonwealth UniversityRichmondVA23298‐0540USA
| | - Gan Xiong
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510055China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510080China
- Guanghua School of StomatologySun Yat‐sen UniversityGuangzhou510055China
| | - Chen Yi
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510055China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510080China
- Guanghua School of StomatologySun Yat‐sen UniversityGuangzhou510055China
| | - Nan Xie
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510055China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510080China
- Guanghua School of StomatologySun Yat‐sen UniversityGuangzhou510055China
| | - Ming Zhang
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510055China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510080China
- Guanghua School of StomatologySun Yat‐sen UniversityGuangzhou510055China
| | - Xiqiang Liu
- Department of Oral and Maxillofacial SurgeryNanfang Hospital, Southern Medical UniversityGuangzhou510515China
| | - Dipankar Bandyopadhyay
- Department of BiostatisticsSchool of MedicineVirginia Commonwealth UniversityRichmondVA23298‐0540USA
- Massey Cancer CenterVirginia Commonwealth UniversityRichmondVA23298‐0540USA
| | - Jiong Li
- Department of Medicinal ChemistrySchool of PharmacyVirginia Commonwealth UniversityRichmondVA23298‐0540USA
- Massey Cancer CenterVirginia Commonwealth UniversityRichmondVA23298‐0540USA
- Department of Oral and Craniofacial Molecular BiologySchool of DentistryVirginia Commonwealth UniversityRichmondVA23298‐0540USA
- Philips Institute for Oral Health ResearchSchool of DentistryVirginia Commonwealth UniversityRichmondVA23298‐0540USA
| | - Cheng Wang
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510055China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510080China
- Guanghua School of StomatologySun Yat‐sen UniversityGuangzhou510055China
| |
Collapse
|
7
|
Cai J, Huang F, Gao W, Gong T, Chen H, Liu Z. Androgen Receptor/AP-1 Activates UGT2B15 Transcription to Promote Esophageal Squamous Cell Carcinoma Invasion. Cancers (Basel) 2023; 15:5719. [PMID: 38136265 PMCID: PMC10741602 DOI: 10.3390/cancers15245719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is an aggressive epithelial malignancy with poor prognosis. Interestingly, ESCC is strongly characterized by a male-predominant propensity. Our previous study showed that androgen receptor (AR) orchestrated a transcriptional repression program to promote ESCC growth, but it remains unclear whether AR can also activate oncogenic signaling during ESCC progression. In this study, by analyzing our previous AR cistromes and androgen-regulated transcriptomes, we identified uridine diphosphate glucuronosyltransferase family 2 member B15 (UGT2B15) as a bona fide target gene of AR. Mechanistically, AP-1 cofactors played important and collaborative roles in AR-mediated UGT2B15 upregulation. Functional studies have revealed that UGT2B15 promoted invasiveness in vitro and lymph node metastasis in vivo. UGT2B15 was partially responsible for the AR-induced invasive phenotype in ESCC cells. Importantly, simultaneous blocking of AP-1 and AR resulted in stronger inhibition of cell invasiveness compared to inhibiting AP-1 or AR alone. In conclusion, our study reveals the molecular mechanisms underlying the AR-driven ESCC invasion and suggests that the AR/AP1/UGT2B15 transcriptional axis can be potentially targeted in suppressing metastasis in male ESCC patients.
Collapse
Affiliation(s)
- Jiahui Cai
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China (F.H.); (W.G.); (T.G.)
| | - Furong Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China (F.H.); (W.G.); (T.G.)
| | - Wenyan Gao
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China (F.H.); (W.G.); (T.G.)
| | - Tongyang Gong
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China (F.H.); (W.G.); (T.G.)
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China (F.H.); (W.G.); (T.G.)
- Key Laboratory of Cancer and Microbiome, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China (F.H.); (W.G.); (T.G.)
| |
Collapse
|
8
|
Chandhasin C, Dang V, Perabo F, Del Rosario J, Chen YK, Filvaroff E, Stafford JA, Clarke M. TACH101, a first-in-class pan-inhibitor of KDM4 histone demethylase. Anticancer Drugs 2023; 34:1122-1131. [PMID: 37067993 PMCID: PMC10569680 DOI: 10.1097/cad.0000000000001514] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 04/18/2023]
Abstract
Histone lysine demethylase 4 (KDM4) is an epigenetic regulator that facilitates the transition between transcriptionally silent and active chromatin states by catalyzing the removal of methyl groups on histones H3K9, H3K36, and H1.4K26. KDM4 overamplification or dysregulation has been reported in various cancers and has been shown to drive key processes linked to tumorigenesis, such as replicative immortality, evasion of apoptosis, metastasis, DNA repair deficiency, and genomic instability. KDM4 also plays a role in epigenetic regulation of cancer stem cell renewal and has been linked to more aggressive disease and poorer clinical outcomes. The KDM4 family is composed of four main isoforms (KDM4A-D) that demonstrate functional redundancy and cross-activity; thus, selective inhibition of one isoform appears to be ineffective and pan-inhibition targeting multiple KDM4 isoforms is required. Here, we describe TACH101, a novel, small-molecule pan-inhibitor of KDM4 that selectively targets KDM4A-D with no effect on other KDM families. TACH101 demonstrated potent antiproliferative activity in cancer cell lines and organoid models derived from various histologies, including colorectal, esophageal, gastric, breast, pancreatic, and hematological malignancies. In vivo , potent inhibition of KDM4 led to efficient tumor growth inhibition and regression in several xenograft models. A reduction in the population of tumor-initiating cells was observed following TACH101 treatment. Overall, these observations demonstrate the broad applicability of TACH101 as a potential anticancer agent and support its advancement into clinical trials.
Collapse
|
9
|
Hou Y, Yu W, Wu G, Wang Z, Leng S, Dong M, Li N, Chen L. Carcinogenesis promotion in oral squamous cell carcinoma: KDM4A complex-mediated gene transcriptional suppression by LEF1. Cell Death Dis 2023; 14:510. [PMID: 37553362 PMCID: PMC10409759 DOI: 10.1038/s41419-023-06024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent cancer of the mouth, characterised by rapid progression and poor prognosis. Hence, an urgent need exists for the development of predictive targets for early diagnosis, prognosis determination, and clinical therapy. Dysregulation of lymphoid enhancer-binding factor 1 (LEF1), an important transcription factor involved in the Wnt-β-catenin pathway, contributes to the poor prognosis of OSCC. Herein, we aimed to explore the correlation between LEF1 and histone lysine demethylase 4 A (KDM4A). Results show that the KDM4A complex is recruited by LEF1 and specifically binds the LATS2 promoter region, thereby inhibiting its expression, and consequently promoting cell proliferation and impeding apoptosis in OSCC. We also established NOD/SCID mouse xenograft models using CAL-27 cells to conduct an in vivo analysis of the roles of LEF1 and KDM4A in tumour growth, and our findings show that cells stably suppressing LEF1 or KDM4A have markedly decreased tumour-initiating capacity. Overall, the results of this study demonstrate that LEF1 plays a pivotal role in OSCC development and has potential to serve as a target for early diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- Yiming Hou
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Wenqian Yu
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, P. R. China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250022, China
- Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, Shandong, 250022, China
| | - Gaoyi Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, Heilongjiang, 154007, China
| | - Zhaoling Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Shuai Leng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, P. R. China
| | - Ming Dong
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, Heilongjiang, 154007, China
| | - Na Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250022, China.
- Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, Shandong, 250022, China.
| | - Lei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China.
| |
Collapse
|
10
|
Wu S, Yun J, Tang W, Familiari G, Relucenti M, Wu J, Li X, Chen H, Chen R. Therapeutic m 6A Eraser ALKBH5 mRNA-Loaded Exosome-Liposome Hybrid Nanoparticles Inhibit Progression of Colorectal Cancer in Preclinical Tumor Models. ACS NANO 2023. [PMID: 37310898 DOI: 10.1021/acsnano.3c03050] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although therapeutic targets have been developed for colorectal cancer (CRC) therapy, the therapeutic effects are not ideal and the survival rate for CRC patients remains poor. Therefore, it is crucial to recognize a specific target and develop an efficacious delivery system for CRC therapy. Herein, we demonstrate that reduced ALKBH5 mediates aberrant m6A modification and tumor progression in CRC. Mechanically, histone deacetylase 2-mediated H3K27 deacetylation inhibits ALKBH5 transcription in CRC, whereas ectopic ALKBH5 expression decreases tumorigenesis of CRC cells and protects mice from colitis-associated tumor development. Further, METTL14/ALKBH5/IGF2BPs combine to modulate JMJD8 stability in an m6A-dependent manner, which increases glycolysis and accelerates the development of CRC by enhancing the enzymatic activity of PKM2. Moreover, ALKBH5 mRNA-loaded folic acid-modified exosome-liposome hybrid nanoparticles were synthesized and significantly inhibit the progression of CRC in preclinical tumor models by modulating the ALKBH5/JMJD8/PKM2 axis and inhibiting glycolysis. Overall, our research confirms the crucial function of ALKBH5 in regulating the m6A status in CRC and provides a direct preclinical approach for using ALKBH5 mRNA nanotherapeutics for CRC.
Collapse
Affiliation(s)
- Shenshen Wu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jun Yun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Weiyan Tang
- Medical Oncology, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Giuseppe Familiari
- Department of Anatomical, Histological, Medical and Legal Locomotive Apparatus, Section of Human Anatomy Via Alfonso Borelli, Sapienza University of Rome, Roma 5000161, Italy
| | - Michela Relucenti
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Science, Sapienza University of Rome, Roma 5000161, Italy
| | - Jiong Wu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Xiaobo Li
- School of Public Health, Capital Medical University, Beijing 100069, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hanqing Chen
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing 100069, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
- Beijing Laboratory of Allergic Diseases, Capital Medical University, Beijing 100069, China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
11
|
Jiang Y, Liu L, Yang ZQ. KDM4 Demethylases: Structure, Function, and Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:87-111. [PMID: 37751137 DOI: 10.1007/978-3-031-38176-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
KDM4 histone demethylases mainly catalyze the removal of methyl marks from H3K9 and H3K36 to epigenetically regulate chromatin structure and gene expression. KDM4 expression is strictly regulated to ensure proper function in a myriad of biological processes, including transcription, cellular proliferation and differentiation, DNA damage repair, immune response, and stem cell self-renewal. Aberrant expression of KDM4 demethylase has been documented in many types of blood and solid tumors, and thus, KDM4s represent promising therapeutic targets. In this chapter, we summarize the current knowledge of the structures and regulatory mechanisms of KDM4 proteins and our understanding of their alterations in human pathological processes with a focus on development and cancer. We also review the reported KDM4 inhibitors and discuss their potential as therapeutic agents.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R Street, HWCRC 815, Detroit, MI, 48201, USA
| | - Lanxin Liu
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R Street, HWCRC 815, Detroit, MI, 48201, USA
| | - Zeng-Quan Yang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R Street, HWCRC 815, Detroit, MI, 48201, USA.
| |
Collapse
|
12
|
Wang Y, Zhang Y, Li Z, Wang J. JMJD8 Functions as a Novel AKT1 Lysine Demethylase. Int J Mol Sci 2022; 24:460. [PMID: 36613903 PMCID: PMC9820096 DOI: 10.3390/ijms24010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
JMJD8 is a protein from the JMJD family that only has the JmjC domain. Studies on the function of JMJD8 indicate that JMJD8 is involved in signaling pathways, including AKT/NF-κB, and thus affects cell proliferation and development. Here, we reported the activity of JMJD8 as a non-histone demethylase. We investigated the demethylation of JMJD8 on trimethylated lysine of AKT1 in vivo and in vitro using trimethylated AKT1 short peptide and AKT1 protein, and we tracked the regulation of JMJD8 on AKT1 activity at the cellular level. The results showed that JMJD8, a mini lysine demethylase, altered AKT1 protein function via changing its degree of methylation.
Collapse
Affiliation(s)
- Yujuan Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yaoyao Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Zehua Li
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
13
|
Zhou Y, Yang Y, Guo L, Qian J, Ge J, Sinner D, Ding H, Califano A, Cardoso WV. Airway basal cells show regionally distinct potential to undergo metaplastic differentiation. eLife 2022; 11:e80083. [PMID: 36178196 PMCID: PMC9578702 DOI: 10.7554/elife.80083] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/29/2022] [Indexed: 02/07/2023] Open
Abstract
Basal cells are multipotent stem cells of a variety of organs, including the respiratory tract, where they are major components of the airway epithelium. However, it remains unclear how diverse basal cells are and how distinct subpopulations respond to airway challenges. Using single cell RNA-sequencing and functional approaches, we report a significant and previously underappreciated degree of heterogeneity in the basal cell pool, leading to identification of six subpopulations in the adult murine trachea. Among these, we found two major subpopulations, collectively comprising the most uncommitted of all the pools, but with distinct gene expression signatures. Notably, these occupy distinct ventral and dorsal tracheal niches and differ in their ability to self-renew and initiate a program of differentiation in response to environmental perturbations in primary cultures and in mouse injury models in vivo. We found that such heterogeneity is acquired prenatally, when the basal cell pool and local niches are still being established, and depends on the integrity of these niches, as supported by the altered basal cell phenotype of tracheal cartilage-deficient mouse mutants. Finally, we show that features that distinguish these progenitor subpopulations in murine airways are conserved in humans. Together, the data provide novel insights into the origin and impact of basal cell heterogeneity on the establishment of regionally distinct responses of the airway epithelium during injury-repair and in disease conditions.
Collapse
Affiliation(s)
- Yizhuo Zhou
- Columbia Center for Human Development, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical CenterNew YorkUnited States
| | - Ying Yang
- Columbia Center for Human Development, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Genetics and Development, Columbia University Irving Medical CenterNew YorkUnited States
| | - Lihao Guo
- Department of Pharmacy Practice and Science, College of Pharmacy, University of ArizonaTucsonUnited States
| | - Jun Qian
- Columbia Center for Human Development, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical CenterNew YorkUnited States
| | - Jian Ge
- Columbia Center for Human Development, Columbia University Irving Medical CenterNew YorkUnited States
| | - Debora Sinner
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, College of MedicineCincinnatiUnited States
| | - Hongxu Ding
- Department of Pharmacy Practice and Science, College of Pharmacy, University of ArizonaTucsonUnited States
| | - Andrea Califano
- Departments of Systems Biology, Biochemistry & Molecular Biophysics, Biomedical Informatics, Medicine; JP Sulzberger Columbia Genome Center; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical CenterNew YorkUnited States
| | - Wellington V Cardoso
- Columbia Center for Human Development, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical CenterNew YorkUnited States
| |
Collapse
|
14
|
Zhang X, Guo Y, Xiao T, Li J, Guo A, Lei L, Jin C, Long Q, Su J, Yin M, Liu H, Chen C, Zhou Z, Zhu S, Tao J, Hu S, Chen X, Peng C. CD147 mediates epidermal malignant transformation through the RSK2/AP-1 pathway. J Exp Clin Cancer Res 2022; 41:246. [PMID: 35964097 PMCID: PMC9375950 DOI: 10.1186/s13046-022-02427-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Malignant transformation of the epidermis is an essential process in the pathogenesis of cutaneous squamous-cell carcinoma (cSCC). Although evidence has demonstrated that CD147 plays key roles in various tumors, the role of CD147 in epidermal malignant transformation in vivo remains unclear.
Methods
Epidermal CD147-overexpression or knockout (EpiCD147-OE or EpiCD147-KO) transgenic mouse models were generated for in vivo study. RNA-sequencing and q-PCR were performed to identify the differentially expressed genes. Immunohistochemistry and flow cytometry were performed to investigate the role of CD147 in regulating myeloid-derived suppressor cells (MDSCs). Immunoprecipitation, EMSA and ChIP assays were performed to investigate the mechanism of CD147 in cell transformation.
Results
We found that specific overexpression of CD147 in the epidermis (EpiCD147-OE) induces spontaneous tumor formation; moreover, a set of chemokines and cytokines including CXCL1, which play essential function in MDSC recruitment, were significantly upregulated in EpiCD147-OE transgenic mice. As expected, overexpression of CD147 in the epidermis remarkably facilitated tumorigenesis by increasing the rate of tumor initiation and the number and size of tumors in the DMBA/TPA mouse model. Interestingly, the expression of CXCL1 and the infiltration of MDSCs were dramatically increased in EpiCD147-OE transgenic mice. Our findings also showed that knockdown of CD147 attenuated EGF-induced malignant transformation as well as CXCL1 expression in HaCaT cells. Consistently, CD147 was found overexpressed in cutaneous squamous cell carcinoma (cSCC), and positively related with the expression of CD33, a myeloid-associated marker. We further identified RSK2, a serine/threonine kinase, as an interacting partner of CD147 at the binding site of CD147D207-230. The interaction of CD147 and RSK2 activated RSK2, thus enhancing AP-1 transcriptional activation. Furthermore, EMSAs and ChIP assays showed that AP-1 could associate with the CXCL1 promoter. Importantly, RSK2 inhibitor suppressed the tumor growth in DMBA/TPA mouse model by inhibiting the recruitment of MDSCs.
Conclusion
Our findings demonstrate that CD147 exerts a key function in epidermal malignant transformation in vivo by activating keratinocytes and recruiting MDSCs via the RSK2/AP-1 pathway.
Collapse
|
15
|
The Emerging Significance of Histone Lysine Demethylases as Prognostic Markers and Therapeutic Targets in Head and Neck Cancers. Cells 2022; 11:cells11061023. [PMID: 35326475 PMCID: PMC8946939 DOI: 10.3390/cells11061023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Epigenetic aberrations, associated with altered DNA methylation profiles and global changes in the level of histone modifications, are commonly detected in head and neck squamous cell carcinomas (HNSCC). Recently, histone lysine demethylases have been implicated in the pathogenesis of HNSCC and emerged as potential molecular targets. Histone lysine demethylases (KDMs) catalyze the removal of methyl groups from lysine residues in histones. By affecting the methylation of H3K4, H3K9, H3K27, or H3K36, these enzymes take part in transcriptional regulation, which may result in changes in the level of expression of tumor suppressor genes and protooncogenes. KDMs are involved in many biological processes, including cell cycle control, senescence, DNA damage response, and heterochromatin formation. They are also important regulators of pluripotency. The overexpression of most KDMs has been observed in HNSCC, and their inhibition affects cell proliferation, apoptosis, cell motility, invasiveness, and stemness. Of all KDMs, KDM1, KDM4, KDM5, and KDM6 proteins are currently regarded as the most promising prognostic and therapeutic targets in head and neck cancers. The aim of this review is to present up-to-date knowledge on the significance of histone lysine demethylases in head and neck carcinogenesis and to discuss the possibility of using them as prognostic markers and pharmacological targets in patients’ treatment.
Collapse
|
16
|
Sobolev VV, Khashukoeva AZ, Evina OE, Geppe NA, Chebysheva SN, Korsunskaya IM, Tchepourina E, Mezentsev A. Role of the Transcription Factor FOSL1 in Organ Development and Tumorigenesis. Int J Mol Sci 2022; 23:1521. [PMID: 35163444 PMCID: PMC8835756 DOI: 10.3390/ijms23031521] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/25/2022] Open
Abstract
The transcription factor FOSL1 plays an important role in cell differentiation and tumorigenesis. Primarily, FOSL1 is crucial for the differentiation of several cell lineages, namely adipocytes, chondrocytes, and osteoblasts. In solid tumors, FOSL1 controls the progression of tumor cells through the epithelial-mesenchymal transformation. In this review, we summarize the available data on FOSL1 expression, stabilization, and degradation in the cell. We discuss how FOSL1 is integrated into the intracellular signaling mechanisms and provide a comprehensive analysis of FOSL1 influence on gene expression. We also analyze the pathological changes caused by altered Fosl1 expression in genetically modified mice. In addition, we dedicated a separate section of the review to the role of FOSL1 in human cancer. Primarily, we focus on the FOSL1 expression pattern in solid tumors, FOSL1 importance as a prognostic factor, and FOSL1 perspectives as a molecular target for anticancer therapy.
Collapse
Affiliation(s)
- Vladimir V. Sobolev
- Center for Theoretical Problems in Physico-Chemical Pharmacology, Russian Academy of Sciences, 109029 Moscow, Russia; (I.M.K.); (E.T.)
| | - Asiat Z. Khashukoeva
- Federal State Autonomous Educational Institution of Higher Education, N.I. Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, 117997 Moscow, Russia;
| | - Olga E. Evina
- “JSC DK Medsi”, Medical and Diagnostics Center, 125284 Moscow, Russia;
| | - Natalia A. Geppe
- NF Filatov Clinical Institute of Children’s Health, I.M. Sechenov First MSMU, 119435 Moscow, Russia; (N.A.G.); (S.N.C.)
| | - Svetlana N. Chebysheva
- NF Filatov Clinical Institute of Children’s Health, I.M. Sechenov First MSMU, 119435 Moscow, Russia; (N.A.G.); (S.N.C.)
| | - Irina M. Korsunskaya
- Center for Theoretical Problems in Physico-Chemical Pharmacology, Russian Academy of Sciences, 109029 Moscow, Russia; (I.M.K.); (E.T.)
| | - Ekaterina Tchepourina
- Center for Theoretical Problems in Physico-Chemical Pharmacology, Russian Academy of Sciences, 109029 Moscow, Russia; (I.M.K.); (E.T.)
| | - Alexandre Mezentsev
- Center for Theoretical Problems in Physico-Chemical Pharmacology, Russian Academy of Sciences, 109029 Moscow, Russia; (I.M.K.); (E.T.)
| |
Collapse
|
17
|
The roles of epigenetics in cancer progression and metastasis. Biochem J 2021; 478:3373-3393. [PMID: 34520519 DOI: 10.1042/bcj20210084] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/12/2023]
Abstract
Cancer metastasis remains a major clinical challenge for cancer treatment. It is therefore crucial to understand how cancer cells establish and maintain their metastatic traits. However, metastasis-specific genetic mutations have not been identified in most exome or genome sequencing studies. Emerging evidence suggests that key steps of metastasis are controlled by reversible epigenetic mechanisms, which can be targeted to prevent and treat the metastatic disease. A variety of epigenetic mechanisms were identified to regulate metastasis, including the well-studied DNA methylation and histone modifications. In the past few years, large scale chromatin structure alterations including reprogramming of the enhancers and chromatin accessibility to the transcription factors were shown to be potential driving force of cancer metastasis. To dissect the molecular mechanisms and functional output of these epigenetic changes, it is critical to use advanced techniques and alternative animal models for interdisciplinary and translational research on this topic. Here we summarize our current understanding of epigenetic aberrations in cancer progression and metastasis, and their implications in developing new effective metastasis-specific therapies.
Collapse
|
18
|
Wang C, Li Y, Jia L, Kim JK, Li J, Deng P, Zhang W, Krebsbach PH, Wang CY. CD276 expression enables squamous cell carcinoma stem cells to evade immune surveillance. Cell Stem Cell 2021; 28:1597-1613.e7. [PMID: 33945793 PMCID: PMC8419062 DOI: 10.1016/j.stem.2021.04.011] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/22/2021] [Accepted: 04/12/2021] [Indexed: 01/19/2023]
Abstract
Immunosurveillance is a critical mechanism guarding against tumor development and progression. Checkpoint inhibitors have shown significant success in cancer treatment, but expression of key factors such as PD-L1 in putative cancer stem cell (CSC) populations in squamous cell carcinoma has been inconclusive, suggesting that CSCs may have developed other mechanisms to escape immune surveillance. Here we show that CSCs upregulate the immune checkpoint molecule CD276 (B7-H3) to evade host immune responses. CD276 is highly expressed by CSCs in mouse and human head and neck squamous cell carcinoma (HNSCC) and can be used to prospectively isolate tumorigenic CSCs. Anti-CD276 antibodies eliminate CSCs in a CD8+ T cell-dependent manner, inhibiting tumor growth and lymph node metastases in a mouse HNSCC model. Single-cell RNA sequencing (RNA-seq) showed that CD276 blockade remodels SCC heterogeneity and reduces epithelial-mesenchymal transition. These results show that CSCs utilize CD276 for immune escape and suggest that targeting CD276 may reduce CSCs in HNSCC.
Collapse
Affiliation(s)
- Cheng Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA
| | - Yang Li
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA
| | - Lingfei Jia
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA
| | - Jin koo Kim
- Division of Constitutive and Regenerative Sciences, School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| | - Jiong Li
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA
| | - Peng Deng
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA
| | - Wuchang Zhang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA
| | - Paul H. Krebsbach
- Division of Constitutive and Regenerative Sciences, School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, UCLA, Los Angeles, CA 90095, USA,Lead contact,Correspondence:
| |
Collapse
|
19
|
Jia L, Wang Y, Wang C. circFAT1 Promotes Cancer Stemness and Immune Evasion by Promoting STAT3 Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003376. [PMID: 34258151 PMCID: PMC8261519 DOI: 10.1002/advs.202003376] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/27/2020] [Indexed: 05/04/2023]
Abstract
Cancer stemness and immune evasion are closely associated, and play critical roles in tumor development and resistance to immunotherapy. However, little is known about the underlying molecular mechanisms that coordinate this association. Here, it is reported that elevated circular RNA FAT1 (circFAT1) in squamous cell carcinoma (SCC) unifies and regulates the positive association between cancer stemness and immune evasion by promoting STAT3 activation. circFAT1 knockdown (KD) reduces tumorsphere formation of SCC cells in vitro and tumor growth in vivo. Bioinformatic analysis reveals that circFAT1 KD impairs the cancer stemness signature and activates tumor cell-intrinsic immunity. Mechanistically, circFAT1 binding to STAT3 in the cytoplasm prevents STAT3 dephosphorylation by SHP1 and promotes STAT3 activation, resulting in inhibition of STAT1-mediated transcription. Moreover, circFAT1 KD significantly enhances PD1 blockade immunotherapy by promoting CD8+ cell infiltration into tumor microenvironment. Taken together, the results demonstrate that circFAT1 is an important regulator of cancer stemness and antitumor immunity.
Collapse
Affiliation(s)
- Lingfei Jia
- Jonsson Comprehensive Cancer CenterUCLALos AngelesCA90095USA
- Laboratory of Molecular SignalingDivision of Oral Biology and MedicineSchool of DentistryUCLALos AngelesCA90095USA
| | - Yilun Wang
- Jonsson Comprehensive Cancer CenterUCLALos AngelesCA90095USA
- Laboratory of Molecular SignalingDivision of Oral Biology and MedicineSchool of DentistryUCLALos AngelesCA90095USA
| | - Cun‐Yu Wang
- Jonsson Comprehensive Cancer CenterUCLALos AngelesCA90095USA
- Laboratory of Molecular SignalingDivision of Oral Biology and MedicineSchool of DentistryUCLALos AngelesCA90095USA
- Department of BioengineeringHenry Samueli School of Engineering and Applied ScienceUCLALos AngelesCA90095USA
| |
Collapse
|
20
|
Dong J, Li J, Li Y, Ma Z, Yu Y, Wang CY. Transcriptional super-enhancers control cancer stemness and metastasis genes in squamous cell carcinoma. Nat Commun 2021; 12:3974. [PMID: 34172737 PMCID: PMC8233332 DOI: 10.1038/s41467-021-24137-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/01/2021] [Indexed: 11/08/2022] Open
Abstract
Cancer stem cells (CSCs) play a critical role in invasive growth and metastasis of human head and neck squamous cell carcinoma (HNSCC). Although significant progress has been made in understanding the self-renewal and pro-tumorigenic potentials of CSCs, a key challenge remains on how to eliminate CSCs and halt metastasis effectively. Here we show that super-enhancers (SEs) play a critical role in the transcription of cancer stemness genes as well as pro-metastatic genes, thereby controlling their tumorigenic potential and metastasis. Mechanistically, we find that bromodomain-containing protein 4 (BRD4) recruits Mediators and NF-κB p65 to form SEs at cancer stemness genes such as TP63, MET and FOSL1, in addition to oncogenic transcripts. In vivo lineage tracing reveals that disrupting SEs by BET inhibitors potently inhibited CSC self-renewal and eliminated CSCs in addition to elimination of proliferating non-stem tumor cells in a mouse model of HNSCC. Moreover, disrupting SEs also inhibits the invasive growth and lymph node metastasis of human CSCs isolated from human HNSCC. Taken together, our results suggest that targeting SEs may serve as an effective therapy for HNSCC by eliminating CSCs.
Collapse
Affiliation(s)
- Jiaqiang Dong
- Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA, USA
| | - Jiong Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Richmond, VA, USA.
| | - Yang Li
- Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA, USA
| | - Zhikun Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Richmond, VA, USA
| | - Yongxin Yu
- Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA, USA
| | - Cun-Yu Wang
- Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA.
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA, USA.
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Guo R, Zhao M, Liu H, Su R, Mao Q, Gong L, Cao X, Hao Y. Uncovering the pharmacological mechanisms of Xijiao Dihuang decoction combined with Yinqiao powder in treating influenza viral pneumonia by an integrative pharmacology strategy. Biomed Pharmacother 2021; 141:111676. [PMID: 34126353 DOI: 10.1016/j.biopha.2021.111676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Xijiao Dihuang decoction combined with Yinqiao powder (XDD-YQP) is a classical combination formula; however, its therapeutic effects in treating influenza viral pneumonia and the pharmacological mechanisms remain unclear. The therapeutic effect of XDD-YQP in influenza viral pneumonia was evaluated in mice. Subsequently, an everted gut sac model coupled with UPLC/Q-TOF MS were used to screen and identify the active compounds of XDD-YQP. Furthermore, network pharmacological analysis was adopted to probe the mechanisms of the active compounds. Lastly, we verified the targets predicted from network pharmacological analysis by differential bioinformatics analysis. Animal experiments showed that XDD-YQP has a therapeutic effect on influenza viral pneumonia. Moreover, 113 active compounds were identified from intestinal absorbed solutions of XDD-YQP. Using network pharmacological analysis, 90 major targets were selected as critical in the treatment of influenza viral pneumonia through 12 relevant pathways. Importantly, the MAPK signaling pathway was found to be closely associated with the other 11 pathways. Moreover, seven key targets, EGFR, FOS, MAPK1, MAP2K1, HRAS, NRAS, and RELA, which are common targets in the MAPK signaling pathway, were investigated. These seven key targets were identified as differentially expressed genes (DEGs) between influenza virus-infected and uninfected individuals. Hence, the seven key targets in the MAPK signaling pathway may play a vital role in the treatment of influenza viral pneumonia with XDD-YQP. This research may offer an integrative pharmacology strategy to clarify the pharmacological mechanisms of traditional Chinese medicines. The results provide a theoretical basis for a broader clinical application of XDD-YQP.
Collapse
Affiliation(s)
- Rui Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Mengfan Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Rina Su
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qin Mao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Leilei Gong
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xu Cao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Hao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
22
|
Zhang W, Liu W, Jia L, Chen D, Chang I, Lake M, Bentolila LA, Wang CY. Targeting KDM4A epigenetically activates tumor-cell-intrinsic immunity by inducing DNA replication stress. Mol Cell 2021; 81:2148-2165.e9. [PMID: 33743195 PMCID: PMC8141018 DOI: 10.1016/j.molcel.2021.02.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/23/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022]
Abstract
Developing strategies to activate tumor-cell-intrinsic immune response is critical for improving tumor immunotherapy by exploiting tumor vulnerability. KDM4A, as a histone H3 lysine 9 trimethylation (H3K9me3) demethylase, has been found to play a critical role in squamous cell carcinoma (SCC) growth and metastasis. Here we report that KDM4A inhibition promoted heterochromatin compaction and induced DNA replication stress, which elicited antitumor immunity in SCC. Mechanistically, KDM4A inhibition promoted the formation of liquid-like HP1γ puncta on heterochromatin and stall DNA replication, which activated tumor-cell-intrinsic cGAS-STING signaling through replication-stress-induced cytosolic DNA accumulation. Moreover, KDM4A inhibition collaborated with PD1 blockade to inhibit SCC growth and metastasis by recruiting and activating CD8+ T cells. In vivo lineage tracing demonstrated that KDM4A inhibition plus PD1 blockade efficiently eliminated cancer stem cells. Altogether, our results demonstrate that targeting KDM4A can activate anti-tumor immunity and enable PD1 blockade immunotherapy by aggravating replication stress in SCC cells.
Collapse
Affiliation(s)
- Wuchang Zhang
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wei Liu
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lingfei Jia
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Demeng Chen
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Insoon Chang
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Lake
- Advanced Light Microscopy and Spectroscopy Laboratory, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Laurent A Bentolila
- Advanced Light Microscopy and Spectroscopy Laboratory, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cun-Yu Wang
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
23
|
Wan Y, Hoyle RG, Xie N, Wang W, Cai H, Zhang M, Ma Z, Xiong G, Xu X, Huang Z, Liu X, Li J, Wang C. A Super-Enhancer Driven by FOSL1 Controls miR-21-5p Expression in Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 11:656628. [PMID: 33937067 PMCID: PMC8085558 DOI: 10.3389/fonc.2021.656628] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
MiR-21-5p is one of the most common oncogenic miRNAs that is upregulated in many solid cancers by inhibiting its target genes at the posttranscriptional level. However, the upstream regulatory mechanisms of miR-21-5p are still not well documented in cancers. Here, we identify a super-enhancer associated with the MIR21 gene (MIR21-SE) by analyzing the MIR21 genomic regulatory landscape in head and neck squamous cell carcinoma (HNSCC). We show that the MIR21-SE regulates miR-21-5p expression in different HNSCC cell lines and disruption of MIR21-SE inhibits miR-21-5p expression. We also identified that a key transcription factor, FOSL1 directly controls miR-21-5p expression by interacting with the MIR21-SE in HNSCC. Moreover, functional studies indicate that restoration of miR-21-5p partially abrogates FOSL1 depletion-mediated inhibition of cell proliferation and invasion. Clinical studies confirmed that miR-21-5p expression is positively correlated with FOSL1 expression. These findings suggest that FOSL1-SE drives miR-21-5p expression to promote malignant progression of HNSCC
Collapse
Affiliation(s)
- Yuehan Wan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Rosalie G Hoyle
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Nan Xie
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Department of Oral Pathology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Wenjin Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Hongshi Cai
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Ming Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Zhikun Ma
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Gan Xiong
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xiuyun Xu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Zhengxian Huang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xiqiang Liu
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiong Li
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.,Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Cheng Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
24
|
Zhang M, Hoyle RG, Ma Z, Sun B, Cai W, Cai H, Xie N, Zhang Y, Hou J, Liu X, Chen D, Kellogg GE, Harada H, Sun Y, Wang C, Li J. FOSL1 promotes metastasis of head and neck squamous cell carcinoma through super-enhancer-driven transcription program. Mol Ther 2021; 29:2583-2600. [PMID: 33794365 DOI: 10.1016/j.ymthe.2021.03.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/18/2020] [Accepted: 03/25/2021] [Indexed: 01/21/2023] Open
Abstract
Previously, we discovered that FOSL1 facilitates the metastasis of head and neck squamous cell carcinoma (HNSCC) cancer stem cells in a spontaneous mouse model. However, the molecular mechanisms remained unclear. Here, we demonstrated that FOSL1 serves as the dominant activating protein 1 (AP1) family member and is significantly upregulated in HNSCC tumor tissues and correlated with metastasis of HNSCC. Mechanistically, FOSL1 exerts its function in promoting tumorigenicity and metastasis predominantly via selective association with Mediators to establish super-enhancers (SEs) at a cohort of cancer stemness and pro-metastatic genes, such as SNAI2 and FOSL1 itself. Depletion of FOSL1 led to disruption of SEs and expression inhibition of these key oncogenes, which resulted in the suppression of tumor initiation and metastasis. We also revealed that the abundance of FOSL1 is positively associated with the abundance of SNAI2 in HNSCC and the high expression levels of FOSL1 and SNAI2 are associated with short overall disease-free survival. Finally, the administration of the FOSL1 inhibitor SR11302 significantly suppressed tumor growth and lymph node metastasis of HNSCC in a patient-derived xenograft model. These findings indicate that FOSL1 is a master regulator that promotes the metastasis of HNSCC through a SE-driven transcription program that may represent an attractive target for therapeutic interventions.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Rosalie G Hoyle
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, USA
| | - Zhikun Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, USA
| | - Bo Sun
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, USA
| | - Weixin Cai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, USA
| | - Hongshi Cai
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Nan Xie
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, China; Department of Oral Pathology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yadong Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinsong Hou
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiqiang Liu
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Demeng Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Glen E Kellogg
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23298-0540, USA
| | - Hisashi Harada
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298-0540, USA
| | - Yue Sun
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298-0540, USA
| | - Cheng Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, China.
| | - Jiong Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298-0540, USA.
| |
Collapse
|
25
|
Mechanistic insights into KDM4A driven genomic instability. Biochem Soc Trans 2021; 49:93-105. [PMID: 33492339 PMCID: PMC7925003 DOI: 10.1042/bst20191219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Alterations in global epigenetic signatures on chromatin are well established to contribute to tumor initiation and progression. Chromatin methylation status modulates several key cellular processes that maintain the integrity of the genome. KDM4A, a demethylase that belongs to the Fe-II dependent dioxygenase family that uses α-ketoglutarate and molecular oxygen as cofactors, is overexpressed in several cancers and is associated with an overall poor prognosis. KDM4A demethylates lysine 9 (H3K9me2/3) and lysine 36 (H3K36me3) methyl marks on histone H3. Given the complexity that exists with these marks on chromatin and their effects on transcription and proliferation, it naturally follows that demethylation serves an equally important role in these cellular processes. In this review, we highlight the role of KDM4A in transcriptional modulation, either dependent or independent of its enzymatic activity, arising from the amplification of this demethylase in cancer. KDM4A modulates re-replication of distinct genomic loci, activates cell cycle inducers, and represses proteins involved in checkpoint control giving rise to proliferative damage, mitotic disturbances and chromosomal breaks, ultimately resulting in genomic instability. In parallel, emerging evidence of non-nuclear substrates of epigenetic modulators emphasize the need to investigate the role of KDM4A in regulating non-nuclear substrates and evaluate their contribution to genomic instability in this context. The existence of promising KDM-specific inhibitors makes these demethylases an attractive target for therapeutic intervention in cancers.
Collapse
|
26
|
Zhang B, Zhang Y, Jiang X, Su H, Wang Q, Wudu M, Jiang J, Ren H, Xu Y, Liu Z, Qiu X. JMJD8 Promotes Malignant Progression of Lung Cancer by Maintaining EGFR Stability and EGFR/PI3K/AKT Pathway Activation. J Cancer 2021; 12:976-987. [PMID: 33442397 PMCID: PMC7797639 DOI: 10.7150/jca.50234] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/16/2020] [Indexed: 12/25/2022] Open
Abstract
JMJD8 is a JmjC domain-containing protein that has not been widely examined, despite its potential role in malignant tumor development. The underlying biological functions and molecular mechanisms of JMJD8 in non-small-cell lung cancer (NSCLC) remain unclear. Herein, we explored the relationship between JMJD8 and the activation of malignancy pathways in NSCLC. Immunohistochemical analyses revealed that high JMJD8 expression significantly correlated with cell differentiation and advanced TNM stages of NSCLC. The overexpression of JMJD8 promoted cell proliferation and invasion in vitro. Upon JMJD8 knockdown in lung cancer cell lines, cyclin B1, RhoA, RhoC, MMP9, and N-cadherin were down-regulated, and p21 and E-cadherin were conversely up-regulated. Key factors in the PI3K/AKT signaling pathway, such as p‑AKT, showed clear decreases in expression; additionally, the expression of epidermal growth factor receptor (EGFR), which functions upstream of PI3K, was altered. Co-immunoprecipitation experiments indicated that JMJD8 interacts with EGFR, and JMJD8 knockdown accelerated EGFR degradation. Our results suggested that JMJD8 functions as an oncogenic regulator in NSCLC. We found that JMJD8 promotes carcinogenic activity in NSCLC cells by facilitating EGFR stability, thereby activating the downstream PI3K/AKT signaling pathway. JMJD8 shows potential as a prognostic marker for lung cancer patients, providing a new target for therapeutic strategies.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yao Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xizi Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hongbo Su
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Qiongzi Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Muli Wudu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jun Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hongjiu Ren
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yitong Xu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Zongang Liu
- Department of Thoracic Surgical, Shengjing Hospital Affiliated with China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
27
|
Guan Y, Yang YJ, Nagarajan P, Ge Y. Transcriptional and signalling regulation of skin epithelial stem cells in homeostasis, wounds and cancer. Exp Dermatol 2020; 30:529-545. [PMID: 33249665 DOI: 10.1111/exd.14247] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
The epidermis and skin appendages are maintained by their resident epithelial stem cells, which undergo long-term self-renewal and multilineage differentiation. Upon injury, stem cells are activated to mediate re-epithelialization and restore tissue function. During this process, they often mount lineage plasticity and expand their fates in response to damage signals. Stem cell function is tightly controlled by transcription machineries and signalling transductions, many of which derail in degenerative, inflammatory and malignant dermatologic diseases. Here, by describing both well-characterized and newly emerged pathways, we discuss the transcriptional and signalling mechanisms governing skin epithelial homeostasis, wound repair and squamous cancer. Throughout, we highlight common themes underscoring epithelial stem cell plasticity and tissue-level crosstalk in the context of skin physiology and pathology.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Youn Joo Yang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
28
|
Wang Y, Ma J, Martinez ED, Liang D, Xie H. A UHPLC-MS/MS method for the quantification of JIB-04 in rat plasma: Development, validation and application to pharmacokinetics study. J Pharm Biomed Anal 2020; 191:113587. [PMID: 32892084 PMCID: PMC7581536 DOI: 10.1016/j.jpba.2020.113587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
Methylation of lysine by histone methyltransferases can be reversed by lysine demethylases (KDMs). Different KDMs have distinct oncogenic functions based on their cellular localization, stimulating cancer cell proliferation, reducing the expression of tumor suppressors, and/or promoting the development of drug resistance. JIB-04 is a small molecule that pan-selectively inhibits KDMs, showing maximal inhibitory activity against KDM5A, and as secondary targets, KDM4D/4B/4A/6B/4C. Recently, it was found that JIB-04 also potently and selectively blocks HIV-1 Tat expression, transactivation, and virus replication in T cell lines via the inhibition of a new target, serine hydroxymethyltransferase 2. Pharmacokinetic characterization and an analytical method for the quantification of JIB-04 are necessary for the further development of this small molecule. Herein, a sensitive, specific, fast and reliable UHPLC-MS/MS method for the quantification of JIB-04 in rat plasma samples was developed and fully validated using a SCIEX 6500+ triple QUAD LC-MS system equipped with an ExionLC UHPLC unit. The chromatographic separation was achieved on a reverse phase ACE Excel 2 Super C18 column with a flow rate of 0.5 mL/min under gradient elution. The calibration curves were linear (r2 > 0.999) over concentrations from 0.5 to 1000 ng/mL. The accuracy (RE%) was between -7.4% and 3.7%, and the precision (CV%) was 10.2% or less. The stability data showed that no significant degradation occurred under the experimental conditions. This method was successfully applied to the pharmacokinetic study of JIB-04 in rat plasma after intravenous and oral administration and the oral bioavailability of JIB-04 was found to be 44.4%.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Jing Ma
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Elisabeth D Martinez
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dong Liang
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Huan Xie
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA.
| |
Collapse
|
29
|
BMI1 Inhibition Eliminates Residual Cancer Stem Cells after PD1 Blockade and Activates Antitumor Immunity to Prevent Metastasis and Relapse. Cell Stem Cell 2020; 27:238-253.e6. [PMID: 32697949 DOI: 10.1016/j.stem.2020.06.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/04/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
PD1 blockade-based combination therapy has been approved as a first-line treatment for head and neck squamous cell carcinoma (HNSCC). However, the response rate remains relatively low, and patients with HNSCC eventually relapse. Here, we show that the combination treatment of anti-PD1 and cisplatin enriched BMI1+ CSCs in HNSCC while inhibiting HNSCC growth. In contrast, the pharmacological and genetic inhibition of BMI1 eliminated BMI1+ CSCs and enabled PD1 blockade therapy, resulting in the inhibition of metastatic HNSCC and prevention of HNSCC relapses. BMI1 inhibition strongly induced tumor cell-intrinsic immune responses by recruiting and activating CD8+ T cells in addition to eliminating BMI1+ CSCs. Mechanistically, BMI1 inhibition induced CD8+ T cell-recruiting chemokines by stimulating IRF3-mediated transcription and erasing repressive H2A ubiquitination. Our results suggest that targeting BMI1 may enable immune checkpoint blockade to inhibit metastatic tumor growth and prevent tumor relapse by activating cell-intrinsic immunity, in addition to purging CSCs.
Collapse
|
30
|
Talotta F, Casalino L, Verde P. The nuclear oncoprotein Fra-1: a transcription factor knocking on therapeutic applications' door. Oncogene 2020; 39:4491-4506. [PMID: 32385348 DOI: 10.1038/s41388-020-1306-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
Among the FOS-related members of the AP-1 dimeric complex, the transcription factor Fra-1, encoded by FOSL1, is crucially involved in human tumor progression and metastasis, thus representing a promising therapeutic target. Here we review the state of the art and discuss the emerging topics and perspectives on FOSL1 and its gene product. First, we summarize the present knowledge on the FOSL1 transcriptional and epigenetic controls, driving Fra-1 accumulation in a variety of human solid tumors. We also present a model on the regulatory interactions between Fra-1, p53, and miRNAs. Then, we outline the multiple roles of Fra-1 posttranslational modifications and transactivation mechanisms of select Fra-1 target genes. In addition to summarizing the Fra-1-dependent gene networks controlling proliferation, survival, and epithelial-mesenchymal transitions (EMT) in multiple cancer cell types, we highlight the roles played by Fra-1 in nonneoplastic cell populations recruited to the tumor microenvironment, and in mouse models of tumorigenesis. Next, we review the prognostic power of the Fra-1-associated gene signatures, and envisage potential strategies aimed at Fra-1 therapeutic inhibition. Finally, we discuss several recent reports showing the emerging roles of Fra-1 in the mechanisms of both resistance and addiction to targeted therapies.
Collapse
Affiliation(s)
- Francesco Talotta
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy.,ReiThera Srl, Castel Romano, Rome, Italy
| | - Laura Casalino
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy
| | - Pasquale Verde
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy.
| |
Collapse
|
31
|
He Y, Fu W, Cao K, He Q, Ding X, Chen J, Zhu L, Chen T, Ding L, Yang Y, Zhu C, Yuan S, Li Z, Zhao C, Zhang X, Xu J. IFN-κ suppresses the replication of influenza A viruses through the IFNAR-MAPK-Fos-CHD6 axis. Sci Signal 2020; 13:13/626/eaaz3381. [PMID: 32265337 DOI: 10.1126/scisignal.aaz3381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Type I interferons (IFNs) are the first line of defense against viral infection. Using a mouse model of influenza A virus infection, we found that IFN-κ was one of the earliest responding type I IFNs after infection with H9N2, a low-pathogenic avian influenza A virus, whereas this early induction did not occur upon infection with the epidemic-causing H7N9 virus. IFN-κ efficiently suppressed the replication of various influenza viruses in cultured human lung cells, and chromodomain helicase DNA binding protein 6 (CHD6) was the major effector for the antiviral activity of IFN-κ, but not for that of IFN-α or IFN-β. The induction of CHD6 required both of the type I IFN receptor subunits IFNAR1 and IFNAR2, the mitogen-activated protein kinase (MAPK) p38, and the transcription factor c-Fos but was independent of signal transducer and activator of transcription 1 (STAT1) activity. In addition, we showed that pretreatment with IFN-κ protected mice from lethal influenza viral challenge. Together, our findings identify an IFN-κ-specific pathway that constrains influenza A virus and provide evidence that IFN-κ may have potential as a preventative and therapeutic agent against influenza A virus.
Collapse
Affiliation(s)
- Yongquan He
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Weihui Fu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Kangli Cao
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Qian He
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Xiangqing Ding
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Jian Chen
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Lingyan Zhu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Tianyue Chen
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Longfei Ding
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Yu Yang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Cuisong Zhu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Songhua Yuan
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Zejun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Chen Zhao
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China.
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China. .,State Key Laboratory for Infectious Disease Prevention and Control, China Centers for Disease Control and Prevention, Beijing 102206, P. R. China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China. .,State Key Laboratory for Infectious Disease Prevention and Control, China Centers for Disease Control and Prevention, Beijing 102206, P. R. China
| |
Collapse
|
32
|
Hammouda MB, Ford AE, Liu Y, Zhang JY. The JNK Signaling Pathway in Inflammatory Skin Disorders and Cancer. Cells 2020; 9:E857. [PMID: 32252279 PMCID: PMC7226813 DOI: 10.3390/cells9040857] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs), with its members JNK1, JNK2, and JNK3, is a subfamily of (MAPK) mitogen-activated protein kinases. JNK signaling regulates a wide range of cellular processes, including cell proliferation, differentiation, survival, apoptosis, and inflammation. Dysregulation of JNK pathway is associated with a wide range of immune disorders and cancer. Our objective is to provide a review of JNK proteins and their upstream regulators and downstream effector molecules in common skin disorders, including psoriasis, dermal fibrosis, scleroderma, basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma.
Collapse
Affiliation(s)
- Manel B. Hammouda
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA; (M.B.H.); (A.E.F.); (Y.L.)
| | - Amy E. Ford
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA; (M.B.H.); (A.E.F.); (Y.L.)
| | - Yuan Liu
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA; (M.B.H.); (A.E.F.); (Y.L.)
| | - Jennifer Y. Zhang
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA; (M.B.H.); (A.E.F.); (Y.L.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
33
|
DNA sequence context as a marker of CpG methylation instability in normal and cancer tissues. Sci Rep 2020; 10:1721. [PMID: 32015379 PMCID: PMC6997448 DOI: 10.1038/s41598-020-58331-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 01/13/2020] [Indexed: 11/09/2022] Open
Abstract
DNA methylation alterations are related to multiple molecular mechanisms. The DNA context of CpG sites plays a crucial role in the maintenance and stability of methylation patterns. The quantitative relationship between DNA composition and DNA methylation has been studied in normal as well as pathological conditions, showing that DNA methylation status is highly dependent on the local sequence context. In this work, we describe this relationship by analyzing the DNA sequence context associated to methylation profiles in both physiological and pathological conditions. In particular, we used DNA motifs to describe methylation stability patterns in normal tissues and aberrant methylation events in cancer lesions. In this manuscript, we show how different groups of DNA sequences can be related to specific epigenetic events, across normal and cancer tissues, and provide a thorough structural and functional characterization of these sequences.
Collapse
|
34
|
Lee DH, Kim GW, Jeon YH, Yoo J, Lee SW, Kwon SH. Advances in histone demethylase KDM4 as cancer therapeutic targets. FASEB J 2020; 34:3461-3484. [PMID: 31961018 DOI: 10.1096/fj.201902584r] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022]
Abstract
The KDM4 subfamily H3K9 histone demethylases are epigenetic regulators that control chromatin structure and gene expression by demethylating histone H3K9, H3K36, and H1.4K26. The KDM4 subfamily mainly consists of four proteins (KDM4A-D), all harboring the Jumonji C domain (JmjC) but with differential substrate specificities. KDM4A-C proteins also possess the double PHD and Tudor domains, whereas KDM4D lacks these domains. KDM4 proteins are overexpressed or deregulated in multiple cancers, cardiovascular diseases, and mental retardation and are thus potential therapeutic targets. Despite extensive efforts, however, there are very few KDM4-selective inhibitors. Defining the exact physiological and oncogenic functions of KDM4 demethylase will provide the foundation for the discovery of novel potent inhibitors. In this review, we focus on recent studies highlighting the oncogenic functions of KDM4s and the interplay between KDM4-mediated epigenetic and metabolic pathways in cancer. We also review currently available KDM4 inhibitors and discuss their potential as therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Dong Hoon Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Yu Hyun Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Jung Yoo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Sang Wu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea.,Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
35
|
Yun SI, Hong HK, Yeo SY, Kim SH, Cho YB, Kim KK. Ubiquitin-Specific Protease 21 Promotes Colorectal Cancer Metastasis by Acting as a Fra-1 Deubiquitinase. Cancers (Basel) 2020; 12:cancers12010207. [PMID: 31947604 PMCID: PMC7017141 DOI: 10.3390/cancers12010207] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/22/2022] Open
Abstract
Fos-related-antigen-1 (Fra-1), a member of the activator protein-1 (AP-1) transcription factor superfamily, has an essential role in cancer progress and metastasis and Fra-1 is considered a therapeutic target in metastatic cancer including metastatic colorectal cancer (mCRC). However, its regulation at protein level has not yet been clearly elucidated. We found that ubiquitin-specific protease 21 (USP21) increases Fra-1 stability by deubiquitinating Fra-1 and enhances the expression of Fra-1 target genes in colon cancer cells. We also showed that USP21 controlled Fra-1-dependent migration and invasion activities. The oncogenic property of USP21 was confirmed by a significant reduction in liver metastasis when USP21-knockdown cancer cells were injected intrasplenically into mice. Consistently, clinicopathological analysis of colorectal cancer patients revealed a correlation of USP21 expression with high-grade carcinoma and life span. These results demonstrate that USP21 enhances Fra-1 stability and AP-1 target gene expression by deubiquitinating Fra-1. Therefore, USP21 is considered an attractive therapeutic target in mCRC with high Fra-1 expression.
Collapse
Affiliation(s)
- Sun-Il Yun
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
| | - Hye Kyung Hong
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Korea;
| | - So-Young Yeo
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Korea;
| | - Seok-Hyung Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Korea;
- Samsung Medical Center, Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul 06531, Korea
- Correspondence: (S.-H.K.); (Y.B.C.); (K.K.K.); Tel.: +82-02-3410-2898 (S.-H.K.); +82-02-3410-0217 (Y.B.C.); +82-031-299-6136 (K.K.K.)
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Korea;
- Samsung Medical Center, Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul 06531, Korea
- Correspondence: (S.-H.K.); (Y.B.C.); (K.K.K.); Tel.: +82-02-3410-2898 (S.-H.K.); +82-02-3410-0217 (Y.B.C.); +82-031-299-6136 (K.K.K.)
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
- Samsung Medical Center, Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul 06531, Korea
- Correspondence: (S.-H.K.); (Y.B.C.); (K.K.K.); Tel.: +82-02-3410-2898 (S.-H.K.); +82-02-3410-0217 (Y.B.C.); +82-031-299-6136 (K.K.K.)
| |
Collapse
|
36
|
Yamamoto TM, McMellen A, Watson ZL, Aguilera J, Ferguson R, Nurmemmedov E, Thakar T, Moldovan GL, Kim H, Cittelly DM, Joglar AM, Brennecke EP, Wilson H, Behbakht K, Sikora MJ, Bitler BG. Activation of Wnt signaling promotes olaparib resistant ovarian cancer. Mol Carcinog 2019; 58:1770-1782. [PMID: 31219654 DOI: 10.1002/mc.23064] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 01/18/2023]
Abstract
Epithelial ovarian cancer (EOC) has one of the highest death to incidence ratios among all cancers. High grade serous ovarian carcinoma (HGSOC) is the most common and deadliest EOC histotype due to the lack of therapeutic options following debulking surgery and platinum/taxane-based chemotherapies. For recurrent chemosensitive HGSOC, poly(ADP)-ribose polymerase inhibitors (PARPi; olaparib, rucaparib, or niraparib) represent an emerging treatment strategy. While PARPi are most effective in homologous recombination DNA repair-deficient (HRD) HGSOCs, recent studies have observed a significant benefit in non-HRD HGSOCs. However, all HGSOC patients are likely to acquire resistance. Therefore, there is an urgent clinical need to understand PARPi resistance and to introduce novel combinatorial therapies to manage PARPi resistance and extend HGSOC disease-free intervals. In a panel of HGSOC cell lines, we established matched olaparib sensitive and resistant cells. Transcriptome analysis of the matched olaparib-sensitive vs -resistant cells revealed activation of the Wnt signaling pathway and consequently increased TCF transcriptional activity in PARPi-resistant cells. Forced activation of canonical Wnt signaling in several PARPi-sensitive cells via WNT3A reduced olaparib and rucaparib sensitivity. PARPi resistant cells were sensitive to inhibition of Wnt signaling using the FDA-approved compound, pyrvinium pamoate, which has been shown to promote downregulation of β-catenin. In both an HGSOC cell line and a patient-derived xenograft model, we observed that combining pyrvinium pamoate with olaparib resulted in a significant decrease in tumor burden. This study demonstrates that Wnt signaling can mediate PARPi resistance in HGSOC and provides a clinical rationale for combining PARP and Wnt inhibitors.
Collapse
Affiliation(s)
- Tomomi M Yamamoto
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Alexandra McMellen
- Cancer Biology Graduate Program, The University of Colorado, Aurora, Colorado
| | - Zachary L Watson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer Aguilera
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Rebecca Ferguson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Tanay Thakar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Hyunmin Kim
- Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Diana M Cittelly
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Annette M Joglar
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Elyse P Brennecke
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Heidi Wilson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kian Behbakht
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew J Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin G Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
37
|
Oh S, Shin S, Janknecht R. The small members of the JMJD protein family: Enzymatic jewels or jinxes? Biochim Biophys Acta Rev Cancer 2019; 1871:406-418. [PMID: 31034925 DOI: 10.1016/j.bbcan.2019.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
Jumonji C domain-containing (JMJD) proteins are mostly epigenetic regulators that demethylate histones. However, a hitherto neglected subfamily of JMJD proteins, evolutionarily distant and characterized by their relatively small molecular weight, exerts different functions by hydroxylating proteins and RNA. Recently, unsuspected proteolytic and tyrosine kinase activities were also ascribed to some of these small JMJD proteins, further increasing their enzymatic versatility. Here, we discuss the ten human small JMJD proteins (HIF1AN, HSPBAP1, JMJD4, JMJD5, JMJD6, JMJD7, JMJD8, RIOX1, RIOX2, TYW5) and their diverse physiological functions. In particular, we focus on the roles of these small JMJD proteins in cancer and other maladies and how they are modulated in diseased cells by an altered metabolic milieu, including hypoxia, reactive oxygen species and oncometabolites. Because small JMJD proteins are enzymes, they are amenable to inhibition by small molecules and may represent novel targets in the therapy of cancer and other diseases.
Collapse
Affiliation(s)
- Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
38
|
McCann TS, Sobral LM, Self C, Hsieh J, Sechler M, Jedlicka P. Biology and targeting of the Jumonji-domain histone demethylase family in childhood neoplasia: a preclinical overview. Expert Opin Ther Targets 2019; 23:267-280. [PMID: 30759030 DOI: 10.1080/14728222.2019.1580692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Epigenetic mechanisms of gene regulatory control play fundamental roles in developmental morphogenesis, and, as more recently appreciated, are heavily implicated in the onset and progression of neoplastic disease, including cancer. Many epigenetic mechanisms are therapeutically targetable, providing additional incentive for understanding of their contribution to cancer and other types of neoplasia. Areas covered: The Jumonji-domain histone demethylase (JHDM) family exemplifies many of the above traits. This review summarizes the current state of knowledge of the functions and pharmacologic targeting of JHDMs in cancer and other neoplastic processes, with an emphasis on diseases affecting the pediatric population. Expert opinion: To date, the JHDM family has largely been studied in the context of normal development and adult cancers. In contrast, comparatively few studies have addressed JHDM biology in cancer and other neoplastic diseases of childhood, especially solid (non-hematopoietic) neoplasms. Encouragingly, the few available examples support important roles for JHDMs in pediatric neoplasia, as well as potential roles for JHDM pharmacologic inhibition in disease management. Further investigations of JHDMs in cancer and other types of neoplasia of childhood can be expected to both enlighten disease biology and inform new approaches to improve disease outcomes.
Collapse
Affiliation(s)
- Tyler S McCann
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Lays M Sobral
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Chelsea Self
- b Department of Pediatrics , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Joseph Hsieh
- c Medical Scientist Training Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Marybeth Sechler
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA.,d Cancer Biology Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Paul Jedlicka
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA.,c Medical Scientist Training Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA.,d Cancer Biology Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
39
|
AKT methylation by SETDB1 promotes AKT kinase activity and oncogenic functions. Nat Cell Biol 2019; 21:226-237. [PMID: 30692625 PMCID: PMC6377565 DOI: 10.1038/s41556-018-0261-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/10/2018] [Indexed: 12/15/2022]
Abstract
Aberrant activation of Akt disturbs proliferation, survival and metabolic homeostasis of various human cancers. Thus, it is critical to understand upstream signaling pathways governing Akt activation. Here, we report that Akt undergoes SETDB1-mediated lysine-methylation to promote its activation, which is antagonized by the Jumonji-family demethylase, KDM4B. Notably, compared with wild-type mice, mice harboring non-methylated mutant Akt1 not only exhibited reduced body size, but also were less prone to carcinogen-induced skin tumors in part due to reduced Akt activation. Mechanistically, Phosphatidylinositol (3,4,5)-trisphosphate (PIP3) interaction with Akt facilitates its interaction with SETDB1 for subsequent Akt methylation, which in turn sustains Akt phosphorylation. Pathologically, genetic alterations including SETDB1 amplification aberrantly promote Akt methylation to facilitate its activation and oncogenic functions. Thus, Akt methylation is an important step synergizing with PI3K signaling to control Akt activation, suggesting that targeting the SETDB1 signaling could be a potential therapeutic strategy for combatting hyperactive Akt-driven cancers.
Collapse
|
40
|
García-Díez I, Hernández-Muñoz I, Hernández-Ruiz E, Nonell L, Puigdecanet E, Bódalo-Torruella M, Andrades E, Pujol RM, Toll A. Transcriptome and cytogenetic profiling analysis of matched in situ/invasive cutaneous squamous cell carcinomas from immunocompetent patients. Genes Chromosomes Cancer 2019; 58:164-174. [DOI: 10.1002/gcc.22712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 11/01/2018] [Accepted: 11/22/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Irene García-Díez
- Department of Dermatology; Hospital del Mar, Universitat Autònoma de Barcelona (UAB); Barcelona Spain
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| | - Inmaculada Hernández-Muñoz
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| | - Eugenia Hernández-Ruiz
- Department of Dermatology; Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB); Barcelona Spain
| | - Lara Nonell
- Microarray Analysis Service, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| | - Eulàlia Puigdecanet
- Microarray Analysis Service, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| | - Marta Bódalo-Torruella
- Microarray Analysis Service, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| | - Evelyn Andrades
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| | - Ramon M. Pujol
- Department of Dermatology; Hospital del Mar, Universitat Autònoma de Barcelona (UAB); Barcelona Spain
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| | - Agustí Toll
- Department of Dermatology; Hospital del Mar, Universitat Autònoma de Barcelona (UAB); Barcelona Spain
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| |
Collapse
|
41
|
Yu B, Huo L, Liu Y, Deng P, Szymanski J, Li J, Luo X, Hong C, Lin J, Wang CY. PGC-1α Controls Skeletal Stem Cell Fate and Bone-Fat Balance in Osteoporosis and Skeletal Aging by Inducing TAZ. Cell Stem Cell 2018; 23:193-209.e5. [PMID: 30017591 PMCID: PMC6322535 DOI: 10.1016/j.stem.2018.06.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 03/25/2018] [Accepted: 06/14/2018] [Indexed: 12/31/2022]
Abstract
Aberrant lineage specification of skeletal stem cells (SSCs) contributes to reduced bone mass and increased marrow adipose tissue (MAT) in osteoporosis and skeletal aging. Although master regulators of osteoblastic and adipogenic lineages have been identified, little is known about factors that are associated with MAT accumulation and osteoporotic bone loss. Here, we identify peroxisome-proliferator-activated receptor γ coactivator 1-α (PGC-1α) as a critical switch of cell fate decisions whose expression decreases with aging in human and mouse SSCs. Loss of PGC-1α promoted adipogenic differentiation of murine SSCs at the expense of osteoblastic differentiation. Deletion of PGC-1α in SSCs impaired bone formation and indirectly promoted bone resorption while enhancing MAT accumulation. Conversely, induction of PGC-1α attenuated osteoporotic bone loss and MAT accumulation. Mechanistically, PGC-1α maintains bone and fat balance by inducing TAZ. Our results suggest that PGC-1α is a potentially important therapeutic target in the treatment of osteoporosis and skeletal aging.
Collapse
Affiliation(s)
- Bo Yu
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Lihong Huo
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yunsong Liu
- Department of Prosthodontics, School of Stomatology, Peking University, Beijing 100081, China
| | - Peng Deng
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - John Szymanski
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jiong Li
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Christine Hong
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jiandie Lin
- Life Sciences Institute, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, Broad Stem Cell Research Center and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
42
|
Wilson S, Filipp FV. A network of epigenomic and transcriptional cooperation encompassing an epigenomic master regulator in cancer. NPJ Syst Biol Appl 2018; 4:24. [PMID: 29977600 PMCID: PMC6026491 DOI: 10.1038/s41540-018-0061-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/29/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
Coordinated experiments focused on transcriptional responses and chromatin states are well-equipped to capture different epigenomic and transcriptomic levels governing the circuitry of a regulatory network. We propose a workflow for the genome-wide identification of epigenomic and transcriptional cooperation to elucidate transcriptional networks in cancer. Gene promoter annotation in combination with network analysis and sequence-resolution of enriched transcriptional motifs in epigenomic data reveals transcription factor families that act synergistically with epigenomic master regulators. By investigating complementary omics levels, a close teamwork of the transcriptional and epigenomic machinery was discovered. The discovered network is tightly connected and surrounds the histone lysine demethylase KDM3A, basic helix-loop-helix factors MYC, HIF1A, and SREBF1, as well as differentiation factors AP1, MYOD1, SP1, MEIS1, ZEB1, and ELK1. In such a cooperative network, one component opens the chromatin, another one recognizes gene-specific DNA motifs, others scaffold between histones, cofactors, and the transcriptional complex. In cancer, due to the ability to team up with transcription factors, epigenetic factors concert mitogenic and metabolic gene networks, claiming the role of a cancer master regulators or epioncogenes. Significantly, specific histone modification patterns are commonly associated with open or closed chromatin states, and are linked to distinct biological outcomes by transcriptional activation or repression. Disruption of patterns of histone modifications is associated with the loss of proliferative control and cancer. There is tremendous therapeutic potential in understanding and targeting histone modification pathways. Thus, investigating cooperation of chromatin remodelers and the transcriptional machinery is not only important for elucidating fundamental mechanisms of chromatin regulation, but also necessary for the design of targeted therapeutics.
Collapse
Affiliation(s)
- Stephen Wilson
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, 2500 North Lake Road, Merced, CA 95343 USA
| | - Fabian Volker Filipp
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, 2500 North Lake Road, Merced, CA 95343 USA
| |
Collapse
|
43
|
Chen C, Aihemaiti M, Zhang X, Qu H, Sun QL, He QS, Yu WB. Downregulation of histone demethylase JMJD1C inhibits colorectal cancer metastasis through targeting ATF2. Am J Cancer Res 2018; 8:852-865. [PMID: 29888107 PMCID: PMC5992515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/29/2018] [Indexed: 06/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant gastrointestinal cancers. Metastasis is a major leading of death in patients with CRC and many patients have metastatic disease at diagnosis. However, the underlying molecular mechanisms are still elusive. Here, we showed that JMJD1C was overexpressed in colon cancer tissues compared to normal samples and was positively associated with metastasis and poor prognosis. Silencing JMJD1C strongly inhibits CRC migration and invasion both in vitro and in vivo. Further, we found that knockdown of JMJD1C decreased the protein and mRNA levels of ATF2, mechanistically, and JMJD1C regulated the expression of ATF2 by modulating the H3K9me2 but not H3K9me1 activity. In addition, we further performed some "rescues experiments". We found that overexpression of ATF2 could reverse the abrogated migration and invasion ability by knockdown of JMJD1C in CRC. Our results demonstrated that an increase of JMJD1C was observed in colon cancer and knockdown of JMJD1C regulated CRC metastasis by inactivation of the ATF2 pathway. This novel JMJD1C/ATF2 signaling pathway may be a promising therapeutic target for CRC metastasis.
Collapse
Affiliation(s)
- Cheng Chen
- Department of General Surgery, Qilu Hospital of Shandong University 107 West Wenhua Road, Jinan 250012, China
| | - Maimaiti Aihemaiti
- Department of General Surgery, Qilu Hospital of Shandong University 107 West Wenhua Road, Jinan 250012, China
| | - Xin Zhang
- Department of General Surgery, Qilu Hospital of Shandong University 107 West Wenhua Road, Jinan 250012, China
| | - Hui Qu
- Department of General Surgery, Qilu Hospital of Shandong University 107 West Wenhua Road, Jinan 250012, China
| | - Qi-Long Sun
- Department of General Surgery, Qilu Hospital of Shandong University 107 West Wenhua Road, Jinan 250012, China
| | - Qing-Si He
- Department of General Surgery, Qilu Hospital of Shandong University 107 West Wenhua Road, Jinan 250012, China
| | - Wen-Bin Yu
- Department of General Surgery, Qilu Hospital of Shandong University 107 West Wenhua Road, Jinan 250012, China
| |
Collapse
|
44
|
Tata PR, Chow RD, Saladi SV, Tata A, Konkimalla A, Bara A, Montoro D, Hariri LP, Shih AR, Mino-Kenudson M, Mou H, Kimura S, Ellisen LW, Rajagopal J. Developmental History Provides a Roadmap for the Emergence of Tumor Plasticity. Dev Cell 2018; 44:679-693.e5. [PMID: 29587142 PMCID: PMC5875457 DOI: 10.1016/j.devcel.2018.02.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/15/2018] [Accepted: 02/26/2018] [Indexed: 02/03/2023]
Abstract
We show that the loss or gain of transcription factor programs that govern embryonic cell-fate specification is associated with a form of tumor plasticity characterized by the acquisition of alternative cell fates normally characteristic of adjacent organs. In human non-small cell lung cancers, downregulation of the lung lineage-specifying TF NKX2-1 is associated with tumors bearing features of various gut tissues. Loss of Nkx2-1 from murine alveolar, but not airway, epithelium results in conversion of lung cells to gastric-like cells. Superimposing oncogenic Kras activation enables further plasticity in both alveolar and airway epithelium, producing tumors that adopt midgut and hindgut fates. Conversely, coupling Nkx2-1 loss with foregut lineage-specifying SOX2 overexpression drives the formation of squamous cancers with features of esophageal differentiation. These findings demonstrate that elements of pathologic tumor plasticity mirror the normal developmental history of organs in that cancer cells acquire cell fates associated with developmentally related neighboring organs.
Collapse
Affiliation(s)
- Purushothama Rao Tata
- Department of Cell Biology, Duke University, Durham, NC 27710, USA; Duke Cancer Institute, Duke University, Durham, NC 27710, USA; Division of Pulmonary Critical care, Department of Medicine, Duke University School of Medicine, 307 Research Dr., Nanaline Duke Building, Room 308, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA.
| | - Ryan D Chow
- Department of Genetics, Systems Biology Institute, Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Srinivas Vinod Saladi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Arvind Konkimalla
- Department of Cell Biology, Duke University, Durham, NC 27710, USA; Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anne Bara
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Daniel Montoro
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Lida P Hariri
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Angela R Shih
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hongmei Mou
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA; Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leif W Ellisen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Ludwig Center at Harvard, Boston, MA 02115, USA; Massachusetts General Hospital for Children, Pediatric Pulmonary Medicine, Boston, MA, USA
| |
Collapse
|
45
|
Li CW, Chang PY, Chen BS. Investigating the mechanism of hepatocellular carcinoma progression by constructing genetic and epigenetic networks using NGS data identification and big database mining method. Oncotarget 2018; 7:79453-79473. [PMID: 27821810 PMCID: PMC5346727 DOI: 10.18632/oncotarget.13100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022] Open
Abstract
The mechanisms leading to the development and progression of hepatocellular carcinoma (HCC) are complicated and regulated genetically and epigenetically. The recent advancement in high-throughput sequencing has facilitated investigations into the role of genetic and epigenetic regulations in hepatocarcinogenesis. Therefore, we used systems biology and big database mining to construct genetic and epigenetic networks (GENs) using the information about mRNA, miRNA, and methylation profiles of HCC patients. Our approach involves analyzing gene regulatory networks (GRNs), protein-protein networks (PPINs), and epigenetic networks at different stages of hepatocarcinogenesis. The core GENs, influencing each stage of HCC, were extracted via principal network projection (PNP). The pathways during different stages of HCC were compared. We observed that extracellular signals were further transduced to transcription factors (TFs), resulting in the aberrant regulation of their target genes, in turn inducing mechanisms that are responsible for HCC progression, including cell proliferation, anti-apoptosis, aberrant cell cycle, cell survival, and metastasis. We also selected potential multiple drugs specific to prominent epigenetic network markers of each stage of HCC: lestaurtinib, dinaciclib, and perifosine against the NTRK2, MYC, and AKT1 markers influencing HCC progression from stage I to stage II; celecoxib, axitinib, and vinblastine against the DDIT3, PDGFB, and JUN markers influencing HCC progression from stage II to stage III; and atiprimod, celastrol, and bortezomib against STAT3, IL1B, and NFKB1 markers influencing HCC progression from stage III to stage IV.
Collapse
Affiliation(s)
- Cheng-Wei Li
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ping-Yao Chang
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Bor-Sen Chen
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
46
|
Sikaria D, Tu YN, Fisler DA, Mauro JA, Blanck G. Identification of specific feed-forward apoptosis mechanisms and associated higher survival rates for low grade glioma and lung squamous cell carcinoma. J Cancer Res Clin Oncol 2018; 144:459-468. [PMID: 29305708 DOI: 10.1007/s00432-017-2569-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/27/2017] [Indexed: 01/10/2023]
Abstract
The mechanisms of cell proliferation due to the overexpression of certain transcription factors (TFs) have been well documented in the cancer setting. However, many of these same TFs have pro-apoptotic effects, particularly when expressed or activated at high levels, a process referred to as feed-forward apoptosis (FFA). To determine whether cancers could be stratified on the basis of specific FFA signatures, RNASeq data representing samples from the cancer genome atlas were analyzed, revealing that high expression of the pro-proliferative TFs, MYC and YY1, is associated with a favorable outcome in low-grade glioma (LGG) and lung squamous cell carcinoma (LUSC), respectively. Analysis of the RNASeq data also led to the identification of specific apoptosis-effector genes whose expression levels correlate with increased survival rates, for both LGG and LUSC. Although FFA has been demonstrated as a general effect in cancer, in this report, for the first time, results identify specific TFs and their responsive effector genes that distinguish subsets of cancer samples undergoing more or less of a FFA process in a way that is associated with distinct patient survival rates.
Collapse
Affiliation(s)
- Dhiraj Sikaria
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Yaping N Tu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Diana A Fisler
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - James A Mauro
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, USA. .,Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA. .,, 12901 Bruce B. Downs. Bd. MDC7, Tampa, FL, 33612, USA.
| |
Collapse
|
47
|
FRA1 promotes squamous cell carcinoma growth and metastasis through distinct AKT and c-Jun dependent mechanisms. Oncotarget 2018; 7:34371-83. [PMID: 27144339 PMCID: PMC5085162 DOI: 10.18632/oncotarget.9110] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/11/2016] [Indexed: 12/14/2022] Open
Abstract
FRA1 (Fos-like antigen 1) is highly expressed in many epithelial cancers including squamous cell carcinoma of the skin (cSCC) and head and neck (HNSCC). However, the functional importance and the mechanisms mediating FRA1 function in these cancers are not fully understood. Here, we demonstrate that FRA1 gene silencing in HNSCC and cSCC cells resulted in two consequences – impaired cell proliferation and migration. FRA1 regulation of cell growth was distinct from that of c-Jun, a prominent Jun group AP-1 factor. While c-Jun was required for the expression of the G1/S phase cell cycle promoter CDK4, FRA1 was essential for AKT activation and AKT-dependent expression of CyclinB1, a molecule required for G2-M progression. Exogenous expression of a constitutively active form of AKT rescued cancer cell growth defect caused by FRA1-loss. Additionally, FRA1 knockdown markedly slowed cell adhesion and migration, and conversely expression of an active FRA1 mutant (FRA1DD) expedited these processes in a JNK/c-Jun-dependent manner. Through protein and ChIP-PCR analyses, we identified KIND1, a cytoskeletal regulator of the cell adhesion molecule β1-integrin, as a novel FRA1 transcriptional target. Restoring KIND1 expression rescued migratory defects induced by FRA1 loss. In agreement with these in vitro data, HNSCC cells with FRA1 loss displayed markedly reduced rates of subcutaneous tumor growth and pulmonary metastasis. Together, these results indicate that FRA1 promotes cancer growth through AKT, and enhances cancer cell migration through JNK/c-Jun, pinpointing FRA1 as a key integrator of JNK and AKT signaling pathways and a potential therapeutic target for cSCC and HNSCC.
Collapse
|
48
|
α-Tocopherol succinate enhances pterostilbene anti-tumor activity in human breast cancer cells in vivo and in vitro. Oncotarget 2017; 9:4593-4606. [PMID: 29435127 PMCID: PMC5796998 DOI: 10.18632/oncotarget.23390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/05/2017] [Indexed: 12/29/2022] Open
Abstract
Vitamin E (Vit. E) is considered an essential dietary nutrient for humans and animals. An enormous body of evidence indicates the biological and protective effects of Vit. E consumption. Tocopherol-associated protein (TAP) is a major tocopherol-binding protein affecting Vit. E stimulation and downstream signaling transduction. However, how Vit. E utilizes TAP as an anti-cancer mechanism remains unclear. Microarray analysis of signature gene profiles in breast cancer cells treated with α-tocopheryl succinate (α-TOS, a Vit. E isoform) resulted in cell cycle arrest and anti-cancer activity in breast cancer cells. Pterostilbene (PS), a natural dietary antioxidant found in blueberries, in combination with α-TOS synergistically maximized breast cancer cell growth inhibition by disrupting signal transduction, transcription factors and cell cycle proteins. In a xenograft mouse model, PS treatment with Vit. E inhibited breast tumor growth and cell invasion, which were evaluated using our recently developed circulating tumor cell (CTC) detection assay. Because dietary Vit. E and PS supplementation contributed to preventative and therapeutic effects in vitro and in vivo, this combination may benefit breast cancer therapy in the clinic.
Collapse
|
49
|
Lee S, Lee J, Chae S, Moon Y, Lee HY, Park B, Yang EG, Hwang D, Park H. Multi-dimensional histone methylations for coordinated regulation of gene expression under hypoxia. Nucleic Acids Res 2017; 45:11643-11657. [PMID: 28977425 PMCID: PMC5714201 DOI: 10.1093/nar/gkx747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 08/22/2017] [Indexed: 02/06/2023] Open
Abstract
Hypoxia increases both active and repressive histone methylation levels via decreased activity of histone demethylases. However, how such increases coordinately regulate induction or repression of hypoxia-responsive genes is largely unknown. Here, we profiled active and repressive histone tri-methylations (H3K4me3, H3K9me3, and H3K27me3) and analyzed gene expression profiles in human adipocyte-derived stem cells under hypoxia. We identified differentially expressed genes (DEGs) and differentially methylated genes (DMGs) by hypoxia and clustered the DEGs and DMGs into four major groups. We found that each group of DEGs was predominantly associated with alterations in only one type among the three histone tri-methylations. Moreover, the four groups of DEGs were associated with different TFs and localization patterns of their predominant types of H3K4me3, H3K9me3 and H3K27me3. Our results suggest that the association of altered gene expression with prominent single-type histone tri-methylations characterized by different localization patterns and with different sets of TFs contributes to regulation of particular sets of genes, which can serve as a model for coordinated epigenetic regulation of gene expression under hypoxia.
Collapse
Affiliation(s)
- Seongyeol Lee
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Jieon Lee
- Department of Chemical Engineering, POSTECH, Pohang 37673, Republic of Korea
| | - Sehyun Chae
- Department of New Biology and Center for Plant Aging Research, Institute of Basic Science, DGIST, Daegu 42988, Republic of Korea
| | - Yunwon Moon
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Ho-Youl Lee
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Bongju Park
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Eun Gyeong Yang
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Daehee Hwang
- Department of Chemical Engineering, POSTECH, Pohang 37673, Republic of Korea.,Department of New Biology and Center for Plant Aging Research, Institute of Basic Science, DGIST, Daegu 42988, Republic of Korea
| | - Hyunsung Park
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| |
Collapse
|
50
|
D'Arcangelo D, Tinaburri L, Dellambra E. The Role of p16 INK4a Pathway in Human Epidermal Stem Cell Self-Renewal, Aging and Cancer. Int J Mol Sci 2017; 18:ijms18071591. [PMID: 28737694 PMCID: PMC5536078 DOI: 10.3390/ijms18071591] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 12/31/2022] Open
Abstract
The epidermis is a self-renewing tissue. The balance between proliferation and differentiation processes is tightly regulated to ensure the maintenance of the stem cell (SC) population in the epidermis during life. Aging and cancer may be considered related endpoints of accumulating damages within epidermal self-renewing compartment. p16INK4a is a potent inhibitor of the G1/S-phase transition of the cell cycle. p16INK4a governs the processes of SC self-renewal in several tissues and its deregulation may result in aging or tumor development. Keratinocytes are equipped with several epigenetic enzymes and transcription factors that shape the gene expression signatures of different epidermal layers and allow dynamic and coordinated expression changes to finely balance keratinocyte self-renewal and differentiation. These factors converge their activity in the basal layer to repress p16INK4a expression, protecting cells from senescence, and preserving epidermal homeostasis and regeneration. Several stress stimuli may activate p16INK4a expression that orchestrates cell cycle exit and senescence response. In the present review, we discuss the role of p16INK4a regulators in human epidermal SC self-renewal, aging and cancer.
Collapse
Affiliation(s)
- Daniela D'Arcangelo
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Fondazione Luigi Maria Monti (FLMM), via Monti di Creta 104, 00167 Rome, Italy.
| | - Lavinia Tinaburri
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Fondazione Luigi Maria Monti (FLMM), via Monti di Creta 104, 00167 Rome, Italy.
| | - Elena Dellambra
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Fondazione Luigi Maria Monti (FLMM), via Monti di Creta 104, 00167 Rome, Italy.
| |
Collapse
|