1
|
Zeng Q, Yao C, Zhang S, Mao Y, Wang J, Wang Z, Sheng C, Chen S. ORMDL3 restrains type I interferon signaling and anti-tumor immunity by promoting RIG-I degradation. eLife 2025; 13:RP101973. [PMID: 40126553 PMCID: PMC11932694 DOI: 10.7554/elife.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
Mounting evidence has demonstrated the genetic association of ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3) gene polymorphisms with bronchial asthma and a diverse set of inflammatory disorders. However, its role in type I interferon (type I IFN) signaling remains poorly defined. Herein, we report that ORMDL3 is a negative modulator of the type I IFN signaling by interacting with mitochondrial antiviral signaling protein (MAVS) and subsequently promoting the proteasome-mediated degradation of retinoic acid-inducible gene I (RIG-I). Immunoprecipitation coupled with mass spectrometry (IP-MS) assays uncovered that ORMDL3 binds to ubiquitin-specific protease 10 (USP10), which forms a complex with and stabilizes RIG-I through decreasing its K48-linked ubiquitination. ORMDL3 thus disrupts the interaction between USP10 and RIG-I, thereby promoting RIG-I degradation. Additionally, subcutaneous syngeneic tumor models in C57BL/6 mice revealed that inhibition of ORMDL3 enhances anti-tumor efficacy by augmenting the proportion of cytotoxic CD8 positive T cells and IFN production in the tumor microenvironment (TME). Collectively, our findings reveal the pivotal roles of ORMDL3 in maintaining antiviral innate immune responses and anti-tumor immunity.
Collapse
Affiliation(s)
- Qi Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer CenterGuangzhouChina
| | - Chen Yao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer CenterGuangzhouChina
| | - Shimeng Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer CenterGuangzhouChina
| | - Yizhi Mao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer CenterGuangzhouChina
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer CenterGuangzhouChina
| | - Ziyang Wang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhouChina
| | - Chunjie Sheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer CenterGuangzhouChina
| | - Shuai Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer CenterGuangzhouChina
| |
Collapse
|
2
|
Dong W, Lv H, Song Y, Lv Y, Xu X, Jing H, Peng Z, Song X, Guo Y. Transcriptome analysis of 3D4/21 cells expressing CSFV NS4B. Front Microbiol 2025; 16:1510058. [PMID: 39967738 PMCID: PMC11833225 DOI: 10.3389/fmicb.2025.1510058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Classical swine fever (CSF) caused by classical swine fever virus (CSFV) has resulted in severe losses to the pig industry worldwide. CSFV non-structural protein 4B (NS4B) plays a crucial role in CSFV replication and pathogenicity. However, the function of NS4B is still limited during CSFV infection. In this study, the RNA-seq was used to investigate differentially expressed genes (DEGs) in 3D4/21 cells expressing CSFV NS4B. 4397 DEGs were identified in 3D4/21 cells expressing NS4B compared to cells expressing the empty vector (NC). Twelve DEGs were selected and further verified by RT-qPCR. Enrichment analyses of GO annotations and KEGG pathways revealed that these DEGs were associated with endocytosis, autophagy, cell adhesion, transport, immune response, apoptosis and so on. The expression of endocytosis-related genes, including CAV1/2, CAVIN2, Rab1B, CHMP2B/4C, VPS35, SNX2, Rab11B, CHMP6, MVB12B and VPS28, were found to be regulated. In addition, some genes associated with host immune defense, such as USP15, DHX29, DDX3, RIG-I and MDA5, were downregulated and the genes associated with host autophagy, such as WIPI2, ATG16L2, SMCR8, RPTOR and MLST8, were upregulated. Therefore, CSFV NS4B involved in virus invasion and intracellular trafficking, the induction of autophagy and the inhibition of antiviral response. Taken together, this study provides useful information for further understanding the function of NS4B during CSFV infection.
Collapse
Affiliation(s)
- Wang Dong
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine and Pharmacy, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Huifang Lv
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine and Pharmacy, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yuzhen Song
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine and Pharmacy, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yujin Lv
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine and Pharmacy, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xiapeng Xu
- Agriculture and Rural Affairs Bureau, Dingzhou, China
| | - Huiyuan Jing
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine and Pharmacy, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zhifeng Peng
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine and Pharmacy, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xinghui Song
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine and Pharmacy, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yongbin Guo
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine and Pharmacy, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
3
|
Zhang ZT, Niu SX, Yu CH, Wan SY, Wang J, Liu CY, Zheng L, Huang K, Zhang Y. USP15 inhibits hypoxia-induced IL-6 signaling by deubiquitinating and stabilizing MeCP2. FEBS J 2024. [PMID: 39375927 DOI: 10.1111/febs.17282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/23/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024]
Abstract
Methyl-CpG binding protein 2 (MeCP2) is an important X-linked DNA methylation reader and a key heterochromatin organizer. The expression level of MeCP2 is crucial, as indicated by the observation that loss-of-function mutations of MECP2 cause Rett syndrome, whereas an extra copy spanning the MECP2 locus results in MECP2 duplication syndrome, both being progressive neurodevelopmental disorders. Our previous study demonstrated that MeCP2 protein expression is rapidly induced by renal ischemia-reperfusion injury (IRI) and protects the kidney from IRI through transcriptionally repressing the interleukin-6 (IL-6)/signal transducer and activator of transcription 3 signaling pathway. However, the mechanisms underlying the upregulation of MeCP2 have remained elusive. Here, by using two hypoxia cell models, hypoxia and reoxygenation and cobalt chloride stimulation, we confirmed that the removal of lysine 48-linked ubiquitination from MeCP2 prevented its proteasome-dependent degradation under hypoxic conditions. Through unbiased screening based on a deubiquitinating enzymes library, we identified ubiquitin-specific protease 15 (USP15) as a stabilizer of MeCP2. Further studies revealed that USP15 could attenuate hypoxia-induced MeCP2 degradation by cleaving lysine 48-linked ubiquitin chains from MeCP2, primarily targeting its C-terminal domain. Consistently, USP15 inhibited hypoxia-induced signal transducer and activator of transcription 3 activation, resulting in reduced transcription of IL-6 downstream genes. In summary, our study reveals an important role for USP15 in the maintenance of MeCP2 stability and the regulation of IL-6 signaling.
Collapse
Affiliation(s)
- Zi-Tong Zhang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Xuan Niu
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Chen-Hao Yu
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Yuan Wan
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Wang
- Department of Laboratory Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng-Yu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kun Huang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Zhang F, Liu S, Qiao Z, Li L, Han Y, Sun J, Ge C, Zhu J, Li D, Yao H, Zhang H, Dai J, Yan Y, Chen Z, Yin L, Ma F. Housekeeping U1 snRNA facilitates antiviral innate immunity by promoting TRIM25-mediated RIG-I activation. Cell Rep 2024; 43:113945. [PMID: 38483900 DOI: 10.1016/j.celrep.2024.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/24/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024] Open
Abstract
U1 small nuclear RNA (snRNA) is an abundant and evolutionarily conserved 164-nucleotide RNA species that functions in pre-mRNA splicing, and it is considered to be a housekeeping non-coding RNA. However, the role of U1 snRNA in regulating host antiviral immunity remains largely unexplored. Here, we find that RNVU1-18, a U1 pseudogene, is significantly upregulated in the host infected with RNA viruses, including influenza and respiratory syncytial virus. Overexpression of U1 snRNA protects cells against RNA viruses, while knockdown of U1 snRNA leads to more viral burden in vitro and in vivo. Knockout of RNVU1-18 is sufficient to impair the type I interferon-dependent antiviral innate immunity. U1 snRNA is required to fully activate the retinoic acid-inducible gene I (RIG-I)-dependent antiviral signaling, since it interacts with tripartite motif 25 (TRIM25) and enhances the RIG-I-TRIM25 interaction to trigger K63-linked ubiquitination of RIG-I. Our study reveals the important role of housekeeping U1 snRNA in regulating host antiviral innate immunity and restricting RNA virus infection.
Collapse
Affiliation(s)
- Fan Zhang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China; School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Siying Liu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Zigang Qiao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Liang Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Yu Han
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Jiya Sun
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Chenglong Ge
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jingfei Zhu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Dapei Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Haiping Yao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Huiying Zhang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Jianfeng Dai
- Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yongdong Yan
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou 215025, China.
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Feng Ma
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China.
| |
Collapse
|
5
|
Bolhuis DL, Emanuele MJ, Brown NG. Friend or foe? Reciprocal regulation between E3 ubiquitin ligases and deubiquitinases. Biochem Soc Trans 2024; 52:241-267. [PMID: 38414432 PMCID: PMC11349938 DOI: 10.1042/bst20230454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Protein ubiquitination is a post-translational modification that entails the covalent attachment of the small protein ubiquitin (Ub), which acts as a signal to direct protein stability, localization, or interactions. The Ub code is written by a family of enzymes called E3 Ub ligases (∼600 members in humans), which can catalyze the transfer of either a single ubiquitin or the formation of a diverse array of polyubiquitin chains. This code can be edited or erased by a different set of enzymes termed deubiquitinases (DUBs; ∼100 members in humans). While enzymes from these distinct families have seemingly opposing activities, certain E3-DUB pairings can also synergize to regulate vital cellular processes like gene expression, autophagy, innate immunity, and cell proliferation. In this review, we highlight recent studies describing Ub ligase-DUB interactions and focus on their relationships.
Collapse
Affiliation(s)
- Derek L Bolhuis
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| |
Collapse
|
6
|
Fu H, Pickering H, Rubbi L, Ross TM, Reed EF, Pellegrini M. Longitudinal analysis of influenza vaccination implicates regulation of RIG-I signaling by DNA methylation. Sci Rep 2024; 14:1455. [PMID: 38228690 PMCID: PMC10791625 DOI: 10.1038/s41598-024-51665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024] Open
Abstract
Influenza virus infection alters the promoter DNA methylation of key immune response-related genes, including type-1 interferons and proinflammatory cytokines. However, less is known about the effect of the influenza vaccine on the epigenome. We utilized a targeted DNA methylation approach to study the longitudinal effects (day 0 pre-vaccination and day 28 post-vaccination) on influenza vaccination responses in peripheral blood mononuclear cells. We found that baseline, pre-vaccination methylation profiles are associated with pre-existing, protective serological immunity. Additionally, we identified 481 sites that were differentially methylated between baseline and day 28 post-vaccination. These were enriched for genes involved in the regulation of the RIG-I signaling pathway, an important regulator of viral responses. Our results suggest that DNA methylation changes to components of the RIG-I pathway are associated with vaccine effectiveness. Therefore, immunization strategies that target this pathway may improve serological responses to influenza vaccination.
Collapse
Affiliation(s)
- Hongxiang Fu
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Liudmilla Rubbi
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ted M Ross
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Zhang J, Li C, Hou Y, Liu D, Li Q, Wang Z, Tang R, Zheng K, Guo H, Wang W. miR-26a exerts broad-spectrum antiviral effects via the enhancement of RIG-I-mediated type I interferon response by targeting USP15. Microbiol Spectr 2024; 12:e0312423. [PMID: 38019020 PMCID: PMC10783007 DOI: 10.1128/spectrum.03124-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE miR-26a serves as a potent positive regulator of type I interferon (IFN) responses. By inhibiting USP15 expression, miR-26a promotes RIG-I K63-ubiquitination to enhance type I IFN responses, resulting in an active antiviral state against viruses. Being an intricate regulatory network, the activation of type I IFN responses could in turn suppress miR-26a expression to avoid the disordered activation that might result in the so-called "type I interferonopathy." The knowledge gained would be essential for the development of novel antiviral strategies against viral infection.
Collapse
Affiliation(s)
- Jikai Zhang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Chunyang Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Yao Hou
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Dan Liu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Qiudi Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Zijie Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Renxian Tang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Hongbo Guo
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Wenshi Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Li H, Hu J, Qiu L, Wu Y, Zhong B, Ye R, Xie B. Molecular mechanisms of HCG18 in the sorafenib resistance of hepatocellular carcinoma. Anticancer Drugs 2024; 35:55-62. [PMID: 37823256 DOI: 10.1097/cad.0000000000001539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Sorafenib has been approved for advance hepatocellular carcinoma (HCC), however, drug resistance often occurred. Therefore, it is of great significance to clarify the underlying mechanisms of sorafenib resistance and to find out the effective strategies to overcome sorafenib resistance. The expression of HCG18 was detected by qPCR, MTT, colony formation, flow cytometry and TUNEL assay were used to explore the function of HCG18 on sorafenib resistance in HCC. RNA pull-down, RNA immunoprecipitation, immunofluorescence labeling, luciferase reporter assay, western blot and qPCR were used to investigate the mechanism of HCG18 regulating sorafenib resistance in HCC. Our results showed that HCG18 was significantly increased in HCC, which resulted in shorter 5-year survival for patients with HCC. Sorafenib can induce the expression of HCG18, suggesting HCG18 might be involved in sorafenib resistance in HCC. Further analysis showed that knockdown of HCG18 can reduce viability and increase apoptosis of HCC cells. Mechanistically, HCG18 can bind to USP15, further regulated the protein stability of p65, TAB2 and TAB3, and nuclear location of p65, which finally modulated the NF-κB signaling. Our findings showed that HCG18 played an important role in sorafenib resistance in HCC. And knockdown of HCG18 can promote the sensitivity of HCC cells to sorafenib, inferring that targeting HCG18 might be an effective strategy to overcome sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Heping Li
- Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou
| | - Jie Hu
- Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou
| | - Lijie Qiu
- Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou
| | - Yijiang Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Gannan Medical University
| | - Baiyin Zhong
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Gannan Medical University
| | - Rong Ye
- Department of General surgery III, the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Binhui Xie
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Gannan Medical University
| |
Collapse
|
9
|
Wang Z, Zhang C, Fan C, Liu Y. Post-translational modifications in stress granule and their implications in neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194989. [PMID: 37751804 DOI: 10.1016/j.bbagrm.2023.194989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023]
Abstract
Stress granules (SGs) arise as formations of mRNAs and proteins in response to translation initiation inhibition during stress. These dynamic compartments adopt a fluidic nature through liquid-liquid phase separation (LLPS), exhibiting a composition subject to constant change within cellular contexts. Research has unveiled an array of post-translational modifications (PTMs) occurring on SG proteins, intricately orchestrating SG dynamics. In the realm of neurodegenerative diseases, pathological mutant proteins congregate into insoluble aggregates alongside numerous SG proteins, manifesting resilience against disassembly. Specific PTMs conspicuously label these aggregates, designating them for subsequent degradation. The strategic manipulation of aberrant SGs via PTMs emerges as a promising avenue for therapeutic intervention. This review discerns recent strides in comprehending the impact of PTMs on LLPS behavior and the assembly/disassembly kinetics of SGs. By delving into the roles of PTMs in governing SG dynamics, we augment our cognizance of the molecular underpinnings of neurodegeneration. Furthermore, we offer invaluable insights into potential targets for therapeutic intervention in neurodegenerative afflictions, encompassing conditions like amyotrophic lateral sclerosis and frontotemporal dementia.
Collapse
Affiliation(s)
- Zhangshun Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chen'ang Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chengyu Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanfen Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
10
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
11
|
Zoladek J, Nisole S. Mosquito-borne flaviviruses and type I interferon: catch me if you can! Front Microbiol 2023; 14:1257024. [PMID: 37965539 PMCID: PMC10642725 DOI: 10.3389/fmicb.2023.1257024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Mosquito-borne flaviviruses include many viruses that are important human pathogens, including Yellow fever virus, Dengue virus, Zika virus and West Nile virus. While these viruses have long been confined to tropical regions, they now pose a global public health concern, as the geographical distribution of their mosquito vectors has dramatically expanded. The constant threat of flavivirus emergence and re-emergence underlines the need for a better understanding of the relationships between these viruses and their hosts. In particular, unraveling how these viruses manage to bypass antiviral immune mechanisms could enable the design of countermeasures to limit their impact on human health. The body's first line of defense against viral infections is provided by the interferon (IFN) response. This antiviral defense mechanism takes place in two waves, namely the induction of type I IFNs triggered by viral infection, followed by the IFN signaling pathway, which leads to the synthesis of interferon-stimulated genes (ISGs), whose products inhibit viral replication. In order to spread throughout the body, viruses must race against time to replicate before this IFN-induced antiviral state hinders their dissemination. In this review, we summarize our current knowledge on the multiple strategies developed by mosquito-borne flaviviruses to interfere with innate immune detection and signaling pathways, in order to delay, if not prevent, the establishment of an antiviral response.
Collapse
Affiliation(s)
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| |
Collapse
|
12
|
Campbell LK, Peery RM, Magor KE. Evolution and expression of the duck TRIM gene repertoire. Front Immunol 2023; 14:1220081. [PMID: 37622121 PMCID: PMC10445537 DOI: 10.3389/fimmu.2023.1220081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023] Open
Abstract
Tripartite motif (TRIM) proteins are involved in development, innate immunity, and viral restriction. TRIM gene repertoires vary between species, likely due to diversification caused by selective pressures from pathogens; however, this has not been explored in birds. We mined a de novo assembled transcriptome for the TRIM gene repertoire of the domestic mallard duck (Anas platyrhynchos), a reservoir host of influenza A viruses. We found 57 TRIM genes in the duck, which represent all 12 subfamilies based on their C-terminal domains. Members of the C-IV subfamily with C-terminal PRY-SPRY domains are known to augment immune responses in mammals. We compared C-IV TRIM proteins between reptiles, birds, and mammals and show that many C-IV subfamily members have arisen independently in these lineages. A comparison of the MHC-linked C-IV TRIM genes reveals expansions in birds and reptiles. The TRIM25 locus with related innate receptor modifiers is adjacent to the MHC in reptile and marsupial genomes, suggesting the ancestral organization. Within the avian lineage, both the MHC and TRIM25 loci have undergone significant TRIM gene reorganizations and divergence, both hallmarks of pathogen-driven selection. To assess the expression of TRIM genes, we aligned RNA-seq reads from duck tissues. C-IV TRIMs had high relative expression in immune relevant sites such as the lung, spleen, kidney, and intestine, and low expression in immune privileged sites such as in the brain or gonads. Gene loss and gain in the evolution of the TRIM repertoire in birds suggests candidate immune genes and potential targets of viral subversion.
Collapse
Affiliation(s)
- Lee K. Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Rhiannon M. Peery
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Katharine E. Magor
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Zhang B, Cai T, He H, Huang X, Luo Y, Huang S, Luo J, Guo X. TRIM25 Suppresses Rabies Virus Fixed HEP-Flury Strain Production by Activating RIG-1-Mediated Type I Interferons. Genes (Basel) 2023; 14:1555. [PMID: 37628607 PMCID: PMC10454932 DOI: 10.3390/genes14081555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Rabies remains a great threat to public health worldwide. So far, the mechanism of rabies virus (RABV) infection is not fully understood, and there is no effective treatment for rabies. Identifying more host restriction factors of RABV will spur the development of novel therapeutic interventions against rabies. Accumulating studies suggest that tripartite motif-containing (TRIM) proteins have great effects on virus replication. TRIMs control the antiviral responses through either direct interaction with viral proteins or indirect regulation of innate immune signaling molecules in the host. The role of TRIM25 in rabies virus (RABV) infection is poorly understood. Using next-generation sequencing, we found that TRIM25 is upregulated during HEP-Flury infection. Knockdown of TRIM25 enhances HEP-Flury production, while overexpression of TRIM25 suppresses HEP-Flury replication. Knockdown of interferon α and interferon β weakens the anti-RABV response induced by TRIM25 overexpression, and potentiates RABV production. Furthermore, we found that TRIM25 regulates type-I interferon response by targeting retinoic acid-inducible gene I (RIG-I) during HEP-Flury infection. Knockdown of RIG-I weakens the anti-HEP-Flury response induced by TRIM25 overexpression, indicating that TRIM25 regulates RABV production via the RIG-I-IFN axis. In addition, we observed that TRIM25 does not directly interact with HEP-Flury structural proteins, suggesting that TRIM25 regulates HEP-Flury production indirectly. Taken together, our work identifies TRIM25 as a new host factor involved in HEP-Flury infection, which may be a potential target for the development of antiviral drugs against RABV.
Collapse
Affiliation(s)
- Boyue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Ting Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Hongling He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Xuezhe Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA;
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| |
Collapse
|
14
|
Kanoh T, Lu J, Mizoguchi T, Itoh M. The E3 ubiquitin ligase MIB1 suppresses breast cancer cell migration through regulating CTNND1 protein level. Biochem Biophys Res Commun 2023; 667:73-80. [PMID: 37209565 DOI: 10.1016/j.bbrc.2023.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Breast cancer is one of the most common invasive cancers among women. The leading cause of difficulty in treating breast cancer patients is metastasis. Because cell migration is closely related to breast cancer metastasis, elucidating the detailed mechanism by which breast cancer cells promote their migration is crucial for improving the prognosis of patients. In this study, we investigated the relationship between breast cancer cell migration and Mind bomb1 (MIB1), an E3 ubiquitin ligase. We found that the downregulation of MIB1 promotes the cell migration of MCF7, a breast cancer-derived cell line. Furthermore, knockdown of MIB1 caused a reduction in CTNND1 and thereby impaired E-cadherin membrane localization in the cell boundary region. Taken together, our data suggest that MIB1 might play a role in suppressing breast cancer cell migration.
Collapse
Affiliation(s)
- Tohgo Kanoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Jingyu Lu
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Takamasa Mizoguchi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
| |
Collapse
|
15
|
Ke PY. Crosstalk between Autophagy and RLR Signaling. Cells 2023; 12:cells12060956. [PMID: 36980296 PMCID: PMC10047499 DOI: 10.3390/cells12060956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Autophagy plays a homeostatic role in regulating cellular metabolism by degrading unwanted intracellular materials and acts as a host defense mechanism by eliminating infecting pathogens, such as viruses. Upon viral infection, host cells often activate retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling to induce the transcription of type I interferons, thus establishing the first line of the innate antiviral response. In recent years, numerous studies have shown that virus-mediated autophagy activation may benefit viral replication through different actions on host cellular processes, including the modulation of RLR-mediated innate immunity. Here, an overview of the functional molecules and regulatory mechanism of the RLR antiviral immune response as well as autophagy is presented. Moreover, a summary of the current knowledge on the biological role of autophagy in regulating RLR antiviral signaling is provided. The molecular mechanisms underlying the crosstalk between autophagy and RLR innate immunity are also discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
16
|
Jiang Y, Zhang H, Wang J, Chen J, Guo Z, Liu Y, Hua H. Exploiting RIG-I-like receptor pathway for cancer immunotherapy. J Hematol Oncol 2023; 16:8. [PMID: 36755342 PMCID: PMC9906624 DOI: 10.1186/s13045-023-01405-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
RIG-I-like receptors (RLRs) are intracellular pattern recognition receptors that detect viral or bacterial infection and induce host innate immune responses. The RLRs family comprises retinoic acid-inducible gene 1 (RIG-I), melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2) that have distinctive features. These receptors not only recognize RNA intermediates from viruses and bacteria, but also interact with endogenous RNA such as the mislocalized mitochondrial RNA, the aberrantly reactivated repetitive or transposable elements in the human genome. Evasion of RLRs-mediated immune response may lead to sustained infection, defective host immunity and carcinogenesis. Therapeutic targeting RLRs may not only provoke anti-infection effects, but also induce anticancer immunity or sensitize "immune-cold" tumors to immune checkpoint blockade. In this review, we summarize the current knowledge of RLRs signaling and discuss the rationale for therapeutic targeting RLRs in cancer. We describe how RLRs can be activated by synthetic RNA, oncolytic viruses, viral mimicry and radio-chemotherapy, and how the RNA agonists of RLRs can be systemically delivered in vivo. The integration of RLRs agonism with RNA interference or CAR-T cells provides new dimensions that complement cancer immunotherapy. Moreover, we update the progress of recent clinical trials for cancer therapy involving RLRs activation and immune modulation. Further studies of the mechanisms underlying RLRs signaling will shed new light on the development of cancer therapeutics. Manipulation of RLRs signaling represents an opportunity for clinically relevant cancer therapy. Addressing the challenges in this field will help develop future generations of cancer immunotherapy.
Collapse
Affiliation(s)
- Yangfu Jiang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hongying Zhang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jinzhu Chen
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zeyu Guo
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Shi C, Yang X, Hou Y, Jin X, Guo L, Zhou Y, Zhang C, Yin H. USP15 promotes cGAS activation through deubiquitylation and liquid condensation. Nucleic Acids Res 2022; 50:11093-11108. [PMID: 36243958 PMCID: PMC9638925 DOI: 10.1093/nar/gkac823] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
Double-stranded DNA (dsDNA) is recognized as a danger signal by cyclic GMP-AMP synthase (cGAS), which triggers innate immune responses. cGAS activity must be properly regulated to maintain immune homeostasis. However, the mechanism by which cGAS activation is controlled remains to be better understood. In this study, we identified USP15 as a cGAS-interacting partner. USP15 promoted DNA-induced cGAS activation and downstream innate immune responses through a positive feedback mechanism. Specifically, USP15 deubiquitylated cGAS and promoted its activation. In the absence of DNA, USP15 drove cGAS dimerization and liquid condensation through the USP15 intrinsic disordered region (IDR), which prepared cGAS for a rapid response to DNA. Upon DNA stimulation, USP15 was induced to express and boost cGAS activation, functioning as an efficient amplifier in innate immune signal transduction. In summary, the positive role played by USP15-mediated cGAS activation may be a novel regulatory mechanism in the fine-tuning of innate immunity.
Collapse
Affiliation(s)
| | | | - Yanfei Hou
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100082, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xue Jin
- Peking University–Tsinghua University–National Institute of Biological Science (PTN) Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Lerui Guo
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100082, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100082, China
| | - Yi Zhou
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100082, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100082, China
| | - Conggang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100082, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hang Yin
- To whom correspondence should be addressed. Tel: +86 1062786005; Fax: +86 1062786005;
| |
Collapse
|
18
|
Yang H, Liu X, Zhu X, Zhang M, Wang Y, Ma M, Lv K. GINS1 promotes the proliferation and migration of glioma cells through USP15-mediated deubiquitination of TOP2A. iScience 2022; 25:104952. [PMID: 36065190 PMCID: PMC9440292 DOI: 10.1016/j.isci.2022.104952] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/27/2022] [Accepted: 08/12/2022] [Indexed: 01/17/2023] Open
Abstract
GINS1 is a GINS complex subunit that functions along with the MCM2-7 complex and Cdc45 in eukaryotic DNA replication. Despite the significance of the GINS complex in the switch between quiescence and proliferation of glioma cells inside and outside the perinecrotic niche, the biological functions and the underlying mechanism of GINS1 remain unclear. Unlike in normal cells and tissues, GINS1 expression level was significantly upregulated in glioma cells and tissues. High expression of GINS1 predicted an advanced clinical grade and a poor survival. Functional assays revealed that GINS1 aggravated glioma malignant phenotypes in vitro and in vivo. Mechanistically, this study identified that GINS1 physically interacts with TOP2A. GINS1 promotes glioma cell proliferation and migration through USP15-mediated deubiquitination of TOP2A protein. Our results delineate the clinical significance of GINS1 in glioma and the regulatory mechanisms involved in glioma cell proliferation and migration. This work provides potential therapeutic targets for glioma treatment.
Collapse
Affiliation(s)
- Hui Yang
- Department of Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu 241001, China
- Non-coding RNA Research Center of Wannan Medical College, Wuhu 241001, China
- Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu 241001, China
| | - Xiaocen Liu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu 241001, China
- Non-coding RNA Research Center of Wannan Medical College, Wuhu 241001, China
- Department of Nuclear Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, China
| | - Xiaolong Zhu
- Department of Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu 241001, China
- Non-coding RNA Research Center of Wannan Medical College, Wuhu 241001, China
| | - Mengying Zhang
- Department of Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu 241001, China
- Non-coding RNA Research Center of Wannan Medical College, Wuhu 241001, China
| | - Yingying Wang
- Department of Nuclear Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, China
| | - Mingzhe Ma
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Kun Lv
- Department of Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu 241001, China
- Non-coding RNA Research Center of Wannan Medical College, Wuhu 241001, China
- Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu 241001, China
| |
Collapse
|
19
|
Tian X, Dong H, Lai X, Ou G, Cao J, Shi J, Xiang C, Wang L, Zhang X, Zhang K, Song J, Deng J, Deng H, Lu S, Zhuang H, Li T, Xiang K. TRIM56 impairs HBV infection and replication by inhibiting HBV core promoter activity. Antiviral Res 2022; 207:105406. [PMID: 36084850 DOI: 10.1016/j.antiviral.2022.105406] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/04/2022] [Accepted: 08/31/2022] [Indexed: 11/02/2022]
Abstract
Members of the tripartite motif (TRIM) protein family strongly induced by interferons (IFNs) are parts of the innate immune system with antiviral activity. However, it is still unclear which TRIMs could play important roles in hepatitis B virus (HBV) inhibition. Here, we identified that TRIM56 expression responded in IFN-treated HepG2-NTCP cells and HBV-infected liver tissues, which was a potent IFN-inducible inhibitor of HBV replication. Mechanistically, TRIM56 suppressed HBV replication via its Ring and C-terminal domain. C-terminal domain was essential for TRIM56 translocating from cytoplasm to nucleus during HBV infection. Further analysis revealed that TRIM56's Ring domain targeted IκBα for ubiquitination. This modification induced phosphorylation of p65, which subsequently inhibited HBV core promoter activity, resulting in the inhibition of HBV replication. The p65 was found to be necessary for NF-κB signal pathway to inhibit HBV replication. We verified our findings using HepG2-NTCP and primary human hepatocytes. Our findings reveal that TRIM56 is a critical antiviral immune effector and exerts an anti-HBV activity via NF-κB signal pathway, which is essential for inhibiting transcription of HBV covalently closed circular DNA.
Collapse
Affiliation(s)
- Xing Tian
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Huijun Dong
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xinyuan Lai
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Guomin Ou
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Junning Cao
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, 100089, China
| | - Jihang Shi
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, 100089, China
| | - Chengang Xiang
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic, Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua, Center for Life Sciences, Peking University, Beijing, 100191, China; Renal Division, Peking University First Hospital, Beijing, China
| | - Lei Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xuechao Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Kai Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ji Song
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Juan Deng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hongkui Deng
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic, Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua, Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Shichun Lu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, 100089, China
| | - Hui Zhuang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Tong Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Kuanhui Xiang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
20
|
Song J, Li M, Li C, Liu K, Zhu Y, Zhang H. Friend or foe: RIG- I like receptors and diseases. Autoimmun Rev 2022; 21:103161. [PMID: 35926770 PMCID: PMC9343065 DOI: 10.1016/j.autrev.2022.103161] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 07/29/2022] [Indexed: 12/22/2022]
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), which are pivotal sensors of RNA virus invasions, mediate the transcriptional induction of genes encoding type I interferons (IFNs) and proinflammatory cytokines, successfully establishing host antiviral immune response. A few excellent reviews have elaborated on the structural biology of RLRs and the antiviral mechanisms of RLR activation. In this review, we give a basic understanding of RLR biology and summarize recent findings of how RLR signaling cascade is strictly controlled by host regulatory mechanisms, which include RLR-interacting proteins, post-translational modifications and microRNAs (miRNAs). Furthermore, we pay particular attention to the relationship between RLRs and diseases, especially how RLRs participate in SARS-CoV-2, malaria or bacterial infections, how single-nucleotide polymorphisms (SNPs) or mutations in RLRs and antibodies against RLRs lead to autoinflammatory diseases and autoimmune diseases, and how RLRs are involved in anti-tumor immunity. These findings will provide insights and guidance for antiviral and immunomodulatory therapies targeting RLRs.
Collapse
Affiliation(s)
- Jie Song
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China
| | - Muyuan Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha City, Hunan Province, China
| | - Caiyan Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China
| | - Ke Liu
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China
| | - Yaxi Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China.
| | - Huali Zhang
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China.
| |
Collapse
|
21
|
Ohanna M, Biber P, Deckert M. Emerging Role of Deubiquitinating Enzymes (DUBs) in Melanoma Pathogenesis. Cancers (Basel) 2022; 14:3371. [PMID: 35884430 PMCID: PMC9322030 DOI: 10.3390/cancers14143371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Metastatic melanoma is the leading cause of death from skin cancer. Therapies targeting the BRAF oncogenic pathway and immunotherapies show remarkable clinical efficacy. However, these treatments are limited to subgroups of patients and relapse is common. Overall, the majority of patients require additional treatments, justifying the development of new therapeutic strategies. Non-genetic and genetic alterations are considered to be important drivers of cellular adaptation mechanisms to current therapies and disease relapse. Importantly, modification of the overall proteome in response to non-genetic and genetic events supports major cellular changes that are required for the survival, proliferation, and migration of melanoma cells. However, the mechanisms underlying these adaptive responses remain to be investigated. The major contributor to proteome remodeling involves the ubiquitin pathway, ubiquitinating enzymes, and ubiquitin-specific proteases also known as DeUBiquitinases (DUBs). In this review, we summarize the current knowledge regarding the nature and roles of the DUBs recently identified in melanoma progression and therapeutic resistance and discuss their potential as novel sources of vulnerability for melanoma therapy.
Collapse
Affiliation(s)
- Mickael Ohanna
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| | - Pierric Biber
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| | - Marcel Deckert
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| |
Collapse
|
22
|
Jiang J, Li Y, Sun Z, Gong L, Li X, Shi F, Yao J, Meng Y, Meng X, Zhang Q, Wang Y, Su X, Diao H. LncNSPL facilitates influenza A viral immune escape by restricting TRIM25-mediated K63-linked RIG-I ubiquitination. iScience 2022; 25:104607. [PMID: 35800772 PMCID: PMC9253711 DOI: 10.1016/j.isci.2022.104607] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/21/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) participate in host antiviral responses; however, how viruses exploit host lncRNAs for immune evasion remains largely unexplored. Functional screening of differentially expressed lncRNA profile in patients infected with influenza A virus (IAV) revealed that lncNSPL (Gene Symbol: LOC105370355) was highly expressed in monocytes. Deregulated lncNSPL expression in infected monocytes significantly increased type I interferon (IFN-I) production and inhibited IAV replication. Moreover, lncNSPL overexpression in mice increased the susceptibility to IAV infection and impaired IFN-I production. LncNSPL directly bound to retinoic acid-inducible gene I (RIG-I) and blocked the interaction between RIG-I and E3 ligase tripartite interaction motif 25 (TRIM25), reducing TRIM25-mediated lysine 63 (K63)-linked RIG-I ubiquitination and limiting the downstream production of antiviral mediators during the late stage of IAV infection. Our findings provide mechanistic insights into the means by which lncNSPL promotes IAV replication and immune escape via restricting the TRIM25-mediated RIG-I K63-linked ubiquitination. Thus, lncNSPL may represent a promising pharmaceutical target for anti-IAV therapy. NS1 protein of Influenza A virus (IAV) promotes lncNSPL expression Deficiency of lncNSPL specifically enhances retinoic acid-inducible gene I (RIG-I) initiated IFN production lncNSPL competes with tripartite interaction motif 25 (TRIM25) for binding RIG-I and inhibits its K63 ubiquitination lncNSPL inhibits innate antiviral immune responses and enhances viral replication
Collapse
|
23
|
Deng Y, Wang Y, Li L, Miao EA, Liu P. Post-Translational Modifications of Proteins in Cytosolic Nucleic Acid Sensing Signaling Pathways. Front Immunol 2022; 13:898724. [PMID: 35795661 PMCID: PMC9250978 DOI: 10.3389/fimmu.2022.898724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
The innate immune response is the first-line host defense against pathogens. Cytosolic nucleic acids, including both DNA and RNA, represent a special type of danger signal to initiate an innate immune response. Activation of cytosolic nucleic acid sensors is tightly controlled in order to achieve the high sensitivity needed to combat infection while simultaneously preventing false activation that leads to pathologic inflammatory diseases. In this review, we focus on post-translational modifications of key cytosolic nucleic acid sensors that can reversibly or irreversibly control these sensor functions. We will describe phosphorylation, ubiquitination, SUMOylation, neddylation, acetylation, methylation, succinylation, glutamylation, amidation, palmitoylation, and oxidation modifications events (including modified residues, modifying enzymes, and modification function). Together, these post-translational regulatory modifications on key cytosolic DNA/RNA sensing pathway members reveal a complicated yet elegantly controlled multilayer regulator network to govern innate immune activation.
Collapse
Affiliation(s)
- Yu Deng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ying Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lupeng Li
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Edward A. Miao
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Pengda Liu,
| |
Collapse
|
24
|
Cai X, Zhou Z, Zhu J, Liu X, Ouyang G, Wang J, Li Z, Li X, Zha H, Zhu C, Rong F, Tang J, Liao Q, Chen X, Xiao W. Opposing effects of deubiquitinase OTUD3 in innate immunity against RNA and DNA viruses. Cell Rep 2022; 39:110920. [PMID: 35675783 DOI: 10.1016/j.celrep.2022.110920] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/29/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Retinoic acid-inducible-I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and cyclic GMP-AMP synthase (cGAS) genes encode essential cytosolic receptors mediating antiviral immunity against viruses. Here, we show that OTUD3 has opposing role in response to RNA and DNA virus infection by removing distinct types of RIG-I/MDA5 and cGAS polyubiquitination. OTUD3 binds to RIG-I and MDA5 and removes K63-linked ubiquitination. This serves to reduce the binding of RIG-I and MDA5 to viral RNA and the downstream adaptor MAVS, leading to the suppression of the RNA virus-triggered innate antiviral responses. Meanwhile, OTUD3 associates with cGAS and targets at Lys279 to deubiquitinate K48-linked ubiquitination, resulting in the enhancement of cGAS protein stability and DNA-binding ability. As a result, Otud3-deficient mice and zebrafish are more resistant to RNA virus infection but are more susceptible to DNA virus infection. These findings demonstrate that OTUD3 limits RNA virus-triggered innate immunity but promotes DNA virus-triggered innate immunity.
Collapse
Affiliation(s)
- Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Ziwen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Junji Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huangyuan Zha
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fangjing Rong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinghua Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoyun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P. R. China; Hubei Hongshan Laboratory, Wuhan 430070, P. R. China.
| |
Collapse
|
25
|
Sánchez-Arcila JC, Jensen KDC. Forward Genetics in Apicomplexa Biology: The Host Side of the Story. Front Cell Infect Microbiol 2022; 12:878475. [PMID: 35646724 PMCID: PMC9133346 DOI: 10.3389/fcimb.2022.878475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Forward genetic approaches have been widely used in parasitology and have proven their power to reveal the complexities of host-parasite interactions in an unbiased fashion. Many aspects of the parasite's biology, including the identification of virulence factors, replication determinants, antibiotic resistance genes, and other factors required for parasitic life, have been discovered using such strategies. Forward genetic approaches have also been employed to understand host resistance mechanisms to parasitic infection. Here, we will introduce and review all forward genetic approaches that have been used to identify host factors involved with Apicomplexa infections, which include classical genetic screens and QTL mapping, GWAS, ENU mutagenesis, overexpression, RNAi and CRISPR-Cas9 library screens. Collectively, these screens have improved our understanding of host resistance mechanisms, immune regulation, vaccine and drug designs for Apicomplexa parasites. We will also discuss how recent advances in molecular genetics give present opportunities to further explore host-parasite relationships.
Collapse
Affiliation(s)
- Juan C. Sánchez-Arcila
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, United States
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, United States
- Health Science Research Institute, University of California, Merced, Merced, CA, United States
| |
Collapse
|
26
|
Mitoxantrone stacking does not define the active or inactive state of USP15 catalytic domain. J Struct Biol 2022; 214:107862. [DOI: 10.1016/j.jsb.2022.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/25/2022] [Accepted: 05/14/2022] [Indexed: 11/23/2022]
|
27
|
Genetic Associations and Differential mRNA Expression Levels of Host Genes Suggest a Viral Trigger for Endemic Pemphigus Foliaceus. Viruses 2022; 14:v14050879. [PMID: 35632621 PMCID: PMC9144834 DOI: 10.3390/v14050879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
The long search for the environmental trigger of the endemic pemphigus foliaceus (EPF, fogo selvagem) has not yet resulted in any tangible findings. Here, we searched for genetic associations and the differential expression of host genes involved in early viral infections and innate antiviral defense. Genetic variants could alter the structure, expression sites, or levels of the gene products, impacting their functions. By analyzing 3063 variants of 166 candidate genes in 227 EPF patients and 194 controls, we found 12 variants within 11 genes associated with differential susceptibility (p < 0.005) to EPF. The products of genes TRIM5, TPCN2, EIF4E, EIF4E3, NUP37, NUP50, NUP88, TPR, USP15, IRF8, and JAK1 are involved in different mechanisms of viral control, for example, the regulation of viral entry into the host cell or recognition of viral nucleic acids and proteins. Only two of nine variants were also associated in an independent German cohort of sporadic PF (75 patients, 150 controls), aligning with our hypothesis that antiviral host genes play a major role in EPF due to a specific virus−human interaction in the endemic region. Moreover, CCL5, P4HB, and APOBEC3G mRNA levels were increased (p < 0.001) in CD4+ T lymphocytes of EPF patients. Because there is limited or no evidence that these genes are involved in autoimmunity, their crucial role in antiviral responses and the associations that we observed support the hypothesis of a viral trigger for EPF, presumably a still unnoticed flavivirus. This work opens new frontiers in searching for the trigger of EPF, with the potential to advance translational research that aims for disease prevention and treatment.
Collapse
|
28
|
The antiviral action of the RIG-I induced pathway of apoptosis (RIPA) is enhanced by its ability to degrade Otulin, which deubiquitinates IRF3. Cell Death Differ 2022; 29:504-513. [PMID: 34545182 PMCID: PMC8901756 DOI: 10.1038/s41418-021-00870-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Mammalian innate immune response to virus infection is meditated by many cell-intrinsic pathways. RNA viruses, such as Sendai virus, which replicate in the cytoplasm, trigger the RIG-I-like receptor pathway, which activates the transcription factor, IRF3. Activated IRF3 translocates to the nucleus and induces transcription of the genes which encode interferons, the major antiviral cytokines. Interestingly, IRF3 activates another interferon-independent antiviral pathway, called RIG-I induced pathway of apoptosis (RIPA). For activating RIPA, IRF3 translocates from the cytoplasm to mitochondria. RIPA requires linear polyubiquitination of IRF3 by the enzyme complex, LUBAC; ubiquitinated IRF3 binds to Bax and translocates it to mitochondria causing the release of Cytochrome C, activation of caspases and apoptosis of the infected cell. Here, we report that Otulin, the deubiquitinase that removes linear polyubiquitin chains, inhibits RIPA by deubiquitinating IRF3. Ablation of Otulin expression enhanced RIPA and its overexpression inhibited RIPA. In virus-infected cells, to overcome Otulin-mediated inhibition, RIPA actively degrades Otulin. This degradation required sequential actions of RIPA-activated Caspase 3 and proteasomes. Caspase 3 cleaved Otulin at D31; the D31A mutant was not cleaved at all. The caspase-cleaved fragment was totally degraded by proteasomes, which was preceded by its K48-linked ubiquitination. Mass spectrometric analysis of Otulin identified K64 and K197 as the ubiquitinated residues. Otulin interacted with LUBAC after virus infection and the E3-ubiquitin ligase, HOIP, a component of LUBAC, ubiquitinated Otulin to trigger its proteasome-mediated degradation. To assess the impact of Otulin degradation on RIPA-mediated antiviral action, we expressed, in Otulin-ablated cells, a non-degradable mutant of Otulin, in which D31, K64 and K197 had been mutated. The cells expressing the Otulin mutant were less susceptible to virus-induced apoptosis, because RIPA was less active, and consequently virus replication was more robust. Thus, our study has revealed an important positive feedback loop of RIPA.
Collapse
|
29
|
Zhang Q, Jia Q, Gao W, Zhang W. The Role of Deubiquitinases in Virus Replication and Host Innate Immune Response. Front Microbiol 2022; 13:839624. [PMID: 35283827 PMCID: PMC8908266 DOI: 10.3389/fmicb.2022.839624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
As a critical post-translational modification, ubiquitination is known to affect almost all the cellular processes including immunity, signaling pathways, cell death, cancer development, and viral infection by controlling protein stability. Deubiquitinases (DUBs) cleave ubiquitin from proteins and reverse the process of ubiquitination. Thus, DUBs play an important role in the deubiquitination process and serve as therapeutic targets for various diseases. DUBs are found in eukaryotes, bacteria, and viruses and influence various biological processes. Here, we summarize recent findings on the function of DUBs in modulating viral infection, the mechanism by which viral DUBs regulate host innate immune response, and highlight those DUBs that have recently been discovered as antiviral therapeutic targets.
Collapse
Affiliation(s)
- Qinglin Zhang
- College of Life Sciences of Jilin University, Changchun, China
| | - Qizhen Jia
- College of Life Sciences of Jilin University, Changchun, China
| | - Wenying Gao
- Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Wenyan Zhang
- Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Li YC, Cai SW, Shu YB, Chen MW, Shi Z. USP15 in Cancer and Other Diseases: From Diverse Functionsto Therapeutic Targets. Biomedicines 2022; 10:474. [PMID: 35203682 PMCID: PMC8962386 DOI: 10.3390/biomedicines10020474] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 12/10/2022] Open
Abstract
The process of protein ubiquitination and deubiquitination plays an important role in maintaining protein stability and regulating signal pathways, and protein homeostasis perturbations may induce a variety of diseases. The deubiquitination process removes ubiquitin molecules from the protein, which requires the participation of deubiquitinating enzymes (DUBs). Ubiquitin-specific protease 15 (USP15) is a DUB that participates in many biological cell processes and regulates tumorigenesis. A dislocation catalytic triplet was observed in the USP15 structure, a conformation not observed in other USPs, except USP7, which makes USP15 appear to be unique. USP15 has been reported to be involved in the regulation of various cancers and diseases, and the reported substrate functions of USP15 are conflicting, suggesting that USP15 may act as both an oncogene and a tumor suppressor in different contexts. The importance and complexity of USP15 in the pathological processes remains unclear. Therefore, we reviewed the diverse biological functions of USP15 in cancers and other diseases, suggesting the potential of USP15 as an attractive therapeutic target.
Collapse
Affiliation(s)
- Yan-Chi Li
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.-C.L.); (Y.-B.S.)
| | - Song-Wang Cai
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China;
| | - Yu-Bin Shu
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.-C.L.); (Y.-B.S.)
| | - Mei-Wan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 519000, China;
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.-C.L.); (Y.-B.S.)
| |
Collapse
|
31
|
Vere G, Alam MR, Farrar S, Kealy R, Kessler BM, O’Brien DP, Pinto-Fernández A. Targeting the Ubiquitylation and ISGylation Machinery for the Treatment of COVID-19. Biomolecules 2022; 12:biom12020300. [PMID: 35204803 PMCID: PMC8869442 DOI: 10.3390/biom12020300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Ubiquitylation and ISGylation are protein post-translational modifications (PTMs) and two of the main events involved in the activation of pattern recognition receptor (PRRs) signals allowing the host defense response to viruses. As with similar viruses, SARS-CoV-2, the virus causing COVID-19, hijacks these pathways by removing ubiquitin and/or ISG15 from proteins using a protease called PLpro, but also by interacting with enzymes involved in ubiquitin/ISG15 machinery. These enable viral replication and avoidance of the host immune system. In this review, we highlight potential points of therapeutic intervention in ubiquitin/ISG15 pathways involved in key host-pathogen interactions, such as PLpro, USP18, TRIM25, CYLD, A20, and others that could be targeted for the treatment of COVID-19, and which may prove effective in combatting current and future vaccine-resistant variants of the disease.
Collapse
Affiliation(s)
- George Vere
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Md Rashadul Alam
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
| | - Sam Farrar
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
| | - Rachel Kealy
- Environmental Futures & Big Data Impact Lab, University of Exeter, Stocker Rd., Exeter EX4 4PY, UK;
| | - Benedikt M. Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Darragh P. O’Brien
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
- Correspondence: (D.P.O.); (A.P.-F.)
| | - Adán Pinto-Fernández
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
- Correspondence: (D.P.O.); (A.P.-F.)
| |
Collapse
|
32
|
Zhang Y, Huang L, Gao X, Qin Q, Huang X, Huang Y. Grouper USP12 exerts antiviral activity against nodavirus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 121:332-341. [PMID: 35032679 DOI: 10.1016/j.fsi.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The ubiquitin-specific proteases (USPs) have attracted particular attention due to their multiple functions in different biological processes. USP12, a member of the USP family, has been demonstrated to exert critical roles in diverse cellular processes, including cell death, cancer and antiviral immunity. Here, we cloned a USP12 homolog from orange spotted grouper (Epinephelus coioides, E. coioides), and its roles in fish RNA virus replication were investigated. EcUSP12 contained a 1119-bp open reading frame (ORF) encoding a 372-amino acid polypeptide, which shared 100.00% and 91.32% identity with USP12 homolog of Etheostoma cragini and Homo sapiens, respectively. Sequence analysis indicated that EcUSP12 contained a conserved peptidase-C19G domain (aa 40-369). qPCR analysis showed that EcUSP12 transcript was most abundant in head kidney and spleen of grouper E. coioides. The expression of EcUSP12 was significantly upregulated in grouper spleen (GS) cells in response to red-spotted grouper nervous necrosis virus (RGNNV) infection. Subcellular localization analysis showed that EcUSP12 was evenly distributed throughout the cytoplasm, and mainly co-localized with endoplasmic reticulum (ER). Interestingly, during RGNNV infection, the endogenous distribution of EcUSP12 was obviously altered, and mostly overlapped with viral coat protein (CP). Co-Immunoprecipitation (Co-IP) assay indicated that EcUSP12 interacted with viral CP. In addition, overexpression of EcUSP12 significantly inhibited the replication of RGNNV in vitro, as evidenced by the decrease in viral gene transcription and protein synthesis during infection. Consistently, knockdown of EcUSP12 by small interfering RNA (siRNA) promoted the replication of RGNNV. Furthermore, EcUSP12 overexpression also increased the transcription level of inflammatory factors and interferon-related genes, including tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, IL-8, interferon regulatory factor 3 (IRF3), and IRF7. Taken together, our results demonstrated that EcUSP12, as a positive regulator of IFN signaling, interacted with viral CP to inhibit virus infection.
Collapse
Affiliation(s)
- Ya Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liwei Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaolin Gao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Xiaohong Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Youhua Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
33
|
Soh SM, Kim YJ, Kim HH, Lee HR. Modulation of Ubiquitin Signaling in Innate Immune Response by Herpesviruses. Int J Mol Sci 2022; 23:ijms23010492. [PMID: 35008917 PMCID: PMC8745310 DOI: 10.3390/ijms23010492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022] Open
Abstract
The ubiquitin proteasome system (UPS) is a protein degradation machinery that is crucial for cellular homeostasis in eukaryotes. Therefore, it is not surprising that the UPS coordinates almost all host cellular processes, including host-pathogen interactions. This protein degradation machinery acts predominantly by tagging substrate proteins designated for degradation with a ubiquitin molecule. These ubiquitin tags have been involved at various steps of the innate immune response. Hence, herpesviruses have evolved ways to antagonize the host defense mechanisms by targeting UPS components such as ubiquitin E3 ligases and deubiquitinases (DUBs) that establish a productive infection. This review delineates how herpesviruses usurp the critical roles of ubiquitin E3 ligases and DUBs in innate immune response to escape host-antiviral immune response, with particular focus on retinoic acid-inducible gene I (RIG-I)-like receptors (RLR), cyclic-GMP-AMP (cGAMP) synthase (cGAS), stimulator of interferon (IFN) genes (STING) pathways, and inflammasome signaling.
Collapse
Affiliation(s)
- Sandrine-M. Soh
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Korea; (S.-M.S.); (Y.-J.K.); (H.-H.K.)
| | - Yeong-Jun Kim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Korea; (S.-M.S.); (Y.-J.K.); (H.-H.K.)
| | - Hong-Hee Kim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Korea; (S.-M.S.); (Y.-J.K.); (H.-H.K.)
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Korea; (S.-M.S.); (Y.-J.K.); (H.-H.K.)
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul 136-701, Korea
- Correspondence: ; Tel.: +82-44-860-1831
| |
Collapse
|
34
|
Long S, Yang L, Dang W, Xin S, Jiang M, Zhang W, Li J, Wang Y, Zhang S, Lu J. Cellular Deubiquitylating Enzyme: A Regulatory Factor of Antiviral Innate Immunity. Front Microbiol 2021; 12:805223. [PMID: 34966378 PMCID: PMC8710732 DOI: 10.3389/fmicb.2021.805223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Deubiquitylating enzymes (DUBs) are proteases that crack the ubiquitin code from ubiquitylated substrates to reverse the fate of substrate proteins. Recently, DUBs have been found to mediate various cellular biological functions, including antiviral innate immune response mediated by pattern-recognition receptors (PRRs) and NLR Family pyrin domain containing 3 (NLRP3) inflammasomes. So far, many DUBs have been identified to exert a distinct function in fine-tuning antiviral innate immunity and are utilized by viruses for immune evasion. Here, the recent advances in the regulation of antiviral responses by DUBs are reviewed. We also discussed the DUBs-mediated interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and antiviral innate immunity. The understanding of the mechanisms on antiviral innate immunity regulated by DUBs may provide therapeutic opportunities for viral infection.
Collapse
Affiliation(s)
- Sijing Long
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Li Yang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wei Dang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shuyu Xin
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Mingjuan Jiang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wentao Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Li
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yiwei Wang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Senmiao Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
35
|
Zhang XZ, Li FH, Wang XJ. Regulation of Tripartite Motif-Containing Proteins on Immune Response and Viral Evasion. Front Microbiol 2021; 12:794882. [PMID: 34925304 PMCID: PMC8671828 DOI: 10.3389/fmicb.2021.794882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022] Open
Abstract
Tripartite motif-containing proteins (TRIMs), exhibiting ubiquitin E3 ligase activity, are involved in regulation of not only autophagy and apoptosis but also pyrotosis and antiviral immune responses of host cells. TRIMs play important roles in modulating signaling pathways of antiviral immune responses via type I interferon, NF-κB, Janus kinase/signal transducer and activator of transcription (JAK/STAT), and Nrf2. However, viruses are able to antagonize TRIM activity or evenly utilize TRIMs for viral replication. This communication presents the current understanding of TRIMs exploited by viruses to evade host immune response.
Collapse
Affiliation(s)
- Xiu-Zhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fu-Huang Li
- Beijing General Station of Animal Husbandry Service (South Section), Beijing, China
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
36
|
Toll-Like Receptors (TLRs), NOD-Like Receptors (NLRs), and RIG-I-Like Receptors (RLRs) in Innate Immunity. TLRs, NLRs, and RLRs Ligands as Immunotherapeutic Agents for Hematopoietic Diseases. Int J Mol Sci 2021; 22:ijms222413397. [PMID: 34948194 PMCID: PMC8704656 DOI: 10.3390/ijms222413397] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
The innate immune system plays a pivotal role in the first line of host defense against infections and is equipped with patterns recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Several classes of PRRS, including Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) recognize distinct microbial components and directly activate immune cells. TLRs are transmembrane receptors, while NLRs and RLRs are intracellular molecules. Exposure of immune cells to the ligands of these receptors activates intracellular signaling cascades that rapidly induce the expression of a variety of overlapping and unique genes involved in the inflammatory and immune responses. The innate immune system also influences pathways involved in cancer immunosurveillance. Natural and synthetic agonists of TLRs, NLRs, or RLRs can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8+ T cells, and NK cells, into the tumor microenvironment, and are being explored as promising adjuvants in cancer immunotherapies. In this review, we provide a concise overview of TLRs, NLRs, and RLRs: their structure, functions, signaling pathways, and regulation. We also describe various ligands for these receptors and their possible application in treatment of hematopoietic diseases.
Collapse
|
37
|
How Influenza A Virus NS1 Deals with the Ubiquitin System to Evade Innate Immunity. Viruses 2021; 13:v13112309. [PMID: 34835115 PMCID: PMC8619935 DOI: 10.3390/v13112309] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
Ubiquitination is a post-translational modification regulating critical cellular processes such as protein degradation, trafficking and signaling pathways, including activation of the innate immune response. Therefore, viruses, and particularly influenza A virus (IAV), have evolved different mechanisms to counteract this system to perform proper infection. Among IAV proteins, the non-structural protein NS1 is shown to be one of the main virulence factors involved in these viral hijackings. NS1 is notably able to inhibit the host's antiviral response through the perturbation of ubiquitination in different ways, as discussed in this review.
Collapse
|
38
|
Qian G, Zhu L, Li G, Liu Y, Zhang Z, Pan J, Lv H. An Integrated View of Deubiquitinating Enzymes Involved in Type I Interferon Signaling, Host Defense and Antiviral Activities. Front Immunol 2021; 12:742542. [PMID: 34707613 PMCID: PMC8542838 DOI: 10.3389/fimmu.2021.742542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Viral infectious diseases pose a great challenge to human health around the world. Type I interferons (IFN-Is) function as the first line of host defense and thus play critical roles during virus infection by mediating the transcriptional induction of hundreds of genes. Nevertheless, overactive cytokine immune responses also cause autoimmune diseases, and thus, tight regulation of the innate immune response is needed to achieve viral clearance without causing excessive immune responses. Emerging studies have recently uncovered that the ubiquitin system, particularly deubiquitinating enzymes (DUBs), plays a critical role in regulating innate immune responses. In this review, we highlight recent advances on the diverse mechanisms of human DUBs implicated in IFN-I signaling. These DUBs function dynamically to calibrate host defenses against various virus infections by targeting hub proteins in the IFN-I signaling transduction pathway. We also present a future perspective on the roles of DUB-substrate interaction networks in innate antiviral activities, discuss the promises and challenges of DUB-based drug development, and identify the open questions that remain to be clarified. Our review provides a comprehensive description of DUBs, particularly their differential mechanisms that have evolved in the host to regulate IFN-I-signaling-mediated antiviral responses.
Collapse
Affiliation(s)
- Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Liyan Zhu
- Department of Experimental Center, Medical College of Soochow University, Suzhou, China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Ying Liu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Haitao Lv
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
39
|
Identification of Vital Hub Genes and Potential Molecular Pathways of Dermatomyositis by Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9991726. [PMID: 34580642 PMCID: PMC8464434 DOI: 10.1155/2021/9991726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/27/2021] [Indexed: 01/11/2023]
Abstract
Dermatomyositis is an autoimmune disease characterized by severe symmetrical muscle dysfunction and pain. This study was aimed at discovering vital hub genes and potential molecular pathways of DM through bioinformatics analysis, which contributes to identifying potential diagnostic or therapeutic biomarkers and targets. In this study, a total of 915 DEGs in DM samples including 167 upregulated genes and 748 downregulated genes were screened out by the limma package based on the GSE142807 dataset from the Gene Expression Omnibus (GEO) database. Furthermore, the results of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that these downregulated genes were highly associated with the immune-related biological processes and pathways. Therefore, 41 genes closely related to DM were extracted for further study based on the subcluster analysis through the Molecular Complex Detection (MCODE) software plugin in Cytoscape. Ultimately, 10 hub genes (including ISG15, DDX58, IFIT3, CXCL10, and STAT1) were identified as the potential candidate biomarkers and targets. Besides, we found that the identified hub genes directly or indirectly communicated with each other via molecular signaling pathways on the protein and transcription level. In general, under the guidance of bioinformatics analysis, 10 vital hub genes and molecular mechanisms in DM were identified and the expression of proinflammatory factors and interferon family proteins and genes showed high association with DM, which might help provide a theoretical foundation for the development of point-to-point targeted therapy in the future treatment of DM.
Collapse
|
40
|
Xu M, Jin P, Liu T, Gao S, Zhang T, Zhang F, Han X, He L, Chen J, Yang J. Genome-wide identification and characterization of UBP gene family in wheat ( Triticum aestivum L.). PeerJ 2021; 9:e11594. [PMID: 34178465 PMCID: PMC8212830 DOI: 10.7717/peerj.11594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/20/2021] [Indexed: 12/25/2022] Open
Abstract
Ubiquitination is essential for plant growth and development. Deubiquitination cooperates with ubiquitination to regulate the ubiquitination levels of target proteins. The ubiquitin-specific protease (UBP) family is the largest group of deubiquitinases (DUBs), which perform extensive and significant roles in eukaryotic organisms. However, the UBP genes in wheat (TaUBPs) are not identified, and the functions of TaUBPs are unknown. The present study identified 97 UBP genes in the whole genome of T. aestivum. These genes were divided into 15 groups and non-randomly distributed on chromosomes of T. aestivum. Analyses of evolutionary patterns revealed that TaUBPs mainly underwent purification selection. The studies of cis-acting regulatory elements indicated that they might be involved in response to hormones. Quantitative real-time PCR (qRT-PCR) results showed that TaUBPs were differentially expressed in different tissues. Besides, several TaUBPs were significantly up-regulated when plants were treated with salicylic acid (SA), implying that these DUBs may play a role in abiotic stress responses in plants and few TaUBPs displayed differential expression after viral infection. Furthermore, TaUBP1A.1 (TraesCS1A02G432600.1) silenced by virus-induced gene silencing (VIGS) facilitates Chinese wheat mosaic virus (CWMV) infection in wheat, indicating that TaUBP1A.1 may be involved in a defense mechanism against viruses. This study comprehensively analyzed the UBP gene family in wheat and provided a basis for further research of TaUBPs functions in wheat plant response to viral infection.
Collapse
Affiliation(s)
- Miaoze Xu
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Peng Jin
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Tingting Liu
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shiqi Gao
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Tianye Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Fan Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xiaolei Han
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Long He
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
41
|
Dou S, Li G, Li G, Hou C, Zheng Y, Tang L, Gao Y, Mo R, Li Y, Wang R, Shen B, Zhang J, Han G. Ubiquitination and degradation of NF90 by Tim-3 inhibits antiviral innate immunity. eLife 2021; 10:66501. [PMID: 34110282 PMCID: PMC8225388 DOI: 10.7554/elife.66501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor 90 (NF90) is a novel virus sensor that serves to initiate antiviral innate immunity by triggering stress granule (SG) formation. However, the regulation of the NF90-SG pathway remains largely unclear. We found that Tim-3, an immune checkpoint inhibitor, promotes the ubiquitination and degradation of NF90 and inhibits NF90-SG-mediated antiviral immunity. Vesicular stomatitis virus (VSV) infection induces the up-regulation and activation of Tim-3 in macrophages, which in turn recruit the E3 ubiquitin ligase TRIM47 to the zinc finger domain of NF90 and initiate a proteasome-dependent degradation via K48-linked ubiquitination at Lys297. Targeted inactivation of Tim-3 enhances the NF90 downstream SG formation by selectively increasing the phosphorylation of protein kinase R and eukaryotic translation initiation factor 2α, the expression of SG markers G3BP1 and TIA-1, and protecting mice from VSV challenge. These findings provide insights into the crosstalk between Tim-3 and other receptors in antiviral innate immunity and its related clinical significance.
Collapse
Affiliation(s)
- Shuaijie Dou
- Beijing Institute of Basic Medical Sciences, Beijing, China.,Anhui Medical University, Hefei, China
| | - Guoxian Li
- Beijing Institute of Basic Medical Sciences, Beijing, China.,Institute of Immunology, Medical School of Henan University, Kaifeng, China
| | - Ge Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunmei Hou
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yang Zheng
- Department of Oncology, First Hospital of Jilin University, Changchun, China
| | - Lili Tang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yang Gao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Rongliang Mo
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yuxiang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Renxi Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China.,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Beifen Shen
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jun Zhang
- Institute of Immunology, Medical School of Henan University, Kaifeng, China
| | - Gencheng Han
- Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Long noncoding RNA AVAN promotes antiviral innate immunity by interacting with TRIM25 and enhancing the transcription of FOXO3a. Cell Death Differ 2021; 28:2900-2915. [PMID: 33990776 DOI: 10.1038/s41418-021-00791-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/28/2021] [Accepted: 04/20/2021] [Indexed: 11/08/2022] Open
Abstract
Accumulating evidence has shown that long noncoding RNAs (lncRNAs) are involved in several biological processes, including immune responses. However, the role of lncRNAs in antiviral innate immune responses remains largely elusive. Here, we identify an uncharacterized human lncRNA AVAN from influenza A virus (IAV) infected patients, that is significantly upregulated following RNA virus infection. During IAV infection, AVAN play an indispensable role in antiviral immune responses. In vivo, we enforced the expression of AVAN in transgenic mice or adeno-associated virus encoding AVAN delivery system and found that AVAN significantly alleviated IAV virulence and virus replication. Mechanistically, nuclear AVAN positively regulates the transcription of forkhead box O3A (FOXO3a) by associating with its promoter and inducing chromatin remodeling to promote neutrophil chemotaxis. Meanwhile, cytoplasmic AVAN binds directly to the E3 ligase TRIM25 and enhances TRIM25-mediated K63-linked ubiquitination of RIG-I, thereby promoting TRIM25- and RIG-I-mediated antiviral innate immune responses, including the induction of type I interferon and ISGs. Moreover, AVAN binds to the B Box/CCD domain of TRIM25 and 1-200nt of AVAN were the functional moieties. Collectively, our findings highlight the potential clinical implications of human lncRNA AVAN as a key positive regulator of the antiviral innate immune response and a promising target for developing broad antiviral therapeutics.
Collapse
|
43
|
USP15: a review of its implication in immune and inflammatory processes and tumor progression. Genes Immun 2021; 22:12-23. [PMID: 33824497 DOI: 10.1038/s41435-021-00125-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 02/01/2023]
Abstract
The covalent post-translational modification of proteins by ubiquitination not only influences protein stability and half-life, but also several aspects of protein function including enzymatic activity, sub-cellular localization, and interactions with binding partners. Protein ubiquitination status is determined by the action of large families of ubiquitin ligases and deubiquitinases, whose combined activities regulate many physiological and cellular pathways. The Ubiquitin Specific Protease (USP) family is one of 8 subfamilies of deubiquitinating enzymes composed of more than 50 members. Recent studies have shown that USP15 plays a critical role in regulating many aspects of immune and inflammatory function of leukocytes in response to a broad range of infectious and autoimmune insults and following tissue damage. USP15 regulated pathways reviewed herein include TLR signaling, RIG-I signaling, NF-kB, and IRF3/IRF7-dependent transcription for production of pro-inflammatory cytokines and type I interferons. In addition, USP15 has been found to regulate pathways implicated in tumor onset and progression such as p53, and TGF-β signaling, but also influences the leukocytes-determined immune and inflammatory microenvironment of tumors to affect progression and outcome. Hereby reviewed are recent studies of USP15 in model cell lines in vitro, and in mutant mice in vivo with reference to available human clinical datasets.
Collapse
|
44
|
The Multifaceted Roles of USP15 in Signal Transduction. Int J Mol Sci 2021; 22:ijms22094728. [PMID: 33946990 PMCID: PMC8125482 DOI: 10.3390/ijms22094728] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ubiquitination and deubiquitination are protein post-translational modification processes that have been recognized as crucial mediators of many complex cellular networks, including maintaining ubiquitin homeostasis, controlling protein stability, and regulating several signaling pathways. Therefore, some of the enzymes involved in ubiquitination and deubiquitination, particularly E3 ligases and deubiquitinases, have attracted attention for drug discovery. Here, we review recent findings on USP15, one of the deubiquitinases, which regulates diverse signaling pathways by deubiquitinating vital target proteins. Even though several basic previous studies have uncovered the versatile roles of USP15 in different signaling networks, those have not yet been systematically and specifically reviewed, which can provide important information about possible disease markers and clinical applications. This review will provide a comprehensive overview of our current understanding of the regulatory mechanisms of USP15 on different signaling pathways for which dynamic reverse ubiquitination is a key regulator.
Collapse
|
45
|
Hay-McCullough E, Morrison J. Contributions of Ubiquitin and Ubiquitination to Flaviviral Antagonism of Type I IFN. Viruses 2021; 13:763. [PMID: 33925296 PMCID: PMC8145522 DOI: 10.3390/v13050763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/24/2022] Open
Abstract
Flaviviruses implement a broad range of antagonism strategies against the host antiviral response. A pivotal component of the early host response is production and signaling of type I interferon (IFN-I). Ubiquitin, a prevalent cellular protein-modifying molecule, is heavily involved in the cellular regulation of this and other immune response pathways. Viruses use ubiquitin and ubiquitin machinery to antagonize various steps of these pathways through diverse mechanisms. Here, we highlight ways in which flaviviruses use or inhibit ubiquitin to antagonize the antiviral IFN-I response.
Collapse
Affiliation(s)
| | - Juliet Morrison
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA;
| |
Collapse
|
46
|
Budroni V, Versteeg GA. Negative Regulation of the Innate Immune Response through Proteasomal Degradation and Deubiquitination. Viruses 2021; 13:584. [PMID: 33808506 PMCID: PMC8066222 DOI: 10.3390/v13040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/25/2022] Open
Abstract
The rapid and dynamic activation of the innate immune system is achieved through complex signaling networks regulated by post-translational modifications modulating the subcellular localization, activity, and abundance of signaling molecules. Many constitutively expressed signaling molecules are present in the cell in inactive forms, and become functionally activated once they are modified with ubiquitin, and, in turn, inactivated by removal of the same post-translational mark. Moreover, upon infection resolution a rapid remodeling of the proteome needs to occur, ensuring the removal of induced response proteins to prevent hyperactivation. This review discusses the current knowledge on the negative regulation of innate immune signaling pathways by deubiquitinating enzymes, and through degradative ubiquitination. It focusses on spatiotemporal regulation of deubiquitinase and E3 ligase activities, mechanisms for re-establishing proteostasis, and degradation through immune-specific feedback mechanisms vs. general protein quality control pathways.
Collapse
Affiliation(s)
| | - Gijs A. Versteeg
- Max Perutz Labs, Department of Microbiology, Immunobiology, and Genetics, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
47
|
Shen Z, Wei L, Yu ZB, Yao ZY, Cheng J, Wang YT, Song XT, Li M. The Roles of TRIMs in Antiviral Innate Immune Signaling. Front Cell Infect Microbiol 2021; 11:628275. [PMID: 33791238 PMCID: PMC8005608 DOI: 10.3389/fcimb.2021.628275] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/02/2021] [Indexed: 01/06/2023] Open
Abstract
The Tripartite motif (TRIM) protein family, which contains over 80 members in human sapiens, is the largest subfamily of the RING-type E3 ubiquitin ligase family. It is implicated in regulating various cellular functions, including cell cycle process, autophagy, and immune response. The dysfunction of TRIMs may lead to numerous diseases, such as systemic lupus erythematosus (SLE). Lots of studies in recent years have demonstrated that many TRIM proteins exert antiviral roles. TRIM proteins could affect viral replication by regulating the signaling pathways of antiviral innate immune responses. Besides, TRIM proteins can directly target viral components, which can lead to the degradation or functional inhibition of viral protein through degradative or non-degradative mechanisms and consequently interrupt the viral lifecycle. However, new evidence suggests that some viruses may manipulate TRIM proteins for their replication. Here, we summarize the latest discoveries on the interactions between TRIM protein and virus, especially TRIM proteins’ role in the signaling pathway of antiviral innate immune response and the direct “game” between them.
Collapse
Affiliation(s)
- Zhou Shen
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Center Laboratory, Affiliated Hospital of Hebei University, Baoding, China
| | - Lin Wei
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Zhi-Bo Yu
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Zhi-Yan Yao
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Jing Cheng
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Yu-Tong Wang
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Tian Song
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Miao Li
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
48
|
Onomoto K, Onoguchi K, Yoneyama M. Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors. Cell Mol Immunol 2021; 18:539-555. [PMID: 33462384 PMCID: PMC7812568 DOI: 10.1038/s41423-020-00602-7] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/17/2020] [Indexed: 01/31/2023] Open
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are RNA sensor molecules that play essential roles in innate antiviral immunity. Among the three RLRs encoded by the human genome, RIG-I and melanoma differentiation-associated gene 5, which contain N-terminal caspase recruitment domains, are activated upon the detection of viral RNAs in the cytoplasm of virus-infected cells. Activated RLRs induce downstream signaling via their interactions with mitochondrial antiviral signaling proteins and activate the production of type I and III interferons and inflammatory cytokines. Recent studies have shown that RLR-mediated signaling is regulated by interactions with endogenous RNAs and host proteins, such as those involved in stress responses and posttranslational modifications. Since RLR-mediated cytokine production is also involved in the regulation of acquired immunity, the deregulation of RLR-mediated signaling is associated with autoimmune and autoinflammatory disorders. Moreover, RLR-mediated signaling might be involved in the aberrant cytokine production observed in coronavirus disease 2019. Since the discovery of RLRs in 2004, significant progress has been made in understanding the mechanisms underlying the activation and regulation of RLR-mediated signaling pathways. Here, we review the recent advances in the understanding of regulated RNA recognition and signal activation by RLRs, focusing on the interactions between various host and viral factors.
Collapse
Affiliation(s)
- Koji Onomoto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Kazuhide Onoguchi
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan.
| |
Collapse
|
49
|
Chiang C, Liu G, Gack MU. Viral Evasion of RIG-I-Like Receptor-Mediated Immunity through Dysregulation of Ubiquitination and ISGylation. Viruses 2021; 13:182. [PMID: 33530371 PMCID: PMC7910861 DOI: 10.3390/v13020182] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Viral dysregulation or suppression of innate immune responses is a key determinant of virus-induced pathogenesis. Important sensors for the detection of virus infection are the RIG-I-like receptors (RLRs), which, in turn, are antagonized by many RNA viruses and DNA viruses. Among the different escape strategies are viral mechanisms to dysregulate the post-translational modifications (PTMs) that play pivotal roles in RLR regulation. In this review, we present the current knowledge of immune evasion by viral pathogens that manipulate ubiquitin- or ISG15-dependent mechanisms of RLR activation. Key viral strategies to evade RLR signaling include direct targeting of ubiquitin E3 ligases, active deubiquitination using viral deubiquitinating enzymes (DUBs), and the upregulation of cellular DUBs that regulate RLR signaling. Additionally, we summarize emerging new evidence that shows that enzymes of certain coronaviruses such as SARS-CoV-2, the causative agent of the current COVID-19 pandemic, actively deISGylate key molecules in the RLR pathway to escape type I interferon (IFN)-mediated antiviral responses. Finally, we discuss the possibility of targeting virally-encoded proteins that manipulate ubiquitin- or ISG15-mediated innate immune responses for the development of new antivirals and vaccines.
Collapse
Affiliation(s)
| | | | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; (C.C.); (G.L.)
| |
Collapse
|
50
|
The Role of Ubiquitination in NF-κB Signaling during Virus Infection. Viruses 2021; 13:v13020145. [PMID: 33498196 PMCID: PMC7908985 DOI: 10.3390/v13020145] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
The nuclear factor κB (NF-κB) family are the master transcription factors that control cell proliferation, apoptosis, the expression of interferons and proinflammatory factors, and viral infection. During viral infection, host innate immune system senses viral products, such as viral nucleic acids, to activate innate defense pathways, including the NF-κB signaling axis, thereby inhibiting viral infection. In these NF-κB signaling pathways, diverse types of ubiquitination have been shown to participate in different steps of the signal cascades. Recent advances find that viruses also modulate the ubiquitination in NF-κB signaling pathways to activate viral gene expression or inhibit host NF-κB activation and inflammation, thereby facilitating viral infection. Understanding the role of ubiquitination in NF-κB signaling during viral infection will advance our knowledge of regulatory mechanisms of NF-κB signaling and pave the avenue for potential antiviral therapeutics. Thus, here we systematically review the ubiquitination in NF-κB signaling, delineate how viruses modulate the NF-κB signaling via ubiquitination and discuss the potential future directions.
Collapse
|