1
|
Naser N, Lonj CK, Rikard-Bell M, Sandow SL, Murphy TV. Advanced glycated end-products inhibit dilation through constitutive endothelial RAGE and Nox1/4 in rat isolated skeletal muscle arteries. Microcirculation 2024; 31:e12837. [PMID: 37985248 DOI: 10.1111/micc.12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/17/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVE This study investigated the actions of advanced glycated end-products (AGE), their receptors (RAGE), and NAD(P)H oxidase (Nox) subtypes 1, 2, and 4 on mechanisms of endothelium-dependent dilation of the rat cremaster muscle artery (CMA). METHODS Immunofluorescence studies were used to examine expression of RAGE in rat arteries. ROS accumulation was measured using luminescence and fluorescence assays. Functional studies were performed using pressure myography. RESULTS High levels of RAGE expression were shown in the endothelial cells of the CMA, compared with low endothelial expression in middle cerebral and mesenteric arteries and the aorta. Exogenous AGE (in vitro glycated bovine serum albumin) stimulated H2O2 accumulation in CMA, which was prevented by the RAGE antagonist FPS-ZM1, the NAD(P)H oxidase (Nox) inhibitor apocynin and inhibited by the Nox1/4 inhibitor setanaxib, but not the Nox2 inhibitor GSK2795039. In functional studies, AGE inhibited vasodilation of CMA stimulated by acetylcholine, sodium nitroprusside, and the BKCa activator NS1619, but not adenosine-induced dilation. FPS-ZM1, apocynin, and setanaxib prevented the inhibitory effects of AGE on responses to acetylcholine and NS-1619. CONCLUSION These observations suggest RAGE are constitutively expressed in the endothelium of the rat CMA and may be activated by AGE to stimulate Nox1/4 and ROS formation with resulting inhibition of NO and BKCa-mediated endothelium-dependent dilation.
Collapse
Affiliation(s)
- Nadim Naser
- Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, Australia
| | - Chenchel K Lonj
- Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, Australia
| | - Matthew Rikard-Bell
- Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, Australia
- Townsville University Hospital, Townsville, Queensland, Australia
| | - Shaun L Sandow
- Biomedical Science, University of the Sunshine Coast, Maroochydore, Australia
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Timothy V Murphy
- Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, Australia
| |
Collapse
|
2
|
Taylor JL, Walsh KR, Mosneag IE, Danby TGE, Luka N, Chanda B, Schiessl I, Dunne RA, Hill-Eubanks D, Hennig GW, Allan SM, Nelson MT, Greenstein AS, Pritchard HAT. Uncoupling of Ca 2+ sparks from BK channels in cerebral arteries underlies hypoperfusion in hypertension-induced vascular dementia. Proc Natl Acad Sci U S A 2023; 120:e2307513120. [PMID: 37549299 PMCID: PMC10433456 DOI: 10.1073/pnas.2307513120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/14/2023] [Indexed: 08/09/2023] Open
Abstract
The deficit in cerebral blood flow (CBF) seen in patients with hypertension-induced vascular dementia is increasingly viewed as a therapeutic target for disease-modifying therapy. Progress is limited, however, due to uncertainty surrounding the mechanisms through which elevated blood pressure reduces CBF. To investigate this, we used the BPH/2 mouse, a polygenic model of hypertension. At 8 mo of age, hypertensive mice exhibited reduced CBF and cognitive impairment, mimicking the human presentation of vascular dementia. Small cerebral resistance arteries that run across the surface of the brain (pial arteries) showed enhanced pressure-induced constriction due to diminished activity of large-conductance Ca2+-activated K+ (BK) channels-key vasodilatory ion channels of cerebral vascular smooth muscle cells. Activation of BK channels by transient intracellular Ca2+ signals from the sarcoplasmic reticulum (SR), termed Ca2+ sparks, leads to hyperpolarization and vasodilation. Combining patch-clamp electrophysiology, high-speed confocal imaging, and proximity ligation assays, we demonstrated that this vasodilatory mechanism is uncoupled in hypertensive mice, an effect attributable to physical separation of the plasma membrane from the SR rather than altered properties of BK channels or Ca2+ sparks, which remained intact. This pathogenic mechanism is responsible for the observed increase in constriction and can now be targeted as a possible avenue for restoring healthy CBF in vascular dementia.
Collapse
Affiliation(s)
- Jade L. Taylor
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9PL, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Katy R. Walsh
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9PL, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Ioana-Emilia Mosneag
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Thea G. E. Danby
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9PL, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Nadim Luka
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Bishal Chanda
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Ingo Schiessl
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Ross A. Dunne
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - David Hill-Eubanks
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT05405
| | - Grant W. Hennig
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT05405
| | - Stuart M. Allan
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Mark T. Nelson
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9PL, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT05405
| | - Adam S. Greenstein
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9PL, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
- Manchester University Teaching Hospitals National Health Service Foundation Trust, ManchesterM13 9PL, United Kingdom
| | - Harry A. T. Pritchard
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9PL, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
| |
Collapse
|
3
|
Natural Bioactive Compounds Targeting NADPH Oxidase Pathway in Cardiovascular Diseases. Molecules 2023; 28:molecules28031047. [PMID: 36770715 PMCID: PMC9921542 DOI: 10.3390/molecules28031047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 01/21/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, in both developed and developing countries. According to the WHO report, the morbidity and mortality caused by CVD will continue to rise with the estimation of death going up to 22.2 million in 2030. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) production induces endothelial nitric oxide synthase (eNOS) uncoupling and mitochondrial dysfunction, resulting in sustained oxidative stress and the development of cardiovascular diseases. Seven distinct members of the family have been identified of which four (namely, NOX1, 2, 4 and 5) may have cardiovascular functions. Currently, the treatment and management plan for patients with CVDs mainly depends on the drugs. However, prolonged use of prescribed drugs may cause adverse drug reactions. Therefore, it is crucial to find alternative treatment options with lesser adverse effects. Natural products have been gaining interest as complementary therapy for CVDs over the past decade due to their wide range of medicinal properties, including antioxidants. These might be due to their potent active ingredients, such as flavonoid and phenolic compounds. Numerous natural compounds have been demonstrated to have advantageous effects on cardiovascular disease via NADPH cascade. This review highlights the potential of natural products targeting NOX-derived ROS generation in treating CVDs. Emphasis is put on the activation of the oxidases, including upstream or downstream signalling events.
Collapse
|
4
|
Functionally linked potassium channel activity in cerebral endothelial and smooth muscle cells is compromised in Alzheimer's disease. Proc Natl Acad Sci U S A 2022; 119:e2204581119. [PMID: 35727988 PMCID: PMC9245656 DOI: 10.1073/pnas.2204581119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Patients with Alzheimer’s disease show hypoperfusion of the brain and this may contribute to disease progression. To elucidate underlying mechanisms, we studied pial arteries from 18-mo-old mice with Alzheimer’s disease due to overexpression of amyloid precursor protein. We found enhanced pressure-induced constriction of arteries because of reduction in ryanodine receptor-mediated, local calcium-release events (“Ca2+ sparks”) in arterial smooth muscle cells and a consequent decrease in the activity of large-conductance Ca2+-activated K+ (BK) channels. This phenotype was partially recapitulated by application of an amyloid-β peptide to healthy arteries. Our results will direct further research to restore cerebrovascular function, which is damaged in Alzheimer’s disease, leading to potentially new treatment options. The brain microcirculation is increasingly viewed as a potential target for disease-modifying drugs in the treatment of Alzheimer’s disease patients, reflecting a growing appreciation of evidence that cerebral blood flow is compromised in such patients. However, the pathogenic mechanisms in brain resistance arteries underlying blood flow defects have not yet been elucidated. Here we probed the roles of principal vasodilatory pathways in cerebral arteries using the APP23 mouse model of Alzheimer’s disease, in which amyloid precursor protein is increased approximately sevenfold, leading to neuritic plaques and cerebrovascular accumulation of amyloid-β similar to those in patients with Alzheimer’s disease. Pial arteries from APP23 mice (18 mo old) exhibited enhanced pressure-induced (myogenic) constriction because of a profound reduction in ryanodine receptor-mediated, local calcium-release events (“Ca2+ sparks”) in arterial smooth muscle cells and a consequent decrease in the activity of large-conductance Ca2+-activated K+ (BK) channels. The ability of the endothelial cell inward rectifier K+ (Kir2.1) channel to cause dilation was also compromised. Acute application of amyloid-β 1-40 peptide to cerebral arteries from wild-type mice partially recapitulated the BK dysfunction seen in APP23 mice but had no effect on Kir2.1 function. If mirrored in human Alzheimer’s disease, these tandem defects in K+ channel-mediated vasodilation could account for the clinical cerebrovascular presentation seen in patients: reduced blood flow and crippled functional hyperemia. These data direct future research toward approaches that reverse this dual vascular channel dysfunction, with the ultimate aim of restoring healthy cerebral blood flow and improving clinical outcomes.
Collapse
|
5
|
Lee Y, Zawieja SD, Muthuchamy M. Lymphatic Collecting Vessel: New Perspectives on Mechanisms of Contractile Regulation and Potential Lymphatic Contractile Pathways to Target in Obesity and Metabolic Diseases. Front Pharmacol 2022; 13:848088. [PMID: 35355722 PMCID: PMC8959455 DOI: 10.3389/fphar.2022.848088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/17/2022] [Indexed: 01/19/2023] Open
Abstract
Obesity and metabolic syndrome pose a significant risk for developing cardiovascular disease and remain a critical healthcare challenge. Given the lymphatic system's role as a nexus for lipid absorption, immune cell trafficking, interstitial fluid and macromolecule homeostasis maintenance, the impact of obesity and metabolic disease on lymphatic function is a burgeoning field in lymphatic research. Work over the past decade has progressed from the association of an obese phenotype with Prox1 haploinsufficiency and the identification of obesity as a risk factor for lymphedema to consistent findings of lymphatic collecting vessel dysfunction across multiple metabolic disease models and organisms and characterization of obesity-induced lymphedema in the morbidly obese. Critically, recent findings have suggested that restoration of lymphatic function can also ameliorate obesity and insulin resistance, positing lymphatic targeted therapies as relevant pharmacological interventions. There remain, however, significant gaps in our understanding of lymphatic collecting vessel function, particularly the mechanisms that regulate the spontaneous contractile activity required for active lymph propulsion and lymph return in humans. In this article, we will review the current findings on lymphatic architecture and collecting vessel function, including recent advances in the ionic basis of lymphatic muscle contractile activity. We will then discuss lymphatic dysfunction observed with metabolic disruption and potential pathways to target with pharmacological approaches to improve lymphatic collecting vessel function.
Collapse
Affiliation(s)
- Yang Lee
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Scott D Zawieja
- Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Mariappan Muthuchamy
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
6
|
Kendrick DJ, Mishra RC, John CM, Zhu HL, Braun AP. Effects of Pharmacological Inhibitors of NADPH Oxidase on Myogenic Contractility and Evoked Vasoactive Responses in Rat Resistance Arteries. Front Physiol 2022; 12:752366. [PMID: 35140625 PMCID: PMC8818784 DOI: 10.3389/fphys.2021.752366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Reactive oxygen species (ROS), such as superoxide anions and hydrogen peroxide, are reported to contribute to the dynamic regulation of contractility in various arterial preparations, however, the situation in pressurized, myogenically active resistance arteries is much less clear. In the present study, we have utilized established pharmacological inhibitors of NADPH oxidase activity to examine the potential contribution of ROS to intrinsic myogenic contractility in adult Sprague–Dawley rat resistance arteries and responses to vasoactive agents acting via the endothelium (i.e., acetylcholine, SKA-31) or smooth muscle (i.e., sodium nitroprusside, phenylephrine). In cannulated and pressurized cremaster skeletal muscle and middle cerebral arteries, the NOX inhibitors 2-acetylphenothiazine (2-APT) and VAS2870, selective for NOX1 and NOX2, respectively, evoked concentration-dependent inhibition of basal myogenic tone in a reversible and irreversible manner, respectively, whereas the non-selective inhibitor apocynin augmented myogenic contractility. The vasodilatory actions of 2-APT and VAS2870 occurred primarily via the vascular endothelium and smooth muscle, respectively. Functional responses to established endothelium-dependent and –independent vasoactive agents were largely unaltered in the presence of either 2-APT or apocynin. In cremaster arteries from Type 2 Diabetic (T2D) Goto-Kakizaki rats with endothelial dysfunction, treatment with either 2-APT or apocynin did not modify stimulus-evoked vasoactive responses, but did affect basal myogenic tone. These same NOX inhibitors produced robust inhibition of total NADPH oxidase activity in aortic tissue homogenates from control and T2D rats, and NOX isozymes 1, 2 and 4, along with superoxide dismutase 1, were detected by qPCR in cremaster arteries and aorta from both species. Based on the diverse effects that we observed for established, chemically distinct NOX inhibitors, the functional contribution of vascular NADPH oxidase activity to stimulus-evoked vasoactive signaling in myogenically active, small resistance arteries remains unclear.
Collapse
|
7
|
Queiroz RF, Stanley CP, Wolhuter K, Kong SMY, Rajivan R, McKinnon N, Nguyen GTH, Roveri A, Guttzeit S, Eaton P, Donald WA, Ursini F, Winterbourn CC, Ayer A, Stocker R. Hydrogen peroxide signaling via its transformation to a stereospecific alkyl hydroperoxide that escapes reductive inactivation. Nat Commun 2021; 12:6626. [PMID: 34785665 PMCID: PMC8595612 DOI: 10.1038/s41467-021-26991-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
During systemic inflammation, indoleamine 2,3-dioxygenase 1 (IDO1) becomes expressed in endothelial cells where it uses hydrogen peroxide (H2O2) to oxidize L-tryptophan to the tricyclic hydroperoxide, cis-WOOH, that then relaxes arteries via oxidation of protein kinase G 1α. Here we show that arterial glutathione peroxidases and peroxiredoxins that rapidly eliminate H2O2, have little impact on relaxation of IDO1-expressing arteries, and that purified IDO1 forms cis-WOOH in the presence of peroxiredoxin 2. cis-WOOH oxidizes protein thiols in a selective and stereospecific manner. Compared with its epimer trans-WOOH and H2O2, cis-WOOH reacts slower with the major arterial forms of glutathione peroxidases and peroxiredoxins while it reacts more readily with its target, protein kinase G 1α. Our results indicate a paradigm of redox signaling by H2O2 via its enzymatic conversion to an amino acid-derived hydroperoxide that 'escapes' effective reductive inactivation to engage in selective oxidative activation of key target proteins.
Collapse
Affiliation(s)
- Raphael F Queiroz
- Department of Natural Sciences, Southwest Bahia State University, Vitoria da Conquista, Bahia, Brazil
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Christopher P Stanley
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- Heart Research Institute, The University of Sydney, Sydney, Australia
| | - Kathryn Wolhuter
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | | | - Ragul Rajivan
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Naomi McKinnon
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Antonella Roveri
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Philip Eaton
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Christine C Winterbourn
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch, New Zealand
| | - Anita Ayer
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.
- Heart Research Institute, The University of Sydney, Sydney, Australia.
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia.
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.
- Heart Research Institute, The University of Sydney, Sydney, Australia.
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia.
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
8
|
Hu X, Zhang L. Uteroplacental Circulation in Normal Pregnancy and Preeclampsia: Functional Adaptation and Maladaptation. Int J Mol Sci 2021; 22:8622. [PMID: 34445328 PMCID: PMC8395300 DOI: 10.3390/ijms22168622] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Uteroplacental blood flow increases as pregnancy advances. Adequate supply of nutrients and oxygen carried by uteroplacental blood flow is essential for the well-being of the mother and growth/development of the fetus. The uteroplacental hemodynamic change is accomplished primarily through uterine vascular adaptation, involving hormonal regulation of myogenic tone, vasoreactivity, release of vasoactive factors and others, in addition to the remodeling of spiral arteries. In preeclampsia, hormonal and angiogenic imbalance, proinflammatory cytokines and autoantibodies cause dysfunction of both endothelium and vascular smooth muscle cells of the uteroplacental vasculature. Consequently, the vascular dysfunction leads to increased vascular resistance and reduced blood flow in the uteroplacental circulation. In this article, the (mal)adaptation of uteroplacental vascular function in normal pregnancy and preeclampsia and underlying mechanisms are reviewed.
Collapse
Affiliation(s)
- Xiangqun Hu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
9
|
Hofmann F. The cGMP system: components and function. Biol Chem 2021; 401:447-469. [PMID: 31747372 DOI: 10.1515/hsz-2019-0386] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022]
Abstract
The cyclic guanosine monophosphate (cGMP) signaling system is one of the most prominent regulators of a variety of physiological and pathophysiological processes in many mammalian and non-mammalian tissues. Targeting this pathway by increasing cGMP levels has been a very successful approach in pharmacology as shown for nitrates, phosphodiesterase (PDE) inhibitors and stimulators of nitric oxide-guanylyl cyclase (NO-GC) and particulate GC (pGC). This is an introductory review to the cGMP signaling system intended to introduce those readers to this system, who do not work in this area. This article does not intend an in-depth review of this system. Signal transduction by cGMP is controlled by the generating enzymes GCs, the degrading enzymes PDEs and the cGMP-regulated enzymes cyclic nucleotide-gated ion channels, cGMP-dependent protein kinases and cGMP-regulated PDEs. Part A gives a very concise introduction to the components. Part B gives a very concise introduction to the functions modulated by cGMP. The article cites many recent reviews for those who want a deeper insight.
Collapse
Affiliation(s)
- Franz Hofmann
- Pharmakologisches Institut, Technische Universität München, Biedersteiner Str. 29, D-80802 München, Germany
| |
Collapse
|
10
|
Joshi V, Strege PR, Farrugia G, Beyder A. Mechanotransduction in gastrointestinal smooth muscle cells: role of mechanosensitive ion channels. Am J Physiol Gastrointest Liver Physiol 2021; 320:G897-G906. [PMID: 33729004 PMCID: PMC8202201 DOI: 10.1152/ajpgi.00481.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mechanosensation, the ability to properly sense mechanical stimuli and transduce them into physiologic responses, is an essential determinant of gastrointestinal (GI) function. Abnormalities in this process result in highly prevalent GI functional and motility disorders. In the GI tract, several cell types sense mechanical forces and transduce them into electrical signals, which elicit specific cellular responses. Some mechanosensitive cells like sensory neurons act as specialized mechanosensitive cells that detect forces and transduce signals into tissue-level physiological reactions. Nonspecialized mechanosensitive cells like smooth muscle cells (SMCs) adjust their function in response to forces. Mechanosensitive cells use various mechanoreceptors and mechanotransducers. Mechanoreceptors detect and convert force into electrical and biochemical signals, and mechanotransducers amplify and direct mechanoreceptor responses. Mechanoreceptors and mechanotransducers include ion channels, specialized cytoskeletal proteins, cell junction molecules, and G protein-coupled receptors. SMCs are particularly important due to their role as final effectors for motor function. Myogenic reflex-the ability of smooth muscle to contract in response to stretch rapidly-is a critical smooth muscle function. Such rapid mechanotransduction responses rely on mechano-gated and mechanosensitive ion channels, which alter their ion pores' opening in response to force, allowing fast electrical and Ca2+ responses. Although GI SMCs express a variety of such ion channels, their identities remain unknown. Recent advancements in electrophysiological, genetic, in vivo imaging, and multi-omic technologies broaden our understanding of how SMC mechano-gated and mechanosensitive ion channels regulate GI functions. This review discusses GI SMC mechanosensitivity's current developments with a particular emphasis on mechano-gated and mechanosensitive ion channels.
Collapse
Affiliation(s)
- Vikram Joshi
- 1Division of Gastroenterology & Hepatology, Enteric NeuroScience Program (ENSP), Mayo Clinic, Rochester, Minnesota
| | - Peter R. Strege
- 1Division of Gastroenterology & Hepatology, Enteric NeuroScience Program (ENSP), Mayo Clinic, Rochester, Minnesota
| | - Gianrico Farrugia
- 1Division of Gastroenterology & Hepatology, Enteric NeuroScience Program (ENSP), Mayo Clinic, Rochester, Minnesota,2Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Arthur Beyder
- 1Division of Gastroenterology & Hepatology, Enteric NeuroScience Program (ENSP), Mayo Clinic, Rochester, Minnesota,2Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
11
|
Ottolini M, Sonkusare SK. The Calcium Signaling Mechanisms in Arterial Smooth Muscle and Endothelial Cells. Compr Physiol 2021; 11:1831-1869. [PMID: 33792900 PMCID: PMC10388069 DOI: 10.1002/cphy.c200030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The contractile state of resistance arteries and arterioles is a crucial determinant of blood pressure and blood flow. Physiological regulation of arterial contractility requires constant communication between endothelial and smooth muscle cells. Various Ca2+ signals and Ca2+ -sensitive targets ensure dynamic control of intercellular communications in the vascular wall. The functional effect of a Ca2+ signal on arterial contractility depends on the type of Ca2+ -sensitive target engaged by that signal. Recent studies using advanced imaging methods have identified the spatiotemporal signatures of individual Ca2+ signals that control arterial and arteriolar contractility. Broadly speaking, intracellular Ca2+ is increased by ion channels and transporters on the plasma membrane and endoplasmic reticular membrane. Physiological roles for many vascular Ca2+ signals have already been confirmed, while further investigation is needed for other Ca2+ signals. This article focuses on endothelial and smooth muscle Ca2+ signaling mechanisms in resistance arteries and arterioles. We discuss the Ca2+ entry pathways at the plasma membrane, Ca2+ release signals from the intracellular stores, the functional and physiological relevance of Ca2+ signals, and their regulatory mechanisms. Finally, we describe the contribution of abnormal endothelial and smooth muscle Ca2+ signals to the pathogenesis of vascular disorders. © 2021 American Physiological Society. Compr Physiol 11:1831-1869, 2021.
Collapse
Affiliation(s)
- Matteo Ottolini
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Swapnil K Sonkusare
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.,Department of Molecular Physiology & Biological Physics, University of Virginia, Charlottesville, Virginia, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
12
|
Stanley CP, Stocker R. Regulation of vascular tone and blood pressure by singlet molecular oxygen in inflammation. Curr Opin Nephrol Hypertens 2021; 30:145-150. [PMID: 33427761 DOI: 10.1097/mnh.0000000000000679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The principle aim of this review is to prompt vascular researchers interested in vascular inflammation and oxidative stress to consider singlet molecular oxygen (1O2) as a potentially relevant contributor. A secondary goal is to propose novel treatment strategies to address haemodynamic complications associated with septic shock. RECENT FINDINGS Increased inflammation and oxidative stress are hallmarks of a range of vascular diseases. We recently showed that in systemic inflammation and oxidative stress associated with models of inflammation including sepsis, the tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase-1 (Ido1) contributes to hypotension and decreased blood pressure through production of singlet molecular oxygen (1O2). Once formed, 1O2 converts tryptophan bound to Ido1 to a vasoactive hydroperoxide which decreases arterial tone and blood pressure via oxidation of a specific cysteine residue of protein kinase G1α. SUMMARY These works show, for the first time, that 1O2 contributes to arterial redox signalling and that Ido1 contributes to the regulation of blood pressure through production of a novel tryptophan-derived hydroperoxide, thus presenting a new signalling pathway as novel target in the treatment of blood pressure disorders such as sepsis.
Collapse
Affiliation(s)
- Christopher P Stanley
- Heart Research Institute, Newtown
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Roland Stocker
- Heart Research Institute, Newtown
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
D’Agostino R, Barberio L, Gatto M, Tropea T, De Luca M, Mandalà M. Extra Virgin Olive Oil Phenols Vasodilate Rat MesentericResistance Artery via Phospholipase C (PLC)-CalciumMicrodomains-Potassium Channels (BK Ca) Signals. Biomolecules 2021; 11:137. [PMID: 33494474 PMCID: PMC7912046 DOI: 10.3390/biom11020137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
Recent evidence suggests that the reason Extra Virgin Olive Oil (EVOO) lowers blood pressure and reduces the risk of developing hypertension is partly due to minor components of EVOO, such as phenols. However, little is still known about the mechanism(s) through which EVOO phenols mediate anti-hypertensive effects. The aim of the present study was to investigate the mechanisms of action of EVOO phenols on mesenteric resistance arteries. A pressure myograph was used to test the effect of EVOO phenols on isolated mesenteric arteries in the presence of specific inhibitors of: 1) BKca channels (Paxillin, 10-5 M); 2) L-type calcium channels (Verapamil, 10-5 M); 3) Ryanodine receptor, RyR (Ryanodine, 10-5 M); 4) inositol 1,4,5-triphosphate receptor, IP3R, (2-Aminoethyl diphenylborinate, 2-APB, 3 × 10-3 M); 5) phospholipase C, PLC, (U73122, 10-5 M), and 6) GPCR-Gαi signaling, (Pertussis Toxin, 10-5 M). EVOO phenols induced vasodilation of mesenteric arteries in a dose-dependent manner, and this effect was reduced by pre-incubation with Paxillin, Verapamil, Ryanodine, 2-APB, U73122, and Pertussis Toxin. Our data suggest that EVOO phenol-mediated vasodilation requires activation of BKca channels potentially through a local increase of subcellular calcium microdomains, a pivotal mechanism on the base of artery vasodilation. These findings provide novel mechanistic insights for understanding the vasodilatory properties of EVOO phenols on resistance arteries.
Collapse
Affiliation(s)
- Rossana D’Agostino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (R.D.); (L.B.); (M.G.); (T.T.)
| | - Laura Barberio
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (R.D.); (L.B.); (M.G.); (T.T.)
| | - Mariacarmela Gatto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (R.D.); (L.B.); (M.G.); (T.T.)
| | - Teresa Tropea
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (R.D.); (L.B.); (M.G.); (T.T.)
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK
- Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary’s Hospital, Manchester M13 9WL, UK
| | - Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maurizio Mandalà
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (R.D.); (L.B.); (M.G.); (T.T.)
- Department of Obstetrics, Gynecology and Reproductive Science, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
14
|
Gorshkova OP. Age-Related Changes in the Role of
Potassium Channels in Acetylcholine-Induced Dilation of Pial Arteries in Normotensive
and Spontaneously Hypertensive Rats. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Hu XQ, Song R, Romero M, Dasgupta C, Min J, Hatcher D, Xiao D, Blood A, Wilson SM, Zhang L. Gestational Hypoxia Inhibits Pregnancy-Induced Upregulation of Ca 2+ Sparks and Spontaneous Transient Outward Currents in Uterine Arteries Via Heightened Endoplasmic Reticulum/Oxidative Stress. Hypertension 2020; 76:930-942. [PMID: 32683903 PMCID: PMC7429261 DOI: 10.1161/hypertensionaha.120.15235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hypoxia during pregnancy profoundly affects uterine vascular adaptation and increases the risk of pregnancy complications, including preeclampsia and fetal intrauterine growth restriction. We recently demonstrated that increases in Ca2+ sparks and spontaneous transient outward currents (STOCs) played an essential role in pregnancy-induced uterine vascular adaptation. In the present study, we hypothesize that gestational hypoxia suppresses Ca2+ sparks/STOCs coupling leading to increased uterine vascular tone via enhanced endoplasmic reticulum (ER)/oxidative stress. Uterine arteries were obtained from nonpregnant and near-term pregnant sheep residing in low altitude or acclimatizing to high-altitude (3801 m) hypoxia for ≈110 days. High-altitude hypoxia suppressed pregnancy-induced upregulation of RyR1 and RyR2 (ryanodine receptor 1 and 2) protein abundance, Ca2+ sparks, and STOCs in uterine arteries. Inhibition of Ca2+ sparks/STOCs with the RyR inhibitor ryanodine significantly increased pressure-dependent myogenic tone in uterine arteries from low-altitude normoxic pregnant animals but not those from high-altitude hypoxic pregnant animals. Gestational hypoxia significantly increased ER/oxidative stress in uterine arteries. Of importance, the hypoxia-mediated suppression of Ca2+ sparks/STOCs and increase in myogenic tone in uterine arteries of pregnant animals were reversed by inhibiting ER/oxidative stress. Of great interest, the impaired sex hormonal regulation of STOCs in high-altitude animals was annulled by scavenging reactive oxygen species but not by inhibiting ER stress. Together, the findings reveal the differential mechanisms of ER and oxidative stresses in suppressing Ca2+ sparks/STOCs and increasing myogenic tone of uterine arteries in hypoxia during gestation, providing new insights into the understanding of pregnancy complications associated with hypoxia.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Rui Song
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Monica Romero
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Chiranjib Dasgupta
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Joseph Min
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Daisy Hatcher
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Daliao Xiao
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Arlin Blood
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Sean M Wilson
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Lubo Zhang
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| |
Collapse
|
16
|
Song R, Hu XQ, Romero M, Holguin MA, Kagabo W, Xiao D, Wilson SM, Zhang L. Ryanodine receptor subtypes regulate Ca2+ sparks/spontaneous transient outward currents and myogenic tone of uterine arteries in pregnancy. Cardiovasc Res 2020; 117:792-804. [PMID: 32251501 DOI: 10.1093/cvr/cvaa089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/18/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
AIMS Our recent study demonstrated that increased Ca2+ sparks and spontaneous transient outward currents (STOCs) played an important role in uterine vascular tone and haemodynamic adaptation to pregnancy. The present study examined the role of ryanodine receptor (RyR) subtypes in regulating Ca2+ sparks/STOCs and myogenic tone in uterine arterial adaptation to pregnancy. METHODS AND RESULTS Uterine arteries isolated from non-pregnant and near-term pregnant sheep were used in the present study. Pregnancy increased the association of α and β1 subunits of large-conductance Ca2+-activated K+ (BKCa) channels and enhanced the co-localization of RyR1 and RyR2 with the β1 subunit in the uterine artery. In contrast, RyR3 was not co-localized with BKCa β1 subunit. Knockdown of RyR1 or RyR2 in uterine arteries of pregnant sheep downregulated the β1 but not α subunit of the BKCa channel and decreased the association of α and β1 subunits. Unlike RyR1 and RyR2, knockdown of RyR3 had no significant effect on either expression or association of BKCa subunits. In addition, knockdown of RyR1 or RyR2 significantly decreased Ca2+ spark frequency, suppressed STOCs frequency and amplitude, and increased pressure-dependent myogenic tone in uterine arteries of pregnant animals. RyR3 knockdown did not affect Ca2+ sparks/STOCs and myogenic tone in the uterine artery. CONCLUSION Together, the present study demonstrates a novel mechanistic paradigm of RyR subtypes in the regulation of Ca2+ sparks/STOCs and uterine vascular tone, providing new insights into the mechanisms underlying uterine vascular adaptation to pregnancy.
Collapse
Affiliation(s)
- Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Xiang-Qun Hu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Monica Romero
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Mark A Holguin
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Whitney Kagabo
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Daliao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Sean M Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
17
|
Manoury B, Idres S, Leblais V, Fischmeister R. Ion channels as effectors of cyclic nucleotide pathways: Functional relevance for arterial tone regulation. Pharmacol Ther 2020; 209:107499. [PMID: 32068004 DOI: 10.1016/j.pharmthera.2020.107499] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Numerous mediators and drugs regulate blood flow or arterial pressure by acting on vascular tone, involving cyclic nucleotide intracellular pathways. These signals lead to regulation of several cellular effectors, including ion channels that tune cell membrane potential, Ca2+ influx and vascular tone. The characterization of these vasocontrictive or vasodilating mechanisms has grown in complexity due to i) the variety of ion channels that are expressed in both vascular endothelial and smooth muscle cells, ii) the heterogeneity of responses among the various vascular beds, and iii) the number of molecular mechanisms involved in cyclic nucleotide signalling in health and disease. This review synthesizes key data from literature that highlight ion channels as physiologically relevant effectors of cyclic nucleotide pathways in the vasculature, including the characterization of the molecular mechanisms involved. In smooth muscle cells, cation influx or chloride efflux through ion channels are associated with vasoconstriction, whereas K+ efflux repolarizes the cell membrane potential and mediates vasodilatation. Both categories of ion currents are under the influence of cAMP and cGMP pathways. Evidence that some ion channels are influenced by CN signalling in endothelial cells will also be presented. Emphasis will also be put on recent data touching a variety of determinants such as phosphodiesterases, EPAC and kinase anchoring, that complicate or even challenge former paradigms.
Collapse
Affiliation(s)
- Boris Manoury
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France.
| | - Sarah Idres
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | - Véronique Leblais
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | | |
Collapse
|
18
|
Greenstein AS, Kadir SZAS, Csato V, Sugden SA, Baylie RA, Eisner DA, Nelson MT. Disruption of Pressure-Induced Ca 2+ Spark Vasoregulation of Resistance Arteries, Rather Than Endothelial Dysfunction, Underlies Obesity-Related Hypertension. Hypertension 2019; 75:539-548. [PMID: 31865779 PMCID: PMC7055934 DOI: 10.1161/hypertensionaha.119.13540] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Supplemental Digital Content is available in the text. Obesity-related hypertension is one of the world’s leading causes of death and yet little is understood as to how it develops. As a result, effective targeted therapies are lacking and pharmacological treatment is unfocused. To investigate underlying microvascular mechanisms, we studied small artery dysfunction in a high fat–fed mouse model of obesity. Pressure-induced constriction and responses to endothelial and vascular smooth muscle agonists were studied using myography; the corresponding intracellular Ca2+ signaling pathways were examined using confocal microscopy. Principally, we observed that the enhanced basal tone of mesenteric resistance arteries was due to failure of intraluminal pressure-induced Ca2+ spark activation of the large conductance Ca2+ activated K+ potassium channel (BK) within vascular smooth muscle cells. Specifically, the uncoupling site of this mechanotransduction pathway was at the sarcoplasmic reticulum, distal to intraluminal pressure-induced oxidation of Protein Kinase G. In contrast, the vasodilatory function of the endothelium and the underlying endothelial IP-3 and TRPV4 (vanilloid 4 transient receptor potential ion channel) Ca2+ signaling pathways were not affected by the high-fat diet or the elevated blood pressure. There were no structural alterations of the arterial wall. Our work emphasizes the importance of the intricate cellular pathway by which intraluminal pressure maintains Ca2+ spark vasoregulation in the origin of obesity-related hypertension and suggests previously unsuspected avenues for pharmacological intervention.
Collapse
Affiliation(s)
- Adam S Greenstein
- From the Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | | | - Viktoria Csato
- From the Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Sarah A Sugden
- From the Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Rachael A Baylie
- From the Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - David A Eisner
- From the Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Mark T Nelson
- From the Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| |
Collapse
|
19
|
Significant reduction of vascular reactivity with dantrolene and nimodipine in diabetic rats: a potential approach to cerebral vasospasm management in diabetes. Pharmacol Rep 2019; 72:126-134. [PMID: 32016838 DOI: 10.1007/s43440-019-00038-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/10/2019] [Accepted: 11/22/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Diabetics have a higher risk of developing cerebral vasospasms (CVSPs) than non-diabetics. Current therapies are ineffective in reducing CVSPs, but a a combination of dantrolene and nimodipine may be a viable treatment. Considering the potentially harmful secondary effects of dantrolene, however, we evaluated the efficacy of 10 μM dantrolene compared to 50 μM dantrolene alone or in combination with 50 nM nimodipine. METHODS Dose-response curves for the phenylephrine (PHE)-induced contraction and acetylcholine (ACh)-induced relaxation were performed on aortic rings from diabetic and non-diabetic rats, before and after a 30-min incubation period with dantrolene (50 μM and 10 μM), alone or in combination with 50 nM nimodipine. RESULTS Whereas 50 μM dantrolene reduced PHE-induced contraction by 47% in diabetic rats and 29% in controls, 10 μM dantrolene failed to reduce this parameter in either group. Furthermore, 50 μM dantrolene reduced PHE-induced contraction by about 80% in both diabetic and controls when combined with nimodipine (N = 9, P < 0.05). The combination of 10 μM dantrolene and 50 nM nimodipine, however, was ineffective. Only 50 μM dantrolene improved endothelial dysfunction. CONCLUSIONS Improved endothelial-dependent relaxation and reduced vascular contractility with dantrolene are dose dependent. Thus, although dantrolene appears to be a promising alternative for the treatment of CVSPs when added to conventional therapies, careful titration should be performed to achieve a significant reduction in vascular hyperreactivity. Moreover, if our findings with rats are applicable to humans, the combined use of dantrolene and nimodipine at optimal doses may reduce CVSPs, especially in the diabetic population.
Collapse
|
20
|
Hu XQ, Song R, Romero M, Dasgupta C, Huang X, Holguin MA, Williams V, Xiao D, Wilson SM, Zhang L. Pregnancy Increases Ca 2+ Sparks/Spontaneous Transient Outward Currents and Reduces Uterine Arterial Myogenic Tone. Hypertension 2019; 73:691-702. [PMID: 30661479 DOI: 10.1161/hypertensionaha.118.12484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spontaneous transient outward currents (STOCs) at physiological membrane potentials of vascular smooth muscle cells fundamentally regulate vascular myogenic tone and blood flow in an organ. We hypothesize that heightened STOCs play a key role in uterine vascular adaptation to pregnancy. Uterine arteries were isolated from nonpregnant and near-term pregnant sheep. Ca2+ sparks were measured by confocal microscopy, and STOCs were determined by electrophysiological recording in smooth muscle cells. Percentage of Ca2+ spark firing myocytes increased dramatically at the resting condition in uterine arterial smooth muscle of pregnant animals, as compared with nonpregnant animals. Pregnancy upregulated the expression of RyRs (ryanodine receptors) and significantly boosted Ca2+ spark frequency. Ex vivo treatment of uterine arteries of nonpregnant sheep with estrogen and progesterone imitated pregnancy-induced RyR upregulation. STOCs occurred at much more negative membrane potentials in uterine arterial myocytes of pregnant animals. STOCs in uterine arterial myocytes were diminished by inhibiting large-conductance Ca2+-activated K+ (BKCa) channels and RyRs, thus functionally linking Ca2+ sparks and BKCa channel activity to STOCs. Pregnancy and steroid hormone treatment significantly increased STOCs frequency and amplitude in uterine arteries. Of importance, inhibition of STOCs with RyR inhibitor ryanodine eliminated pregnancy- and steroid hormone-induced attenuation of uterine arterial myogenic tone. Thus, the present study demonstrates a novel role of Ca2+ sparks and STOCs in the regulation of uterine vascular tone and provides new insights into the mechanisms underlying uterine vascular adaptation to pregnancy.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Rui Song
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Monica Romero
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Chiranjib Dasgupta
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Xiaohui Huang
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Mark A Holguin
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - VaShon Williams
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Daliao Xiao
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Sean M Wilson
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Lubo Zhang
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| |
Collapse
|
21
|
Csato V, Kadir SZSA, Khavandi K, Bennett H, Sugden S, Gurney AM, Pritchard HT, Hill‐Eubanks D, Eaton P, Nelson MT, Greenstein AS. "A Step and a Ceiling": mechanical properties of Ca 2+ spark vasoregulation in resistance arteries by pressure-induced oxidative activation of PKG. Physiol Rep 2019; 7:e14260. [PMID: 31782255 PMCID: PMC6883097 DOI: 10.14814/phy2.14260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 11/24/2022] Open
Abstract
We investigated the biomechanical relationship between intraluminal pressure within small mesenteric resistance arteries, oxidant activation of PKG, Ca2+ sparks, and BK channel vasoregulation. Mesenteric resistance arteries from wild type (WT) and genetically modified mice with PKG resistance to oxidative activation were studied using wire and pressure myography. Ca2+ sparks and Ca2+ transients within vascular smooth muscle cells of intact arteries were characterized using high-speed confocal microscopy of intact arteries. Arteries were studied under conditions of varying intraluminal pressure and oxidation. Intraluminal pressure specifically, rather than the generic stretch of the artery, was necessary to activate the oxidative pathway. We demonstrated a graded step activation profile for the generation of Ca2+ sparks and also a functional "ceiling" for this pressure --sensitive oxidative pathway. During steady state pressure - induced constriction, any additional Ca2+ sensitive-K+ channel functional availability was independent of oxidant activated PKG. There was an increase in the amplitude, but not the Area under the Curve (AUC) of the caffeine-induced Ca2+ transient in pressurized arteries from mice with oxidant-resistant PKG compared with wild type. Overall, we surmise that intraluminal pressure within resistance arteries controls Ca2+ spark vasoregulation through a tightly controlled pathway with a graded onset switch. The pathway, underpinned by oxidant activation of PKG, cannot be further boosted by additional pressure or oxidation once active. We propose that these restrictive characteristics of pressure-induced Ca2+ spark vasoregulation confer stability for the artery in order to provide a constant flow independent of additional pressure fluctuations or exogenous oxidants.
Collapse
Affiliation(s)
- Viktoria Csato
- Division of Cardiovascular SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterHealth Innovation Manchester NetworkManchesterUnited Kingdom
- Division of Clinical PhysiologyInstitute of CardiologyResearch Centre for Molecular MedicineFaculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Sharifah Z. S. A. Kadir
- Division of Cardiovascular SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterHealth Innovation Manchester NetworkManchesterUnited Kingdom
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Kaivan Khavandi
- Division of Cardiovascular SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterHealth Innovation Manchester NetworkManchesterUnited Kingdom
| | - Hayley Bennett
- Division of Cardiovascular SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterHealth Innovation Manchester NetworkManchesterUnited Kingdom
| | - Sarah Sugden
- Division of Cardiovascular SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterHealth Innovation Manchester NetworkManchesterUnited Kingdom
| | - Alison M. Gurney
- Division of Cardiovascular SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterHealth Innovation Manchester NetworkManchesterUnited Kingdom
| | - Harry T. Pritchard
- Division of Cardiovascular SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterHealth Innovation Manchester NetworkManchesterUnited Kingdom
| | | | - Philip Eaton
- Centre for Clinical PharmacologyWilliam Harvey Research InstituteQueen Mary University of LondonLondonUnited Kingdom
- Present address:
Centre for Clinical PharmacologyWilliam Harvey Research InstituteQueen Mary University of LondonLondonUnited Kingdom
| | - Mark T. Nelson
- Division of Cardiovascular SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterHealth Innovation Manchester NetworkManchesterUnited Kingdom
- Department of PharmacologyUniversity of VermontBurlingtonVermont
| | - Adam S. Greenstein
- Division of Cardiovascular SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterHealth Innovation Manchester NetworkManchesterUnited Kingdom
| |
Collapse
|
22
|
Abstract
Chronic hypoxia causes pulmonary hypertension (PH), vascular remodeling, right ventricular (RV) hypertrophy, and cardiac failure. Protein kinase G Iα (PKGIα) is susceptible to oxidation, forming an interprotein disulfide homodimer associated with kinase targeting involved in vasodilation. Here we report increased disulfide PKGIα in pulmonary arteries from mice with hypoxic PH or lungs from patients with pulmonary arterial hypertension. This oxidation is likely caused by oxidants derived from NADPH oxidase-4, superoxide dismutase 3, and cystathionine γ-lyase, enzymes that were concomitantly increased in these samples. Indeed, products that may arise from these enzymes, including hydrogen peroxide, glutathione disulfide, and protein-bound persulfides, were increased in the plasma of hypoxic mice. Furthermore, low-molecular-weight hydropersulfides, which can serve as "superreductants" were attenuated in hypoxic tissues, consistent with systemic oxidative stress and the oxidation of PKGIα observed. Inhibiting cystathionine γ-lyase resulted in decreased hypoxia-induced disulfide PKGIα and more severe PH phenotype in wild-type mice, but not in Cys42Ser PKGIα knock-in (KI) mice that are resistant to oxidation. In addition, KI mice also developed potentiated PH during hypoxia alone. Thus, oxidation of PKGIα is an adaptive mechanism that limits PH, a concept further supported by polysulfide treatment abrogating hypoxia-induced RV hypertrophy in wild-type, but not in the KI, mice. Unbiased transcriptomic analysis of hypoxic lungs before structural remodeling identified up-regulation of endothelial-to-mesenchymal transition pathways in the KI compared with wild-type mice. Thus, disulfide PKGIα is an intrinsic adaptive mechanism that attenuates PH progression not only by promoting vasodilation but also by limiting maladaptive growth and fibrosis signaling.
Collapse
|
23
|
Sheehe JL, Bonev AD, Schmoker AM, Ballif BA, Nelson MT, Moon TM, Dostmann WR. Oxidation of cysteine 117 stimulates constitutive activation of the type Iα cGMP-dependent protein kinase. J Biol Chem 2018; 293:16791-16802. [PMID: 30206122 PMCID: PMC6204908 DOI: 10.1074/jbc.ra118.004363] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/04/2018] [Indexed: 12/22/2022] Open
Abstract
The type I cGMP-dependent protein kinase (PKG I) is an essential regulator of vascular tone. It has been demonstrated that the type Iα isoform can be constitutively activated by oxidizing conditions. However, the amino acid residues implicated in this phenomenon are not fully elucidated. To investigate the molecular basis for this mechanism, we studied the effects of oxidation using recombinant WT, truncated, and mutant constructs of PKG I. Using an in vitro assay, we observed that oxidation with hydrogen peroxide (H2O2) resulted in constitutive, cGMP-independent activation of PKG Iα. PKG Iα C42S and a truncation construct that does not contain Cys-42 (Δ53) were both constitutively activated by H2O2 In contrast, oxidation of PKG Iα C117S maintained its cGMP-dependent activation characteristics, although oxidized PKG Iα C195S did not. To corroborate these results, we also tested the effects of our constructs on the PKG Iα-specific substrate, the large conductance potassium channel (KCa 1.1). Application of WT PKG Iα activated by either cGMP or H2O2 increased the open probabilities of the channel. Neither cGMP nor H2O2 activation of PKG Iα C42S significantly increased channel open probabilities. Moreover, cGMP-stimulated PKG Iα C117S increased KCa 1.1 activity, but this effect was not observed under oxidizing conditions. Finally, we observed that PKG Iα C42S caused channel flickers, indicating dramatically altered KCa 1.1 channel characteristics compared with channels exposed to WT PKG Iα. Cumulatively, these results indicate that constitutive activation of PKG Iα proceeds through oxidation of Cys-117 and further suggest that the formation of a sulfur acid is necessary for this phenotype.
Collapse
Affiliation(s)
- Jessica L Sheehe
- From the Department of Pharmacology, Larner College of Medicine, and
| | - Adrian D Bonev
- From the Department of Pharmacology, Larner College of Medicine, and
| | - Anna M Schmoker
- the Department of Biology, University of Vermont, Burlington, Vermont 05405 and
| | - Bryan A Ballif
- the Department of Biology, University of Vermont, Burlington, Vermont 05405 and
| | - Mark T Nelson
- From the Department of Pharmacology, Larner College of Medicine, and
| | - Thomas M Moon
- the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | | |
Collapse
|
24
|
Cuello F, Eaton P. Cysteine-Based Redox Sensing and Its Role in Signaling by Cyclic Nucleotide-Dependent Kinases in the Cardiovascular System. Annu Rev Physiol 2018; 81:63-87. [PMID: 30216743 DOI: 10.1146/annurev-physiol-020518-114417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxidant molecules are produced in biological systems and historically have been considered causal mediators of damage and disease. While oxidants may contribute to the pathogenesis of disease, evidence continues to emerge that shows these species also play important regulatory roles in health. A major mechanism of oxidant sensing and signaling involves their reaction with reactive cysteine thiols within proteins, inducing oxidative posttranslational modifications that can couple to altered function to enable homeostatic regulation. Protein kinase A and protein kinase G are regulated by oxidants in this way, and this review focuses on our molecular-level understanding of these events and their role in regulating cardiovascular physiology during health and disease.
Collapse
Affiliation(s)
- Friederike Cuello
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Philip Eaton
- King's College London, School of Cardiovascular Medicine and Sciences, The British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas' Hospital, London SE1 7EH, United Kingdom;
| |
Collapse
|
25
|
Kim HH, Choi S. Therapeutic Aspects of Carbon Monoxide in Cardiovascular Disease. Int J Mol Sci 2018; 19:ijms19082381. [PMID: 30104479 PMCID: PMC6121498 DOI: 10.3390/ijms19082381] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022] Open
Abstract
Carbon monoxide (CO) is being increasingly recognized as a potential therapeutic with important signaling functions in various diseases. Carbon monoxide-releasing molecules (CORMs) show anti-apoptotic, anti-inflammatory, and anti-oxidant effects on the tissues of organisms, thus contributing to tissue homeostasis. An increase in reactive oxygen species production from the mitochondria after exposure to CO is also considered one of the underlying mechanisms of cardioprotection, although mitochondrial inhibition is the main toxic mechanism of CO poisoning. This review highlights the mechanism of the biological effects of CO and its potential application as a therapeutic in clinical settings, including in cardiovascular diseases. This review also discusses the obstacles and limitations of using exogenous CO or CORMs as a therapeutic option, with respect to acute CO poisoning.
Collapse
Affiliation(s)
- Hyuk-Hoon Kim
- Department of Emergency Medicine, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Sangchun Choi
- Department of Emergency Medicine, Ajou University School of Medicine, Suwon 16499, Korea.
| |
Collapse
|
26
|
Tanaka S, Shiroto T, Godo S, Saito H, Ikumi Y, Ito A, Kajitani S, Sato S, Shimokawa H. Important role of endothelium-dependent hyperpolarization in the pulmonary microcirculation in male mice: implications for hypoxia-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 2018; 314:H940-H953. [DOI: 10.1152/ajpheart.00487.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endothelium-dependent hyperpolarization (EDH) plays important roles in the systemic circulation, whereas its role in the pulmonary circulation remains largely unknown. Furthermore, the underlying mechanisms of pulmonary hypertension (PH) also remain to be elucidated. We thus aimed to elucidate the role of EDH in pulmonary circulation in general and in PH in particular. In isolated perfused lung and using male wild-type mice, endothelium-dependent relaxation to bradykinin (BK) was significantly reduced in the presence of Nω-nitro-l-arginine by ~50% compared with those in the presence of indomethacin, and the combination of apamin plus charybdotoxin abolished the residual relaxation, showing the comparable contributions of nitric oxide (NO) and EDH in the pulmonary microcirculation under physiological conditions. Catalase markedly inhibited EDH-mediated relaxation, indicating the predominant contribution of endothelium-derived H2O2. BK-mediated relaxation was significantly reduced at day 1 of hypoxia, whereas it thereafter remained unchanged until day 28. EDH-mediated relaxation was diminished at day 2 of hypoxia, indicating a transition from EDH to NO in BK-mediated relaxation before the development of hypoxia-induced PH. Mechanistically, chronic hypoxia enhanced endothelial NO synthase expression and activity associated with downregulation of caveolin-1. Nitrotyrosine levels were significantly higher in vascular smooth muscle of pulmonary microvessels under chronic hypoxia than under normoxia. A similar transition of the mediators in BK-mediated relaxation was also noted in the Sugen hypoxia mouse model. These results indicate that EDH plays important roles in the pulmonary microcirculation in addition to NO under normoxic conditions and that impaired EDH-mediated relaxation and subsequent nitrosative stress may be potential triggers of the onset of PH. NEW & NOTEWORTHY This study provides novel evidence that both endothelium-dependent hyperpolarization and nitric oxide play important roles in endothelium-dependent relaxation in the pulmonary microcirculation under physiological conditions in mice and that hypoxia first impairs endothelium-dependent hyperpolarization-mediated relaxation, with compensatory upregulation of nitric oxide, before the development of hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Shuhei Tanaka
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Shiroto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroki Saito
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yosuke Ikumi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiyo Ito
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shoko Kajitani
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Sato
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
27
|
Pulakazhi Venu VK, Saifeddine M, Mihara K, El-Daly M, Belke D, Dean JLE, O'Brien ER, Hirota SA, Hollenberg MD. Heat shock protein-27 and sex-selective regulation of muscarinic and proteinase-activated receptor 2-mediated vasodilatation: differential sensitivity to endothelial NOS inhibition. Br J Pharmacol 2018. [PMID: 29532457 DOI: 10.1111/bph.14200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Previously, we demonstrated that exogenous heat shock protein 27 (HSP27/gene, HSPB1) treatment of human endothelial progenitor cells (EPCs) increases the synthesis and secretion of VEGF, improves EPC-migration/re-endothelialization and decreases neo-intima formation, suggesting a role for HSPB1 in regulating EPC function. We hypothesized that HSPB1 also affects mature endothelial cells (ECs) to alter EC-mediated vasoreactivity in vivo. Our work focused on endothelial NOS (eNOS)/NO-dependent relaxation induced by ACh and the coagulation pathway-activated receptor, proteinase-activated receptor 2 (PAR2). EXPERIMENTAL APPROACH Aorta rings from male and female wild-type, HSPB1-null and HSPB1 overexpressing (HSPB1o/e) mice were contracted with phenylephrine, and NOS-dependent relaxation responses to ACh and PAR2 agonist, 2-furoyl-LIGRLO-NH2 , were measured without and with L-NAME and ODQ, either alone or in combination to block NO synthesis/action. Tissues from female HSPB1-null mice were treated in vitro with recombinant HSP27 and then used for bioassay as above. Furthermore, oestrogen-specific effects were evaluated using a bioassay of aorta isolated from ovariectomized mice. KEY RESULTS Relative to males, HSPB1-null female mice exhibited an increased L-NAME-resistant relaxation induced by activation of either PAR2 or muscarinic ACh receptors that was blocked in the concurrent presence of both L-NAME and ODQ. mRNAs (qPCR) for eNOS and ODQ-sensitive guanylyl-cyclase were increased in females versus males. Treatment of isolated aorta tissue with HSPB1 improved tissue responsiveness in the presence of L-NAME. Ovariectomy did not affect NO sensitivity, supporting an oestrogen-independent role for HSPB1. CONCLUSIONS AND IMPLICATIONS HSPB1 can regulate intact vascular endothelial function to affect NO-mediated vascular relaxation, especially in females.
Collapse
Affiliation(s)
- Vivek Krishna Pulakazhi Venu
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Disease, University of Calgary Cumming School of Medicine, Calgary, AB, Canada.,Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Mahmoud Saifeddine
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Disease, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Koichiro Mihara
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Disease, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Mahmoud El-Daly
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Disease, University of Calgary Cumming School of Medicine, Calgary, AB, Canada.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Darrell Belke
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Jonathan L E Dean
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Edward R O'Brien
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Simon A Hirota
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Disease, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Morley D Hollenberg
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Disease, University of Calgary Cumming School of Medicine, Calgary, AB, Canada.,Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| |
Collapse
|
28
|
Abstract
Nitric oxide (NO) signalling has pleiotropic roles in biology and a crucial function in cardiovascular homeostasis. Tremendous knowledge has been accumulated on the mechanisms of the nitric oxide synthase (NOS)-NO pathway, but how this highly reactive, free radical gas signals to specific targets for precise regulation of cardiovascular function remains the focus of much intense research. In this Review, we summarize the updated paradigms on NOS regulation, NO interaction with reactive oxidant species in specific subcellular compartments, and downstream effects of NO in target cardiovascular tissues, while emphasizing the latest developments of molecular tools and biomarkers to modulate and monitor NO production and bioavailability.
Collapse
Affiliation(s)
- Charlotte Farah
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Lauriane Y M Michel
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| |
Collapse
|
29
|
Burgoyne JR, Prysyazhna O, Richards DA, Eaton P. Proof of Principle for a Novel Class of Antihypertensives That Target the Oxidative Activation of PKG Iα (Protein Kinase G Iα). Hypertension 2017; 70:577-586. [PMID: 28716990 PMCID: PMC5548503 DOI: 10.1161/hypertensionaha.117.09670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022]
Abstract
Arterial hypertension continues to be a major health burden. Development of new antihypertensive drugs that engage vasodilatory mechanisms not harnessed by available therapies offer therapeutic potential. Oxidants induce an interprotein disulfide in PKG Iα (protein kinase G Iα) at C42, which is associated with its targeting and activation, resulting in vasodilation and blood pressure lowering. Consequently, we developed an assay and screened for electrophilic drugs that activate PKG Iα by selectively targeting C42, as such compounds have potential as novel antihypertensives with a mechanism of action that differs from current therapies. In this way, a drug that we termed G1 was identified, which targets C42 of PKG Iα to induce vasodilation of isolated resistance blood vessels and blood pressure lowering in a mouse model of angiotensin II-induced hypertension. In contrast, these antihypertensive effects were deficient in angiotensin II-induced hypertensive C42S PKG Iα knockin mice. These transgenic mice were engineered to have the reactive cysteinyl thiol replaced with a hydroxyl so that it cannot react with endogenous vasodilatory oxidants or electrophiles such as drug G1. These studies, therefore, provide validation of PKG Iα C42 as the target of G1, as well as proof-of-principle for a new class of antihypertensive drugs that have potential for further development for clinical use in humans.
Collapse
Affiliation(s)
- Joseph R Burgoyne
- From the Cardiovascular Division, the British Heart Foundation Centre of Excellence, the Rayne Institute, St Thomas' Hospital, King's College London, United Kingdom.
| | - Oleksandra Prysyazhna
- From the Cardiovascular Division, the British Heart Foundation Centre of Excellence, the Rayne Institute, St Thomas' Hospital, King's College London, United Kingdom
| | - Daniel A Richards
- From the Cardiovascular Division, the British Heart Foundation Centre of Excellence, the Rayne Institute, St Thomas' Hospital, King's College London, United Kingdom
| | - Philip Eaton
- From the Cardiovascular Division, the British Heart Foundation Centre of Excellence, the Rayne Institute, St Thomas' Hospital, King's College London, United Kingdom
| |
Collapse
|
30
|
Thorpe RB, Hubbell MC, Silpanisong J, Williams JM, Pearce WJ. Chronic hypoxia attenuates the vasodilator efficacy of protein kinase G in fetal and adult ovine cerebral arteries. Am J Physiol Heart Circ Physiol 2017; 313:H207-H219. [PMID: 28550175 DOI: 10.1152/ajpheart.00480.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 03/30/2017] [Accepted: 04/25/2017] [Indexed: 11/22/2022]
Abstract
Long-term hypoxia (LTH) attenuates nitric oxide-induced vasorelaxation in ovine middle cerebral arteries. Because cGMP-dependent protein kinase (PKG) is an important mediator of NO signaling in vascular smooth muscle, we tested the hypothesis that LTH diminishes the ability of PKG to interact with target proteins and cause vasorelaxation. Prominent among proteins that regulate vascular tone is the large-conductance Ca2+-sensitive K+ (BK) channel, which is a substrate for PKG and is responsive to phosphorylation on multiple serine/threonine residues. Given the influence of these proteins, we also examined whether LTH attenuates PKG and BK channel protein abundances and PKG activity. Middle cerebral arteries were harvested from normoxic and hypoxic (altitude of 3,820 m for 110 days) fetal and adult sheep. These arteries were denuded and equilibrated with 95% O2-5% CO2 in the presence of N-nitro-l-arginine methyl ester (l-NAME) to inhibit potential confounding influences of events upstream from PKG. Expression and activity of PKG-I were not significantly affected by chronic hypoxia in either fetal or adult arteries. Pretreatment with the BK inhibitor iberiotoxin attenuated vasorelaxation induced by 8-(4-chlorophenylthio)guanosine 3',5'-cyclic monophosphate in normoxic but not LTH arteries. The spatial proximities of PKG with BK channel α- and β1-proteins were examined using confocal microscopy, which revealed a strong dissociation of PKG with these proteins after LTH. These results support our hypothesis that hypoxia reduces the ability of PKG to attenuate vasoconstriction in part through suppression of the ability of PKG to associate with and thereby activate BK channels in arterial smooth muscle.NEW & NOTEWORTHY Using measurements of contractility, protein abundance, kinase activity, and confocal colocalization in fetal and adult ovine cerebral arteries, the present study demonstrates that long-term hypoxia diminishes the ability of cGMP-dependent protein kinase (PKG) to cause vasorelaxation through suppression of its colocalization and interaction with large-conductance Ca2+-sensitive K+ (BK) channel proteins in cerebrovascular smooth muscle. These experiments are among the first to demonstrate hypoxic changes in BK subunit abundances in fetal cerebral arteries and also introduce the use of advanced methods of confocal colocalization to study interaction between PKG and its targets.
Collapse
Affiliation(s)
- Richard B Thorpe
- Center for Perinatal Biology and Divisions of Physiology, Pharmacology, and Biochemistry, Loma Linda University School of Medicine, Loma Linda, California
| | - Margaret C Hubbell
- Center for Perinatal Biology and Divisions of Physiology, Pharmacology, and Biochemistry, Loma Linda University School of Medicine, Loma Linda, California
| | - Jinjutha Silpanisong
- Center for Perinatal Biology and Divisions of Physiology, Pharmacology, and Biochemistry, Loma Linda University School of Medicine, Loma Linda, California
| | - James M Williams
- Center for Perinatal Biology and Divisions of Physiology, Pharmacology, and Biochemistry, Loma Linda University School of Medicine, Loma Linda, California
| | - William J Pearce
- Center for Perinatal Biology and Divisions of Physiology, Pharmacology, and Biochemistry, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
31
|
Hill MA, Braun AP. Oxidant signaling underlies PKGIα modulation of Ca2+ sparks and BKCa in myogenically active arterioles. Sci Signal 2016; 9:fs15. [PMID: 27729549 DOI: 10.1126/scisignal.aak9385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Local blood flow autoregulation in response to intraluminal pressure requires small artery myogenic vasoconstriction, the extent of which is thought to be governed by a feedback process that depends on Ca2+ signaling. In this issue of Science Signaling, Khavandi et al suggest a role for cyclic guanosine monophosphate (cGMP)-dependent protein kinase G Iα (PKGIα) activated by oxidants in a cGMP-independent manner.
Collapse
Affiliation(s)
- Michael A Hill
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| | - Andrew P Braun
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|