1
|
Zhou M, Ye JY, Shi YJ, Jiang YJ, Zhuang Y, Zhu QY, Liu XX, Ding ZJ, Zheng SJ, Jin CW. Apoplastic pH is a chemical switch for extracellular H 2O 2 signaling in abscisic acid-mediated inhibition of cotyledon greening. THE NEW PHYTOLOGIST 2025; 245:2600-2615. [PMID: 39834016 DOI: 10.1111/nph.20400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
The apoplastic pH (pHApo) in plants is susceptible to environmental stimuli. However, the biological implications of pHApo variation have remained largely unknown. The universal stress phytohormone abscisic acid (ABA) as well as the major environmental stimuli drought and salinity were selected as representative cases to investigate how changes in pHApo relate to plant behaviors in Arabidopsis. Variations in pHApo negatively regulated the cotyledon greening inhibition to the universal stress hormone ABA or environmental stimuli through the action of extracellular hydrogen peroxide (eH2O2). Further studies revealed that an increase in pHApo diminishes the chemical reactivity of eH2O2, effectively functioning as an 'off' switch for its action in oxidizing thiols of plasma membrane proteins. Consequently, this suppresses the eH2O2-mediated cotyledon greening inhibition to environmental stimuli and ABA, alongside inhibiting the eH2O2-mediated intracellular Ca2+ signaling. Conversely, a decrease in pHApo serves as an 'on' switch for the action of eH2O2. In summary, the pHApo is a crucial messenger and chemical switch for eH2O2 in signal transduction, notwithstanding the apparent simplicity of the underlying mechanism. Our findings provide a novel fundamental biological insight into the significance of pH.
Collapse
Affiliation(s)
- Miao Zhou
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Jia Yuan Ye
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Yi Ju Shi
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Yi Jie Jiang
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Yao Zhuang
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Qing Yang Zhu
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Xing Xing Liu
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Chong Wei Jin
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Li R, Yang Y, Lou H, Wang W, Du R, Chen H, Du X, Hu S, Wang GL, Yan J, Shan X, Xie D. Glutathione triggers leaf-to-leaf, calcium-based plant defense signaling. Nat Commun 2025; 16:1915. [PMID: 39994230 PMCID: PMC11850895 DOI: 10.1038/s41467-025-57239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
Animals rely on nervous systems to cope with environmental variability, whereas plants are characterized by lack of nervous system but still have evolved systemic communication systems through signaling molecules that trigger long-distance defense signaling events when encountered with environmental challenges. Here, our genetic screening of the previously constructed hairpin RNA-based Arabidopsis library identifies a glutathione (GSH)-deficient mutant that has high accumulation of glutamate (Glu), a previously defined wound signal essential for activating plant defense, but disharmoniously exhibits attenuation of defense signaling events. We further uncover GSH as a critical signaling molecule that relies on GLUTAMATE RECEPTOR-LIKE 3.3 (GLR3.3) to trigger long-distance calcium-based defense signaling events in plants. Our findings offer new insights into highly sophisticated systemic defense systems evolved by plants to defend against herbivory and pathogen invasion.
Collapse
Affiliation(s)
- Rui Li
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yongfang Yang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Lou
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weicheng Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ran Du
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Haidong Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaoxi Du
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology & San Ya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shuai Hu
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology & San Ya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH, 43210, USA.
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Xiaoyi Shan
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Daoxin Xie
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| |
Collapse
|
3
|
Asghar S, Hayat F, Zhao Z, Zheng Z, Ghori N, Lu Z, Li Y, Chen C. De novo root regeneration from leaf explant: a mechanistic review of key factors behind cell fate transition. PLANTA 2025; 261:33. [PMID: 39808280 DOI: 10.1007/s00425-025-04616-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
MAIN CONCLUSION De novo root regeneration (DNRR) involves activation of special cells after wounding, along with the converter cells, reactive oxygen species, ethylene, and jasmonic acid, also playing key roles. An updated DNRR model is presented here with gene regulatory networks. Root formation after tissue injury is a type of plant regeneration known as de novo root regeneration (DNRR). DNRR system has wide applications in agriculture and tissue culture biotechnology. This review summarizes the recent advancements in the DNRR model for the cellular and molecular framework, targeting leaf explant of Arabidopsis and highlighting differences among direct and indirect pathways. Key findings highlight the presence of special cells in leaf explants after wounding, under different time lapses, through single-cell sequencing of the transcriptional landscape. The possible roles of reactive oxygen species (ROS), ethylene, and jasmonic acid are explored in the early establishment of wounding signals (short/long) for auxin biosynthesis, ultimately leading to adventitious root formation. The synergistic manner of 3rd type of special cells along converter and regeneration-competent cells automatically leads towards cell fate transition for auxin flux in regeneration-competent cells. The signaling mechanisms of these suggested special cells need to be further investigated to understand the DNRR mechanistic story entirely, in addition to root-to-root regeneration and stem-to-root regeneration. Meta-analysis of DNRR is also presented for past and future reference.
Collapse
Affiliation(s)
- Sumeera Asghar
- The Key Laboratory of Plant Resources Conservation Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences Institute of Agro-Bioengineering, Guizhou University, Guiyang, 5505, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Faisal Hayat
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Zimo Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhu Zheng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nida Ghori
- USADA Central Small Grain Genotyping Lab, Kansas State University, Manhattan, USA
- Rothamsted Research, Harpenden, UK
| | - Zhang Lu
- Department of Horticulture & Landscape Architecture 338 Agricultural Hall, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yan Li
- The Key Laboratory of Plant Resources Conservation Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences Institute of Agro-Bioengineering, Guizhou University, Guiyang, 5505, China.
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Yuan H, Sun S, Hu H, Wang Y. Light-emitting probes for in situ sensing of plant information. TRENDS IN PLANT SCIENCE 2024; 29:1368-1382. [PMID: 39068067 DOI: 10.1016/j.tplants.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/21/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024]
Abstract
Monitoring plant physiological information for gaining a comprehensive understanding of plant growth and stress responses contributes to safeguarding plant health. Light-emitting probes - in terms of small-molecule, nanomaterials-based, and genetically protein-based probes - can be introduced into plants through foliar and root treatment or genetic transformation. These probes offer exciting opportunities for sensitive and in situ monitoring of dynamic plant chemical information - for example, reactive oxygen species (ROS), calcium ions, phytohormones - with spatiotemporal resolution. In this review we explore the sensing mechanisms of these light-emitting probes and their applications in monitoring various chemical information in plants in situ. These probes can be used as part of a sentinel plant approach to provide stress warning in the field or to explore plant signaling pathways.
Collapse
Affiliation(s)
- Hao Yuan
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Shengchun Sun
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Hong Hu
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Yixian Wang
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, PR China.
| |
Collapse
|
5
|
Pavlovič A. Touch, light, wounding: how anaesthetics affect plant sensing abilities. PLANT CELL REPORTS 2024; 43:293. [PMID: 39580775 PMCID: PMC11586303 DOI: 10.1007/s00299-024-03369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
KEY MESSAGE Anaesthetics affect not only humans and animals but also plants. Plants exposed to certain anaesthetics lose their ability to respond adequately to various stimuli such as touch, injury or light. Available results indicate that anaesthetics modulate ion channel activities in plants, e.g. Ca2+ influx. The word anaesthesia means loss of sensation. Plants, as all living creatures, can also sense their environment and they are susceptible to anaesthesia. Although some anaesthetics are often known as drugs with well-defined target to their animal/human receptors, some other are promiscuous in their binding. Both have effects on plants. Application of general volatile anaesthetics (GVAs) inhibits plant responses to different stimuli but also induces strong cellular response. Of particular interest is the ability of GVAs inhibit long-distance electrical and Ca2+ signalling probably through inhibition of GLUTAMATE RECEPTOR-LIKE proteins (GLRs), the effect which is surprisingly very similar to inhibition of nerve impulse transmission in animals or human. However, GVAs act also as a stressor for plants and can induce their own Ca2+ signature, which strongly reprograms gene expression . Down-regulation of genes encoding enzymes of chlorophyll biosynthesis and pigment-protein complexes are responsible for inhibited de-etiolation and photomorphogenesis. Vesicle trafficking, germination, and circumnutation movement of climbing plants are also strongly inhibited. On the other hand, other cellular processes can be upregulated, for example, heat shock response and generation of reactive oxygen species (ROS). Upregulation of stress response by GVAs results in preconditioning/priming and can be helpful to withstand abiotic stresses in plants. Thus, anaesthetic drugs may become a useful tool for scientists studying plant responses to environmental stimuli.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic.
| |
Collapse
|
6
|
Chen W, Xu J, Chen J, Wang JF, Zhang S, Pei ZM. Acidic Stress Induces Cytosolic Free Calcium Oscillation, and an Appropriate Low pH Helps Maintain the Circadian Clock in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:3107. [PMID: 39520026 PMCID: PMC11548685 DOI: 10.3390/plants13213107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Acidic stress is a formidable environmental factor that exerts adverse effects on plant growth and development, ultimately leading to a potential reduction in agricultural productivity. A low pH triggers Ca2+ influx across the plasma membrane (PM), eliciting distinct responses under various acidic pH levels. However, the underlying mechanisms by which Arabidopsis plant cells generate stimulus-specific Ca2+ signals in response to acidic stress remain largely unexplored. The experimentally induced stimulus may elicit spikes in cytosolic free Ca2+ concentration ([Ca2+]i) spikes or complex [Ca2+]i oscillations that persist for 20 min over a long-term of 24 h or even several days within the plant cytosol and chloroplast. This study investigated the increase in [Ca2+]i under a gradient of low pH stress ranging from pH 3.0 to 6.0. Notably, the peak of [Ca2+]i elevation was lower at pH 4.0 than at pH 3.0 during the initial 8 h, while other pH levels did not significantly increase [Ca2+]i compared to low acidic stress conditions. Lanthanum chloride (LaCl3) can effectively suppress the influx of [Ca2+]i from the apoplastic to the cytoplasm in plants under acid stress, with no discernible difference in intracellular calcium levels observed in Arabidopsis. Following 8 h of acid treatment in the darkness, the intracellular baseline Ca2+ levels in Arabidopsis were significantly elevated when exposed to low pH stress. A moderately low pH, specifically 4.0, may function as a spatial-temporal input into the circadian clock system. These findings suggest that acid stimulation can exert a continuous influence on intracellular calcium levels, as well as plant growth and development.
Collapse
Affiliation(s)
- Wei Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
- Center on Plant Environmental Sensing, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jing Xu
- Center on Plant Environmental Sensing, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jia Chen
- Center on Plant Environmental Sensing, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jun-Feng Wang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shu Zhang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhen-Ming Pei
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
7
|
Mudrilov M, Ladeynova M, Vetrova Y, Vodeneev V. Analysis of the Mechanisms Underlying the Specificity of the Variation Potential Induced by Different Stimuli. PLANTS (BASEL, SWITZERLAND) 2024; 13:2896. [PMID: 39458843 PMCID: PMC11511009 DOI: 10.3390/plants13202896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Plants are able to perceive diverse environmental factors and form an appropriate systemic functional response. Systemic responses are induced by stimulus-specific long-distance signals that carry information about the stimulus. Variation potential is proposed as a candidate for the role of such a signal. Here, we focus on the mechanisms that determine the specificity of the variation potential under the action of different local stimuli. Local stimuli such as heating, burning and wounding cause variation potential, the parameters of which differ depending on the type of stimulus. It was found that the stimulus-specific features of the hydraulic signal monitored by changes in leaf thickness and variation potential, such as a greater amplitude upon heating and burning and a significant amplitude decrement upon burning and wounding, were similar. The main features of these signals are the greater amplitude upon heating and burning, and a significant amplitude decrement upon burning and wounding. Together with the temporal correspondence of signal propagation, this evidence indicates a role for the hydraulic signal in the induction of stimulus-specific variation potential. Experiments using mechanosensitive channel inhibitors have demonstrated that the hydraulic signal contributes more to the induction of the variation potential in the case of rapidly growing stimuli, such as burning and wounding, than in the case of gradual heating. For thermal stimuli (gradual heating and burning), a greater contribution, compared to wounding, of the chemical signal related to reactive oxygen species to the induction of the variation potential was demonstrated. Thus, the specificity of the parameters of the variation potential is determined by the different contributions of hydraulic and chemical signals.
Collapse
Affiliation(s)
| | | | | | - Vladimir Vodeneev
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
8
|
Fang X, Liu B, Kong H, Zeng J, Feng Y, Xiao C, Shao Q, Huang X, Wu Y, Bao A, Li J, Luan S, He K. Two calcium sensor-activated kinases function in root hair growth. PLANT PHYSIOLOGY 2024; 196:1534-1545. [PMID: 38980916 DOI: 10.1093/plphys/kiae365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 07/11/2024]
Abstract
Plant pollen tubes and root hairs typically polarized tip growth. It is well established that calcium ions (Ca2+) play essential roles in maintaining cell polarity and guiding cell growth orientation. Ca2+ signals are encoded by Ca2+ channels and transporters and are decoded by a variety of Ca2+-binding proteins often called Ca2+ sensors, in which calcineurin B-like protein (CBL) proteins function by interacting with and activating a group of kinases and activate CBL-interacting protein kinases (CIPKs). Some CBL-CIPK complexes, such as CBL2/3-CIPK12/19, act as crucial regulators of pollen tube growth. Whether these calcium decoding components regulate the growth of root hairs, another type of plant cell featuring Ca2+-regulated polarized growth, remains unknown. In this study, we identified CIPK13 and CIPK18 as genes specifically expressed in Arabidopsis (Arabidopsis thaliana) root hairs. The cipk13 cipk18 double mutants showed reduced root hair length and lower growth rates. The calcium oscillations at the root hair tip were attenuated in the cipk13 cipk18 mutants as compared to the wild-type plants. Through yeast 2-hybrid screens, CBL2 and CBL3 were identified as interacting with CIPK13 and CIPK18. cbl2 cbl3 displayed a shortened root hair phenotype similar to cipk13 cipk18. This genetic analysis, together with biochemical assays showing activation of CIPK13/18 by CBL2/3, supported the conclusion that CBL2/3 and CIPK13/18 may work as Ca2+-decoding modules in controlling root hair growth. Thus, the findings that CIPK12/19 and CIPK13/18 function in pollen tube and root hair growth, respectively, illustrate a molecular mechanism in which the same CBLs recruit distinct CIPKs in regulating polarized tip growth in different types of plant cells.
Collapse
Affiliation(s)
- Xianming Fang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Beibei Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haiyan Kong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingyou Zeng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yixin Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chengbin Xiao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qianshuo Shao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xuemei Huang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yujun Wu
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810016, China
| | - Aike Bao
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Xiang Y, Zhao YW, Wu JJ, Bai X, Wang CK, Ma CN, Sun Q, Hu DG. MdABCI17 acts as a positive regulator to enhance apple resistance to Botryosphaeria dothidea. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:61. [PMID: 39282245 PMCID: PMC11391002 DOI: 10.1007/s11032-024-01501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024]
Abstract
The ATP-binding cassette (ABC) superfamily is involved in numerous complex biological processes. However, the understanding of ABCs in plant pathogen defense, particularly against Botryosphaeria dothidea, remains limited. In this study, we identified MdABCI17 that plays a positive role in apple resistance to B. dothidea. Overexpression of MdABCI17 significantly enhanced the resistance of apple calli and fruits to B. dothidea. Our findings revealed that the jasmonic acid (JA) content and the expression of genes associated with JA biosynthesis and signal transduction were higher in stable MdABCI17-overexpressing apple calli than that of wild-type after inoculation with B. dothidea. Similar results were obtained for apple fruits with transient overexpression of MdABCI17. Our research indicates that MdABCI17 enhances apple resistance to B. dothidea through the JA signaling pathway. We further determined that MdABCI17 plays a crucial role in the apple's response to JA signaling. Moreover, exogenous methyl jasmonate (MeJA) treatment significantly enhanced the effectiveness of MdABCI17 in boosting apple resistance to B. dothidea. We proposed a positive feedback regulatory loop between MdABCI17-mediated apple resistance to B. dothidea and JA signal. In summary, our study offers new insights into the role of ABC superfamily members in the control of plant disease resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01501-9.
Collapse
Affiliation(s)
- Ying Xiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Yu-Wen Zhao
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Jing-Jing Wu
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong 271000 P.R. China
| | - Xue Bai
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong 271000 P.R. China
| | - Chu-Kun Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Chang-Ning Ma
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Quan Sun
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Da-Gang Hu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
- Shandong Institute of Pomology, Key Laboratory for Fruit Biotechnology Breeding of Shandong, Taian, 271000 Shandong China
| |
Collapse
|
10
|
Myers RJ, Peláez-Vico MÁ, Fichman Y. Functional analysis of reactive oxygen species-driven stress systemic signalling, interplay and acclimation. PLANT, CELL & ENVIRONMENT 2024; 47:2842-2851. [PMID: 38515255 DOI: 10.1111/pce.14894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Reactive oxygen species (ROS) play a critical role in plant development and stress responses, acting as key components in rapid signalling pathways. The 'ROS wave' triggers essential acclimation processes, ultimately ensuring plant survival under diverse challenges. This review explores recent advances in understanding the composition and functionality of the ROS wave within plant cells. During their initiation and propagation, ROS waves interact with other rapid signalling pathways, hormones and various molecular compounds. Recent research sheds light on the intriguing lack of a rigid hierarchy governing these interactions, highlighting a complex interplay between diverse signals. Notably, ROS waves culminate in systemic acclimation, a crucial outcome for enhanced stress tolerance. This review emphasizes the versatility of ROS, which act as flexible players within a network of short- and long-term factors contributing to plant stress resilience. Unveiling the intricacies of these interactions between ROS and various signalling molecules holds immense potential for developing strategies to augment plant stress tolerance, contributing to improved agricultural practices and overall ecosystem well-being.
Collapse
Affiliation(s)
- Ronald J Myers
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - María Ángeles Peláez-Vico
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Yosef Fichman
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Li L, Liu J, Zhou JM. From molecule to cell: the expanding frontiers of plant immunity. J Genet Genomics 2024; 51:680-690. [PMID: 38417548 DOI: 10.1016/j.jgg.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
In recent years, the field of plant immunity has witnessed remarkable breakthroughs. During the co-evolution between plants and pathogens, plants have developed a wealth of intricate defense mechanisms to safeguard their survival. Newly identified immune receptors have added unexpected complexity to the surface and intracellular sensor networks, enriching our understanding of the ongoing plant-pathogen interplay. Deciphering the molecular mechanisms of resistosome shapes our understanding of these mysterious molecules in plant immunity. Moreover, technological innovations are expanding the horizon of the plant-pathogen battlefield into spatial and temporal scales. While the development provides new opportunities for untangling the complex realm of plant immunity, challenges remain in uncovering plant immunity across spatiotemporal dimensions from both molecular and cellular levels.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jing Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Min Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China.
| |
Collapse
|
12
|
Fu L, Deng J, Liu S, Zhang C, Xue W, Mailhot G, Vione D, Deng Y, Wang C, Wang L. Efficient regulation of cadmium accumulation by carboxymethylammonium chloride in rice: Correlation analysis and expression of transporter gene OsGLR3. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172861. [PMID: 38685417 DOI: 10.1016/j.scitotenv.2024.172861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The mechanism of carboxymethylammonium chloride (CC) regulating cadmium (Cd) accumulation in rice was studied in field and hydroponic experiments. Field experiments showed that 0.2-1.2 mmol L-1 CC spraying effectively reduced Cd accumulation by 44 %-77 % in early rice grains and 39 %-78 % in late rice grains, significantly increased calcium (Ca) content and amino acids content in grains, as well as alleviated Cd-induced oxidative damage in leaves. Hydroponic experiments further verified the inhibition effect of CC on Cd accumulation. 1.2 mmol L-1 CC made the highest decrease of Cd content in shoots and roots of hydroponic seedlings by 45 % and 53 %, respectively. Exogenous CC significantly increased glutamate (Glu), glycine (Gly) and glutathione (GSH) content, and improved the activities of catalase (CAT) and superoxide dismutase (SOD) by 41-131 % and 11-121 % in shoots of hydroponic seedlings, respectively. Exogenous CC also increased the relative expression of OsGLR3.1-3.5 in the shoots and roots of hydroponic seedlings. The quantum computational chemistry was used to clarify that the Gly radical provided by CC could form various complexes with Cd through carboxyl oxygen atoms. These results showed that exogenous application of CC improved the tolerance to Cd by enhancing the antioxidant capacity; inhibited the absorption, transport and accumulation of Cd in rice by (1) promoting chelation, (2) increasing the GLRs activity through upregulating the content of Glu, Gly, as well as the expression of OsGLR3.1-3.5.
Collapse
Affiliation(s)
- Lin Fu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jiawei Deng
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Shuangyue Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Gilles Mailhot
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Davide Vione
- Università degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino, Italy
| | - Yun Deng
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Changrong Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lei Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
13
|
Wu Q, Li Y, Chen M, Kong X. Companion cell mediates wound-stimulated leaf-to-leaf electrical signaling. Proc Natl Acad Sci U S A 2024; 121:e2400639121. [PMID: 38838018 PMCID: PMC11181143 DOI: 10.1073/pnas.2400639121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Leaf wounding triggers rapid long-range electrical signaling that initiates systemic defense responses to protect the plants from further attack. In Arabidopsis, this process largely depends on clade three GLUTAMATE RECEPTOR-LIKE (GLR) genes GLR3.3 and GLR3.6. In the cellular context, phloem sieve elements and xylem contact cells where GLRs were mostly present are implicated in the signaling events. In spite of that, the spatial requirements of different leaf cell types for leaf-to-leaf signaling remain poorly investigated. In this study, we dissected cell-type-specific long-distance wound signaling mediated by GLR3s and showed that phloem companion cells are critical in shaping the functions of GLR3.3 and GLR3.6 in the signaling pathway. GLR3.3-mediated response is phloem-specific, during which, GLR3.3 has to be renewed from companion cells to allow its function in sieve elements. GLR3.6 functions dually in ectopic phloem companion cells, in addition to xylem contact cells. Furthermore, the action of GLR3.6 in phloem is independent of its paralog GLR3.3 and probably requires synthesis of GLR3.6 from xylem contact cells. Overall, our work highlights that the phloem companion cell is crucial for both GLRs in controlling leaf-to-leaf electrical signaling.
Collapse
Affiliation(s)
- Qian Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
| | - Yangyang Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng475004, China
- Shenzhen Research Institute of Henan University, Shenzhen518000, China
| | - Mengjiao Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing210095, Jiangsu, China
| | - Xiaohang Kong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
| |
Collapse
|
14
|
Fu L, Deng J, Lao DR, Zhang C, Xue W, Deng Y, Luo X. Effects of Foliar Spraying of Dicarboxylicdimethylammonium Chloride on Cadmium and Arsenic Accumulation in Rice Grains. TOXICS 2024; 12:418. [PMID: 38922098 PMCID: PMC11209034 DOI: 10.3390/toxics12060418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
A field experiment with double cropping rice was carried out to study the foliar application effects of dicarboxylicdimethylammonium chloride (DDAC) on cadmium (Cd) and arsenic (As) accumulation in rice grains. The results showed that the spraying of DDAC could significantly reduce the accumulation of Cd and As in rice grains. The highest reductions in Cd and As content were observed when 1.5 mmol L-1 DDAC was sprayed, with 49.1% and 27.4% reductions in Cd and As content in early rice grains and 56.5% and 28.1% reductions in Cd and As content in late rice grains, respectively. In addition, the content of calcium (Ca) in rice grains increased significantly after DDAC foliar application, which was also conducive to the synthesis of amino acids such as glutamate (Glu), glycine (Gly) and cysteine (Cys) in rice grains. The results indicated that the foliar spraying of DDAC can inhibit the absorption, transport, accumulation and toxicity of Cd and As in rice grains by increasing amino acid synthesis and regulating the absorption and transport of essential elements.
Collapse
Affiliation(s)
- Lin Fu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| | - Jiawei Deng
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| | - Dayliana Ruiz Lao
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| | - Yun Deng
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China;
| | - Xin Luo
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| |
Collapse
|
15
|
Wu Y, Sun Y, Wang W, Xie Z, Zhan C, Jin L, Huang J. OsJAZ10 negatively modulates the drought tolerance by integrating hormone signaling with systemic electrical activity in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108683. [PMID: 38714129 DOI: 10.1016/j.plaphy.2024.108683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
Jasmonic acid (JA) plays crucial functions in plant stress response, and the synergistic interaction between JA and abscisic acid (ABA) signaling is implicated to help plants adapt to environmental challenges, whereas the underlying molecular mechanism still needs to be revealed. Here, we report that OsJAZ10, a repressor in the JA signaling, represses rice drought tolerance via inhibition of JA and ABA biosynthesis. Function loss of OsJAZ10 markedly enhances, while overexpression of OsJAZ10ΔJas reduces rice drought tolerance. The osjaz10 mutant is more sensitive to exogenous ABA and MeJA, and produces higher levels of ABA and JA after drought treatment, indicating OsJAZ10 represses the biosynthesis of these two hormones. Mechanistic study demonstrated that OsJAZ10 physically interacts with OsMYC2. Transient transcriptional regulation assays showed that OsMYC2 activates the expression of ABA-biosynthetic gene OsNCED2, JA-biosynthetic gene OsAOC, and drought-responsive genes OsRAB21 and OsLEA3, while OsJAZ10 prevents OsMYC2 transactivation of these genes. Further, the electrophoretic mobility shift assay (EMSA) confirmed that OsMYC2 directly binds to the promoters of OsNCED2 and OsRAB21. Electrical activity has been proposed to activate JA biosynthesis. Interestingly, OsJAZ10 inhibits the propagation of osmotic stress-elicited systemic electrical signals, indicated by the significantly increased PEG-elicited slow wave potentials (SWPs) in osjaz10 mutant, which is in accordance with the elevated JA levels. Collectively, our findings establish that OsJAZ10 functions as a negative regulator in rice drought tolerance by repressing JA and ABA biosynthesis, and reveal an important mechanism that plants integrate electrical events with hormone signaling to enhance the adaption to environmental stress.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Ying Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Wanmin Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Chenghang Zhan
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
16
|
Peláez-Vico MÁ, Fichman Y, Zandalinas SI, Foyer CH, Mittler R. ROS are universal cell-to-cell stress signals. CURRENT OPINION IN PLANT BIOLOGY 2024; 79:102540. [PMID: 38643747 DOI: 10.1016/j.pbi.2024.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/23/2024]
Abstract
The interplay between reactive oxygen species (ROS) and the redox state of cells is deeply rooted in the biology of almost all organisms, regulating development, growth, and responses to the environment. Recent studies revealed that the ROS levels and redox state of one cell can be transmitted, as an information 'state' or 'currency', to other cells and spread by cell-to-cell communication within an entire community of cells or an organism. Here, we discuss the different pathways that mediate cell-to-cell signaling in plants, their hierarchy, and the different mechanisms that transmit ROS/redox signaling between different cells. We further hypothesize that ROS/redox signaling between different organisms could play a key role within the 'one world' principle, impacting human health and our future.
Collapse
Affiliation(s)
- María Ángeles Peláez-Vico
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources, Christopher S. Bond Life Sciences Center, 1201 Rollins St., University of Missouri, Columbia, MO 65211, USA
| | - Yosef Fichman
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I. Av. de Vicent Sos Baynat, s/n, Castelló de la Plana 12071, Spain
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Ron Mittler
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources, Christopher S. Bond Life Sciences Center, 1201 Rollins St., University of Missouri, Columbia, MO 65211, USA; Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, 1201 Rollins St., University of Missouri, Columbia, MO 65201, USA.
| |
Collapse
|
17
|
Pavlovič A, Ševčíková L, Hřivňacký M, Rác M. Effect of the General Anaesthetic Ketamine on Electrical and Ca 2+ Signal Propagation in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:894. [PMID: 38592882 PMCID: PMC10975207 DOI: 10.3390/plants13060894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
The systemic electrical signal propagation in plants (i.e., from leaf to leaf) is dependent on GLUTAMATE RECEPTOR-LIKE proteins (GLRs). The GLR receptors are the homologous proteins to the animal ionotropic glutamate receptors (iGluRs) which are ligand-gated non-selective cation channels that mediate neurotransmission in the animal's nervous system. In this study, we investigated the effect of the general anaesthetic ketamine, a well-known non-competitive channel blocker of human iGluRs, on systemic electrical signal propagation in Arabidopsis thaliana. We monitored the electrical signal propagation, intracellular calcium level [Ca2+]cyt and expression of jasmonate (JA)-responsive genes in response to heat wounding. Although ketamine affected the shape and the parameters of the electrical signals (amplitude and half-time, t1/2) mainly in systemic leaves, it was not able to block a systemic response. Increased [Ca2+]cyt and the expression of jasmonate-responsive genes were detected in local as well as in systemic leaves in response to heat wounding in ketamine-treated plants. This is in contrast with the effect of the volatile general anaesthetic diethyl ether which completely blocked the systemic response. This low potency of ketamine in plants is probably caused by the fact that the critical amino acid residues needed for ketamine binding in human iGluRs are not conserved in plants' GLRs.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (L.Š.); (M.H.); (M.R.)
| | | | | | | |
Collapse
|
18
|
Li K, Grauschopf C, Hedrich R, Dreyer I, Konrad KR. K + and pH homeostasis in plant cells is controlled by a synchronized K + /H + antiport at the plasma and vacuolar membrane. THE NEW PHYTOLOGIST 2024; 241:1525-1542. [PMID: 38017688 DOI: 10.1111/nph.19436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
Stomatal movement involves ion transport across the plasma membrane (PM) and vacuolar membrane (VM) of guard cells. However, the coupling mechanisms of ion transporters in both membranes and their interplay with Ca2+ and pH changes are largely unclear. Here, we investigated transporter networks in tobacco guard cells and mesophyll cells using multiparametric live-cell ion imaging and computational simulations. K+ and anion fluxes at both, PM and VM, affected H+ and Ca2+ , as changes in extracellular KCl or KNO3 concentrations were accompanied by cytosolic and vacuolar pH shifts and changes in [Ca2+ ]cyt and the membrane potential. At both membranes, the K+ transporter networks mediated an antiport of K+ and H+ . By contrast, net transport of anions was accompanied by parallel H+ transport, with differences in transport capacity for chloride and nitrate. Guard and mesophyll cells exhibited similarities in K+ /H+ transport but cell type-specific differences in [H+ ]cyt and pH-dependent [Ca2+ ]cyt signals. Computational cell biology models explained mechanistically the properties of transporter networks and the coupling of transport across the PM and VM. Our integrated approach indicates fundamental principles of coupled ion transport at membrane sandwiches to control H+ /K+ homeostasis and points to transceptor-like Ca2+ /H+ -based ion signaling in plant cells.
Collapse
Affiliation(s)
- Kunkun Li
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Christina Grauschopf
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Ingo Dreyer
- Faculty of Engineering, Center of Bioinformatics, Simulation and Modeling (CBSM), University of Talca, 3460000, Talca, Chile
| | - Kai R Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| |
Collapse
|
19
|
Gao YQ, Morin H, Marcourt L, Yang TH, Wolfender JL, Farmer EE. Chloride, glutathiones, and insect-derived elicitors introduced into the xylem trigger electrical signaling. PLANT PHYSIOLOGY 2024; 194:1091-1103. [PMID: 37925642 PMCID: PMC10828190 DOI: 10.1093/plphys/kiad584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Ricca assays allow the direct introduction of compounds extracted from plants or the organisms that attack them into the leaf vasculature. Using chromatographic fractionation of Arabidopsis (Arabidopsis thaliana) leaf extracts, we found glutamate was the most active low mass elicitor of membrane depolarization. However, other known elicitors of membrane depolarization are generated in the wound response. These include unstable aglycones generated by glucosinolate (GSL) breakdown. None of the aglycone-derived GSL-breakdown products, including nitriles and isothiocyanates, that we tested using Ricca assays triggered electrical activity. Instead, we found that glutathione and the GSL-derived compound sulforaphane glutathione triggered membrane depolarizations. These findings identify a potential link between GSL breakdown and glutathione in the generation of membrane depolarizing signals. Noting that the chromatographic fractionation of plant extracts can dilute or exchange ions, we found that Cl- caused glutamate receptor-like3.3-dependent membrane depolarizations. In summary, we show that, in addition to glutamate, glutathione derivatives as well as chloride ions will need to be considered as potential elicitors of wound-response membrane potential change. Finally, by introducing aphid (Brevicoryne brassicae) extracts or the flagellin-derived peptide flg22 into the leaf vasculature we extend the use of Ricca assays for the exploration of insect/plant and bacteria/plant interactions.
Collapse
Affiliation(s)
- Yong-Qiang Gao
- Department of Plant Molecular Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - Hugo Morin
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva 1206, Switzerland
- School of Pharmaceutical Science, University of Geneva, CMU, Geneva 1206, Switzerland
| | - Laurence Marcourt
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva 1206, Switzerland
- School of Pharmaceutical Science, University of Geneva, CMU, Geneva 1206, Switzerland
| | - Tsu-Hao Yang
- Department of Plant Molecular Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - Jean-Luc Wolfender
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva 1206, Switzerland
- School of Pharmaceutical Science, University of Geneva, CMU, Geneva 1206, Switzerland
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
20
|
Yan C, Gao Q, Yang M, Shao Q, Xu X, Zhang Y, Luan S. Ca 2+/calmodulin-mediated desensitization of glutamate receptors shapes plant systemic wound signalling and anti-herbivore defence. NATURE PLANTS 2024; 10:145-160. [PMID: 38168609 DOI: 10.1038/s41477-023-01578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 10/30/2023] [Indexed: 01/05/2024]
Abstract
Plants rely on systemic signalling mechanisms to establish whole-body defence in response to insect and nematode attacks. GLUTAMATE RECEPTOR-LIKE (GLR) genes have been implicated in long-distance transmission of wound signals to initiate the accumulation of the defence hormone jasmonate (JA) at undamaged distal sites. The systemic signalling entails the activation of Ca2+-permeable GLR channels by wound-released glutamate, triggering membrane depolarization and cytosolic Ca2+ influx throughout the whole plant. The systemic electrical and calcium signals rapidly dissipate to restore the resting state, partially due to desensitization of the GLR channels. Here we report the discovery of calmodulin-mediated, Ca2+-dependent desensitization of GLR channels, revealing a negative feedback loop in the orchestration of plant systemic wound responses. A CRISPR-engineered GLR3.3 allele with impaired desensitization showed prolonged systemic electrical signalling and Ca2+ waves, leading to enhanced plant defence against herbivores. Moreover, this Ca2+/calmodulin-mediated desensitization of GLR channels is a highly conserved mechanism in plants, providing a potential target for engineering anti-herbivore defence in crops.
Collapse
Affiliation(s)
- Chun Yan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Qifei Gao
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Mai Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiaolin Shao
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Xiaopeng Xu
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Yongbiao Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
21
|
Mudrilov MA, Ladeynova MM, Kuznetsova DV, Vodeneev VA. Ion Channels in Electrical Signaling in Higher Plants. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1467-1487. [PMID: 38105018 DOI: 10.1134/s000629792310005x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 12/19/2023]
Abstract
Electrical signals (ESs) appearing in plants under the action of various external factors play an important role in adaptation to changing environmental conditions. Generation of ES in higher plant cells is associated with activation of Ca2+, K+, and anion fluxes, as well as with changes in the activity of plasma membrane H+-ATPase. In the present review, molecular nature of the ion channels contributing to ESs transmission in higher plants is analyzed based on comparison of the data from molecular-genetic and electrophysiological studies. Based on such characteristics of ion channels as selectivity, activation mechanism, and intracellular and tissue localization, those ion channels that meet the requirements for potential participation in ES generation were selected from a wide variety of ion channels in higher plants. Analysis of the data of experimental studies performed on mutants with suppressed or enhanced expression of a certain channel gene revealed those channels whose activation contributes to ESs formation. The channels responsible for Ca2+ flux during generation of ESs include channels of the GLR family, for K+ flux - GORK, for anions - MSL. Consideration of the prospects of further studies suggests the need to combine electrophysiological and genetic approaches along with analysis of ion concentrations in intact plants within a single study.
Collapse
Affiliation(s)
- Maxim A Mudrilov
- Department of Biophysics, Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Maria M Ladeynova
- Department of Biophysics, Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Darya V Kuznetsova
- Department of Biophysics, Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Vladimir A Vodeneev
- Department of Biophysics, Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia.
| |
Collapse
|
22
|
Zeng W, Li H, Zhang F, Wang X, Rehman S, Huang S, Zhang C, Wu F, Li J, Lv Y, Zhang C, Li M, Li Z, Shi Y. Functional characterization and allelic mining of OsGLR genes for potential uses in rice improvement. FRONTIERS IN PLANT SCIENCE 2023; 14:1236251. [PMID: 37636110 PMCID: PMC10450912 DOI: 10.3389/fpls.2023.1236251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023]
Abstract
Glutamate-like receptor (GLR) genes are a group of regulatory genes involved in many physiological processes of plants. With 26 members in the rice genome, the functionalities of most rice GLR genes remain unknown. To facilitate their potential uses in rice improvement, an integrated strategy involving CRISPR-Cas9 mediated knockouts, deep mining and analyses of transcriptomic responses to different abiotic stresses/hormone treatments and gene CDS haplotype (gcHap) diversity in 3,010 rice genomes was taken to understand the functionalities of the 26 rice GLR genes, which led us to two conclusions. First, the expansion of rice GLR genes into a large gene family during evolution had gone through repeated gene duplication events occurred primarily in two large GLR gene clusters on rice chromosomes 9 and 6, which was accompanied with considerable functional differentiation. Secondly, except for two extremely conserved ones (OsGLR6.2 and OsGLR6.3), rich gcHap diversity exists at the remaining GLR genes which played important roles in rice population differentiation and rice improvement, evidenced by their very strong sub-specific and population differentiation, by their differentiated responses to day-length and different abiotic stresses, by the large phenotypic effects of five GLR gene knockout mutants on rice yield traits, by the significant association of major gcHaps at most GLR loci with yield traits, and by the strong genetic bottleneck effects and artificial selection on the gcHap diversity in populations Xian (indica) and Geng (japonica) during modern breeding. Our results suggest the potential values of the natural variation at most rice GLR loci for improving the productivity and tolerances to abiotic stresses. Additional efforts are needed to determine the phenotypic effects of major gcHaps at these GLR loci in order to identify 'favorable' alleles at specific GLR loci specific target traits in specific environments to facilitate their application to rice improvement in future.
Collapse
Affiliation(s)
- Wei Zeng
- School of Agronomy, Anhui Agricultural University, Hefei, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| | - Hua Li
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Fanlin Zhang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xinchen Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Shamsur Rehman
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| | - Shiji Huang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Chenyang Zhang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Fengcai Wu
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jianfeng Li
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yamei Lv
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Chaopu Zhang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Min Li
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Zhikang Li
- School of Agronomy, Anhui Agricultural University, Hefei, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingyao Shi
- School of Agronomy, Anhui Agricultural University, Hefei, China
| |
Collapse
|
23
|
Yuan P, Borrego E, Park YS, Gorman Z, Huang PC, Tolley J, Christensen SA, Blanford J, Kilaru A, Meeley R, Koiwa H, Vidal S, Huffaker A, Schmelz E, Kolomiets MV. 9,10-KODA, an α-ketol produced by the tonoplast-localized 9-lipoxygenase ZmLOX5, plays a signaling role in maize defense against insect herbivory. MOLECULAR PLANT 2023; 16:1283-1303. [PMID: 37434355 DOI: 10.1016/j.molp.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/10/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
13-Lipoxygenases (LOXs) initiate the synthesis of jasmonic acid (JA), the best-understood oxylipin hormone in herbivory defense. However, the roles of 9-LOX-derived oxylipins in insect resistance remain unclear. Here, we report a novel anti-herbivory mechanism mediated by a tonoplast-localized 9-LOX, ZmLOX5, and its linolenic acid-derived product, 9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid (9,10-KODA). Transposon-insertional disruption of ZmLOX5 resulted in the loss of resistance to insect herbivory. lox5 knockout mutants displayed greatly reduced wound-induced accumulation of multiple oxylipins and defense metabolites, including benzoxazinoids, abscisic acid (ABA), and JA-isoleucine (JA-Ile). However, exogenous JA-Ile failed to rescue insect defense in lox5 mutants, while applications of 1 μM 9,10-KODA or the JA precursor, 12-oxo-phytodienoic acid (12-OPDA), restored wild-type resistance levels. Metabolite profiling revealed that exogenous 9,10-KODA primed the plants for increased production of ABA and 12-OPDA, but not JA-Ile. While none of the 9-oxylipins were able to rescue JA-Ile induction, the lox5 mutant accumulated lower wound-induced levels of Ca2+, suggesting this as a potential explanation for lower wound-induced JA. Seedlings pretreated with 9,10-KODA exhibited rapid or more robust wound-induced defense gene expression. In addition, an artificial diet supplemented with 9,10-KODA arrested fall armyworm larvae growth. Finally, analysis of single and double lox5 and lox10 mutants showed that ZmLOX5 also contributed to insect defense by modulating ZmLOX10-mediated green leaf volatile signaling. Collectively, our study uncovered a previously unknown anti-herbivore defense and hormone-like signaling activity for a major 9-oxylipin α-ketol.
Collapse
Affiliation(s)
- Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA
| | - Eli Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA; Currently at Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Yong-Soon Park
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA; Department of Plant Resources, Agriculture and Fisheries Life Science Research Institute, Kongju National University, Yesan, Chungnam 32439, South Korea
| | - Zachary Gorman
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA
| | - Pei-Cheng Huang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA
| | - Jordan Tolley
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Shawn A Christensen
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA; College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Jantana Blanford
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37659, USA
| | - Robert Meeley
- Formerly at Corteva Agriscience, Johnston, IA 50131, USA
| | - Hisashi Koiwa
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Stefan Vidal
- Department of Crop Sciences, Agricultural Entomology, Georg-August-Universität, 37077 Göttingen, Germany
| | - Alisa Huffaker
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92037, USA
| | - Eric Schmelz
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92037, USA
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA.
| |
Collapse
|
24
|
Cao Y, Wang Y, Gui C, Nguvo KJ, Ma L, Wang Q, Shen Q, Zhang R, Gao X. Beneficial Rhizobacterium Triggers Induced Systemic Resistance of Maize to Gibberella Stalk Rot via Calcium Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:516-528. [PMID: 37188493 DOI: 10.1094/mpmi-08-22-0173-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Gibberella stalk rot (GSR) caused by the fungus Fusarium graminearum is a devastating disease of maize (Zea mays L.), but we lack efficient methods to control this disease. Biological control agents, including beneficial microorganisms, can be used as an effective and eco-friendly approach to manage crop diseases. For example, Bacillus velezensis SQR9, a bacterial strain isolated from the rhizosphere of cucumber plants, promotes growth and suppresses diseases in several plant species. However, it is not known whether and how SQR9 affects maize resistance to GSR. In this study, we found that treatment with SQR9 increased maize resistance to GSR by activating maize induced systemic resistance (ISR). RNA-seq and quantitative reverse transcription-PCR analysis showed that phenylpropanoid biosynthesis, amino acid metabolism, and plant-pathogen interaction pathways were enriched in the root upon colonization by SQR9. Also, several genes associated with calcium signaling pathways were up-regulated by SQR9 treatment. However, the calcium signaling inhibitor LaCl3 weakened the SQR9-activated ISR. Our data suggest that the calcium signaling pathway contributes to maize GSR resistance via the activation of ISR induced by SQR9. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yu Cao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, Jiangsu Province, 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Yinying Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, Jiangsu Province, 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Cuilin Gui
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, Jiangsu Province, 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Kilemi Jessee Nguvo
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, Jiangsu Province, 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Liang Ma
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, Jiangsu Province, 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Qing Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, Jiangsu Province, 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Qirong Shen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Ruifu Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Xiquan Gao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, Jiangsu Province, 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
| |
Collapse
|
25
|
Zhang X, Xue W, Zhang C, Wang C, Huang Y, Wang Y, Peng L, Liu Z. Cadmium pollution leads to selectivity loss of glutamate receptor channels for permeation of Ca 2+/Mn 2+/Fe 2+/Zn 2+ over Cd 2+ in rice plant. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131342. [PMID: 37023578 DOI: 10.1016/j.jhazmat.2023.131342] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
The selective permeation of glutamate receptor channels (GLRs) for essential and toxic elements in plant cells is poorly understood. The present study found that the ratios between cadmium (Cd) and 7 essential elements (i.e., K, Mg, Ca, Mn, Fe, Zn and Cu) in grains and vegetative organs increased significantly with the increase of soil Cd levels. Accumulation of Cd resulted in the significant increase of Ca, Mn, Fe and Zn content and the expression levels of Ca channel genes (OsCNGC1,2 and OsOSCA1.1,2.4), while remarkable reduction of glutamate content and expression levels of GLR3.1-3.4 in rice. When planted in the same Cd-polluted soil, mutant fc8 displayed significantly higher content of Ca, Fe, Zn and expression levels of GLR3.1-3.4 than its wild type NPB. On the contrary, the ratios between Cd and essential elements in fc8 were significantly lower than that in NPB. These results indicate that Cd pollution may damage the structural integrity of GLRs by inhibiting glutamate synthesis and expression levels of GLR3.1-3.4, which leads to the increase of ion influx but the decrease of preferential selectivity for Ca2+/ Mn2+/ Fe2+/ Zn2+ over Cd2+ through GLRs in rice cells.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China
| | - Changrong Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China
| | - Yongchun Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhongqi Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China.
| |
Collapse
|
26
|
Simon AA, Navarro-Retamal C, Feijó JA. Merging Signaling with Structure: Functions and Mechanisms of Plant Glutamate Receptor Ion Channels. ANNUAL REVIEW OF PLANT BIOLOGY 2023; 74:415-452. [PMID: 36854472 PMCID: PMC11479355 DOI: 10.1146/annurev-arplant-070522-033255] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant glutamate receptor-like (GLR) genes encode ion channels with demonstrated roles in electrical and calcium (Ca2+) signaling. The expansion of the GLR family along the lineage of land plants, culminating in the appearance of a multiclade system among flowering plants, has been a topic of interest since their discovery nearly 25 years ago. GLRs are involved in many physiological processes, from wound signaling to transcriptional regulation to sexual reproduction. Emerging evidence supports the notion that their fundamental functions are conserved among different groups of plants as well. In this review, we update the physiological and genetic evidence for GLRs, establishing their role in signaling and cell-cell communication. Special emphasis is given to the recent discussion of GLRs' atomic structures. Along with functional assays, a structural view of GLRs' molecular organization presents a window for novel hypotheses regarding the molecular mechanisms underpinning signaling associated with the ionic fluxes that GLRs regulate. Newly uncovered transcriptional regulations associated with GLRs-which propose the involvement of genes from all clades ofArabidopsis thaliana in ways not previously observed-are discussed in the context of the broader impacts of GLR activity. We posit that the functions of GLRs in plant biology are probably much broader than anticipated, but describing their widespread involvement will only be possible with (a) a comprehensive understanding of the channel's properties at the molecular and structural levels, including protein-protein interactions, and (b) the design of new genetic approaches to explore stress and pathogen responses where precise transcriptional control may result in more precise testable hypotheses to overcome their apparent functional redundancies.
Collapse
Affiliation(s)
- Alexander A Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA;
| | - Carlos Navarro-Retamal
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
| |
Collapse
|
27
|
Ahmed I, Kumar A, Bheri M, Srivastava AK, Pandey GK. Glutamate receptor like channels: Emerging players in calcium mediated signaling in plants. Int J Biol Macromol 2023; 234:123522. [PMID: 36758765 DOI: 10.1016/j.ijbiomac.2023.123522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Glutamate receptors like channels (GLRs) are ligand gated non-selective cation channels and are multigenic in nature. They are homologs of mammalian ionic glutamate receptors (iGLRs) that play an important role in neurotransmission. It has been more than 25 years of discovery of plant GLRs, since then, significant progress has been made to unravel their structure and function in plants. Recently, the first crystal structure of plant GLR has been resolved that suggests that, though, plant GLRs contain the conserved signature domains of iGLRs, their unique features enable agonist/antagonist-dependent change in their activity. GLRs exhibit diverse subcellular localization and undergo dynamic expression variation in response to developmental and environmental stress conditions in plants. The combined use of genetic, electrophysiology and calcium imaging using different genetically encoded calcium indicators has revealed that GLRs are involved in generating calcium (Ca2+) influx across the plasma membrane and are involved in shaping the Ca2+ signature in response to different developmental and environmental stimuli. These findings indicate that GLRs influence cytosolic Ca2+ dynamics, thus, highlighting "GLR-Ca2+-crosstalk (GCC)" in developmental and stress-responsive signaling pathways. With this background, the present review summarises the recent developments pertaining to GLR function, in the broader context of regulation of stress tolerance in plants.
Collapse
Affiliation(s)
- Israr Ahmed
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Amit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| |
Collapse
|
28
|
McLachlan DH. Plant physiology: Untangling the roles of glutamate and turgor pressure. Curr Biol 2023; 33:R221-R223. [PMID: 36977382 DOI: 10.1016/j.cub.2023.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Long-distance wound signalling in plants involves systemic propagation of calcium waves, but the exact process of initiation and transmission of these waves remains elusive. A new study proposes a mechanism whereby pressure changes are the trigger for this response.
Collapse
|
29
|
Gao YQ, Jimenez-Sandoval P, Tiwari S, Stolz S, Wang J, Glauser G, Santiago J, Farmer EE. Ricca's factors as mobile proteinaceous effectors of electrical signaling. Cell 2023; 186:1337-1351.e20. [PMID: 36870332 PMCID: PMC10098372 DOI: 10.1016/j.cell.2023.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/26/2022] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
Leaf-feeding insects trigger high-amplitude, defense-inducing electrical signals called slow wave potentials (SWPs). These signals are thought to be triggered by the long-distance transport of low molecular mass elicitors termed Ricca's factors. We sought mediators of leaf-to-leaf electrical signaling in Arabidopsis thaliana and identified them as β-THIOGLUCOSIDE GLUCOHYDROLASE 1 and 2 (TGG1 and TGG2). SWP propagation from insect feeding sites was strongly attenuated in tgg1 tgg2 mutants and wound-response cytosolic Ca2+ increases were reduced in these plants. Recombinant TGG1 fed into the xylem elicited wild-type-like membrane depolarization and Ca2+ transients. Moreover, TGGs catalyze the deglucosidation of glucosinolates. Metabolite profiling revealed rapid wound-induced breakdown of aliphatic glucosinolates in primary veins. Using in vivo chemical trapping, we found evidence for roles of short-lived aglycone intermediates generated by glucosinolate hydrolysis in SWP membrane depolarization. Our findings reveal a mechanism whereby organ-to-organ protein transport plays a major role in electrical signaling.
Collapse
Affiliation(s)
- Yong-Qiang Gao
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pedro Jimenez-Sandoval
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Satyam Tiwari
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Stéphanie Stolz
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jing Wang
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Julia Santiago
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
30
|
Integration of Electrical Signals and Phytohormones in the Control of Systemic Response. Int J Mol Sci 2023; 24:ijms24010847. [PMID: 36614284 PMCID: PMC9821543 DOI: 10.3390/ijms24010847] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Plants are constantly exposed to environmental stresses. Local stimuli sensed by one part of a plant are translated into long-distance signals that can influence the activities in distant tissues. Changes in levels of phytohormones in distant parts of the plant occur in response to various local stimuli. The regulation of hormone levels can be mediated by long-distance electrical signals, which are also induced by local stimulation. We consider the crosstalk between electrical signals and phytohormones and identify interaction points, as well as provide insights into the integration nodes that involve changes in pH, Ca2+ and ROS levels. This review also provides an overview of our current knowledge of how electrical signals and hormones work together to induce a systemic response.
Collapse
|
31
|
Yu B, Liu N, Tang S, Qin T, Huang J. Roles of Glutamate Receptor-Like Channels (GLRs) in Plant Growth and Response to Environmental Stimuli. PLANTS (BASEL, SWITZERLAND) 2022; 11:3450. [PMID: 36559561 PMCID: PMC9782139 DOI: 10.3390/plants11243450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Plant glutamate receptor-like channels (GLRs) are the homologues of ionotropic glutamate receptors (iGluRs) that mediate neurotransmission in mammals, and they play important roles in various plant-specific physiological processes, such as pollen tube growth, sexual reproduction, root meristem proliferation, internode cell elongation, stomata aperture regulation, and innate immune and wound responses. Notably, these biological functions of GLRs have been mostly linked to the Ca2+-permeable channel activity as GLRs can directly channel the transmembrane flux of Ca2+, which acts as a key second messenger in plant cell responses to both endogenous and exogenous stimuli. Thus, it was hypothesized that GLRs are mainly involved in Ca2+ signaling processes in plant cells. Recently, great progress has been made in GLRs for their roles in long-distance signal transduction pathways mediated by electrical activity and Ca2+ signaling. Here, we review the recent progress on plant GLRs, and special attention is paid to recent insights into the roles of GLRs in response to environmental stimuli via Ca2+ signaling, electrical activity, ROS, as well as hormone signaling networks. Understanding the roles of GLRs in integrating internal and external signaling for plant developmental adaptations to a changing environment will definitely help to enhance abiotic stress tolerance.
Collapse
|
32
|
Xue N, Zhan C, Song J, Li Y, Zhang J, Qi J, Wu J. The glutamate receptor-like 3.3 and 3.6 mediate systemic resistance to insect herbivores in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7611-7627. [PMID: 36214841 PMCID: PMC9730813 DOI: 10.1093/jxb/erac399] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Herbivory activates responses in local and systemic leaves, and the glutamate receptor-like genes GLR3.3 and GLR3.6 are critical in leaf-to-leaf systemic signalling. However, whether and how these genes mediate plant systemic resistance to insects remain largely unexplored. We show that a piercing-sucking insect Myzus persicae (green peach aphid, GPA) or chewing insect Spodoptera litura (cotton leafworm, CLW) feeding-induced systemic defences were attenuated in the glr3.3 glr3.6 mutants. In response to herbivory from either insect, glr3.3 glr3.6 mutants exhibited reduced accumulation of the hormone jasmonic acid (JA) and defensive metabolites glucosinolates (GSs) in systemic (but not local) leaves. Transcriptome analysis indicated that GLR3.3 and GLR3.6 play an important role in regulating the transcriptional responses to GPA and simulated CLW feeding in both local and systemic leaves, including JA- and GS-related genes. Metabolome analysis also revealed that in response to GPA or simulated CLW feeding, GLR3.3 and GLR3.6 are involved in the regulation of various metabolites locally and systemically, including amino acids, carbohydrates, and organic acids. Taken together, this study provides new insights into the function of GLR3.3 and GLR3.6 in mediating transcripts and metabolites in local and systemic leaves under insect attack, and highlights their role in regulating insect resistance in systemic leaves.
Collapse
Affiliation(s)
- Na Xue
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Che Zhan
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Song
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Li
- Yunnan Academy of Tobacco Agriculture Science, Kunming 650201, China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
33
|
Peláez-Vico MÁ, Fichman Y, Zandalinas SI, Van Breusegem F, Karpiński SM, Mittler R. ROS and redox regulation of cell-to-cell and systemic signaling in plants during stress. Free Radic Biol Med 2022; 193:354-362. [PMID: 36279971 DOI: 10.1016/j.freeradbiomed.2022.10.305] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022]
Abstract
Stress results in the enhanced accumulation of reactive oxygen species (ROS) in plants, altering the redox state of cells and triggering the activation of multiple defense and acclimation mechanisms. In addition to activating ROS and redox responses in tissues that are directly subjected to stress (termed 'local' tissues), the sensing of stress in plants triggers different systemic signals that travel to other parts of the plant (termed 'systemic' tissues) and activate acclimation and defense mechanisms in them; even before they are subjected to stress. Among the different systemic signals triggered by stress in plants are electric, calcium, ROS, and redox waves that are mobilized in a cell-to-cell fashion from local to systemic tissues over long distances, sometimes at speeds of up to several millimeters per second. Here, we discuss new studies that identified various molecular mechanisms and proteins involved in mediating systemic signals in plants. In addition, we highlight recent studies that are beginning to unravel the mode of integration and hierarchy of the different systemic signals and underline open questions that require further attention. Unraveling the role of ROS and redox in plant stress responses is highly important for the development of climate resilient crops.
Collapse
Affiliation(s)
- María Ángeles Peláez-Vico
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group. University of Missouri. Columbia, MO, 65211, USA
| | - Yosef Fichman
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group. University of Missouri. Columbia, MO, 65211, USA
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, S/n, Castelló de la Plana, 12071, Spain
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Gent, Belgium; Center for Plant Systems Biology, VIB, 9052, Gent, Belgium
| | - Stanislaw M Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Ron Mittler
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group. University of Missouri. Columbia, MO, 65211, USA; Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65201, USA.
| |
Collapse
|
34
|
Toyota M, Betsuyaku S. In vivo Imaging Enables Understanding of Seamless Plant Defense Responses to Wounding and Pathogen Attack. PLANT & CELL PHYSIOLOGY 2022; 63:1391-1404. [PMID: 36165346 DOI: 10.1093/pcp/pcac135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/31/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Plants are exposed to varied biotic stresses, including sequential or simultaneous attack by insects and pathogens. To overcome these complex stresses, plants must perceive each of the stresses, then integrate and relay the information throughout the plant body and eventually activate local and systemic resistance responses. Previous molecular genetic studies identified jasmonic acid and salicylic acid as key plant hormones of wound and immune responses. These hormones, combined with their antagonistic interaction, play critical roles in the initiation and regulation of defense responses against insects and pathogens. Aside from molecular and genetic information, the latest in vivo imaging technology has revealed that plant defense responses are regulated spatially and temporally. In this review, we summarize the current knowledge of local and systemic defense responses against wounding and diseases with a focus on past and recent advances in imaging technologies. We discuss how imaging-based multiparametric analysis has improved our understanding of the spatiotemporal regulation of dynamic plant stress responses. We also emphasize the importance of compiling the knowledge generated from individual studies on plant wounding and immune responses for a more seamless understanding of plant defense responses in the natural environment.
Collapse
Affiliation(s)
- Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570 Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
- Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Shigeyuki Betsuyaku
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194 Japan
| |
Collapse
|
35
|
Fichman Y, Zandalinas SI, Peck S, Luan S, Mittler R. HPCA1 is required for systemic reactive oxygen species and calcium cell-to-cell signaling and plant acclimation to stress. THE PLANT CELL 2022; 34:4453-4471. [PMID: 35929088 PMCID: PMC9724777 DOI: 10.1093/plcell/koac241] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/16/2022] [Indexed: 05/12/2023]
Abstract
Reactive oxygen species (ROS), produced by respiratory burst oxidase homologs (RBOHs) at the apoplast, play a key role in local and systemic cell-to-cell signaling, required for plant acclimation to stress. Here we reveal that the Arabidopsis thaliana leucine-rich-repeat receptor-like kinase H2O2-INDUCED CA2+ INCREASES 1 (HPCA1) acts as a central ROS receptor required for the propagation of cell-to-cell ROS signals, systemic signaling in response to different biotic and abiotic stresses, stress responses at the local and systemic tissues, and plant acclimation to stress, following a local treatment of high light (HL) stress. We further report that HPCA1 is required for systemic calcium signals, but not systemic membrane depolarization responses, and identify the calcium-permeable channel MECHANOSENSITIVE ION CHANNEL LIKE 3, CALCINEURIN B-LIKE CALCIUM SENSOR 4 (CBL4), CBL4-INTERACTING PROTEIN KINASE 26 and Sucrose-non-fermenting-1-related Protein Kinase 2.6/OPEN STOMATA 1 (OST1) as required for the propagation of cell-to-cell ROS signals. In addition, we identify serine residues S343 and S347 of RBOHD (the putative targets of OST1) as playing a key role in cell-to-cell ROS signaling in response to a local application of HL stress. Our findings reveal that HPCA1 plays a key role in mediating and coordinating systemic cell-to-cell ROS and calcium signals required for plant acclimation to stress.
Collapse
Affiliation(s)
- Yosef Fichman
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| | - Sara I Zandalinas
- Department of Agricultural and Environmental Sciences, University Jaume I, Castelló de la Plana, 12071, Spain
| | - Scott Peck
- Department of Biochemistry, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
36
|
Parmagnani AS, Maffei ME. Calcium Signaling in Plant-Insect Interactions. PLANTS (BASEL, SWITZERLAND) 2022; 11:2689. [PMID: 36297718 PMCID: PMC9609891 DOI: 10.3390/plants11202689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
In plant-insect interactions, calcium (Ca2+) variations are among the earliest events associated with the plant perception of biotic stress. Upon herbivory, Ca2+ waves travel long distances to transmit and convert the local signal to a systemic defense program. Reactive oxygen species (ROS), Ca2+ and electrical signaling are interlinked to form a network supporting rapid signal transmission, whereas the Ca2+ message is decoded and relayed by Ca2+-binding proteins (including calmodulin, Ca2+-dependent protein kinases, annexins and calcineurin B-like proteins). Monitoring the generation of Ca2+ signals at the whole plant or cell level and their long-distance propagation during biotic interactions requires innovative imaging techniques based on sensitive sensors and using genetically encoded indicators. This review summarizes the recent advances in Ca2+ signaling upon herbivory and reviews the most recent Ca2+ imaging techniques and methods.
Collapse
|
37
|
Suda H, Toyota M. Integration of long-range signals in plants: A model for wound-induced Ca 2+, electrical, ROS, and glutamate waves. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102270. [PMID: 35926395 DOI: 10.1016/j.pbi.2022.102270] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Plants show long-range cytosolic Ca2+ signal transduction in response to wounding. Recent advances in in vivo imaging techniques have helped visualize spatiotemporal dynamics of the systemic Ca2+ signals and provided new insights into underlying molecular mechanisms, in which ion channels of the GLUTAMATE RECEPTOR-LIKE (GLR) family are critical for the sensory system. These, along with MECHANOSENSITIVE CHANNEL OF SMALL CONDUCTANCE-LIKE 10 (MSL10) and Arabidopsis H+-ATPase (AHA1) regulate the propagation system. In addition, membrane potential, reactive oxygen species (ROS), and glutamate waves operate in parallel to long-range signal transduction. We summarize these findings and introduce a model that integrates long-range Ca2+, electrical, ROS, and glutamate signals in systemic wound responses.
Collapse
Affiliation(s)
- Hiraku Suda
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama, Japan
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama, Japan; Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Kyoto, Japan; Department of Botany, University of Wisconsin-Madison, WI, USA.
| |
Collapse
|
38
|
Tran Q, Osabe K, Entani T, Wazawa T, Hattori M, Nagai T. Application of Green-enhanced Nano-lantern as a bioluminescent ratiometric indicator for measurement of Arabidopsis thaliana root apoplastic fluid pH. PLANT, CELL & ENVIRONMENT 2022; 45:3157-3170. [PMID: 35864560 PMCID: PMC9542637 DOI: 10.1111/pce.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Plant root absorbs water and nutrients from the soil, and the root apoplastic fluid (AF) is an important intermediate between cells and the surrounding environment. The acid growth theory suggests that an acidic AF is needed for cell wall expansion during root growth. However, technical limitations have precluded the quantification of root apoplastic fluid pH (AF-pH). Here, we used Green-enhanced Nano-lantern (GeNL), a chimeric protein of the luciferase NanoLuc (Nluc) and the green fluorescent protein mNeonGreen (mNG), as a ratiometric pH indicator based on the pH dependency of bioluminescence resonance energy transfer efficiency from Nluc to mNG. Luminescence spectrum of GeNL changed reciprocally from pH 4.5 to 7.5, with a pKa of 5.5. By fusing GeNL to a novel signal peptide from Arabidopsis thaliana Cellulase 1, we localised GeNL in A. thaliana AF. We visualised AF dynamics at subcellular resolution over 30 min and determined flow velocity in the maturation zone to be 0.97± 0.06 μm/s. We confirmed that the developing root AF is acidic in the pH range of 5.1-5.7, suggesting that the AF-pH is tightly regulated during root elongation. These results support the acid growth theory and provide evidence for AF-pH maintenance despite changes in ambient pH.
Collapse
Affiliation(s)
- Quang Tran
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
- Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan
| | - Kenji Osabe
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
- Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan
| | - Tetsuyuki Entani
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
| | - Tetsuichi Wazawa
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
| | - Mitsuru Hattori
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
- Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan
| | - Takeharu Nagai
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
- Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan
| |
Collapse
|
39
|
Naz R, Khan A, Alghamdi BS, Ashraf GM, Alghanmi M, Ahmad A, Bashir SS, Haq QMR. An Insight into Animal Glutamate Receptors Homolog of Arabidopsis thaliana and Their Potential Applications-A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192580. [PMID: 36235446 PMCID: PMC9572488 DOI: 10.3390/plants11192580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 08/26/2022] [Indexed: 06/01/2023]
Abstract
Most excitatory impulses received by neurons are mediated by ionotropic glutamate receptors (iGluRs). These receptors are located at the apex and play an important role in memory, neuronal development, and synaptic plasticity. These receptors are ligand-dependent ion channels that allow a wide range of cations to pass through. Glutamate, a neurotransmitter, activates three central ionotropic receptors: N-methyl-D-aspartic acid (NMDA), -amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), and kainic acid (KA). According to the available research, excessive glutamate release causes neuronal cell death and promotes neurodegenerative disorders. Arabidopsis thaliana contains 20 glutamate receptor genes (AtGluR) comparable to the human ionotropic glutamate (iGluRs) receptor. Many studies have proved that AtGL-rec genes are involved in a number of plant growth and physiological activities, such as in the germination of seeds, roots, abiotic and biotic stress, and cell signaling, which clarify the place of these genes in plant biology. In spite of these, the iGluRs, Arabidopsis glutamate receptors (AtGluR), is associated with the ligand binding activity, which confirms the evolutionary relationship between animal and plant glutamate receptors. Along with the above activities, the impact of mammalian agonists and antagonists on Arabidopsis suggests a correlation between plant and animal glutamate receptors. In addition, these glutamate receptors (plant/animal) are being utilized for the early detection of neurogenerative diseases using the fluorescence resonance energy transfer (FRET) approach. However, a number of scientific laboratories and institutes are consistently working on glutamate receptors with different aspects. Currently, we are also focusing on Arabidopsis glutamate receptors. The current review is focused on updating knowledge on AtGluR genes, their evolution, functions, and expression, and as well as in comparison with iGluRs. Furthermore, a high throughput approach based on FRET nanosensors developed for understanding neurotransmitter signaling in animals and plants via glutamate receptors has been discussed. The updated information will aid in the future comprehension of the complex molecular dynamics of glutamate receptors and the exploration of new facts in plant/animal biology.
Collapse
Affiliation(s)
- Ruphi Naz
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maimonah Alghanmi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | | | | |
Collapse
|
40
|
Gámez-Arjona FM, Sánchez-Rodríguez C, Montesinos JC. The root apoplastic pH as an integrator of plant signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:931979. [PMID: 36082302 PMCID: PMC9448249 DOI: 10.3389/fpls.2022.931979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Plant nutrition, growth, and response to environmental stresses are pH-dependent processes that are regulated at the apoplastic and subcellular levels. The root apoplastic pH is especially sensitive to external cues and can also be modified by intracellular inputs, such as hormonal signaling. Optimal crosstalk of the mechanisms involved in the extent and span of the apoplast pH fluctuations promotes plant resilience to detrimental biotic and abiotic factors. The fact that variations in local pHs are a standard mechanism in different signaling pathways indicates that the pH itself can be the pivotal element to provide a physiological context to plant cell regions, allowing a proportional reaction to different situations. This review brings a collective vision of the causes that initiate root apoplastic pHs variations, their interaction, and how they influence root response outcomes.
Collapse
|
41
|
Grenzi M, Bonza MC, Costa A. Signaling by plant glutamate receptor-like channels: What else! CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102253. [PMID: 35780692 DOI: 10.1016/j.pbi.2022.102253] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Plant glutamate receptor-like channels (GLRs) are transmembrane proteins that allow the movement of several ions across membranes. In the model plant Arabidopsis, there are 20 GLR isoforms grouped in three clades and, since their discovery, it was hypothesized that GLRs were mainly involved in signaling processes. Indeed, in the last years, several pieces of evidence demonstrate different signaling roles played by GLRs, related to pollen development, sexual reproduction, chemotaxis, root development, regulation of stomatal aperture, and response to pathogens. Recently, GLRs have gained attention for their role in long-distance electric and calcium signaling. In this review, we resume the evidence about the role of GLRs in signaling processes. This role is mostly linked to the GLRs involvement in the regulation of ion fluxes across membranes and, in particular, of calcium, which represents a key second messenger in plant cell responses to both endogenous and exogenous stimuli.
Collapse
Affiliation(s)
- Matteo Grenzi
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133 Milano, Italy
| | - Maria Cristina Bonza
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133 Milano, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133 Milano, Italy; Institute of Biophysics, National Research Council of Italy (CNR), Via G. Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
42
|
Kloth KJ, Dicke M. Rapid systemic responses to herbivory. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102242. [PMID: 35696775 DOI: 10.1016/j.pbi.2022.102242] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Rapid systemic signals travel within the first seconds and minutes after herbivore infestation to mount defense responses in distal tissues. Recent studies have revealed that wound-induced hydraulic pressure changes play an important role in systemic electrical signaling and subsequent calcium and reactive oxygen species waves. These insights raise new questions about signal specificity, the role of insect feeding guild and feeding style and the impact on longer term plant defenses. Here, we integrate the current molecular understanding of wound-induced rapid systemic signaling in the framework of insect-plant interactions.
Collapse
Affiliation(s)
- Karen J Kloth
- Laboratory of Entomology, Wageningen University & Research, PO Box 16, 6700 AA Wageningen, the Netherlands.
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, PO Box 16, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
43
|
Local and Systemic Response to Heterogeneous Sulfate Resupply after Sulfur Deficiency in Rice. Int J Mol Sci 2022; 23:ijms23116203. [PMID: 35682882 PMCID: PMC9181796 DOI: 10.3390/ijms23116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
Sulfur (S) is an essential mineral nutrient required for plant growth and development. Plants usually face temporal and spatial variation in sulfur availability, including the heterogeneous sulfate content in soils. As sessile organisms, plants have evolved sophisticated mechanisms to modify their gene expression and physiological processes in order to optimize S acquisition and usage. Such plasticity relies on a complicated network to locally sense S availability and systemically respond to S status, which remains poorly understood. Here, we took advantage of a split-root system and performed transcriptome-wide gene expression analysis on rice plants in S deficiency followed by sulfate resupply. S deficiency altered the expressions of 6749 and 1589 genes in roots and shoots, respectively, accounting for 18.07% and 4.28% of total transcripts detected. Homogeneous sulfate resupply in both split-root halves recovered the expression of 27.06% of S-deficiency-responsive genes in shoots, while 20.76% of S-deficiency-responsive genes were recovered by heterogeneous sulfate resupply with only one split-root half being resupplied with sulfate. The local sulfate resupply response genes with expressions only recovered in the split-root half resupplied with sulfate but not in the other half remained in S deficiency were identified in roots, which were mainly enriched in cellular amino acid metabolic process and root growth and development. Several systemic response genes were also identified in roots, whose expressions remained unchanged in the split-root half resupplied with sulfate but were recovered in the other split-root half without sulfate resupply. The systemic response genes were mainly related to calcium signaling and auxin and ABA signaling. In addition, a large number of S-deficiency-responsive genes exhibited simultaneous local and systemic responses to sulfate resupply, such as the sulfate transporter gene OsSULTR1;1 and the O-acetylserine (thiol) lyase gene, highlighting the existence of a systemic regulation of sulfate uptake and assimilation in S deficiency plants followed by sulfate resupply. Our studies provided a comprehensive transcriptome-wide picture of a local and systemic response to heterogeneous sulfate resupply, which will facilitate an understanding of the systemic regulation of S homeostasis in rice.
Collapse
|
44
|
Darwish E, Ghosh R, Ontiveros-Cisneros A, Tran HC, Petersson M, De Milde L, Broda M, Goossens A, Van Moerkercke A, Khan K, Van Aken O. Touch signaling and thigmomorphogenesis are regulated by complementary CAMTA3- and JA-dependent pathways. SCIENCE ADVANCES 2022; 8:eabm2091. [PMID: 35594358 PMCID: PMC9122320 DOI: 10.1126/sciadv.abm2091] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plants respond to mechanical stimuli to direct their growth and counteract environmental threats. Mechanical stimulation triggers rapid gene expression changes and affects plant appearance (thigmomorphogenesis) and flowering. Previous studies reported the importance of jasmonic acid (JA) in touch signaling. Here, we used reverse genetics to further characterize the molecular mechanisms underlying touch signaling. We show that Piezo mechanosensitive ion channels have no major role in touch-induced gene expression and thigmomorphogenesis. In contrast, the receptor-like kinase Feronia acts as a strong negative regulator of the JA-dependent branch of touch signaling. Last, we show that calmodulin-binding transcriptional activators CAMTA1/2/3 are key regulators of JA-independent touch signaling. CAMTA1/2/3 cooperate to directly bind the promoters and activate gene expression of JA-independent touch marker genes like TCH2 and TCH4. In agreement, camta3 mutants show a near complete loss of thigmomorphogenesis and touch-induced delay of flowering. In conclusion, we have now identified key regulators of two independent touch-signaling pathways.
Collapse
Affiliation(s)
- Essam Darwish
- Department of Biology, Lund University, Lund, Sweden
- Plant Physiology Section, Agricultural Botany Department, Faculty of Agriculture, Cairo University, Egypt
| | - Ritesh Ghosh
- Department of Biology, Lund University, Lund, Sweden
| | | | | | | | - Liesbeth De Milde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Gent, Belgium
| | - Martyna Broda
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Gent, Belgium
| | | | - Kasim Khan
- Department of Biology, Lund University, Lund, Sweden
| | - Olivier Van Aken
- Department of Biology, Lund University, Lund, Sweden
- Corresponding author.
| |
Collapse
|
45
|
Lee K, Seo PJ. Wound-Induced Systemic Responses and Their Coordination by Electrical Signals. FRONTIERS IN PLANT SCIENCE 2022; 13:880680. [PMID: 35665138 PMCID: PMC9158525 DOI: 10.3389/fpls.2022.880680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Wounding not only induces the expression of damage-responsive genes, but also initiates physiological changes, such as tissue repair, vascular reconnection, and de novo organogenesis in locally damaged tissues. Wound-induced signals also propagate from the site of wounding to distal organs to elicit a systemic response. Electrical signaling, which is the most conserved type of systemic signaling in eukaryotes, is triggered by wound-induced membrane potential changes. Changes in membrane potential spread toward systemic tissues in synergy with chemical and hydraulic signals. Here, we review current knowledge on wound-induced local and systemic responses in plants. We focus particularly on how wound-activated plasma membrane-localized ion channels and pumps propagate systemic information about wounding to induce downstream molecular responses in distal tissues. Finally, we propose future studies that could lead to a better understanding of plant electrical signals and their role in physiological responses to wounding.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
46
|
Köster P, DeFalco TA, Zipfel C. Ca 2+ signals in plant immunity. EMBO J 2022; 41:e110741. [PMID: 35560235 PMCID: PMC9194748 DOI: 10.15252/embj.2022110741] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
Calcium ions function as a key second messenger ion in eukaryotes. Spatially and temporally defined cytoplasmic Ca2+ signals are shaped through the concerted activity of ion channels, exchangers, and pumps in response to diverse stimuli; these signals are then decoded through the activity of Ca2+ -binding sensor proteins. In plants, Ca2+ signaling is central to both pattern- and effector-triggered immunity, with the generation of characteristic cytoplasmic Ca2+ elevations in response to potential pathogens being common to both. However, despite their importance, and a long history of scientific interest, the transport proteins that shape Ca2+ signals and their integration remain poorly characterized. Here, we discuss recent work that has both shed light on and deepened the mysteries of Ca2+ signaling in plant immunity.
Collapse
Affiliation(s)
- Philipp Köster
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Thomas A DeFalco
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland.,The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| |
Collapse
|
47
|
Liao HS, Chung YH, Hsieh MH. Glutamate: A multifunctional amino acid in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111238. [PMID: 35351313 DOI: 10.1016/j.plantsci.2022.111238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Glutamate (Glu) is a versatile metabolite and a signaling molecule in plants. Glu biosynthesis is associated with the primary nitrogen assimilation pathway. The conversion between Glu and 2-oxoglutarate connects Glu metabolism to the tricarboxylic acid cycle, carbon metabolism, and energy production. Glu is the predominant amino donor for transamination reactions in the cell. In addition to protein synthesis, Glu is a building block for tetrapyrroles, glutathione, and folate. Glu is the precursor of γ-aminobutyric acid that plays an important role in balancing carbon/nitrogen metabolism and various cellular processes. Glu can conjugate to the major auxin indole 3-acetic acid (IAA), and IAA-Glu is destined for oxidative degradation. Glu also conjugates with isochorismate for the production of salicylic acid. Accumulating evidence indicates that Glu functions as a signaling molecule to regulate plant growth, development, and defense responses. The ligand-gated Glu receptor-like proteins (GLRs) mediate some of these responses. However, many of the Glu signaling events are GLR-independent. The receptor perceiving extracellular Glu as a danger signal is still unknown. In addition to GLRs, Glu may act on receptor-like kinases or receptor-like proteins to trigger immune responses. Glu metabolism and Glu signaling may entwine to regulate growth, development, and defense responses in plants.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
48
|
Xu G, Moeder W, Yoshioka K, Shan L. A tale of many families: calcium channels in plant immunity. THE PLANT CELL 2022; 34:1551-1567. [PMID: 35134212 PMCID: PMC9048905 DOI: 10.1093/plcell/koac033] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/26/2022] [Indexed: 05/24/2023]
Abstract
Plants launch a concerted immune response to dampen potential infections upon sensing microbial pathogen and insect invasions. The transient and rapid elevation of the cytosolic calcium concentration [Ca2+]cyt is among the essential early cellular responses in plant immunity. The free Ca2+ concentration in the apoplast is far higher than that in the resting cytoplasm. Thus, the precise regulation of calcium channel activities upon infection is the key for an immediate and dynamic Ca2+ influx to trigger downstream signaling. Specific Ca2+ signatures in different branches of the plant immune system vary in timing, amplitude, duration, kinetics, and sources of Ca2+. Recent breakthroughs in the studies of diverse groups of classical calcium channels highlight the instrumental role of Ca2+ homeostasis in plant immunity and cell survival. Additionally, the identification of some immune receptors as noncanonical Ca2+-permeable channels opens a new view of how immune receptors initiate cell death and signaling. This review aims to provide an overview of different Ca2+-conducting channels in plant immunity and highlight their molecular and genetic mode-of-actions in facilitating immune signaling. We also discuss the regulatory mechanisms that control the stability and activity of these channels.
Collapse
Affiliation(s)
- Guangyuan Xu
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
- Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
49
|
Srivastava S, Pandey SP, Singh P, Pradhan L, Pande V, Sane AP. Early wound-responsive cues regulate the expression of WRKY family genes in chickpea differently under wounded and unwounded conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:719-735. [PMID: 35592484 PMCID: PMC9110599 DOI: 10.1007/s12298-022-01170-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/05/2022] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Insect wounding activates a large number of signals that function coordinately to modulate gene expression and elicit defense responses. How each signal influences gene expression in absence of wounding is also important since it can shed light on changes occurring during the shift to wound response. Using simulated Helicoverpa armigera herbivory on chickpea, we had identified at least 14 WRKY genes that showed 5-50 fold increase in expression within 5-20 min of wounding. Our studies show that contrary to their collective effects upon wounding, individual chemical cues show distinct and often opposite effects in absence of wounding. In particular, jasmonic acid, a key early defense hormone, reduced transcripts of most WRKY genes by > 50% upon treatment of unwounded chickpea leaves as did salicylic acid. Neomycin (a JA biosynthesis inhibitor) delayed and also reduced early wound expression. H2O2 transiently activated several genes within 5-20 min by 5-8 fold while ethylene activated only a few WRKY genes by 2-5 fold. The summation of the individual effects of these chemical cues does not explain the strong increase in transcript levels upon wounding. Detailed studies of a 931 nt region of the CaWRKY41 promoter, show strong wound-responsive GUS expression in Arabidopsis even in presence of neomycin. Surprisingly its expression was lost in the coi1, ein2 and myc2myc3myc4 mutant backgrounds suggesting the requirement of intact ethylene and JA signaling pathways (dependent on MYCs) for wound-responsive expression. The studies highlight the complexity of gene regulation by different chemical cues in the presence and absence of wounding. SUPPLEMENTARY INFORMATION The online version contains Supplementary material available at 10.1007/s12298-022-01170-y.
Collapse
Affiliation(s)
- Shruti Srivastava
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Department of Biotechnology, Kumaun University, Nainital, 26300 India
| | - Saurabh Prakash Pandey
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Priya Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Laxmipriya Pradhan
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, 26300 India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
50
|
Yu B, Wu Q, Li X, Zeng R, Min Q, Huang J. GLUTAMATE RECEPTOR-like gene OsGLR3.4 is required for plant growth and systemic wound signaling in rice (Oryza sativa). THE NEW PHYTOLOGIST 2022; 233:1238-1256. [PMID: 34767648 DOI: 10.1111/nph.17859] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/03/2021] [Indexed: 05/15/2023]
Abstract
Recent studies have revealed the physiological roles of glutamate receptor-like channels (GLRs) in Arabidopsis; however, the functions of GLRs in rice remain largely unknown. Here, we show that knockout of OsGLR3.4 in rice leads to brassinosteroid (BR)-regulated growth defects and reduced BR sensitivity. Electrophoretic mobility shift assays and transient transactivation assays indicated that OsGLR3.4 is the downstream target of OsBZR1. Further, agonist profile assays showed that multiple amino acids can trigger transient Ca2+ influx in an OsGLR3.4-dependent manner, indicating that OsGLR3.4 is a Ca2+ -permeable channel. Meanwhile, the study of internode cells demonstrated that OsGLR3.4-mediated Ca2+ flux is required for actin filament organization and vesicle trafficking. Following root injury, the triggering of both slow wave potentials (SWPs) in leaves and the jasmonic acid (JA) response are impaired in osglr3.4 mutants, indicating that OsGLR3.4 is required for root-to-shoot systemic wound signaling in rice. Brassinosteroid treatment enhanced SWPs and OsJAZ8 expression in root-wounded plants, suggesting that BR signaling synergistically regulates the OsGLR3.4-mediated systemic wound response. In summary, this article describes a mechanism of OsGLR3.4-mediated cell elongation and long-distance systemic wound signaling in plants and provides new insights into the contribution of GLRs to plant growth and responses to mechanical wounding.
Collapse
Affiliation(s)
- Bo Yu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, 174 Shazheng Street, Chongqing, China
| | - Qi Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, 174 Shazheng Street, Chongqing, China
| | - Xingxing Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, 174 Shazheng Street, Chongqing, China
| | - Rongfeng Zeng
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, 174 Shazheng Street, Chongqing, China
| | - Qian Min
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, 174 Shazheng Street, Chongqing, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, 174 Shazheng Street, Chongqing, China
| |
Collapse
|