1
|
He D, Shi X, Liang L, Zhao Y, Ma S, Cao S, Liu B, Gao Z, Zhang X, Fan Z, Kuang F, Zhang H. Microglial EPOR Contribute to Sevoflurane-induced Developmental Fine Motor Deficits Through Synaptic Pruning in Mice. Neurosci Bull 2024; 40:1858-1874. [PMID: 38907076 PMCID: PMC11625042 DOI: 10.1007/s12264-024-01248-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/17/2024] [Indexed: 06/23/2024] Open
Abstract
Clinical researches including the Mayo Anesthesia Safety in Kids (MASK) study have found that children undergoing multiple anesthesia may have a higher risk of fine motor control difficulties. However, the underlying mechanisms remain elusive. Here, we report that erythropoietin receptor (EPOR), a microglial receptor associated with phagocytic activity, was significantly downregulated in the medial prefrontal cortex of young mice after multiple sevoflurane anesthesia exposure. Importantly, we found that the inhibited erythropoietin (EPO)/EPOR signaling axis led to microglial polarization, excessive excitatory synaptic pruning, and abnormal fine motor control skills in mice with multiple anesthesia exposure, and those above-mentioned situations were fully reversed by supplementing EPO-derived peptide ARA290 by intraperitoneal injection. Together, the microglial EPOR was identified as a key mediator regulating early synaptic development in this study, which impacted sevoflurane-induced fine motor dysfunction. Moreover, ARA290 might serve as a new treatment against neurotoxicity induced by general anesthesia in clinical practice by targeting the EPO/EPOR signaling pathway.
Collapse
Affiliation(s)
- Danyi He
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaotong Shi
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Lirong Liang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Youyi Zhao
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Sanxing Ma
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Shuhui Cao
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Bing Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhenzhen Gao
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ze Fan
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Fang Kuang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Hui Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Magee SN, Sereno AC, Herman MA. Sex differences in basal motivated behavior, chronic ethanol drinking, and amygdala activity in female and male mice. Alcohol 2024; 120:85-97. [PMID: 38878875 PMCID: PMC11390327 DOI: 10.1016/j.alcohol.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 09/13/2024]
Abstract
Alcohol use disorder (AUD) is a major public health concern that despite its prevalence, lacks a widely-effective treatment due to the complexity of AUD pathology. AUD is highly comorbid with other psychiatric conditions including anxiety and mood disorders, however it is unclear how these disorders influence each other. The underlying etiology of these comorbidities is difficult to decipher and factors including sex, stress, and the environment further complicate both diagnosis and treatment strategies. To understand more about this bidirectional relationship between AUD and comorbid psychiatric disorders, we ran male and female C57Bl/6j mice through baseline behavioral testing followed by intermittent access-two bottle choice (IA-2BC) drinking. We found no sex differences in basal anxiety-like or depressive-like behavior, however females displayed enhanced motivated feeding behavior. Females consumed more ethanol than males, at both 1hr and 24hr timepoints. Basal affective state did not predict subsequent ethanol intake in either sex, however exploratory behavior was positively correlated with drinking in males but not females. We then re-assessed negative affect behavior following chronic ethanol drinking to determine if drinking impacted subsequent affective behavior and found no relationship between ethanol intake and affective state in males or females. We also examined how chronic ethanol drinking affected central amygdala (CeA) and basolateral amygdala (BLA) neuronal activity in males and females. Ethanol-drinking females had a decrease in CeA neuronal activity, driven by reduced activity in the lateral (CeAl) sub-region, while in males there was no significant difference in CeA activity compared to water controls. Neither males or females had a significant change in BLA neuronal activity following chronic ethanol drinking. Collectively, these results demonstrate sex differences in basal motivated behavior, drinking behavior, and subregion-specific amygdala neuronal activity following chronic ethanol drinking which may inform the sex differences seen in patients diagnosed with AUD and comorbid conditions.
Collapse
Affiliation(s)
- Sarah N Magee
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Allison C Sereno
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Melissa A Herman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Warden AS, Salem NA, Brenner E, Sutherland GT, Stevens J, Kapoor M, Goate AM, Dayne Mayfield R. Integrative genomics approach identifies glial transcriptomic dysregulation and risk in the cortex of individuals with Alcohol Use Disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.607185. [PMID: 39211266 PMCID: PMC11360965 DOI: 10.1101/2024.08.16.607185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alcohol use disorder (AUD) is a prevalent neuropsychiatric disorder that is a major global health concern, affecting millions of people worldwide. Past molecular studies of AUD used underpowered single cell analysis or bulk homogenates of postmortem brain tissue, which obscures gene expression changes in specific cell types. Here we performed single nuclei RNA-sequencing analysis of 73 post-mortem samples from individuals with AUD (N=36, N nuclei = 248,873) and neurotypical controls (N=37, N nuclei = 210,573) in both sexes across two institutional sites. We identified 32 clusters and found widespread cell type-specific transcriptomic changes across the cortex in AUD, particularly affecting glia. We found the greatest dysregulation in novel microglial and astrocytic subtypes that accounted for the majority of differential gene expression and co-expression modules linked to AUD. Analysis for cell type-specific enrichment of aggregate genetic risk for AUD identified subtypes of microglia and astrocytes as potential key players not only affected by but causally linked to the progression of AUD. These results highlight the importance of cell-type specific molecular changes in AUD and offer opportunities to identify novel targets for treatment.
Collapse
|
4
|
Dai Y, Fan X, Yang Z, Wu L, Zhou X, Fang X, Ge X, Zhao L. Characteristics and correlation of flavor substances and hangover indexes in Chinese baijiu during storage. Curr Res Food Sci 2024; 9:100887. [PMID: 39498460 PMCID: PMC11533564 DOI: 10.1016/j.crfs.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 11/07/2024] Open
Abstract
It is generally believed that there is a great relationship between hangover and the age of Baijiu. However, what factors make Baijiu (stored for a long time) feel better after drinking has not been well explained. In this study, ethanol metabolism, oxidation stress, inflammation and release of inhibitory neurotransmitter were selected as the indicator of hangover. The results showed that the longer the age of Baijiu, the higher the antioxidant and anti-inflammatory levels, the less damage to the liver of mice. In addition, we also found that the longer the age of Baijiu, the faster the ethanol metabolism rate, the smaller the impact on the brain. A correlation analysis on Baijiu ingredients and hangover related indicators was conducted. These results showed that ethyl acetate, n-butanol, n-hexanol, butyl acetate, ethyl octanoate, isovaleric acid, 2-hydroxypropionic acid had a great correlation with all hangover related indicators.
Collapse
Affiliation(s)
- Yuan Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Yanghe Distillery Co. Ltd., Suqian, 223800, Jiangsu Province, China
| | - Xianyu Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Yanghe Distillery Co. Ltd., Suqian, 223800, Jiangsu Province, China
| | - Zhiqing Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Lulu Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| | - Xinhu Zhou
- Jiangsu Yanghe Distillery Co. Ltd., Suqian, 223800, Jiangsu Province, China
| | - Xianying Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- Jinpu Research Institute, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| | - Xiangyang Ge
- Jiangsu Yanghe Distillery Co. Ltd., Suqian, 223800, Jiangsu Province, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- Jinpu Research Institute, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| |
Collapse
|
5
|
Zhou H, Hong T, Chen X, Su C, Teng B, Xi W, Cadet JL, Yang Y, Geng F, Hu Y. Glutamate concentration of medial prefrontal cortex is inversely associated with addictive behaviors: a translational study. Transl Psychiatry 2024; 14:433. [PMID: 39396023 PMCID: PMC11470925 DOI: 10.1038/s41398-024-03145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024] Open
Abstract
In both preclinical and clinical settings, dysregulated frontostriatal circuits have been identified as the underlying neural substrates of compulsive seeking/taking behaviors manifested in substance use disorders and behavioral addictions including internet gaming disorder (IGD). However, the neurochemical substrates for these disorders remain elusive. The lack of comprehensive cognitive assessments in animal models has hampered our understanding of neural plasticity in addiction from these models. In this study, combining data from a rat model of compulsive taking/seeking and human participants with various levels of IGD severity, we investigated the relationship between regional glutamate (Glu) concentration and addictive behaviors. We found that Glu levels were significantly lower in the prelimbic cortex (PrL) of rats after 20-days of methamphetamine self-administration (SA), compared to controls. Glu concentration after a punishment phase negatively correlated with acute drug-seeking behavior. In addition, changes in Glu levels from a drug naïve state to compulsive drug taking patterns negatively correlated with drug-seeking during both acute and prolonged abstinence. The human data revealed a significant negative correlation between Glu concentration in the dorsal anterior cingulate cortex (dACC), the human PrL counterpart, and symptoms of IGD. Interestingly, there was a positive correlation between Glu levels in the dACC and self-control, as well as mindful awareness. Further analysis revealed that the dACC Glu concentration mediated the relationship between self-control/mindful awareness and IGD symptoms. These results provide convergent evidence for a protective role of dACC/PrL in addiction, suggesting interventions to enhance dACC glutamatergic functions as a potential strategy for addiction prevention and treatment.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 311100, China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, 311100, China
| | - Tiantian Hong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 311100, China
| | - Xi Chen
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
| | - Conghui Su
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 311100, China
| | - Binyu Teng
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 311100, China
| | - Wan Xi
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 311100, China
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, Intramural Research Programs, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Programs, National Institutes of Health, Baltimore, MD, 21224, USA.
| | - Fengji Geng
- Department of Curriculum and Learning Sciences, Zhejiang University, Hangzhou, 311100, China.
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 311100, China.
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, 311100, China.
- MOE Frontiers Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, 311100, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| |
Collapse
|
6
|
Liu L, Luo L, Wei JA, Xu X, So KF, Zhang L. Treadmill Exercise Reshapes Cortical Astrocytic and Neuronal Activity to Improve Motor Learning Deficits Under Chronic Alcohol Exposure. Neurosci Bull 2024; 40:1287-1298. [PMID: 38807019 PMCID: PMC11365901 DOI: 10.1007/s12264-024-01226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/06/2024] [Indexed: 05/30/2024] Open
Abstract
Alcohol abuse induces various neurological disorders including motor learning deficits, possibly by affecting neuronal and astrocytic activity. Physical exercise is one effective approach to remediate synaptic loss and motor deficits as shown by our previous works. In this study, we unrevealed the role of exercise training in the recovery of cortical neuronal and astrocytic functions. Using a chronic alcohol injection mouse model, we found the hyperreactivity of astrocytes along with dendritic spine loss plus lower neuronal activity in the primary motor cortex. Persistent treadmill exercise training, on the other hand, improved neural spine formation and inhibited reactive astrocytes, alleviating motor learning deficits induced by alcohol exposure. These data collectively support the potency of endurance exercise in the rehabilitation of motor functions under alcohol abuse.
Collapse
Affiliation(s)
- Linglin Liu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Lanzhi Luo
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Ji-An Wei
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xintong Xu
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China.
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
7
|
Silva AI, Socodato R, Pinto C, Terceiro AF, Canedo T, Relvas JB, Saraiva M, Summavielle T. IL-10 and Cdc42 modulate astrocyte-mediated microglia activation in methamphetamine-induced neuroinflammation. Glia 2024; 72:1501-1517. [PMID: 38780232 DOI: 10.1002/glia.24542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Methamphetamine (Meth) use is known to induce complex neuroinflammatory responses, particularly involving astrocytes and microglia. Building upon our previous research, which demonstrated that Meth stimulates astrocytes to release tumor necrosis factor (TNF) and glutamate, leading to microglial activation, this study investigates the role of the anti-inflammatory cytokine interleukin-10 (IL-10) in this process. Our findings reveal that the presence of recombinant IL-10 (rIL-10) counteracts Meth-induced excessive glutamate release in astrocyte cultures, which significantly reduces microglial activation. This reduction is associated with the modulation of astrocytic intracellular calcium (Ca2+) dynamics, particularly by restricting the release of Ca2+ from the endoplasmic reticulum to the cytoplasm. Furthermore, we identify the small Rho GTPase Cdc42 as a crucial intermediary in the astrocyte-to-microglia communication pathway under Meth exposure. By employing a transgenic mouse model that overexpresses IL-10 (pMT-10), we also demonstrate in vivo that IL-10 prevents Meth-induced neuroinflammation. These findings not only enhance our understanding of Meth-related neuroinflammatory mechanisms, but also suggest IL-10 and Cdc42 as putative therapeutic targets for treating Meth-induced neuroinflammation.
Collapse
Affiliation(s)
- Ana Isabel Silva
- Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Renato Socodato
- Glia Cell Biology Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Carolina Pinto
- Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Ana Filipa Terceiro
- Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Teresa Canedo
- Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - João Bettencourt Relvas
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Glia Cell Biology Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Margarida Saraiva
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Immune Regulation Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Teresa Summavielle
- Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ESS.PP, Escola Superior de Saúde do Politécnico do Porto, Porto, Portugal
| |
Collapse
|
8
|
Zou J, Li J, Wang X, Tang D, Chen R. Neuroimmune modulation in liver pathophysiology. J Neuroinflammation 2024; 21:188. [PMID: 39090741 PMCID: PMC11295927 DOI: 10.1186/s12974-024-03181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
The liver, the largest organ in the human body, plays a multifaceted role in digestion, coagulation, synthesis, metabolism, detoxification, and immune defense. Changes in liver function often coincide with disruptions in both the central and peripheral nervous systems. The intricate interplay between the nervous and immune systems is vital for maintaining tissue balance and combating diseases. Signaling molecules and pathways, including cytokines, inflammatory mediators, neuropeptides, neurotransmitters, chemoreceptors, and neural pathways, facilitate this complex communication. They establish feedback loops among diverse immune cell populations and the central, peripheral, sympathetic, parasympathetic, and enteric nervous systems within the liver. In this concise review, we provide an overview of the structural and compositional aspects of the hepatic neural and immune systems. We further explore the molecular mechanisms and pathways that govern neuroimmune communication, highlighting their significance in liver pathology. Finally, we summarize the current clinical implications of therapeutic approaches targeting neuroimmune interactions and present prospects for future research in this area.
Collapse
Affiliation(s)
- Ju Zou
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Li
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoxu Wang
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
9
|
Wang S, Zhang X, Zhao Y, Lv H, Li P, Zhang Z, Qiao X. BCI Improves Alcohol-Induced Cognitive and Emotional Impairments by Restoring pERK-BDNF. J Mol Neurosci 2024; 74:59. [PMID: 38890235 DOI: 10.1007/s12031-024-02237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Binge drinking causes a range of problems especially damage to the nervous system, and the specific neural mechanism of brain loss and behavioral abnormalities caused by which is still unclear. Extracellular regulated protein kinases (ERK) maintain neuronal survival, growth, and regulation of synaptic plasticity by phosphorylating specific transcription factors to regulate expression of brain-derived neurotrophic factor (BDNF). Dual-specific phosphatase 1 (DUSP1) and DUSP6 dephosphorylate tyrosine and serine/threonine residues in ERK1/2 to inactivate them. To investigate the molecular mechanism by which alcohol affects memory and emotion, a chronic intermittent alcohol exposure (CIAE) model was established. The results demonstrated that mice in the CIAE group developed short-term recognition memory impairment and anxiety-like behavior; meanwhile, the expression of DUSP1 and DUSP66 in the mPFC was increased, while the levels of p-ERK and BDNF were decreased. Micro-injection of DUSP1/6 inhibitor BCI into the medial prefrontal cortex (mPFC) restored the dendritic morphology by reversing the activity of ERK-BDNF and ultimately improved cognitive and emotional impairment caused by CIAE. These findings indicate that CIAE inhibits ERK-BDNF by increasing DUSP1/6 in the mPFC that may be associated with cognitive and emotional deficits. Consequently, DUSP1 and DUSP6 appear to be potential targets for the treatment of alcoholic brain disorders.
Collapse
Affiliation(s)
- Sasa Wang
- School of Basic Medical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, 450001, Henan, China
| | - Xinlei Zhang
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, 450001, Henan, China
| | - Yuru Zhao
- School of Basic Medical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, 450001, Henan, China
| | - Haoxuan Lv
- School of Basic Medical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, 450001, Henan, China
| | - Pengyu Li
- School of Basic Medical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, 450001, Henan, China
| | - Zhihao Zhang
- School of Basic Medical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, 450001, Henan, China
| | - Xiaomeng Qiao
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
10
|
Wu X, Liu Y, Wang X, Zheng L, Pan L, Wang H. Developmental Impairments of Synaptic Refinement in the Thalamus of a Mouse Model of Fragile X Syndrome. Neurosci Bull 2024; 40:439-450. [PMID: 38015349 PMCID: PMC11004103 DOI: 10.1007/s12264-023-01142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/16/2023] [Indexed: 11/29/2023] Open
Abstract
While somatosensory over-reactivity is a common feature of autism spectrum disorders such as fragile X syndrome (FXS), the thalamic mechanisms underlying this remain unclear. Here, we found that the developmental elimination of synapses formed between the principal nucleus of V (PrV) and the ventral posterior medial nucleus (VPm) of the somatosensory system was delayed in fragile X mental retardation 1 gene knockout (Fmr1 KO) mice, while the developmental strengthening of these synapses was disrupted. Immunohistochemistry showed excessive VGluT2 puncta in mutants at P12-13, but not at P7-8 or P15-16, confirming a delay in somatic pruning of PrV-VPm synapses. Impaired synaptic function was associated with a reduction in the frequency of quantal AMPA events, as well as developmental deficits in presynaptic vesicle size and density. Our results uncovered the developmental impairment of thalamic relay synapses in Fmr1 KO mice and suggest that a thalamic contribution to the somatosensory over-reactivity in FXS should be considered.
Collapse
Affiliation(s)
- Xiaotong Wu
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yali Liu
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaomeng Wang
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lu Zheng
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Libiao Pan
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hao Wang
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China.
- Lingang Laboratory, Shanghai, 200031, China.
| |
Collapse
|
11
|
Melbourne JK, Wooden JI, Carlson ER, Anasooya Shaji C, Nixon K. Neuroimmune Activation and Microglia Reactivity in Female Rats Following Alcohol Dependence. Int J Mol Sci 2024; 25:1603. [PMID: 38338883 PMCID: PMC10855949 DOI: 10.3390/ijms25031603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 02/12/2024] Open
Abstract
The rates of alcohol use disorder among women are growing, yet little is known about how the female brain is affected by alcohol. The neuroimmune system, and specifically microglia, have been implicated in mediating alcohol neurotoxicity, but most preclinical studies have focused on males. Further, few studies have considered changes to the microglial phenotype when examining the effects of ethanol on brain structure and function. Therefore, we quantified microglial reactivity in female rats using a binge model of alcohol dependence, assessed through morphological and phenotypic marker expression, coupled with regional cytokine levels. In a time- and region-dependent manner, alcohol altered the microglial number and morphology, including the soma and process area, and the overall complexity within the corticolimbic regions examined, but no significant increases in the proinflammatory markers MHCII or CD68 were observed. The majority of cytokine and growth factor levels examined were similarly unchanged. However, the expression of the proinflammatory cytokine TNFα was increased, and the anti-inflammatory IL-10, decreased. Thus, female rats showed subtle differences in neuroimmune reactivity compared to past work in males, consistent with reports of enhanced neuroimmune responses in females across the literature. These data suggest that specific neuroimmune reactions in females may impact their susceptibility to alcohol neurotoxicity and other neurodegenerative events with microglial contributions.
Collapse
Affiliation(s)
| | | | | | | | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (J.K.M.)
| |
Collapse
|
12
|
Vore AS, Marsland P, Barney TM, Varlinskaya EI, Landin JD, Healey KL, Kibble S, Swartzwelder HS, Chandler LJ, Deak T. Adolescent intermittent ethanol (AIE) produces lasting, sex-specific changes in rat body fat independent of changes in white blood cell composition. Front Physiol 2024; 15:1285376. [PMID: 38332987 PMCID: PMC10851431 DOI: 10.3389/fphys.2024.1285376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Early initiation of alcohol use during adolescence, and adolescent binge drinking are risk factors for the development of alcohol use disorder later in life. Adolescence is a time of rapid sex-dependent neural, physiological, and behavioral changes as well as a period of heightened vulnerability to many effects of alcohol. The goal of the present studies was to determine age-related changes in blood (leukocyte populations) and body composition across adolescence and early adulthood, and to investigate whether adolescent intermittent ethanol (AIE) exposure would alter the trajectory of adolescent development on these broad physiological parameters. We observed significant ontogenetic changes in leukocyte populations that were mirrored by an age-related increase in cytokine expression among mixed populations of circulating leukocytes. Despite these developmental changes, AIE did not significantly alter overall leukocyte numbers or cytokine gene expression. However, AIE led to sex-specific changes in body fat mass and fat percentage, with AIE-exposed male rats showing significantly decreased fat levels and female rats showing significantly increased fat levels relative to controls. These changes suggest that while AIE may not alter overall leukocyte levels, more complex phenotypic changes in leukocyte populations could underlie previously reported differences in cytokine expression. Coupled with long-term shifts in adipocyte levels, this could have long-lasting effects on innate immunity and the capacity of individuals to respond to later immunological and physiological threats.
Collapse
Affiliation(s)
- Andrew S. Vore
- Developmental Exposure Alcohol Research Center, Binghamton University-SUNY, Binghamton, NY, United States
| | - Paige Marsland
- Developmental Exposure Alcohol Research Center, Binghamton University-SUNY, Binghamton, NY, United States
| | - Thaddeus M. Barney
- Developmental Exposure Alcohol Research Center, Binghamton University-SUNY, Binghamton, NY, United States
| | - Elena I. Varlinskaya
- Developmental Exposure Alcohol Research Center, Binghamton University-SUNY, Binghamton, NY, United States
| | - Justine D. Landin
- Department of Neurosciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States
| | - Kati L. Healey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Sandra Kibble
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - H. S. Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Lawrence J. Chandler
- Department of Neurosciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Binghamton University-SUNY, Binghamton, NY, United States
| |
Collapse
|
13
|
Socodato R, Almeida TO, Portugal CC, Santos ECS, Tedim-Moreira J, Galvão-Ferreira J, Canedo T, Baptista FI, Magalhães A, Ambrósio AF, Brakebusch C, Rubinstein B, Moreira IS, Summavielle T, Pinto IM, Relvas JB. Microglial Rac1 is essential for experience-dependent brain plasticity and cognitive performance. Cell Rep 2023; 42:113447. [PMID: 37980559 DOI: 10.1016/j.celrep.2023.113447] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/14/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023] Open
Abstract
Microglia, the largest population of brain immune cells, continuously interact with synapses to maintain brain homeostasis. In this study, we use conditional cell-specific gene targeting in mice with multi-omics approaches and demonstrate that the RhoGTPase Rac1 is an essential requirement for microglia to sense and interpret the brain microenvironment. This is crucial for microglia-synapse crosstalk that drives experience-dependent plasticity, a fundamental brain property impaired in several neuropsychiatric disorders. Phosphoproteomics profiling detects a large modulation of RhoGTPase signaling, predominantly of Rac1, in microglia of mice exposed to an environmental enrichment protocol known to induce experience-dependent brain plasticity and cognitive performance. Ablation of microglial Rac1 affects pathways involved in microglia-synapse communication, disrupts experience-dependent synaptic remodeling, and blocks the gains in learning, memory, and sociability induced by environmental enrichment. Our results reveal microglial Rac1 as a central regulator of pathways involved in the microglia-synapse crosstalk required for experience-dependent synaptic plasticity and cognitive performance.
Collapse
Affiliation(s)
- Renato Socodato
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal.
| | - Tiago O Almeida
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal; ICBAS - School of Medicine and Biomedical Sciences, Porto, Portugal
| | - Camila C Portugal
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Evelyn C S Santos
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal; Department of Biomedicine, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Joana Tedim-Moreira
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal; Department of Biomedicine, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - João Galvão-Ferreira
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal; Department of Biomedicine, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Teresa Canedo
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Filipa I Baptista
- Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra Institute for Clinical and Biomedical Research (iCBR), and Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| | - Ana Magalhães
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - António F Ambrósio
- Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra Institute for Clinical and Biomedical Research (iCBR), and Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| | - Cord Brakebusch
- Molecular Pathology Section, BRIC, Københavns Biocenter, Copenhagen, Denmark
| | | | - Irina S Moreira
- Department of Life Sciences, Center for Innovative Biomedicine and Biotechnology (CIBB) and CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Teresa Summavielle
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal; ESS.PP, Escola Superior de Saúde do Politécnico do Porto, Porto, Portugal
| | - Inês Mendes Pinto
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal; Department of Biomedicine, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - João B Relvas
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal; Department of Biomedicine, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal.
| |
Collapse
|
14
|
Qian J, Lu J, Cheng S, Zou X, Tao Q, Wang M, Wang N, Zheng L, Liao W, Li Y, Yan F. Periodontitis salivary microbiota exacerbates colitis-induced anxiety-like behavior via gut microbiota. NPJ Biofilms Microbiomes 2023; 9:93. [PMID: 38062089 PMCID: PMC10703887 DOI: 10.1038/s41522-023-00462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The gut-brain axis is a bidirectional communication system between the gut and central nervous system. Many host-related factors can affect gut microbiota, including oral bacteria, making the brain a vulnerable target via the gut-brain axis. Saliva contains a large number of oral bacteria, and periodontitis, a common oral disease, can change the composition of salivary microbiota. However, the role and mechanism of periodontitis salivary microbiota (PSM) on the gut-brain axis remain unclear. Herein, we investigated the nature and mechanisms of this relationship using the mice with dextran sulfate sodium salt (DSS)-induced anxiety-like behavior. Compared with healthy salivary microbiota, PSM worsened anxiety-like behavior; it significantly reduced the number of normal neurons and activated microglia in DSS mice. Antibiotic treatment eliminated the effect of PSM on anxiety-like behavior, and transplantation of fecal microbiota from PSM-gavaged mice exacerbated anxiety-like behavior. These observations indicated that the anxiety-exacerbating effect of PSM was dependent on the gut microbiota. Moreover, the PSM effect on anxiety-like behavior was not present in non-DSS mice, indicating that DSS treatment was a prerequisite for PSM to exacerbate anxiety. Mechanistically, PSM altered the histidine metabolism in both gut and brain metabolomics. Supplementation of histidine-related metabolites had a similar anxiety-exacerbating effect as that of PSM, suggesting that histidine metabolism may be a critical pathway in this process. Our results demonstrate that PSM can exacerbate colitis-induced anxiety-like behavior by directly affecting the host gut microbiota, emphasizing the importance of oral diseases in the gut-brain axis.
Collapse
Affiliation(s)
- Jun Qian
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiangyue Lu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shuyu Cheng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xihong Zou
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Min Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Nannan Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lichun Zheng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenzheng Liao
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yanfen Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
15
|
Socodato R, Rodrigues-Santos A, Tedim-Moreira J, Almeida TO, Canedo T, Portugal CC, Relvas JB. RhoA balances microglial reactivity and survival during neuroinflammation. Cell Death Dis 2023; 14:690. [PMID: 37863874 PMCID: PMC10589285 DOI: 10.1038/s41419-023-06217-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Microglia are the largest myeloid cell population in the brain. During injury, disease, or inflammation, microglia adopt different functional states primarily involved in restoring brain homeostasis. However, sustained or exacerbated microglia inflammatory reactivity can lead to brain damage. Dynamic cytoskeleton reorganization correlates with alterations of microglial reactivity driven by external cues, and proteins controlling cytoskeletal reorganization, such as the Rho GTPase RhoA, are well positioned to refine or adjust the functional state of the microglia during injury, disease, or inflammation. Here, we use multi-biosensor-based live-cell imaging approaches and tissue-specific conditional gene ablation in mice to understand the role of RhoA in microglial response to inflammation. We found that a decrease in RhoA activity is an absolute requirement for microglial metabolic reprogramming and reactivity to inflammation. However, without RhoA, inflammation disrupts Ca2+ and pH homeostasis, dampening mitochondrial function, worsening microglial necrosis, and triggering microglial apoptosis. Our results suggest that a minimum level of RhoA activity is obligatory to concatenate microglia inflammatory reactivity and survival during neuroinflammation.
Collapse
Affiliation(s)
- Renato Socodato
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal.
| | - Artur Rodrigues-Santos
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Joana Tedim-Moreira
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Tiago O Almeida
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
- ICBAS - School of Medicine and Biomedical Sciences, Porto, Portugal
| | - Teresa Canedo
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Camila C Portugal
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - João B Relvas
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal.
| |
Collapse
|
16
|
Zhu H, Guan A, Liu J, Peng L, Zhang Z, Wang S. Noteworthy perspectives on microglia in neuropsychiatric disorders. J Neuroinflammation 2023; 20:223. [PMID: 37794488 PMCID: PMC10548593 DOI: 10.1186/s12974-023-02901-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
Microglia are so versatile that they not only provide immune surveillance for central nervous system, but participate in neural circuitry development, brain blood vessels formation, blood-brain barrier architecture, and intriguingly, the regulation of emotions and behaviors. Microglia have a profound impact on neuronal survival, brain wiring and synaptic plasticity. As professional phagocytic cells in the brain, they remove dead cell debris and neurotoxic agents via an elaborate mechanism. The functional profile of microglia varies considerately depending on age, gender, disease context and other internal or external environmental factors. Numerous studies have demonstrated a pivotal involvement of microglia in neuropsychiatric disorders, including negative affection, social deficit, compulsive behavior, fear memory, pain and other symptoms associated with major depression disorder, anxiety disorder, autism spectrum disorder and schizophrenia. In this review, we summarized the latest discoveries regarding microglial ontogeny, cell subtypes or state spectrum, biological functions and mechanistic underpinnings of emotional and behavioral disorders. Furthermore, we highlight the potential of microglia-targeted therapies of neuropsychiatric disorders, and propose outstanding questions to be addressed in future research of human microglia.
Collapse
Affiliation(s)
- Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Ao Guan
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jiayuan Liu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Li Peng
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Zhi Zhang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
17
|
Yao X, Zhao J, Yuan Y, Wang C, Yu Z, Huang Z, Chen C, Yang C, Ren J, Ma Y, Rong Y, Huang Y, Ming Y, Liu L. Prolonged Early Exposure to a High-Fat Diet Augments the Adverse Effects on Neurobehavior and Hippocampal Neuroplasticity: Involvement of Microglial Insulin Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1568-1586. [PMID: 37356575 DOI: 10.1016/j.ajpath.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/27/2023]
Abstract
High-fat diet (HFD) consumption may contribute to the high prevalence of cognitive-emotional issues in modern society. Mice fed a HFD for a prolonged period develop more severe neurobehavioral disturbances when first exposed to a HFD in the juvenile period than in adulthood, suggesting an initial age-related difference in the detrimental effects of long-term HFD feeding. However, the mechanism underlying this difference remains unclear. Here, male C57BL/6J mice initially aged 4 (IA4W) or 8 (IA8W) weeks were fed a control diet (CD) or HFD for 6 months and then subjected to metabolic, neurobehavioral, and histomorphological examinations. Although the detrimental effects of long-term HFD feeding on metabolism and neurobehavior were observed in mice of both ages, IA4W-HFD mice showed significant cognitive inflexibility accompanied by significantly greater levels of anxiety-like behavior than age-matched controls. Hippocampal neuroplasticity and microglial phenotype were altered by HFD feeding, whereas significant morphological alterations were more frequently observed in IA4W-HFD mice than in IA8W-HFD mice. Additionally, significantly increased hippocampal microglial engulfment of postsynaptic proteins and elevated phospho-insulin-receptor levels were observed in IA4W-HFD, but not in IA8W-HFD, mice. These findings suggest that aberrant microglia-related histomorphological changes in the hippocampus underlie the exacerbated detrimental neurobehavioral effects of prolonged early HFD exposure and indicate that enhanced insulin signaling might drive microglial dysfunction after prolonged early HFD exposure.
Collapse
Affiliation(s)
- Xiuting Yao
- Medical College, Southeast University, Nanjing, China
| | - Jingyi Zhao
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yang Yuan
- The Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Conghui Wang
- Medical College, Southeast University, Nanjing, China
| | - Zhehao Yu
- Medical College, Southeast University, Nanjing, China
| | - Zhihui Huang
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - Chen Chen
- Medical College, Southeast University, Nanjing, China
| | - Chenxi Yang
- Medical College, Southeast University, Nanjing, China
| | - Jiayi Ren
- Medical College, Southeast University, Nanjing, China
| | - Yu Ma
- Medical College, Southeast University, Nanjing, China
| | - Yi Rong
- Medical College, Southeast University, Nanjing, China
| | - Yi Huang
- Medical College, Southeast University, Nanjing, China
| | - Yue Ming
- Medical College, Southeast University, Nanjing, China
| | - Lijie Liu
- Department of Physiology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
18
|
Cruz B, Borgonetti V, Bajo M, Roberto M. Sex-dependent factors of alcohol and neuroimmune mechanisms. Neurobiol Stress 2023; 26:100562. [PMID: 37601537 PMCID: PMC10432974 DOI: 10.1016/j.ynstr.2023.100562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Excessive alcohol use disrupts neuroimmune signaling across various cell types, including neurons, microglia, and astrocytes. The present review focuses on recent, albeit limited, evidence of sex differences in biological factors that mediate neuroimmune responses to alcohol and underlying neuroimmune systems that may influence alcohol drinking behaviors. Females are more vulnerable than males to the neurotoxic and negative consequences of chronic alcohol drinking, reflected by elevations of pro-inflammatory cytokines and inflammatory mediators. Differences in cytokine, microglial, astrocytic, genomic, and transcriptomic evidence suggest females are more reactive than males to neuroinflammatory changes after chronic alcohol exposure. The growing body of evidence supports that innate immune factors modulate synaptic transmission, providing a mechanistic framework to examine sex differences across neurocircuitry. Targeting neuroimmune signaling may be a viable strategy for treating AUD, but more research is needed to understand sex-specific differences in alcohol drinking and neuroimmune mechanisms.
Collapse
Affiliation(s)
- Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| | - Vittoria Borgonetti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| |
Collapse
|
19
|
Wang Y, Zhu Y, Tian M, Wang Y, Pei X, Jiang J, He Y, Gong Y. Recent advances in the study of sepsis-induced depression. JOURNAL OF INTENSIVE MEDICINE 2023; 3:239-243. [PMID: 37533814 PMCID: PMC10391568 DOI: 10.1016/j.jointm.2022.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 08/04/2023]
Abstract
Progress in medicine such as the use of anti-infective drugs and development of the advanced life support equipment has greatly improved the survival rate of patients with sepsis. However, the incidence of sepsis-related diseases is increasing. These include severe neurologic and psychologic disorders, cognitive decline, anxiety, depression, and post-traumatic stress disorder. Cerebral dysfunction occurs via multiple interacting mechanisms, with different causative pathogens having distinct effects. Because sepsis-related diseases place a substantial burden on patients and their families, it is important to elucidate the underlying pathophysiologic mechanisms to develop effective treatments.
Collapse
|
20
|
Qiu T, Jiang Z, Chen X, Dai Y, Zhao H. Comorbidity of Anxiety and Hypertension: Common Risk Factors and Potential Mechanisms. Int J Hypertens 2023; 2023:9619388. [PMID: 37273529 PMCID: PMC10234733 DOI: 10.1155/2023/9619388] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023] Open
Abstract
Anxiety is more common in patients with hypertension, and these two conditions frequently coexist. Recently, more emphasis has been placed on determining etiology in patients with comorbid hypertension and anxiety. This review focuses on the common risk factors and potential mechanisms of comorbid hypertension and anxiety. Firstly, we analyze the common risk factors of comorbid hypertension and anxiety including age, smoking, alcohol abuse, obesity, lead, and traffic noise. The specific mechanisms underlying hypertension and anxiety were subsequently discussed, including interleukin (IL)-6 (IL-6), IL-17, reactive oxygen species (ROS), and gut dysbiosis. Increased IL-6, IL-17, and ROS accelerate the development of hypertension and anxiety. Gut dysbiosis leads to hypertension and anxiety by reducing short-chain fatty acids, vitamin D, and 5-hydroxytryptamine (5-HT), and increasing trimethylamine N-oxide (TAMO) and MYC. These shared risk factors and potential mechanisms may provide an effective strategy for treating and preventing hypertension and comorbid anxiety.
Collapse
Affiliation(s)
- Tingting Qiu
- School of Nursing, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The Central Hospital of Changsha City, Hengyang Medical School, University of South China, Changsha, Hunan 410000, China
| | - Zhiming Jiang
- Department of Cardiology, The Fourth Hospital of Changsha, Changsha, Hunan 410006, China
| | - Xuancai Chen
- Urinary Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| | - Yehua Dai
- Nursing College, University of Xiangnan, Chenzhou, Hunan 423000, China
| | - Hong Zhao
- School of Nursing, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
21
|
Kamarajan C, Pandey AK, Chorlian DB, Meyers JL, Kinreich S, Pandey G, Subbie-Saenz de Viteri S, Zhang J, Kuang W, Barr PB, Aliev F, Anokhin AP, Plawecki MH, Kuperman S, Almasy L, Merikangas A, Brislin SJ, Bauer L, Hesselbrock V, Chan G, Kramer J, Lai D, Hartz S, Bierut LJ, McCutcheon VV, Bucholz KK, Dick DM, Schuckit MA, Edenberg HJ, Porjesz B. Predicting Alcohol-Related Memory Problems in Older Adults: A Machine Learning Study with Multi-Domain Features. Behav Sci (Basel) 2023; 13:bs13050427. [PMID: 37232664 DOI: 10.3390/bs13050427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Memory problems are common among older adults with a history of alcohol use disorder (AUD). Employing a machine learning framework, the current study investigates the use of multi-domain features to classify individuals with and without alcohol-induced memory problems. A group of 94 individuals (ages 50-81 years) with alcohol-induced memory problems (the memory group) were compared with a matched control group who did not have memory problems. The random forests model identified specific features from each domain that contributed to the classification of the memory group vs. the control group (AUC = 88.29%). Specifically, individuals from the memory group manifested a predominant pattern of hyperconnectivity across the default mode network regions except for some connections involving the anterior cingulate cortex, which were predominantly hypoconnected. Other significant contributing features were: (i) polygenic risk scores for AUD, (ii) alcohol consumption and related health consequences during the past five years, such as health problems, past negative experiences, withdrawal symptoms, and the largest number of drinks in a day during the past twelve months, and (iii) elevated neuroticism and increased harm avoidance, and fewer positive "uplift" life events. At the neural systems level, hyperconnectivity across the default mode network regions, including the connections across the hippocampal hub regions, in individuals with memory problems may indicate dysregulation in neural information processing. Overall, the study outlines the importance of utilizing multidomain features, consisting of resting-state brain connectivity data collected ~18 years ago, together with personality, life experiences, polygenic risk, and alcohol consumption and related consequences, to predict the alcohol-related memory problems that arise in later life.
Collapse
Affiliation(s)
- Chella Kamarajan
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Ashwini K Pandey
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - David B Chorlian
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Jacquelyn L Meyers
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Sivan Kinreich
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Gayathri Pandey
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Stacey Subbie-Saenz de Viteri
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Jian Zhang
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Weipeng Kuang
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Peter B Barr
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Fazil Aliev
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Andrey P Anokhin
- Department of Psychiatry, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | | | - Samuel Kuperman
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Laura Almasy
- The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alison Merikangas
- The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah J Brislin
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Lance Bauer
- Department of Psychiatry, University of Connecticut, Farmington, CT 06030, USA
| | - Victor Hesselbrock
- Department of Psychiatry, University of Connecticut, Farmington, CT 06030, USA
| | - Grace Chan
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA
- Department of Psychiatry, University of Connecticut, Farmington, CT 06030, USA
| | - John Kramer
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Dongbing Lai
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah Hartz
- Department of Psychiatry, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Laura J Bierut
- Department of Psychiatry, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Vivia V McCutcheon
- Department of Psychiatry, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Kathleen K Bucholz
- Department of Psychiatry, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Danielle M Dick
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Marc A Schuckit
- Department of Psychiatry, University of California, San Diego, CA 92103, USA
| | | | - Bernice Porjesz
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| |
Collapse
|
22
|
Salsinha AS, Socodato R, Rodrigues A, Vale-Silva R, Relvas JB, Pintado M, Rodríguez-Alcalá LM. Potential of omega-3 and conjugated fatty acids to control microglia inflammatory imbalance elicited by obesogenic nutrients. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159331. [PMID: 37172801 DOI: 10.1016/j.bbalip.2023.159331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/05/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
High-fat diet-induced obesity detrimentally affects brain function by inducing chronic low-grade inflammation. This neuroinflammation is, at least in part, likely to be mediated by microglia, which are the main immune cell population in the brain. Microglia express a wide range of lipid-sensitive receptors and their activity can be modulated by fatty acids that cross the blood-brain barrier. Here, by combining live cell imaging and FRET technology we assessed how different fatty acids modulate microglia activity. We demonstrate that the combined action of fructose and palmitic acid induce Ikβα degradation and nuclear translocation of the p65 subunit nuclear factor kB (NF-κB) in HCM3 human microglia. Such obesogenic nutrients also lead to reactive oxygen species production and LynSrc activation (critical regulators of microglia inflammation). Importantly, short-time exposure to omega-3 (EPA and DHA), CLA and CLNA are sufficient to abolish NF-κB pathway activation, suggesting a potential neuroprotective role. Omega-3 and CLA also show an antioxidant potential by inhibiting reactive oxygen species production, and the activation of LynSrc in microglia. Furthermore, using chemical agonists (TUG-891) and antagonists (AH7614) of GPR120/FFA4, we demonstrated that omega-3, CLA and CLNA inhibition of the NF-κB pathway is mediated by this receptor, while omega-3 and CLA antioxidant potential occurs through different signaling mechanisms.
Collapse
Affiliation(s)
- A S Salsinha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - R Socodato
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - A Rodrigues
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - R Vale-Silva
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - J B Relvas
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - L M Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
23
|
Jiang M, Jang SE, Zeng L. The Effects of Extrinsic and Intrinsic Factors on Neurogenesis. Cells 2023; 12:cells12091285. [PMID: 37174685 PMCID: PMC10177620 DOI: 10.3390/cells12091285] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
In the mammalian brain, neurogenesis is maintained throughout adulthood primarily in two typical niches, the subgranular zone (SGZ) of the dentate gyrus and the subventricular zone (SVZ) of the lateral ventricles and in other nonclassic neurogenic areas (e.g., the amygdala and striatum). During prenatal and early postnatal development, neural stem cells (NSCs) differentiate into neurons and migrate to appropriate areas such as the olfactory bulb where they integrate into existing neural networks; these phenomena constitute the multistep process of neurogenesis. Alterations in any of these processes impair neurogenesis and may even lead to brain dysfunction, including cognitive impairment and neurodegeneration. Here, we first summarize the main properties of mammalian neurogenic niches to describe the cellular and molecular mechanisms of neurogenesis. Accumulating evidence indicates that neurogenesis plays an integral role in neuronal plasticity in the brain and cognition in the postnatal period. Given that neurogenesis can be highly modulated by a number of extrinsic and intrinsic factors, we discuss the impact of extrinsic (e.g., alcohol) and intrinsic (e.g., hormones) modulators on neurogenesis. Additionally, we provide an overview of the contribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection to persistent neurological sequelae such as neurodegeneration, neurogenic defects and accelerated neuronal cell death. Together, our review provides a link between extrinsic/intrinsic factors and neurogenesis and explains the possible mechanisms of abnormal neurogenesis underlying neurological disorders.
Collapse
Affiliation(s)
- Mei Jiang
- Department of Human Anatomy, Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Dongguan Campus, Guangdong Medical University, Dongguan 523808, China
| | - Se Eun Jang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
- Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore 169857, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, 11 Mandalay Road, Singapore 308232, Singapore
| |
Collapse
|
24
|
Wei H, Yu C, Zhang C, Ren Y, Guo L, Wang T, Chen F, Li Y, Zhang X, Wang H, Liu J. Butyrate ameliorates chronic alcoholic central nervous damage by suppressing microglia-mediated neuroinflammation and modulating the microbiome-gut-brain axis. Biomed Pharmacother 2023; 160:114308. [PMID: 36709599 DOI: 10.1016/j.biopha.2023.114308] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Alcohol abuse triggers neuroinflammation, leading to neuronal damage and further memory and cognitive impairment. Few satisfactory advances have been made in the management of alcoholic central nervous impairment. Therefore, novel and more practical treatment options are urgently needed. Butyrate, a crucial metabolite of short-chain fatty acids (SCFAs), has been increasingly demonstrated to protect against numerous metabolic diseases. However, the impact of butyrate on chronic alcohol consumption-induced central nervous system (CNS) lesions remains unknown. METHODS In this study, we assessed the possible effects and underlying mechanisms of butyrate on the attenuation of alcohol-induced CNS injury in mice. Firstly, sixty female C57BL/6 J mice were randomly divided into 4 groups: pair-fed (PF) group (PF/CON), alcohol-fed (AF) group (AF/CON), PF with sodium butyrate (NaB) group (PF/NaB) and AF with NaB group (AF/NaB). Each group was fed a modified Lieber-DeCarli liquid diet with or without alcohol. After six weeks of feeding, the mice were euthanized and the associated indicators were investigated. RESULTS As indicated by the behavioral tests and brain morphology, dietary NaB administration significantly ameliorated aberrant behaviors, including locomotor hypoactivity, anxiety disorder, depressive behavior, impaired learning, spatial recognition memory, and effectively reduced chronic alcoholic central nervous system damage. To further understand the underlying mechanisms, microglia-mediated inflammation and the associated M1/M2 polarization were measured separately. Firstly, pro-inflammatory TNF-α, IL-1β, and IL-6 in brain and peripheral blood circulation were decreased, but IL-10 were increased in the AF/NaB group compared with the AF/CON group. Consistently, the abnormal proportions of activated and resting microglial cells in the hippocampus and cortex regions after excessive alcohol consumption were significantly reduced with NaB treatment. Moreover, the rectification of microglia polarization (M1/M2) imbalance was found after NaB administration via binding GPR109A, up-regulating the expression of PPAR-γ and down-regulating TLR4/NF-κB activation. In addition to the direct suppression of neuroinflammation, intriguingly, dietary NaB intervention remarkably increased the levels of intestinal tight junction protein occludin and gut morphological barrier, attenuated the levels of serum lipopolysaccharide (LPS) and dysbiosis of gut microbiota, suggesting that NaB supplementation effectively improved the integrity and permeability of gut microecology. Finally, the neurotransmitters including differential Tryptophan (Trp) and Kynurenine (Kyn) were found with dietary NaB administration, which showed significantly altered and closely correlated with the gut microbiota composition, demonstrating the complex interactions in the microbiome-gut-brain axis involved in the efficacy of dietary NaB therapy for alcoholic CNS lesions. CONCLUSION Dietary microbial metabolite butyrate supplementation ameliorates chronic alcoholic central nervous damage and improves related memory and cognitive functions through suppressing microglia-mediated neuroinflammation by GPR109A/PPAR-γ/TLR4-NF-κB signaling pathway and modulating microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Huiling Wei
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Chunyang Yu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Chun Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Yi Ren
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Li Guo
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Ting Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Feifei Chen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Yiwei Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Hao Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Juan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
25
|
Perez RF, Conner KE, Erickson MA, Nabatanzi M, Huffman KJ. Alcohol and lactation: Developmental deficits in a mouse model. Front Neurosci 2023; 17:1147274. [PMID: 36992847 PMCID: PMC10040541 DOI: 10.3389/fnins.2023.1147274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
It is well documented that prenatal ethanol exposure via maternal consumption of alcohol during pregnancy alters brain and behavioral development in offspring. Thus, the Centers for Disease Control (CDC) advises against maternal alcohol consumption during pregnancy. However, little emphasis has been placed on educating new parents about alcohol consumption while breastfeeding. This is partly due to a paucity of research on lactational ethanol exposure (LEE) effects in children; although, it has been shown that infants exposed to ethanol via breast milk frequently present with reduced body mass, low verbal IQ scores, and altered sleeping patterns. As approximately 36% of breastfeeding mothers in the US consume alcohol, continued research in this area is critical. Our study employed a novel murine LEE model, where offspring were exposed to ethanol via nursing from postnatal day (P) 6 through P20, a period correlated with infancy in humans. Compared to controls, LEE mice had reduced body weights and neocortical lengths at P20 and P30. Brain weights were also reduced in both ages in males, and at P20 for females, however, female brain weights recovered to control levels by P30. We investigated neocortical features and found that frontal cortex thickness was reduced in LEE males compared to controls. Analyses of dendritic spines in the prelimbic subdivision of medial prefrontal cortex revealed a trend of reduced densities in LEE mice. Results of behavioral tests suggest that LEE mice engage in higher risk-taking behavior, show abnormal stress regulation, and exhibit increased hyperactivity. In summary, our data describe potential adverse brain and behavioral developmental outcomes due to LEE. Thus, women should be advised to refrain from consuming alcohol during breastfeeding until additional research can better guide recommendations of safe maternal practices in early infancy.
Collapse
Affiliation(s)
- Roberto F. Perez
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Kathleen E. Conner
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA, United States
| | - Michael A. Erickson
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Mirembe Nabatanzi
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Kelly J. Huffman
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Kelly J. Huffman,
| |
Collapse
|
26
|
Shi G, Zhang C, Li G, Wang K, Cai Q, Huang M. Atrazine induces phagocytotic dysfunction of microglia depends on nucleocytoplasmic translocation of acetylated HMGB1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114583. [PMID: 36736232 DOI: 10.1016/j.ecoenv.2023.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Atrazine (ATR) is a widely applied herbicide which was named an environmental endocrine disrupting chemical (EDC). Increasing evidence indicates ATR causes neurotoxic effects resulting in central nervous system (CNS) disease. As the primary immunocytes in the CNS, microglia cells carry out their phagocytosis to maintain the CNS microenvironment by preventing damage from healthy cells. However, the mechanism in which ATR affects the phagocytic function of microglia remains unclear. The present study was designed to investigate the effect of ATR on the phagocytosis of microglia. BV-2 cells and primary microglia selected as microglial models in which BV-2 cells were administrated by ATR at different concentrations (0, 4, 8, 16 μM) for 24 h. Results demonstrated ATR dose-dependently increased the expression of ionized calcium binding adapter molecule 1 (Iba-1), indicating that microglia were activated. Microglial phagocytotic activity induced by ATR fluctuated at the different time points, accompanied by fluctuations in membrane receptor MERTK and cytoplasmic lysosomal marker LAMP1 (two markers related to cell phagocytosis). In this period, the expression of iNOS gradually increased. A mechanistic study further demonstrated that the translocation of High Mobility Group Protein-B1 (HMGB1) from nucleus to cytoplasm in the BV-2 and primary microglial cells induced by ATR, and the process showed a positive correlation with phagocytosis activity of BV-2 cells induced by ATR (r = 0.8030, P = 0.05; α = 0.1). ATR was also shown to spur the acetylation of HMGB1 by breaking the balance between acetylase P300 and deacetylase SIRT1. Unexpectedly, the inhibition of acetylating HMGB1 by resveratrol (Res) was effectively retained by HMGB1 in the nucleus, reversed the SIRT1 and MERTK expression, and enhanced the phagocytosis activity in BV-2 cells. Our results suggested that ATR exposure influenced microglial phagocytosis by acetylating HMGB1 further translocated it in the nucleoplasm.
Collapse
Affiliation(s)
- Ge Shi
- School of Public Health and Management, Ningxia Medical University, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Chunhui Zhang
- School of Public Health and Management, Ningxia Medical University, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Guoliang Li
- School of Public Health and Management, Ningxia Medical University, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Kaidong Wang
- School of Public Health and Management, Ningxia Medical University, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Qian Cai
- School of Public Health and Management, Ningxia Medical University, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China.
| | - Min Huang
- School of Public Health and Management, Ningxia Medical University, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
27
|
CB2R activation ameliorates late adolescent chronic alcohol exposure-induced anxiety-like behaviors during withdrawal by preventing morphological changes and suppressing NLRP3 inflammasome activation in prefrontal cortex microglia in mice. Brain Behav Immun 2023; 110:60-79. [PMID: 36754245 DOI: 10.1016/j.bbi.2023.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/08/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Chronic alcohol exposure (CAE) during late adolescence increases the risk of anxiety development. Alcohol-induced prefrontal cortex (PFC) microglial activation, characterized by morphological changes and increased associations with neurons, plays a critical role in the pathogenesis of anxiety. Alcohol exposure increases NLRP3 inflammasome expression, increasing cytokine secretion by activated microglia. Cannabinoid type 2 receptor (CB2R), an essential receptor of the endocannabinoid system, regulates microglial activation and neuroinflammatory reactions. We aimed to investigate the role of CB2R activation in ameliorating late adolescent CAE-induced anxiety-like behaviors and microglial activation in C57BL/6J mice. METHODS Six-week-old C57BL/6J mice were acclimated for 7 days and then were administered alcohol by gavage (4 g/kg, 25 % w/v) for 28 days. The mice were intraperitoneally injected with the specific CB2R agonist AM1241 1 h before alcohol treatment. Anxiety-like behaviors during withdrawal were assessed by open field test and elevated plus maze test 24 h after the last alcohol administration. Microglial activation, microglia-neuron interactions, and CB2R and NLRP3 inflammasome-related molecule expression in the PFC were measured using immunofluorescence, immunohistochemical, qPCR, and Western blotting assays. Microglial morphology was evaluated by Sholl analysis and the cell body-to-total cell size index. Additionally, N9 microglia were activated by LPS in vitro, and the effects of AM1241 on NLRP3 and N9 microglial activation were investigated. RESULTS After CAE, mice exhibited severe anxiety-like behaviors during withdrawal. CAE induced obvious microglia-neuron associations, and increased expression of microglial activation markers, CB2R, and NLRP3 inflammasome-related molecules in the PFC. Microglia also showed marked filament retraction and reduction and cell body enlargement after CAE. AM1241 treatment ameliorated anxiety-like behaviors in CAE model mice, and it prevented microglial morphological changes, reduced microglial activation marker expression, and suppressed the microglial NLRP3 inflammasome activation and proinflammatory cytokine secretion induced by CAE. AM1241 suppressed the LPS-induced increase in NLRP3 inflammasome-related molecules, IL-1β release, and M1 phenotype markers (iNOS and CD86) in N9 cell, which was reversed by CB2R antagonist treatment. CONCLUSIONS CAE caused anxiety-like behaviors in late adolescent mice at least partly by inducing microglial activation and increasing microglia-neuron associations in the PFC. CB2R activation ameliorated these effects by preventing morphological changes and suppressing NLRP3 inflammasome activation in PFC microglia.
Collapse
|
28
|
Portugal CC, Almeida TO, Socodato R, Relvas JB. Src family kinases (SFKs): critical regulators of microglial homeostatic functions and neurodegeneration in Parkinson's and Alzheimer's diseases. FEBS J 2022; 289:7760-7775. [PMID: 34510775 DOI: 10.1111/febs.16197] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 08/03/2021] [Accepted: 09/10/2021] [Indexed: 01/14/2023]
Abstract
c-Src was the first protein kinase to be described as capable of phosphorylating tyrosine residues. Subsequent identification of other tyrosine-phosphorylating protein kinases with a similar structure to c-Src gave rise to the concept of Src family kinases (SFKs). Microglia are the resident innate immune cell population of the CNS. Under physiological conditions, microglia actively participate in brain tissue homeostasis, continuously patrolling the neuronal parenchyma and exerting neuroprotective actions. Activation of pathogen-associated molecular pattern (PAMP) and damage-associated molecular pattern (DAMP) receptors induces microglial proliferation, migration toward pathological foci, phagocytosis, and changes in gene expression, concurrent with the secretion of cytokines, chemokines, and growth factors. A significant body of literature shows that SFK stimulation positively associates with microglial activation and neuropathological conditions, including Alzheimer's and Parkinson's diseases. Here, we review essential microglial homeostatic functions regulated by SFKs, including phagocytosis, environmental sensing, and secretion of inflammatory mediators. In addition, we discuss the potential of SFK modulation for microglial homeostasis in Parkinson's and Alzheimer's diseases.
Collapse
Affiliation(s)
- Camila C Portugal
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| | - Tiago O Almeida
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Doutoramento em Ciências Biomédicas, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Renato Socodato
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Department of Biomedicine, Faculty of Medicine, University of Porto, Portugal
| |
Collapse
|
29
|
Evaluation of the effect of alpha-tocopherol on anxiety and the neuroinflammatory process during alcohol withdrawal in a model of forced and chronic self-administration of liquid diet containing ethanol: Behavioral and neurochemical evidence. Alcohol 2022; 104:31-44. [PMID: 35987315 DOI: 10.1016/j.alcohol.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/13/2022] [Accepted: 08/06/2022] [Indexed: 01/26/2023]
Abstract
Alcoholism affects about 2 billion people worldwide. Withdrawal causes a neuroinflammatory response that increases anxiety. α-tocopherol is the most important antioxidant that has its in vivo action currently known. Therefore, this study aimed to evaluate the effect of α-tocopherol on the neuroinflammatory process in brain regions involved in anxiety and its anxiolytic potential during alcohol withdrawal. For this, male Wistar rats were divided into four groups and submitted to a procedure of forced and chronic self-administration of liquid diet containing 6% and 8% ethanol for 15 days, followed by abrupt interruption of treatment. Animals in the control group received the liquid diet without ethanol. Twenty-four or 48 h after ethanol discontinuation, and 30 min after the last administration of α-tocopherol or saline, animals were evaluated in the elevated plus maze, light/dark box, and open field tests. At the end of the tests, each experimental group underwent brain tissue collection for analysis of cytokine levels. The results showed that: alcohol induces the neuroinflammatory process and anxiety; the stress generated by withdrawal can induce oxidative stress, which alters the production of inflammatory cytokines in the amygdaloid nuclei (AN) and medial hypothalamic nucleus (mHN); α-tocopherol exhibited anxiolytic and anti-inflammatory activity, attenuating the anxious behavior of abstinent animals and reducing neuroinflammation in AN and mHN; and the intensity of the anxiolytic and anti-inflammatory effect of α-tocopherol is dose-dependent. These results identify α-tocopherol as a potential therapeutic target supporting the fight against relapse during alcohol withdrawal.
Collapse
|
30
|
Ramos A, Joshi RS, Szabo G. Innate immune activation: Parallels in alcohol use disorder and Alzheimer’s disease. Front Mol Neurosci 2022; 15:910298. [PMID: 36157070 PMCID: PMC9505690 DOI: 10.3389/fnmol.2022.910298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Alcohol use disorder is associated with systemic inflammation and organ dysfunction especially in the liver and the brain. For more than a decade, studies have highlighted alcohol abuse-mediated impairment of brain function and acceleration of neurodegeneration through inflammatory mechanisms that directly involve innate immune cells. Furthermore, recent studies indicate overlapping genetic risk factors between alcohol use and neurodegenerative disorders, specifically regarding the role of innate immunity in the pathomechanisms of both areas. Considering the pressing need for a better understanding of the relevance of alcohol abuse in dementia progression, here we summarize the molecular mechanisms of neuroinflammation observed in alcohol abuse and Alzheimer’s disease, the most common cause of dementia. In addition, we highlight mechanisms that are already established in the field of Alzheimer’s disease that may be relevant to explore in alcoholism to better understand alcohol mediated neurodegeneration and dementia, including the relevance of the liver-brain axis.
Collapse
Affiliation(s)
- Adriana Ramos
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Radhika S. Joshi
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- *Correspondence: Gyongyi Szabo,
| |
Collapse
|
31
|
Mineur YS, Garcia-Rivas V, Thomas MA, Soares AR, McKee SA, Picciotto MR. Sex differences in stress-induced alcohol intake: a review of preclinical studies focused on amygdala and inflammatory pathways. Psychopharmacology (Berl) 2022; 239:2041-2061. [PMID: 35359158 PMCID: PMC9704113 DOI: 10.1007/s00213-022-06120-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023]
Abstract
Clinical studies suggest that women are more likely than men to relapse to alcohol drinking in response to stress; however, the mechanisms underlying this sex difference are not well understood. A number of preclinical behavioral models have been used to study stress-induced alcohol intake. Here, we review paradigms used to study effects of stress on alcohol intake in rodents, focusing on findings relevant to sex differences. To date, studies of sex differences in stress-induced alcohol drinking have been somewhat limited; however, there is evidence that amygdala-centered circuits contribute to effects of stress on alcohol seeking. In addition, we present an overview of inflammatory pathways leading to microglial activation that may contribute to alcohol-dependent behaviors. We propose that sex differences in neuronal function and inflammatory signaling in circuits centered on the amygdala are involved in sex-dependent effects on stress-induced alcohol seeking and suggest that this is an important area for future studies.
Collapse
Affiliation(s)
- Yann S Mineur
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
| | - Vernon Garcia-Rivas
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
| | - Merrilee A Thomas
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
| | - Alexa R Soares
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
- Yale Interdepartmental Neuroscience Program, New Haven, CT, USA
| | - Sherry A McKee
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA.
- Yale Interdepartmental Neuroscience Program, New Haven, CT, USA.
| |
Collapse
|
32
|
Chronic exposure of alcohol triggers microglia-mediated synaptic elimination inducing cognitive impairment. Exp Neurol 2022; 353:114061. [DOI: 10.1016/j.expneurol.2022.114061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/10/2022] [Accepted: 03/27/2022] [Indexed: 11/21/2022]
|
33
|
Canedo T, Portugal CC, Socodato R, Almeida TO, Terceiro AF, Bravo J, Silva AI, Magalhães JD, Guerra-Gomes S, Oliveira JF, Sousa N, Magalhães A, Relvas JB, Summavielle T. Astrocyte-derived TNF and glutamate critically modulate microglia activation by methamphetamine. Neuropsychopharmacology 2021; 46:2358-2370. [PMID: 34400780 PMCID: PMC8581027 DOI: 10.1038/s41386-021-01139-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 07/24/2021] [Indexed: 02/06/2023]
Abstract
Methamphetamine (Meth) is a powerful illicit psychostimulant, widely used for recreational purposes. Besides disrupting the monoaminergic system and promoting oxidative brain damage, Meth also causes neuroinflammation, contributing to synaptic dysfunction and behavioral deficits. Aberrant activation of microglia, the largest myeloid cell population in the brain, is a common feature in neurological disorders triggered by neuroinflammation. In this study, we investigated the mechanisms underlying the aberrant activation of microglia elicited by Meth in the adult mouse brain. We found that binge Meth exposure caused microgliosis and disrupted risk assessment behavior (a feature that usually occurs in individuals who abuse Meth), both of which required astrocyte-to-microglia crosstalk. Mechanistically, Meth triggered a detrimental increase of glutamate exocytosis from astrocytes (in a process dependent on TNF production and calcium mobilization), promoting microglial expansion and reactivity. Ablating TNF production, or suppressing astrocytic calcium mobilization, prevented Meth-elicited microglia reactivity and re-established risk assessment behavior as tested by elevated plus maze (EPM). Overall, our data indicate that glial crosstalk is critical to relay alterations caused by acute Meth exposure.
Collapse
Affiliation(s)
- Teresa Canedo
- grid.5808.50000 0001 1503 7226Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Camila Cabral Portugal
- Glial Cell Biology Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Renato Socodato
- grid.5808.50000 0001 1503 7226Glial Cell Biology Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Tiago Oliveira Almeida
- grid.5808.50000 0001 1503 7226Glial Cell Biology Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana Filipa Terceiro
- grid.5808.50000 0001 1503 7226Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Joana Bravo
- grid.5808.50000 0001 1503 7226Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana Isabel Silva
- grid.5808.50000 0001 1503 7226Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - João Duarte Magalhães
- grid.5808.50000 0001 1503 7226Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Sónia Guerra-Gomes
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - João Filipe Oliveira
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal ,grid.410922.c0000 0001 0180 6901IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence, Barcelos, Portugal
| | - Nuno Sousa
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Magalhães
- grid.5808.50000 0001 1503 7226Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - João Bettencourt Relvas
- grid.5808.50000 0001 1503 7226Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal ,grid.5808.50000 0001 1503 7226Glial Cell Biology Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Teresa Summavielle
- Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal. .,ESS.PP, Escola Superior de Saúde do Politécnico do Porto, Porto, Portugal.
| |
Collapse
|
34
|
Zhang YQ, Lin WP, Huang LP, Zhao B, Zhang CC, Yin DM. Dopamine D2 receptor regulates cortical synaptic pruning in rodents. Nat Commun 2021; 12:6444. [PMID: 34750364 PMCID: PMC8576001 DOI: 10.1038/s41467-021-26769-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022] Open
Abstract
Synaptic pruning during adolescence is important for appropriate neurodevelopment and synaptic plasticity. Aberrant synaptic pruning may underlie a variety of brain disorders such as schizophrenia, autism and anxiety. Dopamine D2 receptor (Drd2) is associated with several neuropsychiatric diseases and is the target of some antipsychotic drugs. Here we generate self-reporting Drd2 heterozygous (SR-Drd2+/-) rats to simultaneously visualize Drd2-positive neurons and downregulate Drd2 expression. Time course studies on the developing anterior cingulate cortex (ACC) from control and SR-Drd2+/- rats reveal important roles of Drd2 in regulating synaptic pruning rather than synapse formation. Drd2 also regulates LTD, a form of synaptic plasticity which includes some similar cellular/biochemical processes as synaptic pruning. We further demonstrate that Drd2 regulates synaptic pruning via cell-autonomous mechanisms involving activation of mTOR signaling. Deficits of Drd2-mediated synaptic pruning in the ACC during adolescence lead to hyper-glutamatergic function and anxiety-like behaviors in adulthood. Taken together, our results demonstrate important roles of Drd2 in cortical synaptic pruning.
Collapse
Affiliation(s)
- Ya-Qiang Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, 200062, Shanghai, China
| | - Wei-Peng Lin
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, 200062, Shanghai, China
- Joint Translational Science and Technology Research Institute, East China Normal University, 200062, Shanghai, China
| | - Li-Ping Huang
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, 200062, Shanghai, China
| | - Bing Zhao
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, 200062, Shanghai, China
| | - Cheng-Cheng Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, 200062, Shanghai, China
| | - Dong-Min Yin
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, 200062, Shanghai, China.
| |
Collapse
|
35
|
Egervari G, Siciliano CA, Whiteley EL, Ron D. Alcohol and the brain: from genes to circuits. Trends Neurosci 2021; 44:1004-1015. [PMID: 34702580 DOI: 10.1016/j.tins.2021.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 01/27/2023]
Abstract
Alcohol use produces wide-ranging and diverse effects on the central nervous system. It influences intracellular signaling mechanisms, leading to changes in gene expression, chromatin remodeling, and translation. As a result of these molecular alterations, alcohol affects the activity of neuronal circuits. Together, these mechanisms produce long-lasting cellular adaptations in the brain that in turn can drive the development and maintenance of alcohol use disorder (AUD). We provide an update on alcohol research, focusing on multiple levels of alcohol-induced adaptations, from intracellular changes to changes in neural circuits. A better understanding of how alcohol affects these diverse and interlinked mechanisms may lead to the identification of novel therapeutic targets and to the development of much-needed novel and efficacious treatment options.
Collapse
Affiliation(s)
- Gabor Egervari
- Department of Cell and Developmental Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37203, USA.
| | - Ellanor L Whiteley
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
36
|
Genetically encoded probiotic EcN 1917 alleviates alcohol-induced acute liver injury and restore gut microbiota homeostasis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
37
|
Kapoor M, Chao MJ, Johnson EC, Novikova G, Lai D, Meyers JL, Schulman J, Nurnberger JI, Porjesz B, Liu Y, Foroud T, Edenberg HJ, Marcora E, Agrawal A, Goate A. Multi-omics integration analysis identifies novel genes for alcoholism with potential overlap with neurodegenerative diseases. Nat Commun 2021; 12:5071. [PMID: 34417470 PMCID: PMC8379159 DOI: 10.1038/s41467-021-25392-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/03/2021] [Indexed: 11/27/2022] Open
Abstract
Identification of causal variants and genes underlying genome-wide association study (GWAS) loci is essential to understand the biology of alcohol use disorder (AUD) and drinks per week (DPW). Multi-omics integration approaches have shown potential for fine mapping complex loci to obtain biological insights to disease mechanisms. In this study, we use multi-omics approaches, to fine-map AUD and DPW associations at single SNP resolution to demonstrate that rs56030824 on chromosome 11 significantly reduces SPI1 mRNA expression in myeloid cells and lowers risk for AUD and DPW. Our analysis also identifies MAPT as a candidate causal gene specifically associated with DPW. Genes prioritized in this study show overlap with causal genes associated with neurodegenerative disorders. Multi-omics integration analyses highlight, genetic similarities and differences between alcohol intake and disordered drinking, suggesting molecular heterogeneity that might inform future targeted functional and cross-species studies.
Collapse
Affiliation(s)
- Manav Kapoor
- Departments of Genetics and Genomic Sciences and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Michael J Chao
- Departments of Genetics and Genomic Sciences and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Gloriia Novikova
- Departments of Genetics and Genomic Sciences and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jacquelyn L Meyers
- Department of Psychiatry, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Jessica Schulman
- Departments of Genetics and Genomic Sciences and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bernice Porjesz
- Department of Psychiatry, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Howard J Edenberg
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edoardo Marcora
- Departments of Genetics and Genomic Sciences and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Alison Goate
- Departments of Genetics and Genomic Sciences and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
38
|
Andoh M, Koyama R. Assessing Microglial Dynamics by Live Imaging. Front Immunol 2021; 12:617564. [PMID: 33763064 PMCID: PMC7982483 DOI: 10.3389/fimmu.2021.617564] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Microglia are highly dynamic in the brain in terms of their ability to migrate, proliferate, and phagocytose over the course of an individual's life. Real-time imaging is a useful tool to examine how microglial behavior is regulated and how it affects the surrounding environment. However, microglia are sensitive to environmental stimuli, so they possibly change their state during live imaging in vivo, mainly due to surgical damage, and in vitro due to various effects associated with culture conditions. Therefore, it is difficult to perform live imaging without compromising the properties of the microglia under physiological conditions. To overcome this barrier, various experimental conditions have been developed; recently, it has become possible to perform live imaging of so-called surveillant microglia in vivo, ex vivo, and in vitro, although there are various limitations. Now, we can choose in vivo, ex vivo, or in vitro live imaging systems according to the research objective. In this review, we discuss the advantages and disadvantages of each experimental system and outline the physiological significance and molecular mechanisms of microglial behavior that have been elucidated by live imaging.
Collapse
Affiliation(s)
- Megumi Andoh
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
39
|
Portugal CC, da Encarnação TG, Sagrillo MA, Pereira MR, Relvas JB, Socodato R, Paes-de-Carvalho R. Activation of adenosine A3 receptors regulates vitamin C transport and redox balance in neurons. Free Radic Biol Med 2021; 163:43-55. [PMID: 33307167 DOI: 10.1016/j.freeradbiomed.2020.11.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/01/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022]
Abstract
Adenosine is an important neuromodulator in the CNS, regulating neuronal survival and synaptic transmission. The antioxidant ascorbate (the reduced form of vitamin C) is concentrated in CNS neurons through a sodium-dependent transporter named SVCT2 and participates in several CNS processes, for instance, the regulation of glutamate receptors functioning and the synthesis of neuromodulators. Here we studied the interplay between the adenosinergic system and ascorbate transport in neurons. We found that selective activation of A3, but not of A1 or A2a, adenosine receptors modulated ascorbate transport, decreasing intracellular ascorbate content. Förster resonance energy transfer (FRET) analyses showed that A3 receptors associate with the ascorbate transporter SVCT2, suggesting tight signaling compartmentalization between A3 receptors and SVCT2. The activation of A3 receptors increased ascorbate release in an SVCT2-dependent manner, which largely altered the neuronal redox status without interfering with cell death, glycolytic metabolism, and bioenergetics. Overall, by regulating vitamin C transport, the adenosinergic system (via activation of A3 receptors) can regulate ascorbate bioavailability and control the redox balance in neurons.
Collapse
Affiliation(s)
- Camila C Portugal
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
| | | | - Mayara A Sagrillo
- Department of Neurobiology, Biology Institute, Fluminense Federal University, Niterói, Brazil
| | - Mariana R Pereira
- Program of Neurosciences, Fluminense Federal University, Niterói, Brazil; Department of Neurobiology, Biology Institute, Fluminense Federal University, Niterói, Brazil
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Renato Socodato
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Roberto Paes-de-Carvalho
- Program of Neurosciences, Fluminense Federal University, Niterói, Brazil; Department of Neurobiology, Biology Institute, Fluminense Federal University, Niterói, Brazil.
| |
Collapse
|