1
|
Stieglitz E, Lee AG, Angus SP, Davis C, Barkauskas DA, Hall D, Kogan SC, Meyer J, Rhodes SD, Tasian SK, Xuei X, Shannon K, Loh ML, Fox E, Weigel BJ. Efficacy of the Allosteric MEK Inhibitor Trametinib in Relapsed and Refractory Juvenile Myelomonocytic Leukemia: a Report from the Children's Oncology Group. Cancer Discov 2024; 14:1590-1598. [PMID: 38867349 PMCID: PMC11374478 DOI: 10.1158/2159-8290.cd-23-1376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Juvenile myelomonocytic leukemia (JMML) is a hematologic malignancy of young children caused by mutations that increase Ras signaling output. Hematopoietic stem cell transplantation (HSCT) is a potentially curative treatment, but patients with relapsed or refractory (advanced) disease have dismal outcomes. This phase II trial evaluated the safety and efficacy of trametinib, an oral MEK1/2 inhibitor, in patients with advanced JMML. Ten infants and children were enrolled, and the objective response rate was 50%. Four patients with refractory disease proceeded to HSCT after receiving trametinib. Three additional patients completed all 12 cycles permitted on study and continue to receive off-protocol trametinib without HSCT. The remaining three patients had progressive disease with two demonstrating molecular evolution by the end of cycle 2. Transcriptomic and proteomic analyses provided novel insights into the mechanisms of response and resistance to trametinib in JMML. ClinicalTrials.gov Identifier: NCT03190915. Significance: Trametinib was safe and effective in young children with relapsed or refractory JMML, a lethal disease with poor survival rates. Seven of 10 patients completed the maximum 12 cycles of therapy or used trametinib as a bridge to HSCT and are alive with a median follow-up of 24 months. See related commentary by Ben-Crentsil and Padron, p. 1574.
Collapse
Affiliation(s)
- Elliot Stieglitz
- Department of Pediatrics, Benioff Children’s Hospitals, University of California San Francisco, San Francisco, CA, USA
| | - Alex G. Lee
- Department of Pediatrics, Benioff Children’s Hospitals, University of California San Francisco, San Francisco, CA, USA
| | - Steven P. Angus
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher Davis
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - David Hall
- Children Oncology Group Operations and Data Center, Monrovia, CA, USA
| | - Scott C. Kogan
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Julia Meyer
- Department of Pediatrics, Benioff Children’s Hospitals, University of California San Francisco, San Francisco, CA, USA
| | - Steven D. Rhodes
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah K. Tasian
- Children’s Hospital of Philadelphia, Division of Oncology and Center for Childhood Cancer Research and University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Xiaoling Xuei
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevin Shannon
- Department of Pediatrics, Benioff Children’s Hospitals, University of California San Francisco, San Francisco, CA, USA
| | - Mignon L. Loh
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute and Department Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA
| | - Elizabeth Fox
- St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | | |
Collapse
|
2
|
Lee AQ, Konishi H, Ijiri M, Li Y, Panigrahi A, Chien J, Satake N. Therapeutic efficacy of RAS inhibitor trametinib using a juvenile myelomonocytic leukemia patient-derived xenograft model. Pediatr Hematol Oncol 2024; 41:367-375. [PMID: 38647418 DOI: 10.1080/08880018.2024.2343688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/05/2024] [Accepted: 02/29/2024] [Indexed: 04/25/2024]
Abstract
Juvenile myelomonocytic leukemia (JMML) is an aggressive pediatric leukemia with few effective treatments and poor outcomes even after stem cell transplantation, the only current curative treatment. We developed a JMML patient-derived xenograft (PDX) mouse model and demonstrated the in vivo therapeutic efficacy and confirmed the target of trametinib, a RAS-RAF-MEK-ERK pathway inhibitor, in this model. A PDX model was created through transplantation of patient JMML cells into mice, up to the second generation, and successful engraftment was confirmed using flow cytometry. JMML PDX mice were treated with trametinib versus vehicle control, with a median survival of 194 days in the treatment group versus 124 days in the control group (p = 0.02). Trametinib's target as a RAS pathway inhibitor was verified by showing inhibition of ERK phosphorylation using immunoblot assays. In conclusion, trametinib monotherapy significantly prolongs survival in our JMML PDX model by inhibiting the RAS pathway. Our model can be effectively used for assessment of novel targeted treatments, including potential combination therapies, to improve JMML outcomes.
Collapse
Affiliation(s)
- Alex Q Lee
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, California, USA
| | - Hiroaki Konishi
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, California, USA
| | - Masami Ijiri
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, California, USA
| | - Yueju Li
- Department of Public Health Sciences, UC Davis, Davis, California, USA
| | - Arun Panigrahi
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, California, USA
| | - Jeremy Chien
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California, USA
| | - Noriko Satake
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
3
|
Pillay-Smiley N, Fletcher JS, de Blank P, Ratner N. Shedding New Light: Novel Therapies for Common Disorders in Children with Neurofibromatosis Type I. Pediatr Clin North Am 2023; 70:937-950. [PMID: 37704352 DOI: 10.1016/j.pcl.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Neurofibromatosis type I (NF1) is a common dominantly inherited disorder, and one of the most common of the RASopathies. Most individuals with NF1 develop plexiform neurofibromas and cutaneous neurofibromas, nerve tumors caused by NF1 loss of function in Schwann cells. Cell culture models and mouse models of NF1 are being used to test drug efficacy in preclinical trials, which led to Food and Drug Administration approval for use of MEK inhibitors to shrink most inoperable plexiform neurofibromas. This article details methods used for testing in preclinical models, and outlines newer models that may identify additional, curative, strategies.
Collapse
Affiliation(s)
- Natasha Pillay-Smiley
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-0731, USA; Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jonathan S Fletcher
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-0731, USA; Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Current Address: Division of Hematology-Oncology, University of Texas Southwestern, Dallas, TX, USA
| | - Peter de Blank
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-0731, USA; Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-0731, USA; Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
4
|
Pasupuleti SK, Chao K, Ramdas B, Kanumuri R, Palam LR, Liu S, Wan J, Annesley C, Loh ML, Stieglitz E, Burke MJ, Kapur R. Potential clinical use of azacitidine and MEK inhibitor combination therapy in PTPN11-mutated juvenile myelomonocytic leukemia. Mol Ther 2023; 31:986-1001. [PMID: 36739480 PMCID: PMC10124140 DOI: 10.1016/j.ymthe.2023.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare myeloproliferative neoplasm of childhood. The molecular hallmark of JMML is hyperactivation of the Ras/MAPK pathway with the most common cause being mutations in the gene PTPN11, encoding the protein tyrosine phosphatase SHP2. Current strategies for treating JMML include using the hypomethylating agent, 5-azacitidine (5-Aza) or MEK inhibitors trametinib and PD0325901 (PD-901), but none of these are curative as monotherapy. Utilizing an Shp2E76K/+ murine model of JMML, we show that the combination of 5-Aza and PD-901 modulates several hematologic abnormalities often seen in JMML patients, in part by reducing the burden of leukemic hematopoietic stem and progenitor cells (HSC/Ps). The reduced JMML features in drug-treated mice were associated with a decrease in p-MEK and p-ERK levels in Shp2E76K/+ mice treated with the combination of 5-Aza and PD-901. RNA-sequencing analysis revealed a reduction in several RAS and MAPK signaling-related genes. Additionally, a decrease in the expression of genes associated with inflammation and myeloid leukemia was also observed in Shp2E76K/+ mice treated with the combination of the two drugs. Finally, we report two patients with JMML and PTPN11 mutations treated with 5-Aza, trametinib, and chemotherapy who experienced a clinical response because of the combination treatment.
Collapse
Affiliation(s)
- Santhosh Kumar Pasupuleti
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA
| | - Karen Chao
- Department of Pediatrics, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Stanford University School of Medicine, Lucile Packard Children's Hospital, Palo Alto, CA, USA
| | - Baskar Ramdas
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA
| | - Rahul Kanumuri
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA
| | - Lakshmi Reddy Palam
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Michael J Burke
- Department of Pediatrics, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Reuben Kapur
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA; Department of Microbiology & Immunology, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA.
| |
Collapse
|
5
|
de Blank PMK, Gross AM, Akshintala S, Blakeley JO, Bollag G, Cannon A, Dombi E, Fangusaro J, Gelb BD, Hargrave D, Kim A, Klesse LJ, Loh M, Martin S, Moertel C, Packer R, Payne JM, Rauen KA, Rios JJ, Robison N, Schorry EK, Shannon K, Stevenson DA, Stieglitz E, Ullrich NJ, Walsh KS, Weiss BD, Wolters PL, Yohay K, Yohe ME, Widemann BC, Fisher MJ. MEK inhibitors for neurofibromatosis type 1 manifestations: Clinical evidence and consensus. Neuro Oncol 2022; 24:1845-1856. [PMID: 35788692 PMCID: PMC9629420 DOI: 10.1093/neuonc/noac165] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The wide variety of clinical manifestations of the genetic syndrome neurofibromatosis type 1 (NF1) are driven by overactivation of the RAS pathway. Mitogen-activated protein kinase kinase inhibitors (MEKi) block downstream targets of RAS. The recent regulatory approvals of the MEKi selumetinib for inoperable symptomatic plexiform neurofibromas in children with NF1 have made it the first medical therapy approved for this indication in the United States, the European Union, and elsewhere. Several recently published and ongoing clinical trials have demonstrated that MEKi may have potential benefits for a variety of other NF1 manifestations, and there is broad interest in the field regarding the appropriate clinical use of these agents. In this review, we present the current evidence regarding the use of existing MEKi for a variety of NF1-related manifestations, including tumor (neurofibromas, malignant peripheral nerve sheath tumors, low-grade glioma, and juvenile myelomonocytic leukemia) and non-tumor (bone, pain, and neurocognitive) manifestations. We discuss the potential utility of MEKi in related genetic conditions characterized by overactivation of the RAS pathway (RASopathies). In addition, we review practical treatment considerations for the use of MEKi as well as provide consensus recommendations regarding their clinical use from a panel of experts.
Collapse
Affiliation(s)
- Peter M K de Blank
- Department of Pediatrics, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrea M Gross
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Ashley Cannon
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Eva Dombi
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Jason Fangusaro
- Children's Hospital of Atlanta, Emory University and the Aflac Cancer Center, Atlanta, Georgia, USA
| | - Bruce D Gelb
- Department of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Darren Hargrave
- Department of Oncology, Great Ormond Street Hospital for Children, London, UK
| | - AeRang Kim
- Center for Neuroscience and Behavioral Medicine and Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - Laura J Klesse
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Mignon Loh
- Benioff Children's Hospital, University of California San Francisco, San Francisco, California, USA
| | - Staci Martin
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Christopher Moertel
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Roger Packer
- Center for Neuroscience and Behavioral Medicine and Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - Jonathan M Payne
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Katherine A Rauen
- Department of Pediatrics, University of California Davis, Sacramento, California, USA
| | - Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, Texas, USA
| | - Nathan Robison
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Elizabeth K Schorry
- Department of Pediatrics, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kevin Shannon
- Benioff Children's Hospital, University of California San Francisco, San Francisco, California, USA
| | - David A Stevenson
- Department of Pediatrics, Division of Medical Genetics, Stanford University, Stanford, California, USA
| | - Elliot Stieglitz
- Benioff Children's Hospital, University of California San Francisco, San Francisco, California, USA
| | - Nicole J Ullrich
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Karin S Walsh
- Center for Neuroscience and Behavioral Medicine and Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - Brian D Weiss
- Department of Pediatrics, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Pamela L Wolters
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Kaleb Yohay
- Department of Neurology and Pediatrics, New York University Grossman School of Medicine, New York, New York, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Michael J Fisher
- Division of Oncology, The Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
De Vos N, Hofmans M, Lammens T, De Wilde B, Van Roy N, De Moerloose B. Targeted therapy in juvenile myelomonocytic leukemia: Where are we now? Pediatr Blood Cancer 2022; 69:e29930. [PMID: 36094370 DOI: 10.1002/pbc.29930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/07/2022]
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare and aggressive clonal neoplasm of early childhood, classified as an overlap myeloproliferative/myelodysplastic neoplasm by the World Health Organization. In 90% of the patients with JMML, typical initiating mutations in the canonical Ras pathway genes NF1, PTPN11, NRAS, KRAS, and CBL can be identified. Hematopoietic stem cell transplantation (HSCT) currently is the established standard of care in most patients, although long-term survival is still only 50-60%. Given the limited therapeutic options and the important morbidity and mortality associated with HSCT, new therapeutic approaches are urgently needed. Hyperactivation of the Ras pathway as disease mechanism in JMML lends itself to the use of targeted therapy. Targeted therapy could play an important role in the future treatment of patients with JMML. This review presents a comprehensive overview of targeted therapies already developed and evaluated in vitro and in vivo in patients with JMML.
Collapse
Affiliation(s)
- Nele De Vos
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University, Ghent, Belgium
| | - Mattias Hofmans
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Tim Lammens
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bram De Wilde
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Nadine Van Roy
- Cancer Research Institute Ghent, Ghent, Belgium.,Center for Medical Genetics Ghent, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Barbara De Moerloose
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Genomic and Epigenomic Landscape of Juvenile Myelomonocytic Leukemia. Cancers (Basel) 2022; 14:cancers14051335. [PMID: 35267643 PMCID: PMC8909150 DOI: 10.3390/cancers14051335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Juvenile myelomonocytic leukemia (JMML) is a rare pediatric myelodysplastic/myeloproliferative neoplasm characterized by the constitutive activation of the RAS pathway. In spite of the recent progresses in the molecular characterization of JMML, this disease is still a clinical challenge due to its heterogeneity, difficult diagnosis, poor prognosis, and the lack of curative treatment options other than hematopoietic stem cell transplantation (HSCT). In this review, we will provide a detailed overview of the genetic and epigenetic alterations occurring in JMML, and discuss their clinical relevance in terms of disease prognosis and risk of relapse after HSCT. We will also present the most recent advances on novel preclinical and clinical therapeutic approaches directed against JMML molecular targets. Finally, we will outline future research perspectives to further explore the oncogenic mechanism driving JMML leukemogenesis and progression, with special attention to the application of single-cell next-generation sequencing technologies. Abstract Juvenile myelomonocytic leukemia (JMML) is a rare myelodysplastic/myeloproliferative neoplasm of early childhood. Most of JMML patients experience an aggressive clinical course of the disease and require hematopoietic stem cell transplantation, which is currently the only curative treatment. JMML is characterized by RAS signaling hyperactivation, which is mainly driven by mutations in one of five genes of the RAS pathway, including PTPN11, KRAS, NRAS, NF1, and CBL. These driving mutations define different disease subtypes with specific clinico-biological features. Secondary mutations affecting other genes inside and outside the RAS pathway contribute to JMML pathogenesis and are associated with a poorer prognosis. In addition to these genetic alterations, JMML commonly presents aberrant epigenetic profiles that strongly correlate with the clinical outcome of the patients. This observation led to the recent publication of an international JMML stratification consensus, which defines three JMML clinical groups based on DNA methylation status. Although the characterization of the genomic and epigenomic landscapes in JMML has significantly contributed to better understand the molecular mechanisms driving the disease, our knowledge on JMML origin, cell identity, and intratumor and interpatient heterogeneity is still scarce. The application of new single-cell sequencing technologies will be critical to address these questions in the future.
Collapse
|
8
|
Geissler K. Molecular Pathogenesis of Chronic Myelomonocytic Leukemia and Potential Molecular Targets for Treatment Approaches. Front Oncol 2021; 11:751668. [PMID: 34660314 PMCID: PMC8514979 DOI: 10.3389/fonc.2021.751668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
Numerous examples in oncology have shown that better understanding the pathophysiology of a malignancy may be followed by the development of targeted treatment concepts with higher efficacy and lower toxicity as compared to unspecific treatment. The pathophysiology of chronic myelomonocytic leukemia (CMML) is heterogenous and complex but applying different research technologies have yielded a better and more comprehensive understanding of this disease. At the moment treatment for CMML is largely restricted to the unspecific use of cytotoxic drugs and hypomethylating agents (HMA). Numerous potential molecular targets have been recently detected by preclinical research which may ultimately lead to treatment concepts that will provide meaningful benefits for certain subgroups of patients.
Collapse
Affiliation(s)
- Klaus Geissler
- Medical School, Sigmund Freud University, Vienna, Austria.,Department of Internal Medicine V with Hematology, Oncology and Palliative Care, Hospital Hietzing, Vienna, Austria
| |
Collapse
|
9
|
Induced Pluripotent Stem Cells to Model Juvenile Myelomonocytic Leukemia: New Perspectives for Preclinical Research. Cells 2021; 10:cells10092335. [PMID: 34571984 PMCID: PMC8465353 DOI: 10.3390/cells10092335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a malignant myeloproliferative disorder arising in infants and young children. The origin of this neoplasm is attributed to an early deregulation of the Ras signaling pathway in multipotent hematopoietic stem/progenitor cells. Since JMML is notoriously refractory to conventional cytostatic therapy, allogeneic hematopoietic stem cell transplantation remains the mainstay of curative therapy for most cases. However, alternative therapeutic approaches with small epigenetic molecules have recently entered the stage and show surprising efficacy at least in specific subsets of patients. Hence, the establishment of preclinical models to test novel agents is a priority. Induced pluripotent stem cells (IPSCs) offer an opportunity to imitate JMML ex vivo, after attempts to generate immortalized cell lines from primary JMML material have largely failed in the past. Several research groups have previously generated patient-derived JMML IPSCs and successfully differentiated these into myeloid cells with extensive phenotypic similarities to primary JMML cells. With infinite self-renewal and the capability to differentiate into multiple cell types, JMML IPSCs are a promising resource to advance the development of treatment modalities targeting specific vulnerabilities. This review discusses current reprogramming techniques for JMML stem/progenitor cells, related clinical applications, and the challenges involved.
Collapse
|
10
|
Greenmyer JR, Kohorst M. Pediatric Neoplasms Presenting with Monocytosis. Curr Hematol Malig Rep 2021; 16:235-246. [PMID: 33630234 DOI: 10.1007/s11899-021-00611-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Juvenile myelomonocytic leukemia (JMML) is a rare but severe pediatric neoplasm with hematopoietic stem cell transplant as its only established curative option. The development of targeted therapeutics for JMML is being guided by an understanding of the pathobiology of this condition. Here, we review JMML with an emphasis on genetics in order to (i) demonstrate the relationship between JMML genotype and clinical phenotype and (ii) explore potential genetic targets of novel JMML therapies. RECENT FINDINGS DNA hypermethylation studies have demonstrated consistently that methylation is related to disease severity. Increasing understanding of methylation in JMML may open the door to novel therapies, such as DNA methyltransferase inhibitors. The PI3K/AKT/MTOR, JAK/STAT, and RAF/MEK/ERK pathways are being investigated as therapeutic targets for JMML. Future therapy for JMML will be driven by an increased understanding of pathobiology. Targeted therapeutic approaches hold potential for improving outcomes in patients with JMML.
Collapse
Affiliation(s)
| | - Mira Kohorst
- Pediatric Hematology and Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The current review aims to highlight the frequency of RAS mutations in pediatric leukemias and solid tumors and to propose strategies for targeting oncogenic RAS in pediatric cancers. RECENT FINDINGS The three RAS genes (HRAS, NRAS, and KRAS) comprise the most frequently mutated oncogene family in human cancer. RAS mutations are commonly observed in three of the leading causes of cancer death in the United States, namely lung cancer, pancreatic cancer, and colorectal cancer. The association of RAS mutations with these aggressive malignancies inspired the creation of the National Cancer Institute RAS initiative and spurred intense efforts to develop strategies to inhibit oncogenic RAS, with much recent success. RAS mutations are frequently observed in pediatric cancers; however, recent advances in anti-RAS drug development have yet to translate into pediatric clinical trials. SUMMARY We find that RAS is mutated in common and rare pediatric malignancies and that oncogenic RAS confers a functional dependency in these cancers. Many strategies for targeting RAS are being pursued for malignancies that primarily affect adults and there is a clear need for inclusion of pediatric patients in clinical trials of these agents.
Collapse
|
12
|
After 95 years, it's time to eRASe JMML. Blood Rev 2020; 43:100652. [PMID: 31980238 DOI: 10.1016/j.blre.2020.100652] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/07/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
Abstract
Juvenile myelomonocytic leukaemia (JMML) is a rare clonal disorder of early childhood. Constitutive activation of the RAS pathway is the initial event in JMML. Around 90% of patients diagnosed with JMML carry a mutation in the PTPN11, NRAS, KRAS, NF1 or CBL genes. It has been demonstrated that after this first genetic event, an additional somatic mutation or epigenetic modification is involved in disease progression. The available genetic and clinical data have enabled researchers to establish relationships between JMML and several clinical conditions, including Noonan syndrome, Ras-associated lymphoproliferative disease, and Moyamoya disease. Despite scientific progress and the development of more effective treatments, JMML is still a deadly disease: the 5-year survival rate is ~50%. Here, we report on recent research having led to a better understanding of the genetic and molecular mechanisms involved in JMML.
Collapse
|
13
|
Hochstetler CL, Feng Y, Sacma M, Davis AK, Rao M, Kuan CY, You LR, Geiger H, Zheng Y. KRas G12D expression in the bone marrow vascular niche affects hematopoiesis with inflammatory signals. Exp Hematol 2019; 79:3-15.e4. [PMID: 31669153 DOI: 10.1016/j.exphem.2019.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
The bone marrow (BM) niche is an important milieu where hematopoietic stem and progenitor cells (HSPCs) are maintained. Previous studies have indicated that genetic mutations in various components of the niche can affect hematopoiesis and promote hematologic abnormalities, but the impact of abnormal BM endothelial cells (BMECs), a crucial niche component, on hematopoiesis remains incompletely understood. To dissect how genetic alterations in BMECs could affect hematopoiesis, we have employed a novel inducible Tie2-CreERT2 mouse model, with a tdTomato fluorescent reporter, to introduce an oncogenic KRasG12D mutation specifically in the adult endothelial cells. Tie2-CreERT2;KRasG12D mice had significantly more leukocytes and myeloid cells in the blood with mostly normal BM HSPC populations and developed splenomegaly. Genotyping polymerase chain reaction revealed KRasG12D activation in BMECs but not hematopoietic cells, confirming that the phenotype is due to the aberrant BMECs. Competitive transplant assays revealed that BM cells from the KRasG12D mice contained significantly fewer functional hematopoietic stem cells, and immunofluorescence imaging showed that the hematopoietic stem cells in the mutant mice were localized farther away from BM vasculature and closer to the endosteal area. RNA sequencing analyses found an inflammatory gene network, especially tumor necrosis factor α, as a possible contributor. Together, our results implicate an abnormal endothelial niche in compromising normal hematopoiesis.
Collapse
Affiliation(s)
- Cindy L Hochstetler
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Yuxin Feng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mehmet Sacma
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Ulm, Germany
| | - Ashley K Davis
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mahil Rao
- Division of Pediatric Critical Care, Department of Pediatrics, Stanford University, Stanford, California
| | - Chia-Yi Kuan
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia
| | - Li-Ru You
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Hartmut Geiger
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Ulm, Germany
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
14
|
Baker SJ, Cosenza SC, Ramana Reddy MV, Premkumar Reddy E. Rigosertib ameliorates the effects of oncogenic KRAS signaling in a murine model of myeloproliferative neoplasia. Oncotarget 2019; 10:1932-1942. [PMID: 30956775 PMCID: PMC6443005 DOI: 10.18632/oncotarget.26735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Aberrant signaling triggered by oncogenic or hyperactive RAS proteins contributes to the malignant phenotypes in a significant percentage of myeloid malignancies. Of these, juvenile myelomonocytic leukemia (JMML), an aggressive childhood cancer, is largely driven by mutations in RAS genes and those that encode regulators of these proteins. The Mx1-cre kras+/G12D mouse model mirrors several key features of this disease and has been used extensively to determine the utility and mechanism of small molecule therapeutics in the context of RAS-driven myeloproliferative disorders. Treatment of disease-bearing KRASG12D mice with rigosertib (RGS), a small molecule RAS mimetic that is in phase II and III clinical trials for MDS and AML, decreased the severity of leukocytosis and splenomegaly and extended their survival. RGS also increased the frequency of HSCs and rebalanced the ratios of myeloid progenitors. Further analysis of KRASG12D HSPCs in vitro revealed that RGS suppressed hyperproliferation in response to GM-CSF and inhibited the phosphorylation of key RAS effectors. Together, these data suggest that RGS might be of clinical benefit in RAS-driven myeloid disorders.
Collapse
Affiliation(s)
- Stacey J Baker
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen C Cosenza
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - M V Ramana Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - E Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
15
|
Stivala S, Codilupi T, Brkic S, Baerenwaldt A, Ghosh N, Hao-Shen H, Dirnhofer S, Dettmer MS, Simillion C, Kaufmann BA, Chiu S, Keller M, Kleppe M, Hilpert M, Buser AS, Passweg JR, Radimerski T, Skoda RC, Levine RL, Meyer SC. Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms. J Clin Invest 2019; 129:1596-1611. [PMID: 30730307 DOI: 10.1172/jci98785] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/29/2019] [Indexed: 12/18/2022] Open
Abstract
Constitutive JAK2 signaling is central to myeloproliferative neoplasm (MPN) pathogenesis and results in activation of STAT, PI3K/AKT, and MEK/ERK signaling. However, the therapeutic efficacy of current JAK2 inhibitors is limited. We investigated the role of MEK/ERK signaling in MPN cell survival in the setting of JAK inhibition. Type I and II JAK2 inhibition suppressed MEK/ERK activation in MPN cell lines in vitro, but not in Jak2V617F and MPLW515L mouse models in vivo. JAK2 inhibition ex vivo inhibited MEK/ERK signaling, suggesting that cell-extrinsic factors maintain ERK activation in vivo. We identified PDGFRα as an activated kinase that remains activated upon JAK2 inhibition in vivo, and PDGF-AA/PDGF-BB production persisted in the setting of JAK inhibition. PDGF-BB maintained ERK activation in the presence of ruxolitinib, consistent with its function as a ligand-induced bypass for ERK activation. Combined JAK/MEK inhibition suppressed MEK/ERK activation in Jak2V617F and MPLW515L mice with increased efficacy and reversal of fibrosis to an extent not seen with JAK inhibitors. This demonstrates that compensatory ERK activation limits the efficacy of JAK2 inhibition and dual JAK/MEK inhibition provides an opportunity for improved therapeutic efficacy in MPNs and in other malignancies driven by aberrant JAK-STAT signaling.
Collapse
Affiliation(s)
- Simona Stivala
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Tamara Codilupi
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sime Brkic
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Anne Baerenwaldt
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Nilabh Ghosh
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Hui Hao-Shen
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stephan Dirnhofer
- Department of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Cedric Simillion
- Department of BioMedical Research, University of Berne, Berne, Switzerland
| | - Beat A Kaufmann
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sophia Chiu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthew Keller
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maria Kleppe
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Morgane Hilpert
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Andreas S Buser
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | - Jakob R Passweg
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | | | - Radek C Skoda
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sara C Meyer
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Division of Hematology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
16
|
Cai YL, Zhang JL, Zhu XF. [Advances in the treatment of juvenile myelomonocytic leukemia]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:958-963. [PMID: 30477631 PMCID: PMC7389026 DOI: 10.7499/j.issn.1008-8830.2018.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/11/2018] [Indexed: 06/09/2023]
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare chronic myeloid leukemia in children and has the features of both myelodysplastic syndrome and myeloproliferative neoplasm. It is highly malignant and has a poor treatment outcome. Children with JMML have a poor response to conventional chemotherapy. At present, hematopoietic stem cell transplantation is the only possible cure for this disease. In recent years, significant progress has been made in targeted therapy for mutant genes in the Ras signaling pathway and demethylation treatment of aberrant methylation of polygenic CpG islands. This article reviews the treatment and efficacy evaluation of JMML.
Collapse
Affiliation(s)
- Yu-Li Cai
- Department of Pediatrics, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, China.
| | | | | |
Collapse
|
17
|
NOX2 inhibition reduces oxidative stress and prolongs survival in murine KRAS-induced myeloproliferative disease. Oncogene 2018; 38:1534-1543. [PMID: 30323311 PMCID: PMC6372471 DOI: 10.1038/s41388-018-0528-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/16/2018] [Accepted: 09/13/2018] [Indexed: 01/01/2023]
Abstract
Mutations leading to constitutive RAS activation contribute in myeloid leukemogenesis. RAS mutations in myeloid cells are accompanied by excessive formation of reactive oxygen species (ROS), but the source of ROS and their role for the initiation and progression of leukemia have not been clearly defined. To determine the role of NOX2-derived ROS in RAS-driven leukemia, double transgenic LSL-KrasG12D × Mx1-Cre mice expressing oncogenic KRAS in hematopoietic cells (M-KrasG12D) were treated with Nα-methyl-histamine (NMH) that targeted the production of NOX2-derived ROS in leukemic cells by agonist activity at histamine H2 receptors. M-KrasG12D mice developed myeloid leukemia comprising mature CD11b+Gr1+ myeloid cells that produced NOX2-derived ROS. Treatment of M-KrasG12D mice with NMH delayed the development of myeloproliferative disease and prolonged survival. In addition, NMH-treated M-KrasG12D mice showed reduction of intracellular ROS along with reduced DNA oxidation and reduced occurence of double-stranded DNA breaks in myeloid cells. The in vivo expansion of leukemia was markedly reduced in triple transgenic mice where KRAS was expressed in hematopoietic cells of animals with genetic NOX2 deficiency (Nox2−/− × LSL-KrasG12D × Mx1-Cre). Treatment with NMH did not alter in vivo expansion of leukemia in these NOX2-deficient transgenic mice. We propose that NOX2-derived ROS may contribute to the progression of KRAS-induced leukemia and that strategies to target NOX2 merit further evaluation in RAS-mutated hematopoietic cancer.
Collapse
|
18
|
Mutation-specific signaling profiles and kinase inhibitor sensitivities of juvenile myelomonocytic leukemia revealed by induced pluripotent stem cells. Leukemia 2018; 33:181-190. [PMID: 29884903 PMCID: PMC6286697 DOI: 10.1038/s41375-018-0169-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 05/07/2018] [Accepted: 05/17/2018] [Indexed: 01/08/2023]
Abstract
Juvenile myelomonocytic leukemia (JMML) is an uncommon myeloproliferative neoplasm driven by Ras pathway mutations and hyperactive Ras/MAPK signaling. Outcomes for many children with JMML remain dismal with current standard-of-care cytoreductive chemotherapy and hematopoietic stem cell transplantation. We used patient-derived induced pluripotent stem cells (iPSCs) to characterize the signaling profiles and potential therapeutic vulnerabilities of PTPN11-mutant and CBL-mutant JMML. We assessed whether MEK, JAK, and PI3K/mTOR kinase inhibitors (i) could inhibit myeloproliferation and aberrant signaling in iPSC-derived hematopoietic progenitors with PTPN11 E76K or CBL Y371H mutations. We detected constitutive Ras/MAPK and PI3K/mTOR signaling in PTPN11 and CBL iPSC-derived myeloid cells. Activated signaling and growth of PTPN11 iPSCs were preferentially inhibited in vitro by the MEKi PD0325901 and trametinib. Conversely, JAK/STAT signaling was selectively activated in CBL iPSCs and abrogated by the JAKi momelotinib and ruxolitinib. The PI3Kδi idelalisib and mTORi rapamycin inhibited signaling and myeloproliferation in both PTPN11 and CBL iPSCs. These findings demonstrate differential sensitivity of PTPN11 iPSCs to MEKi and of CBL iPSCs to JAKi, but similar sensitivity to PI3Ki and mTORi. Clinical investigation of mutation-specific kinase inhibitor therapies in children with JMML may be warranted.
Collapse
|
19
|
Sasine JP, Himburg HA, Termini CM, Roos M, Tran E, Zhao L, Kan J, Li M, Zhang Y, de Barros SC, Rao DS, Counter CM, Chute JP. Wild-type Kras expands and exhausts hematopoietic stem cells. JCI Insight 2018; 3:98197. [PMID: 29875320 DOI: 10.1172/jci.insight.98197] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/19/2018] [Indexed: 12/14/2022] Open
Abstract
Oncogenic Kras expression specifically in hematopoietic stem cells (HSCs) induces a rapidly fatal myeloproliferative neoplasm in mice, suggesting that Kras signaling plays a dominant role in normal hematopoiesis. However, such a conclusion is based on expression of an oncogenic version of Kras. Hence, we sought to determine the effect of simply increasing the amount of endogenous wild-type Kras on HSC fate. To this end, we utilized a codon-optimized version of the murine Kras gene (Krasex3op) that we developed, in which silent mutations in exon 3 render the encoded mRNA more efficiently translated, leading to increased protein expression without disruption to the normal gene architecture. We found that Kras protein levels were significantly increased in bone marrow (BM) HSCs in Krasex3op/ex3op mice, demonstrating that the translation of Kras in HSCs is normally constrained by rare codons. Krasex3op/ex3op mice displayed expansion of BM HSCs, progenitor cells, and B lymphocytes, but no evidence of myeloproliferative disease or leukemia in mice followed for 12 months. BM HSCs from Krasex3op/ex3op mice demonstrated increased multilineage repopulating capacity in primary competitive transplantation assays, but secondary competitive transplants revealed exhaustion of long-term HSCs. Following total body irradiation, Krasex3op/ex3op mice displayed accelerated hematologic recovery and increased survival. Mechanistically, HSCs from Krasex3op/ex3op mice demonstrated increased proliferation at baseline, with a corresponding increase in Erk1/2 phosphorylation and cyclin-dependent kinase 4 and 6 (Cdk4/6) activation. Furthermore, both the enhanced colony-forming capacity and in vivo repopulating capacity of HSCs from Krasex3op/ex3op mice were dependent on Cdk4/6 activation. Finally, BM transplantation studies revealed that augmented Kras expression produced expansion of HSCs, progenitor cells, and B cells in a hematopoietic cell-autonomous manner, independent from effects on the BM microenvironment. This study provides fundamental demonstration of codon usage in a mammal having a biological consequence, which may speak to the importance of codon usage in mammalian biology.
Collapse
Affiliation(s)
- Joshua P Sasine
- Division of Hematology/Oncology, Department of Medicine.,Molecular, Cellular and Integrative Physiology.,Jonsson Comprehensive Cancer Center.,Eli and Edythe Broad Center for Stem Cell Research, and
| | | | | | - Martina Roos
- Division of Hematology/Oncology, Department of Medicine.,Jonsson Comprehensive Cancer Center.,Eli and Edythe Broad Center for Stem Cell Research, and
| | - Evelyn Tran
- Division of Hematology/Oncology, Department of Medicine
| | - Liman Zhao
- Division of Hematology/Oncology, Department of Medicine
| | - Jenny Kan
- Division of Hematology/Oncology, Department of Medicine
| | - Michelle Li
- Division of Hematology/Oncology, Department of Medicine
| | - Yurun Zhang
- Division of Hematology/Oncology, Department of Medicine
| | | | - Dinesh S Rao
- Division of Hematology/Oncology, Department of Medicine.,Jonsson Comprehensive Cancer Center.,Eli and Edythe Broad Center for Stem Cell Research, and.,Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - Christopher M Counter
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North California, USA
| | - John P Chute
- Division of Hematology/Oncology, Department of Medicine.,Jonsson Comprehensive Cancer Center.,Eli and Edythe Broad Center for Stem Cell Research, and
| |
Collapse
|
20
|
Wandler A, Shannon K. Mechanistic and Preclinical Insights from Mouse Models of Hematologic Cancer Characterized by Hyperactive Ras. Cold Spring Harb Perspect Med 2018; 8:a031526. [PMID: 28778967 PMCID: PMC5880163 DOI: 10.1101/cshperspect.a031526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RAS genes are mutated in 5%-40% of a spectrum of myeloid and lymphoid cancers with NRAS affected 2-3 times more often than KRAS Genomic analysis indicates that RAS mutations generally occur as secondary events in leukemogenesis, but are integral to the disease phenotype. The tractable nature of the hematopoietic system has facilitated generating accurate mouse models of hematologic malignancies characterized by hyperactive Ras signaling. These strains provide robust platforms for addressing how oncogenic Ras expression perturbs proliferation, differentiation, and self-renewal programs in stem and progenitor cell populations, for testing potential therapies, and for investigating mechanisms of drug response and resistance. This review summarizes recent insights from key studies in mouse models of hematologic cancer that are broadly relevant for understanding Ras biology and for ongoing efforts to implement rational therapeutic strategies for cancers with oncogenic RAS mutations.
Collapse
Affiliation(s)
- Anica Wandler
- Department of Pediatrics, Helen Diller Family Cancer Research Building, University of California, San Francisco, San Francisco, California 94158-9001
| | - Kevin Shannon
- Department of Pediatrics, Helen Diller Family Cancer Research Building, University of California, San Francisco, San Francisco, California 94158-9001
- Comprehensive Cancer Center, Helen Diller Family Cancer Research Building, University of California, San Francisco, San Francisco, California 94158-9001
| |
Collapse
|
21
|
Rocca S, Carrà G, Poggio P, Morotti A, Brancaccio M. Targeting few to help hundreds: JAK, MAPK and ROCK pathways as druggable targets in atypical chronic myeloid leukemia. Mol Cancer 2018; 17:40. [PMID: 29455651 PMCID: PMC5817721 DOI: 10.1186/s12943-018-0774-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
Atypical Chronic Myeloid Leukemia (aCML) is a myeloproliferative neoplasm characterized by neutrophilic leukocytosis and dysgranulopoiesis. From a genetic point of view, aCML shows a heterogeneous mutational landscape with mutations affecting signal transduction proteins but also broad genetic modifiers and chromatin remodelers, making difficult to understand the molecular mechanisms causing the onset of the disease. The JAK-STAT, MAPK and ROCK pathways are known to be responsible for myeloproliferation in physiological conditions and to be aberrantly activated in myeloproliferative diseases. Furthermore, experimental evidences suggest the efficacy of inhibitors targeting these pathways in repressing myeloproliferation, opening the way to deep clinical investigations. However, the activation status of these pathways is rarely analyzed when genetic mutations do not occur in a component of the signaling cascade. Given that mutations in functionally unrelated genes give rise to the same pathology, it is tempting to speculate that alteration in the few signaling pathways mentioned above might be a common feature of pathological myeloproliferation. If so, targeted therapy would be an option to be considered for aCML patients.
Collapse
Affiliation(s)
- Stefania Rocca
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Torino, Italy
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy
| | - Pietro Poggio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Torino, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Torino, Italy.
| |
Collapse
|
22
|
Locatelli F, Algeri M, Merli P, Strocchio L. Novel approaches to diagnosis and treatment of Juvenile Myelomonocytic Leukemia. Expert Rev Hematol 2018; 11:129-143. [DOI: 10.1080/17474086.2018.1421937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Franco Locatelli
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Pediatric Science, University of Pavia, Pavia, Italy
| | - Mattia Algeri
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Pietro Merli
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Luisa Strocchio
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| |
Collapse
|
23
|
Smith FO, Dvorak CC, Braun BS. Myelodysplastic Syndromes and Myeloproliferative Neoplasms in Children. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00063-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
24
|
Flotho C, Sommer S, Lübbert M. DNA-hypomethylating agents as epigenetic therapy before and after allogeneic hematopoietic stem cell transplantation in myelodysplastic syndromes and juvenile myelomonocytic leukemia. Semin Cancer Biol 2017; 51:68-79. [PMID: 29129488 DOI: 10.1016/j.semcancer.2017.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 11/15/2022]
Abstract
Myelodysplastic syndrome (MDS) is a clonal bone marrow disorder, typically of older adults, which is characterized by ineffective hematopoiesis, peripheral blood cytopenias and risk of progression to acute myeloid leukemia. Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasm occurring in young children. The common denominator of these malignant myeloid disorders is the limited benefit of conventional chemotherapy and a particular responsiveness to epigenetic therapy with the DNA-hypomethylating agents 5-azacytidine (azacitidine) or decitabine. However, hypomethylating therapy does not eradicate the malignant clone in MDS or JMML and allogeneic hematopoietic stem cell transplantation (HSCT) remains the only curative treatment option. An emerging concept with intriguing potential is the combination of hypomethylating therapy and HSCT. Possible advantages include disease control with good tolerability during donor search and HSCT preparation, improved antitumoral alloimmunity, and reduced risk of relapse even with non-myeloablative regimens. Herein we review the current role of pre- and post-transplant therapy with hypomethylating agents in MDS and JMML.
Collapse
Affiliation(s)
- Christian Flotho
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Sebastian Sommer
- Department of Hematology-Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology-Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
25
|
Maertens O, McCurrach ME, Braun BS, De Raedt T, Epstein I, Huang TQ, Lauchle JO, Lee H, Wu J, Cripe TP, Clapp DW, Ratner N, Shannon K, Cichowski K. A Collaborative Model for Accelerating the Discovery and Translation of Cancer Therapies. Cancer Res 2017; 77:5706-5711. [PMID: 28993414 DOI: 10.1158/0008-5472.can-17-1789] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 01/24/2023]
Abstract
Preclinical studies using genetically engineered mouse models (GEMM) have the potential to expedite the development of effective new therapies; however, they are not routinely integrated into drug development pipelines. GEMMs may be particularly valuable for investigating treatments for less common cancers, which frequently lack alternative faithful models. Here, we describe a multicenter cooperative group that has successfully leveraged the expertise and resources from philanthropic foundations, academia, and industry to advance therapeutic discovery and translation using GEMMs as a preclinical platform. This effort, known as the Neurofibromatosis Preclinical Consortium (NFPC), was established to accelerate new treatments for tumors associated with neurofibromatosis type 1 (NF1). At its inception, there were no effective treatments for NF1 and few promising approaches on the horizon. Since 2008, participating laboratories have conducted 95 preclinical trials of 38 drugs or combinations through collaborations with 18 pharmaceutical companies. Importantly, these studies have identified 13 therapeutic targets, which have inspired 16 clinical trials. This review outlines the opportunities and challenges of building this type of consortium and highlights how it can accelerate clinical translation. We believe that this strategy of foundation-academic-industry partnering is generally applicable to many diseases and has the potential to markedly improve the success of therapeutic development. Cancer Res; 77(21); 5706-11. ©2017 AACR.
Collapse
Affiliation(s)
- Ophélia Maertens
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Ludwig Center at Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Mila E McCurrach
- Children's Tumor Foundation, New York, New York.,NYU Langone Medical Center, School of Medicine, New York University, New York, New York
| | - Benjamin S Braun
- Department of Pediatrics and Comprehensive Cancer Center, University of California, San Francisco, California
| | - Thomas De Raedt
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Inbal Epstein
- Department of Pediatrics and Comprehensive Cancer Center, University of California, San Francisco, California
| | - Tannie Q Huang
- Department of Pediatrics and Comprehensive Cancer Center, University of California, San Francisco, California
| | - Jennifer O Lauchle
- Department of Pediatrics and Comprehensive Cancer Center, University of California, San Francisco, California.,Genentech, South San Francisco, California
| | - Hyerim Lee
- Children's Tumor Foundation, New York, New York
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Dept. of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Timothy P Cripe
- Nationwide Children's Hospital, Hematology & Oncology, Columbus, Ohio
| | - D Wade Clapp
- Herman Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Dept. of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Kevin Shannon
- Department of Pediatrics and Comprehensive Cancer Center, University of California, San Francisco, California
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts. .,Harvard Medical School, Boston, Massachusetts.,Ludwig Center at Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
| |
Collapse
|
26
|
Abstract
Myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN) are aggressive myeloid malignancies recognized as a distinct category owing to their unique combination of dysplastic and proliferative features. Although current classification schemes still emphasize morphology and exclusionary criteria, disease-defining somatic mutations and/or germline predisposition alleles are increasingly incorporated into diagnostic algorithms. The developing picture suggests that phenotypes are driven mostly by epigenetic mechanisms that reflect a complex interplay between genotype, physiological processes such as ageing and interactions between malignant haematopoietic cells and the stromal microenvironment of the bone marrow. Despite the rapid accumulation of genetic knowledge, therapies have remained nonspecific and largely inefficient. In this Review, we discuss the pathogenesis of MDS/MPN, focusing on the relationship between genotype and phenotype and the molecular underpinnings of epigenetic dysregulation. Starting with the limitations of current therapies, we also explore how the available mechanistic data may be harnessed to inform strategies to develop rational and more effective treatments, and which gaps in our knowledge need to be filled to translate biological understanding into clinical progress.
Collapse
Affiliation(s)
- Michael W N Deininger
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health and Science University
- Department of Cell, Developmental and Cancer Biology, Oregon Health &Science University, Portland, Oregon 97239, USA
| | - Eric Solary
- INSERM U1170, Gustave Roussy, Faculté de médecine Paris-Sud, Université Paris-Saclay, F-94805 Villejuif, France
- Department of Hematology, Gustave Roussy, F-94805 Villejuif, France
| |
Collapse
|
27
|
Abstract
Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic malignancy that may deserve specific management. Defined by a persistent peripheral blood monocytosis ≥1 × 109/L and monocytes accounting for ≥10% of the white blood cells, this aging-associated disease combines cell proliferation as a consequence of myeloid progenitor hypersensitivity to granulocyte-macrophage colony-stimulating factor with myeloid cell dysplasia and ineffective hematopoiesis. The only curative option for CMML remains allogeneic stem cell transplantation. When transplantation is excluded, CMML is stratified into myelodysplastic (white blood cell count <13 × 109/L) and proliferative (white blood cell count ≥13 × 109/L) CMML. In the absence of poor prognostic factors, the management of myelodysplastic CMML is largely inspired from myelodysplastic syndromes, relying on erythropoiesis-stimulating agents to cope with anemia, and careful monitoring and supportive care, whereas the management of proliferative CMML usually relies on cytoreductive agents such as hydroxyurea, although ongoing studies will help delineate the role of hypomethylating agents in this patient population. In the presence of excessive blasts and other poor prognostic factors, hypomethylating agents are the preferred option, even though their impact on leukemic transformation and survival has not been proved. The therapeutic choice is illustrated by 4 clinical situations among the most commonly seen. Although current therapeutic options can improve patient's quality of life, they barely modify disease evolution. Improved understanding of CMML pathophysiology will hopefully lead to the exploration of novel targets that potentially would be curative.
Collapse
|
28
|
Acquired expression of CblQ367P in mice induces dysplastic myelopoiesis mimicking chronic myelomonocytic leukemia. Blood 2017; 129:2148-2160. [PMID: 28209720 DOI: 10.1182/blood-2016-06-724658] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is a hematological malignancy characterized by uncontrolled proliferation of dysplastic myelomonocytes and frequent progression to acute myeloid leukemia (AML). We identified mutations in the Cbl gene, which encodes a negative regulator of cytokine signaling, in a subset of CMML patients. To investigate the contribution of mutant Cbl in CMML pathogenesis, we generated conditional knockin mice for Cbl that express wild-type Cbl in a steady state and inducibly express CblQ367P , a CMML-associated Cbl mutant. CblQ367P mice exhibited sustained proliferation of myelomonocytes, multilineage dysplasia, and splenomegaly, which are the hallmarks of CMML. The phosphatidylinositol 3-kinase (PI3K)-AKT and JAK-STAT pathways were constitutively activated in CblQ367P hematopoietic stem cells, which promoted cell cycle progression and enhanced chemokine-chemokine receptor activity. Gem, a gene encoding a GTPase that is upregulated by CblQ367P , enhanced hematopoietic stem cell activity and induced myeloid cell proliferation. In addition, Evi1, a gene encoding a transcription factor, was found to cooperate with CblQ367P and progress CMML to AML. Furthermore, targeted inhibition for the PI3K-AKT and JAK-STAT pathways efficiently suppressed the proliferative activity of CblQ367P -bearing CMML cells. Our findings provide insights into the molecular mechanisms underlying mutant Cbl-induced CMML and propose a possible molecular targeting therapy for mutant Cbl-carrying CMML patients.
Collapse
|
29
|
Dev A, Asch R, Jachimowicz E, Rainville N, Johnson A, Greenfest-Allen E, Wojchowski DM. Governing roles for Trib3 pseudokinase during stress erythropoiesis. Exp Hematol 2017; 49:48-55.e5. [PMID: 28062363 DOI: 10.1016/j.exphem.2016.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/21/2016] [Accepted: 12/27/2016] [Indexed: 01/19/2023]
Abstract
In response to anemia, the heightened production of erythropoietin (EPO) can sharply promote erythroid progenitor cell (EPC) formation. Specific mediators of such EPO- accelerated erythropoiesis, however, are not well understood. Presently, we first report that the expression of Trib3 in adult bone marrow EPCs in vivo is nominal at steady state, but strongly activated on EPO challenge. In a knockout mouse model, Trib3 disruption modestly increased steady-state erythrocyte numbers and decreased mean corpuscular volume. Following 5-fluorouracil myeloablation, however, rebound red blood cell production and hemoglobin levels were substantially (and selectively) compromised in Trib3-/- mice versus Trib3+/+ congenic controls. Erythrocytes from 5-fluorouracil-treated Trib3-/- mice additionally were more prone to lysis and exhibited elevated peroxide-induced reactive oxygen species. Ex vivo, the development of CD71posTer119pos erythroblasts from Trib3-/- bone marrow progenitors was attenuated, and this was associated with heightened EPO-dependent Erk1/2 activation and moderately increased Akt activation. For developmentally staged EPCs, gene profiling provided further initial insight into candidate mediators of EPO-induced Trib3 gene expression, including Cebp-beta, Atf4, Egr-1, and Nab1. Overall, Trib3 is indicated to act as a novel EPC-intrinsic governor of stress erythropoiesis.
Collapse
Affiliation(s)
- Arvind Dev
- Molecular Medicine Division, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME
| | - Ruth Asch
- Molecular Medicine Division, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME
| | - Edward Jachimowicz
- Molecular Medicine Division, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME
| | - Nicole Rainville
- Molecular Medicine Division, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME
| | - Ashley Johnson
- Molecular Medicine Division, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME
| | - Emily Greenfest-Allen
- Computational Biology and Informatics Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Don M Wojchowski
- Molecular Medicine Division, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME; Department of Medicine, Tufts University Medical Center, Boston, MA.
| |
Collapse
|
30
|
Marks LJ, Oberg JA, Pendrick D, Sireci AN, Glasser C, Coval C, Zylber RJ, Chung WK, Pang J, Turk AT, Hsiao SJ, Mansukhani MM, Glade Bender JL, Kung AL, Sulis ML. Precision Medicine in Children and Young Adults with Hematologic Malignancies and Blood Disorders: The Columbia University Experience. Front Pediatr 2017; 5:265. [PMID: 29312904 PMCID: PMC5732960 DOI: 10.3389/fped.2017.00265] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 11/28/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The advent of comprehensive genomic profiling has markedly advanced the understanding of the biology of pediatric hematological malignancies, however, its application to clinical care is still unclear. We present our experience integrating genomic data into the clinical management of children with high-risk hematologic malignancies and blood disorders and describe the broad impact that genomic profiling has in multiple aspects of patient care. METHODS The Precision in Pediatric Sequencing Program at Columbia University Medical Center instituted prospective clinical next-generation sequencing (NGS) for high-risk malignancies and blood disorders. Testing included cancer whole exome sequencing (WES) of matched tumor-normal samples or targeted sequencing of 467 cancer-associated genes, when sample adequacy was a concern, and tumor transcriptome (RNA-seq). A multidisciplinary molecular tumor board conducted interpretation of results and final tiered reports were transmitted to the electronic medical record according to patient preferences. RESULTS Sixty-nine samples from 56 patients with high-risk hematologic malignancies and blood disorders were sequenced. Patients carried diagnoses of myeloid malignancy (n = 25), lymphoid malignancy (n = 25), or histiocytic disorder (n = 6). Six patients had only constitutional WES, performed for a suspicion of an inherited predisposition for their disease. For the remaining 50 patients, tumor was sequenced with matched normal tissue when available. The mean number of somatic variants per sample was low across the different disease categories (2.85 variants/sample). Interestingly, a gene fusion was identified by RNA-seq in 58% of samples who had adequate RNA available for testing. Molecular profiling of tumor tissue led to clinically impactful findings in 90% of patients. Forty patients (80%) had at least one targetable gene variant or fusion identified in their tumor tissue; however, only seven received targeted therapy. Importantly, NGS findings contributed to the refinement of diagnosis and prognosis for 34% of patients. Known or likely pathogenic germline alterations were discovered in 24% of patients involving cancer predisposition genes in 12% of cases. CONCLUSION Incorporating whole exome and transcriptome profiling of tumor and normal tissue into clinical practice is feasible, and the value that comprehensive testing provides extends beyond the ability to target-specific mutations.
Collapse
Affiliation(s)
- Lianna J Marks
- Department of Pediatric Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jennifer A Oberg
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Columbia University Medical Center, New York, NY, United States
| | - Danielle Pendrick
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Columbia University Medical Center, New York, NY, United States
| | - Anthony N Sireci
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Chana Glasser
- Department of Pediatric Hematology/Oncology, NYU Winthrop University Medical Center, Mineola, NY, United States
| | - Carrie Coval
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| | - Rebecca J Zylber
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Columbia University Medical Center, New York, NY, United States
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, United States
| | - Jiuhong Pang
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Andrew T Turk
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Susan J Hsiao
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Mahesh M Mansukhani
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, United States
| | - Julia L Glade Bender
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Columbia University Medical Center, New York, NY, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, United States
| | - Andrew L Kung
- Department of Pediatric Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Maria Luisa Sulis
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Columbia University Medical Center, New York, NY, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
31
|
Transcriptional regulation of SPROUTY2 by MYB influences myeloid cell proliferation and stem cell properties by enhancing responsiveness to IL-3. Leukemia 2016; 31:957-966. [PMID: 27748374 PMCID: PMC5302168 DOI: 10.1038/leu.2016.289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/13/2016] [Indexed: 12/25/2022]
Abstract
Myeloproliferative neoplasms (MPN), which overproduce blood cells in the bone marrow, have recently been linked with a genetically determined decrease in expression of the MYB transcription factor. Here, we use a mouse MYB knockdown model with an MPN-like phenotype to show how lower levels of MYB lead to stem cell characteristics in myeloid progenitors. The altered progenitor properties feature elevated cytokine responsiveness, especially to IL-3, which results from increased receptor expression and increased MAPK activity leading to enhanced phosphorylation of a key regulator of protein synthesis, ribosomal protein S6. MYB acts on MAPK signaling by directly regulating transcription of the gene encoding the negative modulator SPRY2. This mechanistic insight points to pathways that might be targeted therapeutically in MPN.
Collapse
|
32
|
Sachs Z, Been RA, DeCoursin KJ, Nguyen HT, Mohd Hassan NA, Noble-Orcutt KE, Eckfeldt CE, Pomeroy EJ, Diaz-Flores E, Geurts JL, Diers MD, Hasz DE, Morgan KJ, MacMillan ML, Shannon KM, Largaespada DA, Wiesner SM. Stat5 is critical for the development and maintenance of myeloproliferative neoplasm initiated by Nf1 deficiency. Haematologica 2016; 101:1190-1199. [PMID: 27418650 DOI: 10.3324/haematol.2015.136002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 06/15/2016] [Indexed: 11/09/2022] Open
Abstract
Juvenile myelomonocytic leukemia is a rare myeloproliferative neoplasm characterized by hyperactive RAS signaling. Neurofibromin1 (encoded by the NF1 gene) is a negative regulator of RAS activation. Patients with neurofibromatosis type 1 harbor loss-of-function mutations in NF1 and have a 200- to 500-fold increased risk of juvenile myelomonocytic leukemia. Leukemia cells from patients with juvenile myelomonocytic leukemia display hypersensitivity to certain cytokines, such as granulocyte-macrophage colony-stimulating factor. The granulocyte-macrophage colony-stimulating factor receptor utilizes pre-associated JAK2 to initiate signals after ligand binding. JAK2 subsequently activates STAT5, among other downstream effectors. Although STAT5 is gaining recognition as an important mediator of growth factor signaling in myeloid leukemias, the contribution of STAT5 to the development of hyperactive RAS-initiated myeloproliferative disease has not been well described. In this study, we investigated the consequence of STAT5 attenuation via genetic and pharmacological approaches in Nf1-deficient murine models of juvenile myelomonocytic leukemia. We found that homozygous Stat5 deficiency extended the lifespan of Nf1-deficient mice and eliminated the development of myeloproliferative neoplasm associated with Nf1 gene loss. Likewise, we found that JAK inhibition with ruxolitinib attenuated myeloproliferative neoplasm in Nf1-deficient mice. Finally, we found that primary cells from a patient with KRAS-mutant juvenile myelomonocytic leukemia displayed reduced colony formation in response to JAK2 inhibition. Our findings establish a central role for STAT5 activation in the pathogenesis of juvenile myelomonocytic leukemia and suggest that targeting this pathway may be of clinical utility in these patients.
Collapse
Affiliation(s)
- Zohar Sachs
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Raha A Been
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA College of Veterinary Medicine and Department of Comparative and Molecular Biosciences, University of Minnesota, St. Paul, MN, USA
| | | | - Hanh T Nguyen
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Klara E Noble-Orcutt
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Craig E Eckfeldt
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Emily J Pomeroy
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ernesto Diaz-Flores
- Department of Pediatrics, University of California, San Francisco, CA, USA Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Jennifer L Geurts
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Miechaleen D Diers
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Diane E Hasz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Kelly J Morgan
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Margaret L MacMillan
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA Blood and Marrow Transplantation Program, University of Minnesota, Minneapolis, MN, USA
| | - Kevin M Shannon
- Department of Pediatrics, University of California, San Francisco, CA, USA Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA Blood and Marrow Transplantation Program, University of Minnesota, Minneapolis, MN, USA
| | - Stephen M Wiesner
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA Center for Allied Health Programs, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
33
|
Targeting the PI3K/Akt pathway in murine MDS/MPN driven by hyperactive Ras. Leukemia 2016; 30:1335-43. [PMID: 26965285 PMCID: PMC4889473 DOI: 10.1038/leu.2016.14] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/13/2015] [Accepted: 01/04/2016] [Indexed: 12/25/2022]
Abstract
Chronic and juvenile myelomonocytic leukemias (CMML and JMML) are myelodysplastic/myeloproliferative neoplasia (MDS/MPN) overlap syndromes that respond poorly to conventional treatments. Aberrant Ras activation due to NRAS, KRAS, PTPN11, CBL, and NF1 mutations is common in CMML and JMML. However, no mechanism-based treatments currently exist for cancers with any of these mutations. An alternative therapeutic strategy involves targeting Ras-regulated effector pathways that are aberrantly activated in CMML and JMML, which include the Raf/MEK/ERK and phosphoinositide-3´-OH kinase (PI3K)/Akt cascades. Mx1-Cre, KrasD12 and Mx1-Cre, Nf1flox/− mice accurately model many aspects of CMML and JMML. Treating Mx1-Cre, KrasD12 mice with GDC-0941 (also referred to as pictilisib), an orally bioavailable inhibitor of class I PI3K isoforms, reduced leukocytosis, anemia, and splenomegaly while extending survival. However, GDC-0941 treatment attenuated activation of both PI3K/Akt and Raf/MEK/ERK pathways in primary hematopoietic cells, suggesting it could be acting through suppression of Raf/MEK/ERK signals. To interrogate the importance of the PI3K/Akt pathway specifically, we treated mice with the allosteric Akt inhibitor MK-2206. This compound had no effect on Raf/MEK/ERK signaling, yet it also induced robust hematologic responses in Kras and Nf1 mice with MPN. These data support investigating PI3K/Akt pathway inhibitors as a therapeutic strategy in JMML and CMML patients.
Collapse
|
34
|
KRAS insertion mutations are oncogenic and exhibit distinct functional properties. Nat Commun 2016; 7:10647. [PMID: 26854029 PMCID: PMC4748120 DOI: 10.1038/ncomms10647] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/07/2016] [Indexed: 12/30/2022] Open
Abstract
Oncogenic KRAS mutations introduce discrete amino acid substitutions that reduce intrinsic Ras GTPase activity and confer resistance to GTPase-activating proteins (GAPs). Here we discover a partial duplication of the switch 2 domain of K-Ras encoding a tandem repeat of amino acids G60_A66dup in a child with an atypical myeloproliferative neoplasm. K-Ras proteins containing this tandem duplication or a similar five amino acid E62_A66dup mutation identified in lung and colon cancers transform the growth of primary myeloid progenitors and of Ba/F3 cells. Recombinant K-Ras(G60_A66dup) and K-Ras(E62_A66dup) proteins display reduced intrinsic GTP hydrolysis rates, accumulate in the GTP-bound conformation and are resistant to GAP-mediated GTP hydrolysis. Remarkably, K-Ras proteins with switch 2 insertions are impaired for PI3 kinase binding and Akt activation, and are hypersensitive to MEK inhibition. These studies illuminate a new class of oncogenic KRAS mutations and reveal unexpected plasticity in oncogenic Ras proteins that has diagnostic and therapeutic implications.
Collapse
|
35
|
Ravandi F, Pigneux A, DeAngelo DJ, Raffoux E, Delaunay J, Thomas X, Kadia T, Kantarjian H, Scheuenpflug J, Zhao C, Guo W, Smith BD. Clinical, pharmacokinetic and pharmacodynamic data for the MEK1/2 inhibitor pimasertib in patients with advanced hematologic malignancies. Blood Cancer J 2015; 5:e375. [PMID: 26657199 PMCID: PMC4735070 DOI: 10.1038/bcj.2015.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- F Ravandi
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - A Pigneux
- Service des Maladies du Sang, Centre François Magendie, Hôpital du Haut-Lévèque, Pessac, France
| | - D J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - E Raffoux
- Department of Adult Hematology, Hôpital Saint Louis, Paris, France
| | - J Delaunay
- Department of Hematology, Hôpital Hotel Dieu, Nantes, France
| | - X Thomas
- Department of Hematology, Hôpital Edouard Herriot, Lyon, France
| | - T Kadia
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H Kantarjian
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - C Zhao
- Clinical Oncology, Early Development, EMD Serono, Billerica, MA, USA
| | - W Guo
- Clinical Oncology, Early Development, EMD Serono, Billerica, MA, USA
| | - B D Smith
- Global Biostatistics, Hematologic Cancer and BMT, Sidney Kimmel Comprehensive Cancer Center at John Hopkins, Baltimore, MD, USA
| |
Collapse
|
36
|
Stieglitz E, Taylor-Weiner AN, Chang TY, Gelston LC, Wang YD, Mazor T, Esquivel E, Yu A, Seepo S, Olsen S, Rosenberg M, Archambeault SL, Abusin G, Beckman K, Brown PA, Briones M, Carcamo B, Cooper T, Dahl GV, Emanuel PD, Fluchel MN, Goyal RK, Hayashi RJ, Hitzler J, Hugge C, Liu YL, Messinger YH, Mahoney DH, Monteleone P, Nemecek ER, Roehrs PA, Schore RJ, Stine KC, Takemoto CM, Toretsky JA, Costello JF, Olshen AB, Stewart C, Li Y, Ma J, Gerbing RB, Alonzo TA, Getz G, Gruber T, Golub T, Stegmaier K, Loh ML. The genomic landscape of juvenile myelomonocytic leukemia. Nat Genet 2015; 47:1326-1333. [PMID: 26457647 PMCID: PMC4626387 DOI: 10.1038/ng.3400] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 08/17/2015] [Indexed: 12/16/2022]
Abstract
Juvenile myelomonocytic leukemia (JMML) is a myeloproliferative neoplasm (MPN) of childhood with a poor prognosis. Mutations in NF1, NRAS, KRAS, PTPN11 or CBL occur in 85% of patients, yet there are currently no risk stratification algorithms capable of predicting which patients will be refractory to conventional treatment and could therefore be candidates for experimental therapies. In addition, few molecular pathways aside from the RAS-MAPK pathway have been identified that could serve as the basis for such novel therapeutic strategies. We therefore sought to genomically characterize serial samples from patients at diagnosis through relapse and transformation to acute myeloid leukemia to expand knowledge of the mutational spectrum in JMML. We identified recurrent mutations in genes involved in signal transduction, splicing, Polycomb repressive complex 2 (PRC2) and transcription. Notably, the number of somatic alterations present at diagnosis appears to be the major determinant of outcome.
Collapse
Affiliation(s)
- Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
| | | | - Tiffany Y. Chang
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
| | - Laura C. Gelston
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Tali Mazor
- Department of Neurological Surgery, University of California, San Francisco, CA
| | - Emilio Esquivel
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
| | - Ariel Yu
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
| | - Sara Seepo
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Scott Olsen
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Sophie L. Archambeault
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
| | - Ghada Abusin
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Kyle Beckman
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
| | - Patrick A. Brown
- Department of Pediatrics, The Johns Hopkins Hospital, Baltimore, MA
| | - Michael Briones
- Department of Pediatrics, Emory University School of Medicine, Aflac Cancer and Blood Disorder Center, Atlanta, GA
| | | | - Todd Cooper
- Department of Pediatrics, Seattle Children's Hospital, Seattle, WA
| | - Gary V. Dahl
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA
| | - Peter D. Emanuel
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Mark N. Fluchel
- Department of Pediatric Hematology Oncology, University of Utah, Salt Lake City, UT
| | - Rakesh K. Goyal
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA
| | - Robert J. Hayashi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Johann Hitzler
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christopher Hugge
- Pediatric Hematology Oncology, SSM Cardinal Glennon Children's Medical Center, Saint Louis, MO
| | - Y. Lucy Liu
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Yoav H. Messinger
- Division of Pediatric Hematology Oncology, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN
| | - Donald H. Mahoney
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Philip Monteleone
- Pediatric Hematology Oncology, Pediatric Specialists of Lehigh Valley Hospital, Bethlehem, PA
| | - Eneida R. Nemecek
- Pediatric Bone Marrow Transplant Program, Oregon Health & Science University, Portland, OR
| | - Philip A. Roehrs
- Department of Pediatrics, University of North Carolina at Chapel Hill, NC
| | - Reuven J. Schore
- Division of Pediatric Oncology, Children's National Medical Center, Washington, DC
| | - Kimo C. Stine
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | | | - Jeffrey A. Toretsky
- Department of Pediatrics, Georgetown University, Washington, DC
- Department of Oncology, Georgetown University, Washington, DC
| | - Joseph F. Costello
- Department of Neurological Surgery, University of California, San Francisco, CA
| | - Adam B. Olshen
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | - Chip Stewart
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Yongjin Li
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Todd A. Alonzo
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA
- Harvard Medical School, Boston, MA
- Department of Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Tanja Gruber
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Todd Golub
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Kimberly Stegmaier
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Mignon L. Loh
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
- Department of Pediatrics, Benioff Children's Hospital, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
37
|
Niemeyer CM, Loh ML, Cseh A, Cooper T, Dvorak CC, Chan R, Xicoy B, Germing U, Kojima S, Manabe A, Dworzak M, De Moerloose B, Starý J, Smith OP, Masetti R, Catala A, Bergstraesser E, Ussowicz M, Fabri O, Baruchel A, Cavé H, Zwaan M, Locatelli F, Hasle H, van den Heuvel-Eibrink MM, Flotho C, Yoshimi A. Criteria for evaluating response and outcome in clinical trials for children with juvenile myelomonocytic leukemia. Haematologica 2015; 100:17-22. [PMID: 25552679 DOI: 10.3324/haematol.2014.109892] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Juvenile myelomonocytic leukemia is a rare myeloproliferative disease in young children. While hematopoietic stem cell transplantation remains the only curative therapeutic option for most patients, children with juvenile myelomonocytic leukemia increasingly receive novel agents in phase I-II clinical trials as pre-transplant therapy or therapy for relapse after transplantation. However, response criteria or definitions of outcome for standardized evaluation of treatment effect in patients with juvenile myelomonocytic leukemia are currently lacking. Here we propose criteria to evaluate the response to the non-transplant therapy and definitions of remission status after hematopoietic stem cell transplantation. For the evaluation of non-transplant therapy, we defined 6 clinical variables (white blood cell count, platelet count, hematopoietic precursors and blasts in peripheral blood, bone marrow blast percentage, spleen size and extramedullary disease) and 3 genetic variables (cytogenetic, molecular and chimerism response) which serve to describe the heterogeneous picture of response to therapy in each individual case. It is hoped that these criteria will facilitate the comparison of results between clinical trials in juvenile myelomonocytic leukemia.
Collapse
Affiliation(s)
- Charlotte M Niemeyer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology University of Freiburg, Germany
| | - Mignon L Loh
- Department of Pediatrics and the Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Annamaria Cseh
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology University of Freiburg, Germany
| | - Todd Cooper
- Aflac Cancer and Blood Disorders Center/Children's Healthcare of Atlanta/Emory University, Atlanta, GA, USA
| | - Christopher C Dvorak
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplant, Benioff Children's Hospital, University of California, San Francisco, CA, USA
| | - Rebecca Chan
- Department of Pediatrics, The Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Blanca Xicoy
- Department of Hematology, Hospital Germans Trias i Pujol and Institut Català d'Oncologia-José Carreras Leukemia Research Institute, Badalona, Spain
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Japan
| | - Atsushi Manabe
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Michael Dworzak
- St. Anna Children's Hospital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Austria
| | | | - Jan Starý
- Department of Pediatric Hematology and Oncology, Charles University and University Hospital Motol, Czech Pediatric Hematology Working Group, Prague, Czech Republic
| | - Owen P Smith
- Pediatric Oncology and Hematology, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Riccardo Masetti
- Department of Pediatric Oncology and Hematology, University of Bologna, Italy
| | - Albert Catala
- Department of Hematology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Eva Bergstraesser
- Department of Hematology and Oncology, University Children's Hospital, Zurich, Switzerland
| | - Marek Ussowicz
- Department of Pediatric Oncology, Hematology and BMT, Wroclaw Medical University, Poland
| | - Oskana Fabri
- Department of Hematology and Transfusiology, Comenius University, Bratislava, Slovakia
| | - André Baruchel
- Department of Pediatric Hematology of Robert Debré Hospital and Paris Diderot University, Paris, France
| | - Hélène Cavé
- Department of Genetics, Hôpital Robert Debré, and Paris Diderot University, Paris, France
| | - Michel Zwaan
- ErasmusMC-Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, and the Netherlands and ITCC
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Rome, University of Pavia, Italy
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Marry M van den Heuvel-Eibrink
- ErasmusMC-Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, and Dutch Childhood Oncology Group, The Hague, The Netherlands
| | - Christian Flotho
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology University of Freiburg, Germany
| | - Ayami Yoshimi
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology University of Freiburg, Germany
| |
Collapse
|
38
|
Abstract
RAS genes encode a family of 21 kDa proteins that are an essential hub for a number of survival, proliferation, differentiation and senescence pathways. Signaling of the RAS-GTPases through the RAF-MEK-ERK pathway, the first identified mitogen-associated protein kinase (MAPK) cascade is essential in development. A group of genetic syndromes, named "RASopathies", had been identified which are caused by heterozygosity for germline mutations in genes that encode protein components of the RAS/MAPK pathway. Several of these clinically overlapping disorders, including Noonan syndrome, Noonan-like CBL syndrome, Costello syndrome, cardio-facio-cutaneous (CFC) syndrome, neurofibromatosis type I, and Legius syndrome, predispose to cancer and abnormal myelopoiesis in infancy. This review focuses on juvenile myelomonocytic leukemia (JMML), a malignancy of early childhood characterized by initiating germline and/or somatic mutations in five genes of the RAS/MAPK pathway: PTPN11, CBL, NF-1, KRAS and NRAS. Natural courses of these five subtypes differ, although hematopoietic stem cell transplantation remains the only curative therapy option for most children with JMML. With whole-exome sequencing studies revealing few secondary lesions it will be crucial to better understand the RAS/MAPK signaling network with its crosstalks and feed-back loops to carefully design early clinical trials with novel pharmacological agents in this still puzzling leukemia.
Collapse
Affiliation(s)
- Charlotte M Niemeyer
- Department of Pediatric Hematology and Oncology, Universitätsklinikum Freiburg, Germany
| |
Collapse
|
39
|
Andrews MC, Turner N, Boyd J, Roberts AW, Grigg AP, Behren A, Cebon J. Cellular Mechanisms Underlying Complete Hematological Response of Chronic Myeloid Leukemia to BRAF and MEK1/2 Inhibition in a Patient with Concomitant Metastatic Melanoma. Clin Cancer Res 2015. [DOI: 10.1158/1078-0432.ccr-15-0393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Abstract
Abstract
Juvenile myelomonocytic leukemia (JMML) is a unique, aggressive hematopoietic disorder of infancy/early childhood caused by excessive proliferation of cells of monocytic and granulocytic lineages. Approximately 90% of patients carry either somatic or germline mutations of PTPN-11, K-RAS, N-RAS, CBL, or NF1 in their leukemic cells. These genetic aberrations are largely mutually exclusive and activate the Ras/mitogen-activated protein kinase pathway. Allogeneic hematopoietic stem cell transplantation (HSCT) remains the therapy of choice for most patients with JMML, curing more than 50% of affected children. We recommend that this option be promptly offered to any child with PTPN-11-, K-RAS-, or NF1-mutated JMML and to the majority of those with N-RAS mutations. Because children with CBL mutations and few of those with N-RAS mutations may have spontaneous resolution of hematologic abnormalities, the decision to proceed to transplantation in these patients must be weighed carefully. Disease recurrence remains the main cause of treatment failure after HSCT. A second allograft is recommended if overt JMML relapse occurs after transplantation. Recently, azacytidine, a hypomethylating agent, was reported to induce hematologic/molecular remissions in some children with JMML, and its role in both reducing leukemia burden before HSCT and in nontransplant settings requires further studies.
Collapse
|
41
|
Abstract
Juvenile myelomonocytic leukemia (JMML), a rare myeloid malignancy that occurs in young children, is considered a clonal disease originating in pluripotent stem cells of the hematopoietic system. The pathogenesis of JMML involves disruption of signal transduction through the RAS pathway, with resultant selective hypersensitivity of JMML cells to granulocyte-macrophage colony-stimulating factor. Progress has been made in understanding aspects of the molecular basis of JMML. How these molecular mechanisms may lead to targeted therapeutics and improved outcomes remains to be elucidated. Allogeneic hematopoietic stem cell transplant is the only curative option for children with JMML, and it is fraught with frequent relapse and significant toxicity.
Collapse
Affiliation(s)
- Prakash Satwani
- Division of Pediatric Hematology/Oncology and Stem Cell Transplantation, Columbia University Medical Center Morgan Stanley Children's Hospital of New York-Presbyterian, 3959 Broadway, CHN-1002, New York, NY 10032, USA.
| | - Justine Kahn
- Division of Pediatric Hematology/Oncology and Stem Cell Transplantation, Columbia University Medical Center Morgan Stanley Children's Hospital of New York-Presbyterian, 3959 Broadway, CHN-1002, New York, NY 10032, USA
| | - Christopher C Dvorak
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplant, Benioff Children's Hospital, University of California San Francisco, 505 Parnassus Ave., M-659, San Francisco, CA, 94143-1278, USA
| |
Collapse
|
42
|
Wild-type KRAS inhibits oncogenic KRAS-induced T-ALL in mice. Leukemia 2014; 29:1032-40. [PMID: 25371176 DOI: 10.1038/leu.2014.315] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/22/2014] [Accepted: 10/16/2014] [Indexed: 01/23/2023]
Abstract
The role of hyperactive RAS signaling is well established in myeloid malignancies but less clear in T-cell malignancies. The Kras2(LSL)Mx1-Cre (KM) mouse model expresses endogenous KRAS(G12D) in hematopoietic cells and is widely used to study mechanisms and treatment of myeloproliferative neoplasms (MPN). The model displays an intriguing shift from MPN to acute T-cell leukemia (T-ALL) after transplantation to wild-type mice, but the mechanisms underlying this lineage shift is unknown. Here, we show that KRAS(G12D) increases proliferation of both myeloid and T-cell progenitors, but whereas myeloid cells differentiate, T-cell differentiation is inhibited at early stages. Secondary mutations in the expanded pool of T-cell progenitors accompany T-ALL development, and our results indicate that the shift from myeloid to T-lymphoid malignancy after transplantation is explained by the increased likelihood for secondary mutations when the tumor lifespan is increased. We demonstrate that tumor lifespan increases after transplantation because primary KM mice die rapidly, not from MPN, but from KRAS(G12D) expression in nonhematopoietic cells, which causes intestinal bleeding and severe anemia. We also identify loss of the wild-type KRAS allele as a secondary mutation in all T-ALL cells and provide evidence that wild-type KRAS acts as a tumor suppressor in the T-cell lineage in mice.
Collapse
|
43
|
Zhou Y, Rideout WM, Bressel A, Yalavarthi S, Zi T, Potz D, Farlow S, Brodeur J, Monti A, Reddipalli S, Xiao Q, Bottega S, Feng B, Chiu MI, Bosenberg M, Heyer J. Spontaneous genomic alterations in a chimeric model of colorectal cancer enable metastasis and guide effective combinatorial therapy. PLoS One 2014; 9:e105886. [PMID: 25162504 PMCID: PMC4146580 DOI: 10.1371/journal.pone.0105886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/24/2014] [Indexed: 12/12/2022] Open
Abstract
Colon cancer is the second most common cause of cancer mortality in the Western world with metastasis commonly present at the time of diagnosis. Screening for propagation and metastatic behavior in a novel chimeric-mouse colon cancer model, driven by mutant p53 and β-Catenin, led to the identification of a unique, invasive adenocarcinoma. Comparison of the genome of this tumor, CB42, with genomes from non-propagating tumors by array CGH and sequencing revealed an amplicon on chromosome five containing CDK6 and CDK14, and a KRAS mutation, respectively. Single agent small molecule inhibition of either CDK6 or MEK, a kinase downstream of KRAS, led to tumor growth inhibition in vivo whereas combination therapy not only led to regression of the subcutaneous tumors, but also near complete inhibition of lung metastasis; thus, genomic analysis of this tumor led to effective, individualized treatment.
Collapse
Affiliation(s)
- Yinghui Zhou
- Department of Research, AVEO Pharmaceuticals, Inc., Cambridge, Massachusetts, United States of America
- * E-mail:
| | - William M. Rideout
- Department of Research, AVEO Pharmaceuticals, Inc., Cambridge, Massachusetts, United States of America
| | - Angela Bressel
- Department of Research, AVEO Pharmaceuticals, Inc., Cambridge, Massachusetts, United States of America
| | - Sireesha Yalavarthi
- Department of Research, AVEO Pharmaceuticals, Inc., Cambridge, Massachusetts, United States of America
| | - Tong Zi
- Department of Research, AVEO Pharmaceuticals, Inc., Cambridge, Massachusetts, United States of America
| | - Darren Potz
- Department of Research, AVEO Pharmaceuticals, Inc., Cambridge, Massachusetts, United States of America
| | - Samuel Farlow
- Department of Research, AVEO Pharmaceuticals, Inc., Cambridge, Massachusetts, United States of America
| | - Joelle Brodeur
- Department of Research, AVEO Pharmaceuticals, Inc., Cambridge, Massachusetts, United States of America
| | - Anthony Monti
- Department of Research, AVEO Pharmaceuticals, Inc., Cambridge, Massachusetts, United States of America
| | - Shailaja Reddipalli
- Department of Research, AVEO Pharmaceuticals, Inc., Cambridge, Massachusetts, United States of America
| | - Qiurong Xiao
- Department of Research, AVEO Pharmaceuticals, Inc., Cambridge, Massachusetts, United States of America
| | - Steve Bottega
- Department of Research, AVEO Pharmaceuticals, Inc., Cambridge, Massachusetts, United States of America
| | - Bin Feng
- Department of Research, AVEO Pharmaceuticals, Inc., Cambridge, Massachusetts, United States of America
| | - M. Isabel Chiu
- Department of Research, AVEO Pharmaceuticals, Inc., Cambridge, Massachusetts, United States of America
| | - Marcus Bosenberg
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Joerg Heyer
- Department of Research, AVEO Pharmaceuticals, Inc., Cambridge, Massachusetts, United States of America
| |
Collapse
|
44
|
Bedside to bench in juvenile myelomonocytic leukemia: insights into leukemogenesis from a rare pediatric leukemia. Blood 2014; 124:2487-97. [PMID: 25163700 DOI: 10.1182/blood-2014-03-300319] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a typically aggressive myeloid neoplasm of childhood that is clinically characterized by overproduction of monocytic cells that can infiltrate organs, including the spleen, liver, gastrointestinal tract, and lung. JMML is categorized as an overlap myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN) by the World Health Organization and also shares some clinical and molecular features with chronic myelomonocytic leukemia, a similar disease in adults. Although the current standard of care for patients with JMML relies on allogeneic hematopoietic stem cell transplant, relapse is the most frequent cause of treatment failure. Tremendous progress has been made in defining the genomic landscape of JMML. Insights from cancer predisposition syndromes have led to the discovery of nearly 90% of driver mutations in JMML, all of which thus far converge on the Ras signaling pathway. This has improved our ability to accurately diagnose patients, develop molecular markers to measure disease burden, and choose therapeutic agents to test in clinical trials. This review emphasizes recent advances in the field, including mapping of the genomic and epigenome landscape, insights from new and existing disease models, targeted therapeutics, and future directions.
Collapse
|
45
|
STAT3 supports experimental K-RasG12D-induced murine myeloproliferative neoplasms dependent on serine phosphorylation. Blood 2014; 124:2252-61. [PMID: 25150294 DOI: 10.1182/blood-2013-02-484196] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Juvenile myelomonocytic leukemia, acute myeloid leukemia (AML), and other myeloproliferative neoplasms (MPNs) are genetically heterogeneous but frequently display activating mutations in Ras GTPases and activation of signal transducer and activator of transcription 3 (STAT3). Altered STAT3 activity is observed in up to 50% of AML correlating with poor prognosis. Activated STAT proteins, classically associated with tyrosine phosphorylation, support tumor development as transcription factors, but alternative STAT functions independent of tyrosine phosphorylation have been documented, including roles for serine-phosphorylated STAT3 in mitochondria supporting transformation by oncogenic Ras. We examined requirements for STAT3 in experimental murine K-Ras-dependent hematopoietic neoplasia. We show that STAT3 is phosphorylated on S727 but not Y705 in diseased animals. Moreover, a mouse with a point mutation abrogating STAT3 S727 phosphorylation displayed delayed onset and decreased disease severity with significantly extended survival. Activated K-Ras required STAT3 for cytokine-independent growth of myeloid progenitors in vitro, and mitochondrially restricted STAT3 and STAT3-Y705F, both transcriptionally inert mutants, supported factor-independent growth. STAT3 was dispensable for growth of normal or K-Ras-mutant myeloid progenitors in response to cytokines. However, abrogation of STAT3-S727 phosphorylation impaired factor-independent malignant growth. These data document that serine-phosphorylated mitochondrial STAT3 supports neoplastic hematopoietic cell growth induced by K-Ras.
Collapse
|
46
|
NrasG12D oncoprotein inhibits apoptosis of preleukemic cells expressing Cbfβ-SMMHC via activation of MEK/ERK axis. Blood 2014; 124:426-36. [PMID: 24894773 DOI: 10.1182/blood-2013-12-541730] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Acute myeloid leukemia (AML) results from the activity of driver mutations that deregulate proliferation and survival of hematopoietic stem cells (HSCs). The fusion protein CBFβ-SMMHC impairs differentiation in hematopoietic stem and progenitor cells and induces AML in cooperation with other mutations. However, the combined function of CBFβ-SMMHC and cooperating mutations in preleukemic expansion is not known. Here, we used Nras(LSL-G12D); Cbfb(56M) knock-in mice to show that allelic expression of oncogenic Nras(G12D) and Cbfβ-SMMHC increases survival of preleukemic short-term HSCs and myeloid progenitor cells and maintains the differentiation block induced by the fusion protein. Nras(G12D) and Cbfβ-SMMHC synergize to induce leukemia in mice in a cell-autonomous manner, with a shorter median latency and higher leukemia-initiating cell activity than that of mice expressing Cbfβ-SMMHC. Furthermore, Nras(LSL-G12D); Cbfb(56M) leukemic cells were sensitive to pharmacologic inhibition of the MEK/ERK signaling pathway, increasing apoptosis and Bim protein levels. These studies demonstrate that Cbfβ-SMMHC and Nras(G12D) promote the survival of preleukemic myeloid progenitors primed for leukemia by activation of the MEK/ERK/Bim axis, and define Nras(LSL-G12D); Cbfb(56M) mice as a valuable genetic model for the study of inversion(16) AML-targeted therapies.
Collapse
|
47
|
Johnson DB, Smalley KSM, Sosman JA. Molecular pathways: targeting NRAS in melanoma and acute myelogenous leukemia. Clin Cancer Res 2014; 20:4186-92. [PMID: 24895460 DOI: 10.1158/1078-0432.ccr-13-3270] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Successful targeting of specific oncogenic "driver" mutations with small-molecule inhibitors has represented a major advance in cancer therapeutics over the past 10 to 15 years. The most common activating oncogene in human malignancy, RAS (rat sarcoma), has proved to be an elusive target. Activating mutations in RAS induce mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase-AKT pathway signaling and drive malignant progression in up to 30% of cancers. Oncogenic NRAS mutations occur in several cancer types, notably melanoma, acute myelogenous leukemia (AML), and less commonly, colon adenocarcinoma, thyroid carcinoma, and other hematologic malignancies. Although NRAS-mutant tumors have been recalcitrant to targeted therapeutic strategies historically, newer agents targeting MAP/ERK kinase 1 (MEK1)/2 have recently shown signs of clinical efficacy as monotherapy. Combination strategies of MEK inhibitors with other targeted agents have strong preclinical support and are being evaluated in clinical trials. This review discusses the recent preclinical and clinical studies about the role of NRAS in cancer, with a focus on melanoma and AML.
Collapse
Affiliation(s)
- Douglas B Johnson
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Keiran S M Smalley
- Departments of Molecular Oncology and Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Jeffrey A Sosman
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and
| |
Collapse
|
48
|
Kong G, Wunderlich M, Yang D, Ranheim EA, Young KH, Wang J, Chang YI, Du J, Liu Y, Tey SR, Zhang X, Juckett M, Mattison R, Damnernsawad A, Zhang J, Mulloy JC, Zhang J. Combined MEK and JAK inhibition abrogates murine myeloproliferative neoplasm. J Clin Invest 2014; 124:2762-73. [PMID: 24812670 DOI: 10.1172/jci74182] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Overactive RAS signaling is prevalent in juvenile myelomonocytic leukemia (JMML) and the myeloproliferative variant of chronic myelomonocytic leukemia (MP-CMML) in humans, and both are refractory to conventional chemotherapy. Conditional activation of a constitutively active oncogenic Nras (NrasG12D/G12D) in murine hematopoietic cells promotes an acute myeloproliferative neoplasm (MPN) that recapitulates many features of JMML and MP-CMML. We found that NrasG12D/G12D-expressing HSCs, which serve as JMML/MP-CMML-initiating cells, show strong hyperactivation of ERK1/2, promoting hyperproliferation and depletion of HSCs and expansion of downstream progenitors. Inhibition of the MEK pathway alone prolonged the presence of NrasG12D/G12D-expressing HSCs but failed to restore their proper function. Consequently, approximately 60% of NrasG12D/G12D mice treated with MEK inhibitor alone died within 20 weeks, and the remaining animals continued to display JMML/MP-CMML-like phenotypes. In contrast, combined inhibition of MEK and JAK/STAT signaling, which is commonly hyperactivated in human and mouse CMML, potently inhibited human and mouse CMML cell growth in vitro, rescued mutant NrasG12D/G12D-expressing HSC function in vivo, and promoted long-term survival without evident disease manifestation in NrasG12D/G12D animals. These results provide a strong rationale for further exploration of combined targeting of MEK/ERK and JAK/STAT in treating patients with JMML and MP-CMML.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Genes, ras
- Humans
- Janus Kinases/antagonists & inhibitors
- Leukemia, Myelomonocytic, Chronic/drug therapy
- Leukemia, Myelomonocytic, Chronic/enzymology
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Juvenile/drug therapy
- Leukemia, Myelomonocytic, Juvenile/enzymology
- Leukemia, Myelomonocytic, Juvenile/genetics
- MAP Kinase Signaling System/drug effects
- Mice
- Mice, Mutant Strains
- Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors
- Myeloproliferative Disorders/drug therapy
- Myeloproliferative Disorders/enzymology
- Myeloproliferative Disorders/pathology
- Protein Kinase Inhibitors/administration & dosage
- Signal Transduction/drug effects
Collapse
|
49
|
Trepiccione F, Pisitkun T, Hoffert JD, Poulsen SB, Capasso G, Nielsen S, Knepper MA, Fenton RA, Christensen BM. Early targets of lithium in rat kidney inner medullary collecting duct include p38 and ERK1/2. Kidney Int 2014; 86:757-67. [PMID: 24786704 DOI: 10.1038/ki.2014.107] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/30/2014] [Accepted: 02/13/2014] [Indexed: 12/14/2022]
Abstract
Almost half of patients receiving lithium salts have nephrogenic diabetes insipidus. Chronic lithium exposure induces AQP2 downregulation and changes in the cellular composition of the collecting duct. In order to understand these pathophysiological events, we determined the earliest lithium targets in rat inner medullary collecting duct (IMCD) by examining changes in the IMCD phosphoproteome after acute lithium administration. IMCDs were isolated 9 h after lithium exposure, a time when urinary concentrating impairment was evident. We found 1093 unique phosphopeptides corresponding to 492 phosphoproteins identified and quantified by mass spectrometry. Label-free quantification identified 152 upregulated and 56 downregulated phosphopeptides in response to lithium. Bioinformatic analysis highlighted several signaling proteins including MAP kinases and cell-junction proteins. The majority of the upregulated phosphopeptides contained a proline-directed motif, a known target of MAPK. Four hours after lithium exposure, phosphorylation sites in the activation loops of ERK1/2 and p38 were upregulated. Increased expression of phospho-Ser261-AQP2 (proline-directed motif) was concomitant with the increase in urine output. Pretreatment with MAPK inhibitors reversed the increased Ser261-AQP2 phosphorylation. Thus, in IMCD, ERK1/2 and p38 are early targets of lithium and may play a role in the onset of lithium-induced polyuria.
Collapse
Affiliation(s)
- Francesco Trepiccione
- 1] Water and Salt Research Center, Department of Biomedicine, Aarhus University, Aarhus C, Denmark [2] Division of Nephrology, Department of Cardiothoracic and Respiratory Sciences, Second University of Naples, Naples, Italy
| | - Trairak Pisitkun
- 1] Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, USA [2] Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jason D Hoffert
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, USA
| | - Søren B Poulsen
- Water and Salt Research Center, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Giovambattista Capasso
- Division of Nephrology, Department of Cardiothoracic and Respiratory Sciences, Second University of Naples, Naples, Italy
| | - Søren Nielsen
- Water and Salt Research Center, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, USA
| | - Robert A Fenton
- Water and Salt Research Center, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Birgitte M Christensen
- Water and Salt Research Center, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
50
|
Gritsman K, Yuzugullu H, Von T, Yan H, Clayton L, Fritsch C, Maira SM, Hollingworth G, Choi C, Khandan T, Paktinat M, Okabe RO, Roberts TM, Zhao JJ. Hematopoiesis and RAS-driven myeloid leukemia differentially require PI3K isoform p110α. J Clin Invest 2014; 124:1794-809. [PMID: 24569456 DOI: 10.1172/jci69927] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 12/17/2013] [Indexed: 01/19/2023] Open
Abstract
The genes encoding RAS family members are frequently mutated in juvenile myelomonocytic leukemia (JMML) and acute myeloid leukemia (AML). RAS proteins are difficult to target pharmacologically; therefore, targeting the downstream PI3K and RAF/MEK/ERK pathways represents a promising approach to treat RAS-addicted tumors. The p110α isoform of PI3K (encoded by Pik3ca) is an essential effector of oncogenic KRAS in murine lung tumors, but it is unknown whether p110α contributes to leukemia. To specifically examine the role of p110α in murine hematopoiesis and in leukemia, we conditionally deleted p110α in HSCs using the Cre-loxP system. Postnatal deletion of p110α resulted in mild anemia without affecting HSC self-renewal; however, deletion of p110α in mice with KRASG12D-associated JMML markedly delayed their death. Furthermore, the p110α-selective inhibitor BYL719 inhibited growth factor-independent KRASG12D BM colony formation and sensitized cells to a low dose of the MEK inhibitor MEK162. Furthermore, combined inhibition of p110α and MEK effectively reduced proliferation of RAS-mutated AML cell lines and disease in an AML murine xenograft model. Together, our data indicate that RAS-mutated myeloid leukemias are dependent on the PI3K isoform p110α, and combined pharmacologic inhibition of p110α and MEK could be an effective therapeutic strategy for JMML and AML.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Class I Phosphatidylinositol 3-Kinases
- Erythropoiesis/genetics
- Erythropoiesis/physiology
- Genes, ras
- Hematopoiesis/genetics
- Hematopoiesis/physiology
- Heterografts
- Humans
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myelomonocytic, Juvenile/enzymology
- Leukemia, Myelomonocytic, Juvenile/genetics
- Leukemia, Myelomonocytic, Juvenile/pathology
- MAP Kinase Signaling System
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphatidylinositol 3-Kinases/deficiency
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Signal Transduction
Collapse
|