1
|
Rappuoli R, Alter G, Pulendran B. Transforming vaccinology. Cell 2024; 187:5171-5194. [PMID: 39303685 PMCID: PMC11736809 DOI: 10.1016/j.cell.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
The COVID-19 pandemic placed the field of vaccinology squarely at the center of global consciousness, emphasizing the vital role of vaccines as transformative public health tools. The impact of vaccines was recently acknowledged by the award of the 2023 Nobel Prize in Physiology or Medicine to Katalin Kariko and Drew Weissman for their seminal contributions to the development of mRNA vaccines. Here, we provide a historic perspective on the key innovations that led to the development of some 27 licensed vaccines over the past two centuries and recent advances that promise to transform vaccines in the future. Technological revolutions such as reverse vaccinology, synthetic biology, and structure-based design transformed decades of vaccine failures into successful vaccines against meningococcus B and respiratory syncytial virus (RSV). Likewise, the speed and flexibility of mRNA vaccines profoundly altered vaccine development, and the advancement of novel adjuvants promises to revolutionize our ability to tune immunity. Here, we highlight exciting new advances in the field of systems immunology that are transforming our mechanistic understanding of the human immune response to vaccines and how to predict and manipulate them. Additionally, we discuss major immunological challenges such as learning how to stimulate durable protective immune response in humans.
Collapse
Affiliation(s)
| | - Galit Alter
- Moderna Therapeutics, Cambridge, MA 02139, USA.
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Yee WX, Barnes G, Lavender H, Tang CM. Meningococcal factor H-binding protein: implications for disease susceptibility, virulence, and vaccines. Trends Microbiol 2023; 31:805-815. [PMID: 36941192 PMCID: PMC10914675 DOI: 10.1016/j.tim.2023.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
Neisseria meningitidis is a human-adapted pathogen that causes meningitis and sepsis worldwide. N. meningitidis factor H-binding protein (fHbp) provides a mechanism for immune evasion by binding human complement factor H (CFH) to protect it from complement-mediated killing. Here, we discuss features of fHbp which enable it to engage human CFH (hCFH), and the regulation of fHbp expression. Studies of host susceptibility and bacterial genome-wide association studies (GWAS) highlight the importance of the interaction between fHbp and CFH and other complement factors, such as CFHR3, on the development of invasive meningococcal disease (IMD). Understanding the basis of fHbp:CFH interactions has also informed the design of next-generation vaccines as fHbp is a protective antigen. Structure-informed refinement of fHbp vaccines will help to combat the threat posed by the meningococcus, and accelerate the elimination of IMD.
Collapse
Affiliation(s)
- Wearn-Xin Yee
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Grace Barnes
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Hayley Lavender
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
3
|
Romano M, Squeglia F, Kramarska E, Barra G, Choi HG, Kim HJ, Ruggiero A, Berisio R. A Structural View at Vaccine Development against M. tuberculosis. Cells 2023; 12:317. [PMID: 36672252 PMCID: PMC9857197 DOI: 10.3390/cells12020317] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Tuberculosis (TB) is still the leading global cause of death from an infectious bacterial agent. Limiting tuberculosis epidemic spread is therefore an urgent global public health priority. As stated by the WHO, to stop the spread of the disease we need a new vaccine, with better coverage than the current Mycobacterium bovis BCG vaccine. This vaccine was first used in 1921 and, since then, there are still no new licensed tuberculosis vaccines. However, there is extremely active research in the field, with a steep acceleration in the past decades, due to the advance of technologies and more rational vaccine design strategies. This review aims to gather latest updates in vaccine development in the various clinical phases and to underline the contribution of Structural Vaccinology (SV) to the development of safer and effective antigens. In particular, SV and the development of vaccine adjuvants is making the use of subunit vaccines, which are the safest albeit the less antigenic ones, an achievable goal. Indeed, subunit vaccines overcome safety concerns but need to be rationally re-engineered to enhance their immunostimulating effects. The larger availability of antigen structural information as well as a better understanding of the complex host immune response to TB infection is a strong premise for a further acceleration of TB vaccine development.
Collapse
Affiliation(s)
- Maria Romano
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Giovanni Barra
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Han-Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| |
Collapse
|
4
|
Khan MA, Amin A, Farid A, Ullah A, Waris A, Shinwari K, Hussain Y, Alsharif KF, Alzahrani KJ, Khan H. Recent Advances in Genomics-Based Approaches for the Development of Intracellular Bacterial Pathogen Vaccines. Pharmaceutics 2022; 15:pharmaceutics15010152. [PMID: 36678781 PMCID: PMC9863128 DOI: 10.3390/pharmaceutics15010152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Infectious diseases continue to be a leading cause of morbidity and mortality worldwide. The majority of infectious diseases are caused by intracellular pathogenic bacteria (IPB). Historically, conventional vaccination drives have helped control the pathogenesis of intracellular bacteria and the emergence of antimicrobial resistance, saving millions of lives. However, in light of various limitations, many diseases that involve IPB still do not have adequate vaccines. In response to increasing demand for novel vaccine development strategies, a new area of vaccine research emerged following the advent of genomics technology, which changed the paradigm of vaccine development by utilizing the complete genomic data of microorganisms against them. It became possible to identify genes related to disease virulence, genetic patterns linked to disease virulence, as well as the genetic components that supported immunity and favorable vaccine responses. Complete genomic databases, and advancements in transcriptomics, metabolomics, structural genomics, proteomics, immunomics, pan-genomics, synthetic genomics, and population biology have allowed researchers to identify potential vaccine candidates and predict their effects in patients. New vaccines have been created against diseases for which previously there were no vaccines available, and existing vaccines have been improved. This review highlights the key issues and explores the evolution of vaccines. The increasing volume of IPB genomic data, and their application in novel genome-based techniques for vaccine development, were also examined, along with their characteristics, and the opportunities and obstacles involved. Critically, the application of genomics technology has helped researchers rapidly select and evaluate candidate antigens. Novel vaccines capable of addressing the limitations associated with conventional vaccines have been developed and pressing healthcare issues are being addressed.
Collapse
Affiliation(s)
- Muhammad Ajmal Khan
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- Correspondence: (M.A.K.); or (H.K.)
| | - Aftab Amin
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Awais Farid
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong, China
| | - Amin Ullah
- Molecular Virology Laboratory, Department of Microbiology and Biotechnology, Abasyn University, Peshawar 25000, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Khyber Shinwari
- Institute of Chemical Engineering, Department Immuno-Chemistry, Ural Federal University, Yekaterinbiurg 620002, Russia
| | - Yaseen Hussain
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khalid J. Alzahrani
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Haroon Khan
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence: (M.A.K.); or (H.K.)
| |
Collapse
|
5
|
Structural analysis of Plasmodium falciparum ookinete surface antigen Pfs28 relevant for malaria vaccine design. Sci Rep 2022; 12:19556. [PMID: 36379968 PMCID: PMC9664031 DOI: 10.1038/s41598-022-24054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Pfs28 is a Plasmodium falciparum malaria transmission-blocking vaccine candidate that is anchored to the parasite surface through a C-terminal glycosylphosphatidylinositol (GPI) moiety, and plays a role in parasite survival in the mosquito midgut. Pfs28 contains epidermal growth factor (EGF)-like domains and is part of a family of sexual stage malaria proteins that includes the related vaccine antigen Pfs25. The lack of structural definition of Pfs28 and the immune response to this candidate has limited further malaria vaccine development for this antigen. Here, we present the crystal structure of Pfs28, examine its conservation with P. vivax Pvs28, and evaluate the cross-reactivity of Pfs28 to antibodies that recognize Pfs25. Pfs28 is comprised of four EGF-like domains stabilized by ten disulfide bridges with an overall architecture that highly resembles Pfs25. Despite the high sequence and structural similarity between these antigens, no cross reactivity of Pfs28 to anti-Pfs25 monoclonal antibodies could be demonstrated.
Collapse
|
6
|
Qian C, Yang Y, Xu Q, Wang Z, Chen J, Chi X, Yu M, Gao F, Xu Y, Lu Y, Sun H, Shen J, Wang D, Zhou L, Li T, Wang Y, Zheng Q, Yu H, Zhang J, Gu Y, Xia N, Li S. Characterization of an Escherichia coli-derived triple-type chimeric vaccine against human papillomavirus types 39, 68 and 70. NPJ Vaccines 2022; 7:134. [PMID: 36316367 PMCID: PMC9622684 DOI: 10.1038/s41541-022-00557-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 10/13/2022] [Indexed: 11/22/2022] Open
Abstract
In vaccinology, a potent immunogen has two prerequisite attributes-antigenicity and immunogenicity. We have rational designed a triple-type HPV vaccine against HPV58, -33 and -52 covered in Gardasil 9 based on the sequence homology and similar surface loop structure of L1 protein, which is related to cross-type antigenicity. Here, we design another triple-type vaccine against non-vaccine types HPV39, -68 and -70 by immunogenicity optimization considering type specific immunodominant epitopes located in separate region for different types. First, we optimized the expression of wild-type HPV39, -68 and -70 L1-only virus-like particles (VLPs) in E. coli through N-terminal truncation of HPV L1 proteins and non-fusion soluble expression. Second, based on genetic relationships and an L1 homologous loop-swapping rationale, we constructed several triple-type chimeric VLPs for HPV39, -68 and -70, and obtained the lead candidate named H39-68FG-70DE by the immunogenicity optimization using reactivity profile of a panel type-specific monoclonal antibodies. Through comprehensive characterization using various biochemical, VLP-based analyses and immune assays, we show that H39-68FG-70DE assumes similar particulate properties as that of its parental VLPs, along with comparable neutralization immunogenicity for all three HPV types. Overall, this study shows the promise and translatability of an HPV39/68/70 triple-type vaccine, and the possibility of expanding the type-coverage of current HPV vaccines. Our study further expanded the essential criteria on the rational design of a cross-type vaccine, i.e. separate sites with inter-type similar sequence and structure as well as type-specific immunodominant epitope to be clustered together.
Collapse
Affiliation(s)
- Ciying Qian
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Yurou Yang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Qin Xu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Zhiping Wang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Jie Chen
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Xin Chi
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Miao Yu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Fei Gao
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Yujie Xu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Yihan Lu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Hui Sun
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Jingjia Shen
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Daning Wang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Lizhi Zhou
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Tingting Li
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Yingbin Wang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Qingbing Zheng
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Hai Yu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Jun Zhang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Ying Gu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Ningshao Xia
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Shaowei Li
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| |
Collapse
|
7
|
Huffman A, Ong E, Hur J, D’Mello A, Tettelin H, He Y. COVID-19 vaccine design using reverse and structural vaccinology, ontology-based literature mining and machine learning. Brief Bioinform 2022; 23:bbac190. [PMID: 35649389 PMCID: PMC9294427 DOI: 10.1093/bib/bbac190] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
Rational vaccine design, especially vaccine antigen identification and optimization, is critical to successful and efficient vaccine development against various infectious diseases including coronavirus disease 2019 (COVID-19). In general, computational vaccine design includes three major stages: (i) identification and annotation of experimentally verified gold standard protective antigens through literature mining, (ii) rational vaccine design using reverse vaccinology (RV) and structural vaccinology (SV) and (iii) post-licensure vaccine success and adverse event surveillance and its usage for vaccine design. Protegen is a database of experimentally verified protective antigens, which can be used as gold standard data for rational vaccine design. RV predicts protective antigen targets primarily from genome sequence analysis. SV refines antigens through structural engineering. Recently, RV and SV approaches, with the support of various machine learning methods, have been applied to COVID-19 vaccine design. The analysis of post-licensure vaccine adverse event report data also provides valuable results in terms of vaccine safety and how vaccines should be used or paused. Ontology standardizes and incorporates heterogeneous data and knowledge in a human- and computer-interpretable manner, further supporting machine learning and vaccine design. Future directions on rational vaccine design are discussed.
Collapse
Affiliation(s)
- Anthony Huffman
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Edison Ong
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, USA
| | - Adonis D’Mello
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yongqun He
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
8
|
Alves MLF, Ferreira MRA, Rodrigues RR, Conceição FR. Clostridium haemolyticum, a review of beta toxin and insights into the antigen design for vaccine development. Mol Immunol 2022; 148:45-53. [PMID: 35665660 DOI: 10.1016/j.molimm.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/01/2022] [Accepted: 05/16/2022] [Indexed: 01/03/2023]
Abstract
Phospholipases C (PLCs) represent an important group of lethal toxins produced by pathogenic bacteria of the Clostridium genus, including the beta toxin of C. haemolyticum. Bacillary hemoglobinuria in cattle and sheep is the main disease caused by this pathogen and its incidence can be reduced by annual vaccination of herds. Currently, widely used vaccines depend on cultivating the pathogen and obtaining high concentrations of the toxin, disadvantages that can be overcome with the use of recombinant vaccines. In the development of this new generation of immunizing agents, identifying and understanding the structural and immunological aspects of the antigen are crucial steps, but despite this, the beta toxin is poorly characterized. Fortunately, the time and resources required for these investigations can be reduced using immunoinformatics. To advance the development of recombinant vaccines, in addition to a brief review of the structural and immunological aspects of beta toxin, this work provides in silico mapping of immunodominant regions to guide future vaccinology studies against C. haemolyticum. A review of alternatives to overcome the limitations of beta toxin vaccines (conventional or recombinant) is also proposed.
Collapse
Affiliation(s)
- Mariliana Luiza Ferreira Alves
- Instituto Federal Sul-rio-grandense - IFSUL, Praça Vinte de Setembro, 455, Centro, Pelotas CEP 96.015-360, RS, Brazil; Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas CEP 96.160-000, RS, Brazil.
| | - Marcos Roberto Alves Ferreira
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas CEP 96.160-000, RS, Brazil
| | - Rafael Rodrigues Rodrigues
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas CEP 96.160-000, RS, Brazil
| | - Fabricio Rochedo Conceição
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas CEP 96.160-000, RS, Brazil
| |
Collapse
|
9
|
Veggi D, Malito E, Lo Surdo P, Pansegrau W, Rippa V, Wahome N, Savino S, Masignani V, Pizza M, Bottomley MJ. Structural characterization of a cross-protective natural chimera of factor H binding protein from meningococcal serogroup B strain NL096. Comput Struct Biotechnol J 2022; 20:2070-2081. [PMID: 35601959 PMCID: PMC9079162 DOI: 10.1016/j.csbj.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Invasive meningococcal disease can cause fatal sepsis and meningitis and is a global health threat. Factor H binding protein (fHbp) is a protective antigen included in the two currently available vaccines against serogroup B meningococcus (MenB). FHbp is a remarkably variable surface-exposed meningococcal virulence factor with over 1300 different amino acid sequences identified so far. Based on this variability, fHbp has been classified into three variants, two subfamilies or nine modular groups, with low degrees of cross-protective activity. Here, we report the crystal structure of a natural fHbp cross-variant chimera, named variant1-2,3.x expressed by the MenB clinical isolate NL096, at 1.2 Å resolution, the highest resolution of any fHbp structure reported to date. We combined biochemical, site-directed mutagenesis and computational biophysics studies to deeply characterize this rare chimera. We determined the structure to be composed of two adjacent domains deriving from the three variants and determined the molecular basis of its stability, ability to bind Factor H and to adopt the canonical three-dimensional fHbp structure. These studies guided the design of loss-of-function mutations with potential for even greater immunogenicity. Moreover, this study represents a further step in the understanding of the fHbp biological and immunological evolution in nature. The chimeric variant1-2,3.x fHbp protein emerges as an intriguing cross-protective immunogen and suggests that identification of such naturally occurring hybrid proteins may result in stable and cross-protective immunogens when seeking to design and develop vaccines against highly variable pathogens.
Collapse
Affiliation(s)
- Daniele Veggi
- Corresponding author at: GSK Vaccines srl, Via Fiorentina 1, Siena 53100, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mahmoud A, Toth I, Stephenson R. Developing an Effective Glycan‐Based Vaccine for
Streptococcus Pyogenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Asmaa Mahmoud
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences The University of Queensland Woolloongabba Australia
- School of Pharmacy The Universitry of Queensland St Lucia Australia
- Institue for Molecular Biosciences The University of Queensland St Lucia Australia
| | - Rachel Stephenson
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Australia
| |
Collapse
|
11
|
Thomas S, Doytchinova I. In Silico Identification of the B-Cell and T-Cell Epitopes of the Antigenic Proteins of Staphylococcus aureus for Potential Vaccines. Methods Mol Biol 2022; 2412:439-447. [PMID: 34918260 DOI: 10.1007/978-1-0716-1892-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Staphylococcus aureus is a leading cause of community-acquired, healthcare-associated, and hospital-acquired infections. S. aureus bacteremia is a common and serious infection with significant morbidity and mortality in older patients. The rise of antibiotic-resistant strains of S. aureus has resulted in substantial loss and effective treatment in hospitalized patients. Thus, there is a need in the development of a vaccine that would provide protection against S. aureus. The antigens of our interest include proteins that are essential for bacterial attachment and colonization (ClfA and ClfB), dermonecrosis-driven toxin (Hla), antigens that are essential for abscess formation (EsxA and EsxB), and antigens that are essential for nutrient acquisition and resistance to phagocytes killing induced by reactive oxygen species (FhuD2 and MntC). Development of a structure-based vaccine based on the antigenic protein epitopes is a novel strategy to provide protection against S. aureus. Using bioinformatic tools, we have determined the B-cell and T-cell epitopes of the antigenic proteins of S. aureus. This chapter reports identification of B-cell and T-cell epitopes of the antigenic protein that could be used in the development of effective structure-based vaccines to protect against S. aureus.
Collapse
Affiliation(s)
- Sunil Thomas
- Lankenau Institute for Medical Research, Wynnewood, PA, USA.
| | - Irini Doytchinova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
12
|
Mahmoud A, Toth I, Stephenson R. Developing an Effective Glycan-based Vaccine for Streptococcus Pyogenes. Angew Chem Int Ed Engl 2021; 61:e202115342. [PMID: 34935243 DOI: 10.1002/anie.202115342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 11/11/2022]
Abstract
Streptococcus pyogenes is a primary infective agent that causes approximately 700 million human infections each year, resulting in more than 500,000 deaths. Carbohydrate-based vaccines are proven to be one of the most promising subunit vaccine candidates, as the bacterial glycan pattern(s) are different from mammalian cells and show increased pathogen serotype conservancy than the protein components. In this review we highlight reverse vaccinology for use in the development of subunit vaccines against S. pyogenes, and report reproducible methods of carbohydrate antigen production, in addition to the structure-immunogenicity correlation between group A carbohydrate epitopes and alternative vaccine antigen carrier systems. We also report recent advances used to overcome hurdles in carbohydrate-based vaccine development.
Collapse
Affiliation(s)
- Asmaa Mahmoud
- The University of Queensland - Saint Lucia Campus: The University of Queensland, School of Chemistry and Molecular Biosciences, AUSTRALIA
| | - Istvan Toth
- The University of Queensland - Saint Lucia Campus: The University of Queensland, School of Chemistry and Molecular Biosciences, AUSTRALIA
| | - Rachel Stephenson
- The University of Queensland, School of Chemistry and Molecular Biosciences, The University of Queensland, 4068, Brisbane, AUSTRALIA
| |
Collapse
|
13
|
The Input of Structural Vaccinology in the Search for Vaccines against Bunyaviruses. Viruses 2021; 13:v13091766. [PMID: 34578349 PMCID: PMC8473429 DOI: 10.3390/v13091766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 11/26/2022] Open
Abstract
A significant increase in the number of viruses causing unexpected illnesses and epidemics among humans, wildlife and livestock has been observed in recent years. These new or re-emerging viruses have often caught the scientific community off-guard, without sufficient knowledge to combat them, as shown by the current coronavirus pandemic. The bunyaviruses, together with the flaviviruses and filoviruses, are the major etiological agents of viral hemorrhagic fever, and several of them have been listed as priority pathogens by the World Health Organization for which insufficient countermeasures exist. Based on new techniques allowing rapid analysis of the repertoire of protective antibodies induced during infection, combined with atomic-level structural information on viral surface proteins, structural vaccinology is now instrumental in the combat against newly emerging threats, as it allows rapid rational design of novel vaccine antigens. Here, we discuss the contribution of structural vaccinology and the current challenges that remain in the search for an efficient vaccine against some of the deadliest bunyaviruses.
Collapse
|
14
|
Ständer S, R Grauslund L, Scarselli M, Norais N, Rand K. Epitope Mapping of Polyclonal Antibodies by Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS). Anal Chem 2021; 93:11669-11678. [PMID: 34308633 DOI: 10.1021/acs.analchem.1c00696] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Epitope mapping of antibodies (Abs) is crucial for understanding adaptive immunity, as well as studying the mode of action of therapeutic antibodies and vaccines. Especially insights into the binding of the entire polyclonal antibody population (pAb) raised upon vaccination would be of unique value to vaccine development. However, very few methods for epitope mapping can tolerate the complexity of a pAb sample. Here we show how hydrogen-deuterium exchange mass spectrometry (HDX-MS) can be used to map epitopes recognized by pAb samples. Our approach involves measuring the HDX of the antigen in absence or presence of varied amounts of pAbs, as well as dissociating additives. We apply the HDX-MS workflow to pAbs isolated from rabbit immunized with factor H-binding protein (fHbp), a Neisseria meningitidis vaccine antigen. We identify four immunogenic regions located on the N- and C-terminal region of fHbp and provide insights into the relative abundance and avidity of epitope binding Abs present in the sample. Overall, our results show that HDX-MS can provide a unique and relatively fast method for revealing the binding impact of the entire set of pAbs present in blood samples after vaccination. Such information provides a rare view into effective immunity and can guide the design of improved vaccines against viruses or bacteria.
Collapse
Affiliation(s)
- Susanne Ständer
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Laura R Grauslund
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | | | | | - Kasper Rand
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
15
|
Pilewski KA, Kramer KJ, Georgiev IS. Simultaneous Immunization with Multiple Diverse Immunogens Alters Development of Antigen-Specific Antibody-Mediated Immunity. Vaccines (Basel) 2021; 9:vaccines9090964. [PMID: 34579201 PMCID: PMC8473051 DOI: 10.3390/vaccines9090964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
Vaccination remains one of the most successful medical interventions in history, significantly decreasing morbidity and mortality associated with, or even eradicating, numerous infectious diseases. Although traditional immunization strategies have recently proven insufficient in the face of many highly mutable and emerging pathogens, modern strategies aim to rationally engineer a single antigen or cocktail of antigens to generate a focused, protective immune response. However, the effect of cocktail vaccination (simultaneous immunization with multiple immunogens) on the antibody response to each individual antigen within the combination, remains largely unstudied. To investigate whether immunization with a cocktail of diverse antigens would result in decreased antibody titer against each unique antigen in the cocktail compared to immunization with each antigen alone, we immunized mice with surface proteins from uropathogenic Escherichia coli, Mycobacterium tuberculosis, and Neisseria meningitides, and monitored the development of antigen-specific IgG antibody responses. We found that antigen-specific endpoint antibody titers were comparable across immunization groups by study conclusion (day 70). Further, we discovered that although cocktail-immunized mice initially elicited more robust antibody responses, the rate of titer development decreases significantly over time compared to single antigen-immunized mice. Investigating the basic properties that govern the development of antigen-specific antibody responses will help inform the design of future combination immunization regimens.
Collapse
Affiliation(s)
- Kelsey A. Pilewski
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (K.A.P.); (K.J.K.)
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kevin J. Kramer
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (K.A.P.); (K.J.K.)
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (K.A.P.); (K.J.K.)
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
16
|
Guiding the Immune Response to a Conserved Epitope in MSP2, an Intrinsically Disordered Malaria Vaccine Candidate. Vaccines (Basel) 2021; 9:vaccines9080855. [PMID: 34451980 PMCID: PMC8402609 DOI: 10.3390/vaccines9080855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
The malaria vaccine candidate merozoite surface protein 2 (MSP2) has shown promise in clinical trials and is in part responsible for a reduction in parasite densities. However, strain-specific reductions in parasitaemia suggested that polymorphic regions of MSP2 are immuno-dominant. One strategy to bypass the hurdle of strain-specificity is to bias the immune response towards the conserved regions. Two mouse monoclonal antibodies, 4D11 and 9H4, recognise the conserved C-terminal region of MSP2. Although they bind overlapping epitopes, 4D11 reacts more strongly with native MSP2, suggesting that its epitope is more accessible on the parasite surface. In this study, a structure-based vaccine design approach was applied to the intrinsically disordered antigen, MSP2, using a crystal structure of 4D11 Fv in complex with its minimal binding epitope. Molecular dynamics simulations and surface plasmon resonance informed the design of a series of constrained peptides that mimicked the 4D11-bound epitope structure. These peptides were conjugated to keyhole limpet hemocyanin and used to immunise mice, with high to moderate antibody titres being generated in all groups. The specificities of antibody responses revealed that a single point mutation can focus the antibody response towards a more favourable epitope. This structure-based approach to peptide vaccine design may be useful not only for MSP2-based malaria vaccines, but also for other intrinsically disordered antigens.
Collapse
|
17
|
Adeleke VT, Adeniyi AA, Adeleke MA, Okpeku M, Lokhat D. The design of multiepitope vaccines from plasmids of diarrheagenic Escherichia coli against diarrhoea infection: Immunoinformatics approach. INFECTION GENETICS AND EVOLUTION 2021; 91:104803. [PMID: 33684568 DOI: 10.1016/j.meegid.2021.104803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 01/19/2023]
Abstract
Diarrhoea infection is a major global health public problem and is caused by many organisms including diarrheagenic Escherichia coli pathotypes. The common problem with diarrhoea is the drug resistance of pathogenic bacteria, the most promising alternative means of preventing drug resistance is vaccination. However, there has not been any significant success in the prevention of diarrhoea caused by E. coli through vaccination. Epitope-based vaccine is gaining more attention due to its safety and specificity. Sequence variation of protective antigens of the pathogen has posed a new challenge in the development of epitope-based vaccines against the infection, leading to the necessity of multiepitope based design. In this study, immunoinformatics tools were used to design multiepitope vaccine candidates from plasmid genome sequences of multiple pathotypes of E. coli species involved in diarrhoea infections. The ability of the identified epitopes to be used as a cross-protect multiepitope vaccine was achieved by identifying conserved, immunogenic and antigenic peptides that can elicit CD4+ T-cell, CD8+ T-cell and B-cell and bind to MHC I and II HLA alleles. The molecular docking results of T-cell epitopes showed their well binding affinity to receptive protein and with a wider population coverage. The different multiepitope-based vaccines (MEVCs) candidates were constructed and based on the types of epitope linker they contained. The MEVCs exhibited very good binding interactions with the human immune receptor. Among multiepitope vaccines constructed, MEVC6, MEVCA and MEVCB are more promising as potential vaccine candidates for cross-protection against gastrointestinal infections according to the computational study. It is also hoped that after validation and testing, the predicted multiepitope-based vaccine candidates will probably resolve the challenge of immunological heterogeneity facing enteric vaccine development.
Collapse
Affiliation(s)
- Victoria T Adeleke
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Howard Campus, Durban 4041, South Africa.
| | - Adebayo A Adeniyi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa; Department of Industrial Chemistry, Federal University, Oye, Ekiti, Nigeria
| | - Matthew A Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| | - David Lokhat
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Howard Campus, Durban 4041, South Africa
| |
Collapse
|
18
|
Moore SR, Menon SS, Cortes C, Ferreira VP. Hijacking Factor H for Complement Immune Evasion. Front Immunol 2021; 12:602277. [PMID: 33717083 PMCID: PMC7947212 DOI: 10.3389/fimmu.2021.602277] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The complement system is an essential player in innate and adaptive immunity. It consists of three pathways (alternative, classical, and lectin) that initiate either spontaneously (alternative) or in response to danger (all pathways). Complement leads to numerous outcomes detrimental to invaders, including direct killing by formation of the pore-forming membrane attack complex, recruitment of immune cells to sites of invasion, facilitation of phagocytosis, and enhancement of cellular immune responses. Pathogens must overcome the complement system to survive in the host. A common strategy used by pathogens to evade complement is hijacking host complement regulators. Complement regulators prevent attack of host cells and include a collection of membrane-bound and fluid phase proteins. Factor H (FH), a fluid phase complement regulatory protein, controls the alternative pathway (AP) both in the fluid phase of the human body and on cell surfaces. In order to prevent complement activation and amplification on host cells and tissues, FH recognizes host cell-specific polyanionic markers in combination with complement C3 fragments. FH suppresses AP complement-mediated attack by accelerating decay of convertases and by helping to inactivate C3 fragments on host cells. Pathogens, most of which do not have polyanionic markers, are not recognized by FH. Numerous pathogens, including certain bacteria, viruses, protozoa, helminths, and fungi, can recruit FH to protect themselves against host-mediated complement attack, using either specific receptors and/or molecular mimicry to appear more like a host cell. This review will explore pathogen complement evasion mechanisms involving FH recruitment with an emphasis on: (a) characterizing the structural properties and expression patterns of pathogen FH binding proteins, as well as other strategies used by pathogens to capture FH; (b) classifying domains of FH important in pathogen interaction; and (c) discussing existing and potential treatment strategies that target FH interactions with pathogens. Overall, many pathogens use FH to avoid complement attack and appreciating the commonalities across these diverse microorganisms deepens the understanding of complement in microbiology.
Collapse
Affiliation(s)
- Sara R Moore
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Smrithi S Menon
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Claudio Cortes
- Department of Foundational Medical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
19
|
Abstract
The COVID-19 pandemic is a shocking reminder of how our world would look in the absence of vaccination. Fortunately, new technologies, the pace of understanding new and existing pathogens, and the increased knowledge of the immune system allow us today to develop vaccines at an unprecedented speed. Some of the vaccine technologies that are fast-tracked by the urgency of COVID-19 may also be the answer for other health priorities, such as antimicrobial resistance, chronic infections, and cancer, that the post-COVID-19 world will urgently need to face. This perspective analyzes the way COVID-19 is transforming vaccinology and the opportunities for vaccines to have an increasingly important role in health and well-being.
Collapse
|
20
|
Micoli F, Bagnoli F, Rappuoli R, Serruto D. The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol 2021; 19:287-302. [PMID: 33542518 PMCID: PMC7861009 DOI: 10.1038/s41579-020-00506-3] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/29/2023]
Abstract
The use of antibiotics has enabled the successful treatment of bacterial infections, saving the lives and improving the health of many patients worldwide. However, the emergence and spread of antimicrobial resistance (AMR) has been highlighted as a global threat by different health organizations, and pathogens resistant to antimicrobials cause substantial morbidity and death. As resistance to multiple drugs increases, novel and effective therapies as well as prevention strategies are needed. In this Review, we discuss evidence that vaccines can have a major role in fighting AMR. Vaccines are used prophylactically, decreasing the number of infectious disease cases, and thus antibiotic use and the emergence and spread of AMR. We also describe the current state of development of vaccines against resistant bacterial pathogens that cause a substantial disease burden both in high-income countries and in low- and medium-income countries, discuss possible obstacles that hinder progress in vaccine development and speculate on the impact of next-generation vaccines against bacterial infectious diseases on AMR.
Collapse
Affiliation(s)
- Francesca Micoli
- grid.425088.3GSK Vaccines Institute for Global Health, Siena, Italy
| | | | | | | |
Collapse
|
21
|
Rosini R, Nicchi S, Pizza M, Rappuoli R. Vaccines Against Antimicrobial Resistance. Front Immunol 2020; 11:1048. [PMID: 32582169 PMCID: PMC7283535 DOI: 10.3389/fimmu.2020.01048] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/30/2020] [Indexed: 12/29/2022] Open
Abstract
In the last century, life expectancy has increased considerably, thanks to the introduction of antibiotics, hygiene and vaccines that have contributed to the cure and prevention of many infectious diseases. The era of antimicrobial therapy started in the nineteenth century with the identification of chemical compounds with antimicrobial properties. However, immediately after the introduction of these novel drugs, microorganisms started to become resistant through different strategies. Although resistance mechanisms were already present before antibiotic introduction, their large-scale use and mis-use have increased the number of resistant microorganisms. Rapid spreading of mobile elements by horizontal gene transfer such as plasmids and integrative conjugative elements (ICE) carrying multiple resistance genes has dramatically increased the worldwide prevalence of relevant multi drug-resistant human pathogens such as Staphylococcus aureus, Neisseria gonorrhoeae, and Enterobacteriaceae. Today, antimicrobial resistance (AMR) remains one of the major global concerns to be addressed and only global efforts could help in finding a solution. In terms of magnitude the economic impact of AMR is estimated to be comparable to that of climate global change in 2030. Although antibiotics continue to be essential to treat such infections, non-antibiotic therapies will play an important role in limiting the increase of antibiotic resistant microorganisms. Among non-antibiotic strategies, vaccines and therapeutic monoclonal antibodies (mAbs) play a strategic role. In this review, we will summarize the evolution and the mechanisms of antibiotic resistance, and the impact of AMR on life expectancy and economics.
Collapse
Affiliation(s)
| | - Sonia Nicchi
- GSK, Siena, Italy
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | | - Rino Rappuoli
- GSK, Siena, Italy
- vAMRes Lab, Toscana Life Sciences, Siena, Italy
- Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Scoffone VC, Barbieri G, Buroni S, Scarselli M, Pizza M, Rappuoli R, Riccardi G. Vaccines to Overcome Antibiotic Resistance: The Challenge of Burkholderia cenocepacia. Trends Microbiol 2020; 28:315-326. [DOI: 10.1016/j.tim.2019.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022]
|
23
|
Broadly Protective Multivalent OspA Vaccine against Lyme Borreliosis, Developed Based on Surface Shaping of the C-Terminal Fragment. Infect Immun 2020; 88:IAI.00917-19. [PMID: 31932330 DOI: 10.1128/iai.00917-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/22/2019] [Indexed: 12/14/2022] Open
Abstract
The development of vaccines for prevention of diseases caused by pathogenic species can encounter major obstacles if high sequence diversity is observed between individual strains. Therefore, development might be restricted either to conserved antigens, which are often rare, or to multivalent vaccines, which renders the production more costly and cumbersome. In light of this complexity, we applied a structure-based surface shaping approach for the development of a Lyme borreliosis (LB) vaccine suitable for the United States and Europe. The surface of the C-terminal fragment of outer surface protein A (OspA) was divided into distinct regions, based primarily on binding sites of monoclonal antibodies (MAbs). In order to target the six clinically most relevant OspA serotypes (ST) in a single protein, exposed amino acids of the individual regions were exchanged to corresponding amino acids of a chosen OspA serotype. Six chimeric proteins were constructed, and, based on their immunogenicity, four of these chimeras were tested in mouse challenge models. Significant protection could be demonstrated for all four proteins following challenge with infected ticks (OspA ST1, OspA ST2, and OspA ST4) or with in vitro-grown spirochetes (OspA ST1 and OspA ST5). Two of the chimeric proteins were linked to form a fusion protein, which provided significant protection against in vitro-grown spirochetes (OspA ST1) and infected ticks (OspA ST2). This article presents the proof-of-concept study for a multivalent OspA vaccine targeting a wide range of pathogenic LB Borrelia species with a single recombinant antigen for prevention of Lyme borreliosis.
Collapse
|
24
|
Whitby PW, Morton DJ, Mussa HJ, Mirea L, Stull TL. A bacterial vaccine polypeptide protective against nontypable Haemophilus influenzae. Vaccine 2020; 38:2960-2970. [PMID: 32111525 DOI: 10.1016/j.vaccine.2020.02.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 02/08/2023]
Abstract
Nontypeable strains of Haemophilus influenzae (NTHi) are one of the most common cause of otitis media and the most frequent infection associated with exacerbations of chronic obstructive pulmonary disease; there is currently no vaccine in the U.S. to prevent NTHi. Using bioinformatics and structural vaccinology, we previously identified several NTHi species-conserved and sequence-conserved peptides that mediate passive protection in the rat model of infection. Using these, and similar peptides, we designed Hi Poly 1, a Bacterial Vaccine Polypeptide, comprising 9 unique peptides from 6 different surface proteins. Recombinant Hi Poly 1 was purified by affinity chromatography. Forty chinchillas were immunized three times with 200 µg of Hi Poly 1 with alum adjuvant; similarly, 41 controls were immunized with adjuvant alone. The average Log2 IgG titer among immunized animals was 17.04, and IgG antibodies against each component peptide were detected. In the infant rat model, antisera from immunized chinchillas provided significant passive protection compared to PBS (p = 0.01) and pre-immune sera (p = 0.03). In the established chinchilla model of NTHi otitis media, the vaccinated group cleared infection faster than the control group as indicated by significantly decreased positive findings on video-otoscopy (p < 0.0001) and tympanometry (p = 0.0002) on day 7, and for middle ear fluid obtained by aspiration (p = 0.0001) on day 10 post-infection. Using 12 representative NTHi strains in a Live-Cell ELISA, greater antibody binding to each strain was detected with post Hi Poly 1 than the pre-immune chinchilla antisera. The data from this proof-of-principle study demonstrate the effectiveness of Hi Poly 1 against the NTHi in two relevant preclinical models of bacteremia and otitis media as well as surface antibody binding across the species. The Bacterial Vaccine Polypeptide approach to a vaccine against NTHi also serves as a paradigm for development of similar vaccines to protect against other bacteria.
Collapse
Affiliation(s)
- Paul W Whitby
- Department of Child Health, University of Arizona College of Medicine-Phoenix, United States; Phoenix Childrens Hospital, Phoenix, United States.
| | - Daniel J Morton
- Department of Child Health, University of Arizona College of Medicine-Phoenix, United States; Phoenix Childrens Hospital, Phoenix, United States
| | - Huda J Mussa
- Department of Child Health, University of Arizona College of Medicine-Phoenix, United States; Phoenix Childrens Hospital, Phoenix, United States
| | - Lucia Mirea
- Department of Child Health, University of Arizona College of Medicine-Phoenix, United States; Phoenix Childrens Hospital, Phoenix, United States
| | - Terrence L Stull
- Department of Child Health, University of Arizona College of Medicine-Phoenix, United States; Phoenix Childrens Hospital, Phoenix, United States
| |
Collapse
|
25
|
Structural proteomics, electron cryo-microscopy and structural modeling approaches in bacteria-human protein interactions. Med Microbiol Immunol 2020; 209:265-275. [PMID: 32072248 PMCID: PMC7223518 DOI: 10.1007/s00430-020-00663-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/30/2020] [Indexed: 01/01/2023]
Abstract
A central challenge in infection medicine is to determine the structure and function of host-pathogen protein-protein interactions to understand how these interactions facilitate bacterial adhesion, dissemination and survival. In this review, we focus on proteomics, electron cryo-microscopy and structural modeling to showcase instances where affinity-purification (AP) and cross-linking (XL) mass spectrometry (MS) has advanced our understanding of host-pathogen interactions. We highlight cases where XL-MS in combination with structural modeling has provided insight into the quaternary structure of interspecies protein complexes. We further exemplify how electron cryo-tomography has been used to visualize bacterial-human interactions during attachment and infection. Lastly, we discuss how AP-MS, XL-MS and electron cryo-microscopy and -tomography together with structural modeling approaches can be used in future studies to broaden our knowledge regarding the function, dynamics and evolution of such interactions. This knowledge will be of relevance for future drug and vaccine development programs.
Collapse
|
26
|
Fine mapping epitope on glycoprotein Gc from Crimean-Congo hemorrhagic fever virus. Comp Immunol Microbiol Infect Dis 2019; 67:101371. [PMID: 31627038 DOI: 10.1016/j.cimid.2019.101371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 01/03/2023]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne zoonosis, caused by CCHF virus (CCHFV) and which there are no diagnostic or therapeutic strategies. The C-terminus of glycoprotein (Gc) encoded by the CCHFV M gene is responsible for CCHFV binding to cellular receptors and acts as a neutralizing-antibody target. In this study, a modified biosynthetic peptide technique (BSP) was used to identify fine epitopes of Gc from the CCHFV YL04057 strain using rabbit antiserum against CCHFV-Gc. Six B cell epitopes (BCEs) and one antigenic peptide (AP) were identified: E1 (88VEDASES94), E2 (117GDRQVEE123), E3 (241EIVTLH246), AP-4 (281DFQVYHVGNLLRGDKV296), E5a (370GDTP QLDL377), E5b (373PQLDLKAR380), and E6 (443HVRSSD448). Western blotting analysis showed that each epitope interacted with the positive serum of sheep that had been naturally infected with CCHFV, and the results were consistent with that of Dot-ELISA. The multiple sequence alignment (MSA) revealed high conservation of the identified epitopes among ten CCHFV strains from different areas, except for epitopes AP-4 and E6. Furthermore, three-dimensional structural modeling showed that all identified epitopes were located on the surface of the Gc "head" domain. These mapped epitopes of the CCHFV Gc would provide a basis for further increase our understanding CCHFV glycoprotein function and the development of a CCHFV epitope-based diagnostics vaccine and detection antigen.
Collapse
|
27
|
Integrative Approaches in Structural Biology: A More Complete Picture from the Combination of Individual Techniques. Biomolecules 2019; 9:biom9080370. [PMID: 31416261 PMCID: PMC6723403 DOI: 10.3390/biom9080370] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 11/21/2022] Open
Abstract
With the recent technological and computational advancements, structural biology has begun to tackle more and more difficult questions, including complex biochemical pathways and transient interactions among macromolecules. This has demonstrated that, to approach the complexity of biology, one single technique is largely insufficient and unable to yield thorough answers, whereas integrated approaches have been more and more adopted with successful results. Traditional structural techniques (X-ray crystallography and Nuclear Magnetic Resonance (NMR)) and the emerging ones (cryo-electron microscopy (cryo-EM), Small Angle X-ray Scattering (SAXS)), together with molecular modeling, have pros and cons which very nicely complement one another. In this review, three examples of synergistic approaches chosen from our previous research will be revisited. The first shows how the joint use of both solution and solid-state NMR (SSNMR), X-ray crystallography, and cryo-EM is crucial to elucidate the structure of polyethylene glycol (PEG)ylated asparaginase, which would not be obtainable through any of the techniques taken alone. The second deals with the integrated use of NMR, X-ray crystallography, and SAXS in order to elucidate the catalytic mechanism of an enzyme that is based on the flexibility of the enzyme itself. The third one shows how it is possible to put together experimental data from X-ray crystallography and NMR restraints in order to refine a protein model in order to obtain a structure which simultaneously satisfies both experimental datasets and is therefore closer to the ‘real structure’.
Collapse
|
28
|
Farcasanu M, Wang AG, Uchański T, Bailey LJ, Yue J, Chen Z, Wu X, Kossiakoff A, Tang WJ. Rapid Discovery and Characterization of Synthetic Neutralizing Antibodies against Anthrax Edema Toxin. Biochemistry 2019; 58:2996-3004. [PMID: 31243996 DOI: 10.1021/acs.biochem.9b00184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Anthrax, a lethal, weaponizable disease caused by Bacillus anthracis, acts through exotoxins that are primary mediators of systemic toxicity and also targets for neutralization by passive immunotherapy. The ease of engineering B. anthracis strains resistant to established therapy and the historic use of the microbe in bioterrorism present a compelling test case for platforms that permit the rapid and modular development of neutralizing agents. In vitro antigen-binding fragment (Fab) selection offers the advantages of speed, sequence level molecular control, and engineering flexibility compared to traditional monoclonal antibody pipelines. By screening an unbiased, chemically synthetic phage Fab library and characterizing hits in cell-based assays, we identified two high-affinity neutralizing Fabs, A4 and B7, against anthrax edema factor (EF), a key mediator of anthrax pathogenesis. Engineered homodimers of these Fabs exhibited potency comparable to that of the best reported neutralizing monoclonal antibody against EF at preventing EF-induced cyclic AMP production. Using internalization assays in COS cells, B7 was found to block steps prior to EF internalization. This work demonstrates the efficacy of synthetic alternatives to traditional antibody therapeutics against anthrax while also demonstrating a broadly generalizable, rapid, and modular screening pipeline for neutralizing antibody generation.
Collapse
Affiliation(s)
- Mara Farcasanu
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Andrew G Wang
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Tomasz Uchański
- Department of Biochemistry and Molecular Biology , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Lucas J Bailey
- Department of Biochemistry and Molecular Biology , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Jiping Yue
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Zhaochun Chen
- National Institute of Allergy and Infection , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Xiaoyang Wu
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Anthony Kossiakoff
- Department of Biochemistry and Molecular Biology , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Wei-Jen Tang
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
29
|
Cerofolini L, Giuntini S, Ravera E, Luchinat C, Berti F, Fragai M. Structural characterization of a protein adsorbed on aluminum hydroxide adjuvant in vaccine formulation. NPJ Vaccines 2019; 4:20. [PMID: 31149351 PMCID: PMC6538755 DOI: 10.1038/s41541-019-0115-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Abstract
The heterogeneous composition of vaccine formulations and the relatively low concentration make the characterization of the protein antigens extremely challenging. Aluminum-containing adjuvants have been used to enhance the immune response of several antigens over the last 90 years and still remain the most commonly used. Here, we show that solid-state NMR and isotope labeling methods can be used to characterize the structural features of the protein antigen component of vaccines and to investigate the preservation of the folding state of proteins adsorbed on Alum hydroxide matrix, providing the way to identify the regions of the protein that are mainly affected by the presence of the inorganic matrix. l-Asparaginase from E. coli has been used as a pilot model of protein antigen. This methodology can find application in several steps of the vaccine development pipeline, from the antigen optimization, through the design of vaccine formulation, up to stability studies and manufacturing process.
Collapse
Affiliation(s)
- Linda Cerofolini
- 1Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Stefano Giuntini
- 2Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Enrico Ravera
- 1Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,2Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- 1Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,2Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Francesco Berti
- Technical R&D, GSK Vaccines, Via Fiorentina 1, 53100 Siena, Italy
| | - Marco Fragai
- 1Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,2Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
30
|
Frimpong A, Kusi KA, Ofori MF, Ndifon W. Novel Strategies for Malaria Vaccine Design. Front Immunol 2018; 9:2769. [PMID: 30555463 PMCID: PMC6281765 DOI: 10.3389/fimmu.2018.02769] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022] Open
Abstract
The quest for a licensed effective vaccine against malaria remains a global priority. Even though classical vaccine design strategies have been successful for some viral and bacterial pathogens, little success has been achieved for Plasmodium falciparum, which causes the deadliest form of malaria due to its diversity and ability to evade host immune responses. Nevertheless, recent advances in vaccinology through high throughput discovery of immune correlates of protection, lymphocyte repertoire sequencing and structural design of immunogens, provide a comprehensive approach to identifying and designing a highly efficacious vaccine for malaria. In this review, we discuss novel vaccine approaches that can be employed in malaria vaccine design.
Collapse
Affiliation(s)
- Augustina Frimpong
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.,African Institute for Mathematical Sciences, Cape Coast, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Michael Fokuo Ofori
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Wilfred Ndifon
- African Institute for Mathematical Sciences, Cape Coast, Ghana.,African Institute for Mathematical Sciences, University of Stellenbosch, Cape Town, South Africa
| |
Collapse
|
31
|
Carvalho MF, Gill D. Rotavirus vaccine efficacy: current status and areas for improvement. Hum Vaccin Immunother 2018; 15:1237-1250. [PMID: 30215578 PMCID: PMC6663136 DOI: 10.1080/21645515.2018.1520583] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/12/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022] Open
Abstract
The difference noted in Rotavirus vaccine efficiency between high and low income countries correlates with the lack of universal access to clean water and higher standards of hygiene. Overcoming these obstacles will require great investment and also time, therefore more effective vaccines should be developed to meet the needs of those who would benefit the most from them. Increasing our current knowledge of mucosal immunity, response to Rotavirus infection and its modulation by circadian rhythms could point at actionable pathways to improve vaccination efficacy, especially in the case of individuals affected by environmental enteropathy. Also, a better understanding and validation of Rotavirus entry factors as well as the systematic monitoring of dominant strains could assist in tailoring vaccines to individual's needs. Another aspect that could improve vaccine efficiency is targeting to M cells, for which new ligands could potentially be sought. Finally, alternative mucosal adjuvants and vaccine expression, storage and delivery systems could have a positive impact in the outcome of Rotavirus vaccination.
Collapse
Affiliation(s)
| | - Davinder Gill
- MSD Wellcome Trust Hilleman Laboratories Pvt. Ltd., New Delhi, India
| |
Collapse
|
32
|
Ferraro M, Colombo G. Targeting Difficult Protein-Protein Interactions with Plain and General Computational Approaches. Molecules 2018; 23:molecules23092256. [PMID: 30181519 PMCID: PMC6225287 DOI: 10.3390/molecules23092256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 11/21/2022] Open
Abstract
Investigating protein-protein interactions (PPIs) holds great potential for therapeutic applications, since they mediate intricate cell signaling networks in physiological and disease states. However, their complex and multifaceted nature poses a major challenge for biochemistry and medicinal chemistry, thereby limiting the druggability of biological partners participating in PPIs. Molecular Dynamics (MD) provides a solid framework to study the reciprocal shaping of proteins’ interacting surfaces. Here, we review successful applications of MD-based methods developed in our group to predict interfacial areas involved in PPIs of pharmaceutical interest. We report two interesting examples of how structural, dynamic and energetic information can be combined into efficient strategies which, complemented by experiments, can lead to the design of new small molecules with promising activities against cancer and infections. Our advances in targeting key PPIs in angiogenic pathways and antigen-antibody recognition events will be discussed for their role in drug discovery and chemical biology.
Collapse
Affiliation(s)
- Mariarosaria Ferraro
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy.
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy.
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 10, 27100 Pavia, Italy.
| |
Collapse
|
33
|
Maritan M, Veggi D, Cozzi R, Dello Iacono L, Bartolini E, Lo Surdo P, Maruggi G, Spraggon G, Bottomley MJ, Malito E. Structures of NHBA elucidate a broadly conserved epitope identified by a vaccine induced antibody. PLoS One 2018; 13:e0201922. [PMID: 30133484 PMCID: PMC6104945 DOI: 10.1371/journal.pone.0201922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/28/2018] [Indexed: 11/18/2022] Open
Abstract
Neisserial heparin binding antigen (NHBA) is one of three main recombinant protein antigens in 4CMenB, a vaccine for the prevention of invasive meningococcal disease caused by Neisseria meningitidis serogroup B. NHBA is a surface-exposed lipoprotein composed of a predicted disordered N-terminal region, an arginine-rich region that binds heparin, and a C-terminal domain that folds as an anti-parallel β-barrel and that upon release after cleavage by human proteases alters endothelial permeability. NHBA induces bactericidal antibodies in humans, and NHBA-specific antibodies elicited by the 4CMenB vaccine contribute to serum bactericidal activity, the correlate of protection. To better understand the structural bases of the human antibody response to 4CMenB vaccination and to inform antigen design, we used X-ray crystallography to elucidate the structures of two C-terminal fragments of NHBA, either alone or in complex with the Fab derived from the vaccine-elicited human monoclonal antibody 5H2, and the structure of the unbound Fab 5H2. The structures reveal details on the interaction between an N-terminal β-hairpin fragment and the β-barrel, and explain how NHBA is capable of generating cross-reactive antibodies through an extensive conserved conformational epitope that covers the entire C-terminal face of the β-barrel. By providing new structural information on a vaccine antigen and on the human immune response to vaccination, these results deepen our molecular understanding of 4CMenB, and might also aid future vaccine design projects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Glen Spraggon
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States of America
| | | | | |
Collapse
|
34
|
Cantini F, Banci L. Structural Knowledge for Molecular Optimization: The Cases of Metal-Mediated Protein-Protein Interactions and Structural Vaccinology. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Francesca Cantini
- Magnetic Resonance Center (CERM); University of Florence; Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Lucia Banci
- Magnetic Resonance Center (CERM); University of Florence; Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| |
Collapse
|
35
|
Fine mapping epitope on glycoprotein-Gn from Crimean-Congo hemorrhagic fever virus. Comp Immunol Microbiol Infect Dis 2018; 59:24-31. [DOI: 10.1016/j.cimid.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/02/2018] [Accepted: 09/03/2018] [Indexed: 01/28/2023]
|
36
|
Ma J, Wang Y, Xu N, Jin L, Liu J, Xing S, Li X. Potential large scale production of meningococcal vaccines by stable overexpression of fHbp in the rice seeds. Protein Expr Purif 2018; 152:1-6. [PMID: 29953946 DOI: 10.1016/j.pep.2018.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 06/16/2018] [Accepted: 06/24/2018] [Indexed: 10/28/2022]
Abstract
Factor H binding protein (fHbp) is the most promising vaccine candidate against serogroup B of Neisseria meningitidis which is a major cause of morbidity and mortality in children. In order to facilitate large scale production of a commercial vaccine, we previously used transgenic Arabidopsis thaliana, but plant-derived fHbp is still far away from a commercial vaccine due to less biomass production. Herein, we presented an alternative route for the production of recombinant fHbp from the seeds of transgenic rice. The OsrfHbp gene encoding recombinant fHbp fused protein was introduced into the genome of rice via Agrobacterium-mediated transformation. The both stable integration and transcription of the foreign OsrfHbp were confirmed by Southern blotting and RT-PCR analysis respectively. Further, the expression of fHbp protein was measured by immunoblotting analysis and quantified by ELISA. The results indicated that fHbp was successfully expressed and the highest yield of fHbp was 0.52 ± 0.03% of TSP in the transgenic rice seeds. The purified fHbp protein showed good antigenicity and immunogenicity in the animal model. The results of this experiment offer a novel approach for large-scale production of plant-derived commercial vaccine fHbp.
Collapse
Affiliation(s)
- Jian Ma
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| | - Yunpeng Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China.
| | - Nuo Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| | - Libo Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| | - Jia Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| | - Shaochen Xing
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China; Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| | - Xiaokun Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, Jilin, China; College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
37
|
Gu H, Liao Y, Zhang J, Wang Y, Liu Z, Cheng P, Wang X, Zou Q, Gu J. Rational Design and Evaluation of an Artificial Escherichia coli K1 Protein Vaccine Candidate Based on the Structure of OmpA. Front Cell Infect Microbiol 2018; 8:172. [PMID: 29876324 PMCID: PMC5974202 DOI: 10.3389/fcimb.2018.00172] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/04/2018] [Indexed: 12/12/2022] Open
Abstract
Escherichia coli (E. coli) K1 causes meningitis and remains an unsolved problem in neonates, despite the application of antibiotics and supportive care. The cross-reactivity of bacterial capsular polysaccharides with human antigens hinders their application as vaccine candidates. Thus, protein antigens could be an alternative strategy for the development of an E. coli K1 vaccine. Outer membrane protein A (OmpA) of E. coli K1 is a potential vaccine candidate because of its predominant contribution to bacterial pathogenesis and sub-cellular localization. However, little progress has been made regarding the use of OmpA for this purpose due to difficulties in OmpA production. In the present study, we first investigated the immunogenicity of the four extracellular loops of OmpA. Using the structure of OmpA, we rationally designed and successfully generated the artificial protein OmpAVac, composed of connected loops from OmpA. Recombinant OmpAVac was successfully produced in E. coli BL21 and behaved as a soluble homogenous monomer in the aqueous phase. Vaccination with OmpAVac induced Th1, Th2, and Th17 immune responses and conferred effective protection in mice. In addition, OmpAVac-specific antibodies were able to mediate opsonophagocytosis and inhibit bacterial invasion, thereby conferring prophylactic protection in E. coli K1-challenged adult mice and neonatal mice. These results suggest that OmpAVac could be a good vaccine candidate for the control of E. coli K1 infection and provide an additional example of structure-based vaccine design.
Collapse
Affiliation(s)
- Hao Gu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yaling Liao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jin Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China.,Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Wang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Zhiyong Liu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ping Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xingyong Wang
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jiang Gu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
38
|
Lo Passo C, Zippilli L, Angiolillo A, Costa I, Pernice I, Galbo R, Felici F, Beernink PT. Molecular characterization of two sub-family specific monoclonal antibodies to meningococcal Factor H binding protein. Heliyon 2018; 4:e00591. [PMID: 29644339 PMCID: PMC5889710 DOI: 10.1016/j.heliyon.2018.e00591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/07/2018] [Accepted: 03/27/2018] [Indexed: 11/29/2022] Open
Abstract
Factor H binding protein (FHbp) is a component of two licensed vaccines for prevention of sepsis and meningitis caused by serogroup B meningococci. FHbp binds human Factor H (FH), which contributes to evasion of host immunity and FHbp sequence variants can be classified into two sub-families. Antibodies against FHbp elicit complement-mediated killing and can inhibit recruitment of FH to the bacterial surface. We report epitope mapping studies of two murine IgG mAbs, designated JAR 31 and JAR 36, isolated from a mouse immunized with FHbp in sub-family A, which is present in ∼30-40% of invasive isolates. In the present study, we tested the reactivity of mAbs JAR 31 and JAR 36 with seven natural FHbp sequence variants from different phylogenic groups. We screened bacteriophage-displayed peptide libraries to identify amino acid residues contributing to the JAR 36 epitope. Based on the reactivities of mAbs JAR 31 and JAR 36 with the seven FHbp variants, and the frequent occurrences of aspartate (D) and lysine (K) residues in the JAR 36-bound phage peptides, we selected six residues in the carboxyl-terminal region of FHbp for replacement with alanine (A). The D201A and K203A substitutions respectively eliminated and decreased binding of mAbs JAR 31 and JAR 36 to FHbp. These substitutions did not affect binding of the control mAb JAR 33 or of human FH. JAR 31 or JAR 36 mediated cooperative complement-mediated bactericidal activity with other anti-FHbp mAbs. The identification of two amino acid residues involved in the epitopes recognized by these anti-FHbp mAbs may contribute to a more complete understanding of the spatial requirements for cooperative anti-FHbp mAb bactericidal activity.
Collapse
Affiliation(s)
- C Lo Passo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - L Zippilli
- Department of Biosciences and Territory, University of Molise, Pesche (CB), Italy
| | - A Angiolillo
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - I Costa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - I Pernice
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - R Galbo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - F Felici
- Department of Biosciences and Territory, University of Molise, Pesche (CB), Italy
| | - P T Beernink
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA.,Department of Pediatrics, School of Medicine, University of California, San Francisco, USA
| |
Collapse
|
39
|
Olmedillas E, Cano O, Martínez I, Luque D, Terrón MC, McLellan JS, Melero JA, Más V. Chimeric Pneumoviridae fusion proteins as immunogens to induce cross-neutralizing antibody responses. EMBO Mol Med 2018; 10:175-187. [PMID: 29217660 PMCID: PMC5801496 DOI: 10.15252/emmm.201708078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/30/2017] [Accepted: 11/08/2017] [Indexed: 11/09/2022] Open
Abstract
Human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV), two members of the Pneumoviridae family, account for the majority of severe lower respiratory tract infections worldwide in very young children. They are also a frequent cause of morbidity and mortality in the elderly and immunocompromised adults. High levels of neutralizing antibodies, mostly directed against the viral fusion (F) glycoprotein, correlate with protection against either hRSV or hMPV However, no cross-neutralization is observed in polyclonal antibody responses raised after virus infection or immunization with purified F proteins. Based on crystal structures of hRSV F and hMPV F, we designed chimeric F proteins in which certain residues of well-characterized antigenic sites were swapped between the two antigens. The antigenic changes were monitored by ELISA with virus-specific monoclonal antibodies. Inoculation of mice with these chimeras induced polyclonal cross-neutralizing antibody responses, and mice were protected against challenge with the virus used for grafting of the heterologous antigenic site. These results provide a proof of principle for chimeric fusion proteins as single immunogens that can induce cross-neutralizing antibody and protective responses against more than one human pneumovirus.
Collapse
Affiliation(s)
- Eduardo Olmedillas
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Cano
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Isidoro Martínez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Luque
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María C Terrón
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Jason S McLellan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - José A Melero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Más
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
40
|
González-Miró M, Rodríguez-Noda LM, Fariñas-Medina M, Cedré-Marrero B, Madariaga-Zarza S, Zayas-Vignier C, Hernández-Cedeño M, Kleffmann T, García-Rivera D, Vérez-Bencomo V, Rehm BHA. Bioengineered polyester beads co-displaying protein and carbohydrate-based antigens induce protective immunity against bacterial infection. Sci Rep 2018; 8:1888. [PMID: 29382864 PMCID: PMC5789850 DOI: 10.1038/s41598-018-20205-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022] Open
Abstract
The efficacy of protein and carbohydrate antigens as vaccines can be improved via particulate delivery strategies. Here, protein and carbohydrate antigens used in formulations of vaccines against Neisseria menigitidis were displayed on in vivo assembled polyester beads using a combined bioengineering and conjugation approach. An endotoxin-free mutant of Escherichia coli was engineered to produce translational fusions of antigens (Neisseria adhesin A (NadA) and factor H binding protein (fHbp) derived from serogroup B) to the polyhydroxybutyrate synthase (PhaC), in order to intracellularly assemble polyester beads displaying the respective antigens. Purified beads displaying NadA showed enhanced immunogenicity compared to soluble NadA. Both soluble and particulate NadA elicited functional antibodies with bactericidal activity associated with protective immunity. To expand the antigen repertoire and to design a more broadly protective vaccine, NadA-PhaC beads were additionally conjugated to the capsular polysaccharide from serogroup C. Co-delivery of surface displayed NadA and the capsular polysaccharide induced a strong and specific Th1/Th17 mediated immune response associated with functional bactericidal antibodies. Our findings provide the foundation for the design of multivalent antigen-coated polyester beads as suitable carriers for protein and polysaccharide antigens in order to induce protective immunity.
Collapse
Affiliation(s)
- Majela González-Miró
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Finlay Vaccine Institute, La Havana, Cuba
| | | | | | | | | | | | | | | | | | | | - Bernd H A Rehm
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.
| |
Collapse
|
41
|
Fernández FJ, Gómez S, Vega MC. Pathogens' toolbox to manipulate human complement. Semin Cell Dev Biol 2017; 85:98-109. [PMID: 29221973 DOI: 10.1016/j.semcdb.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 12/15/2022]
Abstract
The surveillance and pathogen fighting functions of the complement system have evolved to protect mammals from life-threatening infections. In turn, pathogens have developed complex molecular mechanisms to subvert, divert and evade the effector functions of the complement. The study of complement immunoevasion by pathogens sheds light on their infection drivers, knowledge that is essential to implement therapies. At the same time, complement evasion also acts as a discovery ground that reveals important aspects of how complement works under physiological conditions. In recent years, complex interrelationships between infection insults and the onset of autoimmune and complement dysregulation diseases have led to propose that encounters with pathogens can act as triggering factors for disease. The correct management of these diseases involves the recognition of their triggering factors and the development and administration of complement-associated molecular therapies. Even more recently, unsuspected proteins from pathogens have been shown to possess moonlighting functions as virulence factors, raising the possibility that behind the first line of virulence factors there be many more pathogen proteins playing secondary, helping and supporting roles for the pathogen to successfully establish infections. In an era where antibiotics have a progressively reduced effect on the management and control of infectious diseases worldwide, knowledge on the mechanisms of pathogenic invasion and evasion look more necessary and pressing than ever.
Collapse
Affiliation(s)
| | - Sara Gómez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - M Cristina Vega
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
42
|
Kusi KA, Faber BW, Koopman G, Remarque EJ. EDiP: the Epitope Dilution Phenomenon. Lessons learnt from a malaria vaccine antigen and its applicability to polymorphic antigens. Expert Rev Vaccines 2017; 17:13-21. [PMID: 29224404 DOI: 10.1080/14760584.2018.1411198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Polymorphism in vaccine antigens poses major challenges to vaccinologists. The Plasmodium falciparum Apical Membrane Antigen 1 (AMA1) poses such a challenge. We found that immunization with a mixture of three variants yielded functional antibody levels to all variants comparable to levels induced by monovalent immunization. The mechanism behind the observed broadening was shown to be an increase in the fraction of cross-reactive antibodies, most likely because strain-specific epitopes are present at lower frequency relative to conserved epitopes. Areas covered: We hereby introduce the Epitope Dilution Phenomenon (EDiP) as a practical strategy for the induction of broad, cross-variant antibody responses against polymorphic antigens and discuss the utility and applicability of this phenomenon for the development of vaccines against polymorphic antigens of pathogens like Influenza, HIV, Dengue and Plasmodium. Expert commentary: EDiP can be used to broaden antibody responses by immunizing with a mixture of at least 3 antigenic variants, where the variants included can differ, yet yield broadened responses.
Collapse
Affiliation(s)
- Kwadwo Asamoah Kusi
- a Immunology Department , Noguchi Memorial Institute for Medical Research, College of Health Sciences University of Ghana , Accra , Ghana
| | - Bart W Faber
- b Department of Parasitology , Biomedical Primate Research Centre , Rijswijk , The Netherlands
| | - Gerrit Koopman
- c Department of Virology , Biomedical Primate Research Centre , Rijswijk , The Netherlands
| | - Edmond Joseph Remarque
- c Department of Virology , Biomedical Primate Research Centre , Rijswijk , The Netherlands
| |
Collapse
|
43
|
Hegde NR, Gauthami S, Sampath Kumar HM, Bayry J. The use of databases, data mining and immunoinformatics in vaccinology: where are we? Expert Opin Drug Discov 2017; 13:117-130. [PMID: 29226722 DOI: 10.1080/17460441.2018.1413088] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Vaccinology has evolved from a sub-discipline focussed on simplistic vaccine development based on antibody-mediated protection to a separate discipline involving epidemiology, host and pathogen biology, immunology, genomics, proteomics, structure biology, protein engineering, chemical biology, and delivery systems. Data mining in combination with bioinformatics has provided a scaffold linking all these disciplines to the design of vaccines and vaccine adjuvants. Areas covered: This review provides background knowledge on immunological aspects which have been exploited with informatics for the in silico analysis of immune responses and the design of vaccine antigens. Furthermore, the article presents various databases and bioinformatics tools, and discusses B and T cell epitope predictions, antigen design, adjuvant research and systems immunology, highlighting some important examples, and challenges for the future. Expert opinion: Informatics and data mining have not only reduced the time required for experimental immunology, but also contributed to the identification and design of novel vaccine candidates and the determination of biomarkers and pathways of vaccine response. However, more experimental data is required for benchmarking immunoinformatic tools. Nevertheless, developments in immunoinformatics and reverse vaccinology, which are nascent fields, are likely to hasten vaccine discovery, although the path to regulatory approval is likely to remain a necessary impediment.
Collapse
Affiliation(s)
| | - S Gauthami
- b Ella Foundation, Turkapally , Hyderabad , India
| | - H M Sampath Kumar
- c Council of Scientific and Industrial Research - Indian Institute of Chemical Technology , Hyderabad , India
| | - Jagadeesh Bayry
- d Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1138 , Centre de Recherche des Cordeliers, Paris , France
| |
Collapse
|
44
|
Hsieh CL, Ptak CP, Tseng A, Suguiura IMDS, McDonough SP, Sritrakul T, Li T, Lin YP, Gillilan RE, Oswald RE, Chang YF. Extended low-resolution structure of a Leptospira antigen offers high bactericidal antibody accessibility amenable to vaccine design. eLife 2017; 6:e30051. [PMID: 29210669 PMCID: PMC5749957 DOI: 10.7554/elife.30051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/02/2017] [Indexed: 01/16/2023] Open
Abstract
Pathogens rely on proteins embedded on their surface to perform tasks essential for host infection. These obligatory structures exposed to the host immune system provide important targets for rational vaccine design. Here, we use a systematically designed series of multi-domain constructs in combination with small angle X-ray scattering (SAXS) to determine the structure of the main immunoreactive region from a major antigen from Leptospira interrogans, LigB. An anti-LigB monoclonal antibody library exhibits cell binding and bactericidal activity with extensive domain coverage complementing the elongated architecture observed in the SAXS structure. Combining antigenic motifs in a single-domain chimeric immunoglobulin-like fold generated a vaccine that greatly enhances leptospiral protection over vaccination with single parent domains. Our study demonstrates how understanding an antigen's structure and antibody accessible surfaces can guide the design and engineering of improved recombinant antigen-based vaccines.
Collapse
Affiliation(s)
- Ching-Lin Hsieh
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Christopher P Ptak
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary MedicineCornell UniversityIthacaUnited States
- Department of Molecular Medicine, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Andrew Tseng
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | | | - Sean P McDonough
- Department of Biomedical Sciences, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Tepyuda Sritrakul
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Ting Li
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Yi-Pin Lin
- Division of Infectious DiseaseWadsworth Center, New York State Department of HealthAlbanyUnited States
| | - Richard E Gillilan
- Macromolecular Diffraction Facility at CHESS (MacCHESS)Cornell UniversityIthacaUnited States
| | - Robert E Oswald
- Department of Molecular Medicine, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary MedicineCornell UniversityIthacaUnited States
| |
Collapse
|
45
|
Giuntini S, Balducci E, Cerofolini L, Ravera E, Fragai M, Berti F, Luchinat C. Characterization of the Conjugation Pattern in Large Polysaccharide-Protein Conjugates by NMR Spectroscopy. Angew Chem Int Ed Engl 2017; 56:14997-15001. [PMID: 29024352 PMCID: PMC5813213 DOI: 10.1002/anie.201709274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Indexed: 11/08/2022]
Abstract
Carbohydrate-based vaccines are among the safest and most effective vaccines and represent potent tools for prevention of life-threatening bacterial infectious diseases, like meningitis and pneumonia. The chemical conjugation of a weak antigen to protein as a source of T-cell epitopes generates a glycoconjugate vaccine that results more immunogenic. Several methods have been used so far to characterize the resulting polysaccharide-protein conjugates. However, a reduced number of methodologies has been proposed for measuring the degree of saccharide conjugation at the possible protein sites. Here we show that detailed information on large proteins conjugated with large polysaccharides can be achieved by a combination of solution and solid-state NMR spectroscopy. As a test case, a large protein assembly, l-asparaginase II, has been conjugated with Neisseria meningitidis serogroup C capsular polysaccharide and the pattern and degree of conjugation were determined.
Collapse
Affiliation(s)
- Stefano Giuntini
- Department of ChemistryUniversity of FlorenceVia della Lastruccia 350019Sesto FiorentinoItaly
- Magnetic Resonance Center (CERM)University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP)Via L. Sacconi 650019Sesto FiorentinoItaly
| | - Evita Balducci
- GSK VaccinesPreclinical R&DVia Fiorentina 153100SienaItaly
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM)University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP)Via L. Sacconi 650019Sesto FiorentinoItaly
| | - Enrico Ravera
- Department of ChemistryUniversity of FlorenceVia della Lastruccia 350019Sesto FiorentinoItaly
- Magnetic Resonance Center (CERM)University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP)Via L. Sacconi 650019Sesto FiorentinoItaly
| | - Marco Fragai
- Department of ChemistryUniversity of FlorenceVia della Lastruccia 350019Sesto FiorentinoItaly
- Magnetic Resonance Center (CERM)University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP)Via L. Sacconi 650019Sesto FiorentinoItaly
| | | | - Claudio Luchinat
- Department of ChemistryUniversity of FlorenceVia della Lastruccia 350019Sesto FiorentinoItaly
- Magnetic Resonance Center (CERM)University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP)Via L. Sacconi 650019Sesto FiorentinoItaly
| |
Collapse
|
46
|
Giuntini S, Balducci E, Cerofolini L, Ravera E, Fragai M, Berti F, Luchinat C. Characterization of the Conjugation Pattern in Large Polysaccharide-Protein Conjugates by NMR Spectroscopy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Stefano Giuntini
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
- Magnetic Resonance Center (CERM); University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
| | - Evita Balducci
- GSK Vaccines; Preclinical R&D; Via Fiorentina 1 53100 Siena Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM); University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
| | - Enrico Ravera
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
- Magnetic Resonance Center (CERM); University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
| | - Marco Fragai
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
- Magnetic Resonance Center (CERM); University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
| | - Francesco Berti
- GSK Vaccines; Preclinical R&D; Via Fiorentina 1 53100 Siena Italy
| | - Claudio Luchinat
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
- Magnetic Resonance Center (CERM); University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
| |
Collapse
|
47
|
Gourlay L, Peri C, Bolognesi M, Colombo G. Structure and Computation in Immunoreagent Design: From Diagnostics to Vaccines. Trends Biotechnol 2017; 35:1208-1220. [PMID: 28739221 DOI: 10.1016/j.tibtech.2017.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 11/26/2022]
Abstract
Novel immunological tools for efficient diagnosis and treatment of emerging infections are urgently required. Advances in the diagnostic and vaccine development fields are continuously progressing, with reverse vaccinology and structural vaccinology (SV) methods for antigen identification and structure-based antigen (re)design playing increasingly relevant roles. SV, in particular, is predicted to be the front-runner in the future development of diagnostics and vaccines targeting challenging diseases such as AIDS and cancer. We review state-of-the-art methodologies for structure-based epitope identification and antigen design, with specific applicative examples. We highlight the implications of such methods for the engineering of biomolecules with improved immunological properties, potential diagnostic and/or therapeutic uses, and discuss the perspectives of structure-based rational design for the production of advanced immunoreagents.
Collapse
Affiliation(s)
- Louise Gourlay
- Dipartimento di Bioscienze, Università di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Claudio Peri
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco, 9, 20131, Milan, Italy
| | - Martino Bolognesi
- Dipartimento di Bioscienze, Università di Milano, Via Celoria 26, 20133, Milan, Italy; Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Università di Milano, Milan, Italy.
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco, 9, 20131, Milan, Italy.
| |
Collapse
|
48
|
Hooda Y, Lai CCL, Moraes TF. Identification of a Large Family of Slam-Dependent Surface Lipoproteins in Gram-Negative Bacteria. Front Cell Infect Microbiol 2017; 7:207. [PMID: 28620585 PMCID: PMC5449769 DOI: 10.3389/fcimb.2017.00207] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/09/2017] [Indexed: 02/01/2023] Open
Abstract
The surfaces of many Gram-negative bacteria are decorated with soluble proteins anchored to the outer membrane via an acylated N-terminus; these proteins are referred to as surface lipoproteins or SLPs. In Neisseria meningitidis, SLPs such as transferrin-binding protein B (TbpB) and factor-H binding protein (fHbp) are essential for host colonization and infection because of their essential roles in iron acquisition and immune evasion, respectively. Recently, we identified a family of outer membrane proteins called Slam (Surface lipoprotein assembly modulator) that are essential for surface display of neisserial SLPs. In the present study, we performed a bioinformatics analysis to identify 832 Slam related sequences in 638 Gram-negative bacterial species. The list included several known human pathogens, many of which were not previously reported to possess SLPs. Hypothesizing that genes encoding SLP substrates of Slams may be present in the same gene cluster as the Slam genes, we manually curated neighboring genes for 353 putative Slam homologs. From our analysis, we found that 185 (~52%) of the 353 putative Slam homologs are located adjacent to genes that encode a protein with an N-terminal lipobox motif. This list included genes encoding previously reported SLPs in Haemophilus influenzae and Moraxella catarrhalis, for which we were able to show that the neighboring Slams are necessary and sufficient to display these lipoproteins on the surface of Escherichia coli. To further verify the authenticity of the list of predicted SLPs, we tested the surface display of one such Slam-adjacent protein from Pasteurella multocida, a zoonotic pathogen. A robust Slam-dependent display of the P. multocida protein was observed in the E. coli translocation assay indicating that the protein is a Slam-dependent SLP. Based on multiple sequence alignments and domain annotations, we found that an eight-stranded beta-barrel domain is common to all the predicted Slam-dependent SLPs. These findings suggest that SLPs with a TbpB-like fold are found widely in Proteobacteria where they exist with their interaction partner Slam. In the future, SLPs found in pathogenic bacteria can be investigated for their role in virulence and may also serve as candidates for vaccine development.
Collapse
Affiliation(s)
- Yogesh Hooda
- Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - Christine C L Lai
- Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of TorontoToronto, ON, Canada
| |
Collapse
|
49
|
Gandhi GD, Krishnamoorthy N, Motal UMA, Yacoub M. Towards developing a vaccine for rheumatic heart disease. Glob Cardiol Sci Pract 2017; 2017:e201704. [PMID: 28971103 PMCID: PMC5621712 DOI: 10.21542/gcsp.2017.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rheumatic heart disease (RHD) is the most serious manifestations of rheumatic fever, which is caused by group A Streptococcus (GAS or Streptococcus pyogenes) infection. RHD is an auto immune sequelae of GAS pharyngitis, rather than the direct bacterial infection of the heart, which leads to chronic heart valve damage. Although antibiotics like penicillin are effective against GAS infection, improper medical care such as poor patient compliance, overcrowding, poverty, and repeated exposure to GAS, leads to acute rheumatic fever and RHD. Thus, efforts have been put forth towards developing a vaccine. However, a potential global vaccine is yet to be identified due to the widespread diversity of S. pyogenes strains and cross reactivity of streptococcal proteins with host tissues. In this review, we discuss the available vaccine targets of S. pyogenes and the significance of in silico approaches in designing a vaccine for RHD.
Collapse
Affiliation(s)
- Geethanjali Devadoss Gandhi
- Division of Cardiovascular Research, Sidra Medical and Research Center, Qatar Foundation, Doha, Qatar.,Division of Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar
| | - Navaneethakrishnan Krishnamoorthy
- Division of Cardiovascular Research, Sidra Medical and Research Center, Qatar Foundation, Doha, Qatar.,Division of Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar.,Heart Science Centre, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ussama M Abdel Motal
- Division of Cardiovascular Research, Sidra Medical and Research Center, Qatar Foundation, Doha, Qatar
| | - Magdi Yacoub
- Division of Cardiovascular Research, Sidra Medical and Research Center, Qatar Foundation, Doha, Qatar.,Heart Science Centre, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
50
|
Charlton Hume HK, Lua LHL. Platform technologies for modern vaccine manufacturing. Vaccine 2017; 35:4480-4485. [PMID: 28347504 PMCID: PMC7115529 DOI: 10.1016/j.vaccine.2017.02.069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 10/29/2022]
Abstract
Improved understanding of antigenic components and their interaction with the immune system, as supported by computational tools, permits a sophisticated approach to modern vaccine design. Vaccine platforms provide an effective tool by which strategically designed peptide and protein antigens are modularized to enhance their immunogenicity. These modular vaccine platforms can overcome issues faced by traditional vaccine manufacturing and have the potential to generate safe vaccines, rapidly and at a low cost. This review introduces two promising platforms based on virus-like particle and liposome, and discusses the methodologies and challenges.
Collapse
Affiliation(s)
- Hayley K Charlton Hume
- The University of Queensland, Protein Expression Facility, St Lucia, QLD 4072, Australia
| | - Linda H L Lua
- The University of Queensland, Protein Expression Facility, St Lucia, QLD 4072, Australia.
| |
Collapse
|