1
|
Ren S, Li J, Dorado J, Sierra A, González-Díaz H, Duardo A, Shen B. From molecular mechanisms of prostate cancer to translational applications: based on multi-omics fusion analysis and intelligent medicine. Health Inf Sci Syst 2024; 12:6. [PMID: 38125666 PMCID: PMC10728428 DOI: 10.1007/s13755-023-00264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Prostate cancer is the most common cancer in men worldwide and has a high mortality rate. The complex and heterogeneous development of prostate cancer has become a core obstacle in the treatment of prostate cancer. Simultaneously, the issues of overtreatment in early-stage diagnosis, oligometastasis and dormant tumor recognition, as well as personalized drug utilization, are also specific concerns that require attention in the clinical management of prostate cancer. Some typical genetic mutations have been proved to be associated with prostate cancer's initiation and progression. However, single-omic studies usually are not able to explain the causal relationship between molecular alterations and clinical phenotypes. Exploration from a systems genetics perspective is also lacking in this field, that is, the impact of gene network, the environmental factors, and even lifestyle behaviors on disease progression. At the meantime, current trend emphasizes the utilization of artificial intelligence (AI) and machine learning techniques to process extensive multidimensional data, including multi-omics. These technologies unveil the potential patterns, correlations, and insights related to diseases, thereby aiding the interpretable clinical decision making and applications, namely intelligent medicine. Therefore, there is a pressing need to integrate multidimensional data for identification of molecular subtypes, prediction of cancer progression and aggressiveness, along with perosonalized treatment performing. In this review, we systematically elaborated the landscape from molecular mechanism discovery of prostate cancer to clinical translational applications. We discussed the molecular profiles and clinical manifestations of prostate cancer heterogeneity, the identification of different states of prostate cancer, as well as corresponding precision medicine practices. Taking multi-omics fusion, systems genetics, and intelligence medicine as the main perspectives, the current research results and knowledge-driven research path of prostate cancer were summarized.
Collapse
Affiliation(s)
- Shumin Ren
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
| | - Jiakun Li
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Julián Dorado
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
| | - Alejandro Sierra
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
- IKERDATA S.L., ZITEK, University of Basque Country UPVEHU, Rectorate Building, 48940 Leioa, Spain
| | - Humbert González-Díaz
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
- IKERDATA S.L., ZITEK, University of Basque Country UPVEHU, Rectorate Building, 48940 Leioa, Spain
| | - Aliuska Duardo
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
- IKERDATA S.L., ZITEK, University of Basque Country UPVEHU, Rectorate Building, 48940 Leioa, Spain
| | - Bairong Shen
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
2
|
Rodrigues Sousa E, de Brot S, Zoni E, Zeinali S, Brunello A, Scarpa M, De Menna M, La Manna F, Abey Alexander A, Klima I, Freeman DW, Gates BL, Cristaldi DA, Guenat OT, Kruithof BPT, Spike BT, Chouvardas P, Kruithof-de Julio M. CRIPTO's multifaceted role in driving aggressive prostate cancer unveiled by in vivo, organoid, and patient data. Oncogene 2024:10.1038/s41388-024-03230-x. [PMID: 39592836 DOI: 10.1038/s41388-024-03230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
CRIPTO (or CR-1 or TDGF1) is a protein that plays an active role in tumor initiation and progression. We have confirmed that increased expression of CRIPTO is associated with clinical and prostate-specific antigen (PSA) progression in human prostate tissues. Our approach involved gaining insight into the role of CRIPTO signaling in castration-resistant Nkx3.1-expressing cells (CARNs), targets for oncogenic transformation in prostate cancer (PCa), by integrating the existing Criptoflox/flox into CARNs model. The most aggressive stage was modeled using an inducible Cre under control of the Nkx3.1 promoter conferring Nkx3.1 inactivation and driving Pten inactivation, oncogenic Kras activation, and lineage tracing with yellow fluorescence protein (EYFP) upon induction. Our findings provide evidence that selective depletion of Cripto in epithelial cells in vivo reduced the invasive phenotype, particularly in more advanced tumor stages. Moreover, in vitro experiments with Cripto overexpression demonstrated alterations in the physical features of organoids, which correlated with increased tumorigenic activity. Transcriptomic analyses revealed a unique CRIPTO/MYC co-activation signature associated with PSA progression in a human PCa cohort. Taken together, our data highlights a role for CRIPTO in tumor invasiveness and progression, which carries implications for biomarkers and targeted therapies.
Collapse
Affiliation(s)
- Elisa Rodrigues Sousa
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Eugenio Zoni
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Soheila Zeinali
- Organs-on-chip Technologies Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Andrea Brunello
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Mario Scarpa
- Department for BioMedical Research, Translational Organoid Research, University of Bern, Bern, Switzerland
| | - Marta De Menna
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Translational Organoid Research, University of Bern, Bern, Switzerland
| | - Federico La Manna
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Allen Abey Alexander
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Irena Klima
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - David W Freeman
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, USA
| | - Brooke L Gates
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, USA
| | | | - Olivier T Guenat
- Organs-on-chip Technologies Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Boudewijn P T Kruithof
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Benjamin T Spike
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, USA
| | - Panagiotis Chouvardas
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland.
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, Translational Organoid Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Zhang B, Liu M, Mai F, Li X, Wang W, Huang Q, Du X, Ding W, Li Y, Barwick BG, Ni JJ, Osunkoya AO, Chen Y, Zhou W, Xia S, Dong JT. Interruption of KLF5 acetylation promotes PTEN-deficient prostate cancer progression by reprogramming cancer-associated fibroblasts. J Clin Invest 2024; 134:e175949. [PMID: 38781024 PMCID: PMC11245161 DOI: 10.1172/jci175949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Inactivation of phosphatase and tensin homolog (PTEN) is prevalent in human prostate cancer and causes high-grade adenocarcinoma with a long latency. Cancer-associated fibroblasts (CAFs) play a pivotal role in tumor progression, but it remains elusive whether and how PTEN-deficient prostate cancers reprogram CAFs to overcome the barriers for tumor progression. Here, we report that PTEN deficiency induced Krüppel-like factor 5 (KLF5) acetylation and that interruption of KLF5 acetylation orchestrated intricate interactions between cancer cells and CAFs that enhance FGF receptor 1 (FGFR1) signaling and promote tumor growth. Deacetylated KLF5 promoted tumor cells to secrete TNF-α, which stimulated inflammatory CAFs to release FGF9. CX3CR1 inhibition blocked FGFR1 activation triggered by FGF9 and sensitized PTEN-deficient prostate cancer to the AKT inhibitor capivasertib. This study reveals the role of KLF5 acetylation in reprogramming CAFs and provides a rationale for combined therapies using inhibitors of AKT and CX3CR1.
Collapse
Affiliation(s)
- Baotong Zhang
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Mingcheng Liu
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Fengyi Mai
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Xiawei Li
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
- Inner Mongolia Institute of Quality and Standardization, Inner Mongolia Administration for Market Regulation, Hohhot, China
| | - Wenzhou Wang
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Qingqing Huang
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Xiancai Du
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Weijian Ding
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Yixiang Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jianping Jenny Ni
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Adeboye O. Osunkoya
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
- Departments of Pathology and Urology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Siyuan Xia
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jin-Tang Dong
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Zhao Y, Lu SM, Zhong B, Wang GC, Jia RP, Wang Q, Long JH. Parathyroid hormone related-protein (PTHrP) in tissues with poor prognosis in prostate cancer patients. Medicine (Baltimore) 2024; 103:e37934. [PMID: 38669432 PMCID: PMC11049731 DOI: 10.1097/md.0000000000037934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Parathyroid hormone-related peptide (PTHrP) is known to have a pivotal role in the progression of various solid tumors, among which prostate cancer stands out. However, the extent of PTHrP expression and its clinical implications in prostate cancer patients remain shrouded in obscurity. The primary objective of this research endeavor was to shed light on the relevance of PTHrP in the context of prostate cancer patients and to uncover the potential underlying mechanisms. METHODS The expression of PTHrP, E-cadherin, and vimentin in tumor tissues of 88 prostate cancer patients was evaluated by immunohistochemical technique. Subsequently, the associations between PTHrP and clinicopathological parameters and prognosis of patients with prostate cancer were analyzed. RESULTS Immunohistochemical analysis showed that the expression rates of PTHrP, E-cadherin, and vimentin in prostate cancer tissues were 95.5%, 88.6%, and 84.1%, respectively. Patients with a high level of PTHrP had a decreased expression of E-cadherin (P = .013) and an increased expression of vimentin (P = .010) compared with patients with a low level of PTHrP. Besides, the high expression of PTHrP was significantly correlated with a higher level of initial prostate-specific antigen (P = .026), positive lymph node metastasis (P = .010), osseous metastasis (P = .004), and Gleason score (P = .026). Moreover, patients with a high level of PTHrP had shorter progression-free survival (P = .002) than patients with a low level of PTHrP. CONCLUSION The present study indicates that PTHrP is associated with risk factors of poor outcomes in prostate cancer, while epithelial-mesenchymal transition may be involved in this process.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Urology, Xuzhou Cancer Hospital, Affiliated Hospital of Jiangsu University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou New Health Geriatric Disease Hospital, Xuzhou, Jiangsu, China
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Sheng-Ming Lu
- Department of Urology, Subei People’s Hospital, Yangzhou, Jiangsu, China
| | - Bing Zhong
- Department of Urology, The First People’s Hospital of Huaian, Affiliated with Nanjing Medical University, Huaian, Jiangsu, China
| | - Gong-Cheng Wang
- Department of Urology, The First People’s Hospital of Huaian, Affiliated with Nanjing Medical University, Huaian, Jiangsu, China
| | - Rui-Peng Jia
- Department of Urology, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Wang
- Department of Urology, Xuzhou Cancer Hospital, Affiliated Hospital of Jiangsu University, Xuzhou, Jiangsu, China
| | - Jian-Hua Long
- Department of Urology, The Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| |
Collapse
|
5
|
Zou C, Li W, Zhang Y, Feng N, Chen S, Yan L, He Q, Wang K, Li W, Li Y, Wang Y, Xu B, Zhang D. Identification of an anaplastic subtype of prostate cancer amenable to therapies targeting SP1 or translation elongation. SCIENCE ADVANCES 2024; 10:eadm7098. [PMID: 38569039 PMCID: PMC10990282 DOI: 10.1126/sciadv.adm7098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Histopathological heterogeneity is a hallmark of prostate cancer (PCa). Using spatial and parallel single-nucleus transcriptomics, we report an androgen receptor (AR)-positive but neuroendocrine-null primary PCa subtype with morphologic and molecular characteristics of small cell carcinoma. Such small cell-like PCa (SCLPC) is clinically aggressive with low AR, but high stemness and proliferation, activity. Molecular characterization prioritizes protein translation, represented by up-regulation of many ribosomal protein genes, and SP1, a transcriptional factor that drives SCLPC phenotype and overexpresses in castration-resistant PCa (CRPC), as two potential therapeutic targets in AR-indifferent CRPC. An SP1-specific inhibitor, plicamycin, effectively suppresses CRPC growth in vivo. Homoharringtonine, a Food And Drug Administration-approved translation elongation inhibitor, impedes CRPC progression in preclinical models and patients with CRPC. We construct an SCLPC-specific signature capable of stratifying patients for drug selectivity. Our studies reveal the existence of SCLPC in admixed PCa pathology, which may mediate tumor relapse, and establish SP1 and translation elongation as actionable therapeutic targets for CRPC.
Collapse
Affiliation(s)
- Cheng Zou
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Wenchao Li
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yuanzhen Zhang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Ninghan Feng
- Department of Urology and Wuxi School of Medicine, Jiangnan University Medical Center, Wuxi 214002, Jiangsu Province, China
| | - Saisai Chen
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Lianlian Yan
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
| | - Qinju He
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
| | - Kai Wang
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Wenjun Li
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Yingying Li
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Yang Wang
- Department of Urology and Wuxi School of Medicine, Jiangnan University Medical Center, Wuxi 214002, Jiangsu Province, China
| | - Bin Xu
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
- National Medicine-Engineering Interdisciplinary Industry-Education Integration Innovation Platform (Ministry of Education), Basic Medicine Research and Innovation Center, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Dingxiao Zhang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| |
Collapse
|
6
|
Bezverkhniaia E, Kanellopoulos P, Rosenström U, Tolmachev V, Orlova A. Influence of Molecular Design on the Tumor Targeting and Biodistribution of PSMA-Binding Tracers Labeled with Technetium-99m. Int J Mol Sci 2024; 25:3615. [PMID: 38612427 PMCID: PMC11011439 DOI: 10.3390/ijms25073615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Previously, we designed the EuK-based PSMA ligand BQ0413 with an maE3 chelator for labeling with technetium-99m. It showed efficient tumor targeting, but our preclinical data and preliminary clinical results indicated that the renal excretion levels need to be decreased. We hypothesized that this could be achieved by a decrease in the ligand's total negative charge, achieved by substituting negatively charged glutamate residues in the chelator with glycine. The purpose of this study was to evaluate the tumor targeting and biodistribution of two new PSMA inhibitors, BQ0411 and BQ0412, compared to BQ0413. Conjugates were radiolabeled with Tc-99m and characterized in vitro, using PC3-pip cells, and in vivo, using NMRI and PC3-pip tumor-bearing mice. [99mTc]Tc-BQ0411 and [99mTc]Tc-BQ0412 demonstrated PSMA-specific binding to PC3-pip cells with picomolar affinity. The biodistribution pattern for the new conjugates was characterized by rapid excretion. The tumor uptake for [99mTc]Tc-BQ0411 was 1.6-fold higher compared to [99mTc]Tc-BQ0412 and [99mTc]Tc-BQ0413. [99mTc]Tc-BQ0413 has demonstrated predominantly renal excretion, while the new conjugates underwent both renal and hepatobiliary excretion. In this study, we have demonstrated that in such small targeting ligands as PSMA-binding EuK-based pseudopeptides, the structural blocks that do not participate in binding could have a crucial role in tumor targeting and biodistribution. The presence of a glycine-based coupling linker in BQ0411 and BQ0413 seems to optimize biodistribution. In conclusion, the substitution of amino acids in the chelating sequence is a promising method to alter the biodistribution of [99mTc]Tc-labeled small-molecule PSMA inhibitors. Further improvement of the biodistribution properties of BQ0413 is needed.
Collapse
Affiliation(s)
- Ekaterina Bezverkhniaia
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (E.B.); (P.K.); (U.R.)
| | - Panagiotis Kanellopoulos
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (E.B.); (P.K.); (U.R.)
| | - Ulrika Rosenström
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (E.B.); (P.K.); (U.R.)
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden;
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (E.B.); (P.K.); (U.R.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
7
|
Zhao Y, Fu ZY, Feng HY, Peng YH, Yin ZX, Cao JY, Pei CS. Parathyroid hormone-related protein as a potential prostate cancer biomarker: Promoting prostate cancer progression through upregulation of c-Met expression. BIOMOLECULES & BIOMEDICINE 2024; 24:374-386. [PMID: 37838928 PMCID: PMC10950337 DOI: 10.17305/bb.2023.9753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023]
Abstract
Parathyroid hormone-related protein (PTHrP) plays a significant role in various tumor types, including prostate cancer. However, its specific role and underlying mechanisms in prostate cancer remain unclear. This study investigates the role of PTHrP and its interaction with the c-Met in prostate cancer. PTHrP was overexpressed and knocked down in prostate cancer cell lines to determine its effect on cell functions. Xenograft tumor models were employed to assess the impact of PTHrP overexpression on tumor growth. To delve into the interaction between PTHrP and c-Met, rescue experiments were conducted. Clinical data and tissue samples from prostate cancer patients were gathered and analyzed for PTHrP and c-Met expression. PTHrP overexpression in prostate cancer cells upregulates c-Met expression and augments cell functions. In contrast, PTHrP-knockdown diminishes c-Met expression and inhibits cell functions. In vivo experiments further demonstrated that PTHrP overexpression promoted tumor growth in xenograft models.Moreover, modulating c-Met expression in rescue experiments led to concurrent alterations in prostate cancer cell functions. Immunohistochemical analysis of clinical samples displayed a significant positive correlation between PTHrP and c-Met expression. Additionally, PTHrP expression correlated with clinical parameters like prostate-specific antigen (PSA) levels, tumor stage, lymph node involvement, distant metastasis, and Gleason score. PTHrP plays a crucial role in prostate cancer progression by upregulating c-Met expression. These insights point to PTHrP as a promising potential biomarker for prostate cancer.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Urology, Xuzhou Cancer Hospital, Affiliated Hospital of Jiangsu University, Xuzhou, China
| | - Zhen-Yu Fu
- Department of Urology, Changshu No. 2 People’s Hospital, Changshu, China
| | - Han-Yong Feng
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu-Hao Peng
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhi-Xiang Yin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing-Yi Cao
- Department of Urology, Xuzhou Cancer Hospital, Affiliated Hospital of Jiangsu University, Xuzhou, China
| | - Chang-Song Pei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
An Y, Lu W, Li S, Lu X, Zhang Y, Han D, Su D, Jia J, Yuan J, Zhao B, Tu M, Li X, Wang X, Fang N, Ji S. Systematic review and integrated analysis of prognostic gene signatures for prostate cancer patients. Discov Oncol 2023; 14:234. [PMID: 38112859 PMCID: PMC10730790 DOI: 10.1007/s12672-023-00847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
Prostate cancer (PC) is one of the most common cancers in men and becoming the second leading cause of cancer fatalities. At present, the lack of effective strategies for prognosis of PC patients is still a problem to be solved. Therefore, it is significant to identify potential gene signatures for PC patients' prognosis. Here, we summarized 71 different prognostic gene signatures for PC and concluded 3 strategies for signature construction after extensive investigation. In addition, 14 genes frequently appeared in 71 different gene signatures, which enriched in mitotic and cell cycle. This review provides extensive understanding and integrated analysis of current prognostic signatures of PC, which may help researchers to construct gene signatures of PC and guide future clinical treatment.
Collapse
Affiliation(s)
- Yang An
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China.
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China.
| | - Wenyuan Lu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Shijia Li
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Xiaoyan Lu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Dongcheng Han
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Dingyuan Su
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Jiaxin Jia
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Jiaxin Yuan
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Binbin Zhao
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Mengjie Tu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Xinyu Li
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Xiaoqing Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Na Fang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China.
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China.
| | - Shaoping Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China.
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China.
| |
Collapse
|
9
|
Lautert-Dutra W, Melo CM, Chaves LP, Souza FC, Crozier C, Sundby AE, Woroszchuk E, Saggioro FP, Avante FS, dos Reis RB, Squire JA, Bayani J. Identification of tumor-agnostic biomarkers for predicting prostate cancer progression and biochemical recurrence. Front Oncol 2023; 13:1280943. [PMID: 37965470 PMCID: PMC10641020 DOI: 10.3389/fonc.2023.1280943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
The diverse clinical outcomes of prostate cancer have led to the development of gene signature assays predicting disease progression. Improved prostate cancer progression biomarkers are needed as current RNA biomarker tests have varying success for intermediate prostate cancer. Interest grows in universal gene signatures for invasive carcinoma progression. Early breast and prostate cancers share characteristics, including hormone dependence and BRCA1/2 mutations. Given the similarities in the pathobiology of breast and prostate cancer, we utilized the NanoString BC360 panel, comprising the validated PAM50 classifier and pathway-specific signatures associated with general tumor progression as well as breast cancer-specific classifiers. This retrospective cohort of primary prostate cancers (n=53) was stratified according to biochemical recurrence (BCR) status and the CAPRA-S to identify genes related to high-risk disease. Two public cohort (TCGA-PRAD and GSE54460) were used to validate the results. Expression profiling of our cohort uncovered associations between PIP and INHBA with BCR and high CAPRA-S score, as well as associations between VCAN, SFRP2, and THBS4 and BCR. Despite low levels of the ESR1 gene compared to AR, we found strong expression of the ER signaling signature, suggesting that BCR may be driven by ER-mediated pathways. Kaplan-Meier and univariate Cox proportional hazards regression analysis indicated the expression of ESR1, PGR, VCAN, and SFRP2 could predict the occurrence of relapse events. This is in keeping with the pathways represented by these genes which contribute to angiogenesis and the epithelial-mesenchymal transition. It is likely that VCAN works by activating the stroma and remodeling the tumor microenvironment. Additionally, SFRP2 overexpression has been associated with increased tumor size and reduced survival rates in breast cancer and among prostate cancer patients who experienced BCR. ESR1 influences disease progression by activating stroma, stimulating stem/progenitor prostate cancer, and inducing TGF-β. Estrogen signaling may therefore serve as a surrogate to AR signaling during progression and in hormone-refractory disease, particularly in prostate cancer patients with stromal-rich tumors. Collectively, the use of agnostic biomarkers developed for breast cancer stratification has facilitated a precise clinical classification of patients undergoing radical prostatectomy and highlighted the therapeutic potential of targeting estrogen signaling in prostate cancer.
Collapse
Affiliation(s)
- William Lautert-Dutra
- Department of Genetics, Medical School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Camila M. Melo
- Department of Genetics, Medical School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Luiz P. Chaves
- Department of Genetics, Medical School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Francisco C. Souza
- Division of Urology, Department of Surgery and Anatomy, Medical School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Cheryl Crozier
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Adam E. Sundby
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Elizabeth Woroszchuk
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Fabiano P. Saggioro
- Department of Pathology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Filipe S. Avante
- Division of Urology, Department of Surgery and Anatomy, Medical School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Rodolfo B. dos Reis
- Division of Urology, Department of Surgery and Anatomy, Medical School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Jeremy A. Squire
- Department of Genetics, Medical School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Jane Bayani
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Logotheti S, Papadaki E, Zolota V, Logothetis C, Vrahatis AG, Soundararajan R, Tzelepi V. Lineage Plasticity and Stemness Phenotypes in Prostate Cancer: Harnessing the Power of Integrated "Omics" Approaches to Explore Measurable Metrics. Cancers (Basel) 2023; 15:4357. [PMID: 37686633 PMCID: PMC10486655 DOI: 10.3390/cancers15174357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Prostate cancer (PCa), the most frequent and second most lethal cancer type in men in developed countries, is a highly heterogeneous disease. PCa heterogeneity, therapy resistance, stemness, and lethal progression have been attributed to lineage plasticity, which refers to the ability of neoplastic cells to undergo phenotypic changes under microenvironmental pressures by switching between developmental cell states. What remains to be elucidated is how to identify measurements of lineage plasticity, how to implement them to inform preclinical and clinical research, and, further, how to classify patients and inform therapeutic strategies in the clinic. Recent research has highlighted the crucial role of next-generation sequencing technologies in identifying potential biomarkers associated with lineage plasticity. Here, we review the genomic, transcriptomic, and epigenetic events that have been described in PCa and highlight those with significance for lineage plasticity. We further focus on their relevance in PCa research and their benefits in PCa patient classification. Finally, we explore ways in which bioinformatic analyses can be used to determine lineage plasticity based on large omics analyses and algorithms that can shed light on upstream and downstream events. Most importantly, an integrated multiomics approach may soon allow for the identification of a lineage plasticity signature, which would revolutionize the molecular classification of PCa patients.
Collapse
Affiliation(s)
- Souzana Logotheti
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| | - Eugenia Papadaki
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
- Department of Informatics, Ionian University, 49100 Corfu, Greece;
| | - Vasiliki Zolota
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | | | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vasiliki Tzelepi
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| |
Collapse
|
11
|
Alfahed A, Ebili HO, Almoammar NE, Alasiri G, AlKhamees OA, Aldali JA, Al Othaim A, Hakami ZH, Abdulwahed AM, Waggiallah HA. Prognostic Values of Gene Copy Number Alterations in Prostate Cancer. Genes (Basel) 2023; 14:genes14050956. [PMID: 37239316 DOI: 10.3390/genes14050956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Whilst risk prediction for individual prostate cancer (PCa) cases is of a high priority, the current risk stratification indices for PCa management have severe limitations. This study aimed to identify gene copy number alterations (CNAs) with prognostic values and to determine if any combination of gene CNAs could have risk stratification potentials. Clinical and genomic data of 500 PCa cases from the Cancer Genome Atlas stable were retrieved from the Genomic Data Commons and cBioPortal databases. The CNA statuses of a total of 52 genetic markers, including 21 novel markers and 31 previously identified potential prognostic markers, were tested for prognostic significance. The CNA statuses of a total of 51/52 genetic markers were significantly associated with advanced disease at an odds ratio threshold of ≥1.5 or ≤0.667. Moreover, a Kaplan-Meier test identified 27/52 marker CNAs which correlated with disease progression. A Cox Regression analysis showed that the amplification of MIR602 and deletions of MIR602, ZNF267, MROH1, PARP8, and HCN1 correlated with a progression-free survival independent of the disease stage and Gleason prognostic group grade. Furthermore, a binary logistic regression analysis identified twenty-two panels of markers with risk stratification potentials. The best model of 7/52 genetic CNAs, which included the SPOP alteration, SPP1 alteration, CCND1 amplification, PTEN deletion, CDKN1B deletion, PARP8 deletion, and NKX3.1 deletion, stratified the PCa cases into a localised and advanced disease with an accuracy of 70.0%, sensitivity of 85.4%, specificity of 44.9%, positive predictive value of 71.67%, and negative predictive value of 65.35%. This study validated prognostic gene level CNAs identified in previous studies, as well as identified new genetic markers with CNAs that could potentially impact risk stratification in PCa.
Collapse
Affiliation(s)
- Abdulaziz Alfahed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Henry Okuchukwu Ebili
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Ago-Iwoye P.M.B. 2002, Nigeria
| | - Nasser Eissa Almoammar
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Glowi Alasiri
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud University, Riyadh 13317, Saudi Arabia
| | - Osama A AlKhamees
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Jehad A Aldali
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratories, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Zaki H Hakami
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 82817, Saudi Arabia
| | - Abdulhadi M Abdulwahed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Hisham Ali Waggiallah
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
12
|
Dhanapala L, Joseph S, Jones AL, Moghaddam S, Lee N, Kremer RB, Rusling JF. Immunoarray Measurements of Parathyroid Hormone-Related Peptides Combined with Other Biomarkers to Diagnose Aggressive Prostate Cancer. Anal Chem 2022; 94:12788-12797. [PMID: 36074029 DOI: 10.1021/acs.analchem.2c02648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parathyroid hormone-related peptide (PTHrP) is related to bone metastasis and hypercalcemia in prostate and breast cancers and should be an excellent biomarker for aggressive forms of these cancers. Current clinical detection protocols for PTHrP are immunoradiometric assay and radioimmunoassay but are not sensitive enough to detect PTHrPs at early stages. We recently evaluated a prostate cancer biomarker panel, including serum monocyte differentiation antigen (CD-14), ETS-related gene protein, pigment epithelial-derived factor, and insulin-like growth factor-1, with promise for identifying aggressive prostate cancers. This panel predicted the need for patient biopsy better than PSA alone. In the present paper, we report an ultrasensitive microfluidic assay for PTHrPs and evaluate their diagnostic value and the value of including them with our prior biomarker panel to diagnose aggressive forms of prostate cancer. The immunoarray features screen-printed carbon sensor electrodes coated with 5 nm glutathione gold nanoparticles with capture antibodies attached. PTHrPs are bound to a secondary antibody attached to a polyhorseradish peroxidase label and delivered to the sensors to provide high sensitivity when activated by H2O2 and a mediator. We obtained an unprecedented 0.3 fg mL-1 limit of detection for PTHrP bioactive moieties PTHrP 1-173 and PTHrP 1-86. We also report the first study of PTHrPs in a large serum pool to identify aggressive malignancies. In assays of 130 human patient serum samples, PTHrP levels distinguished between aggressive and indolent prostate cancers with 83-91% clinical sensitivity and 78-96% specificity. Logistic regression identified the best predictive model as a combination of PTHrP 1-86 and vascular endothelial growth factor-D. PTHrP 1-173 alone also showed a high ability to differentiate aggressive and indolent cancers.
Collapse
Affiliation(s)
- Lasangi Dhanapala
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Sophie Joseph
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Abby L Jones
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shirin Moghaddam
- Department of Mathematics and Statistics (MACSI), University of Limerick, Limerick V94 T9PX, Ireland
| | - Norman Lee
- Department of Pharmacology and Physiology, George Washington University, 2300 I Street, NW, Washington, Washington, District of Columbia 20037, United States.,George Washington University Cancer Center, 800 22nd Street, NW, Washington, Washington, District of Columbia 20052, United States
| | - Richard B Kremer
- Department of Medicine, McGill University Health Centre, 1001 Decarie Blvd., Montreal QC H4A, Canada
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Surgery and Neag Cancer Center, UConn Health, Farmington, Connecticut 06232, United States.,School of Chemistry, National University of Ireland Galway, Galway H91 TK33, Ireland.,Institute of Materials Science, University of Connecticut, 97 N. Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
13
|
Patierno BM, Foo WC, Allen T, Somarelli JA, Ware KE, Gupta S, Wise S, Wise JP, Qin X, Zhang D, Xu L, Li Y, Chen X, Inman BA, McCall SJ, Huang J, Kittles RA, Owzar K, Gregory S, Armstrong AJ, George DJ, Patierno SR, Hsu DS, Freedman JA. Characterization of a castrate-resistant prostate cancer xenograft derived from a patient of West African ancestry. Prostate Cancer Prostatic Dis 2022; 25:513-523. [PMID: 34645983 PMCID: PMC9005588 DOI: 10.1038/s41391-021-00460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Prostate cancer is a clinically and molecularly heterogeneous disease, with highest incidence and mortality among men of African ancestry. To date, prostate cancer patient-derived xenograft (PCPDX) models to study this disease have been difficult to establish because of limited specimen availability and poor uptake rates in immunodeficient mice. Ancestrally diverse PCPDXs are even more rare, and only six PCPDXs from self-identified African American patients from one institution were recently made available. METHODS In the present study, we established a PCPDX from prostate cancer tissue from a patient of estimated 90% West African ancestry with metastatic castration resistant disease, and characterized this model's pathology, karyotype, hotspot mutations, copy number, gene fusions, gene expression, growth rate in normal and castrated mice, therapeutic response, and experimental metastasis. RESULTS This PCPDX has a mutation in TP53 and loss of PTEN and RB1. We have documented a 100% take rate in mice after thawing the PCPDX tumor from frozen stock. The PCPDX is castrate- and docetaxel-resistant and cisplatin-sensitive, and has gene expression patterns associated with such drug responses. After tail vein injection, the PCPDX tumor cells can colonize the lungs of mice. CONCLUSION This PCPDX, along with others that are established and characterized, will be useful pre-clinically for studying the heterogeneity of prostate cancer biology and testing new therapeutics in models expected to be reflective of the clinical setting.
Collapse
Affiliation(s)
- Brendon M Patierno
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Wen-Chi Foo
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Tyler Allen
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jason A Somarelli
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kathryn E Ware
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Santosh Gupta
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sandra Wise
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - John P Wise
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Xiaodi Qin
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Dadong Zhang
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Lingfan Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yanjing Li
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xufeng Chen
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Brant A Inman
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shannon J McCall
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jiaoti Huang
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Rick A Kittles
- Division of Health Equities, Department of Population Sciences, City of Hope, Duarte, 91010, CA, USA
| | - Kouros Owzar
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Simon Gregory
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Center for Genomics and Computational Biology, Duke University, Durham, NC, 27710, USA
| | - Andrew J Armstrong
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Daniel J George
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Steven R Patierno
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - David S Hsu
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Center for Genomics and Computational Biology, Duke University, Durham, NC, 27710, USA
| | - Jennifer A Freedman
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
14
|
Correlation between stage of prostate cancer and tyrosine and tryptophan in urine samples measured electrochemically. Anal Biochem 2022; 649:114698. [PMID: 35523287 DOI: 10.1016/j.ab.2022.114698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PCa) is the second most common cancer in men and one of the leading causes of cancer-related deaths. Early detection is the key to successful treatment and provides the greatest chance to cure the patient. Currently, early detection involves screening for prostate-specific antigen levels in blood, which is not a tumor-specific biomarker. There is a critical need to develop clinically useful methods for screening for more reliable biomarkers. Here, we introduce an electrochemical biosensor that measures the concentrations of the amino acids tyrosine and tryptophan, and propose it as a possible diagnostic and prognostic tool for PCa. The limits of detection of tyrosine and tryptophan using the electrochemical sensors were 1.15 and 1.13 μmol/L in 1:10 urine: PBS, respectively. This study is the first to present electrochemical measurements of tyrosine and tryptophan directly in patient urine samples. We demonstrated an inverse correlation between the measured electrochemical signals and the severity of PCa. The most notable observation was a significant difference between controls and metastatic PCa patients (P ≤ 0.001). This observation was further validated using Liquid-Chromatography-Mass Spectrometry. Our data provides the basis for further research with electrochemical measurements of tyrosine and tryptophan as potential biomarkers for PCa.
Collapse
|
15
|
Tunç S, Alagoz O, Burnside ES. A new perspective on breast cancer diagnostic guidelines to reduce overdiagnosis. PRODUCTION AND OPERATIONS MANAGEMENT 2022; 31:2361-2378. [PMID: 35915601 PMCID: PMC9313854 DOI: 10.1111/poms.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/19/2022] [Indexed: 06/15/2023]
Abstract
Overdiagnosis of breast cancer, defined as diagnosing a cancer that would otherwise not cause symptoms or death in a patient's lifetime, costs U.S. health care system over $1.2 billion annually. Overdiagnosis rates, estimated to be around 10%-40%, may be reduced if indolent breast findings can be identified and followed with noninvasive imaging rather than biopsy. However, there are no validated guidelines for radiologists to decide when to choose imaging options recognizing cancer grades and types. The aim of this study is to optimize breast cancer diagnostic decisions based on cancer types using a large-scale finite-horizon Markov decision process (MDP) model with 4.6 million states to help reduce overdiagnosis. We prove the optimality of a divide-and-search algorithm that relies on tight upper bounds on the optimal decision thresholds to find an exact optimal solution. We project the high-dimensional MDP onto two lower dimensional MDPs and obtain feasible upper bounds on the optimal decision thresholds. We use real data from two private mammography databases and demonstrate our model performance through a previously validated simulation model that has been used by the policy makers to set the national screening guidelines in the United States. We find that a decision-analytical framework optimizing diagnostic decisions while accounting for breast cancer types has a strong potential to improve the quality of life and alleviate the immense costs of overdiagnosis. Our model leads to a20 % reduction in overdiagnosis on the screening population, which translates into an annual savings of approximately $300 million for the U.S. health care system.
Collapse
Affiliation(s)
- Sait Tunç
- Grado Department of Industrial and Systems EngineeringVirginia TechBlacksburgVirginiaUSA
| | - Oguzhan Alagoz
- Department of Industrial and Systems EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | |
Collapse
|
16
|
Li R, Zhu J, Zhong W, Jia Z. Comprehensive evaluation of machine learning models and gene expression signatures for prostate cancer prognosis using large population cohorts. Cancer Res 2022; 82:1832-1843. [PMID: 35358302 DOI: 10.1158/0008-5472.can-21-3074] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/07/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
Abstract
Overtreatment remains a pervasive problem in prostate cancer (PCa) management due to the highly variable and often indolent course of disease. Molecular signatures derived from gene expression profiling have played critical roles in guiding PCa treatment decisions. Many gene expression signatures have been developed to improve the risk stratification of PCa and some of them have already been applied to clinical practice. However, no comprehensive evaluation has been performed to compare the performance of these signatures. In this study, we conducted a systematic and unbiased evaluation of 15 machine learning (ML) algorithms and 30 published PCa gene expression-based prognostic signatures leveraging 10 transcriptomics datasets with 1,558 primary PCa patients from public data repositories. This analysis revealed that survival analysis models outperformed binary classification models for risk assessment, and the performance of the survival analysis methods - Cox model regularized with ridge penalty (Cox-Ridge) and partial least squares regression for Cox model (Cox-PLS) - were generally more robust than the other methods. Based on the Cox-Ridge algorithm, several top prognostic signatures displayed comparable or even better performance than commercial panels. These findings will facilitate the identification of existing prognostic signatures that are promising for further validation in prospective studies and promote the development of robust prognostic models to guide clinical decision-making. Moreover, this study provides a valuable data resource from large primary PCa cohorts, which can be used to develop, validate, and evaluate novel statistical methodologies and molecular signatures to improve PCa management.
Collapse
Affiliation(s)
- Ruidong Li
- University of California, Riverside, Riveside, United States
| | - Jianguo Zhu
- Guizhou Provincial People's Hospital, GuiYang, Guizhou, China
| | - Weide Zhong
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhenyu Jia
- University of California of Riverside, Riverside, California, United States
| |
Collapse
|
17
|
Zou C, He Q, Feng Y, Chen M, Zhang D. A m 6Avalue predictive of prostate cancer stemness, tumor immune landscape and immunotherapy response. NAR Cancer 2022; 4:zcac010. [PMID: 35350771 PMCID: PMC8953419 DOI: 10.1093/narcan/zcac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/28/2022] [Accepted: 03/09/2022] [Indexed: 01/02/2023] Open
Abstract
The molecular mechanisms underpinning prostate cancer (PCa) progression are incompletely understood, and precise stratification of aggressive primary PCa (pri-PCa) from indolent ones poses a major clinical challenge. Here, we comprehensively dissect, genomically and transcriptomically, the m6A (N 6-methyladenosine) pathway as a whole in PCa. Expression, but not the genomic alteration, repertoire of the full set of 24 m6A regulators at the population level successfully stratifies pri-PCa into three m6A clusters with distinct molecular and clinical features. These three m6A modification patterns closely correlate with androgen receptor signaling, stemness, proliferation and tumor immunogenicity of cancer cells, and stroma activity and immune landscape of tumor microenvironment (TME). We observe a discrepancy between a potentially higher neoantigen production and a deficiency in antigen presentation processes in aggressive PCa, offering insights into the failure of immunotherapy. Identification of PCa-specific m6A phenotype-associated genes provides a basis for construction of m6Avalue to measure m6A methylation patterns in individual patients. Tumors with lower m6Avalue are relatively indolent with abundant immune cell infiltration and stroma activity. Interestingly, m6Avalue separates PCa TME into fibrotic and nonfibrotic phenotypes (instead of previously reported immune-proficient or -desert phenotypes in other cancer types). Significantly, m6Avalue can be used to predict drug response and clinical immunotherapy efficacy in both castration-resistant PCa and other cancer types. Therefore, our study establishes m6A methylation modification pattern as a determinant in PCa progression via impacting cancer cell aggressiveness and TME remodeling.
Collapse
Affiliation(s)
- Cheng Zou
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Qinju He
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Yuqing Feng
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Mengjie Chen
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Dingxiao Zhang
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| |
Collapse
|
18
|
Sakellakis M, Flores L, Ramachandran S. Patterns of indolence in prostate cancer (Review). Exp Ther Med 2022; 23:351. [PMID: 35493432 PMCID: PMC9019743 DOI: 10.3892/etm.2022.11278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Although prostate cancer is a major cause of cancer-related mortality worldwide, most patients will have a relatively indolent clinical course. Contrary to most other types of cancer, even the diagnosis of locally advanced or metastatic disease is not always lethal. The present review aimed to summarize what is known regarding the underlying mechanisms related to the indolent course of subsets of prostate cancer, at various stages. The data suggested that no specific gene alteration by itself was responsible for carcinogenesis or disease aggressiveness. However, pathway analysis identified genetic aberrations in multiple critical pathways that tend to accumulate over the course of the disease. The progression from indolence into aggressive disease is associated with a complex interplay in which genetic and epigenetic factors are involved. The effect of the immune tumor microenvironment is also very important. Emerging evidence has suggested that the upregulation of pathways related to cellular aging and senescence can identify patients with indolent disease. In addition, a number of tumors enter a long-lasting quiescent state. Further research will determine whether halting tumor evolution is a feasible option, and whether the life of patients can be markedly prolonged by inducing tumor senescence or long-term dormancy.
Collapse
Affiliation(s)
- Minas Sakellakis
- Fourth Oncology Department and Comprehensive Clinical Trials Center, Metropolitan Hospital, 18547 Athens, Greece
| | - Laura Flores
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, University of Texas, Houston, TX 77025, USA
| | - Sumankalai Ramachandran
- Department of Genitourinary Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX 77025, USA
| |
Collapse
|
19
|
Kneppers J, Bergman AM, Zwart W. Prostate Cancer Epigenetic Plasticity and Enhancer Heterogeneity: Molecular Causes, Consequences and Clinical Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:255-275. [DOI: 10.1007/978-3-031-11836-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|
20
|
Du X, Zhang Q, Wang S, Chen X, Wang Y. MCAM is associated with metastasis and poor prognosis in osteosarcoma by modulating tumor cell migration. J Clin Lab Anal 2021; 36:e24214. [PMID: 34961985 PMCID: PMC8841137 DOI: 10.1002/jcla.24214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Background Although there are standard treatment options for osteosarcoma (OS), the prognoses of patients with OS remain varied. Therefore, it is important to profile OS patients at a high risk of mortality to develop focused interventions. Although tumor biomarkers are closely associated with clinical outcomes, data on prognostic biomarkers for OS remain scarce. Methods We collected RNA expression profiles and clinical data of 90 OS patients from the GEO database (dataset GSE21257 and GSE39055) and 96 patients in the TARGET program. The data were analyzed using univariate Kaplan‐Meier survival analysis to screen candidate gene sets that might be associated with OS survival. Results Our analysis demonstrated that melanoma cell adhesion molecule (MCAM) was associated with overall survival of patients with OS in the three cohorts. The data showed that MCAM was upregulated in OS patients who had metastases within 5 years compared to those without metastases. GO analysis revealed that genes correlated with MCAM were mainly involved in cell migration and wound healing processes. In addition, wound healing assays and gene set enrichment analysis results from RNA sequencing data of small interfering (si)‐MCAM‐transfected OS cells demonstrated that MCAM modulated tumor cell migration. Conclusions Our data demonstrate that MCAM may be a novel prognostic biomarker for OS. MCAM is associated with increased cell migration ability and risk of metastasis, thus leading to poor prognoses in OS patients.
Collapse
Affiliation(s)
- Xiaotian Du
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qin Zhang
- Department of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Siyuan Wang
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Chen
- Key Lab of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Wang
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Papachristodoulou A, Rodriguez-Calero A, Panja S, Margolskee E, Virk RK, Milner TA, Martina LP, Kim JY, Di Bernardo M, Williams AB, Maliza EA, Caputo JM, Haas C, Wang V, De Castro GJ, Wenske S, Hibshoosh H, McKiernan JM, Shen MM, Rubin MA, Mitrofanova A, Dutta A, Abate-Shen C. NKX3.1 Localization to Mitochondria Suppresses Prostate Cancer Initiation. Cancer Discov 2021; 11:2316-2333. [PMID: 33893149 PMCID: PMC7611624 DOI: 10.1158/2159-8290.cd-20-1765] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/20/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022]
Abstract
Mitochondria provide the first line of defense against the tumor-promoting effects of oxidative stress. Here we show that the prostate-specific homeoprotein NKX3.1 suppresses prostate cancer initiation by protecting mitochondria from oxidative stress. Integrating analyses of genetically engineered mouse models, human prostate cancer cells, and human prostate cancer organotypic cultures, we find that, in response to oxidative stress, NKX3.1 is imported to mitochondria via the chaperone protein HSPA9, where it regulates transcription of mitochondrial-encoded electron transport chain (ETC) genes, thereby restoring oxidative phosphorylation and preventing cancer initiation. Germline polymorphisms of NKX3.1 associated with increased cancer risk fail to protect from oxidative stress or suppress tumorigenicity. Low expression levels of NKX3.1 combined with low expression of mitochondrial ETC genes are associated with adverse clinical outcome, whereas high levels of mitochondrial NKX3.1 protein are associated with favorable outcome. This work reveals an extranuclear role for NKX3.1 in suppression of prostate cancer by protecting mitochondrial function. SIGNIFICANCE: Our findings uncover a nonnuclear function for NKX3.1 that is a key mechanism for suppression of prostate cancer. Analyses of the expression levels and subcellular localization of NKX3.1 in patients at risk of cancer progression may improve risk assessment in a precision prevention paradigm, particularly for men undergoing active surveillance.See related commentary by Finch and Baena, p. 2132.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
- Alexandros Papachristodoulou
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Antonio Rodriguez-Calero
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Institute of Pathology, University of Bern and Inselspital, Bern, Switzerland
| | - Sukanya Panja
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Elizabeth Margolskee
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Renu K Virk
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Luis Pina Martina
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Jaime Y Kim
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Matteo Di Bernardo
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Alanna B Williams
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Elvis A Maliza
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Joseph M Caputo
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Christopher Haas
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Vinson Wang
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Guarionex Joel De Castro
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Sven Wenske
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - James M McKiernan
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Michael M Shen
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Mark A Rubin
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Aditya Dutta
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York.
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Cory Abate-Shen
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
22
|
Manjang K, Yli-Harja O, Dehmer M, Emmert-Streib F. Limitations of Explainability for Established Prognostic Biomarkers of Prostate Cancer. Front Genet 2021; 12:649429. [PMID: 34367234 PMCID: PMC8340016 DOI: 10.3389/fgene.2021.649429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/01/2021] [Indexed: 11/28/2022] Open
Abstract
High-throughput technologies do not only provide novel means for basic biological research but also for clinical applications in hospitals. For instance, the usage of gene expression profiles as prognostic biomarkers for predicting cancer progression has found widespread interest. Aside from predicting the progression of patients, it is generally believed that such prognostic biomarkers also provide valuable information about disease mechanisms and the underlying molecular processes that are causal for a disorder. However, the latter assumption has been challenged. In this paper, we study this problem for prostate cancer. Specifically, we investigate a large number of previously published prognostic signatures of prostate cancer based on gene expression profiles and show that none of these can provide unique information about the underlying disease etiology of prostate cancer. Hence, our analysis reveals that none of the studied signatures has a sensible biological meaning. Overall, this shows that all studied prognostic signatures are merely black-box models allowing sensible predictions of prostate cancer outcome but are not capable of providing causal explanations to enhance the understanding of prostate cancer.
Collapse
Affiliation(s)
- Kalifa Manjang
- Predictive Society and Data Analytics Lab, Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland
| | - Olli Yli-Harja
- Computational Systems Biology, Tampere University, Tampere, Finland.,Institute for Systems Biology, Seattle, WA, United States.,Faculty of Medicine and Health Technology, Institute of Biosciences and Medical Technology, Tampere University, Tampere, Finland
| | - Matthias Dehmer
- Department of Computer Science, Swiss Distance University of Applied Sciences, Brig, Switzerland.,Department of Mechatronics and Biomedical Computer Science, University for Health Sciences, Medical Informatics and Technology (UMIT), Hall, Austria.,College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Frank Emmert-Streib
- Predictive Society and Data Analytics Lab, Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland.,Faculty of Medicine and Health Technology, Institute of Biosciences and Medical Technology, Tampere University, Tampere, Finland
| |
Collapse
|
23
|
Chen Y, Tang WF, Lin H, Bao H, Li W, Wang A, Wu X, Su J, Lin JS, Shao YW, Yang XN, Wu YL, Zhong WZ. Wait-and-See Treatment Strategy Could be Considered for Lung Adenocarcinoma with Special Pleural Dissemination Lesions, and Low Genomic Instability Correlates with Better Survival. Ann Surg Oncol 2020; 27:3808-3818. [PMID: 32239339 DOI: 10.1245/s10434-020-08400-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND This study aimed to evaluate the feasibility of a wait-and-see strategy for non-small cell lung cancer (NSCLC) patients with special pleural dissemination lesions (r-pM1a and s-pM1a). Furthermore, the study characterized genomic alternations about disease progression. METHODS For this study, 131 NSCLC patients with a diagnosis of pM1a were retrospectively selected. Survival differences were evaluated among patients treated with three different initial postoperative treatments: chemotherapy, targeted therapy, and wait-and-see strategy. Whole-exome sequencing (WES) was performed on primary and metastatic tumors of 10 patients with dramatic progression and 13 patients with gradual progression. RESULTS The wait-and-see group showed better progression-free survival (PFS) than the chemotherapy group (p < 0.001) but PFS similar to that of targeted group (p = 0.984). This pattern persisted in epidermal growth factor receptor (EGFR)-positive patients. For patients with EGFR-negative/unknown status, PFS was longer in the wait-and-see group than in the two treatment groups. Furthermore, better overall survival (OS) was observed for the patients who received chemotherapy or targeted therapy after the wait-and-see strategy than for those who received chemotherapy or targeted therapy immediately. Lymph node status was an independent prognostic factor for PFS and OS. Finally, WES analysis showed that a high genomic instability index (GIS) and chromosome 18q loss were more common in metastatic tumors, and low GIS was significantly associated with better PFS (p = 0.016). CONCLUSIONS The wait-and-see strategy could be considered for special pM1a patients without lymph nodes metastasis, and patients with a low GIS may be suitable for this strategy.
Collapse
Affiliation(s)
- Ying Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wen-Fang Tang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Huan Lin
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua Bao
- Translational Medicine Research Institute, Geneseeq Technology Inc, Toronto, ON, Canada
| | - Wei Li
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ao Wang
- Translational Medicine Research Institute, Geneseeq Technology Inc, Toronto, ON, Canada
| | - Xue Wu
- Translational Medicine Research Institute, Geneseeq Technology Inc, Toronto, ON, Canada
| | - Jian Su
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jie-Shan Lin
- Shantou University Medical College, Shantou, China
| | - Yang W Shao
- Translational Medicine Research Institute, Geneseeq Technology Inc, Toronto, ON, Canada
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue-Ning Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
24
|
Luca BA, Moulton V, Ellis C, Connell SP, Brewer DS, Cooper CS. Convergence of Prognostic Gene Signatures Suggests Underlying Mechanisms of Human Prostate Cancer Progression. Genes (Basel) 2020; 11:genes11070802. [PMID: 32708551 PMCID: PMC7397325 DOI: 10.3390/genes11070802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/27/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022] Open
Abstract
The highly heterogeneous clinical course of human prostate cancer has prompted the development of multiple RNA biomarkers and diagnostic tools to predict outcome for individual patients. Biomarker discovery is often unstable with, for example, small changes in discovery dataset configuration resulting in large alterations in biomarker composition. Our hypothesis, which forms the basis of this current study, is that highly significant overlaps occurring between gene signatures obtained using entirely different approaches indicate genes fundamental for controlling cancer progression. For prostate cancer, we found two sets of signatures that had significant overlaps suggesting important genes (p < 10−34 for paired overlaps, hypergeometrical test). These overlapping signatures defined a core set of genes linking hormone signalling (HES6-AR), cell cycle progression (Prolaris) and a molecular subgroup of patients (PCS1) derived by Non Negative Matrix Factorization (NNMF) of control pathways, together designated as SIG-HES6. The second set (designated SIG-DESNT) consisted of the DESNT diagnostic signature and a second NNMF signature PCS3. Stratifications using SIG-HES6 (HES6, PCS1, Prolaris) and SIG-DESNT (DESNT) classifiers frequently detected the same individual high-risk cancers, indicating that the underlying mechanisms associated with SIG-HES6 and SIG-DESNT may act together to promote aggressive cancer development. We show that the use of combinations of a SIG-HES6 signature together with DESNT substantially increases the ability to predict poor outcome, and we propose a model for prostate cancer development involving co-operation between the SIG-HES6 and SIG-DESNT pathways that has implication for therapeutic design.
Collapse
Affiliation(s)
- Bogdan-Alexandru Luca
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (B.-A.L.); (V.M.); (C.E.)
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (S.P.C.); (D.S.B.)
| | - Vincent Moulton
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (B.-A.L.); (V.M.); (C.E.)
| | - Christopher Ellis
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (B.-A.L.); (V.M.); (C.E.)
| | - Shea P. Connell
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (S.P.C.); (D.S.B.)
| | - Daniel S. Brewer
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (S.P.C.); (D.S.B.)
- The Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Colin S. Cooper
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (S.P.C.); (D.S.B.)
- Correspondence:
| |
Collapse
|
25
|
Santos PB, Patel H, Henrique R, Félix A. Can epigenetic and inflammatory biomarkers identify clinically aggressive prostate cancer? World J Clin Oncol 2020; 11:43-52. [PMID: 32133274 PMCID: PMC7046922 DOI: 10.5306/wjco.v11.i2.43] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) is a highly prevalent malignancy and constitutes a major cause of cancer-related morbidity and mortality. It emerges through the acquisition of genetic and epigenetic alterations. Epigenetic modifications include DNA methylation, histone modifications and microRNA deregulation. These generate heritable transformations in the expression of genes but do not change the DNA sequence. Alterations in DNA methylation (hypo and hypermethylation) are the most characterized in PCa. They lead to genomic instability and inadequate gene expression. Major and minor-specific modifications in chromatin recasting are involved in PCa, with signs suggesting a dysfunction of enzymes modified by histones. MicroRNA deregulation also contributes to the initiation of PCa, including involvement in androgen receptor signalization and apoptosis. The influence of inflammation on prostate tumor carcinogenesis is currently much better known. Recent discoveries about microbial species resident in the urinary tract suggest that these are the initiators of chronic inflammation, promoting prostate inflammatory atrophy and eventually leading to PCa. Complete characterization of the relationship between the urinary microbiome and prostatic chronic inflammation will be crucial to develop plans for the prevention of PCa. The prevalent nature of epigenetic and inflammatory alterations may provide potential biomarkers for PCa diagnosis, treatment decisions, evaluation of prognosis and posttreatment surveillance.
Collapse
Affiliation(s)
- Pedro Bargão Santos
- Department of Urology, Prof. Doutor Fernando Fonseca Hospital, Amadora 2720-276, Portugal
| | - Hitendra Patel
- Department of Urology, University Hospital North Norway, Tromsø 9019, Norway
- Department of Urology, St George’s University Hospitals, Tooting, London SW17 0QT, United Kingdom
| | - Rui Henrique
- Departments of Pathology and Cancer Biology and Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto, Porto 4200-072, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4099-002, Portugal
| | - Ana Félix
- Department of Pathology, Portuguese Oncology Institute of Lisbon, Lisbon 1099-023, Portugal
- Department of Pathology, NOVA Medical School, Lisbon 1169-056, Portugal
| |
Collapse
|
26
|
TIP5 primes prostate luminal cells for the oncogenic transformation mediated by PTEN-loss. Proc Natl Acad Sci U S A 2020; 117:3637-3647. [PMID: 32024754 PMCID: PMC7035629 DOI: 10.1073/pnas.1911673117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cell of origin and the temporal order of oncogenic events in tumors play important roles for disease state. This is of particular interest for PCa due to its highly variable clinical outcome. However, these features are difficult to analyze in tumors. We established an in vitro murine PCa organoid model taking into account the cell of origin and the temporal order of events. We found that TIP5 primes luminal prostate cells for Pten-loss mediated oncogenic transformation whereas it is dispensable once the transformation is established. Cross-species transcriptomic analyses revealed a PTEN-loss gene signature that identified a set of aggressive tumors with PTEN-del, or low PTEN expression, and high-TIP5 expression. This paper provides a powerful tool to elucidate PCa mechanisms. Prostate cancer (PCa) is the second leading cause of cancer death in men. Its clinical and molecular heterogeneities and the lack of in vitro models outline the complexity of PCa in the clinical and research settings. We established an in vitro mouse PCa model based on organoid technology that takes into account the cell of origin and the order of events. Primary PCa with deletion of the tumor suppressor gene PTEN (PTEN-del) can be modeled through Pten-down-regulation in mouse organoids. We used this system to elucidate the contribution of TIP5 in PCa initiation, a chromatin regulator that is implicated in aggressive PCa. High TIP5 expression correlates with primary PTEN-del PCa and this combination strongly associates with reduced prostate-specific antigen (PSA) recurrence-free survival. TIP5 is critical for the initiation of PCa of luminal origin mediated by Pten-loss whereas it is dispensable once Pten-loss mediated transformation is established. Cross-species analyses revealed a PTEN gene signature that identified a group of aggressive primary PCas characterized by PTEN-del, high-TIP5 expression, and a TIP5-regulated gene expression profile. The results highlight the modeling of PCa with organoids as a powerful tool to elucidate the role of genetic alterations found in recent studies in their time orders and cells of origin, thereby providing further optimization for tumor stratification to improve the clinical management of PCa.
Collapse
|
27
|
Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nat Rev Urol 2020; 16:302-317. [PMID: 30962568 DOI: 10.1038/s41585-019-0178-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The accurate identification and stratified treatment of clinically significant early-stage prostate cancer have been ongoing concerns since the outcomes of large international prostate cancer screening trials were reported. The controversy surrounding clinical and cost benefits of prostate cancer screening has highlighted the lack of strategies for discriminating high-risk disease (that requires early treatment) from low-risk disease (that could be managed using watchful waiting or active surveillance). Advances in molecular subtyping and multiomics nanotechnology-based prostate cancer risk delineation can enable refinement of prostate cancer molecular taxonomy into clinically meaningful and treatable subtypes. Furthermore, the presence of intertumoural and intratumoural heterogeneity in prostate cancer warrants the development of novel nanodiagnostic technologies to identify clinically significant prostate cancer in a rapid, cost-effective and accurate manner. Circulating and urinary next-generation prostate cancer biomarkers for disease molecular subtyping and the newest complementary nanodiagnostic platforms for enhanced biomarker detection are promising tools for precision prostate cancer management. However, challenges in merging both aspects and clinical translation still need to be overcome.
Collapse
|
28
|
Zhang W, van Gent DC, Incrocci L, van Weerden WM, Nonnekens J. Role of the DNA damage response in prostate cancer formation, progression and treatment. Prostate Cancer Prostatic Dis 2020; 23:24-37. [PMID: 31197228 PMCID: PMC8076026 DOI: 10.1038/s41391-019-0153-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/05/2019] [Accepted: 04/09/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Clinical and preclinical studies have revealed that alterations in DNA damage response (DDR) pathways may play an important role in prostate cancer (PCa) etiology and progression. These alterations can influence PCa responses to radiotherapy and anti-androgen treatment. The identification of DNA repair gene aberrations in PCa has driven the interest for further evaluation whether these genetic changes may serve as biomarkers for patient stratification. METHODS In this review, we summarize the current knowledge on DDR alterations in PCa, their potential impact on clinical interventions and prospects for improved management of PCa. We particularly focus on the influence of DDR gene mutations on PCa initiation and progression and describe the underlying mechanisms. RESULTS AND CONCLUSIONS A better understanding of these mechanisms, will contribute to better disease management as treatment strategies can be chosen based on the specific disease properties, since a growing number of treatments are targeting DDR pathway alterations (such as Poly(ADP-ribose) polymerase inhibitors). Furthermore, the recently discovered crosstalk between the DDR and androgen receptor signaling opens a new array of possible strategies to optimize treatment combinations. We discuss how these recent and ongoing studies will help to improve diagnostic, prognostic and therapeutic approaches for PCa management.
Collapse
Affiliation(s)
- Wenhao Zhang
- grid.5645.2000000040459992XDepartment of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Dik C. van Gent
- grid.5645.2000000040459992XDepartment of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands ,grid.5645.2000000040459992XOncode Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Luca Incrocci
- grid.508717.c0000 0004 0637 3764Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Wytske M. van Weerden
- grid.5645.2000000040459992XDepartment of Experimental Urology, Erasmus MC, Rotterdam, The Netherlands
| | - Julie Nonnekens
- grid.5645.2000000040459992XDepartment of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands ,grid.5645.2000000040459992XDepartment of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
29
|
Xiong X, Schober M, Tassone E, Khodadadi-Jamayran A, Sastre-Perona A, Zhou H, Tsirigos A, Shen S, Chang M, Melamed J, Ossowski L, Wilson EL. KLF4, A Gene Regulating Prostate Stem Cell Homeostasis, Is a Barrier to Malignant Progression and Predictor of Good Prognosis in Prostate Cancer. Cell Rep 2019; 25:3006-3020.e7. [PMID: 30540935 PMCID: PMC6405286 DOI: 10.1016/j.celrep.2018.11.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022] Open
Abstract
There is a considerable need to identify those individuals with prostate cancer who have indolent disease. We propose that
genes that control adult stem cell homeostasis in organs with slow turnover, such as the prostate, control cancer fate. One such
gene, KLF4, overexpressed in murine prostate stem cells, regulates their homeostasis, blocks malignant transformation, and
controls the self-renewal of tumor-initiating cells. KLF4 loss induces the molecular features of aggressive cancer and converts
PIN lesions to invasive sarcomatoid carcinomas; its re-expression in vivo reverses this process. Bioinformatic
analysis links these changes to human cancer. KLF4 and its downstream targets make up a gene signature that identifies indolent
tumors and predicts recurrence-free survival. This approach may improve prognosis and identify therapeutic targets for advanced
cancer. Available criteria for segregating prostate cancer patients into those requiring therapeutic intervention and those who can
be followed are inadequate. Xiong et al. show that KLF4 and its downstream targets make up a gene signature that identifies
indolent tumors. This approach may improve prognosis and identify therapeutic targets for advanced cancer.
Collapse
Affiliation(s)
- Xiaozhong Xiong
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| | - Markus Schober
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA; Department of Dermatology, NYU School of Medicine, New York, NY 10016, USA
| | - Evelyne Tassone
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Alireza Khodadadi-Jamayran
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Ana Sastre-Perona
- Department of Dermatology, NYU School of Medicine, New York, NY 10016, USA
| | - Hua Zhou
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Steven Shen
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Miao Chang
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Jonathan Melamed
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Liliana Ossowski
- Department of Medicine, Mt. Sinai School of Medicine, New York, NY 10029, USA
| | - Elaine L Wilson
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA; Department of Urology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
30
|
Luo Y, Yang H, Zhou YF, Hu B. Dual and multi-targeted nanoparticles for site-specific brain drug delivery. J Control Release 2019; 317:195-215. [PMID: 31794799 DOI: 10.1016/j.jconrel.2019.11.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/26/2022]
Abstract
In recent years, nanomedicines have emerged as a promising method for central nervous system drug delivery, enabling the drugs to overcome the blood-brain barrier and accumulate preferentially in the brain. Despite the current success of brain-targeted nanomedicines, limitations still exist in terms of the targeting specificity. Based on the molecular mechanism, the exact cell populations and subcellular organelles where the injury occurs and the drugs take effect have been increasingly accepted as a more specific target for the next generation of nanomedicines. Dual and multi-targeted nanoparticles integrate different targeting functionalities and have provided a paradigm for precisely delivering the drug to the pathological site inside the brain. The targeting process often involves the sequential or synchronized navigation of the targeting moieties, which allows highly controlled drug delivery compared to conventional targeting strategies. Herein, we focus on the up-to-date design of pathological site-specific nanoparticles for brain drug delivery, highlighting the dual and multi-targeting strategies that were employed and their impact on improving targeting specificity and therapeutic effects. Furthermore, the background discussion of the basic properties of a brain-targeted nanoparticle and the common lesion features classified by neurological pathology are systematically summarized.
Collapse
Affiliation(s)
- Yan Luo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hang Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi-Fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
31
|
Labrecque MP, Coleman IM, Brown LG, True LD, Kollath L, Lakely B, Nguyen HM, Yang YC, da Costa RMG, Kaipainen A, Coleman R, Higano CS, Yu EY, Cheng HH, Mostaghel EA, Montgomery B, Schweizer MT, Hsieh AC, Lin DW, Corey E, Nelson PS, Morrissey C. Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer. J Clin Invest 2019; 129:4492-4505. [PMID: 31361600 DOI: 10.1172/jci128212] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease with diverse drivers of disease progression and mechanisms of therapeutic resistance. We conducted deep phenotypic characterization of CRPC metastases and patient-derived xenograft (PDX) lines using whole genome RNA sequencing, gene set enrichment analysis and immunohistochemistry. Our analyses revealed five mCRPC phenotypes based on the expression of well-characterized androgen receptor (AR) or neuroendocrine (NE) genes: (i) AR-high tumors (ARPC), (ii) AR-low tumors (ARLPC), (iii) amphicrine tumors composed of cells co-expressing AR and NE genes (AMPC), (iv) double-negative tumors (i.e. AR-/NE-; DNPC) and (v) tumors with small cell or NE gene expression without AR activity (SCNPC). RE1-silencing transcription factor (REST) activity, which suppresses NE gene expression, was lost in AMPC and SCNPC PDX models. However, knockdown of REST in cell lines revealed that attenuated REST activity drives the AMPC phenotype but is not sufficient for SCNPC conversion. We also identified a subtype of DNPC tumors with squamous differentiation and generated an encompassing 26-gene transcriptional signature that distinguished the five mCRPC phenotypes. Together, our data highlight the central role of AR and REST in classifying treatment-resistant mCRPC phenotypes. These molecular classifications could potentially guide future therapeutic studies and clinical trial design.
Collapse
Affiliation(s)
- Mark P Labrecque
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Ilsa M Coleman
- Divison of Human Biology and.,Divison of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lisha G Brown
- Department of Urology, University of Washington, Seattle, Washington, USA
| | | | - Lori Kollath
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Bryce Lakely
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Holly M Nguyen
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Yu C Yang
- Divison of Human Biology and.,Divison of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Rui M Gil da Costa
- Divison of Human Biology and.,Divison of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Arja Kaipainen
- Divison of Human Biology and.,Divison of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Roger Coleman
- Divison of Human Biology and.,Divison of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Celestia S Higano
- Department of Urology, University of Washington, Seattle, Washington, USA.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| | - Evan Y Yu
- Divison of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| | - Heather H Cheng
- Divison of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| | - Elahe A Mostaghel
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | - Bruce Montgomery
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | - Michael T Schweizer
- Divison of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| | - Andrew C Hsieh
- Divison of Human Biology and.,Divison of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| | - Daniel W Lin
- Department of Urology, University of Washington, Seattle, Washington, USA.,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Peter S Nelson
- Divison of Human Biology and.,Divison of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
32
|
Offermann A, Roth D, Hupe MC, Hohensteiner S, Becker F, Joerg V, Carlsson J, Kuempers C, Ribbat-Idel J, Tharun L, Sailer V, Kirfel J, Svensson M, Andren O, Lubczyk V, Kuefer R, Merseburger AS, Perner S. TRIM24 as an independent prognostic biomarker for prostate cancer. Urol Oncol 2019; 37:576.e1-576.e10. [PMID: 31178279 DOI: 10.1016/j.urolonc.2019.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Simply applicable biomarkers for prostate cancer patients predicting the clinical course are urgently needed. Recently, TRIM24 has been identified to promote androgen receptor signaling and to correlate with an aggressive prostate cancer phenotype. Based on these data, we proofed TRIM24 as a prognostic biomarker for risk stratification. MATERIALS AND METHODS We performed TRIM24 immunohistochemistry on 2 independent cohorts including a total of 806 primary tumors, 26 locally advanced/recurrent tumors, 30 lymph node metastases, 30 distant metastases, and 129 benign prostatic samples from 497 patients as well as on 246 prostate needle biopsies. Expression data were correlated with clinic-pathological data including biochemical recurrence-free survival (bRFS) as endpoint. RESULTS Benign samples show no or low TRIM24 expression in 94%, while tumor tissues demonstrate significant higher levels. Strongest expression is observed in advanced and metastatic tumors. In multivariate analyses, TRIM24 up-regulation on radical prostatectomy specimens correlates with shorter bRFS independent of other prognostic parameters. 5-(10-) year bRFS rates for TRIM24 negative, low, medium and high expressing tumors are 93.1(93.1)%, 75.4(68.5)%, 54.9(47.5)% and 43.1(32.3)%, respectively. Of interest, tumors diagnosed as indolent disease, TRIM24 expression stratifies patients into specific risk groups. Increased TRIM24 expression associates with higher grade group, positive nodal status and extraprostatic tumor growth. TRIM24 assessment on prostate needle biopsies taken prior to treatment decision at time of initial diagnosis significantly correlates with recurrence after surgery. CONCLUSION Using 2 large independent radical prostatectomy specimen cohorts, we found that TRIM24 expression predicts patients' risk to develop disease recurrence with high accuracy and independent from other established biomarkers. Further, this is the first study exploring TRIM24 expression on prostate needle biopsies which represents the clinically relevant tissue type on which biomarkers guide treatment decisions. Thus, we strongly suggest introducing TRIM24 evaluation in prostate needle biopsies in clinical routine as an inexpensive and simple immunohistochemical test.
Collapse
Affiliation(s)
- Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, Luebeck, Germany; Pathology of the Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Doris Roth
- Institute of Pathology, University Hospital Schleswig-Holstein, Luebeck, Germany; Pathology of the Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | | | - Silke Hohensteiner
- Department of Pathology, Klinik am Eichert Alb Fils Kliniken, Goeppingen, Germany
| | - Finn Becker
- Institute of Pathology, University Hospital Schleswig-Holstein, Luebeck, Germany; Pathology of the Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Vincent Joerg
- Institute of Pathology, University Hospital Schleswig-Holstein, Luebeck, Germany; Pathology of the Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Jessica Carlsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Christiane Kuempers
- Institute of Pathology, University Hospital Schleswig-Holstein, Luebeck, Germany; Pathology of the Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Julika Ribbat-Idel
- Institute of Pathology, University Hospital Schleswig-Holstein, Luebeck, Germany; Pathology of the Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Lars Tharun
- Institute of Pathology, University Hospital Schleswig-Holstein, Luebeck, Germany; Pathology of the Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Verena Sailer
- Institute of Pathology, University Hospital Schleswig-Holstein, Luebeck, Germany; Pathology of the Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, Luebeck, Germany; Pathology of the Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Maria Svensson
- Department of Research and Education, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ove Andren
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Verena Lubczyk
- Department of Pathology, Klinik am Eichert Alb Fils Kliniken, Goeppingen, Germany
| | - Rainer Kuefer
- Department of Urology, Klinik am Eichert Alb Fils Kliniken, Goeppingen, Germany
| | | | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, Luebeck, Germany; Pathology of the Research Center Borstel, Leibniz Lung Center, Borstel, Germany.
| |
Collapse
|
33
|
Srivastava S, Koay EJ, Borowsky AD, De Marzo AM, Ghosh S, Wagner PD, Kramer BS. Cancer overdiagnosis: a biological challenge and clinical dilemma. Nat Rev Cancer 2019; 19:349-358. [PMID: 31024081 PMCID: PMC8819710 DOI: 10.1038/s41568-019-0142-8] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
For cancer screening to be successful, it should primarily detect cancers with lethal potential or their precursors early, leading to therapy that reduces mortality and morbidity. Screening programmes have been successful for colon and cervical cancers, where subsequent surgical removal of precursor lesions has resulted in a reduction in cancer incidence and mortality. However, many types of cancer exhibit a range of heterogeneous behaviours and variable likelihoods of progression and death. Consequently, screening for some cancers may have minimal impact on mortality and may do more harm than good. Since the implementation of screening tests for certain cancers (for example, breast and prostate cancers), a spike in incidence of in situ and early-stage cancers has been observed, but a link to reduction in cancer-specific mortality has not been as clear. It is difficult to determine how many of these mortality reductions are due to screening and how many are due to improved treatments of tumours. In cancers with lower incidence but high mortality (for example, pancreatic cancer), screening has focused on high-risk populations, but challenges similar to those for general population screening remain, particularly with regard to finding lesions with difficult-to-characterize malignant potential (for example, intraductal papillary mucinous neoplasms). More sensitive screening methods are detecting smaller and smaller lesions, but this has not been accompanied by a comparable reduction in the incidence of invasive cancers. In this Opinion article, we focus on the contribution of screening in general and high-risk populations to overdiagnosis, the effects of overdiagnosis on patients and emerging strategies to reduce overdiagnosis of indolent cancers through an understanding of tumour heterogeneity, the biology of how cancers evolve and progress, the molecular and cellular features of early neoplasia and the dynamics of the interactions of early lesions with their surrounding tissue microenvironment.
Collapse
Affiliation(s)
- Sudhir Srivastava
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Eugene J Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, USA
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Sharmistha Ghosh
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul D Wagner
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Barnett S Kramer
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Cumulative Cancer Locations is a Novel Metric for Predicting Active Surveillance Outcomes: A Multicenter Study. Eur Urol Oncol 2019; 1:268-275. [PMID: 31100247 DOI: 10.1016/j.euo.2018.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Active surveillance (AS) of prostate cancer (PC) has increased in popularity to address overtreatment. OBJECTIVE To determine whether a novel metric, cumulative cancer locations (CCLO), can predict AS outcomes in a group of AS patients with low and very low risk. DESIGN, SETTING, AND PARTICIPANTS CCLO is obtained by summing the total number of histological cancer-positive locations in both diagnostic and confirmatory biopsies (Bx). The retrospective study cohort comprised three prospective AS cohorts (Helsinki University Hospital: n=316; European Institute of Oncology: n=204; and University of Münster: n=89). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS We analyzed whether risk stratification based on CCLO predicts different AS outcomes: protocol-based discontinuation (PBD), Gleason upgrading (GU) during AS, and adverse findings in radical prostatectomy (RP) specimens. RESULTS In Kaplan Meier analyses, patients in the CCLO high-risk group experienced significantly shorter event-free survival for all outcomes (PBD, GU, and adverse RP findings; all p<0.002). In multivariable Cox regression analysis, patients in the CCLO high-risk group had a significantly higher risk of experiencing PBD (hazard ratio [HR] 12.15, 95% confidence interval [CI] 6.18-23.9; p<0.001), GU (HR 6.01, 95% CI 2.16-16.8; p=0.002), and adverse RP findings (HR 9.144, 95% CI 2.27-36.9; p=0.006). In receiver operating characteristic analyses, the area under the curve for CCLO outperformed the number of cancer-positive Bxs in confirmatory Bx in predicting PBD (0.734 vs 0.682), GU (0.655 vs 0.576) and adverse RP findings (0.662 vs 0.561) and the added value was supported by decision curve analysis. CONCLUSIONS CCLO is distinct from the number of positive Bx cores. Higher CCLO predicts AS outcomes and may aid in selection of patients for AS. PATIENT SUMMARY For patients on active surveillance for prostate cancer, the cumulative number of cancer-positive locations in diagnostic and confirmatory biopsies is a predictor of active surveillance outcomes.
Collapse
|
35
|
A TMEFF2-regulated cell cycle derived gene signature is prognostic of recurrence risk in prostate cancer. BMC Cancer 2019; 19:423. [PMID: 31060542 PMCID: PMC6503380 DOI: 10.1186/s12885-019-5592-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 04/09/2019] [Indexed: 01/27/2023] Open
Abstract
Background The clinical behavior of prostate cancer (PCa) is variable, and while the majority of cases remain indolent, 10% of patients progress to deadly forms of the disease. Current clinical predictors used at the time of diagnosis have limitations to accurately establish progression risk. Here we describe the development of a tumor suppressor regulated, cell-cycle gene expression based prognostic signature for PCa, and validate its independent contribution to risk stratification in several radical prostatectomy (RP) patient cohorts. Methods We used RNA interference experiments in PCa cell lines to identify a gene expression based gene signature associated with Tmeff2, an androgen regulated, tumor suppressor gene whose expression shows remarkable heterogeneity in PCa. Gene expression was confirmed by qRT-PCR. Correlation of the signature with disease outcome (time to recurrence) was retrospectively evaluated in four geographically different cohorts of patients that underwent RP (834 samples), using multivariate logistical regression analysis. Multivariate analyses were adjusted for standard clinicopathological variables. Performance of the signature was compared to previously described gene expression based signatures using the SigCheck software. Results Low levels of TMEFF2 mRNA significantly (p < 0.0001) correlated with reduced disease-free survival (DFS) in patients from the Memorial Sloan Kettering Cancer Center (MSKCC) dataset. We identified a panel of 11 TMEFF2 regulated cell cycle related genes (TMCC11), with strong prognostic value. TMCC11 expression was significantly associated with time to recurrence after prostatectomy in four geographically different patient cohorts (2.9 ≤ HR ≥ 4.1; p ≤ 0.002), served as an independent indicator of poor prognosis in the four RP cohorts (1.96 ≤ HR ≥ 4.28; p ≤ 0.032) and improved the prognostic value of standard clinicopathological markers. The prognostic ability of TMCC11 panel exceeded previously published oncogenic gene signatures (p = 0.00017). Conclusions This study provides evidence that the TMCC11 gene signature is a robust independent prognostic marker for PCa, reveals the value of using highly heterogeneously expressed genes, like Tmeff2, as guides to discover prognostic indicators, and suggests the possibility that low Tmeff2 expression marks a distinct subclass of PCa. Electronic supplementary material The online version of this article (10.1186/s12885-019-5592-6) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Abraham B, Nair MS. Computer-aided grading of prostate cancer from MRI images using Convolutional Neural Networks. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2019. [DOI: 10.3233/jifs-169913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Bejoy Abraham
- Department of Computer Science, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India
- Department of Computer Science and Engineering, College of Engineering Perumon, Kollam 691601, Kerala, India
| | - Madhu S. Nair
- Department of Computer Science, Cochin University of Science and Technology, Kochi 682022, Kerala, India
| |
Collapse
|
37
|
Ebron JS, Shankar E, Singh J, Sikand K, Weyman CM, Gupta S, Lindner DJ, Liu X, Campbell MJ, Shukla GC. MiR-644a Disrupts Oncogenic Transformation and Warburg Effect by Direct Modulation of Multiple Genes of Tumor-Promoting Pathways. Cancer Res 2019; 79:1844-1856. [PMID: 30808676 DOI: 10.1158/0008-5472.can-18-2993] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/18/2018] [Accepted: 02/22/2019] [Indexed: 11/16/2022]
Abstract
Castration-resistant prostate cancer (CRPC) is defined by tumor microenvironment heterogeneity affecting intrinsic cellular mechanisms including dysregulated androgen signaling, aerobic glycolysis (Warburg effect), and aberrant activation of transcription factors including androgen receptor (AR) and c-Myc. Using in vitro, in vivo, and animal models, we find a direct correlation between miR-644a downregulation and dysregulation of essential cellular processes. MiR-644a downregulated expression of diverse tumor microenvironment drivers including c-Myc, AR coregulators, and antiapoptosis factors Bcl-xl and Bcl2. Moreover, miR-644a modulates epithelial-mesenchymal transition (EMT) by directly targeting EMT-promoting factors ZEB1, cdk6, and Snail. Finally, miR-644a expression suppresses the Warburg effect by direct targeting of c-Myc, Akt, IGF1R, and GAPDH expression. RNA sequencing analysis revealed an analogous downregulation of these factors in animal tumor xenografts. These data demonstrate miR-644a mediated fine-tuning of oncogenesis, stimulating pathways and resultant potentiation of enzalutamide therapy in CRPC patients. SIGNIFICANCE: This study demonstrates that miR-644a therapeutically influences the CRPC tumor microenvironment by suppressing androgen signaling and additional genes involved in metabolism, proliferation, Warburg effect, and EMT, to potentiate the enzalutamide therapy.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/8/1844/F1.large.jpg.
Collapse
Affiliation(s)
- Jey S Ebron
- Department of Biological Sciences, Cleveland State University, Cleveland, Ohio.,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio
| | - Eswar Shankar
- Department of Urology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio
| | - Jagjit Singh
- Department of Biological Sciences, Cleveland State University, Cleveland, Ohio.,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio
| | - Kavleen Sikand
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Crystal M Weyman
- Department of Biological Sciences, Cleveland State University, Cleveland, Ohio.,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio
| | - Daniel J Lindner
- Translational Hematology and Oncology Research, Taussig Cancer Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Moray J Campbell
- Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Girish C Shukla
- Department of Biological Sciences, Cleveland State University, Cleveland, Ohio. .,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio.,Department of Cancer Biology, Learner Research institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
38
|
Álvarez-Garcia V, Tawil Y, Wise HM, Leslie NR. Mechanisms of PTEN loss in cancer: It's all about diversity. Semin Cancer Biol 2019; 59:66-79. [PMID: 30738865 DOI: 10.1016/j.semcancer.2019.02.001] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 01/04/2023]
Abstract
PTEN is a phosphatase which metabolises PIP3, the lipid product of PI 3-Kinase, directly opposing the activation of the oncogenic PI3K/AKT/mTOR signalling network. Accordingly, loss of function of the PTEN tumour suppressor is one of the most common events observed in many types of cancer. Although the mechanisms by which PTEN function is disrupted are diverse, the most frequently observed events are deletion of a single gene copy of PTEN and gene silencing, usually observed in tumours with little or no PTEN protein detectable by immunohistochemistry. Accordingly, with the exceptions of glioblastoma and endometrial cancer, mutations of the PTEN coding sequence are uncommon (<10%) in most types of cancer. Here we review the data relating to PTEN loss in seven common tumour types and discuss mechanisms of PTEN regulation, some of which appear to contribute to reduced PTEN protein levels in cancers.
Collapse
Affiliation(s)
- Virginia Álvarez-Garcia
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Yasmine Tawil
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Helen M Wise
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Nicholas R Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
39
|
Arriaga JM, Abate-Shen C. Genetically Engineered Mouse Models of Prostate Cancer in the Postgenomic Era. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a030528. [PMID: 29661807 DOI: 10.1101/cshperspect.a030528] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent genomic sequencing analyses have unveiled the spectrum of genomic alterations that occur in primary and advanced prostate cancer, raising the question of whether the corresponding genes are functionally relevant for prostate tumorigenesis, and whether such functions are associated with particular disease stages. In this review, we describe genetically engineered mouse models (GEMMs) of prostate cancer, focusing on those that model genomic alterations known to occur in human prostate cancer. We consider whether the phenotypes of GEMMs based on gain or loss of function of the relevant genes provide reliable counterparts to study the predicted consequences of the corresponding genomic alterations as occur in human prostate cancer, and we discuss exceptions in which the GEMMs do not fully emulate the expected phenotypes. Last, we highlight future directions for the generation of new GEMMs of prostate cancer and consider how we can use GEMMs most effectively to decipher the biological and molecular mechanisms of disease progression, as well as to tackle clinically relevant questions.
Collapse
Affiliation(s)
- Juan M Arriaga
- Departments of Urology, Medicine, Systems Biology, and Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| | - Cory Abate-Shen
- Departments of Urology, Medicine, Systems Biology, and Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
40
|
Johnston WL, Catton CN, Swallow CJ. Unbiased data mining identifies cell cycle transcripts that predict non-indolent Gleason score 7 prostate cancer. BMC Urol 2019; 19:4. [PMID: 30616540 PMCID: PMC6322345 DOI: 10.1186/s12894-018-0433-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/20/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Patients with newly diagnosed non-metastatic prostate adenocarcinoma are typically classified as at low, intermediate, or high risk of disease progression using blood prostate-specific antigen concentration, tumour T category, and tumour pathological Gleason score. Classification is used to both predict clinical outcome and to inform initial management. However, significant heterogeneity is observed in outcome, particularly within the intermediate risk group, and there is an urgent need for additional markers to more accurately hone risk prediction. Recently developed web-based visualization and analysis tools have facilitated rapid interrogation of large transcriptome datasets, and querying broadly across multiple large datasets should identify predictors that are widely applicable. METHODS We used camcAPP, cBioPortal, CRN, and NIH NCI GDC Data Portal to data mine publicly available large prostate cancer datasets. A test set of biomarkers was developed by identifying transcripts that had: 1) altered abundance in prostate cancer, 2) altered expression in patients with Gleason score 7 tumours and biochemical recurrence, 3) correlation of expression with time until biochemical recurrence across three datasets (Cambridge, Stockholm, MSKCC). Transcripts that met these criteria were then examined in a validation dataset (TCGA-PRAD) using univariate and multivariable models to predict biochemical recurrence in patients with Gleason score 7 tumours. RESULTS Twenty transcripts met the test criteria, and 12 were validated in TCGA-PRAD Gleason score 7 patients. Ten of these transcripts remained prognostic in Gleason score 3 + 4 = 7, a sub-group of Gleason score 7 patients typically considered at a lower risk for poor outcome and often not targeted for aggressive management. All transcripts positively associated with recurrence encode or regulate mitosis and cell cycle-related proteins. The top performer was BUB1, one of four key MIR145-3P microRNA targets upregulated in hormone-sensitive as well as castration-resistant PCa. SRD5A2 converts testosterone to its more active form and was negatively associated with biochemical recurrence. CONCLUSIONS Unbiased mining of large patient datasets identified 12 transcripts that independently predicted disease recurrence risk in Gleason score 7 prostate cancer. The mitosis and cell cycle proteins identified are also implicated in progression to castration-resistant prostate cancer, revealing a pivotal role for loss of cell cycle control in the latter.
Collapse
Affiliation(s)
- Wendy L Johnston
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Charles N Catton
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Carol J Swallow
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Schmidt L, Møller M, Haldrup C, Strand SH, Vang S, Hedegaard J, Høyer S, Borre M, Ørntoft T, Sørensen KD. Exploring the transcriptome of hormone-naive multifocal prostate cancer and matched lymph node metastases. Br J Cancer 2018; 119:1527-1537. [PMID: 30449885 PMCID: PMC6288156 DOI: 10.1038/s41416-018-0321-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 11/09/2022] Open
Abstract
Background The current inability to predict whether a primary prostate cancer (PC) will progress to metastatic disease leads to overtreatment of indolent PCs as well as undertreatment of aggressive PCs. Here, we explored the transcriptional changes associated with metastatic progression of multifocal hormone-naive PC. Methods Using total RNA-sequencing, we analysed laser micro-dissected primary PC foci (n = 23), adjacent normal prostate tissue samples (n = 23) and lymph node metastases (n = 9) from ten hormone-naive PC patients. Genes important for PC progression were identified using differential gene expression and clustering analysis. From these, two multi-gene-based expression signatures (models) were developed, and their prognostic potential was evaluated using Cox-regression and Kaplan–Meier analyses in three independent radical prostatectomy (RP) cohorts (>650 patients). Results We identified several novel PC-associated transcripts deregulated during PC progression, and these transcripts were used to develop two novel gene-expression-based prognostic models. The models showed independent prognostic potential in three RP cohorts (n = 405, n = 107 and n = 91), using biochemical recurrence after RP as the primary clinical endpoint. Conclusions We identified several transcripts deregulated during PC progression and developed two new prognostic models for PC risk stratification, each of which showed independent prognostic value beyond routine clinicopathological factors in three independent RP cohorts.
Collapse
Affiliation(s)
- Linnéa Schmidt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mia Møller
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Christa Haldrup
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Siri H Strand
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Søren Vang
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jakob Hedegaard
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Søren Høyer
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Borre
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Torben Ørntoft
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
42
|
Le Magnen C, Virk RK, Dutta A, Kim JY, Panja S, Lopez-Bujanda ZA, Califano A, Drake CG, Mitrofanova A, Abate-Shen C. Cooperation of loss of NKX3.1 and inflammation in prostate cancer initiation. Dis Model Mech 2018; 11:dmm035139. [PMID: 30266798 PMCID: PMC6262819 DOI: 10.1242/dmm.035139] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023] Open
Abstract
Although it is known that inflammation plays a critical role in prostate tumorigenesis, the underlying processes are not well understood. Based on analysis of genetically engineered mouse models combined with correlative analysis of expression profiling data from human prostate tumors, we demonstrate a reciprocal relationship between inflammation and the status of the NKX3.1 homeobox gene associated with prostate cancer initiation. We find that cancer initiation in aged Nkx3.1 mutant mice correlates with enrichment of specific immune populations and increased expression of immunoregulatory genes. Furthermore, expression of these immunoregulatory genes is similarly increased in human prostate tumors having low levels of NKX3.1 expression. We further show that induction of prostatitis in Nkx3.1 mutant mice accelerates prostate cancer initiation, which is coincident with aberrant cellular plasticity and differentiation. Correspondingly, human prostate tumors having low levels of NKX3.1 have de-regulated expression of genes associated with these cellular processes. We propose that loss of function of NKX3.1 accelerates inflammation-driven prostate cancer initiation potentially via aberrant cellular plasticity and impairment of cellular differentiation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Clémentine Le Magnen
- Departments of Medicine and Urology, Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Renu K Virk
- Department of Pathology and Cell Biology, Columbia University Medical Center, NY 10032, USA
| | - Aditya Dutta
- Departments of Medicine and Urology, Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Jaime Yeji Kim
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Sukanya Panja
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ 07101, USA
| | - Zoila A Lopez-Bujanda
- Graduate Program in Pathobiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Columbia Center for Translational Immunology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Departments of Systems Biology and Biochemistry and Molecular Biophysics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Charles G Drake
- Department of Medicine, Columbia Center for Translational Immunology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ 07101, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Cory Abate-Shen
- Departments of Urology, Medicine, Pathology & Cell Biology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
43
|
Linder S, van der Poel HG, Bergman AM, Zwart W, Prekovic S. Enzalutamide therapy for advanced prostate cancer: efficacy, resistance and beyond. Endocr Relat Cancer 2018; 26:R31-R52. [PMID: 30382692 PMCID: PMC6215909 DOI: 10.1530/erc-18-0289] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2018] [Indexed: 12/20/2022]
Abstract
The androgen receptor drives the growth of metastatic castration-resistant prostate cancer. This has led to the development of multiple novel drugs targeting this hormone-regulated transcription factor, such as enzalutamide – a potent androgen receptor antagonist. Despite the plethora of possible treatment options, the absolute survival benefit of each treatment separately is limited to a few months. Therefore, current research efforts are directed to determine the optimal sequence of therapies, discover novel drugs effective in metastatic castration-resistant prostate cancer and define patient subpopulations that ultimately benefit from these treatments. Molecular studies provide evidence on which pathways mediate treatment resistance and may lead to improved treatment for metastatic castration-resistant prostate cancer. This review provides, firstly a concise overview of the clinical development, use and effectiveness of enzalutamide in the treatment of advanced prostate cancer, secondly it describes translational research addressing enzalutamide response vs resistance and lastly highlights novel potential treatment strategies in the enzalutamide-resistant setting.
Collapse
Affiliation(s)
- Simon Linder
- Division of OncogenomicsOncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Henk G van der Poel
- Division of UrologyThe Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andries M Bergman
- Division of Medical OncologyThe Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of OncogenomicsThe Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of OncogenomicsOncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular SystemsDepartment of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Stefan Prekovic
- Division of OncogenomicsOncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Correspondence should be addressed to S Prekovic:
| |
Collapse
|
44
|
Abstract
Despite the high long-term survival in localized prostate cancer, metastatic prostate cancer remains largely incurable even after intensive multimodal therapy. The lethality of advanced disease is driven by the lack of therapeutic regimens capable of generating durable responses in the setting of extreme tumor heterogeneity on the genetic and cell biological levels. Here, we review available prostate cancer model systems, the prostate cancer genome atlas, cellular and functional heterogeneity in the tumor microenvironment, tumor-intrinsic and tumor-extrinsic mechanisms underlying therapeutic resistance, and technological advances focused on disease detection and management. These advances, along with an improved understanding of the adaptive responses to conventional cancer therapies, anti-androgen therapy, and immunotherapy, are catalyzing development of more effective therapeutic strategies for advanced disease. In particular, knowledge of the heterotypic interactions between and coevolution of cancer and host cells in the tumor microenvironment has illuminated novel therapeutic combinations with a strong potential for more durable therapeutic responses and eventual cures for advanced disease. Improved disease management will also benefit from artificial intelligence-based expert decision support systems for proper standard of care, prognostic determinant biomarkers to minimize overtreatment of localized disease, and new standards of care accelerated by next-generation adaptive clinical trials.
Collapse
Affiliation(s)
- Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Di Zhao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
45
|
Abraham B, Nair MS. Computer-aided classification of prostate cancer grade groups from MRI images using texture features and stacked sparse autoencoder. Comput Med Imaging Graph 2018; 69:60-68. [PMID: 30205334 DOI: 10.1016/j.compmedimag.2018.08.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/06/2018] [Accepted: 08/22/2018] [Indexed: 12/26/2022]
Abstract
A novel method to determine the Grade Group (GG) in prostate cancer (PCa) using multi-parametric magnetic resonance imaging (mpMRI) biomarkers is investigated in this paper. In this method, high-level features are extracted from hand-crafted texture features using a deep network of stacked sparse autoencoders (SSAE) and classified them using a softmax classifier (SMC). Transaxial T2 Weighted (T2W), Apparent Diffusion Coefficient (ADC) and high B-Value Diffusion-Weighted (BVAL) images obtained from PROSTATEx-2 2017 challenge dataset are used in this technique. The method was evaluated on the challenge dataset composed of a training set of 112 lesions and a test set of 70 lesions. It achieved a quadratic-weighted Kappa score of 0.2772 on evaluation using test dataset of the challenge. It also reached a Positive Predictive Value (PPV) of 80% in predicting PCa with GG > 1. The method achieved first place in the challenge, winning over 43 methods submitted by 21 groups. A 3-fold cross-validation using training data of the challenge was further performed and the method achieved a quadratic-weighted kappa score of 0.2326 and Positive Predictive Value (PPV) of 80.26% in predicting PCa with GG > 1. Even though the training dataset is a highly imbalanced one, the method was able to achieve a fair kappa score. Being one of the pioneer methods which attempted to classify prostate cancer into 5 grade groups from MRI images, it could serve as a base method for further investigations and improvements.
Collapse
Affiliation(s)
- Bejoy Abraham
- Department of Computer Science, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India.
| | - Madhu S Nair
- Department of Computer Science, Cochin University of Science and Technology, Kochi 682022, Kerala, India
| |
Collapse
|
46
|
Kamoun A, Cancel-Tassin G, Fromont G, Elarouci N, Armenoult L, Ayadi M, Irani J, Leroy X, Villers A, Fournier G, Doucet L, Boyault S, Brureau L, Multigner L, Diedhiou A, Roupret M, Compérat E, Blanchet P, de Reyniès A, Cussenot O. Comprehensive molecular classification of localized prostate adenocarcinoma reveals a tumour subtype predictive of non-aggressive disease. Ann Oncol 2018; 29:1814-1821. [DOI: 10.1093/annonc/mdy224] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
47
|
Lieberman HB, Rai AJ, Friedman RA, Hopkins KM, Broustas CG. Prostate cancer: unmet clinical needs and RAD9 as a candidate biomarker for patient management. Transl Cancer Res 2018; 7:S651-S661. [PMID: 30079300 PMCID: PMC6071673 DOI: 10.21037/tcr.2018.01.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prostate cancer is a complex disease, with multiple subtypes and clinical presentations. Much progress has been made in recent years to understand the underlying genetic basis that drives prostate cancer. Such mechanistic information is useful for development of novel therapeutic targets, to identify biomarkers for early detection or to distinguish between aggressive and indolent disease, and to predict treatment outcome. Multiple tests have become available in recent years to address these clinical needs for prostate cancer. We describe several of these assays, summarizing test details, performance characteristics, and acknowledging their limitations. There is a pressing unmet need for novel biomarkers that can demonstrate improvement in these areas. We introduce one such candidate biomarker, RAD9, describe its functions in the DNA damage response, and detail why it can potentially fill this void. RAD9 has multiple roles in prostate carcinogenesis, making it potentially useful as a clinical tool for men with prostate cancer. RAD9 was originally identified as a radioresistance gene, and subsequent investigations revealed several key functions in the response of cells to DNA damage, including involvement in cell cycle checkpoint control, at least five DNA repair pathways, and apoptosis. Further studies indicated aberrant overexpression in approximately 45% of prostate tumors, with a strong correlation between RAD9 abundance and cancer stage. A causal relationship between RAD9 and prostate cancer was first demonstrated using a mouse model, where tumorigenicity of human prostate cancer cells after subcutaneous injection into nude mice was diminished when RNA interference was used to reduce the normally high levels of the protein. In addition to activity needed for the initial development of tumors, cell culture studies indicated roles for RAD9 in promoting prostate cancer progression by controlling cell migration and invasion through regulation of ITGB1 protein levels, and anoikis resistance by modulating AKT activation. Furthermore, RAD9 enhances the resistance of human prostate cancer cells to radiation in part by regulating ITGB1 protein abundance. RAD9 binds androgen receptor and inhibits androgen-induced androgen receptor's activity as a transcription factor. Moreover, RAD9 also acts as a gene-specific transcription factor, through binding p53 consensus sequences at target gene promoters, and this likely contributes to its oncogenic activity. Given these diverse and extensive activities, RAD9 plays important roles in the initiation and progression of prostate cancer and can potentially serve as a valuable biomarker useful in the management of patients with this disease.
Collapse
Affiliation(s)
- Howard B. Lieberman
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Alex J. Rai
- Department of Pathology and Cell Biology and Special Chemistry Laboratories, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Richard A. Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Kevin M. Hopkins
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Constantinos G. Broustas
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
48
|
Cimadamore A, Gasparrini S, Santoni M, Cheng L, Lopez-Beltran A, Battelli N, Massari F, Giunchi F, Fiorentino M, Scarpelli M, Montironi R. Biomarkers of aggressiveness in genitourinary tumors with emphasis on kidney, bladder, and prostate cancer. Expert Rev Mol Diagn 2018; 18:645-655. [PMID: 29912582 DOI: 10.1080/14737159.2018.1490179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Over the last decade, the improvement in molecular techniques and the acquisition of genomic information has transformed and increased the quality of patient care and our knowledge of diseases. Areas covered: Protein expression levels in immunohistochemistry and molecular biomarkers are reported for their ability to predict recurrence, progression, development of metastases, or patient survival. In particular, for renal cell carcinoma, we take into consideration the biomarkers applicable to immunohistochemistry and with molecular and genetic analyses. In urothelial carcinoma, there is great interest in the possibility of distinguishing the basal vs. luminal subtypes and to acquire deeper insight into the tumor biology through examining exosomes in urine and biomarkers in the serum. In prostate cancer, single gene expression and multiple gene expression classifiers are reviewed as a tool to distinguish indolent vs. aggressive disease. Expert commentary: The genomic information along with the application of ancillary techniques allow the definition of a neoplasia not only by its morphology but also by its biological signature. This continuous increase in knowledge will result in a better comprehension of oncogenesis, development of targeted therapies and optimizing decision-making processes related to patient care.
Collapse
Affiliation(s)
- Alessia Cimadamore
- a Section of Pathological Anatomy, School of Medicine, United Hospitals , Polytechnic University of the Marche Region , Ancona , Italy
| | - Silvia Gasparrini
- a Section of Pathological Anatomy, School of Medicine, United Hospitals , Polytechnic University of the Marche Region , Ancona , Italy
| | | | - Liang Cheng
- c Department of Pathology and Laboratory Medicine , Indiana University School of Medicine , Indianapolis , IN , USA
| | | | | | - Francesco Massari
- e Division of Oncology , S. Orsola-Malpighi Hospital , Bologna , Italy
| | - Francesca Giunchi
- f Laboratory of Oncologic Molecular Pathology , S. Orsola-Malpighi Hospital , Bologna , Italy
| | - Michelangelo Fiorentino
- f Laboratory of Oncologic Molecular Pathology , S. Orsola-Malpighi Hospital , Bologna , Italy
| | - Marina Scarpelli
- a Section of Pathological Anatomy, School of Medicine, United Hospitals , Polytechnic University of the Marche Region , Ancona , Italy
| | - Rodolfo Montironi
- a Section of Pathological Anatomy, School of Medicine, United Hospitals , Polytechnic University of the Marche Region , Ancona , Italy
| |
Collapse
|
49
|
Yang L, Roberts D, Takhar M, Erho N, Bibby BAS, Thiruthaneeswaran N, Bhandari V, Cheng WC, Haider S, McCorry AMB, McArt D, Jain S, Alshalalfa M, Ross A, Schaffer E, Den RB, Jeffrey Karnes R, Klein E, Hoskin PJ, Freedland SJ, Lamb AD, Neal DE, Buffa FM, Bristow RG, Boutros PC, Davicioni E, Choudhury A, West CML. Development and Validation of a 28-gene Hypoxia-related Prognostic Signature for Localized Prostate Cancer. EBioMedicine 2018; 31:182-189. [PMID: 29729848 PMCID: PMC6014579 DOI: 10.1016/j.ebiom.2018.04.019] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/11/2018] [Accepted: 04/20/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Hypoxia is associated with a poor prognosis in prostate cancer. This work aimed to derive and validate a hypoxia-related mRNA signature for localized prostate cancer. METHOD Hypoxia genes were identified in vitro via RNA-sequencing and combined with in vivo gene co-expression analysis to generate a signature. The signature was independently validated in eleven prostate cancer cohorts and a bladder cancer phase III randomized trial of radiotherapy alone or with carbogen and nicotinamide (CON). RESULTS A 28-gene signature was derived. Patients with high signature scores had poorer biochemical recurrence free survivals in six of eight independent cohorts of prostatectomy-treated patients (Log rank test P < .05), with borderline significances achieved in the other two (P < .1). The signature also predicted biochemical recurrence in patients receiving post-prostatectomy radiotherapy (n = 130, P = .007) or definitive radiotherapy alone (n = 248, P = .035). Lastly, the signature predicted metastasis events in a pooled cohort (n = 631, P = .002). Prognostic significance remained after adjusting for clinic-pathological factors and commercially available prognostic signatures. The signature predicted benefit from hypoxia-modifying therapy in bladder cancer patients (intervention-by-signature interaction test P = .0026), where carbogen and nicotinamide was associated with improved survival only in hypoxic tumours. CONCLUSION A 28-gene hypoxia signature has strong and independent prognostic value for prostate cancer patients.
Collapse
Affiliation(s)
- Lingjian Yang
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester M20 4BX, UK
| | - Darren Roberts
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester M20 4BX, UK
| | | | | | - Becky A S Bibby
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester M20 4BX, UK
| | - Niluja Thiruthaneeswaran
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester M20 4BX, UK; Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Vinayak Bhandari
- Informatics & Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Canada; Sydney Medical School, University of Sydney, Sydney, Australia
| | - Wei-Chen Cheng
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Syed Haider
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Amy M B McCorry
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Darragh McArt
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Suneil Jain
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | | | - Ashley Ross
- James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | - Robert B Den
- Department of Radiation Oncology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Eric Klein
- Glickman Urological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Peter J Hoskin
- Mount Vernon Cancer Centre, Rickmansworth Road, Northwood, Middlesex HA6 2RN, UK
| | - Stephen J Freedland
- Department of Surgery, Division of Urology, Center for Integrated Research on Cancer and Lifestyle, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alastair D Lamb
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK; Nuffield Department of Surgical Sciences, University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - David E Neal
- Nuffield Department of Surgical Sciences, University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - Francesca M Buffa
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Robert G Bristow
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Paul C Boutros
- Informatics & Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Ananya Choudhury
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester M20 4BX, UK
| | - Catharine M L West
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester M20 4BX, UK; NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, UK.
| |
Collapse
|
50
|
Bijnsdorp IV, van Royen ME, Verhaegh GW, Martens-Uzunova ES. The Non-Coding Transcriptome of Prostate Cancer: Implications for Clinical Practice. Mol Diagn Ther 2018; 21:385-400. [PMID: 28299719 PMCID: PMC5511609 DOI: 10.1007/s40291-017-0271-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa) is the most common type of cancer and the second leading cause of cancer-related death in men. Despite extensive research, the molecular mechanisms underlying PCa initiation and progression remain unclear, and there is increasing need of better biomarkers that can distinguish indolent from aggressive and life-threatening disease. With the advent of advanced genomic technologies in the last decade, it became apparent that the human genome encodes tens of thousands non-protein-coding RNAs (ncRNAs) with yet to be discovered function. It is clear now that the majority of ncRNAs exhibit highly specific expression patterns restricted to certain tissues and organs or developmental stages and that the expression of many ncRNAs is altered in disease and cancer, including cancer of the prostate. Such ncRNAs can serve as important biomarkers for PCa diagnosis, prognosis, or prediction of therapy response. In this review, we give an overview of the different types of ncRNAs and their function, describe ncRNAs relevant for the diagnosis and prognosis of PCa, and present emerging new aspects of ncRNA research that may contribute to the future utilization of ncRNAs as clinically useful therapeutic targets.
Collapse
MESH Headings
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/urine
- Early Detection of Cancer/methods
- Gene Expression Regulation, Neoplastic
- High-Throughput Nucleotide Sequencing
- Humans
- Male
- Molecular Targeted Therapy
- Precision Medicine
- Prognosis
- Prostatic Neoplasms/diagnosis
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- RNA, Untranslated/blood
- RNA, Untranslated/classification
- RNA, Untranslated/genetics
- RNA, Untranslated/urine
Collapse
Affiliation(s)
- Irene V Bijnsdorp
- Department of Urology, VU University Medical Center, Amsterdam, The Netherlands
| | - Martin E van Royen
- Department of Pathology and Erasmus Optical Imaging Centre (OIC), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gerald W Verhaegh
- Department of Urology, Radboud university medical center, Nijmegen, The Netherlands
| | - Elena S Martens-Uzunova
- Department of Urology, Erasmus Medical Center, Erasmus Cancer Institute, Room Be-362b, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|