1
|
He SF, Han WC, Shao YY, Zhang HB, Hong WX, Yang QH, Zhang YQ, He RR, Sun J. Iridium(III) complex induces apoptosis in HeLa cells by regulating mitochondrial and PI3K/AKT signaling pathways: In vitro and in vivo experiments. Bioorg Chem 2023; 141:106867. [PMID: 37734195 DOI: 10.1016/j.bioorg.2023.106867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Cyclometalated iridium complexes with mitochondrial targeting show great potential as substitutes for platinum-based complexes because of their strong anti-cancer properties. Three novel cyclometalated iridium(III) compounds were synthesized and evaluated in five different cell lines as part of the ongoing systematic investigations of these compounds. The complexes were prepared using 4,7-dichloro-1,10-phenanthroline ligands. The cytotoxicity of complexes Ir1-Ir3 towards HeLa cells was shown to be high, with IC50 values of 0.83±0.06, 4.73±0.11, and 4.95±0.62 μM, respectively. Complex Ir1 could be ingested by HeLa cells in 3 h and has shown high selectivity toward mitochondria. Subsequent investigations demonstrated that Ir1 triggered apoptosis in HeLa cells by augmenting the generation of reactive oxygen species (ROS), reducing the mitochondrial membrane potential, and depleting ATP levels. Furthermore, the movement of cells was significantly suppressed and the progression of the cell cycle was arrested in the G0/G1 phase following the administration of Ir1. The Western blot analysis demonstrated that the induction of apoptosis in HeLa cells by Ir1 involves the activation of the mitochondria-dependent channel and the PI3K/AKT signaling pathway. No significant cytotoxicity was observed in zebrafish embryos at concentrations less than or equal to 16 µM, e.g., survival rate and developmental abnormalities. In vivo, antitumor assay demonstrated that Ir1 suppressed tumor growth in mice. Therefore, our work shows that complex Ir1 could be a promising candidate for developing novel antitumor drugs.
Collapse
Affiliation(s)
- Shu-Fen He
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
| | - Wei-Chao Han
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
| | - Ying-Ying Shao
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
| | - Han-Bin Zhang
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
| | - Wen-Xin Hong
- Department of Health, Dongguan Maternal and Child Health Care Hospital, Dongguan 523129, China
| | - Qiu-Hong Yang
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
| | - Yu-Qing Zhang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Rui-Rong He
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China.
| | - Jing Sun
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
2
|
Soonpaa MH, Reuter SP, Castelluccio PF, Field LJ. Musings on intrinsic cardiomyocyte cell cycle activity and myocardial regeneration. J Mol Cell Cardiol 2023; 182:86-91. [PMID: 37517369 PMCID: PMC10530305 DOI: 10.1016/j.yjmcc.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
Although the myocardial renewal rate in the adult mammalian heart is quite low, recent studies have identified genetic variants which can impact the degree of cardiomyocyte cell cycle reentry. Here we use the compound interest law to model the level of regenerative growth over time in mice exhibiting different rates of cardiomyocyte cell cycle reentry following myocardial injury. The modeling suggests that the limited ability of S-phase adult cardiomyocytes to progress through cytokinesis, rather than the ability to reenter the cell cycle per se, is a major contributor to the low levels of intrinsic regenerative growth in the adult myocardium.
Collapse
Affiliation(s)
- Mark H Soonpaa
- Krannert Cardiovascular Research Center and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, USA
| | - Sean P Reuter
- Krannert Cardiovascular Research Center and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, USA
| | - Peter F Castelluccio
- Krannert Cardiovascular Research Center and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, USA
| | - Loren J Field
- Krannert Cardiovascular Research Center and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, USA.
| |
Collapse
|
3
|
Gu Q, Orgil BO, Bajpai AK, Chen Y, Ashbrook DG, Starlard-Davenport A, Towbin JA, Lebeche D, Purevjav E, Sheng H, Lu L. Expression Levels of the Tnni3k Gene in the Heart Are Highly Associated with Cardiac and Glucose Metabolism-Related Phenotypes and Functional Pathways. Int J Mol Sci 2023; 24:12759. [PMID: 37628941 PMCID: PMC10454158 DOI: 10.3390/ijms241612759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Troponin-I interacting kinase encoded by the TNNI3K gene is expressed in nuclei and Z-discs of cardiomyocytes. Mutations in TNNI3K were identified in patients with cardiac conduction diseases, arrhythmias, and cardiomyopathy. METHODS We performed cardiac gene expression, whole genome sequencing (WGS), and cardiac function analysis in 40 strains of BXD recombinant inbred mice derived from C57BL/6J (B6) and DBA/2J (D2) strains. Expression quantitative trait loci (eQTLs) mapping and gene enrichment analysis was performed, followed by validation of candidate Tnni3k-regulatory genes. RESULTS WGS identified compound splicing and missense T659I Tnni3k variants in the D2 parent and some BXD strains (D allele) and these strains had significantly lower Tnni3k expression than those carrying wild-type Tnni3k (B allele). Expression levels of Tnni3k significantly correlated with multiple cardiac (heart rate, wall thickness, PR duration, and T amplitude) and metabolic (glucose levels and insulin resistance) phenotypes in BXDs. A significant cis-eQTL on chromosome 3 was identified for the regulation of Tnni3k expression. Furthermore, Tnni3k-correlated genes were primarily involved in cardiac and glucose metabolism-related functions and pathways. Genes Nodal, Gnas, Nfkb1, Bmpr2, Bmp7, Smad7, Acvr1b, Acvr2b, Chrd, Tgfb3, Irs1, and Ppp1cb were differentially expressed between the B and D alleles. CONCLUSIONS Compound splicing and T659I Tnni3k variants reduce cardiac Tnni3k expression and Tnni3k levels are associated with cardiac and glucose metabolism-related phenotypes.
Collapse
Affiliation(s)
- Qingqing Gu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, China; (Q.G.); (Y.C.)
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (A.K.B.); (D.G.A.); (A.S.-D.)
| | - Buyan-Ochir Orgil
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (B.-O.O.); (J.A.T.); (E.P.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38105, USA
| | - Akhilesh Kumar Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (A.K.B.); (D.G.A.); (A.S.-D.)
| | - Yufeng Chen
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, China; (Q.G.); (Y.C.)
| | - David G. Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (A.K.B.); (D.G.A.); (A.S.-D.)
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (A.K.B.); (D.G.A.); (A.S.-D.)
| | - Jeffrey A. Towbin
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (B.-O.O.); (J.A.T.); (E.P.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38105, USA
- Pediatric Cardiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Djamel Lebeche
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Enkhsaikhan Purevjav
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (B.-O.O.); (J.A.T.); (E.P.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38105, USA
| | - Hongzhuan Sheng
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, China; (Q.G.); (Y.C.)
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (A.K.B.); (D.G.A.); (A.S.-D.)
| |
Collapse
|
4
|
Pham C, Andrzejczyk K, Jurgens SJ, Lekanne Deprez R, Palm KC, Vermeer AM, Nijman J, Christiaans I, Barge-Schaapveld DQ, van Dessel PF, Beekman L, Choi SH, Lubitz SA, Skoric-Milosavljevic D, van den Bersselaar L, Jansen PR, Copier JS, Ellinor PT, Wilde AA, Bezzina CR, Lodder EM. Genetic Burden of TNNI3K in Diagnostic Testing of Patients With Dilated Cardiomyopathy and Supraventricular Arrhythmias. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:328-336. [PMID: 37199186 PMCID: PMC10426786 DOI: 10.1161/circgen.122.003975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/10/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Genetic variants in TNNI3K (troponin-I interacting kinase) have previously been associated with dilated cardiomyopathy (DCM), cardiac conduction disease, and supraventricular tachycardias. However, the link between TNNI3K variants and these cardiac phenotypes shows a lack of consensus concerning phenotype and protein function. METHODS We describe a systematic retrospective study of a cohort of patients undergoing genetic testing for cardiac arrhythmias and cardiomyopathy including TNNI3K. We further performed burden testing of TNNI3K in the UK Biobank. For 2 novel TNNI3K variants, we tested cosegregation. TNNI3K kinase function was estimated by TNNI3K autophosphorylation assays. RESULTS We demonstrate enrichment of rare coding TNNI3K variants in DCM patients in the Amsterdam cohort. In the UK Biobank, we observed an association between TNNI3K missense (but not loss-of-function) variants and DCM and atrial fibrillation. Furthermore, we demonstrate genetic segregation for 2 rare variants, TNNI3K-p.Ile512Thr and TNNI3K-p.His592Tyr, with phenotypes consisting of DCM, cardiac conduction disease, and supraventricular tachycardia, together with increased autophosphorylation. In contrast, TNNI3K-p.Arg556_Asn590del, a likely benign variant, demonstrated depleted autophosphorylation. CONCLUSIONS Our findings demonstrate an increased burden of rare coding TNNI3K variants in cardiac patients with DCM. Furthermore, we present 2 novel likely pathogenic TNNI3K variants with increased autophosphorylation, suggesting that enhanced autophosphorylation is likely to drive pathogenicity.
Collapse
Affiliation(s)
- Caroline Pham
- Department of Experimental Cardiology (C.P., K.A., S.J.J., K.C.A.P., L.B., J.S.C., C.R.B., E.M.L.), Heart Center, Amsterdam UMC location University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (C.P., K.A., S.J.J., K.C.A.P., L.B., J.S.C., A.A.M.W., C.R.B., E.M.L.)
| | - Karolina Andrzejczyk
- Department of Experimental Cardiology (C.P., K.A., S.J.J., K.C.A.P., L.B., J.S.C., C.R.B., E.M.L.), Heart Center, Amsterdam UMC location University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (C.P., K.A., S.J.J., K.C.A.P., L.B., J.S.C., A.A.M.W., C.R.B., E.M.L.)
| | - Sean J. Jurgens
- Department of Experimental Cardiology (C.P., K.A., S.J.J., K.C.A.P., L.B., J.S.C., C.R.B., E.M.L.), Heart Center, Amsterdam UMC location University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (C.P., K.A., S.J.J., K.C.A.P., L.B., J.S.C., A.A.M.W., C.R.B., E.M.L.)
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.J.J., S.A.L., P.T.E.)
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (S.J.J., S.A.L., P.T.E.)
| | - Ronald Lekanne Deprez
- Department of Human Genetics, Amsterdam UMC location University of Amsterdam, the Netherlands (R.L.D., A.M.C.V., J.N., D.S.-M., P.R.J., E.M.L.)
| | - Kaylin C.A. Palm
- Department of Experimental Cardiology (C.P., K.A., S.J.J., K.C.A.P., L.B., J.S.C., C.R.B., E.M.L.), Heart Center, Amsterdam UMC location University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (C.P., K.A., S.J.J., K.C.A.P., L.B., J.S.C., A.A.M.W., C.R.B., E.M.L.)
| | - Alexa M.C. Vermeer
- Department of Human Genetics, Amsterdam UMC location University of Amsterdam, the Netherlands (R.L.D., A.M.C.V., J.N., D.S.-M., P.R.J., E.M.L.)
| | - Janneke Nijman
- Department of Human Genetics, Amsterdam UMC location University of Amsterdam, the Netherlands (R.L.D., A.M.C.V., J.N., D.S.-M., P.R.J., E.M.L.)
| | - Imke Christiaans
- Department of Genetics, University Medical Center Groningen, University of Groningen, the Netherlands (I.C.)
| | | | - Pascal F.H.M. van Dessel
- Department of Cardiology, Thorax Center Twente, Medisch Spectrum Twente (MST), Enschede, the Netherlands (P.F.H.M.v.D.)
| | - Leander Beekman
- Department of Experimental Cardiology (C.P., K.A., S.J.J., K.C.A.P., L.B., J.S.C., C.R.B., E.M.L.), Heart Center, Amsterdam UMC location University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (C.P., K.A., S.J.J., K.C.A.P., L.B., J.S.C., A.A.M.W., C.R.B., E.M.L.)
| | | | - Steven A. Lubitz
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.J.J., S.A.L., P.T.E.)
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (S.J.J., S.A.L., P.T.E.)
| | - Doris Skoric-Milosavljevic
- Department of Human Genetics, Amsterdam UMC location University of Amsterdam, the Netherlands (R.L.D., A.M.C.V., J.N., D.S.-M., P.R.J., E.M.L.)
| | - Lisa van den Bersselaar
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands (L.v.d.B.)
| | - Philip R. Jansen
- Department of Human Genetics, Amsterdam UMC location University of Amsterdam, the Netherlands (R.L.D., A.M.C.V., J.N., D.S.-M., P.R.J., E.M.L.)
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Complex Trait Genetics, the Netherlands (P.R.J.)
| | - Jaël S. Copier
- Department of Experimental Cardiology (C.P., K.A., S.J.J., K.C.A.P., L.B., J.S.C., C.R.B., E.M.L.), Heart Center, Amsterdam UMC location University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (C.P., K.A., S.J.J., K.C.A.P., L.B., J.S.C., A.A.M.W., C.R.B., E.M.L.)
| | - Patrick T. Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.J.J., S.A.L., P.T.E.)
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (S.J.J., S.A.L., P.T.E.)
| | - Arthur A.M. Wilde
- Department of Cardiology (A.A.M.W.), Heart Center, Amsterdam UMC location University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (C.P., K.A., S.J.J., K.C.A.P., L.B., J.S.C., A.A.M.W., C.R.B., E.M.L.)
| | - Connie R. Bezzina
- Department of Experimental Cardiology (C.P., K.A., S.J.J., K.C.A.P., L.B., J.S.C., C.R.B., E.M.L.), Heart Center, Amsterdam UMC location University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (C.P., K.A., S.J.J., K.C.A.P., L.B., J.S.C., A.A.M.W., C.R.B., E.M.L.)
| | - Elisabeth M. Lodder
- Department of Experimental Cardiology (C.P., K.A., S.J.J., K.C.A.P., L.B., J.S.C., C.R.B., E.M.L.), Heart Center, Amsterdam UMC location University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (C.P., K.A., S.J.J., K.C.A.P., L.B., J.S.C., A.A.M.W., C.R.B., E.M.L.)
- Department of Human Genetics, Amsterdam UMC location University of Amsterdam, the Netherlands (R.L.D., A.M.C.V., J.N., D.S.-M., P.R.J., E.M.L.)
| |
Collapse
|
5
|
Embryonic Hyperglycemia Disrupts Myocardial Growth, Morphological Development, and Cellular Organization: An In Vivo Experimental Study. Life (Basel) 2023; 13:life13030768. [PMID: 36983924 PMCID: PMC10056749 DOI: 10.3390/life13030768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Hyperglycemia during gestation can disrupt fetal heart development and increase postnatal cardiovascular disease risk. It is therefore imperative to identify early biomarkers of hyperglycemia during gestation-induced fetal heart damage and elucidate the underlying molecular pathomechanisms. Clinical investigations of diabetic adults with heart dysfunction and transgenic mouse studies have revealed that overexpression or increased expression of TNNI3K, a heart-specific kinase that binds troponin cardiac I, may contribute to abnormal cardiac remodeling, ventricular hypertrophy, and heart failure. Optimal heart function also depends on the precise organization of contractile and excitable tissues conferred by intercellular occlusive, adherent, and communicating junctions. The current study evaluated changes in embryonic heart development and the expression levels of sarcomeric proteins (troponin I, desmin, and TNNI3K), junctional proteins, glucose transporter-1, and Ki-67 under fetal hyperglycemia. Stage 22HH Gallus domesticus embryos were randomly divided into two groups: a hyperglycemia (HG) group, in which individual embryos were injected with 30 mmol/L glucose solution every 24 h for 10 days, and a no-treatment (NT) control group, in which individual embryos were injected with physiological saline every 24 h for 10 days (stage 36HH). Embryonic blood glucose, height, and weight, as well as heart size, were measured periodically during treatment, followed by histopathological analysis and estimation of sarcomeric and junctional protein expression by western blotting and immunostaining. Hyperglycemic embryos demonstrated delayed heart maturation, with histopathological analysis revealing reduced left and right ventricular wall thickness (−39% and −35% vs. NT). Immunoexpression levels of TNNI3K and troponin 1 increased (by 37% and 39%, respectively), and desmin immunofluorescence reduced (by 23%). Embryo-fetal hyperglycemia may trigger an increase in the expression levels of TNNI3K and troponin I, as well as dysfunction of occlusive and adherent junctions, ultimately inducing abnormal cardiac remodeling.
Collapse
|
6
|
Reuter SP, Soonpaa MH, Field D, Simpson E, Rubart-von der Lohe M, Lee HK, Sridhar A, Ware SM, Green N, Li X, Ofner S, Marchuk DA, Wollert KC, Field LJ. Cardiac Troponin I-Interacting Kinase Affects Cardiomyocyte S-Phase Activity but Not Cardiomyocyte Proliferation. Circulation 2023; 147:142-153. [PMID: 36382596 PMCID: PMC9839600 DOI: 10.1161/circulationaha.122.061130] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Identifying genetic variants that affect the level of cell cycle reentry and establishing the degree of cell cycle progression in those variants could help guide development of therapeutic interventions aimed at effecting cardiac regeneration. We observed that C57Bl6/NCR (B6N) mice have a marked increase in cardiomyocyte S-phase activity after permanent coronary artery ligation compared with infarcted DBA/2J (D2J) mice. METHODS Cardiomyocyte cell cycle activity after infarction was monitored in D2J, (D2J×B6N)-F1, and (D2J×B6N)-F1×D2J backcross mice by means of bromodeoxyuridine or 5-ethynyl-2'-deoxyuridine incorporation using a nuclear-localized transgenic reporter to identify cardiomyocyte nuclei. Genome-wide quantitative trait locus analysis, fine scale genetic mapping, whole exome sequencing, and RNA sequencing analyses of the backcross mice were performed to identify the gene responsible for the elevated cardiomyocyte S-phase phenotype. RESULTS (D2J×B6N)-F1 mice exhibited a 14-fold increase in cardiomyocyte S-phase activity in ventricular regions remote from infarct scar compared with D2J mice (0.798±0.09% versus 0.056±0.004%; P<0.001). Quantitative trait locus analysis of (D2J×B6N)-F1×D2J backcross mice revealed that the gene responsible for differential S-phase activity was located on the distal arm of chromosome 3 (logarithm of the odds score=6.38; P<0.001). Additional genetic and molecular analyses identified 3 potential candidates. Of these, Tnni3k (troponin I-interacting kinase) is expressed in B6N hearts but not in D2J hearts. Transgenic expression of TNNI3K in a D2J genetic background results in elevated cardiomyocyte S-phase activity after injury. Cardiomyocyte S-phase activity in both Tnni3k-expressing and Tnni3k-nonexpressing mice results in the formation of polyploid nuclei. CONCLUSIONS These data indicate that Tnni3k expression increases the level of cardiomyocyte S-phase activity after injury.
Collapse
Affiliation(s)
- Sean P. Reuter
- Krannert Cardiovascular Research Center, Indiana University School of Medicine
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Mark H. Soonpaa
- Krannert Cardiovascular Research Center, Indiana University School of Medicine
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Dorothy Field
- Krannert Cardiovascular Research Center, Indiana University School of Medicine
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Ed Simpson
- Center for Computational Biology & Bioinformatics, Indiana University School of Medicine
| | | | - Han Kyu Lee
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine
| | - Arthi Sridhar
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Stephanie M. Ware
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Nick Green
- Center for Computational Biology & Bioinformatics, Indiana University School of Medicine
| | - Xiaochun Li
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine
| | - Susan Ofner
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine
| | - Douglas A. Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine
| | - Kai C. Wollert
- Department of Cardiology and Angiology, Division of Molecular and Translational Cardiology, Hannover Medical School
| | - Loren J. Field
- Krannert Cardiovascular Research Center, Indiana University School of Medicine
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| |
Collapse
|
7
|
Qu H, Zhang Y, Zhang W, Zhu Y, Xu R. Knockout of Cardiac Troponin I-Interacting Kinase leads to cardiac dysfunction and remodeling. Clin Exp Pharmacol Physiol 2022; 49:1169-1178. [PMID: 35781726 DOI: 10.1111/1440-1681.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
Abstract
Cardiac troponin I-interacting kinase (TNNI3K) is a cardiac-specific kinase that has been identified as a diagnostic marker and a therapeutic target in cardiovascular diseases. However, the biological function of TNNI3K in cardiac dysfunction and remodeling remain elusive. In the present study, a Tnni3k cardiomyocyte-specific knockout (Tnni3k-cKO) mouse model was established. Echocardiography was used to evaluate cardiac function in mice. Heart failure markers were detected using enzyme-linked immunosorbent assay. Hematoxylin and eosin staining, wheat germ agglutinin staining, Masson's trichrome staining, Sirius red staining, and TUNEL staining were used to assess histopathological changes, cardiac hypertrophy, collagen deposition, and myocardial apoptosis, respectively. Expression levels of TNNI3K, apoptosis-related proteins, and p38 mitogen-activated protein kinase were measured using Western blot analysis. Compared to wild-type controls, cardiac dysfunction and cardiac remodeling of Tnni3k-cKO mice increased gradually with age. Tnni3k-cKO mice exhibited cardiac hypertrophy, cardiac fibrosis, and cardiomyocyte apoptosis. Upregulation of cleaved caspase-3 in Tnni3k-cKO mice appeared to be related to phosphorylation and activation of the p38 mitogen-activated protein kinase signaling pathway. In conclusion, this study shows that TNNI3K is essential for cardiac development and function, providing new insights into the development of novel therapeutic strategies for cardiac diseases.
Collapse
Affiliation(s)
- Huilin Qu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Zhang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaxin Zhu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruixia Xu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Xie T, Yang Y, Gong K, Luo Y, Guo H, Liu R, Wang L, Tan Z, Luo J, Xie L. Whole-Exome Sequencing Identifies a Novel Variant (c.1538T > C) of TNNI3K in Arrhythmogenic Right Ventricular Cardiomyopathy. Front Cardiovasc Med 2022; 9:843837. [PMID: 35274013 PMCID: PMC8902045 DOI: 10.3389/fcvm.2022.843837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Backgrounds Arrhythmic right ventricular cardiomyopathy (ARVC) is a cardiomyopathy with a genetic predisposition that can lead to a sudden cardiac death and heart failure. According to the 2010 Task Force Criteria, genetic diagnosis is one of the most important methods, but, so far, only a few genes related to ARVC have been identified. Methods In this study, the pathogenic gene of a patient with ARVC was examined using whole-exome sequencing. The plasmids of TNNI3K were constructed, and the effects of the TNNI3K variant was investigated by a real-time polymerase chain reaction (PCR) and western blot. Results A novel variant (c.1538T > C) of TNNI3K was identified, with phenotypes of dominant right ventricular (RV) disease preliminarily fulfilling the diagnosis of ARVC. A comprehensive assessment revealed that the variant was pathogenic. We found that this variant would lead to a decrease in the level of TNNI3K mRNA and protein, as well as a decrease in the expression of the RYR2 gene, which further proves that TNNI3K plays an important role in cardiomyopathy and expands the spectrum of the TNNI3K variants. Conclusion In this study, we reported a TNNI3K variant in ARVC for the first time, and the results not only contribute to the diagnosis of ARVC, but also provide a reference for genetic counseling and promote the understanding of the genetic mechanism of cardiomyopathy.
Collapse
Affiliation(s)
- Ting Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Ke Gong
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Yong Luo
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Hui Guo
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Ruilin Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Lei Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Zhiping Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Jinwen Luo
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, China
| | - Li Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- *Correspondence: Li Xie
| |
Collapse
|
9
|
Zheng Z, Hua R, Xu G, Yang H, Shi P. Gene losses may contribute to subterranean adaptations in naked mole-rat and blind mole-rat. BMC Biol 2022; 20:44. [PMID: 35172813 PMCID: PMC8851862 DOI: 10.1186/s12915-022-01243-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/28/2022] [Indexed: 01/18/2023] Open
Abstract
Background Naked mole-rats (Heterocephalus glaber, NMRs) and blind mole-rats (Spalax galili, BMRs) are representative subterranean rodents that have evolved many extraordinary traits, including hypoxia tolerance, longevity, and cancer resistance. Although multiple candidate loci responsible for these traits have been uncovered by genomic studies, many of them are limited to functional changes to amino acid sequence and little is known about the contributions of other genetic events. To address this issue, we focused on gene losses (unitary pseudogenes) and systematically analyzed gene losses in NMRs and BMRs, aiming to elucidate the potential roles of pseudogenes in their adaptation to subterranean lifestyle. Results We obtained the pseudogene repertoires in NMRs and BMRs, as well as their respective aboveground relatives, guinea pigs and rats, on a genome-wide scale. As a result, 167, 139, 341, and 112 pseudogenes were identified in NMRs, BMRs, guinea pigs, and rats, respectively. Functional enrichment analysis identified 4 shared and 2 species-specific enriched functional groups (EFGs) in subterranean lineages. Notably, the pseudogenes in these EFGs might be associated with either regressive (e.g., visual system) or adaptive (e.g., altered DNA damage response) traits. In addition, several pseudogenes including TNNI3K and PDE5A might be associated with specific cardiac features observed in subterranean lineages. Interestingly, we observed 20 convergent gene losses in NMRs and BMRs. Given that the functional investigations of these genes are generally scarce, we provided functional evidence that independent loss of TRIM17 in NMRs and BMRs might be beneficial for neuronal survival under hypoxia, supporting the positive role of eliminating TRIM17 function in hypoxia adaptation. Our results also suggested that pseudogenes, together with positively selected genes, reinforced subterranean adaptations cooperatively. Conclusions Our study provides new insights into the molecular underpinnings of subterranean adaptations and highlights the importance of gene losses in mammalian evolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01243-0.
Collapse
Affiliation(s)
- Zhizhong Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Rong Hua
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.,Joint Laboratory of Animal Models for Human Diseases and Drug Development, Soochow University and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China. .,Joint Laboratory of Animal Models for Human Diseases and Drug Development, Soochow University and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
10
|
Alam P, Maliken BD, Jones SM, Ivey MJ, Wu Z, Wang Y, Kanisicak O. Cardiac Remodeling and Repair: Recent Approaches, Advancements, and Future Perspective. Int J Mol Sci 2021; 22:ijms222313104. [PMID: 34884909 PMCID: PMC8658114 DOI: 10.3390/ijms222313104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
The limited ability of mammalian adult cardiomyocytes to proliferate following an injury to the heart, such as myocardial infarction, is a major factor that results in adverse fibrotic and myocardial remodeling that ultimately leads to heart failure. The continued high degree of heart failure-associated morbidity and lethality requires the special attention of researchers worldwide to develop efficient therapeutics for cardiac repair. Recently, various strategies and approaches have been developed and tested to extrinsically induce regeneration and restoration of the myocardium after cardiac injury have yielded encouraging results. Nevertheless, these interventions still lack adequate success to be used for clinical interventions. This review highlights and discusses both cell-based and cell-free therapeutic approaches as well as current advancements, major limitations, and future perspectives towards developing an efficient therapeutic method for cardiac repair.
Collapse
Affiliation(s)
- Perwez Alam
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Bryan D. Maliken
- Harrington Physician-Scientist Pathway, Department of Internal Medicine, University Hospitals Case Medical Center, Cleveland, OH 44106, USA;
| | - Shannon M. Jones
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Malina J. Ivey
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Zhichao Wu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
- Correspondence: ; Tel.: +1-513-558-2029; Fax: +1-513-584-3892
| |
Collapse
|
11
|
Patterson JR, Graves AP, Stoy P, Cheung M, Desai TA, Fries H, Gatto GJ, Holt DA, Shewchuk L, Totoritis R, Wang L, Kallander LS. Identification of Diarylurea Inhibitors of the Cardiac-Specific Kinase TNNI3K by Designing Selectivity Against VEGFR2, p38α, and B-Raf. J Med Chem 2021; 64:15651-15670. [PMID: 34699203 DOI: 10.1021/acs.jmedchem.1c00700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A series of diarylurea inhibitors of the cardiac-specific kinase TNNI3K were developed to elucidate the biological function of TNNI3K and evaluate TNNI3K as a therapeutic target for the treatment of cardiovascular diseases. Utilizing a structure-based design, enhancements in kinase selectivity were engineered into the series, capitalizing on the established X-ray crystal structures of TNNI3K, VEGFR2, p38α, and B-Raf. Our efforts culminated in the discovery of an in vivo tool compound 47 (GSK329), which exhibited desirable TNNI3K potency and rat pharmacokinetic properties as well as promising kinase selectivity against VEGFR2 (40-fold), p38α (80-fold), and B-Raf (>200-fold). Compound 47 demonstrated positive cardioprotective outcomes in a mouse model of ischemia/reperfusion cardiac injury, indicating that optimized exemplars from this series, such as 47, are favorable leads for discovering novel medicines for cardiac diseases.
Collapse
Affiliation(s)
- Jaclyn R Patterson
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Alan P Graves
- Platform Technology and Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Patrick Stoy
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Mui Cheung
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Tina A Desai
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Harvey Fries
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Gregory J Gatto
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Dennis A Holt
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Lisa Shewchuk
- Platform Technology and Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Rachel Totoritis
- Platform Technology and Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Liping Wang
- Platform Technology and Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Lara S Kallander
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
12
|
Gene Expression Profiling of Skeletal Muscles. Genes (Basel) 2021; 12:genes12111718. [PMID: 34828324 PMCID: PMC8621074 DOI: 10.3390/genes12111718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Next-generation sequencing provides an opportunity for an in-depth biocomputational analysis to identify gene expression patterns between soleus and tibialis anterior, two well-characterized skeletal muscles, and analyze their gene expression profiling. RNA read counts were analyzed for differential gene expression using the R package edgeR. Differentially expressed genes were filtered using a false discovery rate of less than 0.05 c, a fold-change value of more than twenty, and an association with overrepresented pathways based on the Reactome pathway over-representation analysis tool. Most of the differentially expressed genes associated with soleus are coded for components of lipid metabolism and unique contractile elements. Differentially expressed genes associated with tibialis anterior encoded mostly for glucose and glycogen metabolic pathway regulatory enzymes and calcium-sensitive contractile components. These gene expression distinctions partly explain the genetic basis for skeletal muscle specialization, and they may help to explain skeletal muscle susceptibility to disease and drugs and further refine tissue engineering approaches.
Collapse
|
13
|
Kalogirou AS, East MP, Laitinen T, Torrice CD, Maffuid KA, Drewry DH, Koutentis PA, Johnson GL, Crona DJ, Asquith CRM. Synthesis and Evaluation of Novel 1,2,6-Thiadiazinone Kinase Inhibitors as Potent Inhibitors of Solid Tumors. Molecules 2021; 26:molecules26195911. [PMID: 34641454 PMCID: PMC8513058 DOI: 10.3390/molecules26195911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
A focused series of substituted 4H-1,2,6-thiadiazin-4-ones was designed and synthesized to probe the anti-cancer properties of this scaffold. Insights from previous kinase inhibitor programs were used to carefully select several different substitution patterns. Compounds were tested on bladder, prostate, pancreatic, breast, chordoma, and lung cancer cell lines with an additional skin fibroblast cell line as a toxicity control. This resulted in the identification of several low single digit micro molar compounds with promising therapeutic windows, particularly for bladder and prostate cancer. A number of key structural features of the 4H-1,2,6-thiadiazin-4-one scaffold are discussed that show promising scope for future improvement.
Collapse
Affiliation(s)
- Andreas S. Kalogirou
- Department of Life Sciences, School of Sciences, European University Cyprus, 6 Diogenis Str., Engomi, P.O. Box 22006, Nicosia 1516, Cyprus
- Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus;
- Correspondence: (A.S.K.); (C.R.M.A.); Tel.: +357-22-559655 (A.S.K.); +1-919-491-3177 (C.R.M.A.)
| | - Michael P. East
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (M.P.E.); (G.L.J.)
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Chad D. Torrice
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; (C.D.T.); (K.A.M.); (D.J.C.)
| | - Kaitlyn A. Maffuid
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; (C.D.T.); (K.A.M.); (D.J.C.)
| | - David H. Drewry
- Structural Genomics Consortium, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA;
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Gary L. Johnson
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (M.P.E.); (G.L.J.)
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daniel J. Crona
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; (C.D.T.); (K.A.M.); (D.J.C.)
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christopher R. M. Asquith
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (M.P.E.); (G.L.J.)
- Correspondence: (A.S.K.); (C.R.M.A.); Tel.: +357-22-559655 (A.S.K.); +1-919-491-3177 (C.R.M.A.)
| |
Collapse
|
14
|
Chen X, Wan W, Guo Y, Ye T, Fo Y, Sun Y, Qu C, Yang B, Zhang C. Pinocembrin ameliorates post-infarct heart failure through activation of Nrf2/HO-1 signaling pathway. Mol Med 2021; 27:100. [PMID: 34488618 PMCID: PMC8422663 DOI: 10.1186/s10020-021-00363-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022] Open
Abstract
Background Oxidative stress is an important factor involved in the progress of heart failure. The current study was performed to investigate whether pinocembrin was able to ameliorate post-infarct heart failure (PIHF) and the underlying mechanisms. Methods Rats were carried out left anterior descending artery ligation to induce myocardial infarction and subsequently raised for 6 weeks to produce chronic heart failure. Then pinocembrin was administrated every other day for 2 weeks. The effects were evaluated by echocardiography, western blot, Masson’s staining, biochemical examinations, immunohistochemistry, and fluorescence. In vitro we also cultured H9c2 cardiomyocytes and cardiac myofibroblasts to further testify the mechanisms. Results We found that PIHF-induced deteriorations of cardiac functions were significantly ameliorated by administrating pinocembrin. In addition, the pinocembrin treatment also attenuated collagen deposition and augmented vascular endothelial growth factor receptor 2 in infarct border zone along with an attenuated apoptosis, which were related to an amelioration of oxidative stress evidenced by reduction of reactive oxygen species (ROS) in heart tissue and malondialdehyde (MDA) in serum, and increase of superoxide dismutase (SOD). This were accompanied by upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) pathway. In vitro experiments we found that specific Nrf2 inhibitor significantly reversed the effects resulted from pinocembrin including antioxidant, anti-apoptosis, anti-fibrosis and neovascularization, which further indicated the amelioration of PIHF by pinocembrin was in a Nrf2/HO-1 pathway-dependent manner. Conclusion Pinocembrin ameliorated cardiac functions and remodeling resulted from PIHF by ROS scavenging and Nrf2/HO-1 pathway activation which further attenuated collagen fibers deposition and apoptosis, and facilitated angiogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00363-7.
Collapse
Affiliation(s)
- Xiuhuan Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Weiguo Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Yan Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Tianxin Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Yuhong Fo
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Yazhou Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China. .,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China.
| | - Cui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China. .,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
15
|
Pham C, Muñoz-Martín N, Lodder EM. The Diverse Roles of TNNI3K in Cardiac Disease and Potential for Treatment. Int J Mol Sci 2021; 22:6422. [PMID: 34203974 PMCID: PMC8232738 DOI: 10.3390/ijms22126422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022] Open
Abstract
In the two decades since the discovery of TNNI3K it has been implicated in multiple cardiac phenotypes and physiological processes. TNNI3K is an understudied kinase, which is mainly expressed in the heart. Human genetic variants in TNNI3K are associated with supraventricular arrhythmias, conduction disease, and cardiomyopathy. Furthermore, studies in mice implicate the gene in cardiac hypertrophy, cardiac regeneration, and recovery after ischemia/reperfusion injury. Several new papers on TNNI3K have been published since the last overview, broadening the clinical perspective of TNNI3K variants and our understanding of the underlying molecular biology. We here provide an overview of the role of TNNI3K in cardiomyopathy and arrhythmia covering both a clinical perspective and basic science advancements. In addition, we review the potential of TNNI3K as a target for clinical treatments in different cardiac diseases.
Collapse
Affiliation(s)
| | | | - Elisabeth M. Lodder
- Department of Clinical and Experimental Cardiology, Heart Center, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (C.P.); (N.M.-M.)
| |
Collapse
|
16
|
Silencing Cardiac Troponin I-Interacting Kinase Reduces Lipopolysaccharide-Induced Sepsis-Induced Myocardial Dysfunction in Rat by Regulating Apoptosis-Related Proteins. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5520051. [PMID: 34136567 PMCID: PMC8175134 DOI: 10.1155/2021/5520051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/13/2021] [Indexed: 11/18/2022]
Abstract
The aim of this study was to investigate the effect of cardiac troponin I-interacting kinase (TNNI3K) on sepsis-induced myocardial dysfunction (SIMD) and further explore the underlying molecular mechanisms. In this study, a lipopolysaccharide- (LPS-) induced myocardial injury model was used. qRT-PCR was performed to detect the mRNA expression of TNNI3K. Western blot was conducted to quantitatively detect the expression of TNNI3K and apoptosis-related proteins (Bcl-2, Bax, and caspase-3). ELISA was performed to detect the content of lactate dehydrogenase (LDH) and creatine kinase (CK). TUNEL assay was used to detect the apoptosis of H9C2 cells. In LPS-induced H9C2 cells, TNNI3K was up regulated. Besides, the CK activity, the content of LDH, and the apoptosis of H9C2 cells were significantly increased after treatment with LPS. Silencing TNNI3K decreased the LDH release activity and CK activity and inhibited apoptosis of H9C2 cell. Further research illustrated that si-TNNI3K promoted the protein expression of Bcl-2 and decreased the protein expression of Bax and cleaved caspase-3. The study concluded that TNNI3K was upregulated in LPS-induced H9C2 cells. Importantly, functional research findings indicated that silencing TNNI3K alleviated LPS-induced H9C2 cell injury by regulating apoptosis-related proteins.
Collapse
|
17
|
Liu Y, Li M, Sun M, Zhang Y, Li X, Sun W, Quan N. Sestrin2 is an endogenous antioxidant that improves contractile function in the heart during exposure to ischemia and reperfusion stress. Free Radic Biol Med 2021; 165:385-394. [PMID: 33581276 DOI: 10.1016/j.freeradbiomed.2021.01.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/25/2022]
Abstract
Sestrin2 (Sesn2) is a stress-inducible protein that plays a critical role in the response to ischemic stress. We recently recognized that Sesn2 may protect the heart against ischemic insults by reducing the generation of reactive oxygen species (ROS). After 45 min of ischemia followed by 24 h of reperfusion, myocardial infarcts were significantly larger in Sesn2 KO hearts than in wild-type hearts. Isolated cardiomyocytes from wild-type hearts treated with hypoxia and reoxygenation (H/R) stress showed significantly greater Sesn2 levels, compared with normoxic hearts (p < 0.05). Intriguingly, the administration of adeno-associated virus 9-Sesn2 into Sesn2 knockout (KO) hearts rescued Sesn2 protein levels and significantly improved the cardiac function of Sesn2 KO mice exposed to ischemia and reperfusion. The rescued levels of Sesn2 in Sesn2 KO hearts significantly ameliorated ROS generation and the activation of ROS-related stress signaling pathways during ischemia and reperfusion. Moreover, the rescued Sesn2 levels in Sesn2 KO cardiomyocytes improved the maximal velocity of cardiomyocyte shortening by H/R stress. Rescued Sesn2 levels also improved peak height, peak shortening amplitude, and maximal velocity of the re-lengthening of Sesn2 KO cardiomyocytes subjected to H/R. Finally, the rescued Sesn2 levels significantly augmented intracellular calcium levels and reduced the mean time constant of transient calcium decay in Sesn2 KO cardiomyocytes exposed to H/R. Overall, these findings indicated that Sesn2 can act as an endogenous antioxidant to maintain intracellular redox homeostasis under ischemic stress conditions.
Collapse
Affiliation(s)
- Yunxia Liu
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Meina Li
- Department of Infection Control, The First Hospital of Jilin University, Changchun, 130021, China
| | - Meihua Sun
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yaoting Zhang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xuan Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Wanqing Sun
- Fuwai Hospital, National Centre for Cardiovascular Disease, No. 167 Beilishi Road, Xicheng, Beijing, 100037, China.
| | - Nanhu Quan
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
18
|
Gan P, Baicu C, Watanabe H, Wang K, Tao G, Judge DP, Zile MR, Makita T, Mukherjee R, Sucov HM. The prevalent I686T human variant and loss-of-function mutations in the cardiomyocyte-specific kinase gene TNNI3K cause adverse contractility and concentric remodeling in mice. Hum Mol Genet 2020; 29:3504-3515. [PMID: 33084860 DOI: 10.1093/hmg/ddaa234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/18/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023] Open
Abstract
TNNI3K expression worsens disease progression in several mouse heart pathology models. TNNI3K expression also reduces the number of diploid cardiomyocytes, which may be detrimental to adult heart regeneration. However, the gene is evolutionarily conserved, suggesting a beneficial function that has remained obscure. Here, we show that C57BL/6J-inbred Tnni3k mutant mice develop concentric remodeling, characterized by ventricular wall thickening and substantial reduction of cardiomyocyte aspect ratio. This pathology occurs in mice carrying a Tnni3k null allele, a K489R point mutation rendering the protein kinase-dead, or an allele corresponding to human I686T, the most common human non-synonymous TNNI3K variant, which is hypomorphic for kinase activity. Mutant mice develop these conditions in the absence of fibrosis or hypertension, implying a primary cardiomyocyte etiology. In culture, mutant cardiomyocytes were impaired in contractility and calcium dynamics and in protein kinase A signaling in response to isoproterenol, indicating diminished contractile reserve. These results demonstrate a beneficial function of TNNI3K in the adult heart that might explain its evolutionary conservation and imply that human TNNI3K variants, in particular the widespread I686T allele, may convey elevated risk for altered heart geometry and hypertrophy.
Collapse
Affiliation(s)
- Peiheng Gan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA.,Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Catalin Baicu
- Department of Medicine Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA
| | - Hirofumi Watanabe
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Kristy Wang
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Ge Tao
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Daniel P Judge
- Department of Medicine Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA
| | - Michael R Zile
- Department of Medicine Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA
| | - Takako Makita
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Rupak Mukherjee
- Department of Medicine Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA
| | - Henry M Sucov
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA.,Department of Medicine Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
19
|
Yokota T, Li J, Huang J, Xiong Z, Zhang Q, Chan T, Ding Y, Rau C, Sung K, Ren S, Kulkarni R, Hsiai T, Xiao X, Touma M, Minamisawa S, Wang Y. p38 Mitogen-activated protein kinase regulates chamber-specific perinatal growth in heart. J Clin Invest 2020; 130:5287-5301. [PMID: 32573492 PMCID: PMC7524480 DOI: 10.1172/jci135859] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
In the mammalian heart, the left ventricle (LV) rapidly becomes more dominant in size and function over the right ventricle (RV) after birth. The molecular regulators responsible for this chamber-specific differential growth are largely unknown. We found that cardiomyocytes in the neonatal mouse RV had lower proliferation, more apoptosis, and a smaller average size compared with the LV. This chamber-specific growth pattern was associated with a selective activation of p38 mitogen-activated protein kinase (MAPK) activity in the RV and simultaneous inactivation in the LV. Cardiomyocyte-specific deletion of both the Mapk14 and Mapk11 genes in mice resulted in loss of p38 MAPK expression and activity in the neonatal heart. Inactivation of p38 activity led to a marked increase in cardiomyocyte proliferation and hypertrophy but diminished cardiomyocyte apoptosis, specifically in the RV. Consequently, the p38-inactivated hearts showed RV-specific enlargement postnatally, progressing to pulmonary hypertension and right heart failure at the adult stage. Chamber-specific p38 activity was associated with differential expression of dual-specific phosphatases (DUSPs) in neonatal hearts, including DUSP26. Unbiased transcriptome analysis revealed that IRE1α/XBP1-mediated gene regulation contributed to p38 MAPK-dependent regulation of neonatal cardiomyocyte proliferation and binucleation. These findings establish an obligatory role of DUSP/p38/IRE1α signaling in cardiomyocytes for chamber-specific growth in the postnatal heart.
Collapse
Affiliation(s)
- Tomohiro Yokota
- Cardiovascular Research Laboratories, Department of Anesthesiology, Department of Physiology, and Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Jin Li
- Cardiovascular Research Laboratories, Department of Anesthesiology, Department of Physiology, and Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Jijun Huang
- Cardiovascular Research Laboratories, Department of Anesthesiology, Department of Physiology, and Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Zhaojun Xiong
- Cardiovascular Research Laboratories, Department of Anesthesiology, Department of Physiology, and Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Cardiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Zhang
- Integrative Biology and Physiology, David Geffen School of Medicine
| | - Tracey Chan
- Integrative Biology and Physiology, David Geffen School of Medicine
| | - Yichen Ding
- Department of Bioengineering, School of Engineering and Applied Sciences
- Division of Cardiology and
| | - Christoph Rau
- Cardiovascular Research Laboratories, Department of Anesthesiology, Department of Physiology, and Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Kevin Sung
- Department of Bioengineering, School of Engineering and Applied Sciences
| | - Shuxun Ren
- Cardiovascular Research Laboratories, Department of Anesthesiology, Department of Physiology, and Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Rajan Kulkarni
- Department of Bioengineering, School of Engineering and Applied Sciences
- Division of Dermatology, Department of Medicine, and
| | - Tzung Hsiai
- Department of Bioengineering, School of Engineering and Applied Sciences
- Division of Cardiology and
| | - Xinshu Xiao
- Integrative Biology and Physiology, David Geffen School of Medicine
| | - Marlin Touma
- Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | - Yibin Wang
- Cardiovascular Research Laboratories, Department of Anesthesiology, Department of Physiology, and Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Division of Cardiology and
| |
Collapse
|
20
|
Nemani N, Dong Z, Daw CC, Madaris TR, Ramachandran K, Enslow BT, Rubannelsonkumar CS, Shanmughapriya S, Mallireddigari V, Maity S, SinghMalla P, Natarajanseenivasan K, Hooper R, Shannon CE, Tourtellotte WG, Singh BB, Reeves WB, Sharma K, Norton L, Srikantan S, Soboloff J, Madesh M. Mitochondrial pyruvate and fatty acid flux modulate MICU1-dependent control of MCU activity. Sci Signal 2020; 13:eaaz6206. [PMID: 32317369 PMCID: PMC7667998 DOI: 10.1126/scisignal.aaz6206] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The tricarboxylic acid (TCA) cycle converts the end products of glycolysis and fatty acid β-oxidation into the reducing equivalents NADH and FADH2 Although mitochondrial matrix uptake of Ca2+ enhances ATP production, it remains unclear whether deprivation of mitochondrial TCA substrates alters mitochondrial Ca2+ flux. We investigated the effect of TCA cycle substrates on MCU-mediated mitochondrial matrix uptake of Ca2+, mitochondrial bioenergetics, and autophagic flux. Inhibition of glycolysis, mitochondrial pyruvate transport, or mitochondrial fatty acid transport triggered expression of the MCU gatekeeper MICU1 but not the MCU core subunit. Knockdown of mitochondrial pyruvate carrier (MPC) isoforms or expression of the dominant negative mutant MPC1R97W resulted in increased MICU1 protein abundance and inhibition of MCU-mediated mitochondrial matrix uptake of Ca2+ We also found that genetic ablation of MPC1 in hepatocytes and mouse embryonic fibroblasts resulted in reduced resting matrix Ca2+, likely because of increased MICU1 expression, but resulted in changes in mitochondrial morphology. TCA cycle substrate-dependent MICU1 expression was mediated by the transcription factor early growth response 1 (EGR1). Blocking mitochondrial pyruvate or fatty acid flux was linked to increased autophagy marker abundance. These studies reveal a mechanism that controls the MCU-mediated Ca2+ flux machinery and that depends on TCA cycle substrate availability. This mechanism generates a metabolic homeostatic circuit that protects cells from bioenergetic crisis and mitochondrial Ca2+ overload during periods of nutrient stress.
Collapse
Affiliation(s)
- Neeharika Nemani
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Center for Translational Medicine, Lewis Katz School of Me.dicine at Temple University, Philadelphia, PA, 19140, USA
| | - Zhiwei Dong
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Center for Translational Medicine, Lewis Katz School of Me.dicine at Temple University, Philadelphia, PA, 19140, USA
| | - Cassidy C Daw
- Department of Medicine/Nephrology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Travis R Madaris
- Department of Medicine/Nephrology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Karthik Ramachandran
- Department of Medicine/Nephrology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Benjamin T Enslow
- Department of Medicine/Nephrology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Cherubina S Rubannelsonkumar
- Department of Medicine/Nephrology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Santhanam Shanmughapriya
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Center for Translational Medicine, Lewis Katz School of Me.dicine at Temple University, Philadelphia, PA, 19140, USA
- Heart and Vascular Institute, Department of Medicine and Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, PA 17601, USA
| | - Varshini Mallireddigari
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Center for Translational Medicine, Lewis Katz School of Me.dicine at Temple University, Philadelphia, PA, 19140, USA
| | - Soumya Maity
- Department of Medicine/Nephrology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Pragya SinghMalla
- Department of Medicine/Nephrology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Kalimuthusamy Natarajanseenivasan
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Center for Translational Medicine, Lewis Katz School of Me.dicine at Temple University, Philadelphia, PA, 19140, USA
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Robert Hooper
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19140, USA
| | - Christopher E Shannon
- Department of Medicine/Diabetes Division, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Warren G Tourtellotte
- Pathology & Laboratory Medicine, Neurology, Neurosurgery, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Brij B Singh
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - W Brian Reeves
- Department of Medicine/Nephrology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Kumar Sharma
- Department of Medicine/Nephrology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Luke Norton
- Department of Medicine/Diabetes Division, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Subramanya Srikantan
- Department of Medicine/Nephrology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Jonathan Soboloff
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19140, USA
| | - Muniswamy Madesh
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
- Center for Translational Medicine, Lewis Katz School of Me.dicine at Temple University, Philadelphia, PA, 19140, USA
- Department of Medicine/Nephrology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
21
|
Pang H, Wang N, Chai J, Wang X, Zhang Y, Bi Z, Wu W, He G. Discovery of novel TNNI3K inhibitor suppresses pyroptosis and apoptosis in murine myocardial infarction injury. Eur J Med Chem 2020; 197:112314. [PMID: 32344181 DOI: 10.1016/j.ejmech.2020.112314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
Abstract
Myocardial infarction (MI) injury is a highly lethal syndrome that has, until recently, suffered from a lack of clinically efficient targeted therapeutics. The cardiac troponin I interacting kinase (TNNI3K) exacerbates ischemia-reperfusion (IR) injury via oxidative stress, thereby promoting cardiomyocyte death. In this current study, we designed and synthesized 35 novel TNNI3K inhibitors with a pyrido[4,5]thieno[2,3-d] pyrimidine scaffold. In vitro results indicated that some of the inhibitors exhibited sub-micromolar TNNI3K inhibitory capacity and good kinase selectivity, as well as cytoprotective activity, in an oxygen-glucose deprivation (OGD) injury cardiomyocyte model. Furthermore, investigation of the mechanism of the representative derivative compound 6o suggested it suppresses pyroptosis and apoptosis in cardiomyocytes by interfering with p38MAPK activation, which was further confirmed in a murine myocardial infarction injury model. In vivo results indicate that compound 6o can markedly reduce myocardial infarction size and alleviate cardiac tissue damage in rats. In brief, our results provide the basis for further development of novel TNNI3K inhibitors for targeted MI therapy.
Collapse
Affiliation(s)
- Haiying Pang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China
| | - Ning Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China
| | - Jinlong Chai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China
| | - Xiaoyun Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China
| | - Yuehua Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China
| | - Zhiang Bi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China
| | - Wenbin Wu
- Department of Neurology, Chongzhou People's Hospital, Chengdu, 611230, PR China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
22
|
New Insights into 4-Anilinoquinazolines as Inhibitors of Cardiac Troponin I-Interacting Kinase (TNNi3K). Molecules 2020; 25:molecules25071697. [PMID: 32272798 PMCID: PMC7180948 DOI: 10.3390/molecules25071697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022] Open
Abstract
We report the synthesis of several related 4-anilinoquinazolines as inhibitors of cardiac troponin I-interacting kinase (TNNi3K). These close structural analogs of 3-((6,7-dimethoxyquinazolin-4-yl)amino)-4-(dimethylamino)-N-methylbenzenesulfonamide (GSK114) provide new understanding of structure-activity relationships between the 4-anilinoquinazoline scaffold and TNNi3K inhibition. Through a small focused library of inhibitors, we observed that the N-methylbenzenesulfonamide was driving the potency in addition to the more traditional quinazoline hinge-binding motif. We also identified a compound devoid of TNNi3K kinase activity due to the addition of a methyl group in the hinge binding region. This compound could serve as a negative control in the study of TNNi3K biology. Small molecule crystal structures of several quinazolines have been solved, supporting observations made about overall conformation and TNNi3K inhibition.
Collapse
|
23
|
The Long Noncoding RNA Hotair Regulates Oxidative Stress and Cardiac Myocyte Apoptosis during Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1645249. [PMID: 32256945 PMCID: PMC7091551 DOI: 10.1155/2020/1645249] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022]
Abstract
Oxidative stress and subsequent cardiac myocyte apoptosis play central roles in the initiation and progression of myocardial ischemia-reperfusion (I/R) injury. Homeobox transcript antisense intergenic RNA (Hotair) was previously implicated in various heart diseases, yet its role in myocardial I/R injury has not been clearly demonstrated. Mice with cardiac-restricted knockdown or overexpression of Hotair were exposed to I/R surgery. H9c2 cells were cultured and subjected to hypoxia/reoxygenation (H/R) stimulation to further verify the role and underlying mechanisms of Hotair in vitro. Histological examination, molecular detection, and functional parameters were determined in vivo and in vitro. In response to I/R or H/R treatment, Hotair expression was increased in a bromodomain-containing protein 4-dependent manner. Cardiac-restricted knockdown of Hotair exacerbated, whereas Hotair overexpression prevented I/R-induced oxidative stress, cardiac myocyte apoptosis, and cardiac dysfunction. Mechanistically, we observed that Hotair exerted its beneficial effects via activating AMP-activated protein kinase alpha (AMPKα). Further detection revealed that Hotair activated AMPKα through regulating the enhancer of zeste homolog 2/microRNA-451/calcium-binding protein 39 (EZH2/miR-451/Cab39) axis. We provide the evidence that endogenous lncRNA Hotair is an essential negative regulator for oxidative stress and cardiac myocyte apoptosis in myocardial I/R injury, which is dependent on AMPKα activation via the EZH2/miR-451/Cab39 axis.
Collapse
|
24
|
Balasubramanian PK, Balupuri A, Bhujbal SP, Cho SJ. 3D-QSAR Assisted Design of Novel 7-Deazapurine Derivatives as TNNI3K Kinase Inhibitors Using Molecular Docking and Molecular Dynamics Simulation. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666190110121300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Cardiac troponin I-interacting kinase (TNNI3K) is a cardiac-specific kinase
that belongs to MAPKKK family. It is a dual-function kinase with tyrosine and serine/threonine
kinase activity. Over-expression of TNNI3K results in various cardiovascular diseases such as
cardiomyopathy, ischemia/reperfusion injury, heart failure, etc. Since, it is a cardiac-specific kinase
and expressed only in heart tissue, it is an ideal molecular target to treat cardiac diseases. The main
objective of the work is to study and understand the structure-activity relationship of the reported
deazapurine derivatives and to use the 3D-QSAR and docking results to design potent and novel
TNNI3K inhibitors of this series.
Methods:
In the present study, we have used molecular docking 3D QSAR, and molecular dynamics
simulation to understand the structure-activity correlation of reported TNNI3K inhibitors and to
design novel compounds of deazapurine derivatives with increased activity.
Results:
Both CoMFA (q2=0.669, NOC=5, r2=0.944) and CoMSIA (q2=0.783, NOC=5, r2=0.965)
have resulted in satisfactory models. The models were validated using external test set, Leave-out-
Five, bootstrapping, progressive scrambling, and rm2 metrics calculations. The validation procedures
showed the developed models were robust and reliable. The docking results and the contour maps
analysis helped in the better understanding of the structure-activity relationship.
Conclusion:
This is the first report on 3D-QSAR modeling studies of TNNI3K inhibitors. Both
docking and MD results were consistent and showed good correlation with the previous experimental
data. Based on the information obtained from contour maps, 31 novel TNNI3K inhibitors were
designed. These designed compounds showed higher activity than the existing dataset compounds.
Collapse
Affiliation(s)
| | - Anand Balupuri
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju 501-759, Korea
| | - Swapnil P. Bhujbal
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju 501-759, Korea
| | - Seung Joo Cho
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju 501-759, Korea
| |
Collapse
|
25
|
Patterson M, Swift SK. Residual Diploidy in Polyploid Tissues: A Cellular State with Enhanced Proliferative Capacity for Tissue Regeneration? Stem Cells Dev 2019; 28:1527-1539. [PMID: 31608782 PMCID: PMC11001963 DOI: 10.1089/scd.2019.0193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/09/2019] [Indexed: 01/07/2023] Open
Abstract
A major objective of modern biomedical research aims to promote tissue self-regeneration after injury, obviating the need for whole organ transplantation and avoiding mortality due to organ failure. Identifying the population of cells capable of regeneration, alongside understanding the molecular mechanisms that activate that population to re-enter the cell cycle, are two important steps to advancing the field of endogenous tissue regeneration toward the clinic. In recent years, an emerging trend has been observed, whereby polyploidy of relevant parenchymal cells, arising from alternative cell cycles as part of a normal developmental process, is linked to restricted proliferative capacity of those cells. An accompanying hypothesis, therefore, is that a residual subpopulation of diploid parenchymal cells retains proliferative competence and is the major driver for any detected postnatal cell turnover. In this perspective review, we examine the emerging literature on residual diploid parenchymal cells and the possible link of this population to endogenous tissue regeneration, in the context of both heart and liver. We speculate on additional cell types that may play a similar role in their respective tissues and discuss outstanding questions for the field.
Collapse
Affiliation(s)
- Michaela Patterson
- Department of Cell Biology Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Samantha K. Swift
- Department of Cell Biology Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
26
|
Tnni3k alleles influence ventricular mononuclear diploid cardiomyocyte frequency. PLoS Genet 2019; 15:e1008354. [PMID: 31589606 PMCID: PMC6797218 DOI: 10.1371/journal.pgen.1008354] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/17/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022] Open
Abstract
Recent evidence implicates mononuclear diploid cardiomyocytes as a proliferative and regenerative subpopulation of the postnatal heart. The number of these cardiomyocytes is a complex trait showing substantial natural variation among inbred mouse strains based on the combined influences of multiple polymorphic genes. One gene confirmed to influence this parameter is the cardiomyocyte-specific kinase Tnni3k. Here, we have studied Tnni3k alleles across a number of species. Using a newly-generated kinase-dead allele in mice, we show that Tnni3k function is dependent on its kinase activity. In an in vitro kinase assay, we show that several common human TNNI3K kinase domain variants substantially compromise kinase activity, suggesting that TNNI3K may influence human heart regenerative capacity and potentially also other aspects of human heart disease. We show that two kinase domain frameshift mutations in mice cause loss-of-function consequences by nonsense-mediated decay. We further show that the Tnni3k gene in two species of mole-rat has independently devolved into a pseudogene, presumably associated with the transition of these species to a low metabolism and hypoxic subterranean life. This may be explained by the observation that Tnni3k function in mice converges with oxidative stress to regulate mononuclear diploid cardiomyocyte frequency. Unlike other studied rodents, naked mole-rats have a surprisingly high (30%) mononuclear cardiomyocyte level but most of their mononuclear cardiomyocytes are polyploid; their mononuclear diploid cardiomyocyte level (7%) is within the known range (2–10%) of inbred mouse strains. Naked mole-rats provide further insight on a recent proposal that cardiomyocyte polyploidy is associated with evolutionary acquisition of endothermy. Embryonic cardiomyocytes have one diploid nucleus (like most cells of the body), but most adult cardiomyocytes are polyploid. Most adult cardiomyocytes are also post-mitotic and nonregenerative, and as a result, heart injury (such as from a heart attack) is followed by scarring and impaired function rather than by regeneration. A subset of cardiomyocytes in the adult heart remains mononuclear diploid, and recent evidence indicates that this subpopulation has proliferative and regenerative capacity. Our previous work in mice showed that the percentage of this cell population in the adult heart is a complex trait subject to the combined influence of a number of polymorphic genes. One gene that influences variation in this trait is a kinase gene known as Tnni3k. This study addresses the consequences of a number of Tnni3k alleles, both newly engineered in mice and naturally occurring in a number of species, including human and mole-rat, and studied at the phenotypic and biochemical level. These results provide insight into inter- and intra-species variation in the cardiomyocyte composition of the adult heart, and may be relevant to understanding heart regenerative ability in humans and across other species.
Collapse
|
27
|
Abstract
In mammals, most cardiomyocytes (CMs) become polyploid (they have more than two complete sets of chromosomes). The purpose of this review is to evaluate assumptions about CM ploidy that are commonly discussed, even if not experimentally demonstrated, and to highlight key issues that are still to be resolved. Topics discussed here include (a) technical and conceptual difficulties in defining a polyploid CM, (b) the candidate role of reactive oxygen as a proximal trigger for the onset of polyploidy, (c) the relationship between polyploidization and other aspects of CM maturation, (d) recent insights related to the regenerative role of the subpopulation of CMs that are not polyploid, and (e) speculations as to why CMs become polyploid at all. New approaches to experimentally manipulate CM ploidy may resolve some of these long-standing and fundamental questions.
Collapse
Affiliation(s)
- Peiheng Gan
- Department of Regenerative Medicine and Cell Biology and Department of Medicine Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina 29425, USA; .,Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, California 90033, USA
| | - Michaela Patterson
- Department of Cell Biology, Neurobiology and Anatomy, and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Henry M Sucov
- Department of Regenerative Medicine and Cell Biology and Department of Medicine Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina 29425, USA;
| |
Collapse
|
28
|
Nishi M, Ogata T, Cannistraci CV, Ciucci S, Nakanishi N, Higuchi Y, Sakamoto A, Tsuji Y, Mizushima K, Matoba S. Systems Network Genomic Analysis Reveals Cardioprotective Effect of MURC/Cavin-4 Deletion Against Ischemia/Reperfusion Injury. J Am Heart Assoc 2019; 8:e012047. [PMID: 31364493 PMCID: PMC6761664 DOI: 10.1161/jaha.119.012047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Ischemia/reperfusion (I/R) injury is a critical issue in the development of treatment strategies for ischemic heart disease. MURC (muscle‐restricted coiled‐coil protein)/Cavin‐4 (caveolae‐associated protein 4), which is a component of caveolae, is involved in the pathophysiology of dilated cardiomyopathy and cardiac hypertrophy. However, the role of MURC in cardiac I/R injury remains unknown. Methods and Results The systems network genomic analysis based on PC‐corr network inference on microarray data between wild‐type and MURC knockout mouse hearts predicted a network of discriminating genes associated with reactive oxygen species. To demonstrate the prediction, we analyzed I/R‐injured mouse hearts. MURC deletion decreased infarct size and preserved heart contraction with reactive oxygen species–related molecule EGR1 (early growth response protein 1) and DDIT4 (DNA‐damage‐inducible transcript 4) suppression in I/R‐injured hearts. Because PC‐corr network inference integrated with a protein–protein interaction network prediction also showed that MURC is involved in the apoptotic pathway, we confirmed the upregulation of STAT3 (signal transducer and activator of transcription 3) and BCL2 (B‐cell lymphoma 2) and the inactivation of caspase 3 in I/R‐injured hearts of MURC knockout mice compared with those of wild‐type mice. STAT3 inhibitor canceled the cardioprotective effect of MURC deletion in I/R‐injured hearts. In cardiomyocytes exposed to hydrogen peroxide, MURC overexpression promoted apoptosis and MURC knockdown inhibited apoptosis. STAT3 inhibitor canceled the antiapoptotic effect of MURC knockdown in cardiomyocytes. Conclusions Our findings, obtained by prediction from systems network genomic analysis followed by experimental validation, suggested that MURC modulates cardiac I/R injury through the regulation of reactive oxygen species–induced cell death and STAT3‐meditated antiapoptosis. Functional inhibition of MURC may be effective in reducing cardiac I/R injury.
Collapse
Affiliation(s)
- Masahiro Nishi
- Department of Cardiovascular Medicine Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
| | - Takehiro Ogata
- Department of Cardiovascular Medicine Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan.,Department of Pathology and Cell Regulation Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
| | - Carlo Vittorio Cannistraci
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC) Center for Molecular and Cellular Bioengineering (CMCB) Center for Systems Biology Dresden Department of Physics Technische Universität Dresden Dresden Germany.,Tsinghua Laboratory of Brain and Intelligence Tsinghua University Beijing China
| | - Sara Ciucci
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC) Center for Molecular and Cellular Bioengineering (CMCB) Center for Systems Biology Dresden Department of Physics Technische Universität Dresden Dresden Germany
| | - Naohiko Nakanishi
- Department of Cardiovascular Medicine Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
| | - Akira Sakamoto
- Department of Cardiovascular Medicine Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
| | - Yumika Tsuji
- Department of Cardiovascular Medicine Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
| | - Katsura Mizushima
- Department of Molecular Gastroenterology and Hepatology Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
| |
Collapse
|
29
|
Olivaes J, Bonamino MH, Markoski MM. CRISPR/Cas 9 system for the treatment of dilated cardiomyopathy: A hypothesis related to function of a MAP kinase. Med Hypotheses 2019; 128:91-93. [DOI: 10.1016/j.mehy.2019.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/23/2019] [Accepted: 05/12/2019] [Indexed: 10/26/2022]
|
30
|
Li T, Tian H, Li J, Zuo A, Chen J, Xu D, Guo Y, Gao H. Overexpression of lncRNA Gm2691 attenuates apoptosis and inflammatory response after myocardial infarction through PI3K/Akt signaling pathway. IUBMB Life 2019; 71:1561-1570. [PMID: 31169981 DOI: 10.1002/iub.2081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/19/2019] [Indexed: 01/11/2023]
Abstract
Acute myocardial infarction is one of the most threatening disease in the world. In previous studies, numerous dysregulated lncRNAs exposed to ischemic reperfusion injury have been identified. In this differential lncRNAs, Gm2691 attracted our attention due to its high fold change. The aim of the study was to investigate the function and mechanism of lncRNA Gm2691 in ischemic reperfusion injury. AnaeroPack anaerobic system treated neonatal rat ventricular cardiomyocytes were used to analyze the function of lncRNA Gm2691 in vitro. Tunel, Caspase3, and inflammation markers were detected to evaluate apoptosis and inflammatory response. Rat acute myocardial infarction was performed to elucidate the function of lncRNA Gm2691 in vivo. The results showed that LncRNA Gm2691 improved the cardiac function and attenuated the inflammatory response in vivo. We also found that lncRNA Gm2691 reduced the apoptosis and improved cell survival rates in anaeroPack anaerobic system treated neonatal rat ventricular cardiomyocytes. Western blot analysis revealed that lncRNA Gm2691 decreased Akt and ERK1/2 activities, suggesting that lncRNA Gm2691 may functioned through Akt signaling pathway. We verified the function and mechanism of lncRNA Gm2691 and provide evidence that lncRNA Gm2691 may play important role in ischemic reperfusion injury, and understanding the precise role of Gm2691 will undoubtedly shed new light on the clinical treatment.
Collapse
Affiliation(s)
- Tingting Li
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatric, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hongbo Tian
- Department of Cardiology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Jun Li
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Anju Zuo
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiying Chen
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dan Xu
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuan Guo
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Haiqing Gao
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatric, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
31
|
Hertig V, Brezai A, Bergeron A, Villeneuve L, Gillis MA, Calderone A. p38α MAPK inhibition translates to cell cycle re-entry of neonatal rat ventricular cardiomyocytes and de novo nestin expression in response to thrombin and after apex resection. Sci Rep 2019; 9:8203. [PMID: 31160695 PMCID: PMC6547723 DOI: 10.1038/s41598-019-44712-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
The present study tested the hypothesis that p38α MAPK inhibition leads to cell cycle re-entry of neonatal ventricular cardiomyocytes (NNVMs) and de novo nestin expression in response to thrombin and after apex resection of the neonatal rat heart. Thrombin (1 U/ml) treatment of 1-day old NNVMs did not induce cell cycle re-entry or nestin expression. Acute exposure of NNVMs to thrombin increased p38α MAPK and HSP27 phosphorylation and p38α/β MAPK inhibitor SB203580 abrogated HSP27 phosphorylation. Thrombin and SB203580 co-treatment of NNVMs led to bromodeoxyuridine incorporation and nestin expression. SB203580 (5 mg/kg) administration immediately after apex resection of 1-day old neonatal rat hearts and continued for two additional days shortened the fibrin clot length sealing the exposed left ventricular chamber. SB203580-treatment increased the density of troponin-T(+)-NNVMs that incorporated bromodeoxyuridine and expressed nuclear phosphohistone-3. Nestin(+)-NNVMs were selectively detected at the border of the fibrin clot and SB203580 potentiated the density that re-entered the cell cycle. These data suggest that the greater density of ventricular cardiomyocytes and nestin(+)-ventricular cardiomyocytes that re-entered the cell cycle after SB203580 treatment of the apex-resected neonatal rat heart during the acute phase of fibrin clot formation may be attributed in part to inhibition of thrombin-mediated p38α MAPK signalling.
Collapse
Affiliation(s)
- Vanessa Hertig
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Andra Brezai
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Alexandre Bergeron
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Louis Villeneuve
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | | | - Angelino Calderone
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada.
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
32
|
Podliesna S, Delanne J, Miller L, Tester DJ, Uzunyan M, Yano S, Klerk M, Cannon BC, Khongphatthanayothin A, Laurent G, Bertaux G, Falcon-Eicher S, Wu S, Yen HY, Gao H, Wilde AAM, Faivre L, Ackerman MJ, Lodder EM, Bezzina CR. Supraventricular tachycardias, conduction disease, and cardiomyopathy in 3 families with the same rare variant in TNNI3K (p.Glu768Lys). Heart Rhythm 2018; 16:98-105. [PMID: 30010057 DOI: 10.1016/j.hrthm.2018.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Rare genetic variants in TNNI3K encoding troponin-I interacting kinase have been linked to a distinct syndrome consisting primarily of supraventricular tachycardias and variably expressed conduction disturbance and dilated cardiomyopathy in 2 families. OBJECTIVE The purpose of this study was to identify new genetic variants associated with inherited supraventricular tachycardias, cardiac conduction disease, and cardiomyopathy. METHODS We conducted next generation sequencing in 3 independent multigenerational families with atrial/junctional tachycardia with or without conduction disturbance, dilated cardiomyopathy, and sudden death. We also assessed the effect of identified variant on protein autophosphorylation. RESULTS In this study, we uncovered the same ultra-rare genetic variant in TNNI3K (c.2302G>A, p.Glu768Lys), which co-segregated with disease features in all affected individuals (n = 23) from all 3 families. TNNI3K harboring the TNNI3K-p.Glu768Lys variant displayed enhanced kinase activity, in line with expectations from previous mouse studies that demonstrated increased conduction indices and procardiomyopathic effects with increased levels of Tnni3k. CONCLUSION This study corroborates further the causal link between rare genetic variation in TNNI3K and this distinct complex phenotype, and points to enhanced kinase activity of TNNI3K as the underlying pathobiological mechanism.
Collapse
Affiliation(s)
- Svitlana Podliesna
- Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Lindsey Miller
- USC Keck School of Medicine, LAC+USC Medical Center, Los Angeles, California
| | - David J Tester
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, Minnesota
| | - Merujan Uzunyan
- USC Keck School of Medicine, LAC+USC Medical Center, Los Angeles, California
| | - Shoji Yano
- USC Keck School of Medicine, LAC+USC Medical Center, Los Angeles, California
| | - Mischa Klerk
- Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Bryan C Cannon
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, Minnesota
| | - Apichai Khongphatthanayothin
- USC Keck School of Medicine, LAC+USC Medical Center, Los Angeles, California; Bangkok General Hospital and Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Gabriel Laurent
- Centre de compétence pour les troubles du rythme cardiaque d'origine génétique, CHU Dijon-Bourgogne, Dijon, France; Service de rythmologie Centre Hospitalier Universitaire Le Bocage 2, Dijon, France
| | - Geraldine Bertaux
- Centre de compétence pour les troubles du rythme cardiaque d'origine génétique, CHU Dijon-Bourgogne, Dijon, France
| | - Sylvie Falcon-Eicher
- Centre de compétence pour les troubles du rythme cardiaque d'origine génétique, CHU Dijon-Bourgogne, Dijon, France
| | | | | | - Hanlin Gao
- Fulgent Genetics, Temple City, California
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands; Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Kingdom of Saudi Arabia
| | - Laurence Faivre
- Centre de Génétique, Hôpital d'Enfants, Dijon, France; Equipe GAD, UMR1231, FHU TRANSLAD et Institut GIMI, CHU Dijon-Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | - Michael J Ackerman
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, Minnesota
| | - Elisabeth M Lodder
- Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Abstract
Death of adult cardiac myocytes and supportive tissues resulting from cardiovascular diseases such as myocardial infarction is the proximal driver of pathological ventricular remodeling that often culminates in heart failure. Unfortunately, no currently available therapeutic barring heart transplantation can directly replenish myocytes lost from the injured heart. For decades, the field has struggled to define the intrinsic capacity and cellular sources for endogenous myocyte turnover in pursuing more innovative therapeutic strategies aimed at regenerating the injured heart. Although controversy persists to this day as to the best therapeutic regenerative strategy to use, a growing consensus has been reached that the very limited capacity for new myocyte formation in the adult mammalian heart is because of proliferation of existing cardiac myocytes but not because of the activity of an endogenous progenitor cell source of some sort. Hence, future therapeutic approaches should take into consideration the fundamental biology of myocyte renewal in designing strategies to potentially replenish these cells in the injured heart.
Collapse
Affiliation(s)
| | - Jeffery D Molkentin
- From the Department of Pediatrics (R.J.V., J.D.M.)
- Howard Hughes Medical Institute (J.D.M.)
| | - Steven R Houser
- Cincinnati Children's Hospital Medical Center, OH; and the Lewis Katz School of Medicine, Cardiovascular Research Center, Temple University, Philadelphia, PA (S.R.H.)
| |
Collapse
|
34
|
Philp J, Lawhorn BG, Graves AP, Shewchuk L, Rivera KL, Jolivette LJ, Holt DA, Gatto GJ, Kallander LS. 4,6-Diaminopyrimidines as Highly Preferred Troponin I-Interacting Kinase (TNNI3K) Inhibitors. J Med Chem 2018; 61:3076-3088. [PMID: 29561151 DOI: 10.1021/acs.jmedchem.8b00125] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Structure-guided progression of a purine-derived series of TNNI3K inhibitors directed design efforts that produced a novel series of 4,6-diaminopyrimidine inhibitors, an emerging kinase binding motif. Herein, we report a detailed understanding of the intrinsic conformational preferences of the scaffold, which impart high specificity for TNNI3K. Further manipulation of the template based on the conformational analysis and additional structure-activity relationship studies provided enhancements in kinase selectivity and pharmacokinetics that furnished an advanced series of potent inhibitors. The optimized compounds (e.g., GSK854) are suitable leads for identifying new cardiac medicines and have been employed as in vivo tools in investigational studies aimed at defining the role of TNNI3K within heart failure.
Collapse
|
35
|
van der Kemp J, van der Schouw YT, Asselbergs FW, Onland-Moret NC. Women-specific risk factors for heart failure: A genetic approach. Maturitas 2018; 109:104-111. [DOI: 10.1016/j.maturitas.2017.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023]
|
36
|
González-Rosa JM, Sharpe M, Field D, Soonpaa MH, Field LJ, Burns CE, Burns CG. Myocardial Polyploidization Creates a Barrier to Heart Regeneration in Zebrafish. Dev Cell 2018; 44:433-446.e7. [PMID: 29486195 PMCID: PMC5830170 DOI: 10.1016/j.devcel.2018.01.021] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/11/2017] [Accepted: 01/26/2018] [Indexed: 01/07/2023]
Abstract
Correlative evidence suggests that polyploidization of heart muscle, which occurs naturally in post-natal mammals, creates a barrier to heart regeneration. Here, we move beyond a correlation by demonstrating that experimental polyploidization of zebrafish cardiomyocytes is sufficient to suppress their proliferative potential during regeneration. Initially, we determined that zebrafish myocardium becomes susceptible to polyploidization upon transient cytokinesis inhibition mediated by dominant-negative Ect2. Using a transgenic strategy, we generated adult animals containing mosaic hearts composed of differentially labeled diploid and polyploid-enriched cardiomyocyte populations. Diploid cardiomyocytes outcompeted their polyploid neighbors in producing regenerated heart muscle. Moreover, hearts composed of equivalent proportions of diploid and polyploid cardiomyocytes failed to regenerate altogether, demonstrating that a critical percentage of diploid cardiomyocytes is required to achieve heart regeneration. Our data identify cardiomyocyte polyploidization as a barrier to heart regeneration and suggest that mobilizing rare diploid cardiomyocytes in the human heart will improve its regenerative capacity.
Collapse
Affiliation(s)
- Juan Manuel González-Rosa
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Michka Sharpe
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Dorothy Field
- The Krannert Institute of Cardiology, the Wells Center for Pediatric Research, and Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark H Soonpaa
- The Krannert Institute of Cardiology, the Wells Center for Pediatric Research, and Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Loren J Field
- The Krannert Institute of Cardiology, the Wells Center for Pediatric Research, and Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Caroline E Burns
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - C Geoffrey Burns
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Fan LL, Huang H, Jin JY, Li JJ, Chen YQ, Zhao SP, Xiang R. Whole exome sequencing identifies a novel mutation (c.333 + 2T > C) of TNNI3K in a Chinese family with dilated cardiomyopathy and cardiac conduction disease. Gene 2018; 648:63-67. [PMID: 29355681 DOI: 10.1016/j.gene.2018.01.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 12/27/2022]
Abstract
Dilated Cardiomyopathy (DCM) and cardiac conduction disease (CCD) are two kinds if diseases that can induce heart failure, syncope and even sudden cardiac death (SCD). DCM patients can experience CCD at the same time. In recent research, some disease-causing genes and variants have been identified in patients with DCM and CCD, such as Alpha-Actinin-2 and TNNI3 Interacting Kinase (TNNI3K). In this study, we employed whole-exome sequencing (WES) to explore the potential causative genes in a Chinese family with DCM and CCD. A novel splice site mutation (c.333 + 2 T > C) of TNNI3K was identified and co-segregated with the affected family members. This novel mutation was also absent in 200 healthy local controls and predicted to be disease-causing by Mutationtaster. The splice site mutation (c.333 + 2 T > C) may result in a premature stop codon in exon 4 of the TNNI3K gene and can induce nonsense-mediated mRNA decay. Real-time qPCR also confirmed that the level of TNNI3K mRNA expression was decreased significantly compared with the controls, which may lead to myocardial structural disorder and arrhythmia. In this study we reported the third novel mutation of TNNI3K in DCM and CCD patients which further supported the important role of TNNI3K in heart development and expanded the spectrum of TNNI3K mutations. The results may contribute to the genetic diagnosis and counseling of families with DCM and CCD.
Collapse
Affiliation(s)
- Liang-Liang Fan
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha 410013, China
| | - Hao Huang
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha 410013, China
| | - Jie-Yuan Jin
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha 410013, China
| | - Jing-Jing Li
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha 410013, China
| | - Ya-Qin Chen
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Shui-Ping Zhao
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Rong Xiang
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha 410013, China; Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| |
Collapse
|
38
|
Vujic A, Bassaneze V, Lee RT. Genetic insights into mammalian heart regeneration. Nat Genet 2017; 49:1292-1293. [PMID: 28854178 DOI: 10.1038/ng.3942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic and functional analyses of 120 mouse strains have identified a heart regeneration candidate gene that modulates the contractile sarcomeric apparatus. This gene, Tnni3k, controls the frequency of the mononuclear, diploid cardiomyocyte population, which affects cardiomyocyte proliferative potential after injury.
Collapse
Affiliation(s)
- Ana Vujic
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Vinícius Bassaneze
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
39
|
Joseph LC, Kokkinaki D, Valenti MC, Kim GJ, Barca E, Tomar D, Hoffman NE, Subramanyam P, Colecraft HM, Hirano M, Ratner AJ, Madesh M, Drosatos K, Morrow JP. Inhibition of NADPH oxidase 2 (NOX2) prevents sepsis-induced cardiomyopathy by improving calcium handling and mitochondrial function. JCI Insight 2017; 2:94248. [PMID: 28878116 PMCID: PMC5621873 DOI: 10.1172/jci.insight.94248] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/25/2017] [Indexed: 01/12/2023] Open
Abstract
Cardiomyopathy frequently complicates sepsis and is associated with increased mortality. Increased cardiac oxidative stress and mitochondrial dysfunction have been observed during sepsis, but the mechanisms responsible for these abnormalities have not been determined. We hypothesized that NADPH oxidase 2 (NOX2) activation could be responsible for sepsis-induced oxidative stress and cardiomyopathy. Treatment of isolated adult mouse cardiomyocytes with low concentrations of the endotoxin lipopolysaccharide (LPS) increased total cellular reactive oxygen species (ROS) and mitochondrial superoxide. Elevated mitochondrial superoxide was accompanied by depolarization of the mitochondrial inner membrane potential, an indication of mitochondrial dysfunction, and mitochondrial calcium overload. NOX2 inhibition decreased LPS-induced superoxide and prevented mitochondrial dysfunction. Further, cardiomyocytes from mice with genetic ablation of NOX2 did not have LPS-induced superoxide or mitochondrial dysfunction. LPS decreased contractility and calcium transient amplitude in isolated cardiomyocytes, and these abnormalities were prevented by inhibition of NOX2. LPS decreased systolic function in mice, measured by echocardiography. NOX2 inhibition was cardioprotective in 2 mouse models of sepsis, preserving systolic function after LPS injection or cecal ligation and puncture (CLP). These data show that inhibition of NOX2 decreases oxidative stress, preserves intracellular calcium handling and mitochondrial function, and alleviates sepsis-induced systolic dysfunction in vivo. Thus, NOX2 is a potential target for pharmacotherapy of sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Leroy C. Joseph
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Dimitra Kokkinaki
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- The Molecular Basis of Human Diseases Graduate Program, Faculty of Medicine, University of Crete, Voutes, 71003 Heraklion-Crete, Greece
| | - Mesele-Christina Valenti
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Grace J. Kim
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Emanuele Barca
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Dhanendra Tomar
- Department of Medical Genetics and Molecular Biochemistry, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Nicholas E. Hoffman
- Department of Medical Genetics and Molecular Biochemistry, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Prakash Subramanyam
- Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Henry M. Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Michio Hirano
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Adam J. Ratner
- Departments of Pediatrics and Microbiology, New York University School of Medicine, New York, New York, USA
| | - Muniswamy Madesh
- Department of Medical Genetics and Molecular Biochemistry, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - John P. Morrow
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
40
|
Patterson M, Barske L, Van Handel B, Rau CD, Gan P, Sharma A, Parikh S, Denholtz M, Huang Y, Yamaguchi Y, Shen H, Allayee H, Crump JG, Force TI, Lien CL, Makita T, Lusis AJ, Kumar SR, Sucov HM. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat Genet 2017; 49:1346-1353. [PMID: 28783163 DOI: 10.1038/ng.3929] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/11/2017] [Indexed: 12/16/2022]
Abstract
Adult mammalian cardiomyocyte regeneration after injury is thought to be minimal. Mononuclear diploid cardiomyocytes (MNDCMs), a relatively small subpopulation in the adult heart, may account for the observed degree of regeneration, but this has not been tested. We surveyed 120 inbred mouse strains and found that the frequency of adult mononuclear cardiomyocytes was surprisingly variable (>7-fold). Cardiomyocyte proliferation and heart functional recovery after coronary artery ligation both correlated with pre-injury MNDCM content. Using genome-wide association, we identified Tnni3k as one gene that influences variation in this composition and demonstrated that Tnni3k knockout resulted in elevated MNDCM content and increased cardiomyocyte proliferation after injury. Reciprocally, overexpression of Tnni3k in zebrafish promoted cardiomyocyte polyploidization and compromised heart regeneration. Our results corroborate the relevance of MNDCMs in heart regeneration. Moreover, they imply that intrinsic heart regeneration is not limited nor uniform in all individuals, but rather is a variable trait influenced by multiple genes.
Collapse
Affiliation(s)
- Michaela Patterson
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Lindsey Barske
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ben Van Handel
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Christoph D Rau
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Peiheng Gan
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Avneesh Sharma
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Shan Parikh
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matt Denholtz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Ying Huang
- Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Yukiko Yamaguchi
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hua Shen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hooman Allayee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Thomas I Force
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ching-Ling Lien
- Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA.,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Takako Makita
- Developmental Neuroscience Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Aldons J Lusis
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - S Ram Kumar
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Henry M Sucov
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
41
|
Dong Z, Shanmughapriya S, Tomar D, Siddiqui N, Lynch S, Nemani N, Breves SL, Zhang X, Tripathi A, Palaniappan P, Riitano MF, Worth AM, Seelam A, Carvalho E, Subbiah R, Jaña F, Soboloff J, Peng Y, Cheung JY, Joseph SK, Caplan J, Rajan S, Stathopulos PB, Madesh M. Mitochondrial Ca 2+ Uniporter Is a Mitochondrial Luminal Redox Sensor that Augments MCU Channel Activity. Mol Cell 2017; 65:1014-1028.e7. [PMID: 28262504 DOI: 10.1016/j.molcel.2017.01.032] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/02/2016] [Accepted: 01/26/2017] [Indexed: 12/13/2022]
Abstract
Ca2+ dynamics and oxidative signaling are fundamental mechanisms for mitochondrial bioenergetics and cell function. The MCU complex is the major pathway by which these signals are integrated in mitochondria. Whether and how these coactive elements interact with MCU have not been established. As an approach toward understanding the regulation of MCU channel by oxidative milieu, we adapted inflammatory and hypoxia models. We identified the conserved cysteine 97 (Cys-97) to be the only reactive thiol in human MCU that undergoes S-glutathionylation. Furthermore, biochemical, structural, and superresolution imaging analysis revealed that MCU oxidation promotes MCU higher order oligomer formation. Both oxidation and mutation of MCU Cys-97 exhibited persistent MCU channel activity with higher [Ca2+]m uptake rate, elevated mROS, and enhanced [Ca2+]m overload-induced cell death. In contrast, these effects were largely independent of MCU interaction with its regulators. These findings reveal a distinct functional role for Cys-97 in ROS sensing and regulation of MCU activity.
Collapse
Affiliation(s)
- Zhiwei Dong
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing 400038, PRC
| | - Santhanam Shanmughapriya
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Dhanendra Tomar
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Naveed Siddiqui
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - Solomon Lynch
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Neeharika Nemani
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sarah L Breves
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xueqian Zhang
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Aparna Tripathi
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Palaniappan Palaniappan
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Massimo F Riitano
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Alison M Worth
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ajay Seelam
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Edmund Carvalho
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ramasamy Subbiah
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Fabián Jaña
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jonathan Soboloff
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yizhi Peng
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing 400038, PRC
| | - Joseph Y Cheung
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Suresh K Joseph
- MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jeffrey Caplan
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Sudarsan Rajan
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - Muniswamy Madesh
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
42
|
Lawhorn BG, Philp J, Graves AP, Holt DA, Gatto GJ, Kallander LS. Substituent Effects on Drug–Receptor H-bond Interactions: Correlations Useful for the Design of Kinase Inhibitors. J Med Chem 2016; 59:10629-10641. [DOI: 10.1021/acs.jmedchem.6b01342] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Brian G. Lawhorn
- Heart Failure Discovery Performance Unit and ‡Platform Technology
and Sciences, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Joanne Philp
- Heart Failure Discovery Performance Unit and ‡Platform Technology
and Sciences, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Alan P. Graves
- Heart Failure Discovery Performance Unit and ‡Platform Technology
and Sciences, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Dennis A. Holt
- Heart Failure Discovery Performance Unit and ‡Platform Technology
and Sciences, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Gregory J. Gatto
- Heart Failure Discovery Performance Unit and ‡Platform Technology
and Sciences, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Lara S. Kallander
- Heart Failure Discovery Performance Unit and ‡Platform Technology
and Sciences, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| |
Collapse
|
43
|
Haller M, Khalid S, Kremser L, Fresser F, Furlan T, Hermann M, Guenther J, Drasche A, Leitges M, Giorgio M, Baier G, Lindner H, Troppmair J. Novel Insights into the PKCβ-dependent Regulation of the Oxidoreductase p66Shc. J Biol Chem 2016; 291:23557-23568. [PMID: 27624939 PMCID: PMC5095410 DOI: 10.1074/jbc.m116.752766] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Indexed: 12/12/2022] Open
Abstract
Dysfunctional mitochondria contribute to the development of many diseases and pathological conditions through the excessive production of reactive oxygen species (ROS), and, where studied, ablation of p66Shc (p66) was beneficial. p66 translocates to the mitochondria and oxidizes cytochrome c to yield H2O2, which in turn initiates cell death. PKCβ-mediated phosphorylation of serine 36 in p66 has been implicated as a key regulatory step preceding mitochondrial translocation, ROS production, and cell death, and PKCβ thus may provide a target for therapeutic intervention. We performed a reassessment of PKCβ regulation of the oxidoreductase activity of p66. Although our experiments did not substantiate Ser36 phosphorylation by PKCβ, they instead provided evidence for Ser139 and Ser213 as PKCβ phosphorylation sites regulating the pro-oxidant and pro-apoptotic function of p66. Mutation of another predicted PKCβ phosphorylation site also located in the phosphotyrosine binding domain, threonine 206, had no phenotype. Intriguingly, p66 with Thr206 and Ser213 mutated to glutamic acid showed a gain-of-function phenotype with significantly increased ROS production and cell death induction. Taken together, these data argue for a complex mechanism of PKCβ-dependent regulation of p66 activation involving Ser139 and a motif surrounding Ser213.
Collapse
Affiliation(s)
- Martina Haller
- From the Daniel Swarovski Research Laboratory, Department of Visceral, Transplant, and Thoracic Surgery
| | - Sana Khalid
- From the Daniel Swarovski Research Laboratory, Department of Visceral, Transplant, and Thoracic Surgery
| | - Leopold Kremser
- Division of Clinical Biochemistry, Protein Micro-Analysis Facility
| | - Friedrich Fresser
- Department for Pharmacology and Genetics, Division of Translational Cell Genetics, and
| | - Tobias Furlan
- From the Daniel Swarovski Research Laboratory, Department of Visceral, Transplant, and Thoracic Surgery
| | - Martin Hermann
- Department for Anesthesiology and Intensive Care, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Julia Guenther
- From the Daniel Swarovski Research Laboratory, Department of Visceral, Transplant, and Thoracic Surgery
| | - Astrid Drasche
- From the Daniel Swarovski Research Laboratory, Department of Visceral, Transplant, and Thoracic Surgery
| | | | - Marco Giorgio
- the European Institute of Oncology, 20139 Milano, Italy
| | - Gottfried Baier
- Department for Pharmacology and Genetics, Division of Translational Cell Genetics, and
| | - Herbert Lindner
- Division of Clinical Biochemistry, Protein Micro-Analysis Facility
| | - Jakob Troppmair
- From the Daniel Swarovski Research Laboratory, Department of Visceral, Transplant, and Thoracic Surgery,
| |
Collapse
|
44
|
Lawhorn BG, Philp J, Graves AP, Shewchuk L, Holt DA, Gatto GJ, Kallander LS. GSK114: A selective inhibitor for elucidating the biological role of TNNI3K. Bioorg Med Chem Lett 2016; 26:3355-3358. [PMID: 27246618 DOI: 10.1016/j.bmcl.2016.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 12/31/2022]
Abstract
A series of selective TNNI3K inhibitors were developed by modifying the hinge-binding heterocycle of a previously reported dual TNNI3K/B-Raf inhibitor. The resulting quinazoline-containing compounds exhibit a large preference (up to 250-fold) for binding to TNNI3K versus B-Raf, are useful probes for elucidating the biological pathways associated with TNNI3K, and are leads for discovering novel cardiac medicines. GSK114 emerged as a leading inhibitor, displaying significant bias (40-fold) for TNNI3K over B-Raf, exceptional broad spectrum kinase selectivity, and adequate oral exposure to enable its use in cellular and in vivo studies.
Collapse
Affiliation(s)
- Brian G Lawhorn
- Heart Failure DPU, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, USA.
| | - Joanne Philp
- Heart Failure DPU, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, USA
| | - Alan P Graves
- Platform Sciences and Technology, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, USA
| | - Lisa Shewchuk
- Platform Sciences and Technology, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, USA
| | - Dennis A Holt
- Heart Failure DPU, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, USA
| | - Gregory J Gatto
- Heart Failure DPU, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, USA
| | - Lara S Kallander
- Heart Failure DPU, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, USA
| |
Collapse
|
45
|
Young KL, Graff M, North KE, Richardson AS, Mohlke KL, Lange LA, Lange EM, Harris KM, Gordon-Larsen P. Interaction of smoking and obesity susceptibility loci on adolescent BMI: The National Longitudinal Study of Adolescent to Adult Health. BMC Genet 2015; 16:131. [PMID: 26537541 PMCID: PMC4634717 DOI: 10.1186/s12863-015-0289-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/29/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Adolescence is a sensitive period for weight gain and risky health behaviors, such as smoking. Genome-wide association studies (GWAS) have identified loci contributing to adult body mass index (BMI). Evidence suggests that many of these loci have a larger influence on adolescent BMI. However, few studies have examined interactions between smoking and obesity susceptibility loci on BMI. This study investigates the interaction of current smoking and established BMI SNPs on adolescent BMI. Using data from the National Longitudinal Study of Adolescent to Adult Health, a nationally-representative, prospective cohort of the US school-based population in grades 7 to 12 (12-20 years of age) in 1994-95 who have been followed into adulthood (Wave II 1996; ages 12-21, Wave III; ages 18-27), we assessed (in 2014) interactions of 40 BMI-related SNPs and smoking status with percent of the CDC/NCHS 2000 median BMI (%MBMI) in European Americans (n = 5075), African Americans (n = 1744) and Hispanic Americans (n = 1294). RESULTS Two SNPs showed nominal significance for interaction (p < 0.05) between smoking and genotype with %MBMI in European Americans (EA) (rs2112347 (POC5): β = 1.98 (0.06, 3.90), p = 0.04 and near rs571312 (MC4R): β 2.15 (-0.03, 4.33) p = 0.05); and one SNP showed a significant interaction effect after stringent correction for multiple testing in Hispanic Americans (HA) (rs1514175 (TNNI3K): β 8.46 (4.32, 12.60), p = 5.9E-05). Stratifying by sex, these interactions suggest a stronger effect in female smokers. CONCLUSIONS Our study highlights potentially important sex differences in obesity risk by smoking status in adolescents, with those who may be most likely to initiate smoking (i.e., adolescent females), being at greatest risk for exacerbating genetic obesity susceptibility.
Collapse
Affiliation(s)
- Kristin L Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Carolina Population Center, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- , 137 East Franklin Street, Suite 306, Chapel Hill, NC, 27514, USA.
| | - Misa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Carolina Population Center, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Carolina Center for Genome Sciences, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Andrea S Richardson
- Carolina Population Center, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Karen L Mohlke
- Carolina Center for Genome Sciences, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Department of Genetics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Leslie A Lange
- Carolina Center for Genome Sciences, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Department of Genetics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Ethan M Lange
- Carolina Center for Genome Sciences, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Department of Genetics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Kathleen M Harris
- Carolina Population Center, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Department of Sociology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Penny Gordon-Larsen
- Carolina Population Center, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
46
|
Woitek F, Zentilin L, Hoffman NE, Powers JC, Ottiger I, Parikh S, Kulczycki AM, Hurst M, Ring N, Wang T, Shaikh F, Gross P, Singh H, Kolpakov MA, Linke A, Houser SR, Rizzo V, Sabri A, Madesh M, Giacca M, Recchia FA. Intracoronary Cytoprotective Gene Therapy: A Study of VEGF-B167 in a Pre-Clinical Animal Model of Dilated Cardiomyopathy. J Am Coll Cardiol 2015; 66:139-53. [PMID: 26160630 DOI: 10.1016/j.jacc.2015.04.071] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF)-B activates cytoprotective/antiapoptotic and minimally angiogenic mechanisms via VEGF receptors. Therefore, VEGF-B might be an ideal candidate for the treatment of dilated cardiomyopathy, which displays modest microvascular rarefaction and increased rate of apoptosis. OBJECTIVES This study evaluated VEGF-B gene therapy in a canine model of tachypacing-induced dilated cardiomyopathy. METHODS Chronically instrumented dogs underwent cardiac tachypacing for 28 days. Adeno-associated virus serotype 9 viral vectors carrying VEGF-B167 genes were infused intracoronarily at the beginning of the pacing protocol or during compensated heart failure. Moreover, we tested a novel VEGF-B167 transgene controlled by the atrial natriuretic factor promoter. RESULTS Compared with control subjects, VEGF-B167 markedly preserved diastolic and contractile function and attenuated ventricular chamber remodeling, halting the progression from compensated to decompensated heart failure. Atrial natriuretic factor-VEGF-B167 expression was low in normally functioning hearts and stimulated by cardiac pacing; it thus functioned as an ideal therapeutic transgene, active only under pathological conditions. CONCLUSIONS Our results, obtained with a standard technique of interventional cardiology in a clinically relevant animal model, support VEGF-B167 gene transfer as an affordable and effective new therapy for nonischemic heart failure.
Collapse
Affiliation(s)
- Felix Woitek
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania; University of Leipzig-Heart Center, Department of Cardiology/Internal Medicine, Leipzig, Germany
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Nicholas E Hoffman
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Jeffery C Powers
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Isabel Ottiger
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania; University of Leipzig-Heart Center, Department of Cardiology/Internal Medicine, Leipzig, Germany
| | - Suraj Parikh
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Anna M Kulczycki
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Marykathryn Hurst
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Nadja Ring
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Tao Wang
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Farah Shaikh
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Polina Gross
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Harinder Singh
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Mikhail A Kolpakov
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Axel Linke
- University of Leipzig-Heart Center, Department of Cardiology/Internal Medicine, Leipzig, Germany
| | - Steven R Houser
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Victor Rizzo
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Abdelkarim Sabri
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Muniswamy Madesh
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Fabio A Recchia
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
47
|
Lawhorn BG, Philp J, Zhao Y, Louer C, Hammond M, Cheung M, Fries H, Graves AP, Shewchuk L, Wang L, Cottom JE, Qi H, Zhao H, Totoritis R, Zhang G, Schwartz B, Li H, Sweitzer S, Holt DA, Gatto GJ, Kallander LS. Identification of Purines and 7-Deazapurines as Potent and Selective Type I Inhibitors of Troponin I-Interacting Kinase (TNNI3K). J Med Chem 2015; 58:7431-48. [PMID: 26355916 DOI: 10.1021/acs.jmedchem.5b00931] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A series of cardiac troponin I-interacting kinase (TNNI3K) inhibitors arising from 3-((9H-purin-6-yl)amino)-N-methyl-benzenesulfonamide (1) is disclosed along with fundamental structure-function relationships that delineate the role of each element of 1 for TNNI3K recognition. An X-ray structure of 1 bound to TNNI3K confirmed its Type I binding mode and is used to rationalize the structure-activity relationship and employed to design potent, selective, and orally bioavailable TNNI3K inhibitors. Identification of the 7-deazapurine heterocycle as a superior template (vs purine) and its elaboration by introduction of C4-benzenesulfonamide and C7- and C8-7-deazapurine substituents produced compounds with substantial improvements in potency (>1000-fold), general kinase selectivity (10-fold improvement), and pharmacokinetic properties (>10-fold increase in poDNAUC). Optimal members of the series have properties suitable for use in in vitro and in vivo experiments aimed at elucidating the role of TNNI3K in cardiac biology and serve as leads for developing novel heart failure medicines.
Collapse
Affiliation(s)
- Brian G Lawhorn
- Heart Failure Discovery Performance Unit and ‡Platform Technology and Sciences, GlaxoSmithKline , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Joanne Philp
- Heart Failure Discovery Performance Unit and ‡Platform Technology and Sciences, GlaxoSmithKline , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Yongdong Zhao
- Heart Failure Discovery Performance Unit and ‡Platform Technology and Sciences, GlaxoSmithKline , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Christopher Louer
- Heart Failure Discovery Performance Unit and ‡Platform Technology and Sciences, GlaxoSmithKline , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Marlys Hammond
- Heart Failure Discovery Performance Unit and ‡Platform Technology and Sciences, GlaxoSmithKline , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Mui Cheung
- Heart Failure Discovery Performance Unit and ‡Platform Technology and Sciences, GlaxoSmithKline , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Harvey Fries
- Heart Failure Discovery Performance Unit and ‡Platform Technology and Sciences, GlaxoSmithKline , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Alan P Graves
- Heart Failure Discovery Performance Unit and ‡Platform Technology and Sciences, GlaxoSmithKline , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Lisa Shewchuk
- Heart Failure Discovery Performance Unit and ‡Platform Technology and Sciences, GlaxoSmithKline , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Liping Wang
- Heart Failure Discovery Performance Unit and ‡Platform Technology and Sciences, GlaxoSmithKline , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Joshua E Cottom
- Heart Failure Discovery Performance Unit and ‡Platform Technology and Sciences, GlaxoSmithKline , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Hongwei Qi
- Heart Failure Discovery Performance Unit and ‡Platform Technology and Sciences, GlaxoSmithKline , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Huizhen Zhao
- Heart Failure Discovery Performance Unit and ‡Platform Technology and Sciences, GlaxoSmithKline , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Rachel Totoritis
- Heart Failure Discovery Performance Unit and ‡Platform Technology and Sciences, GlaxoSmithKline , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Guofeng Zhang
- Heart Failure Discovery Performance Unit and ‡Platform Technology and Sciences, GlaxoSmithKline , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Benjamin Schwartz
- Heart Failure Discovery Performance Unit and ‡Platform Technology and Sciences, GlaxoSmithKline , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Hu Li
- Heart Failure Discovery Performance Unit and ‡Platform Technology and Sciences, GlaxoSmithKline , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Sharon Sweitzer
- Heart Failure Discovery Performance Unit and ‡Platform Technology and Sciences, GlaxoSmithKline , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Dennis A Holt
- Heart Failure Discovery Performance Unit and ‡Platform Technology and Sciences, GlaxoSmithKline , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Gregory J Gatto
- Heart Failure Discovery Performance Unit and ‡Platform Technology and Sciences, GlaxoSmithKline , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Lara S Kallander
- Heart Failure Discovery Performance Unit and ‡Platform Technology and Sciences, GlaxoSmithKline , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| |
Collapse
|
48
|
Milano A, Lodder EM, Bezzina CR. TNNI3K in cardiovascular disease and prospects for therapy. J Mol Cell Cardiol 2015; 82:167-73. [PMID: 25787061 DOI: 10.1016/j.yjmcc.2015.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/23/2015] [Accepted: 03/09/2015] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases are an important cause of morbidity and mortality worldwide and the global burden of these diseases continues to grow. Therefore new therapies are urgently needed. The role of protein kinases in disease, including cardiac disease, is long recognized, making kinases important therapeutic targets. We here review the knowledge gathered in the last decade about troponin I-interacting kinase (TNNI3K), a kinase with cardiac-restricted expression that has been implicated in various cardiac phenotypes and diseases including heart failure, cardiomyopathy, ischemia/reperfusion injury and conduction of the cardiac electrical impulse.
Collapse
Affiliation(s)
- Annalisa Milano
- Department of Clinical and Experimental Cardiology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Elisabeth M Lodder
- Department of Clinical and Experimental Cardiology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Academic Medical Centre, Amsterdam, The Netherlands.
| |
Collapse
|
49
|
Abraham DM, Marchuk DA. Inhibition of the cardiomyocyte-specific troponin I-interacting kinase limits oxidative stress, injury, and adverse remodeling due to ischemic heart disease. Circ Res 2014; 114:938-40. [PMID: 24625723 DOI: 10.1161/circresaha.113.303238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ischemia–reperfusion injury is strongly associated with increased oxidative stress, mitochondrial dysfunction, and cell death. These processes are diminished in an animal model of ischemia–reperfusion by the genetic loss or pharmacological inhibition of troponin I–interacting kinase.
Collapse
Affiliation(s)
- Dennis M Abraham
- From the Department of Medicine, Division of Cardiology (D.M.A.) and Department of Molecular Genetics and Microbiology (D.A.M.), Duke University School of Medicine, Durham, NC
| | | |
Collapse
|
50
|
Doonan PJ, Chandramoorthy HC, Hoffman NE, Zhang X, Cárdenas C, Shanmughapriya S, Rajan S, Vallem S, Chen X, Foskett JK, Cheung JY, Houser SR, Madesh M. LETM1-dependent mitochondrial Ca2+ flux modulates cellular bioenergetics and proliferation. FASEB J 2014; 28:4936-49. [PMID: 25077561 DOI: 10.1096/fj.14-256453] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dysregulation of mitochondrial Ca(2+)-dependent bioenergetics has been implicated in various pathophysiological settings, including neurodegeneration and myocardial infarction. Although mitochondrial Ca(2+) transport has been characterized, and several molecules, including LETM1, have been identified, the functional role of LETM1-mediated Ca(2+) transport remains unresolved. This study examines LETM1-mediated mitochondrial Ca(2+) transport and bioenergetics in multiple cell types, including fibroblasts derived from patients with Wolf-Hirschhorn syndrome (WHS). The results show that both mitochondrial Ca(2+) influx and efflux rates are impaired in LETM1 knockdown, and similar phenotypes were observed in ΔEF hand, (D676A D688K)LETM1 mutant-overexpressed cells, and in cells derived from patients with WHS. Although LETM1 levels were lower in WHS-derived fibroblasts, the mitochondrial Ca(2+) uniporter components MCU, MCUR1, and MICU1 remain unaltered. In addition, the MCU mitoplast patch-clamp current (IMCU) was largely unaffected in LETM1-knockdown cells. Silencing of LETM1 also impaired basal mitochondrial oxygen consumption, possibly via complex IV inactivation and ATP production. Remarkably, LETM1 knockdown also resulted in increased reactive oxygen species production. Further, LETM1 silencing promoted AMPK activation, autophagy, and cell cycle arrest. Reconstitution of LETM1 or antioxidant overexpression rescued mitochondrial Ca(2+) transport and bioenergetics. These findings reveal the role of LETM1-dependent mitochondrial Ca(2+) flux in shaping cellular bioenergetics.
Collapse
Affiliation(s)
| | | | | | | | - César Cárdenas
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; and
| | | | - Sudarsan Rajan
- Department of Biochemistry, Center for Translational Medicine
| | - Sandhya Vallem
- Department of Biochemistry, Center for Translational Medicine
| | - Xiongwen Chen
- Cardiovascular Research Center, and Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - J Kevin Foskett
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Steven R Houser
- Cardiovascular Research Center, and Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|