1
|
Ye J, Chen Y, Deng R, Zhang J, Wang H, Song S, Wang X, Xu B, Wang X, Yu J. Robust tetra-armed poly (ethylene glycol)-based hydrogel as tissue bioadhesive for the efficient repair of meniscus tears. MedComm (Beijing) 2024; 5:e738. [PMID: 39465139 PMCID: PMC11502715 DOI: 10.1002/mco2.738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 10/29/2024] Open
Abstract
Repair and preservation of the injured meniscus has become paramount in clinical practice. However, the complexities of various clinic stitching techniques for meniscus repair pose challenges for grassroots doctors. Hence, there is a compelling interest in innovative therapeutic strategies such as bioadhesives. An ideal bioadhesive must cure quickly in aqueous and blood environments, bind strongly, endure arthroscopic washing pressures, and degrade appropriately for tissue regeneration. Here, we present a tetra-poly (ethylene glycol) (PEG)-based hydrogel bioadhesive, boasting high biocompatibility, ultrafast gelation, facile injectable operation, and favorable mechanical strength. In view of the synergistic effects of chemical anchor and physical chain entanglement to tightly bind the meniscus, a seamless interface was formed between the surrounding meniscal tissues and hydrogels, enabling the longitudinal tear of the meniscus fused in situ to withstand large tensile force with the adhesive strength of 541.5 ± 31.4 kPa and arthroscopic washout resistance of 29.4 kPa. Superior to existing commercial adhesives, ours allows sutureless application and arthroscopic assistance, without requiring specialized clinical skills. This research is expected to significantly impact our understanding of meniscal healing and ultimately promote a simpler process for achieving functional and structural recovery in torn menisci.
Collapse
Affiliation(s)
- Jing Ye
- Sports Medicine DepartmentBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijingHaidian DistrictChina
- Institute of Sports MedicinePeking UniversityBeijingHaidian DistrictChina
| | - Yourong Chen
- Sports Medicine DepartmentBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijingHaidian DistrictChina
- Institute of Sports MedicinePeking UniversityBeijingHaidian DistrictChina
| | - Ronghui Deng
- Sports Medicine DepartmentBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijingHaidian DistrictChina
- Institute of Sports MedicinePeking UniversityBeijingHaidian DistrictChina
| | - Jiying Zhang
- Sports Medicine DepartmentBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijingHaidian DistrictChina
- Institute of Sports MedicinePeking UniversityBeijingHaidian DistrictChina
| | - Hufei Wang
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shitang Song
- Sports Medicine DepartmentBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijingHaidian DistrictChina
- Institute of Sports MedicinePeking UniversityBeijingHaidian DistrictChina
| | - Xinjie Wang
- Sports Medicine DepartmentBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijingHaidian DistrictChina
- Institute of Sports MedicinePeking UniversityBeijingHaidian DistrictChina
| | - Bingbing Xu
- Sports Medicine DepartmentBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijingHaidian DistrictChina
- Institute of Sports MedicinePeking UniversityBeijingHaidian DistrictChina
| | - Xing Wang
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jia‐Kuo Yu
- Sports Medicine DepartmentBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijingHaidian DistrictChina
- Institute of Sports MedicinePeking UniversityBeijingHaidian DistrictChina
- Orthopaedic and Sports Medicine CenterBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
- Institute of Orthopedic and Sports Medicine of Tsinghua MedicineTsinghua UniversityBeijingChina
| |
Collapse
|
2
|
Luo Q, Luo J, Luan Z, Xu K, Tian L, Zhang K, Peng X, Yuan M, Zheng C, Shu Z, Zhang Y, Tan S, Dan R, Mequanint K, Fan C, Xing M, Yang S. Blue Laser Triggered Hemostatic Peptide Hydrogel for Gastrointestinal Bleeding Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405290. [PMID: 39011814 DOI: 10.1002/adma.202405290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/16/2024] [Indexed: 07/17/2024]
Abstract
In an emergency, nonvariceal upper gastrointestinal bleeding (NVUGIB), endoscopic hemostasis is considered the gold standard intervention. However, current endoscopic hemostasis is very challenging to manage bleeding in large-diameter or deep lesions highly prone to rebleeding risk. Herein, a novel hemostatic peptide hydrogel (HPH) is reported, consisting of a self-assembly peptide sequence CFLIVIGSIIVPGDGVPGDG (PFV) and gelatin methacryloyl (GelMA), which can be triggered by blue laser endoscopy (BLE) for nonvariceal upper gastrointestinal bleeding treatment without recurring bleeding concerns. Upon contact with GelMA solution, PFV immediately fibrillates into β-sheet nanofiber and solvent-induced self-assembly to form HPH gel. HPH nanofiber networks induced ultrafast coagulation by enveloping blood cells and activating platelets and coagulation factors even to the blood with coagulopathy. Besides its remarkable hemostatic performance in artery and liver injury models, HPH achieves instant bleeding management in porcine NVUGIB models within 60 s by preventing the rebleeding risk. This work demonstrates an extraordinary hemostatic agent for NVUGIB intervention by BLE for the first time, broadening potential application scenarios, including patients with coagulopathy and promising clinical prospects.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Jie Luo
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Zhaohui Luan
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Kaige Xu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Manitoba, Canada
| | - Lixing Tian
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Kebin Zhang
- Clinical Medical Research Center, Xinqiao Hospital, No.183, Xinqiao Street, Chongqing, 400037, China
| | - Xue Peng
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Mengxue Yuan
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Chuanhao Zheng
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Zhenzhen Shu
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Yuchen Zhang
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Shali Tan
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Ruijue Dan
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A 5B9, Canada
| | - Chaoqiang Fan
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Manitoba, Canada
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
- Chongqing Municipality Clinical Research Center for Gastroenterology, Chongqing, 400037, China
| |
Collapse
|
3
|
Giri P, Yadav D, Mishra B, Gupta MK, Verma D. Robust tissue adhesion in biomedical applications: enhancing polymer stability in an injectable protein-based hydrogel. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-23. [PMID: 39259660 DOI: 10.1080/09205063.2024.2398888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Protein-based hydrogels are appealing materials for a variety of therapeutic uses because they are compatible, biodegradable, and adaptable to biological and chemical changes. Therefore, adherent varieties of hydrogels have received significant study; nevertheless, the majority of them show weak mechanical characteristics, transient adherence, poor biocompatibility activity, and low tensile strength. Here we are reporting, a two-component (BSA-gelatin) protein solution crosslinked with Tetrakis (hydroxymethyl) phosphonium chloride (THPC) to form a novel hydrogel. Compared with classical adhesive hydrogels, this hydrogel showed enhanced mechanical properties, was biocompatible with L929 cells, and had minimal invasive injectability. A considerable, high tensile strength of 73.33 ± 11.54 KPa and faultless compressive mechanical properties of 173 KPa at 75% strain were both demonstrated by this adhesive hydrogel. Moreover, this maximum tissue adhesion strength could reach 18.29 ± 2.22 kPa, significantly higher than fibrin glue. Cell viability was 97.09 ± 6.07%, which indicated that these hydrogels were non-toxic to L929. The fastest gelation time of the BSA-gelatin hydrogel was 1.25 ± 0.17 min at physiological pH and 37 °C. Therefore, the obtained novel work can potentially serve as a tissue adhesive hydrogel in the field of biomedical industries.
Collapse
Affiliation(s)
- Pijush Giri
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Daman Yadav
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Balaram Mishra
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Devendra Verma
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
4
|
Wang C, Zhao Z, Han J, Sharma AA, Wang H, Zhang XS. Wireless Magnetic Robot for Precise Hierarchical Control of Tissue Deformation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308619. [PMID: 39041885 PMCID: PMC11425225 DOI: 10.1002/advs.202308619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/20/2024] [Indexed: 07/24/2024]
Abstract
Mechanotherapy has emerged as a promising treatment for tissue injury. However, existing robots for mechanotherapy are often designed on intuition, lack remote and wireless control, and have limited motion modes. Herein, through topology optimization and hybrid fabrication, wireless magneto-active soft robots are created that can achieve various modes of programmatic deformations under remote magnetic actuation and apply mechanical forces to tissues in a precise and predictable manner. These soft robots can quickly and wirelessly deform under magnetic actuation and are able to deliver compressing, stretching, shearing, and multimodal forces to the surrounding tissues. The design framework considers the hierarchical tissue-robot interaction and, therefore, can design customized soft robots for different types of tissues with varied mechanical properties. It is shown that these customized robots with different programmable motions can induce precise deformations of porcine muscle, liver, and heart tissues with excellent durability. The soft robots, the underlying design principles, and the fabrication approach provide a new avenue for developing next-generation mechanotherapy.
Collapse
Affiliation(s)
- Chao Wang
- Department of Civil and Environmental EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Zhi Zhao
- Department of Civil and Environmental EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Joonsu Han
- Department of Materials Science and EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Arvin Ardebili Sharma
- Department of Materials Science and EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Hua Wang
- Department of Materials Science and EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Xiaojia Shelly Zhang
- Department of Civil and Environmental EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
- Department of Mechanical Science and EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
- National Center for Supercomputing ApplicationsUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
5
|
Wlodarczyk AI, Collin EC, Pereira MJN, Bindra R, Power DM. Biomechanical Evaluation of an Atraumatic Polymer-assisted Peripheral Nerve Repair System Compared with Conventional Neurorrhaphy Techniques. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e6151. [PMID: 39267729 PMCID: PMC11392492 DOI: 10.1097/gox.0000000000006151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/24/2024] [Indexed: 09/15/2024]
Abstract
Background Microsuturing, the gold standard for peripheral nerve repair, can create tension and damage at the repair site, potentially impacting regeneration and causing neuroma formation. A sutureless and atraumatic polymer-assisted system was developed to address this challenge and support peripheral nerve repair. The system is based on a biocompatible and biodegradable biosynthetic polymer and consists of a coaptation chamber and a light-activated polymer for securing to the nerve. In this study, we compare the system's biomechanical performance and mechanism of action to microsutures and fibrin repairs. Methods The system's fixation force was compared with microsutures and fibrin glue, and evaluated across various nerve diameters through tensile testing. Tension and tissue morphology at the repair site were assessed using finite element modeling and scanning electron microscopy. Results The fixation force of the polymer-assisted repair was equivalent to microsutures and superior to fibrin glue. This force increased linearly with nerve diameter, highlighting the correlation between polymer surface contact area and performance. Finite element modeling analysis showed stress concentration at the repair site for microsuture repairs, whereas the polymer-assisted repair dissipated stress along the nerve, away from the repair site. Morphological analysis revealed nerve alignment with no tissue trauma for the polymer-assisted repair, unlike microsutures. Conclusions The mechanical performance of the polymer-assisted coaptation system is suitable for peripheral nerve repair. The achieved fixation forces are equivalent to those of microsutures and superior to fibrin glue, minimizing stress concentration at the repair site and avoiding trauma to the severed nerve ends.
Collapse
Affiliation(s)
| | | | | | - Randy Bindra
- Griffith University School of Medicine and Dentistry, Gold Coast, Australia
| | - Dominic M Power
- Peripheral Nerve Surgery Department, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Nam KS, Kim Y, Park G, Hwang K, Kim M, Chong J, Jeon J, Yang C, Lu YH, Paniccia C, Choi J, Kim DG, Lee H, Oh SW, Kim S, Rhyu JW, Kang J, Hyun JK, Karp JM, Lee Y, Yuk H, Park S. A Pressure-Sensitive, Repositionable Bioadhesive for Instant, Atraumatic Surgical Application on Internal Organs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2407116. [PMID: 39148184 DOI: 10.1002/adma.202407116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/20/2024] [Indexed: 08/17/2024]
Abstract
Pressure-sensitive adhesives are widely utilized due to their instant and reversible adhesion to various dry substrates. Though offering intuitive and robust attachment of medical devices on skin, currently available clinical pressure-sensitive adhesives do not attach to internal organs, mainly due to the presence of interfacial water on the tissue surface that acts as a barrier to adhesion. In this work, a pressure-sensitive, repositionable bioadhesive (PSB) that adheres to internal organs by synergistically combining the characteristic viscoelastic properties of pressure-sensitive adhesives and the interfacial behavior of hydrogel bioadhesives, is introduced. Composed of a viscoelastic copolymer, the PSB absorbs interfacial water to enable instant adhesion on wet internal organs, such as the heart and lungs, and removal after use without causing any tissue damage. The PSB's capabilities in diverse on-demand surgical and analytical scenarios including tissue stabilization of soft organs and the integration of bioelectronic devices in rat and porcine models, are demonstrated.
Collapse
Affiliation(s)
- Kum Seok Nam
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yeji Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Geonho Park
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kiwook Hwang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Minyoung Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jooyeun Chong
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jooik Jeon
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Congqi Yang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yung Hsiang Lu
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Christian Paniccia
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeongwon Choi
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dong Geun Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Haeseung Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seung Won Oh
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sanha Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jae-Wook Rhyu
- Department of Cardiovascular Surgery, College of Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jiheong Kang
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute for NanoCentury, Daejeon, 34141, Republic of Korea
| | - Jung Keun Hyun
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeffrey M Karp
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yuhan Lee
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seongjun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute for NanoCentury, Daejeon, 34141, Republic of Korea
| |
Collapse
|
7
|
Yang Y, He G, Pan Z, Zhang K, Xian Y, Zhu Z, Hong Y, Zhang C, Wu D. An Injectable Hydrogel with Ultrahigh Burst Pressure and Innate Antibacterial Activity for Emergency Hemostasis and Wound Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404811. [PMID: 38875445 DOI: 10.1002/adma.202404811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Indexed: 06/16/2024]
Abstract
Uncontrolled bleeding and wound infections following severe trauma pose significant challenges for existing tissue adhesives, primarily due to their weak wet adhesion, slow adhesion formation, cytotoxicity concerns, and lack of antibacterial properties. Herein, an injectable hydrogel (denoted as ES gel) with rapid, robust adhesive sealing and inherent antibacterial activity based on ε-polylysine and a poly(ethylene glycol) derivative is developed. The engineered hydrogel exhibits rapid gelation behavior, high mechanical strength, strong adhesion to various tissues, and can sustain an ultrahigh burst pressure of 450 mmHg. It also presents excellent biocompatibility, biodegradability, antibacterial properties, and on-demand removability. Significantly improved hemostatic efficacy of ES gel compared to fibrin glue is demonstrated using various injury models in rats and rabbits. Remarkably, the adhesive hydrogel can effectively halt lethal non-compressible hemorrhages in visceral organs (liver, spleen, and heart) and femoral artery injury models in fully anticoagulated pigs. Furthermore, the hydrogel outperforms commercial products in sutureless wound closure and repair in the rat liver defect, skin incision, and infected full-thickness skin wound models. Overall, this study highlights the promising clinical applications of ES gel for managing uncontrolled hemorrhage, sutureless wound closure, and infected wound repair.
Collapse
Affiliation(s)
- Yu Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Gang He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Zheng Pan
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Kaiwen Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Yiwen Xian
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Ziran Zhu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Yonglong Hong
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, No. 1333 Xinhu Road, Baoan District, Shenzhen, Guangdong, 518101, China
| | - Chong Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
8
|
Li S, Dou W, Ji W, Li X, Chen N, Ji Y, Zeng X, Sun P, Li Y, Liu C, Fan H, Gao Y, Zhao K, Zhao J, Liu H, Hou X, Yuan X. Tissue-adhesive, stretchable and compressible physical double-crosslinked microgel-integrated hydrogels for dynamic wound care. Acta Biomater 2024; 184:186-200. [PMID: 38936752 DOI: 10.1016/j.actbio.2024.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Integrated wound care through sequentially promoting hemostasis, sealing, and healing holds great promise in clinical practice. However, it remains challenging for regular bioadhesives to achieve integrated care of dynamic wounds due to the difficulties in adapting to dynamic mechanical and wet wound environments. Herein, we reported a type of dehydrated, physical double crosslinked microgels (DPDMs) which were capable of in situ forming highly stretchable, compressible and tissue-adhesive hydrogels for integrated care of dynamic wounds. The DPDMs were designed by the rational integration of the reversible crosslinks and double crosslinks into micronized gels. The reversible physical crosslinks enabled the DPDMs to integrate together, and the double crosslinked characteristics further strengthen the formed macroscopical networks (DPDM-Gels). We demonstrated that the DPDM-Gels simultaneously possess outstanding tensile (∼940 kJ/m3) and compressive (∼270 kJ/m3) toughness, commercial bioadhesives-comparable tissue-adhesive strength, together with stable performance under hundreds of deformations. In vivo results further revealed that the DPDM-Gels could effectively stop bleeding in various bleeding models, even in an actual dynamic environment, and enable the integrated care of dynamic skin wounds. On the basis of the remarkable mechanical and appropriate adhesive properties, together with impressive integrated care capacities, the DPDM-Gels may provide a new approach for the smart care of dynamic wounds. STATEMENT OF SIGNIFICANCE: Integrated care of dynamic wounds holds great significance in clinical practice. However, the dynamic and wet wound environments pose great challenges for existing hydrogels to achieve it. This work developed robust adhesive hydrogels for integrated care of dynamic wounds by designing dehydrated, physical double crosslinked microgels (DPDMs). The reversible and double crosslinks enabled DPDMs to integrate into macroscopic hydrogels with high mechanical properties, appropriate adhesive strength and stable performance under hundreds of external deformations. Upon application at the injury site, DPDM-Gels efficiently stopped bleeding, even in an actual dynamic environment and showed effectiveness in integrated care of dynamic wounds. With the fascinating properties, DPDMs may become an effective tool for smart wound care.
Collapse
Affiliation(s)
- Sidi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong Province, China.
| | - Wenguang Dou
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong Province, China
| | - Weijun Ji
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xueping Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Ning Chen
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yunpeng Ji
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaojun Zeng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong Province, China; College of Life Sciences, Yantai University, Yantai, 264005, Shandong Province, China
| | - Peng Sun
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yansheng Li
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264001, Shandong Province, China
| | - Chan Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong Province, China
| | - Honglei Fan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong Province, China
| | - Yonglin Gao
- College of Life Sciences, Yantai University, Yantai, 264005, Shandong Province, China
| | - Kongyin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Hongliang Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong Province, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 265503, Shandong Province, China.
| | - Xin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Shi Y, Tang S, Yuan X, Li Z, Wen S, Li Z, Su B, Yan C, Chen L. In Situ 4D Printing of Polyelectrolyte/Magnetic Composites for Sutureless Gastric Perforation Sealing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307601. [PMID: 38047896 DOI: 10.1002/adma.202307601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/18/2023] [Indexed: 12/05/2023]
Abstract
In situ bioprinting has emerged as one of the most promising techniques for the sutureless tissue sealing of internal organs. However, most existing in situ bioprinting methods are limited by the complex and confined printing space inside the organs, harsh curing conditions for printable bioinks, and poor ability to suturelessly seal injured parts. The combination of in situ bioprinting and 4D printing is a promising technique for tissue repair. Herein, the in situ 4D printing of polyelectrolyte/magnetic composites by gastroscopy for sutureless internal tissue sealing is reported. Using gastric perforation as an example, a gelatin/sodium alginate/magnetic bioink is developed, which can be precisely located by a gastroscope with the assistance of an external magnetic field, solidified in gastric fluid, and firmly adhered to tissue surfaces. The solidified bioink along the defect can be attracted by an external magnetic field, resulting in sutureless sealing. A demonstration using a porcine stomach with an artificial perforation confirms the feasibility of sutureless sealing using 4D printing. Moreover, an in vivo investigation on gastric perforation in a rat model identifies the biocompatibility by H&E and CD68+ staining. This study provides a new orientation and concept for functionality-modified in situ 4D bioprinting.
Collapse
Affiliation(s)
- Yunsong Shi
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Sihan Tang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xi Yuan
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhuofan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shifeng Wen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhongwei Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bin Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chunze Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Lili Chen
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
10
|
Sirolli S, Guarnera D, Ricotti L, Cafarelli A. Triggerable Patches for Medical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310110. [PMID: 38860756 DOI: 10.1002/adma.202310110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Medical patches have garnered increasing attention in recent decades for several diagnostic and therapeutic applications. Advancements in material science, manufacturing technologies, and bioengineering have significantly widened their functionalities, rendering them highly versatile platforms for wearable and implantable applications. Of particular interest are triggerable patches designed for drug delivery and tissue regeneration purposes, whose action can be controlled by an external signal. Stimuli-responsive patches are particularly appealing as they may enable a high level of temporal and spatial control over the therapy, allowing high therapeutic precision and the possibility to adjust the treatment according to specific clinical and personal needs. This review aims to provide a comprehensive overview of the existing extensive literature on triggerable patches, emphasizing their potential for diverse applications and highlighting the strengths and weaknesses of different triggering stimuli. Additionally, the current open challenges related to the design and use of efficient triggerable patches, such as tuning their mechanical and adhesive properties, ensuring an acceptable trade-off between smartness and biocompatibility, endowing them with portability and autonomy, accurately controlling their responsiveness to the triggering stimulus and maximizing their therapeutic efficacy, are reviewed.
Collapse
Affiliation(s)
- Sofia Sirolli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Daniele Guarnera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Andrea Cafarelli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| |
Collapse
|
11
|
He G, Xian Y, Lin H, Yu C, Chen L, Chen Z, Hong Y, Zhang C, Wu D. An injectable and coagulation-independent Tetra-PEG hydrogel bioadhesive for post-extraction hemostasis and alveolar bone regeneration. Bioact Mater 2024; 37:106-118. [PMID: 39022616 PMCID: PMC11252469 DOI: 10.1016/j.bioactmat.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 07/20/2024] Open
Abstract
Effective control of post-extraction hemorrhage and alveolar bone resorption is critical for successful extraction socket treatment, which remains an unmet clinical challenge. Herein, an injectable Tetra-PEG hydrogel that possesses rapid gelation, firm tissue adhesion, high mechanical strength, suitable degradability, and excellent biocompatibility is developed as a sutureless and coagulation-independent bioadhesive for the management of extraction sockets. Our results demonstrate that the rapid and robust adhesive sealing of the extraction socket by the Tetra-PEG hydrogel can provide reliable protection for the underlying wound and stabilize blood clots to facilitate tissue healing. In vivo experiments using an anticoagulated rat tooth extraction model show that the hydrogel significantly outperformed clinically used cotton and gelatin sponge in hemostatic efficacy, wound closure, alveolar ridge preservation, and in situ alveolar bone regeneration. Histomorphological evaluations reveal the mechanisms for accelerated bone repair through suppressed long-term inflammation, elevated collagen deposition, higher osteoblast activity, and enhanced angiogenesis. Together, our study highlights the clinical potential of the developed injectable Tetra-PEG hydrogel for treating anticoagulant-related post-extraction hemorrhage and improving socket healing.
Collapse
Affiliation(s)
- Gang He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Yiwen Xian
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Huajun Lin
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, No. 1333 New Road, Baoan District, Shenzhen, Guangdong, 518101, China
| | - Chengcheng Yu
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, No. 1333 New Road, Baoan District, Shenzhen, Guangdong, 518101, China
| | - Luyuan Chen
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, No. 1333 New Road, Baoan District, Shenzhen, Guangdong, 518101, China
| | - Zhihui Chen
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, No. 1333 New Road, Baoan District, Shenzhen, Guangdong, 518101, China
| | - Yonglong Hong
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, No. 1333 New Road, Baoan District, Shenzhen, Guangdong, 518101, China
| | - Chong Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
12
|
Indrakumar S, Dash TK, Mishra V, Tandon B, Chatterjee K. Silk Fibroin and Its Nanocomposites for Wound Care: A Comprehensive Review. ACS POLYMERS AU 2024; 4:168-188. [PMID: 38882037 PMCID: PMC11177305 DOI: 10.1021/acspolymersau.3c00050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 06/18/2024]
Abstract
For most individuals, wound healing is a highly organized, straightforward process, wherein the body transitions through different phases in a timely manner. However, there are instances where external intervention becomes necessary to support and facilitate different phases of the body's innate healing mechanism. Furthermore, in developing countries, the cost of the intervention significantly impacts access to treatment options as affordability becomes a determining factor. This is particularly true in cases of long-term wound treatment and management, such as chronic wounds and infections. Silk fibroin (SF) and its nanocomposites have emerged as promising biomaterials with potent wound-healing activity. Driven by this motivation, this Review presents a critical overview of the recent advancements in different aspects of wound care using SF and SF-based nanocomposites. In this context, we explore various formats of hemostats and assess their suitability for different bleeding situations. The subsequent sections discuss the primary causes of nonhealing wounds, i.e., prolonged inflammation and infections. Herein, different treatment strategies to achieve immunomodulatory and antibacterial properties in a wound dressing were reviewed. Despite exhibiting excellent pro-healing properties, few silk-based products reach the market. This Review concludes by highlighting the bottlenecks in translating silk-based products into the market and the prospects for the future.
Collapse
Affiliation(s)
- Sushma Indrakumar
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Tapan Kumar Dash
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore 560064, India
| | - Vivek Mishra
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore 560064, India
| | - Bharat Tandon
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore 560064, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Agrawal P, Tiwari A, Chowdhury SK, Vohra M, Gour A, Waghmare N, Bhutani U, Kamalnath S, Sangwan B, Rajput J, Raj R, Rajendran NP, Kamath AV, Haddadin R, Chandru A, Sangwan VS, Bhowmick T. Kuragel: A biomimetic hydrogel scaffold designed to promote corneal regeneration. iScience 2024; 27:109641. [PMID: 38646166 PMCID: PMC11031829 DOI: 10.1016/j.isci.2024.109641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/30/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Cornea-related injuries are the most common cause of blindness worldwide. Transplantation remains the primary approach for addressing corneal blindness, though the demand for donor corneas outmatches the supply by millions. Tissue adhesives employed to seal corneal wounds have shown inefficient healing and incomplete vision restoration. We have developed a biodegradable hydrogel - Kuragel, with the ability to promote corneal regeneration. Functionalized gelatin and hyaluronic acid form photo-crosslinkable hydrogel with transparency and compressive modulus similar to healthy human cornea. Kuragel composition was tuned to achieve sufficient adhesive strength for sutureless integration to host tissue, with minimal swelling post-administration. Studies in the New Zealand rabbit mechanical injury model affecting corneal epithelium and stroma demonstrate that Kuragel efficiently promotes re-epithelialization within 1 month of administration, while stroma and sub-basal nerve plexus regenerate within 3 months. We propose Kuragel as a regenerative treatment for patients suffering from corneal defects including thinning, by restoration of transparency and thickness.
Collapse
Affiliation(s)
| | - Anil Tiwari
- Pandorum Technologies Pvt., Ltd, Bangalore, India
- Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | | | - Mehak Vohra
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | - Abha Gour
- Pandorum Technologies Pvt., Ltd, Bangalore, India
- Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | | | | | - S. Kamalnath
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | | | - Jyoti Rajput
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | - Ritu Raj
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | | | | | - Ramez Haddadin
- Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Arun Chandru
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | | | - Tuhin Bhowmick
- Pandorum Technologies Pvt., Ltd, Bangalore, India
- Pandorum International Inc, San Francisco, CA, USA
| |
Collapse
|
14
|
Palai D, Ohta M, Cetnar I, Taguchi T, Nishiguchi A. Enhanced ROS scavenging and tissue adhesive abilities in injectable hydrogels by protein modification with oligoethyleneimine. Biomater Sci 2024; 12:2312-2320. [PMID: 38497434 DOI: 10.1039/d3bm02065g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Postsurgical treatment comprehensively benefits from the application of tissue-adhesive injectable hydrogels, which reduce postoperative complications by promoting wound closure and tissue regeneration. Although various hydrogels have been employed as clinical tissue adhesives, many exhibit deficiencies in adhesive strength under wet conditions or in immunomodulatory functions. Herein, we report the development of reactive oxygen species (ROS) scavenging and tissue-adhesive injectable hydrogels composed of polyamine-modified gelatin crosslinked with the 4-arm poly (ethylene glycol) crosslinker. Polyamine-modified gelatin was particularly potent in suppressing the secretion of proinflammatory cytokines from stimulated primary macrophages. This effect is attributed to its ability to scavenge ROS and inhibit the nuclear translocation of nuclear factor kappa-B. Polyamine-modified gelatin-based hydrogels exhibited ROS scavenging abilities and enhanced tissue adhesive strength on collagen casing. Notably, the hydrogel demonstrated exceptional tissue adhesive properties in a wet environment, as evidenced by its performance using porcine small intestine tissue. This approach holds significant promise for designing immunomodulatory hydrogels with superior tissue adhesion strength compared to conventional medical materials, thereby contributing to advancements in minimally invasive surgical techniques.
Collapse
Affiliation(s)
- Debabrata Palai
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
| | - Miho Ohta
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
| | - Iga Cetnar
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Al. Waszyngtona 4/8 Warsaw, Poland
| | - Tetsushi Taguchi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
| | - Akihiro Nishiguchi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
15
|
Zhu Z, Ye H, Zhang K, He G, Pan Z, Xian Y, Yang Y, Zhang C, Wu D. Naturally Derived Injectable Dual-Cross-Linked Adhesive Hydrogel for Acute Hemorrhage Control and Wound Healing. Biomacromolecules 2024; 25:2574-2586. [PMID: 38525818 DOI: 10.1021/acs.biomac.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Developing biocompatible injectable hydrogels with high mechanical strength and rapid strong tissue adhesion for hemostatic sealing of uncontrolled bleeding remains a prevailing challenge. Herein, we engineer an injectable and photo-cross-linkable hydrogel based on naturally derived gelatin methacrylate (GelMA) and N-hydroxysuccinimide-modified poly(γ-glutamic acid) (γPGA-NHS). The chemically dual-cross-linked hydrogel rapidly forms after UV light irradiation and covalently bonds to the underlying tissue to provide robust adhesion. We demonstrate a significantly improved hemostatic efficacy of the hydrogel using various injury models in rats compared to the commercially available fibrin glue. Notably, the hydrogel can achieve hemostasis in porcine liver and spleen incision, and femoral artery puncture models. Moreover, the hydrogel is used for sutureless repair of the liver defect in a rat model with a significantly suppressed inflammatory response, enhanced angiogenesis, and superior healing efficacy compared to fibrin glue. Together, this study offers a promising bioadhesive for treating severe bleeding and facilitating wound repair.
Collapse
Affiliation(s)
- Ziran Zhu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, Beijing 100190, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong 518055, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Huijun Ye
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Kaiwen Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Gang He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Zheng Pan
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Yiwen Xian
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Yu Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Chong Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong 518055, China
| |
Collapse
|
16
|
An H, Zhang M, Gu Z, Jiao X, Ma Y, Huang Z, Wen Y, Dong Y, Zhang P. Advances in Polysaccharides for Cartilage Tissue Engineering Repair: A Review. Biomacromolecules 2024; 25:2243-2260. [PMID: 38523444 DOI: 10.1021/acs.biomac.3c01424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Cartilage repair has been a significant challenge in orthopedics that has not yet been fully resolved. Due to the absence of blood vessels and the almost cell-free nature of mature cartilage tissue, the limited ability to repair cartilage has resulted in significant socioeconomic pressures. Polysaccharide materials have recently been widely used for cartilage tissue repair due to their excellent cell loading, biocompatibility, and chemical modifiability. They also provide a suitable microenvironment for cartilage repair and regeneration. In this Review, we summarize the techniques used clinically for cartilage repair, focusing on polysaccharides, polysaccharides for cartilage repair, and the differences between these and other materials. In addition, we summarize the techniques of tissue engineering strategies for cartilage repair and provide an outlook on developing next-generation cartilage repair and regeneration materials from polysaccharides. This Review will provide theoretical guidance for developing polysaccharide-based cartilage repair and regeneration materials with clinical applications for cartilage tissue repair and regeneration.
Collapse
Affiliation(s)
- Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Meng Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital, Beijing 100044, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiangyu Jiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yinglei Ma
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhe Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | | - Peixun Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
17
|
Yang Y, Wang J, Yang J, Wu X, Tian Y, Tang H, Li N, Liu X, Zhou M, Liu J, Ling Q, Zang J. A Laparoscopically Compatible Rapid-Adhesion Bioadhesive for Asymmetric Adhesion, Non-Pressing Hemostasis, and Seamless Seal. Adv Healthc Mater 2024; 13:e2304059. [PMID: 38267400 DOI: 10.1002/adhm.202304059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Bioadhesive hydrogels offer unprecedented opportunities in hemostatic agents and tissue sealing; however, the application of existing bioadhesive hydrogels through narrow spaces to achieve strong adhesion in fluid-rich physiological environments is challenged either by undesired indiscriminate adhesion or weak wet tissue adhesion. Here, a laparoscopically compatible asymmetric adhesive hydrogel (aAH) composed of sprayable adhesive hydrogel powders and injectable anti-adhesive glue is proposed for hemostasis and to seal the bloody tissues in a non-pressing way, allowing for preventing postoperative adhesion. The powders can seed on the irregular bloody wound to rapidly absorb interfacial fluid, crosslink, and form an adhesive hydrogel to hemostatic seal (blood clotting time and tissue sealing in 10 s, ≈200 mm Hg of burst pressure in sealed porcine tissues). The aAH can be simply formed by crosslinking the upper powder with injectable glue to prevent postoperative adhesion (adhesive strength as low as 1 kPa). The aAH outperforms commercial hemostatic agents and sealants in the sealing of bleeding organs in live rats, demonstrating superior anti-adhesive efficiency. Further, the hemostatic seamless sealing by aAH succeeds in shortening the time of warm ischemia, decreasing the blood loss, and reducing the possibility of rebleeding in the porcine laparoscopic partial nephrectomy model.
Collapse
Affiliation(s)
- Yueying Yang
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Jiashen Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Xiaoyu Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Ye Tian
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hanchuan Tang
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Na Li
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xurui Liu
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mengyuan Zhou
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Qing Ling
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Jianfeng Zang
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
18
|
Heydari P, Kharaziha M, Varshosaz J, Kharazi AZ, Javanmard SH. Co-release of nitric oxide and L-arginine from poly (β-amino ester)-based adhesive reprogram macrophages for accelerated wound healing and angiogenesis in vitro and in vivo. BIOMATERIALS ADVANCES 2024; 158:213762. [PMID: 38227989 DOI: 10.1016/j.bioadv.2024.213762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/06/2023] [Accepted: 01/06/2024] [Indexed: 01/18/2024]
Abstract
Recently, insufficient angiogenesis and prolonged inflammation are crucial challenges of chronic skin wound healing. The sustained release of L-Arginine (L-Arg) and nitric oxide (NO) production can control immune responses, improve angiogenesis, enhance re-epithelialization, and accelerate wound healing. Here, we aim to improve wound healing via the controlled release of NO and L-Arg from poly (β-amino ester) (PβAE). In this regard, PβAE is functionalized with methacrylate poly-L-Arg (PAMA), and the role of PAMA content (50, 66, and 75 wt%) on the adhesive properties, L-Arg, and NO release, as well as collagen deposition, inflammatory responses, and angiogenesis, is investigated in vitro and in vivo. Results show that the PAMA/ PβAE could provide suitable adhesive strength (~25 kPa) for wound healing application. In addition, increasing the PAMA content from 50 to 75 wt% results in an increased release of L-Arg (approximately 1.4-1.7 times) and enhanced NO production (approximately 2 times), promoting skin cell proliferation and migration. The in vitro studies also show that compared to PβAE hydrogel, incorporation of 66 wt% PAMA (PAMA 66 sample) reveals superior collagen I synthesis (~ 3-4 times) of fibroblasts, controlled pro-inflammatory and improved anti-inflammatory cytokines secretion of macrophages, and accelerated angiogenesis (~1.5-2 times). In vivo studies in a rat model with a full-thickness skin defect also demonstrate the PAMA66 sample could accelerate wound healing (~98 %) and angiogenesis, compared to control (untreated wound) and Tegaderm™ commercial wound dressing. In summary, the engineered multifunctional PAMA functionalized PβAE hydrogel with desired NO and L-Arg release, and adhesive properties can potentially reprogram macrophages and accelerate skin healing for chronic wound healing.
Collapse
Affiliation(s)
- Parisa Heydari
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Applied Physiology Research Center, Isfahan, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, Iran.
| | - Anousheh Zargar Kharazi
- Applied Physiology Research Center, Isfahan, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; Biomaterials Nanotechnology and Tissue Engineering Faculty, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Isfahan, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Yang X, Wang X, Gao X, Guo X, Hou S, Shi J, Lv Q. What else should hemostatic materials do beyond hemostasis: A review. Mater Today Bio 2024; 25:101008. [PMID: 38495915 PMCID: PMC10940931 DOI: 10.1016/j.mtbio.2024.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/27/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Massive blood loss due to injury is the leading cause of prehospital deaths in disasters and emergencies. Hemostatic materials are used to realize rapid hemostasis and protect patients from death. Researchers have designed and developed a variety of hemostatic materials. However, in addition to their hemostatic effect, hemostatic materials must be endowed with additional functions to meet the practical application requirements in different scenarios. Here, strategies for modifications of hemostatic materials for use in different application scenarios are listed: effective positioning at the site of deep and narrow wounds to stop bleeding, resistance to high blood pressure and wound movement to maintain wound formation, rapid and easy removal from the wound without affecting further treatment after hemostasis is completed, and continued function when retained in the wound as a dressing (such as antibacterial, antiadhesion, tissue repair, etc.). The problems encountered in the practical use of hemostatic materials and the strategies and progress of researchers will be further discussed in this review. We hope to provide valuable references for the design of more comprehensive and practical hemostatic materials.
Collapse
Affiliation(s)
- Xinran Yang
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, China
| | - Xiudan Wang
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, China
| | - Xing Gao
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Hospital, Tianjin 300072, China
| | - Xiaoqin Guo
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, China
| | - Shike Hou
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, China
| | - Jie Shi
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, China
| | - Qi Lv
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, China
| |
Collapse
|
20
|
Wu KC, Freedman BR, Kwon PS, Torre M, Kent DO, Bi WL, Mooney DJ. A tough bioadhesive hydrogel supports sutureless sealing of the dural membrane in porcine and ex vivo human tissue. Sci Transl Med 2024; 16:eadj0616. [PMID: 38507468 PMCID: PMC11145396 DOI: 10.1126/scitranslmed.adj0616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Complete sequestration of central nervous system tissue and cerebrospinal fluid by the dural membrane is fundamental to maintaining homeostasis and proper organ function, making reconstruction of this layer an essential step during neurosurgery. Primary closure of the dura by suture repair is the current standard, despite facing technical, microenvironmental, and anatomic challenges. Here, we apply a mechanically tough hydrogel paired with a bioadhesive for intraoperative sealing of the dural membrane in rodent, porcine, and human central nervous system tissue. Tensile testing demonstrated that this dural tough adhesive (DTA) exhibited greater toughness with higher maximum stress and stretch compared with commercial sealants in aqueous environments. To evaluate the performance of DTA in the range of intracranial pressure typical of healthy and disease states, ex vivo burst pressure testing was conducted until failure after DTA or commercial sealant application on ex vivo porcine dura with a punch biopsy injury. In contrast to commercial sealants, DTA remained adhered to the porcine dura through increasing pressure up to 300 millimeters of mercury and achieved a greater maximum burst pressure. Feasibility of DTA to repair cerebrospinal fluid leak in a simulated surgical context was evaluated in postmortem human dural tissue. DTA supported effective sutureless repair of the porcine thecal sac in vivo. Biocompatibility and adhesion of DTA was maintained for up to 4 weeks in rodents after implantation. The findings suggest the potential of DTA to augment or perhaps even supplant suture repair and warrant further exploration.
Collapse
Affiliation(s)
- Kyle C. Wu
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Wexner Medical Center and James Cancer Hospital, Ohio State University, Columbus, OH 43210, USA
| | - Benjamin R. Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Phoebe S. Kwon
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Matthew Torre
- Department of Neuropathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel O. Kent
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
- Department of General Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| |
Collapse
|
21
|
Ren H, Zhang Z, Chen X, He C. Stimuli-Responsive Hydrogel Adhesives for Wound Closure and Tissue Regeneration. Macromol Biosci 2024; 24:e2300379. [PMID: 37827713 DOI: 10.1002/mabi.202300379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Sutures and staplers, as gold standards for clinical wound closure, usually cause secondary tissue injury and require professional technicians and equipment. The noninvasive hydrogel adhesives are used in various biomedical applications, such as wound closure, tissue sealing, and tissue regeneration, due to their remarkable properties. Recently-developed hydrogel adhesives, especially stimuli-responsive hydrogels, have shown great potential owing to their advantages in regulating their performance and functions according to the wound situations or external conditions, thus allowing the wounds to heal gradually. However, comprehensive summary on stimuli-responsive hydrogels as tissue adhesives is rarely reported to date. This review focuses on the advances in the design of various stimuli-responsive hydrogel adhesives over the past decade, including the systems responsive to pH, temperature, photo, and enzymes. Their potential biomedical applications, such as skin closure, cardiovascular and liver hemostasis, and gastrointestinal sealing, are emphasized. Meanwhile, the challenges and future development of stimuli-responsive hydrogel adhesives are discussed. This review aims to provide meaningful insights for the further design of next-generation of hydrogel adhesives for wound closure and tissue regeneration.
Collapse
Affiliation(s)
- Hui Ren
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhen Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
22
|
Wu SJ, Wu J, Kaser SJ, Roh H, Shiferaw RD, Yuk H, Zhao X. A 3D printable tissue adhesive. Nat Commun 2024; 15:1215. [PMID: 38331971 PMCID: PMC10853267 DOI: 10.1038/s41467-024-45147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Tissue adhesives are promising alternatives to sutures and staples for joining tissues, sealing defects, and immobilizing devices. However, existing adhesives mostly take the forms of glues or hydrogels, which offer limited versatility. We report a direct-ink-write 3D printable tissue adhesive which can be used to fabricate bioadhesive patches and devices with programmable architectures, unlocking new potential for application-specific designs. The adhesive is conformable and stretchable, achieves robust adhesion with wet tissues within seconds, and exhibits favorable biocompatibility. In vivo rat trachea and colon defect models demonstrate the fluid-tight tissue sealing capability of the printed patches, which maintained adhesion over 4 weeks. Moreover, incorporation of a blood-repelling hydrophobic matrix enables the printed patches to seal actively bleeding tissues. Beyond wound closure, the 3D printable adhesive has broad applicability across various tissue-interfacing devices, highlighted through representative proof-of-concept designs. Together, this platform offers a promising strategy toward developing advanced tissue adhesive technologies.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jingjing Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Samuel J Kaser
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Heejung Roh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ruth D Shiferaw
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- SanaHeal, Inc., Cambridge, MA, USA.
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
23
|
Yin X, Hu Y, Kang M, Hu J, Wu B, Liu Y, Liu X, Bai M, Wei Y, Huang D. Cellulose based composite sponges with oriented porous structure and superabsorptive capacity for quick hemostasis. Int J Biol Macromol 2023; 253:127295. [PMID: 37806413 DOI: 10.1016/j.ijbiomac.2023.127295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/24/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Excessive bleeding is the leading cause of death in accidents and operations. Ca2+ crosslinked carboxyl nanocellulose (CN)/montmorillonite (MMT) composite (CaCNMMT) sponges were prepared by uniform mixing and directional freeze-drying methods which was inspired by the coordination mechanism of blood clot formation and coagulation cascade activation in natural hemostasis process. Carboxyl nanocellulose (CaCN) sponge has instantaneous water absorption capacity, and CaCNMMT sponges could further activate clotting factors. Therefore, CaCNMMT sponges achieved quick hemostasis by efficient concentrating blood, inducing hemocyte aggregation and stimulating coagulation cascade activation based on the synergistic effects of CN and MMT. Blood clotting index of CaCNMMT (15.90 ± 0.52 %) was significantly lower than CaCN (59.3 ± 1.43 %), and APTT time (22 ± 2 s) was almost equivalent to MMT (20 ± 2 s). CaCNMMT sponge showed good quick hemostatic effect on massive hemorrhage in both tail-breaking and liver injury model which provided a new strategy for the application of MMT in hemostatic and trauma treatment fields.
Collapse
Affiliation(s)
- Xiangfei Yin
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China.
| | - Min Kang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Junjie Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Baogang Wu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yeying Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xuanyu Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Miaomiao Bai
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| |
Collapse
|
24
|
Abstract
Bioadhesives have emerged as transformative and versatile tools in healthcare, offering the ability to attach tissues with ease and minimal damage. These materials present numerous opportunities for tissue repair and biomedical device integration, creating a broad landscape of applications that have captivated clinical and scientific interest alike. However, fully unlocking their potential requires multifaceted design strategies involving optimal adhesion, suitable biological interactions, and efficient signal communication. In this Review, we delve into these pivotal aspects of bioadhesive design, highlight the latest advances in their biomedical applications, and identify potential opportunities that lie ahead for bioadhesives as multifunctional technology platforms.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Monteiro LPG, Rodrigues JMM, Mano JF. In situ generated hemostatic adhesives: From mechanisms of action to recent advances and applications. BIOMATERIALS ADVANCES 2023; 155:213670. [PMID: 37952461 DOI: 10.1016/j.bioadv.2023.213670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023]
Abstract
Conventional surgical closure techniques, such as sutures, clips, or skin closure strips, may not always provide optimal wound closure and may require invasive procedures, which can result in potential post-surgical complications. As result, there is a growing demand for innovative solutions to achieve superior wound closure and improve patient outcomes. To overcome the abovementioned issues, in situ generated hemostatic adhesives/sealants have emerged as a promising alternative, offering a targeted, controllable, and minimally invasive procedure for a wide variety of medical applications. The aim of this review is to provide a comprehensive overview of the mechanisms of action and recent advances of in situ generated hemostatic adhesives, particularly protein-based, thermoresponsive, bioinspired, and photocrosslinkable formulations, as well as the design challenges that must be addressed. Overall, this review aims to enhance a comprehensive understanding of the latest advancements of in situ generated hemostatic adhesives and their mechanisms of action, with the objective of promoting further research in this field.
Collapse
Affiliation(s)
- Luís P G Monteiro
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João M M Rodrigues
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
26
|
Chen M, Chen T, Bai J, He S, Luo M, Zeng Y, Peng W, Zhao Y, Wang J, Zhu X, Zhi W, Weng J, Zhang K, Zhang X. A Nature-Inspired Versatile Bio-Adhesive. Adv Healthc Mater 2023; 12:e2301560. [PMID: 37548628 DOI: 10.1002/adhm.202301560] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/17/2023] [Indexed: 08/08/2023]
Abstract
The application of most hydrogel bio-adhesives is greatly limited due to their high swelling, low underwater adhesion, and single function. Herein, a spatial multi-level physical-chemical and bio-inspired in-situ bonding strategy is proposed, to develop a multifunctional hydrogel bio-glue using polyglutamic acid (PGA), tyramine hydrochloride (TYR), and tannic acid (TA) as precursors and 4-(4,6-dimethoxytriazine-2-yl) -4-methylmorpholine hydrochloride(DMTMM) as condensation agent, which is used for tissue adhesion, hemostasis and repair. By introducing TYR and TA into the PGA chain, it is demonstrated that not only can the strong adhesion of bio-glue to the surface of various fresh tissues and wet materials be realized through the synergistic effect of spatial multi-level physical and chemical bonding, but also this glue can be endowed with the functions of anti-oxidation and hemostasis. The excellent performance of such bio-glue in the repair of the wound, liver, and cartilage is achieved, showing a great potential in clinical application for such bio-glue. This study will open up a brand-new avenue for the development of multifunctional hydrogel biological adhesive.
Collapse
Affiliation(s)
- Mingxia Chen
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Taijun Chen
- Chengdu University of Traditional Chinese Medicine, School of Intelligent Medicine, Chengdu, 611137, China
| | - Jiafan Bai
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Siyuan He
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Minyue Luo
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Yili Zeng
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Wenzhen Peng
- Department of Biochemistry and Molecular Biology, College of Basic and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yuancong Zhao
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Jianxin Wang
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Wei Zhi
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Jie Weng
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
27
|
Sun X, Li N, Su C, Mu Y, Cong X, Cao Z, Wang X, Yang X, Chen X, Feng C. Diatom-Inspired Bionic Hydrophilic Polysaccharide Adhesive for Rapid Sealing Hemostasis. ACS NANO 2023; 17:19121-19135. [PMID: 37725112 DOI: 10.1021/acsnano.3c05205] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Diatoms are typical marine biofouling organisms that secrete extracellular polymers (EPS) to achieve strong underwater adhesion. Here, we report a diatom-inspired bionic hydrophilic polysaccharide adhesive composed of diatom biosilica (DB) and bletilla striata polysaccharide (BSP) for rapid sealing hemostasis. The hierarchical porous structure of DB with rich surface silanol groups provides a strong anchored interface effect for BSP, which can significantly enhance cross-linking density and interaction strength of the hydrophilic macromolecular network. BSP/DB adhesive offers 6 times greater mechanical strength and viscosity over BSP under different temperature conditions. The aggregation effect of DBs interface for BSP avoided the washout of BSP/DB adhesive during application in a wet environment before cross-linking occurs. This strengthened the adhesion ability of BSP/DB adhesive to biological tissue that brought out complete sealing hemostasis without blood loss in a rat liver injury model. The dry BSP/DB prepared by lyophilization inherited excellent clotting ability of BSP/DB adhesive, which could realize rapidly the cruor of anticoagulant whole blood within 1 min. The results of animal studies confirmed that dry BSP/DB exhibited superior hemostatic performance over silicate-based inorganic Quikclot, in terms of hemostatic rate, blood loss, dosage, and multiscroll wound closure.
Collapse
Affiliation(s)
- Xiaojie Sun
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Na Li
- Department of Intensive Care Medicine, Qingdao Fifth People's Hospital, 3# Jiaxiang Road, Qingdao 266002, Shandong Province, China
| | - Chang Su
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Yuzhi Mu
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xin Cong
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Zheng Cao
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiaoye Wang
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiaoyan Yang
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
- Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya 572019, Hainan Province, China
- Laoshan Laboratory, 1# Wenhai Road, Qingdao 266000, Shandong Province, China
| | - Chao Feng
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
- Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya 572019, Hainan Province, China
| |
Collapse
|
28
|
Wang S, Chen H, Huang J, Shen S, Tang Z, Tan X, Lei D, Zhou G. Gelatin-modified 3D printed PGS elastic hierarchical porous scaffold for cartilage regeneration. APL Bioeng 2023; 7:036105. [PMID: 37547670 PMCID: PMC10404141 DOI: 10.1063/5.0152151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023] Open
Abstract
Regenerative cartilage replacements are increasingly required in clinical settings for various defect repairs, including bronchial cartilage deficiency, articular cartilage injury, and microtia reconstruction. Poly (glycerol sebacate) (PGS) is a widely used bioelastomer that has been developed for various regenerative medicine applications because of its excellent elasticity, biodegradability, and biocompatibility. However, because of inadequate active groups, strong hydrophobicity, and limited ink extrusion accuracy, 3D printed PGS scaffolds may cause insufficient bioactivity, inefficient cell inoculation, and inconsistent cellular composition, which seriously hinders its further cartilage regenerative application. Here, we combined 3D printed PGS frameworks with an encapsulated gelatin hydrogel to fabricate a PGS@Gel composite scaffold. PGS@Gel scaffolds have a controllable porous microstructure, with suitable pore sizes and enhanced hydrophilia, which could significantly promote the cells' penetration and adhesion for efficient chondrocyte inoculation. Furthermore, the outstanding elasticity and fatigue durability of the PGS framework enabled the regenerated cartilage built by the PGS@Gel scaffolds to resist the dynamic in vivo environment and maintain its original morphology. Importantly, PGS@Gel scaffolds increased the rate of cartilage regeneration concurrent with scaffold degradation. The scaffold was gradually degraded and integrated to form uniform, dense, and mature regenerated cartilage tissue with little scaffold residue.
Collapse
Affiliation(s)
| | | | | | - Sisi Shen
- Department of Plastic and Reconstructive Surgery, Department of Cardiology, Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Zhengya Tang
- Department of Plastic and Reconstructive Surgery, Department of Cardiology, Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Xiaoyan Tan
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
| | - Dong Lei
- Authors to whom correspondence should be addressed:; ; and
| | - Guangdong Zhou
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|
29
|
Erdi M, Sandler A, Kofinas P. Polymer nanomaterials for use as adjuvant surgical tools. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1889. [PMID: 37044114 PMCID: PMC10524211 DOI: 10.1002/wnan.1889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023]
Abstract
Materials employed in the treatment of conditions encountered in surgical and clinical practice frequently face barriers in translation to application. Shortcomings can be generalized through their reduced mechanical stability, difficulty in handling, and inability to conform or adhere to complex tissue surfaces. To overcome an amalgam of challenges, research has sought the utilization of polymer-derived nanomaterials deposited in various fashions and formulations to improve the application and outcomes of surgical and clinical interventions. Clinically prevalent applications include topical wound dressings, tissue adhesives, surgical sealants, hemostats, and adhesion barriers, all of which have displayed the potential to act as superior alternatives to current materials used in surgical procedures. In this review, emphasis will be placed not only on applications, but also on various design strategies employed in fabrication. This review is designed to provide a broad and thought-provoking understanding of nanomaterials as adjuvant tools for the assisted treatment of pathologies prevalent in surgery. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Metecan Erdi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - Anthony Sandler
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Joseph E. Robert Jr. Center for Surgical Care, Children's National Medical Center, Washington, DC, USA
| | - Peter Kofinas
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
30
|
Niedźwiedź MJ, Ignaczak W, Sobolewski P, Goszczyńska A, Demirci G, El Fray M. Injectable and photocurable macromonomers synthesized using a heterometallic magnesium-titanium metal-organic catalyst for elastomeric polymer networks. RSC Adv 2023; 13:18371-18381. [PMID: 37342811 PMCID: PMC10277904 DOI: 10.1039/d3ra02157b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Injectable and in situ photocurable biomaterials are receiving a lot of attention due to their ease of application via syringe or dedicated applicator and ability to be used in laparoscopic and robotic minimally invasive procedures. The aim of this work was to synthesize photocurable ester-urethane macromonomers using a heterometallic magnesium-titanium catalyst, magnesium-titanium(iv) butoxide for elastomeric polymer networks. The progress of the two-step synthesis of macromonomers was monitored using infrared spectroscopy. The chemical structure and molecular weight of the obtained macromonomers were characterized using nuclear magnetic resonance spectroscopy and gel permeation chromatography. The dynamic viscosity of the obtained macromonomers was evaluated by a rheometer. Next, the photocuring process was studied under both air and argon atmospheres. Both the thermal and dynamic mechanical thermal properties of the photocured soft and elastomeric networks were investigated. Finally, in vitro cytotoxicity screening of polymer networks based on ISO10993-5 revealed high cell viability (over 77%) regardless of curing atmosphere. Overall, our results indicate that this heterometallic magnesium-titanium butoxide catalyst can be an attractive alternative to commonly used homometallic catalysts for the synthesis of injectable and photocurable materials for medical applications.
Collapse
Affiliation(s)
- Malwina J Niedźwiedź
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin Al. Piastów 45 70-311 Szczecin Poland
| | - Wojciech Ignaczak
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin Al. Piastów 45 70-311 Szczecin Poland
| | - Peter Sobolewski
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin Al. Piastów 45 70-311 Szczecin Poland
| | - Agata Goszczyńska
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin Al. Piastów 45 70-311 Szczecin Poland
| | - Gokhan Demirci
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin Al. Piastów 45 70-311 Szczecin Poland
| | - Miroslawa El Fray
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin Al. Piastów 45 70-311 Szczecin Poland
| |
Collapse
|
31
|
Dolgin E. Bioglue breakthrough. Nature 2023:10.1038/d41586-023-01661-2. [PMID: 37225806 DOI: 10.1038/d41586-023-01661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
32
|
Peng W, Liu C, Lai Y, Wang Y, Liu P, Shen J. An Adhesive/Anti-Adhesive Janus Tissue Patch for Efficient Closure of Bleeding Tissue with Inhibited Postoperative Adhesion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301427. [PMID: 37173819 PMCID: PMC10375199 DOI: 10.1002/advs.202301427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/14/2023] [Indexed: 05/15/2023]
Abstract
Most of the current bioadhesives cannot perform well on bleeding tissues while postoperative adhesion is a general but serious clinical issue. Here, a three-layer biodegradable Janus tissue patch (J-TP) that is able to simultaneously enable efficient closure of bleeding wounds with significantly promoted clotting ability and suppressed postoperative adhesion of tissues is reported. A dry adhesive hydrogel bottom layer of the J-TP can form rapid (within 15 s) and strong (tensile strength up to 98 kPa) adhesion to bleeding/wet tissues with high bursting pressure (about 312.5 mmHg on a sealed porcine skin) through hydrogen binding and covalent conjugation between the carboxyl & N-hydroxy succinimide (NHS) groups of hydrogel and the primary amine groups of tissues, while the phosphonic motifs can significantly reduce blood loss (by 81% on a rat bleeding liver model) of bleeding wounds. A thin polylactic acid (PLA) middle layer can improve the tensile strength (by 132%) of the J-TP in wet conditions while the grafted zwitterionic polymers can effectively prevent postoperative tissue adhesion and inflammatory reaction. This J-TP may be a promising tissue patch to assist the clinical treatment of injured bleeding tissues with inhibited postoperative adhesion.
Collapse
Affiliation(s)
- Wan Peng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Cheng Liu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, P. R. China
| | - Youjin Lai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yanting Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Pingsheng Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
33
|
Devaud YR, Avilla-Royo E, Lionetti L, Tronnier H, Seehusen F, Monné Rodriguez JM, Moehrlen U, Weisskopf M, Vonzun L, Strübing N, Ochsenbein-Kölble N, Ehrbar M. Tissue Glue-Based Sealing Patch for the in vivo Prevention of Iatrogenic Prelabor Preterm Rupture of Fetal Membranes. Fetal Diagn Ther 2023; 50:332-343. [PMID: 37231883 DOI: 10.1159/000530958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION One of the main concerns for all fetal surgeries is the risk of preterm delivery due to the preterm prelabor rupture of the fetal membranes (iPPROM). Clinical approaches to seal fetal membrane (FM) defects are missing due to the lack of appropriate strategies to apply sealing biomaterials at the defect site. METHODS Here, we test the performance of a previously developed strategy to seal FM defects with cyanoacrylate-based sealing patches in an ovine model up to 24 days after application. RESULTS Patches sealed tightly the fetoscopy-induced FM defects and remained firmly attached to the defect over 10 days. At 10 days after treatment, 100% (13/13) of the patches were attached to the FMs, and 24 days after treatment 25% (1/4) of the patches placed in CO2 insufflation, and 33% (1/3) in NaCl infusion remained. However, all successfully applied patches (20/24) led to a watertight sealing at 10 or 24 days after treatment. Histological analysis indicated that cyanoacrylates induced a moderate immune response and disrupted the FM epithelium. CONCLUSION Together, these data show the feasibility of minimally invasive sealing of FM defects by locally gathering tissue adhesive. Further development to combine this technology with refined tissue glues or healing-inducing materials holds great promise for future clinical translation.
Collapse
Affiliation(s)
- Yannick R Devaud
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- KOVE medical AG, Zurich, Switzerland
| | - Eva Avilla-Royo
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Leonardo Lionetti
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Helena Tronnier
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- KOVE medical AG, Zurich, Switzerland
| | - Frauke Seehusen
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Josep M Monné Rodriguez
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Ueli Moehrlen
- Department of Pediatric Surgery, University Children's Hospital Zurich, Zurich, Switzerland
- The Zurich Center for Fetal Diagnosis and Therapy, Zurich, Switzerland
- Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Miriam Weisskopf
- Center of Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ladina Vonzun
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- The Zurich Center for Fetal Diagnosis and Therapy, Zurich, Switzerland
| | - Nele Strübing
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- The Zurich Center for Fetal Diagnosis and Therapy, Zurich, Switzerland
| | - Nicole Ochsenbein-Kölble
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- The Zurich Center for Fetal Diagnosis and Therapy, Zurich, Switzerland
| | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Zhou Y, Yang L, Liu Z, Sun Y, Huang J, Liu B, Wang Q, Wang L, Miao Y, Xing M, Hu Z. Reversible adhesives with controlled wrinkling patterns for programmable integration and discharging. SCIENCE ADVANCES 2023; 9:eadf1043. [PMID: 37043582 PMCID: PMC10096647 DOI: 10.1126/sciadv.adf1043] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Switchable and minimally invasive tissue adhesives have great potential for medical applications. However, on-demand adherence to and detachment from tissue surfaces remain difficult. We fabricated a switchable hydrogel film adhesive by designing pattern-tunable wrinkles to control adhesion. When adhered to a substrate, the compressive stress generated from the bilayer system leads to self-similar wrinkling patterns at short and long wavelengths, regulating the interfacial adhesion. To verify the concept and explore its application, we established a random skin flap model, which is a crucial strategy for repairing severe or large-scale wounds. Our hydrogel adhesive provides sufficient adhesion for tissue sealing and promotes neovascularization at the first stage, and then gradually detaches from the tissue while a dynamic wrinkling pattern transition happens. The gel film can be progressively ejected out from the side margins after host-guest integration. Our findings provide insights into tunable bioadhesion by manipulating the wrinkling pattern transition.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Lunan Yang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Zhen Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Yang Sun
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Junfei Huang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Bingcheng Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Quan Wang
- School of Civil Engineering, Shantou University, Shantou 515063, P.R. China
| | - Leyu Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| |
Collapse
|
35
|
Xue YT, Chen MY, Cao JS, Wang L, Hu JH, Li SY, Shen JL, Li XG, Zhang KH, Hao SQ, Juengpanich S, Cheng SB, Wong TW, Yang XX, Li TF, Cai XJ, Yang W. Adhesive cryogel particles for bridging confined and irregular tissue defects. Mil Med Res 2023; 10:15. [PMID: 36949519 PMCID: PMC10035260 DOI: 10.1186/s40779-023-00451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/05/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Reconstruction of damaged tissues requires both surface hemostasis and tissue bridging. Tissues with damage resulting from physical trauma or surgical treatments may have arbitrary surface topographies, making tissue bridging challenging. METHODS This study proposes a tissue adhesive in the form of adhesive cryogel particles (ACPs) made from chitosan, acrylic acid, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The adhesion performance was examined by the 180-degree peel test to a collection of tissues including porcine heart, intestine, liver, muscle, and stomach. Cytotoxicity of ACPs was evaluated by cell proliferation of human normal liver cells (LO2) and human intestinal epithelial cells (Caco-2). The degree of inflammation and biodegradability were examined in dorsal subcutaneous rat models. The ability of ACPs to bridge irregular tissue defects was assessed using porcine heart, liver, and kidney as the ex vivo models. Furthermore, a model of repairing liver rupture in rats and an intestinal anastomosis in rabbits were established to verify the effectiveness, biocompatibility, and applicability in clinical surgery. RESULTS ACPs are applicable to confined and irregular tissue defects, such as deep herringbone grooves in the parenchyma organs and annular sections in the cavernous organs. ACPs formed tough adhesion between tissues [(670.9 ± 50.1) J/m2 for the heart, (607.6 ± 30.0) J/m2 for the intestine, (473.7 ± 37.0) J/m2 for the liver, (186.1 ± 13.3) J/m2 for muscle, and (579.3 ± 32.3) J/m2 for the stomach]. ACPs showed considerable cytocompatibility in vitro study, with a high level of cell viability for 3 d [(98.8 ± 1.2) % for LO2 and (98.3 ± 1.6) % for Caco-2]. It has comparable inflammation repair in a ruptured rat liver (P = 0.58 compared with suture closure), the same with intestinal anastomosis in rabbits (P = 0.40 compared with suture anastomosis). Additionally, ACPs-based intestinal anastomosis (less than 30 s) was remarkably faster than the conventional suturing process (more than 10 min). When ACPs degrade after surgery, the tissues heal across the adhesion interface. CONCLUSIONS ACPs are promising as the adhesive for clinical operations and battlefield rescue, with the capability to bridge irregular tissue defects rapidly.
Collapse
Affiliation(s)
- Yao-Ting Xue
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Ming-Yu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Jia-Sheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Lei Wang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Hao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Si-Yang Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Ji-Liang Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Xin-Ge Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Kai-Hang Zhang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Shu-Qiang Hao
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
| | - Sarun Juengpanich
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Si-Bo Cheng
- Soft Intelligent Materials Co., Ltd, Suzhou, 215123, China
| | - Tuck-Whye Wong
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
- School of Biomedical Engineering and Health Sciences and Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Malaysia
| | - Xu-Xu Yang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China.
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China.
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China.
| | - Tie-Feng Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Xiu-Jun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Wei Yang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
36
|
Preliminary Application Research of 3D Bioprinting in Craniofacial Reconstruction. J Craniofac Surg 2023; 34:805-808. [PMID: 36729378 DOI: 10.1097/scs.0000000000009113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION In recent years, 3-dimensional (3D) printing has been widely used in regenerative medicine research and other fields because of its ability to customize macroscopic morphology and precisely control microstructure. Polymer scaffolds are 1 of the commonly used 3D bioprinting materials for defect repair and have recently been a research focus. Our article explored the bone-formation accelerating effect of 3D-printed porous scaffold Poly(glycerol sebacate) [PGS] in the critical bone defect of an enhancing rabbit mandibular model. Also, we overview and summarize the classification of 3D bioprinting materials and prospects for their various application scenarios in craniofacial reconstruction surgery. MATERIALS AND METHODS A PGS elastomer scaffold was prepared by polymerizing equimolar amounts of sebacic acid and glycerol using a biological 3D printer. Six male New Zealand white rabbits were prepared (3 for the control group and 3 for the PGS group), each weighing 3 kg. Osteotomy was performed at the anterior edge of the ascending ramus of the mandible with a bone saw to open the 8 mm defect. Defects of the control group were empty, and defects of the PGS group were put into 8 mm-wide PGS elastomer scaffolds. The rabbits were euthanized 6 weeks after the operation, and the postoperative mandibles were collected. Information (presence or absence of pus from infection, nonunion, degree of macroscopic bone healing) was recorded, and the skeletal tissue was fixed in a paraformaldehyde solution. RESULTS The mandible on the enhanced side was significantly longer than that on the opposite side, and the contralateral incisor was hyperplasia. The mandibles of rabbits in each group healed well, and there was no obvious local infection and purulence. The gross specimen appearance showed that both ends of the defect were connected. When comparing the reconstructed mandibles of the two groups, it is apparent that the width and thickness of the new bone in the PGS group were significantly better than that in the control group. CONCLUSIONS This article verifies the effect of 3D polypore PGS scaffolds in animal craniomaxillofacial bone defects and introduces various application scenarios of 3D printing materials in craniomaxillofacial reconstruction surgery. There are quite good application prospects for 3D bioprinting in animal experiments and even clinical treatment of craniofacial defects.
Collapse
|
37
|
Wang H, Cheng J, Sun F, Dou X, Liu J, Wang Y, Li M, Gao J, Liu X, Wang X, Yang F, Zhu Z, Shen H, Zhang L, Tang P, Wu D. A Super Tough, Rapidly Biodegradable, Ultrafast Hemostatic Bioglue. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208622. [PMID: 36579739 DOI: 10.1002/adma.202208622] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Death happening due to massive hemorrhage has been involved in military conflicts, traffic accidents, and surgical injuries of various human disasters. Achieving rapid and effective hemostasis to save lives is crucial in urgent massive bleeding situations. Herein, a covalent cross-linked AG-PEG glue based on extracellular matrix-like amino-gelatin (AG) and PEG derivatives is developed. The AG-PEG glue gelatinizes fast and exhibits firm and indiscriminate close adhesion with various moist tissues upon being dosed. The formed glue establishes an adhesive and robust barrier to seal the arterial, hepatic, and cardiac hemorrhagic wounds, enabling it to withstand up to 380 mmHg blood pressure in comparison with normal systolic blood pressure of 60-180 mmHg. Remarkably, massive bleeding from a pig cardiac penetrating hole with 6 mm diameter is effectively stopped using the glue within 60 s. Postoperative indexes of the treated pig gradually recover and the cardiac wounds regrow significantly at 14 days. Possessing on-demand solubility, self-gelling, and rapid degradability, the AG-PEG glue may provide a fascinating stop-bleeding approach for clinical hemostasis and emergency rescue.
Collapse
Affiliation(s)
- Hufei Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyao Cheng
- Senior Department of Orthopedics, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Chinese PLA General Hospital, Beijing, 100853, China
| | - Feifei Sun
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xueyu Dou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianheng Liu
- Senior Department of Orthopedics, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yiru Wang
- Department of Ultrasound, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ming Li
- Senior Department of Orthopedics, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jianpeng Gao
- Senior Department of Orthopedics, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiao Liu
- Senior Department of Orthopedics, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziran Zhu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Shen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Licheng Zhang
- Senior Department of Orthopedics, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Chinese PLA General Hospital, Beijing, 100853, China
| | - Peifu Tang
- Senior Department of Orthopedics, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Chinese PLA General Hospital, Beijing, 100853, China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
38
|
Wei C, Shi W, Zhao C, Yang S, Zheng J, Zhong J, Zhao T, Kong S, Gong X, Liu M. Superwetting Injectable Hydrogel with Ultrastrong and Fast Tissue Adhesion for Minimally Invasive Hemostasis. Adv Healthc Mater 2023; 12:e2201799. [PMID: 36333905 DOI: 10.1002/adhm.202201799] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/23/2022] [Indexed: 11/08/2022]
Abstract
Injectable hydrogels have recently emerged as alternatives to sutures for various clinical indications. However, existing injectable hydrogels are unsuitable for hemostasis in minimally invasive surgery because of their weak interfacial adhesion and complex/prolonged processing. Herein, a superwetting injectable hydrogel composed of oppositely charged polysaccharides is developed. The spontaneous spreading of the injectable hydrogel on the surfaces achieves complete wetting and forms tight interfacial contact by absorbing the interfacial water. The superwetting ability and subsequent covalent crosslinking perform fast and ultrastrong wet adhesion (140 kPa) on the tissue surface. Ex vivo porcine and in vivo rat models show that the hydrogel successfully leads to the aggregation of erythrocytes for targeted hemostasis (in less than 12 s) without requiring external adjuncts, and no postsurgical adhesions to the peripheral tissues. This further demonstrates that hydrogel can act as an effective hemostasis agent in laparoscopic surgery in a rabbit model. Overall, the strong wet adhesion, antibacterial properties, and easy operability make this injectable hydrogel a promising candidate for hemostasis applications, as it can successfully combine clinical efficacy and transformation opportunities for minimally invasive surgery.
Collapse
Affiliation(s)
- Congying Wei
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Weili Shi
- Department of Sports Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Chuangqi Zhao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Shuai Yang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - JinPan Zhong
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Tianyi Zhao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Simin Kong
- Department of Sports Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Xi Gong
- Department of Sports Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Mingjie Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| |
Collapse
|
39
|
Melrose J. High Performance Marine and Terrestrial Bioadhesives and the Biomedical Applications They Have Inspired. Molecules 2022; 27:molecules27248982. [PMID: 36558114 PMCID: PMC9783952 DOI: 10.3390/molecules27248982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
This study has reviewed the naturally occurring bioadhesives produced in marine and freshwater aqueous environments and in the mucinous exudates of some terrestrial animals which have remarkable properties providing adhesion under difficult environmental conditions. These bioadhesives have inspired the development of medical bioadhesives with impressive properties that provide an effective alternative to suturing surgical wounds improving closure and healing of wounds in technically demanding tissues such as the heart, lung and soft tissues like the brain and intestinal mucosa. The Gecko has developed a dry-adhesive system of exceptional performance and has inspired the development of new generation re-usable tapes applicable to many medical procedures. The silk of spider webs has been equally inspiring to structural engineers and materials scientists and has revealed innovative properties which have led to new generation technologies in photonics, phononics and micro-electronics in the development of wearable biosensors. Man made products designed to emulate the performance of these natural bioadhesive molecules are improving wound closure and healing of problematic lesions such as diabetic foot ulcers which are notoriously painful and have also found application in many other areas in biomedicine. Armed with information on the mechanistic properties of these impressive biomolecules major advances are expected in biomedicine, micro-electronics, photonics, materials science, artificial intelligence and robotics technology.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Faculty of Medicine and Health, University of Sydney at Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia;
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern Campus, The University of Sydney, St. Leonards, NSW 2065, Australia
| |
Collapse
|
40
|
Yang W, Xuan C, Liu X, Zhang Q, Wu K, Bian L, Shi X. A sandwiched patch toward leakage-free and anti-postoperative tissue adhesion sealing of intestinal injuries. Bioact Mater 2022; 24:112-123. [PMID: 36582344 PMCID: PMC9760658 DOI: 10.1016/j.bioactmat.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Ideal repair of intestinal injury requires a combination of leakage-free sealing and postoperative antiadhesion. However, neither conventional hand-sewn closures nor existing bioglues/patches can achieve such a combination. To this end, we develop a sandwiched patch composed of an inner adhesive and an outer antiadhesive layer that are topologically linked together through a reinforced interlayer. The inner adhesive layer tightly and instantly adheres to the wound sites via -NHS chemistry; the outer antiadhesive layer can inhibit cell and protein fouling based on the zwitterion structure; and the interlayer enhances the bulk resilience of the patch under excessive deformation. This complementary trilayer patch (TLP) possesses a unique combination of instant wet adhesion, high mechanical strength, and biological inertness. Both rat and pig models demonstrate that the sandwiched TLP can effectively seal intestinal injuries and inhibit undesired postoperative tissue adhesion. The study provides valuable insight into the design of multifunctional bioadhesives to enhance the treatment efficacy of intestinal injuries.
Collapse
Affiliation(s)
- Wei Yang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chengkai Xuan
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China,Guangzhou Soonheal Medical Technology. Co, Ltd, Guangzhou, 510230, China
| | - Xuemin Liu
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qiang Zhang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Liming Bian
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China,School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China,Corresponding author. National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China,Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
41
|
Ke X, Tang S, Wang H, Cai Y, Dong Z, Li M, Yang J, Xu X, Luo J, Li J. Natural Small Biological Molecule Based Supramolecular Bioadhesives with Innate Photothermal Antibacterial Capability for Nonpressing Hemostasis and Effective Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53546-53557. [PMID: 36399156 DOI: 10.1021/acsami.2c17415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bioadhesives with immediate wound closure, efficient hemostasis, and antibacterial properties that can well integrate with tissue are urgently needed in wound management. Natural small biological molecule based bioadhesives hold great promise for manipulating wound healing by taking advantage of integrated functionalities, synthetic simplification, and accuracy, cost efficiency and biosafety. Herein, a natural small biological molecule based bioadhesive, composed of natural small biological molecules (α-lipoic acid and tannic acid) and a small amount of ferric chloride, was prepared via an extremely simple and green route for wound management. In this system, covalent and noncovalent interactions between each component resulted in the self-healing supramolecular bioadhesive. It possessed appropriate wet-tissue adhesion, efficient nonpressing hemostasis and free radical scavenging abilities. More importantly, the interaction between tannic acid and Fe3+ endowed the bioadhesive with innate and steady photothermal activity, which showed excellent photothermal bactericidal activity to both E. coli and S. aureus. The bioadhesive promoted wound healing for linear and circular wounds in vivo, especially for infectious wounds under near-infrared (NIR) irradiation. This bioadhesive will have promising value as a safe and effective antimicrobial adhesive for infectious wound management.
Collapse
Affiliation(s)
- Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang550025, P.R. China
| | - Shuxian Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
| | - Hao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
| | - Yusong Cai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
| | - Zhiyun Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
| | - Mingjing Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Med-X Center for Materials, Sichuan University, Chengdu610065, P.R. China
| |
Collapse
|
42
|
Yu L, Zeng G, Xu J, Han M, Wang Z, Li T, Long M, Wang L, Huang W, Wu Y. Development of Poly(Glycerol Sebacate) and Its Derivatives: A Review of the Progress over the past Two Decades. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2150774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Liu Yu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guanjie Zeng
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie Xu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Mingying Han
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Zihan Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ting Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meng Long
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ling Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
43
|
Karsan RB, Allen R, Powell A, Beattie GW. Minimally-invasive cardiac surgery: a bibliometric analysis of impact and force to identify key and facilitating advanced training. J Cardiothorac Surg 2022; 17:236. [PMID: 36114506 PMCID: PMC9479391 DOI: 10.1186/s13019-022-01988-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
Background The number of citations an article receives is a marker of its scientific influence within a particular specialty. This bibliometric analysis intended to recognise the top 100 cited articles in minimally-invasive cardiac surgery, to determine the fundamental subject areas that have borne considerable influence upon clinical practice and academic knowledge whilst also considering bibliometric scope. This is increasingly relevant in a continually advancing specialty and one where minimally-invasive cardiac procedures have the potential for huge benefits to patient outcomes.
Methods The Web of Science (Clarivate Analytics) data citation index database was searched with the following terms: [Minimal* AND Invasive* AND Card* AND Surg*]. Results were limited to full text English language manuscripts and ranked by citation number. Further analysis of the top 100 cited articles was carried out according to subject, author, publication year, journal, institution and country of origin. Results A total of 4716 eligible manuscripts were retrieved. Of the top 100 papers, the median (range) citation number was 101 (51–414). The most cited paper by Lichtenstein et al. (Circulation 114(6):591–596, 2006) published in Circulation with 414 citations focused on transapical transcatheter aortic valve implantation as a viable alternative to aortic valve replacement with cardiopulmonary bypass in selected patients with aortic stenosis. The Annals of Thoracic Surgery published the most papers and received the most citations (n = 35; 3036 citations). The United States of America had the most publications and citations (n = 52; 5303 citations), followed by Germany (n = 27; 2598 citations). Harvard Medical School, Boston, Massachusetts, published the most papers of all institutions. Minimally-invasive cardiac surgery pertaining to valve surgery (n = 42) and coronary artery bypass surgery (n = 30) were the two most frequent topics by a large margin. Conclusions This work establishes a comprehensive and informative analysis of the most influential publications in minimally-invasive cardiac surgery and outlines what constitutes a citable article. Undertaking a quantitative evaluation of the top 100 papers aids in recognising the contributions of key authors and institutions as well as guiding future efforts in this field to continually improve the quality of care offered to complex cardiac patients.
Collapse
|
44
|
Minimally Invasive Bimanual Fetal Surgery—A Review. CHILDREN 2022; 9:children9091377. [PMID: 36138686 PMCID: PMC9498043 DOI: 10.3390/children9091377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Background: The aim of this review is to discuss experimental and clinical techniques and interventions of fetal surgery which have been performed minimally invasively by the means of a three-port approach for the fetoscope and instruments for the left and right hand of the surgeon (bimanual minimally invasive fetal surgery). Methods: a print and electronic literature search was performed; the titles and abstracts were screened and included reports were reviewed in a two-step approach. First, reports other than minimally invasive fetal surgery were excluded, then a full text review and analysis of the reported data was performed. Results: 17 reports were included. The heterogeneity of the included reports was high. Although reports on human fetoscopic surgical procedures can be found, most of them do not pick out bimanual fetal surgery as a central theme but rather address interventions applying a fetoscope with a working channel for a laser fiber, needle or flexible instrument. Most reports were on experimentation in animal models, the human application of minimally invasive fetoscopic bimanual surgery is rare and has at best been explored for the prenatal treatment of spina bifida. Some reported bimanual fetoscopic procedures were performed on the exteriorized uterus via a maternal laparotomy and can therefore not be classified as being truly minimally invasive. Discussion: our results demonstrate that minimally invasive fetoscopic bimanual surgery is rare, even in animal models, excluding many other techniques and procedures that are loosely termed ‘minimally invasive fetal surgery’ which we suggest to better label as ‘interventions’. Thus, more research on percutaneous minimally invasive bimanual fetoscopic surgery is warranted, with the aim to reduce the maternal, uterine and fetal trauma for correction of congenital malformations.
Collapse
|
45
|
Huang Y, Fan C, Liu Y, Yang L, Hu W, Liu S, Wang T, Shu Z, Li B, Xing M, Yang S. Nature-Derived Okra Gel as Strong Hemostatic Bioadhesive in Human Blood, Liver, and Heart Trauma of Rabbits and Dogs. Adv Healthc Mater 2022; 11:e2200939. [PMID: 35776108 DOI: 10.1002/adhm.202200939] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/06/2022] [Indexed: 01/27/2023]
Abstract
Bioadhesive performance can be compromised due to bleeding. Bleeding increases mortality. Adhesives with hemostatic function are of great significance. A sustainable and robust hemostatic bioadhesive from okra is reported. The adhesive strength reaches around three and six-fold higher than commercial fibrin on pigskin and glass, respectively. The okra gel presents high-pressure resistance and great underwater adhesive strength. In human blood experiments, the okra gel can activate platelets, enhance the adhesion of activated platelets, and release coagulation factors XI and XII. By forming a fast gel layer and closely adhering to the wound, it can quickly stop bleeding in the liver and heart of rabbits and dogs. Meanwhile, okra gel can cause platelet activation at the wound site and further strengthen its hemostatic performance. It is biocompatible, biodegradable, and can promote wound healing and shows potential as a sustainable bioadhesive, especially in the scenario of significant hemorrhage.
Collapse
Affiliation(s)
- Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| | - Chaoqiang Fan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| | - Yuqing Liu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Lu Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, P. R. China
| | - Weichao Hu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Shuang Liu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Tongchuan Wang
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Zhenzhen Shu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Bingyun Li
- School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| |
Collapse
|
46
|
Yousefi Talouki P, Tamimi R, Zamanlui Benisi S, Goodarzi V, Shojaei S, Hesami tackalou S, Samadikhah HR. Polyglycerol sebacate (PGS)-based composite and nanocomposites: properties and applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2097681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Pardis Yousefi Talouki
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Reyhaneh Tamimi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
- Stem cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 13185/768, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19945-546, Tehran, Iran
| | - Shahrokh Shojaei
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
- Stem cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 13185/768, Iran
| | | | | |
Collapse
|
47
|
Lee WJ, Cho K, Kim AY, Kim GW. Injectable Click Fibroin Bioadhesive Derived from Spider Silk for Accelerating Wound Closure and Healing Bone Fracture. MATERIALS 2022; 15:ma15155269. [PMID: 35955202 PMCID: PMC9369627 DOI: 10.3390/ma15155269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 01/20/2023]
Abstract
Wound closure is a critical step in postoperative wound recovery. Substantial advancements have been made in many different means of facilitating wound closure, including the use of tissue adhesives. Compared to conventional methods, such as suturing, tissue bioadhesives better accelerate wound closure. However, several existing tissue adhesives suffer from cytotoxicity, inadequate tissue adhesive strength, and high costs. In this study, a series of bioadhesives was produced using non-swellable spider silk-derived silk fibroin protein and an outer layer of swellable polyethylene glycol and tannic acid. The gelation time of the spider silk-derived silk fibroin protein bioadhesive is less than three minutes and thus can be used during rapid surgical wound closure. By adding polyethylene glycol (PEG) 2000 and tannic acid as co-crosslinking agents to the N-Hydroxysuccinimide (NHS), and 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) reaction, the adhesive strength of the bioadhesive became 2.5 times greater than that of conventional fibrin glue adhesives. Silk fibroin bioadhesives do not show significant cytotoxicity in vitro compared with other bioadhesives. In conclusion, silk fibroin bioadhesive is promising as a new medical tool for more effective and efficient surgical wound closure, particularly in bone fractures.
Collapse
Affiliation(s)
- Woong-Jin Lee
- Department of Neurology, College of Medicine, Yonsei University, Seoul 03722, Korea; (W.-J.L.); (A.-Y.K.)
| | - Kyoungjoo Cho
- Department of Life Science, Kyonggi University, Suwon 16227, Korea;
| | - Aaron-Youngjae Kim
- Department of Neurology, College of Medicine, Yonsei University, Seoul 03722, Korea; (W.-J.L.); (A.-Y.K.)
- Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar
| | - Gyung-Whan Kim
- Department of Neurology, College of Medicine, Yonsei University, Seoul 03722, Korea; (W.-J.L.); (A.-Y.K.)
- Correspondence:
| |
Collapse
|
48
|
Ye H, Xian Y, Li S, Zhang C, Wu D. In situ forming injectable γ-poly(glutamic acid)/PEG adhesive hydrogels for hemorrhage control. Biomater Sci 2022; 10:4218-4227. [PMID: 35748430 DOI: 10.1039/d2bm00525e] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rapidly in situ forming adhesive hydrogels are promising candidates for efficient hemostasis due to their easy administration and minimal invasion. However, development of biocompatible and high-performance hemostatic hydrogels without any additional toxic agents remains a challenge. Herein, a series of novel injectable adhesive hydrogels based on N-hydroxysuccinimide (NHS) modified γ-poly(glutamic acid) (γPGA-NHS) and tetra-armed poly(ethylene glycol) amine (Tetra-PEG-NH2) were developed. Among all samples, PGA10-PEG15 and PGA10-PEG20 hydrogels with higher PEG contents exhibited rapid gelation time (<20 s), strong mechanical strength (compression modulus up to ∼75 kPa), good adhesive properties (∼15 kPa), and satisfactory burst pressure (∼18-20 kPa). As a result, PGA10-PEG15 and PGA10-PEG20 hydrogels showed a remarkable reduction in hemostasis time and blood loss compared with gauze and fibrin glue. More importantly, the PGA10-PEG20 hydrogel was also successfully used to seal femoral arterial trauma. Subcutaneous implantation experiments indicated a good biocompatibility of the hydrogels in vivo. All these results strongly support that the developed PGA-PEG hydrogels could serve as promising hemostatic agents in emergency and clinical situations.
Collapse
Affiliation(s)
- Huijun Ye
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District 518055, Shenzhen, Guangdong Province, Peoples Republic of China.
| | - Yiwen Xian
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District 518055, Shenzhen, Guangdong Province, Peoples Republic of China.
| | - Shurong Li
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District 518055, Shenzhen, Guangdong Province, Peoples Republic of China.
| | - Chong Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District 518055, Shenzhen, Guangdong Province, Peoples Republic of China.
| | - Decheng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District 518055, Shenzhen, Guangdong Province, Peoples Republic of China.
| |
Collapse
|
49
|
A double crosslinking adhesion mechanism for developing tough hydrogel adhesives. Acta Biomater 2022; 150:199-210. [PMID: 35870776 DOI: 10.1016/j.actbio.2022.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
Tough hydrogel adhesives that consist of a robust gel network and can strongly adhere to wet tissues have shown great promise as the next generation of bioadhesives. While a variety of chemistries can be utilized to construct the tough gel network, the covalent conjugation methods for tissue adhesion are still limited. Here we report, for the first time, the use of side product-free amine-thiolactone chemistry which initiates a double crosslinking adhesion mechanism to develop tough gel adhesives. Thiolactone groups can conjugate with tissue-surface amines via a ring-opening reaction. The resultant thiol end groups can be further crosslinked into disulfide linkages, enabling the formation of a robust and stable adhesion layer. The thiolactone-bearing tough hydrogel composed of methacrylate-modified gelatin, acrylic acid, and thiolacone acrylamide exhibited good biocompatibility and mechanical properties, and strong adhesion to various types of engineering solids and tissues. We also demonstrated its ability to function as a tissue sealant and drug depot. The novel adhesion mechanism will diversify future design of bioadhesives for hemostasis, drug delivery, tissue repair, and other applications. STATEMENT OF SIGNIFICANCE: Tough hydrogel adhesives with excellent tissue-adhesive and mechanical properties have demonstrated tremendous promise for hemostasis, tissue repair, and drug delivery applications. However, the covalent chemistry for tissue adhesion has been limited, which narrows the choice of materials for the design of bioadhesives and may pose a safety concern. Here, for the first time, we report the use of side product-free amine-thiolactone chemistry, which involves a double crosslinking adhesion mechanism, for developing tough hydrogel adhesives. We demonstrate that thiolactone-bearing tough hydrogels exhibit favorable biocompatibility and mechanical properties, and superior adhesion to both engineering solids and tissues. Our new adhesion technology will greatly facilitate future development of advanced bioadhesives for numerous biomedical applications.
Collapse
|
50
|
Liu K, Yang H, Huang G, Shi A, Lu Q, Wang S, Qiao W, Wang H, Ke M, Ding H, Li T, Zhang Y, Yu J, Ren B, Wang R, Wang K, Feng H, Suo Z, Tang J, Lv Y. Adhesive anastomosis for organ transplantation. Bioact Mater 2022; 13:260-268. [PMID: 35224307 PMCID: PMC8843981 DOI: 10.1016/j.bioactmat.2021.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 01/12/2023] Open
Abstract
The recent development of tough tissue adhesives has stimulated intense interests among material scientists and medical doctors. However, these adhesives have seldom been tested in clinically demanding surgeries. Here we demonstrate adhesive anastomosis in organ transplantation. Anastomosis is commonly conducted by dense sutures and takes a long time, during which all the vessels are occluded. Prolonged occlusion may damage organs and even cause death. We formulate a tough, biocompatible, bioabsorbable adhesive that can sustain tissue tension and pressurized flow. We expose the endothelial surface of vessels onto a gasket, press two endothelial surfaces to the adhesive using a pair of magnetic rings, and reopen the bloodstream immediately. The time for adhesive anastomosis is shortened compared to the time for sutured anastomosis. We have achieved adhesive anastomosis of a great vein in transplanting the liver of a pig. After the surgery, the adhesive is absorbed, the vein heals, and the pig lives for over one month.
Collapse
Affiliation(s)
- Kang Liu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Hang Yang
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China
- John A. Paulson School of Engineering and Applied Science, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, 02138, USA
| | - Gaobo Huang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Aihua Shi
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Qiang Lu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Shanpei Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Wei Qiao
- Hepatobiliary Surgery Department, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi Province, China
| | - Haohua Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Mengyun Ke
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Hongfan Ding
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Tao Li
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Yanchao Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Jiawei Yu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Bingyi Ren
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Rongfeng Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Kailing Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Hui Feng
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Zhigang Suo
- John A. Paulson School of Engineering and Applied Science, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, 02138, USA
| | - Jingda Tang
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| |
Collapse
|