1
|
Huang L, Huang Z, Zhang Y, Lin C, Zhao Z, Li R, Saw PE, Xu X. Advances in targeted delivery of mRNA into immune cells for enhanced cancer therapy. Theranostics 2024; 14:5528-5550. [PMID: 39310113 PMCID: PMC11413781 DOI: 10.7150/thno.93745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/06/2024] [Indexed: 09/25/2024] Open
Abstract
Messenger RNA (mRNA) therapy has been applied to the treatment of various human diseases including malignant tumors. Increasing evidences have shown that mRNA can enhance the efficacy of cancer immunotherapy by modulating the functions of immune cells and stimulating their activity. However, mRNA is a type of negatively charged biomacromolecules that are susceptible to serum nucleases and cannot readily cross the cell membrane. In the past few decades, various nanoparticles (NPs)-based delivery systems have been rationally designed and developed to facilitate the intracellular uptake and cytosolic delivery of mRNA. More importantly, by means of the specific recognition between the targeting ligands decorated on NP surface and receptors specifically expressed on immune cells, these mRNA delivery systems could be functionalized to target immune cells to further enhance the mRNA-based cancer immunotherapy. In this review, we briefly introduced the advancements of mRNA in cancer therapy, discussed the challenges faced by mRNA delivery, and systematically summarized the recent development in NPs-based mRNA delivery systems targeting various types of immune cells for cancer immunotherapy. The future development of NPs-mediated targeted mRNA delivery and their challenges in clinical translation are also discussed.
Collapse
Affiliation(s)
- Linzhuo Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Zhiquan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Yuxuan Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Chunhao Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Zixuan Zhao
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| |
Collapse
|
2
|
Li B, Ma L, Li X, Suleman Z, Liu C, Piskareva O, Liu M. Size matters: Altering antigen specific immune tolerance by tuning size of particles. J Control Release 2024; 373:823-836. [PMID: 39094633 DOI: 10.1016/j.jconrel.2024.07.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Precisely co-delivering antigens and immunosuppressants via nano/microcarriers to antigen-presenting cells (APCs) to induce antigen-specific immune tolerance represents a highly promising strategy for treating or preventing autoimmune diseases. The physicochemical properties of nano/microcarriers play a pivotal role in regulating immune function, with particle size and surface charge emerging as crucial parameters. In particular, very few studies have investigated micron-scale carriers of antigens. Herein, various nanoparticles and microparticles (NPs/MPs) with diverse particle sizes (ranging from 200 nm to 5 μm) and surface charges were prepared. Antigen peptides (MOG35-55) and immunosuppressants were encapsulated in these particles to induce antigen-specific immune tolerance. Two emulsifiers, PVA and PEMA, were employed to confer different surface charges to the NPs/MPs. The in vitro and in vivo studies demonstrated that NP/MP-PEMA could induce immune tolerance earlier than NP/MP-PVA and that NP/MP-PVA could induce immune tolerance more slowly and sustainably, indicating that highly negatively charged particles can induce immune tolerance more rapidly. Among the different sizes and charged particles tested, 200-nm-NP-PVA and 3-μm-MP-PEMA induced the greatest immune tolerance. In addition, the combination of NPs with MPs can further improve the induction of immune tolerance. In particular, combining 200 nm-NP-PVA with 3 μm-MP-PEMA or combining 500 nm-NP-PEMA with 3 μm-MP-PVA had optimal therapeutic efficacy. This study offers a new perspective for treating diseases by combining NPs with MPs and applying different emulsifiers to prepare NPs and MPs.
Collapse
Affiliation(s)
- Baisong Li
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| | - Lin Ma
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China; Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Xiwen Li
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, People's Republic of China
| | - Zainab Suleman
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| | - Changming Liu
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, People's Republic of China
| | - Olga Piskareva
- Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| | - Mi Liu
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China; Suzhou Ersheng Biopharmaceutical Co., Ltd, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
3
|
Saunders MN, Rival CM, Mandal M, Cramton K, Rad LM, Janczak KW, Williams LA, Angadi AR, O’Konek JJ, Shea LD, Erickson LD. Immunotherapy with biodegradable nanoparticles encapsulating the oligosaccharide galactose-alpha-1,3-galactose enhance immune tolerance against alpha-gal sensitization in a murine model of alpha-gal syndrome. FRONTIERS IN ALLERGY 2024; 5:1437523. [PMID: 39183976 PMCID: PMC11341473 DOI: 10.3389/falgy.2024.1437523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/11/2024] [Indexed: 08/27/2024] Open
Abstract
IgE antibodies against the mammalian oligosaccharide allergen galactose-α-1,3-galactose (αGal) can result in a severe allergic disease known as alpha-gal syndrome (AGS). This syndrome, acquired by tick bites that cause αGal sensitization, leads to allergic reactions after ingestion of non-primate mammalian meat and mammalian-derived products that contain αGal. Allergen-specific immunotherapies for this tickborne allergic syndrome are understudied, as are the immune mechanisms of allergic desensitization that induce clinical tolerance to αGal. Here, we reveal that prophylactic administration of αGal glycoprotein-containing nanoparticles to mice prior to tick protein-induced αGal IgE sensitization blunts the production of Th2 cytokines IL-4, IL-5, and IL-13 in an αGal-dependent manner. Furthermore, these effects correlated with suppressed production of αGal-specific IgE and hypersensitivity reactions, as measured by reduced basophil activation and histamine release and the systemic release of mast cell protease-1 (MCPT-1). Therapeutic administration of two doses of αGal-containing nanoparticles to mice sensitized to αGal had partial efficacy by reducing the Th2 cytokine production, αGal-specific IgE production, and MCPT-1 release without reducing basophil activation or histamine release. These data identify nanoparticles carrying encapsulated αGal glycoprotein as a potential strategy for augmenting αGal-specific immune tolerance and reveal diverse mechanisms by which αGal nanoparticles modify immune responses for established αGal-specific IgE-mediated allergic reactions.
Collapse
Affiliation(s)
- Michael N. Saunders
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, United States
| | - Claudia M. Rival
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Mahua Mandal
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Kayla Cramton
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Laila M. Rad
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Katarzyna W. Janczak
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, MI, United States
| | - Laura A. Williams
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amogh R. Angadi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Jessica J. O’Konek
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, MI, United States
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Loren D. Erickson
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
4
|
Pham JPA, Coronel MM. Unlocking Transplant Tolerance with Biomaterials. Adv Healthc Mater 2024:e2400965. [PMID: 38843866 DOI: 10.1002/adhm.202400965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Indexed: 07/04/2024]
Abstract
For patients suffering from organ failure due to injury or autoimmune disease, allogeneic organ transplantation with chronic immunosuppression is considered the god standard in terms of clinical treatment. However, the true "holy grail" of transplant immunology is operational tolerance, in which the recipient exhibits a sustained lack of alloreactivity toward unencountered antigen presented by the donor graft. This outcome is resultant from critical changes to the phenotype and genotype of the immune repertoire predicated by the activation of specific signaling pathways responsive to soluble and mechanosensitive cues. Biomaterials have emerged as a medium for interfacing with and reprogramming these endogenous pathways toward tolerance in precise, minimally invasive, and spatiotemporally defined manners. By viewing seminal and contemporary breakthroughs in transplant tolerance induction through the lens of biomaterials-mediated immunomodulation strategies-which include intrinsic material immunogenicity, the depot effect, graft coatings, induction and delivery of tolerogenic immune cells, biomimicry of tolerogenic immune cells, and in situ reprogramming-this review emphasizes the stunning diversity of approaches in the field and spotlights exciting future directions for research to come.
Collapse
Affiliation(s)
- John-Paul A Pham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - María M Coronel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
5
|
Andretto V, Rosso A, Zilio S, Sidi-Boumedine J, Boschetti G, Sankar S, Buffier M, Miele AE, Denis M, Choffour PA, Briançon S, Nancey S, Kryza D, Lollo G. Peptide-Based Hydrogel for Nanosystems Encapsulation: the Next Generation of Localized Delivery Systems for the Treatment of Intestinal Inflammations. Adv Healthc Mater 2024; 13:e2303280. [PMID: 38445812 DOI: 10.1002/adhm.202303280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/10/2024] [Indexed: 03/07/2024]
Abstract
Conventional therapies for inflammatory bowel diseases are mainly based on systemic treatments which cause side effects and toxicity over long-term administration. Nanoparticles appear as a valid alternative to allow a preferential accumulation in inflamed tissues following oral administration while reducing systemic drug exposure. To increase their residence time in the inflamed intestine, the nanoparticles are here associated with a hydrogel matrix. A bioadhesive peptide-based hydrogel is mixed with nanoemulsions, creating a hybrid lipid-polymer nanocomposite. Mucopenetrating nanoemulsions of 100 nm are embedded in a scaffold constituted of the self-assembling peptide hydrogel product PuraStat. The nanocomposite is fully characterized to study the impact of lipid particles in the hydrogel structure. Rheological measurements and circular dichroism analyses are performed to investigate the system's microstructure and physical properties. Biodistribution studies demonstrate that the nanocomposite acts as a depot in the stomach and facilitates the slow release of the nanoemulsions in the intestine. Efficacy studies upon oral administration of the drug-loaded system show the improvement of the disease score in a mouse model of intestinal inflammation.
Collapse
Affiliation(s)
- Valentina Andretto
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Annalisa Rosso
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
- SATT, Ouest Valorisation, 14C Rue du Patis Tatelin, Renne, 35708, France
| | - Jacqueline Sidi-Boumedine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Gilles Boschetti
- Department of Gastroenterology, Lyon Sud Hospital, Hospices Civil de Lyon and CIRI, Lyon, 69495, France
| | - Sharanya Sankar
- 3-D Matrix Europe SAS, Medical Technology, Caluire-et-Cuire, 69300, France
| | - Marie Buffier
- 3-D Matrix Europe SAS, Medical Technology, Caluire-et-Cuire, 69300, France
| | - Adriana Erica Miele
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ISA UMR 5280, 5 rue de la Doua, Villeurbanne, F-69100, France
- Dept Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, Rome, I-00185, Italy
| | - Morgane Denis
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
- Antineo, R&D Department, Lyon, 69008, France
| | | | - Stéphanie Briançon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Stéphane Nancey
- Department of Gastroenterology, Lyon Sud Hospital, Hospices Civil de Lyon and CIRI, Lyon, 69495, France
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
- Hospices Civils de Lyon, Lyon, 69437, France
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| |
Collapse
|
6
|
Noori E, Hashemi N, Rezaee D, Maleki R, Shams F, Kazemi B, Bandepour M, Rahimi F. Potential therapeutic options for celiac Disease: An update on Current evidence from Gluten-Free diet to cell therapy. Int Immunopharmacol 2024; 133:112020. [PMID: 38608449 DOI: 10.1016/j.intimp.2024.112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Celiac disease (CD) is a chronic autoimmune enteropathy and multifactorial disease caused by inappropriate immune responses to gluten in the small intestine. Weight loss, anemia, osteoporosis, arthritis, and hepatitis are among the extraintestinal manifestations of active CD. Currently, a strict lifelong gluten-free diet (GFD) is the only safe, effective, and available treatment. Despite the social burden, high expenses, and challenges of following a GFD, 2 to 5 percent of patients do not demonstrate clinical or pathophysiological improvement. Therefore, we need novel and alternative therapeutic approaches for patients. Innovative approaches encompass a broad spectrum of strategies, including enzymatic degradation of gluten, inhibition of intestinal permeability, modulation of the immune response, inhibition of the transglutaminase 2 (TG2) enzyme, blocking antigen presentation by HLA-DQ2/8, and induction of tolerance. Hence, this review is focused on comprehensive therapeutic strategies ranging from dietary approaches to novel methods such as antigen-based immunotherapy, cell and gene therapy, and the usage of nanoparticles for CD treatment.
Collapse
Affiliation(s)
- Effat Noori
- Department of Biotechnology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran; Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Maleki
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bahram Kazemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandepour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fardin Rahimi
- Department of Biotechnology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
7
|
Saunders MN, Rad LM, Williams LA, Landers JJ, Urie RR, Hocevar SE, Quiros M, Chiang MY, Angadi AR, Janczak KW, Bealer EJ, Crumley K, Benson OE, Griffin KV, Ross BC, Parkos CA, Nusrat A, Miller SD, Podojil JR, O'Konek JJ, Shea LD. Allergen-Encapsulating Nanoparticles Reprogram Pathogenic Allergen-Specific Th2 Cells to Suppress Food Allergy. Adv Healthc Mater 2024:e2400237. [PMID: 38691819 PMCID: PMC11527797 DOI: 10.1002/adhm.202400237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/10/2024] [Indexed: 05/03/2024]
Abstract
Food allergy is a prevalent, potentially deadly disease caused by inadvertent sensitization to benign food antigens. Pathogenic Th2 cells are a major driver for disease, and allergen-specific immunotherapies (AIT) aim to increase the allergen threshold required to elicit severe allergic symptoms. However, the majority of AIT approaches require lengthy treatments and convey transient disease suppression, likely due to insufficient targeting of pathogenic Th2 responses. Here, the ability of allergen-encapsulating nanoparticles to directly suppress pathogenic Th2 responses and reactivity is investigated in a mouse model of food allergy. NPs associate with pro-tolerogenic antigen presenting cells, provoking accumulation of antigen-specific, functionally suppressive regulatory T cells in the small intestine lamina propria. Two intravenous doses of allergen encapsulated in poly(lactide-co-glycolide) nanoparticles (NPs) significantly reduces oral food challenge (OFC)-induced anaphylaxis. Importantly, NP treatment alters the fates of pathogenic allergen-specific Th2 cells, reprogramming these cells toward CD25+FoxP3+ regulatory and CD73+FR4+ anergic phenotypes. NP-mediated reductions in the frequency of effector cells in the gut and mast cell degranulation following OFC are also demonstrated. These studies reveal mechanisms by which an allergen-encapsulating NP therapy and, more broadly, allergen-specific immunotherapies, can rapidly attenuate allergic responses by targeting pathogenic Th2 cells.
Collapse
Affiliation(s)
- Michael N Saunders
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Laila M Rad
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Laura A Williams
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey J Landers
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Russell R Urie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sarah E Hocevar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Miguel Quiros
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ming-Yi Chiang
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL, 60611, USA
| | - Amogh R Angadi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Katarzyna W Janczak
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elizabeth J Bealer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kelly Crumley
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Olivia E Benson
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kate V Griffin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brian C Ross
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Charles A Parkos
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL, 60611, USA
- Center for Human Immunobiology, Northwestern University, Chicago, IL, 60611, USA
- Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL, 60611, USA
- Center for Human Immunobiology, Northwestern University, Chicago, IL, 60611, USA
- Cour Pharmaceuticals Development Company, Northbrook, IL, 60077, USA
| | - Jessica J O'Konek
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
8
|
Winkler CW, Evans AB, Carmody AB, Lack JB, Woods TA, Peterson KE. C-C motif chemokine receptor 2 and 7 synergistically control inflammatory monocyte recruitment but the infecting virus dictates monocyte function in the brain. Commun Biol 2024; 7:494. [PMID: 38658802 PMCID: PMC11043336 DOI: 10.1038/s42003-024-06178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Inflammatory monocytes (iMO) are recruited from the bone marrow to the brain during viral encephalitis. C-C motif chemokine receptor (CCR) 2 deficiency substantially reduces iMO recruitment for most, but not all encephalitic viruses. Here we show CCR7 acts synergistically with CCR2 to control this process. Following Herpes simplex virus type-1 (HSV-1), or La Crosse virus (LACV) infection, we find iMO proportions are reduced by approximately half in either Ccr2 or Ccr7 knockout mice compared to control mice. However, Ccr2/Ccr7 double knockouts eliminate iMO recruitment following infection with either virus, indicating these receptors together control iMO recruitment. We also find that LACV induces a more robust iMO recruitment than HSV-1. However, unlike iMOs in HSV-1 infection, LACV-recruited iMOs do not influence neurological disease development. LACV-induced iMOs have higher expression of proinflammatory and proapoptotic but reduced mitotic, phagocytic and phagolysosomal transcripts compared to HSV-1-induced iMOs. Thus, virus-specific activation of iMOs affects their recruitment, activation, and function.
Collapse
MESH Headings
- Animals
- Receptors, CCR2/metabolism
- Receptors, CCR2/genetics
- Mice
- Monocytes/immunology
- Monocytes/metabolism
- Monocytes/virology
- Mice, Knockout
- Brain/virology
- Brain/metabolism
- Brain/immunology
- Herpesvirus 1, Human/physiology
- La Crosse virus/genetics
- La Crosse virus/physiology
- Receptors, CCR7/metabolism
- Receptors, CCR7/genetics
- Encephalitis, California/virology
- Encephalitis, California/genetics
- Encephalitis, California/metabolism
- Encephalitis, California/immunology
- Mice, Inbred C57BL
- Inflammation/metabolism
- Inflammation/virology
- Female
- Male
Collapse
Affiliation(s)
- Clayton W Winkler
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA.
| | - Alyssa B Evans
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Aaron B Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Justin B Lack
- NIAID Collaborative Bioinformatics Resource, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tyson A Woods
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Karin E Peterson
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| |
Collapse
|
9
|
Huang Q, Ge Y, He Y, Wu J, Tong Y, Shang H, Liu X, Ba X, Xia D, Peng E, Chen Z, Tang K. The Application of Nanoparticles Targeting Cancer-Associated Fibroblasts. Int J Nanomedicine 2024; 19:3333-3365. [PMID: 38617796 PMCID: PMC11012801 DOI: 10.2147/ijn.s447350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/23/2024] [Indexed: 04/16/2024] Open
Abstract
Cancer-associated fibroblasts (CAF) are the most abundant stromal cells in the tumor microenvironment (TME), especially in solid tumors. It has been confirmed that it can not only interact with tumor cells to promote cancer progression and metastasis, but also affect the infiltration and function of immune cells to induce chemotherapy and immunotherapy resistance. So, targeting CAF has been considered an important method in cancer treatment. The rapid development of nanotechnology provides a good perspective to improve the efficiency of targeting CAF. At present, more and more researches have focused on the application of nanoparticles (NPs) in targeting CAF. These studies explored the effects of different types of NPs on CAF and the multifunctional nanomedicines that can eliminate CAF are able to enhance the EPR effect which facilitate the anti-tumor effect of themselves. There also exist amounts of studies focusing on using NPs to inhibit the activation and function of CAF to improve the therapeutic efficacy. The application of NPs targeting CAF needs to be based on an understanding of CAF biology. Therefore, in this review, we first summarized the latest progress of CAF biology, then discussed the types of CAF-targeting NPs and the main strategies in the current. The aim is to elucidate the application of NPs in targeting CAF and provide new insights for engineering nanomedicine to enhance immune response in cancer treatment.
Collapse
Affiliation(s)
- Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Yue Ge
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| |
Collapse
|
10
|
Spiteri AG, Wishart CL, Pinget GV, Purohit SK, Macia L, King NJ, Niewold P. NK cell profiling in West Nile virus encephalitis reveals potential metabolic basis for functional inhibition. Immunol Cell Biol 2024; 102:280-291. [PMID: 38421112 DOI: 10.1111/imcb.12739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes important for viral defense. West Nile virus (WNV) infection of the central nervous system (CNS) causes marked recruitment of bone marrow (BM)-derived monocytes, T cells and NK cells, resulting in severe neuroinflammation and brain damage. Despite substantial numbers of NK cells in the CNS, their function and phenotype remain largely unexplored. Here, we demonstrate that NK cells mature from the BM to the brain, upregulate inhibitory receptors and show reduced cytokine production and degranulation, likely due to the increased expression of the inhibitory NK cell molecule, MHC-I. Intriguingly, this correlated with a reduction in metabolism associated with cytotoxicity in brain-infiltrating NK cells. Importantly, the degranulation and killing capability were restored in NK cells isolated from WNV-infected tissue, suggesting that WNV-induced NK cell inhibition occurs in the CNS. Overall, this work identifies a potential link between MHC-I inhibition of NK cells and metabolic reduction of their cytotoxicity during infection.
Collapse
Affiliation(s)
- Alanna G Spiteri
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Claire L Wishart
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Gabriela V Pinget
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Shivam K Purohit
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia
| | - Nicholas Jc King
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| | - Paula Niewold
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
11
|
Singh R, Kumawat M, Gogoi H, Madhyastha H, Lichtfouse E, Daima HK. Engineered Nanomaterials for Immunomodulation: A Review. ACS APPLIED BIO MATERIALS 2024; 7:727-751. [PMID: 38166376 DOI: 10.1021/acsabm.3c00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The immune system usually provides a defense against invading pathogenic microorganisms and any other particulate contaminants. Nonetheless, it has been recently reported that nanomaterials can evade the immune system and modulate immunological responses due to their unique physicochemical characteristics. Consequently, nanomaterial-based activation of immune components, i.e., neutrophils, macrophages, and other effector cells, may induce inflammation and alter the immune response. Here, it is essential to distinguish the acute and chronic modulations triggered by nanomaterials to determine the possible risks to human health. Nanomaterials size, shape, composition, surface charge, and deformability are factors controlling their uptake by immune cells and the resulting immune responses. The exterior corona of molecules adsorbed over nanomaterials surfaces also influences their immunological effects. Here, we review current nanoengineering trends for targeted immunomodulation with an emphasis on the design, safety, and potential toxicity of nanomaterials. First, we describe the characteristics of engineered nanomaterials that trigger immune responses. Then, the biocompatibility and immunotoxicity of nanoengineered particles are debated, because these factors influence applications. Finally, future nanomaterial developments in terms of surface modifications, synergistic approaches, and biomimetics are discussed.
Collapse
Affiliation(s)
| | - Mamta Kumawat
- Department of Biotechnology, School of Sciences, JECRC University, Sitapura Extension, Jaipur 303905, Rajasthan, India
| | - Himanshu Gogoi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, University of Miyazaki, Miyazaki 8891692, Japan
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University Xi'an, Shaanxi 710049, China
| | - Hemant Kumar Daima
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindari 305817, Ajmer, India
| |
Collapse
|
12
|
Saunders MN, Griffin KV, Kalashnikova I, Kolpek D, Smith DR, Saito E, Cummings BJ, Anderson AJ, Shea LD, Park J. Biodegradable nanoparticles targeting circulating immune cells reduce central and peripheral sensitization to alleviate neuropathic pain following spinal cord injury. Pain 2024; 165:92-101. [PMID: 37463227 PMCID: PMC10787809 DOI: 10.1097/j.pain.0000000000002989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/26/2023] [Indexed: 07/20/2023]
Abstract
ABSTRACT Neuropathic pain is a critical source of comorbidity following spinal cord injury (SCI) that can be exacerbated by immune-mediated pathologies in the central and peripheral nervous systems. In this article, we investigate whether drug-free, biodegradable, poly(lactide- co -glycolide) (PLG) nanoparticle treatment mitigates the development of post-SCI neuropathic pain in female mice. Our results show that acute treatment with PLG nanoparticles following thoracic SCI significantly reduces tactile and cold hypersensitivity scores in a durable fashion. Nanoparticles primarily reduce peripheral immune-mediated mechanisms of neuropathic pain, including neuropathic pain-associated gene transcript frequency, transient receptor potential ankyrin 1 nociceptor expression, and MCP-1 (CCL2) chemokine production in the subacute period after injury. Altered central neuropathic pain mechanisms during this period are limited to reduced innate immune cell cytokine expression. However, in the chronic phase of SCI, nanoparticle treatment induces changes in both central and peripheral neuropathic pain signaling, driving reductions in cytokine production and other immune-relevant markers. This research suggests that drug-free PLG nanoparticles reprogram peripheral proalgesic pathways subacutely after SCI to reduce neuropathic pain outcomes and improve chronic central pain signaling.
Collapse
Affiliation(s)
- Michael N Saunders
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Kate V Griffin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Irina Kalashnikova
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY USA
| | - Daniel Kolpek
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY USA
| | - Dominique R Smith
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Eiji Saito
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Brian J Cummings
- Department of Anatomy and Neurobiology, University of California, Irvine, CA USA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA USA
| | - Aileen J Anderson
- Department of Anatomy and Neurobiology, University of California, Irvine, CA USA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Jonghyuck Park
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY USA
| |
Collapse
|
13
|
Scotland BL, Shaw JR, Dharmaraj S, Caprio N, Cottingham AL, Joy Martín Lasola J, Sung JJ, Pearson RM. Cell and biomaterial delivery strategies to induce immune tolerance. Adv Drug Deliv Rev 2023; 203:115141. [PMID: 37980950 PMCID: PMC10842132 DOI: 10.1016/j.addr.2023.115141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The prevalence of immune-mediated disorders, including autoimmune conditions and allergies, is steadily increasing. However, current therapeutic approaches are often non-specific and do not address the underlying pathogenic condition, often resulting in impaired immunity and a state of generalized immunosuppression. The emergence of technologies capable of selectively inhibiting aberrant immune activation in a targeted, antigen (Ag)-specific manner by exploiting the body's intrinsic tolerance pathways, all without inducing adverse side effects, holds significant promise to enhance patient outcomes. In this review, we will describe the body's natural mechanisms of central and peripheral tolerance as well as innovative delivery strategies using cells and biomaterials targeting innate and adaptive immune cells to promote Ag-specific immune tolerance. Additionally, we will discuss the challenges and future opportunities that warrant consideration as we navigate the path toward clinical implementation of tolerogenic strategies to treat immune-mediated diseases.
Collapse
Affiliation(s)
- Brianna L Scotland
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Jacob R Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, United States
| | - Shruti Dharmaraj
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Nicholas Caprio
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Andrea L Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Jackline Joy Martín Lasola
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, United States
| | - Junsik J Sung
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, United States.
| |
Collapse
|
14
|
Tao Y, Lan X, Zhang Y, Fu C, Liu L, Cao F, Guo W. Biomimetic nanomedicines for precise atherosclerosis theranostics. Acta Pharm Sin B 2023; 13:4442-4460. [PMID: 37969739 PMCID: PMC10638499 DOI: 10.1016/j.apsb.2022.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis (AS) is a leading cause of the life-threatening cardiovascular disease (CVD), creating an urgent need for efficient, biocompatible therapeutics for diagnosis and treatment. Biomimetic nanomedicines (bNMs) are moving closer to fulfilling this need, pushing back the frontier of nano-based drug delivery systems design. This review seeks to outline how these nanomedicines (NMs) might work to diagnose and treat atherosclerosis, to trace the trajectory of their development to date and in the coming years, and to provide a foundation for further discussion about atherosclerotic theranostics.
Collapse
Affiliation(s)
- Ying Tao
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Biomedical Engineering & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xinmiao Lan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yang Zhang
- Department of Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Chenxing Fu
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lu Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Feng Cao
- Department of Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Biomedical Engineering & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
15
|
Camarca A, Rotondi Aufiero V, Mazzarella G. Role of Regulatory T Cells and Their Potential Therapeutic Applications in Celiac Disease. Int J Mol Sci 2023; 24:14434. [PMID: 37833882 PMCID: PMC10572745 DOI: 10.3390/ijms241914434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
Celiac disease (CeD) is a T-cell-mediated immune disease, in which gluten-derived peptides activate lamina propria effector CD4+ T cells. While this effector T cell subset produces proinflammatory cytokines, which cause substantial tissue injury in vivo, additional subsets of T cells exist with regulatory functions (Treg). These subsets include CD4+ type 1 regulatory T cells (Tr1) and CD4+ CD25+ T cells expressing the master transcription factor forkhead box P3 (Foxp3) that may have important implications in disease pathogenesis. In this review, we provide an overview of the current knowledge about the effects of immunomodulating cytokines on CeD inflammatory status. Moreover, we outline the main Treg cell populations found in CeD and how their regulatory activity could be influenced by the intestinal microenvironment. Finally, we discuss the Treg therapeutic potential for the development of alternative strategies to the gluten-free diet (GFD).
Collapse
Affiliation(s)
- Alessandra Camarca
- Institute of Food Sciences, National Research Council—CNR, 83100 Avellino, Italy (V.R.A.)
| | - Vera Rotondi Aufiero
- Institute of Food Sciences, National Research Council—CNR, 83100 Avellino, Italy (V.R.A.)
- Department of Medical Translational Sciences and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, 80138 Naples, Italy
| | - Giuseppe Mazzarella
- Institute of Food Sciences, National Research Council—CNR, 83100 Avellino, Italy (V.R.A.)
- Department of Medical Translational Sciences and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, 80138 Naples, Italy
| |
Collapse
|
16
|
Puri S, Mazza M, Roy G, England RM, Zhou L, Nourian S, Anand Subramony J. Evolution of nanomedicine formulations for targeted delivery and controlled release. Adv Drug Deliv Rev 2023; 200:114962. [PMID: 37321376 DOI: 10.1016/j.addr.2023.114962] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Nanotechnology research over the past several decades has been aimed primarily at improving the physicochemical properties of small molecules to produce druggable candidates as well as for tumor targeting of cytotoxic molecules. The recent focus on genomic medicine and the success of lipid nanoparticles for mRNA vaccines have provided additional impetus for the development of nanoparticle drug carriers for nucleic acid delivery, including siRNA, mRNA, DNA, and oligonucleotides, to create therapeutics that can modulate protein deregulation. Bioassays and characterizations, including trafficking assays, stability, and endosomal escape, are key to understanding the properties of these novel nanomedicine formats. We review historical nanomedicine platforms, characterization methodologies, challenges to their clinical translation, and key quality attributes for commercial translation with a view to their developability into a genomic medicine. New nanoparticle systems for immune targeting, as well as in vivo gene editing and in situ CAR therapy, are also highlighted as emerging areas.
Collapse
Affiliation(s)
- Sanyogitta Puri
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mariarosa Mazza
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| | - Gourgopal Roy
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Biologics Engineering, Oncology R&D, United States
| | - Richard M England
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Macclesfield, UK
| | - Liping Zhou
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Boston, MA, USA
| | - Saghar Nourian
- Emerging Innovations Unit, Discovery Sciences, Biopharmaceutical R&D , AstraZeneca, Gaithersburg, MD, USA
| | - J Anand Subramony
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Biologics Engineering, Oncology R&D, United States.
| |
Collapse
|
17
|
Spiteri AG, van Vreden C, Ashhurst TM, Niewold P, King NJC. Clodronate is not protective in lethal viral encephalitis despite substantially reducing inflammatory monocyte infiltration in the CNS. Front Immunol 2023; 14:1203561. [PMID: 37545511 PMCID: PMC10403146 DOI: 10.3389/fimmu.2023.1203561] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Bone marrow (BM)-derived monocytes induce inflammation and tissue damage in a range of pathologies. In particular, in a mouse model of West Nile virus (WNV) encephalitis (WNE), nitric oxide-producing, Ly6Chi inflammatory monocytes from the BM are recruited to the central nervous system (CNS) and contribute to lethal immune pathology. Reducing the migration of these cells into the CNS using monoclonal antibody blockade, immune-modifying particles or CSF-1R inhibitors reduces neuroinflammation, improving survival and/or clinical outcomes. Macrophages can also be targeted more broadly by administration of clodronate-encapsulated liposomes, which induce apoptosis in phagocytes. In this study, clodronate reduced the inflammatory infiltrate by 70% in WNE, however, surprisingly, this had no effect on disease outcome. More detailed analysis demonstrated a compensatory increase in neutrophils and enhanced activation status of microglia in the brain. In addition, we observed increased numbers of Ly6Chi BM monocytes with an increased proliferative capacity and expression of SCA-1 and CD16/32, potentially indicating output of immature cells from the BM. Once in the brain, these cells were more phagocytic and had a reduced expression of antigen-presenting molecules. Lastly, we show that clodronate also reduces non-myeloid cells in the spleen and BM, as well as ablating red blood cells and their proliferation. These factors likely impeded the therapeutic potential of clodronate in WNE. Thus, while clodronate provides an excellent system to deplete macrophages in the body, it has larger and broader effects on the phagocytic and non-phagocytic system, which must be considered in the interpretation of data.
Collapse
Affiliation(s)
- Alanna G. Spiteri
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Caryn van Vreden
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Thomas M. Ashhurst
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia
| | - Paula Niewold
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Nicholas J. C. King
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Chen C, Wang J, Liu C, Hu J. Cardiac resident macrophages: key regulatory mediators in the aftermath of myocardial infarction. Front Immunol 2023; 14:1207100. [PMID: 37457720 PMCID: PMC10348646 DOI: 10.3389/fimmu.2023.1207100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Acute myocardial infarction (MI) is a prevalent and highly fatal global disease. Despite significant reduction in mortality rates with standard treatment regimens, the risk of heart failure (HF) remains high, necessitating innovative approaches to protect cardiac function and prevent HF progression. Cardiac resident macrophages (cMacs) have emerged as key regulators of the pathophysiology following MI. cMacs are a heterogeneous population composed of subsets with different lineage origins and gene expression profiles. Several critical aspects of post-MI pathophysiology have been shown to be regulated by cMacs, including recruitment of peripheral immune cells, clearance and replacement of damaged myocardial cells. Furthermore, cMacs play a crucial role in regulating cardiac fibrosis, risk of arrhythmia, energy metabolism, as well as vascular and lymphatic remodeling. Given the multifaceted roles of cMacs in post-MI pathophysiology, targeting cMacs represents a promising therapeutic strategy. Finally, we discuss novel treatment strategies, including using nanocarriers to deliver drugs to cMacs or using cell therapies to introduce exogenous protective cMacs into the heart.
Collapse
|
19
|
Kalashnikova I, Cambell H, Kolpek D, Park J. Optimization and characterization of miRNA-129-5p-encapsulated poly (lactic- co-glycolic acid) nanoparticles to reprogram activated microglia. NANOSCALE ADVANCES 2023; 5:3439-3452. [PMID: 37383067 PMCID: PMC10295030 DOI: 10.1039/d3na00149k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/05/2023] [Indexed: 06/30/2023]
Abstract
Microglia have become a therapeutic target of many inflammation-mediated diseases in the central nervous system (CNS). Recently, microRNA (miRNA) has been proposed as an important regulator of immune responses. Specifically, miRNA-129-5p has been shown to play critical roles in the regulation of microglia activation. We have demonstrated that biodegradable poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) modulated innate immune cells and limited neuroinflammation after injury to the CNS. In this study, we optimized and characterized PLGA-based NPs for miRNA-129-5p delivery to utilize their synergistic immunomodulatory features for activated microglia modulation. A series of nanoformulations employing multiple excipients including epigallocatechin gallate (EGCG), spermidine (Sp), or polyethyleneimine (PEI) for miRNA-129-5p complexation and miRNA-129-5p conjugation to PLGA (PLGA-miR) were utilized. We characterized a total of six nanoformulations through physicochemical, biochemical, and molecular biological methods. In addition, we investigated the immunomodulatory effects of multiple nanoformulations. The data indicated that the immunomodulatory effects of nanoformulation, PLGA-miR with the excipient Sp (PLGA-miR+Sp) and PEI (PLGA-miR+PEI) were significant compared to other nanoformulations including naked PLGA-based NP. These nanoformulations promoted a sustained release of miRNA-129-5p and polarization of activated microglia into a more pro-regenerative phenotype. Moreover, they enhanced the expression of multiple regeneration-associated factors, while alleviating the expression of pro-inflammatory factors. Collectively, the proposed nanoformulations in this study highlight the promising therapeutic tools for synergistic immunomodulatory effects between PLGA-based NPs and miRNA-129-5p to modulate activated microglia which will have numerous applications for inflammation-derived diseases.
Collapse
Affiliation(s)
- Irina Kalashnikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 S. Limestone Lexington KY 40506 USA +1-859-257-1850
| | - Heather Cambell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 S. Limestone Lexington KY 40506 USA +1-859-257-1850
| | - Daniel Kolpek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 S. Limestone Lexington KY 40506 USA +1-859-257-1850
| | - Jonghyuck Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 S. Limestone Lexington KY 40506 USA +1-859-257-1850
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky Lexington KY USA
| |
Collapse
|
20
|
Moon S, Hong J, Go S, Kim BS. Immunomodulation for Tissue Repair and Regeneration. Tissue Eng Regen Med 2023; 20:389-409. [PMID: 36920675 PMCID: PMC10219918 DOI: 10.1007/s13770-023-00525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 03/16/2023] Open
Abstract
Various immune cells participate in repair and regeneration following tissue injury or damage, orchestrating tissue inflammation and regeneration processes. A deeper understanding of the immune system's involvement in tissue repair and regeneration is critical for the development of successful reparatory and regenerative strategies. Here we review recent technologies that facilitate cell-based and biomaterial-based modulation of the immune systems for tissue repair and regeneration. First, we summarize the roles of various types of immune cells in tissue repair. Second, we review the principle, examples, and limitations of regulatory T (Treg) cell-based therapy, a representative cell-based immunotherapy. Finally, we discuss biomaterial-based immunotherapy strategies that aim to modulate immune cells using various biomaterials for tissue repair and regeneration.
Collapse
Affiliation(s)
- Sangjun Moon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokhyeong Go
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Chemical Processes, Institute of Engineering Research, BioMAX, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
21
|
Banka AL, Guevara MV, Brannon ER, Nguyen NQ, Song S, Cady G, Pinsky DJ, Uhrich KE, Adili R, Holinstat M, Eniola-Adefeso O. Cargo-free particles divert neutrophil-platelet aggregates to reduce thromboinflammation. Nat Commun 2023; 14:2462. [PMID: 37117163 PMCID: PMC10144907 DOI: 10.1038/s41467-023-37990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 04/11/2023] [Indexed: 04/30/2023] Open
Abstract
The combination of inflammation and thrombosis is a hallmark of many cardiovascular diseases. Under such conditions, platelets are recruited to an area of inflammation by forming platelet-leukocyte aggregates via interaction of PSGL-1 on leukocytes and P-selectin on activated platelets, which can bind to the endothelium. While particulate drug carriers have been utilized to passively redirect leukocytes from areas of inflammation, the downstream impact of these carriers on platelet accumulation in thromboinflammatory conditions has yet to be studied. Here, we explore the ability of polymeric particles to divert platelets away from inflamed blood vessels both in vitro and in vivo. We find that untargeted and targeted micron-sized polymeric particles can successfully reduce platelet adhesion to an inflamed endothelial monolayer in vitro in blood flow systems and in vivo in a lipopolysaccharide-induced, systemic inflammation murine model. Our data represent initial work in developing cargo-free, anti-platelet therapeutics specifically for conditions of thromboinflammation.
Collapse
Affiliation(s)
- Alison L Banka
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - M Valentina Guevara
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Emma R Brannon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nhien Q Nguyen
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Shuang Song
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Gillian Cady
- Division of Cardiovascular Medicine, Samuel and Jean Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David J Pinsky
- Division of Cardiovascular Medicine, Samuel and Jean Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kathryn E Uhrich
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Reheman Adili
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael Holinstat
- Division of Cardiovascular Medicine, Samuel and Jean Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
22
|
Zhang F, Xu Z, Jolly KJ. Myeloid cell-mediated drug delivery: from nanomedicine to cell therapy. Adv Drug Deliv Rev 2023; 197:114827. [PMID: 37068659 DOI: 10.1016/j.addr.2023.114827] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
In the presence of tissue inflammation, injury, or cancer, myeloid cells are recruited to disease regions through a multi-step process involving myelopoiesis, chemotaxis, cell migration, and diapedesis. As an emerging drug delivery approach, cell-mediated drug delivery takes advantage of the cell recruitment process to enhance the active transport of therapeutic cargo to disease regions. In the past few decades, a variety of nano-engineering methods have emerged to enhance interactions of nanoparticles with cells of interest, which can be adapted for cell-mediated drug delivery. Moreover, the drug delivery field can benefit from the recent clinical success of cell-based therapies, which created cell-engineering methods to engineer circulating leukocytes as 'living drug delivery vehicles' to target diseased tissues. In this review, we first provide an overview of myeloid cell recruitment and discuss how various factors within this process may affect cell-mediated delivery. In the second part of this review article, we summarize the status quo of nano-engineering and cell-engineering approaches and discuss how these engineering approaches can be adapted for cell-mediated delivery. Finally, we discuss future directions of this field, pointing out key challenges in the clinical translation of cell-mediated drug delivery.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL, USA; Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Zijing Xu
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Kevon J Jolly
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
23
|
Spiteri AG, Wishart CL, Ni D, Viengkhou B, Macia L, Hofer MJ, King NJC. Temporal tracking of microglial and monocyte single-cell transcriptomics in lethal flavivirus infection. Acta Neuropathol Commun 2023; 11:60. [PMID: 37016414 PMCID: PMC10074823 DOI: 10.1186/s40478-023-01547-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/08/2023] [Indexed: 04/06/2023] Open
Abstract
As the resident parenchymal myeloid population in the central nervous system (CNS), microglia are strategically positioned to respond to neurotropic virus invasion and have been implicated in promoting both disease resolution and progression in the acute and post-infectious phase of virus encephalitis. In a mouse model of West Nile virus encephalitis (WNE), infection of the CNS results in recruitment of large numbers of peripheral immune cells into the brain, the majority being nitric oxide (NO)-producing Ly6Chi inflammatory monocyte-derived cells (MCs). In this model, these cells enhance immunopathology and mortality. However, the contribution of microglia to this response is currently undefined. Here we used a combination of experimental tools, including single-cell RNA sequencing (scRNA-seq), microglia and MC depletion reagents, high-dimensional spectral cytometry and computational algorithms to dissect the differential contribution of microglia and MCs to the anti-viral immune response in severe neuroinflammation seen in WNE. Intriguingly, analysis of scRNA-seq data revealed 6 unique microglia and 3 unique MC clusters that were predominantly timepoint-specific, demonstrating substantial transcriptional adaptation with disease progression over the course of WNE. While microglia and MC adopted unique gene expression profiles, gene ontology enrichment analysis, coupled with microglia and MC depletion studies, demonstrated a role for both of these cells in the trafficking of peripheral immune cells into the CNS, T cell responses and viral clearance. Over the course of infection, microglia transitioned from a homeostatic to an anti-viral and then into an immune cell-recruiting phenotype. Conversely, MC adopted antigen-presenting, immune cell-recruiting and NO-producing phenotypes, which all had anti-viral function. Overall, this study defines for the first time the single-cell transcriptomic responses of microglia and MCs over the course of WNE, demonstrating both protective and pathological roles of these cells that could potentially be targeted for differential therapeutic intervention to dampen immune-mediated pathology, while maintaining viral clearance functions.
Collapse
Affiliation(s)
- Alanna G Spiteri
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Claire L Wishart
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Duan Ni
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Chronic Diseases Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Barney Viengkhou
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Laurence Macia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Chronic Diseases Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Markus J Hofer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Nicholas J C King
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia.
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
24
|
Wishart CL, Spiteri AG, Locatelli G, King NJC. Integrating transcriptomic datasets across neurological disease identifies unique myeloid subpopulations driving disease-specific signatures. Glia 2023; 71:904-925. [PMID: 36527260 PMCID: PMC10952672 DOI: 10.1002/glia.24314] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/06/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Microglia and bone marrow-derived monocytes are key elements of central nervous system (CNS) inflammation, both capable of enhancing and dampening immune-mediated pathology. However, the study-specific focus on individual cell types, disease models or experimental approaches has limited our ability to infer common and disease-specific responses. This meta-analysis integrates bulk and single-cell transcriptomic datasets of microglia and monocytes from disease models of autoimmunity, neurodegeneration, sterile injury, and infection to build a comprehensive resource connecting myeloid responses across CNS disease. We demonstrate that the bulk microglial and monocyte program is highly contingent on the disease environment, challenging the notion of a universal microglial disease signature. Integration of six single-cell RNA-sequencing datasets revealed that these disease-specific signatures are likely driven by differing proportions of unique myeloid subpopulations that were individually expanded in different disease settings. These subsets were functionally-defined as neurodegeneration-associated, inflammatory, interferon-responsive, phagocytic, antigen-presenting, and lipopolysaccharide-responsive cellular states, revealing a core set of myeloid responses at the single-cell level that are conserved across CNS pathology. Showcasing the predictive and practical value of this resource, we performed differential expression analysis on microglia and monocytes across disease and identified Cd81 as a new neuroinflammatory-stable gene that accurately identified microglia and distinguished them from monocyte-derived cells across all experimental models at both the bulk and single-cell level. Together, this resource dissects the influence of disease environment on shared immune response programmes to build a unified perspective of myeloid behavior across CNS pathology.
Collapse
Affiliation(s)
- Claire L. Wishart
- Infection, Immunity, Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Sydney Cytometry FacilityThe University of Sydney and Centenary InstituteSydneyNew South WalesAustralia
- Ramaciotti Facility for Human Systems BiologyThe University of Sydney and Centenary InstituteSydneyNew South WalesAustralia
- Charles Perkins CentreThe University of SydneySydneyNew South WalesAustralia
| | - Alanna G. Spiteri
- Infection, Immunity, Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Sydney Cytometry FacilityThe University of Sydney and Centenary InstituteSydneyNew South WalesAustralia
- Ramaciotti Facility for Human Systems BiologyThe University of Sydney and Centenary InstituteSydneyNew South WalesAustralia
- Charles Perkins CentreThe University of SydneySydneyNew South WalesAustralia
| | - Giuseppe Locatelli
- Theodor Kocher InstituteUniversity of BernBernSwitzerland
- Novartis Institutes for BioMedical ResearchNovartisBaselSwitzerland
| | - Nicholas J. C. King
- Infection, Immunity, Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Sydney Cytometry FacilityThe University of Sydney and Centenary InstituteSydneyNew South WalesAustralia
- Ramaciotti Facility for Human Systems BiologyThe University of Sydney and Centenary InstituteSydneyNew South WalesAustralia
- Charles Perkins CentreThe University of SydneySydneyNew South WalesAustralia
- Sydney Institute for Infectious Diseases, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- The University of Sydney Nano Institute, Faculty of ScienceThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
25
|
Dal-Fabbro R, Swanson WB, Capalbo LC, Sasaki H, Bottino MC. Next-generation biomaterials for dental pulp tissue immunomodulation. Dent Mater 2023; 39:333-349. [PMID: 36894414 PMCID: PMC11034777 DOI: 10.1016/j.dental.2023.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
OBJECTIVES The current standard for treating irreversibly damaged dental pulp is root canal therapy, which involves complete removal and debridement of the pulp space and filling with an inert biomaterial. A regenerative approach to treating diseased dental pulp may allow for complete healing of the native tooth structure and enhance the long-term outcome of once-necrotic teeth. The aim of this paper is, therefore, to highlight the current state of dental pulp tissue engineering and immunomodulatory biomaterials properties, identifying exciting opportunities for their synergy in developing next-generation biomaterials-driven technologies. METHODS An overview of the inflammatory process focusing on immune responses of the dental pulp, followed by periapical and periodontal tissue inflammation are elaborated. Then, the most recent advances in treating infection-induced inflammatory oral diseases, focusing on biocompatible materials with immunomodulatory properties are discussed. Of note, we highlight some of the most used modifications in biomaterials' surface, or content/drug incorporation focused on immunomodulation based on an extensive literature search over the last decade. RESULTS We provide the readers with a critical summary of recent advances in immunomodulation related to pulpal, periapical, and periodontal diseases while bringing light to tissue engineering strategies focusing on healing and regenerating multiple tissue types. SIGNIFICANCE Significant advances have been made in developing biomaterials that take advantage of the host's immune system to guide a specific regenerative outcome. Biomaterials that efficiently and predictably modulate cells in the dental pulp complex hold significant clinical promise for improving standards of care compared to endodontic root canal therapy.
Collapse
Affiliation(s)
- Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | - W Benton Swanson
- Department of Biologic and Materials Science, Division of Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | - Leticia C Capalbo
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hajime Sasaki
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Liu Z, Fan Z, Liu J, Wang J, Xu M, Li X, Xu Y, Lu Y, Han C, Zhang Z. Melittin-Carrying Nanoparticle Suppress T Cell-Driven Immunity in a Murine Allergic Dermatitis Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204184. [PMID: 36638280 PMCID: PMC9982551 DOI: 10.1002/advs.202204184] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Allergic contact dermatitis (ACD) and atopic dermatitis (AD) are the most common human skin disorders. Although corticosteroids have been widely used to treat ACD and AD, the side effects of corticosteroids encourage researchers to explore new immunoregulatory treatments. Here, an immunomodulatory approach based on lipid nanoparticles carrying α-helical configurational melittin (α-melittin-NP) is developed to overcome T cell-mediated inflammatory reactions in an oxazolone (OXA)-induced contact hypersensitivity mouse model and OXA-induced AD-like mouse model. Intradermal injection of low-dose α-melittin-NPs prevents the skin damage caused by melittin administration alone and efficiently targeted lymph nodes. Importantly, melittin and α-melittin-NPs restrain RelB activity in dendritic cells (DCs) and further suppresses dendritic cell activation and maturation in lymph nodes. Furthermore, low-dose α-melittin-NPs leads to relief of antigen recognition-induced effector T cell arrest in the dermis and inhibited allergen-specific T cell proliferation and activation. Significantly, this approach successfully controls Th1-type cytokine release in the ACD model and restricts Th2-type cytokine and IgE release in the AD-like model. Overall, intradermal delivery of low-dose α-melittin-NPs efficiently elicits immunosuppression against T cell-mediated immune reactions, providing a promising therapeutic strategy for treating skin disorders not restricted to the lesion region.
Collapse
Affiliation(s)
- Zheng Liu
- Britton Chance Center and MOE Key Laboratory for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Zhan Fan
- Britton Chance Center and MOE Key Laboratory for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Jinxin Liu
- Britton Chance Center and MOE Key Laboratory for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Jialu Wang
- Britton Chance Center and MOE Key Laboratory for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Mengli Xu
- Britton Chance Center and MOE Key Laboratory for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Xinlin Li
- Britton Chance Center and MOE Key Laboratory for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Yilun Xu
- School of Biomedical EngineeringHainan UniversityHaikouHainan570228China
| | - Yafang Lu
- Britton Chance Center and MOE Key Laboratory for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Chenlu Han
- Britton Chance Center and MOE Key Laboratory for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Zhihong Zhang
- Britton Chance Center and MOE Key Laboratory for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
- School of Biomedical EngineeringHainan UniversityHaikouHainan570228China
| |
Collapse
|
27
|
Effects of Diamond Nanoparticles Immobilisation on the Surface of Yeast Cells: A Phenomenological Study. FERMENTATION 2023. [DOI: 10.3390/fermentation9020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
An interesting development of biotechnology has linked microbial cell immobilisation with nanoparticles. The main task of our research was to reveal the possible influences of differently electrically charged diamond nanoparticles upon physiological characteristics of the yeast Saccharomyces cerevisiae. It was revealed that the adverse impact of these nanoparticles can manifest not only against prokaryotes, but also against eukaryotic yeast cells. However, the obtained results also indicate that it is possible to reduce and, most likely, completely eliminate the dangerous effects of nanoparticles to cells by using special physical approaches. Comparison of non-arylated and arylated nanoparticles showed that in terms of changes in the physiological activity of cells, which are important to biotechnology and biomedicine, the selection of certain nanoparticles (non-arylated or arylated) may be necessary in each specific case, depending on the purpose of their use.
Collapse
|
28
|
Gammon JM, Carey ST, Saxena V, Eppler HB, Tsai SJ, Paluskievicz C, Xiong Y, Li L, Ackun-Farmmer M, Tostanoski LH, Gosselin EA, Yanes AA, Zeng X, Oakes RS, Bromberg JS, Jewell CM. Engineering the lymph node environment promotes antigen-specific efficacy in type 1 diabetes and islet transplantation. Nat Commun 2023; 14:681. [PMID: 36755035 PMCID: PMC9908900 DOI: 10.1038/s41467-023-36225-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Antigen-specific tolerance is a key goal of experimental immunotherapies for autoimmune disease and allograft rejection. This outcome could selectively inhibit detrimental inflammatory immune responses without compromising functional protective immunity. A major challenge facing antigen-specific immunotherapies is ineffective control over immune signal targeting and integration, limiting efficacy and causing systemic non-specific suppression. Here we use intra-lymph node injection of diffusion-limited degradable microparticles that encapsulate self-antigens with the immunomodulatory small molecule, rapamycin. We show this strategy potently inhibits disease during pre-clinical type 1 diabetes and allogenic islet transplantation. Antigen and rapamycin are required for maximal efficacy, and tolerance is accompanied by expansion of antigen-specific regulatory T cells in treated and untreated lymph nodes. The antigen-specific tolerance in type 1 diabetes is systemic but avoids non-specific immune suppression. Further, microparticle treatment results in the development of tolerogenic structural microdomains in lymph nodes. Finally, these local structural and functional changes in lymph nodes promote memory markers among antigen-specific regulatory T cells, and tolerance that is durable. This work supports intra-lymph node injection of tolerogenic microparticles as a powerful platform to promote antigen-dependent efficacy in type 1 diabetes and allogenic islet transplantation.
Collapse
Affiliation(s)
- Joshua M Gammon
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Sean T Carey
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Vikas Saxena
- Department of Surgery, University of Maryland Medical School, 22 S. Greene Street, S8B06, Baltimore, MD, 21201, USA
| | - Haleigh B Eppler
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Shannon J Tsai
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Christina Paluskievicz
- Department of Surgery, University of Maryland Medical School, 22 S. Greene Street, S8B06, Baltimore, MD, 21201, USA
| | - Yanbao Xiong
- Department of Surgery, University of Maryland Medical School, 22 S. Greene Street, S8B06, Baltimore, MD, 21201, USA
| | - Lushen Li
- Department of Surgery, University of Maryland Medical School, 22 S. Greene Street, S8B06, Baltimore, MD, 21201, USA
| | - Marian Ackun-Farmmer
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Lisa H Tostanoski
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Emily A Gosselin
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Alexis A Yanes
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Xiangbin Zeng
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Robert S Oakes
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD, 21201, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland Medical School, 22 S. Greene Street, S8B06, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West 30 Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA.
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA.
- Department of Surgery, University of Maryland Medical School, 22 S. Greene Street, S8B06, Baltimore, MD, 21201, USA.
- Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West 30 Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA.
- Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD, 20742, USA.
- Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene Street, Suite N9E17, Baltimore, 32 MD 21201, USA.
| |
Collapse
|
29
|
Wang D, Zhao H, Xu C, Lin S, Guo Y. Enhancing neuroprotective effect of aminosalicylic acid-grafted chitosan electrospun fibers for spinal cord injury. Mater Today Bio 2023; 18:100529. [PMID: 36686034 PMCID: PMC9850028 DOI: 10.1016/j.mtbio.2022.100529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
The hyperinflammation microenvironment after spinal cord injury (SCI) remains a great challenge for neural regeneration. Methylprednisolone has been used to reduce the inflammatory response after SCI, but it is controversial due to side effects associated with off-specific targeting effects. In this study, we synthesized in situ 5-ASA grafted chitosan electrospun fibers (ASA-EF) with excellent injectable and self-healing properties to reprogram nerve cells via displaying biological distribution, gene expression, and functional changes. With the support of ASA-EF, the downregulation of inflammatory cytokines expression and the upregulation of anti-inflammatory and regenerative gene expression were found in vitro studies. Moreover, ASA-EF administration polarized macrophages toward proregenerative phenotypes in the injured lesion, and significantly reduced cavity area. In addition, ASA-EF administration increased myelination and regenerating axons and improved motor function (score of 5 versus 2 for SCI group). These results illustrate that the neuroprotective effect of this artificial nanoplatform will facilitate the clinical treatment of traumatic-related diseases via forming a recycled microenvironment that supports regeneration and functional recovery. These particles may be applied to trauma and potential other inflammatory diseases.
Collapse
Affiliation(s)
- Dahao Wang
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China,Key Laboratory of Medical Tissue Engineering, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Haosen Zhao
- Key Laboratory of Medical Tissue Engineering, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Chang Xu
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Sen Lin
- Key Laboratory of Medical Tissue Engineering, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China,Corresponding author.
| | - Yue Guo
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China,Key Laboratory of Medical Tissue Engineering, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China,Corresponding author. Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
30
|
Villar J, Cros A, De Juan A, Alaoui L, Bonte PE, Lau CM, Tiniakou I, Reizis B, Segura E. ETV3 and ETV6 enable monocyte differentiation into dendritic cells by repressing macrophage fate commitment. Nat Immunol 2023; 24:84-95. [PMID: 36543959 PMCID: PMC9810530 DOI: 10.1038/s41590-022-01374-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/31/2022] [Indexed: 12/24/2022]
Abstract
In inflamed tissues, monocytes differentiate into macrophages (mo-Macs) or dendritic cells (mo-DCs). In chronic nonresolving inflammation, mo-DCs are major drivers of pathogenic events. Manipulating monocyte differentiation would therefore be an attractive therapeutic strategy. However, how the balance of mo-DC versus mo-Mac fate commitment is regulated is not clear. In the present study, we show that the transcriptional repressors ETV3 and ETV6 control human monocyte differentiation into mo-DCs. ETV3 and ETV6 inhibit interferon (IFN)-stimulated genes; however, their action on monocyte differentiation is independent of IFN signaling. Instead, we find that ETV3 and ETV6 directly repress mo-Mac development by controlling MAFB expression. Mice deficient for Etv6 in monocytes have spontaneous expression of IFN-stimulated genes, confirming that Etv6 regulates IFN responses in vivo. Furthermore, these mice have impaired mo-DC differentiation during inflammation and reduced pathology in an experimental autoimmune encephalomyelitis model. These findings provide information about the molecular control of monocyte fate decision and identify ETV6 as a therapeutic target to redirect monocyte differentiation in inflammatory disorders.
Collapse
Affiliation(s)
- Javiera Villar
- Institut Curie, PSL Research University, INSERM, U932,, Paris, France
| | - Adeline Cros
- Institut Curie, PSL Research University, INSERM, U932,, Paris, France
| | - Alba De Juan
- Institut Curie, PSL Research University, INSERM, U932,, Paris, France
| | - Lamine Alaoui
- Institut Curie, PSL Research University, INSERM, U932,, Paris, France
| | | | - Colleen M Lau
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ioanna Tiniakou
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Elodie Segura
- Institut Curie, PSL Research University, INSERM, U932,, Paris, France.
| |
Collapse
|
31
|
Song C, Xu J, Gao C, Zhang W, Fang X, Shang Y. Nanomaterials targeting macrophages in sepsis: A promising approach for sepsis management. Front Immunol 2022; 13:1026173. [PMID: 36569932 PMCID: PMC9780679 DOI: 10.3389/fimmu.2022.1026173] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction resulting from dysregulated host responses to infection. Macrophages play significant roles in host against pathogens and the immunopathogenesis of sepsis, such as phagocytosis of pathogens, secretion of cytokines, and phenotype reprogramming. However, the rapid progression of sepsis impairs macrophage function, and conventional antimicrobial and supportive treatment are not sufficient to restore dysregulated macrophages roles. Nanoparticles own unique physicochemical properties, surface functions, localized surface plasmon resonance phenomenon, passive targeting in vivo, good biocompatibility and biodegradability, are accessible for biomedical applications. Once into the body, NPs are recognized by host immune system. Macrophages are phagocytes in innate immunity dedicated to the recognition of foreign substances, including nanoparticles, with which an immune response subsequently occurs. Various design strategies, such as surface functionalization, have been implemented to manipulate the recognition of nanoparticles by monocytes/macrophages, and engulfed by them to regulate their function in sepsis, compensating for the shortcomings of sepsis traditional methods. The review summarizes the mechanism of nanomaterials targeting macrophages and recent advances in nanomedicine targeting macrophages in sepsis, which provides good insight for exploring macrophage-based nano-management in sepsis.
Collapse
|
32
|
Raghani RM, Ma JA, Zhang Y, Orbach SM, Wang J, Zeinali M, Nagrath S, Kakade S, Xu Q, Podojil JR, Murthy T, Elhofy A, Jeruss JS, Shea LD. Myeloid cell reprogramming alleviates immunosuppression and promotes clearance of metastatic lesions. Front Oncol 2022; 12:1039993. [PMID: 36479083 PMCID: PMC9720131 DOI: 10.3389/fonc.2022.1039993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
Suppressive myeloid cells, including monocyte and neutrophil populations, play a vital role in the metastatic cascade and can inhibit the anti-tumor function of cytotoxic T-cells. Cargo-free polymeric nanoparticles (NPs) have been shown to modulate innate immune cell responses in multiple pathologies of aberrant inflammation. Here, we test the hypothesis that the intravenous administration of drug-free NPs in the 4T1 murine model of metastatic triple-negative breast cancer can reduce metastatic colonization of the lungs, the primary metastatic site, by targeting the pro-tumor immune cell mediators of metastatic progression. In vivo studies demonstrated that NP administration reprograms the immune milieu of the lungs and reduces pulmonary metastases. Single-cell RNA sequencing of the lungs revealed that intravenous NP administration alters myeloid cell phenotype and function, skewing populations toward inflammatory, anti-tumor phenotypes and away from pro-tumor phenotypes. Monocytes, neutrophils, and dendritic cells in the lungs of NP-treated mice upregulate gene pathways associated with IFN signaling, TNF signaling, and antigen presentation. In a T-cell deficient model, NP administration failed to abrogate pulmonary metastases, implicating the vital role of T-cells in the NP-mediated reduction of metastases. NPs delivered as an adjuvant therapy, following surgical resection of the primary tumor, led to clearance of established pulmonary metastases in all treated mice. Collectively, these results demonstrate that the in vivo administration of cargo-free NPs reprograms myeloid cell responses at the lungs and promotes the clearance of pulmonary metastases in a method of action dependent on functional T-cells.
Collapse
Affiliation(s)
- Ravi M. Raghani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Jeffrey A. Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Yining Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Sophia M. Orbach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Jing Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Mina Zeinali
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Sandeep Kakade
- COUR Pharmaceuticals Development Co, Inc, Northbrook, IL, United States
| | - Qichen Xu
- COUR Pharmaceuticals Development Co, Inc, Northbrook, IL, United States
| | - Joseph R. Podojil
- COUR Pharmaceuticals Development Co, Inc, Northbrook, IL, United States
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Tushar Murthy
- COUR Pharmaceuticals Development Co, Inc, Northbrook, IL, United States
| | - Adam Elhofy
- COUR Pharmaceuticals Development Co, Inc, Northbrook, IL, United States
| | - Jacqueline S. Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Lonnie D. Shea,
| |
Collapse
|
33
|
Elahi E, Ali ME, Zimmermann J, Getts DR, Müller M, Lamprecht A. Immune Modifying Effect of Drug Free Biodegradable Nanoparticles on Disease Course of Experimental Autoimmune Neuritis. Pharmaceutics 2022; 14:2410. [PMID: 36365228 PMCID: PMC9695102 DOI: 10.3390/pharmaceutics14112410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2023] Open
Abstract
Guillain-Barre syndrome (GBS) is an autoimmune disease of demyelination and inflammation of peripheral nerves. Current treatments are limited to plasma exchange and intravenous immunoglobulins. Cargo-free nanoparticles (NPs) have been evaluated here for their therapeutic benefit on the disease course of experimental autoimmune neuritis (EAN), mimicking the human GBS. NPs prepared from poly-lactic co-glycolic acid (PLGA) with variable size and surface charge (i.e., 500 nm vs. 130 nm, polyvinyl alcohol (PVA) vs. sodium cholate), were intravenously administered in before- or early-onset treatment schedules in a rat EAN model. NP treatment mitigated distinctly the clinical severity of EAN as compared to the P2-peptide control group (P2) in all treatments and reduced the trafficking of inflammatory monocytes at inflammatory loci and diverted them towards the spleen. Therapeutic treatment with NPs reduced the expression of proinflammatory markers (CD68 (P2: 34.8 ± 6.6 vs. NP: 11.9 ± 2.3), IL-1β (P2: 18.3 ± 0.8 vs. NP: 5.8 ± 2.2), TNF-α (P2: 23.5 ± 3.7 vs. NP: 8.3 ± 1.7) and elevated the expression levels of anti-inflammatory markers CD163 (P2: 19.7 ± 3.0 vs. NP: 41.1 ± 6.5; all for NP-PVA of 130 nm; relative to healthy control). These results highlight the therapeutic potential of such cargo-free NPs in treating EAN, which would be easily translatable into clinical use due to their well-known low-toxicity profile.
Collapse
Affiliation(s)
- Ehsan Elahi
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, 53127 Bonn, Germany
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk Str. 3, 53121 Bonn, Germany
| | - Mohamed Ehab Ali
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk Str. 3, 53121 Bonn, Germany
| | - Julian Zimmermann
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, 53127 Bonn, Germany
| | - Daniel R. Getts
- Myeloid Therapeutics, 300 Technology Sq., Suite 203, Cambridge, MA 02139, USA
| | - Marcus Müller
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, 53127 Bonn, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk Str. 3, 53121 Bonn, Germany
| |
Collapse
|
34
|
Lai C, Chadban SJ, Loh YW, Kwan TKT, Wang C, Singer J, Niewold P, Ling Z, Spiteri A, Getts D, King NJC, Wu H. Targeting inflammatory monocytes by immune-modifying nanoparticles prevents acute kidney allograft rejection. Kidney Int 2022; 102:1090-1102. [PMID: 35850291 DOI: 10.1016/j.kint.2022.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 05/22/2022] [Accepted: 06/17/2022] [Indexed: 12/31/2022]
Abstract
Inflammatory monocytes are a major component of the cellular infiltrate in acutely rejecting human kidney allografts. Since immune-modifying nanoparticles (IMPs) bind to circulating inflammatory monocytes via the specific scavenger receptor MARCO, causing diversion to the spleen and subsequent apoptosis, we investigated the therapeutic potential of negatively charged, 500-nm diameter polystyrene IMPs to prevent kidney allograft rejection. Kidney transplants were performed from BALB/c (H2d) to C57BL/6 (H2b) mice in two groups: controls (allo) and allo mice infused with IMPs. Groups were studied for 14 (acute rejection) or 100 (chronic rejection) days. Allo mice receiving IMPs exhibited superior survival and markedly less acute rejection, with better kidney function, less tubulitis, and diminished inflammatory cell density, cytokine and cytotoxic molecule expression in the allograft and lower titers of donor-specific IgG2c antibody in serum at day 14, as compared to allo mice. Cells isolated from kidneys from allo mice receiving IMPs showed reduced Ly6Chi monocytes, CD11b+ cells and NKT+ cells compared to allo mice. IMPs predominantly bound CD11b+ cells in the bloodstream and CD11b+ and CD11c-B220+ marginal zone B cells in the spleen. In the spleen, IMPs were found predominantly in red pulp, colocalized with MARCO and expression of cleaved caspase-3. At day 100, allo mice receiving IMPs exhibited reduced macrophage M1 responses but were not protected from chronic rejection. IMPs afforded significant protection from acute rejection, inhibiting both innate and adaptive alloimmunity. Thus, our current experimental findings, coupled with our earlier demonstration of IMP-induced protection in kidney ischemia-reperfusion injury, identify IMPs as a potential induction agent in kidney transplantation.
Collapse
Affiliation(s)
- Christina Lai
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia; Department of Renal Medicine, Kidney Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Steven J Chadban
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia; Department of Renal Medicine, Kidney Centre, Royal Prince Alfred Hospital, Sydney, Australia.
| | - Yik Wen Loh
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Tony King-Tak Kwan
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Chuanmin Wang
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Julian Singer
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia; Department of Renal Medicine, Kidney Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Paula Niewold
- The Discipline of Pathology, the Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Zheng Ling
- The Discipline of Pathology, the Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Alanna Spiteri
- The Discipline of Pathology, the Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Daniel Getts
- The Discipline of Pathology, the Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Nicholas Jonathan Cole King
- The Discipline of Pathology, the Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The University of Sydney Nano Institute, University of Sydney, Sydney, Australia
| | - Huiling Wu
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia; Department of Renal Medicine, Kidney Centre, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
35
|
Triantafyllakou I, Clemente N, Khetavat RK, Dianzani U, Tselios T. Development of PLGA Nanoparticles with a Glycosylated Myelin Oligodendrocyte Glycoprotein Epitope (MOG 35-55) against Experimental Autoimmune Encephalomyelitis (EAE). Mol Pharm 2022; 19:3795-3805. [PMID: 36098508 DOI: 10.1021/acs.molpharmaceut.2c00277] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is one of the most common neurodegenerative diseases in young adults, with early clinical symptoms seen in the central nervous system (CNS) myelin sheaths due to an attack caused by the patient's immune system. Activation of the immune system is mediated by the induction of an antigen-specific immune response involving the interaction of multiple T-cell types with antigen-presenting cells (APCs), such as dendritic cells (DCs). Antigen-specific therapeutic approaches focus on immune cells and autoantigens involved in the onset of disease symptoms, which are the main components of myelin proteins. The ability of such therapeutics to bind strongly to DCs could lead to immune system tolerance to the disease. Many modern approaches are based on peptide-based research, as, in recent years, they have been of particular interest in the development of new pharmaceuticals. The characteristics of peptides, such as short lifespan in the body and rapid hydrolysis, can be overcome by their entrapment in nanospheres, providing better pharmacokinetics and bioavailability. The present study describes the development of polymeric nanoparticles with encapsulated myelin peptide analogues involved in the development of MS, along with their biological evaluation as inhibitors of MS development and progression. In particular, particles of poly(lactic-co-glycolic) acid (PLGA) loaded with peptides based on mouse/rat (rMOG) epitope 35-55 of myelin oligodendrocyte glycoprotein (MOG) conjugated with saccharide residues were developed. More specifically, the MOG35-55 peptide was conjugated with glucosamine to promote the interaction with mannose receptors (MRs) expressed by DCs. In addition, a study of slow release (dissolution) and quantification on both initially encapsulated peptide and daily release in saline in vitro was performed, followed by an evaluation of in vivo activity of the formulation on mouse experimental autoimmune encephalomyelitis (EAE), an animal model of MS, using both prophylactic and therapeutic protocols. Our results showed that the therapeutic protocol was effective in reducing EAE clinical scores and inflammation of the central nervous system and could be an alternative and promising approach against MS inducing tolerance against the disease.
Collapse
Affiliation(s)
- Iro Triantafyllakou
- Department of Chemistry, University of Patras, 26504 Rion Patras, Greece.,Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Nausicaa Clemente
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Ravi Kumar Khetavat
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Theodore Tselios
- Department of Chemistry, University of Patras, 26504 Rion Patras, Greece
| |
Collapse
|
36
|
Podojil JR, Cogswell AC, Chiang MY, Eaton V, Ifergan I, Neef T, Xu D, Meghani KA, Yu Y, Orbach SM, Murthy T, Boyne MT, Elhofy A, Shea LD, Meeks JJ, Miller SD. Biodegradable nanoparticles induce cGAS/STING-dependent reprogramming of myeloid cells to promote tumor immunotherapy. Front Immunol 2022; 13:887649. [PMID: 36059473 PMCID: PMC9433741 DOI: 10.3389/fimmu.2022.887649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/29/2022] [Indexed: 11/27/2022] Open
Abstract
Cancer treatment utilizing infusion therapies to enhance the patient's own immune response against the tumor have shown significant functionality in a small subpopulation of patients. Additionally, advances have been made in the utilization of nanotechnology for the treatment of disease. We have previously reported the potent effects of 3-4 daily intravenous infusions of immune modifying poly(lactic-co-glycolic acid) (PLGA) nanoparticles (IMPs; named ONP-302) for the amelioration of acute inflammatory diseases by targeting myeloid cells. The present studies describe a novel use for ONP-302, employing an altered dosing scheme to reprogram myeloid cells resulting in significant enhancement of tumor immunity. ONP-302 infusion decreased tumor growth via the activation of the cGAS/STING pathway within myeloid cells, and subsequently increased NK cell activation via an IL-15-dependent mechanism. Additionally, ONP-302 treatment increased PD-1/PD-L1 expression in the tumor microenvironment, thereby allowing for functionality of anti-PD-1 for treatment in the B16.F10 melanoma tumor model which is normally unresponsive to monotherapy with anti-PD-1. These findings indicate that ONP-302 allows for tumor control via reprogramming myeloid cells via activation of the STING/IL-15/NK cell mechanism, as well as increasing anti-PD-1 response rates.
Collapse
Affiliation(s)
- Joseph R. Podojil
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,Cour Pharmaceutical Development Company, Northbrook, IL, United States
| | - Andrew C. Cogswell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ming-Yi Chiang
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Valerie Eaton
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Igal Ifergan
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Tobias Neef
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dan Xu
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Khyati A. Meghani
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yanni Yu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sophia M. Orbach
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Tushar Murthy
- Cour Pharmaceutical Development Company, Northbrook, IL, United States
| | - Michael T. Boyne
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,Cour Pharmaceutical Development Company, Northbrook, IL, United States
| | - Adam Elhofy
- Cour Pharmaceutical Development Company, Northbrook, IL, United States
| | - Lonnie D. Shea
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Joshua J. Meeks
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,*Correspondence: Stephen D. Miller,
| |
Collapse
|
37
|
Pinget GV, Tan JK, Ni D, Taitz J, Daien CI, Mielle J, Moore RJ, Stanley D, Simpson S, King NJC, Macia L. Dysbiosis in imiquimod-induced psoriasis alters gut immunity and exacerbates colitis development. Cell Rep 2022; 40:111191. [PMID: 35977500 DOI: 10.1016/j.celrep.2022.111191] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/30/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Psoriasis has long been associated with inflammatory bowel disease (IBD); however, a causal link is yet to be established. Here, we demonstrate that imiquimod-induced psoriasis (IMQ-pso) in mice disrupts gut homeostasis, characterized by increased proportions of colonic CX3CR1hi macrophages, altered cytokine production, and bacterial dysbiosis. Gut microbiota from these mice produce higher levels of succinate, which induce de novo proliferation of CX3CR1hi macrophages ex vivo, while disrupted gut homeostasis primes IMQ-pso mice for more severe colitis with dextran sulfate sodium (DSS) challenge. These results demonstrate that changes in the gut environment in psoriasis lead to greater susceptibility to IBD in mice, suggesting a two-hit requirement, that is, psoriasis-induced altered gut homeostasis and a secondary environmental challenge. This may explain the increased prevalence of IBD in patients with psoriasis.
Collapse
Affiliation(s)
- Gabriela Veronica Pinget
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Chronic Diseases Theme, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jian Kai Tan
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Chronic Diseases Theme, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Duan Ni
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Chronic Diseases Theme, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jemma Taitz
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Chronic Diseases Theme, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Claire Immediato Daien
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; CHRU Montpellier, University of Montpellier & INSERM U1046, CNRS UMR, PhyMedExp, 9214 Montpellier, France
| | - Julie Mielle
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; CHRU Montpellier, University of Montpellier & INSERM U1046, CNRS UMR, PhyMedExp, 9214 Montpellier, France
| | | | - Dragana Stanley
- School of Health, Medical and Applied Sciences, Central Queensland University, Kawana, QLD 4701, Australia
| | - Stephen Simpson
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nicholas Jonathan Cole King
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Chronic Diseases Theme, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Laurence Macia
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Chronic Diseases Theme, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Sydney Cytometry, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
38
|
Kelley WJ, Wragg KM, Chen J, Murthy T, Xu Q, Boyne MT, Podojil JR, Elhofy A, Goldstein DR. Nanoparticles reduce monocytes within the lungs to improve outcomes after influenza virus infection in aged mice. JCI Insight 2022; 7:156320. [PMID: 35737459 PMCID: PMC9462478 DOI: 10.1172/jci.insight.156320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/21/2022] [Indexed: 01/26/2023] Open
Abstract
Older people exhibit dysregulated innate immunity to respiratory viral infections, including influenza and SARS-CoV-2, and show an increase in morbidity and mortality. Nanoparticles are a potential practical therapeutic that could reduce exaggerated innate immune responses within the lungs during viral infection. However, such therapeutics have not been examined for effectiveness during respiratory viral infection, particular in aged hosts. Here, we employed a lethal model of influenza viral infection in vulnerable aged mice to examine the ability of biodegradable, cargo-free nanoparticles, designated ONP-302, to resolve innate immune dysfunction and improve outcomes during infection. We administered ONP-302 via i.v. injection to aged mice at day 3 after infection, when the hyperinflammatory innate immune response was already established. During infection, we found that ONP-302 treatment reduced the numbers of inflammatory monocytes within the lungs and increased their number in both the liver and spleen, without impacting viral clearance. Importantly, cargo-free nanoparticles reduced lung damage, reduced histological lung inflammation, and improved gas exchange and, ultimately, the clinical outcomes in influenza-infected aged mice. In conclusion, ONP-302 improves outcomes in influenza-infected aged mice. Thus, our study provides information concerning a practical therapeutic, which, if translated clinically, could improve disease outcomes for vulnerable older patients suffering from respiratory viral infections.
Collapse
Affiliation(s)
| | | | - Judy Chen
- Department of Internal Medicine and,Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Tushar Murthy
- Research and Development, COUR Pharmaceuticals Development Company Inc., Northbrook, Illinois, USA
| | - Qichen Xu
- Research and Development, COUR Pharmaceuticals Development Company Inc., Northbrook, Illinois, USA
| | - Michael T. Boyne
- Research and Development, COUR Pharmaceuticals Development Company Inc., Northbrook, Illinois, USA
| | - Joseph R. Podojil
- Research and Development, COUR Pharmaceuticals Development Company Inc., Northbrook, Illinois, USA
| | - Adam Elhofy
- Research and Development, COUR Pharmaceuticals Development Company Inc., Northbrook, Illinois, USA
| | - Daniel R. Goldstein
- Department of Internal Medicine and,Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Microbiology and Immunology, University of Michigan, Michigan, USA
| |
Collapse
|
39
|
Mohamed JMM, Mahajan N, El-Sherbiny M, Khan S, Al-Serwi RH, Attia MA, Altriny QA, Arbab AH. Ameliorated Stomach Specific Floating Microspheres for Emerging Health Pathologies Using Polymeric Konjac Glucomannan-Based Domperidone. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3670946. [PMID: 35872840 PMCID: PMC9300317 DOI: 10.1155/2022/3670946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The goal of this study was to use polymeric konjac glucomannan (KGM), Kollidon VA 64 (KVA64), and glutaraldehyde to ameliorate stomach specific floating microspheres (SSFM) using domperidone (DoN) to increase in vivo bioavailability and emerging health pathologies. The SSFM were made using the emulsion cross-linking process, and the polymer was chosen based on its ability to get cross-linked. The thermodynamic parameters were used to determine the AL classes of phase solubility curves using ideal complexes produced with KVA64. The optimal interaction constants at 25 and 37°C were found to be 116.14 and 128.05 M-1, respectively. The prepared SSFM had an average particle size (PS) of 163.71 ± 2.26 mm and a drug content of 96.66 ± 0.32%. It can be determined from in vitro drug release experiments that drug release is good in terms of regulated drug release after 12 h (92.62 ± 2.43%). The SSFMs were approximately sphere-shaped and had smooth surfaces, according to the morphological data. SSFMs were investigated using Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and differential scanning calorimetry (DSC), and no chemical structural changes were identified. The SSFMs produces a considerable gastric residence time with optimal DoN release and absorption in stomach fluid, and the mean residence time (17.36 ± 1.4 h) and t 1/2 (10.47 ± 0.6 h) were considerably longer (p < 0.05) than those obtained following i.v. treatment (MRT = 8.42 ± 1.2 h; t 1/2 = 9.07 ± 0.7 h). The SSFMs maintained good physical stability for three months when stored at room temperature.
Collapse
Affiliation(s)
| | - Nikita Mahajan
- Institute of Pharmaceutical Education and Research, Borgaon (Meghe), Wardha, Maharashtra 442 001, India
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shagufta Khan
- Institute of Pharmaceutical Education and Research, Borgaon (Meghe), Wardha, Maharashtra 442 001, India
| | - Rasha Hamed Al-Serwi
- Department of Basic Medical Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed A. Attia
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Qamar Alsayed Altriny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Ahmed H. Arbab
- Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Al-Qasr Ave, Khartoum 11111, Sudan
| |
Collapse
|
40
|
Pathological features-based targeted delivery strategies in IBD therapy: A mini review. Biomed Pharmacother 2022; 151:113079. [PMID: 35605297 DOI: 10.1016/j.biopha.2022.113079] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is characterized by a complex and dysfunctional immune response. Currently, IBD is incurable, and patients with IBD often need to take drugs for life. However, as the traditional systemic treatment strategies for IBD do not target the site of inflammation, only limited efficacy can be obtained from them. Moreover, the possibility of serious side effects stemming from the systemic administration or redistribution of drugs in the body is high when conventional drug formulations are used. Therefore, a targeted drug-delivery system for IBD should be considered. Based on the pathological features related to IBD, the new targeted drug-delivery strategy can directly transfer the drug to the inflammatory site, thus enhancing the accumulation of the drugs and reducing side effects. This article reviews the pathological features of IBD and the application of the IBD-targeted delivery system based on different pathological features, and discusses the challenges and new prospects in this field.
Collapse
|
41
|
Moreno-Mendieta S, Guillén D, Vasquez-Martínez N, Hernández-Pando R, Sánchez S, Rodríguez-Sanoja R. Understanding the Phagocytosis of Particles: the Key for Rational Design of Vaccines and Therapeutics. Pharm Res 2022; 39:1823-1849. [PMID: 35739369 DOI: 10.1007/s11095-022-03301-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/23/2022] [Indexed: 12/17/2022]
Abstract
A robust comprehension of phagocytosis is crucial for understanding its importance in innate immunity. A detailed description of the molecular mechanisms that lead to the uptake and clearance of endogenous and exogenous particles has helped elucidate the role of phagocytosis in health and infectious or autoimmune diseases. Furthermore, knowledge about this cellular process is important for the rational design and development of particulate systems for the administration of vaccines or therapeutics. Depending on these specific applications and the required biological responses, particles must be designed to encourage or avoid their phagocytosis and prolong their circulation time. Functionalization with specific polymers or ligands and changes in the size, shape, or surface of particles have important effects on their recognition and internalization by professional and nonprofessional phagocytes and have a major influence on their fate and safety. Here, we review the phagocytosis of particles intended to be used as carrier or delivery systems for vaccines or therapeutics, the cells involved in this process depending on the route of administration, and the strategies employed to obtain the most desirable particles for each application through the manipulation of their physicochemical characteristics. We also offer a view of the challenges and potential opportunities in the field and give some recommendations that we expect will enable the development of improved approaches for the rational design of these systems.
Collapse
Affiliation(s)
- Silvia Moreno-Mendieta
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México, Mexico. .,Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico.
| | - Daniel Guillén
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Nathaly Vasquez-Martínez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico.,Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Delegación Tlalpan, Ciudad de México, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Romina Rodríguez-Sanoja
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico.
| |
Collapse
|
42
|
Wicks EE, Ran KR, Kim JE, Xu R, Lee RP, Jackson CM. The Translational Potential of Microglia and Monocyte-Derived Macrophages in Ischemic Stroke. Front Immunol 2022; 13:897022. [PMID: 35795678 PMCID: PMC9251541 DOI: 10.3389/fimmu.2022.897022] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The immune response to ischemic stroke is an area of study that is at the forefront of stroke research and presents promising new avenues for treatment development. Upon cerebral vessel occlusion, the innate immune system is activated by danger-associated molecular signals from stressed and dying neurons. Microglia, an immune cell population within the central nervous system which phagocytose cell debris and modulate the immune response via cytokine signaling, are the first cell population to become activated. Soon after, monocytes arrive from the peripheral immune system, differentiate into macrophages, and further aid in the immune response. Upon activation, both microglia and monocyte-derived macrophages are capable of polarizing into phenotypes which can either promote or attenuate the inflammatory response. Phenotypes which promote the inflammatory response are hypothesized to increase neuronal damage and impair recovery of neuronal function during the later phases of ischemic stroke. Therefore, modulating neuroimmune cells to adopt an anti-inflammatory response post ischemic stroke is an area of current research interest and potential treatment development. In this review, we outline the biology of microglia and monocyte-derived macrophages, further explain their roles in the acute, subacute, and chronic stages of ischemic stroke, and highlight current treatment development efforts which target these cells in the context of ischemic stroke.
Collapse
|
43
|
Silberberg E, Filep JG, Ariel A. Weathering the Storm: Harnessing the Resolution of Inflammation to Limit COVID-19 Pathogenesis. Front Immunol 2022; 13:863449. [PMID: 35615359 PMCID: PMC9124752 DOI: 10.3389/fimmu.2022.863449] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
The resolution of inflammation is a temporally and spatially coordinated process that in its innate manifestations, primarily involves neutrophils and macrophages. The shutdown of infection or injury-induced acute inflammation requires termination of neutrophil accumulation within the affected sites, neutrophil demise, and clearance by phagocytes (efferocytosis), such as tissue-resident and monocyte-derived macrophages. This must be followed by macrophage reprogramming from the inflammatory to reparative and consequently resolution-promoting phenotypes and the production of resolution-promoting lipid and protein mediators that limit responses in various cell types and promote tissue repair and return to homeostatic architecture and function. Recent studies suggest that these events, and macrophage reprogramming to pro-resolving phenotypes in particular, are not only important in the acute setting, but might be paramount in limiting chronic inflammation, autoimmunity, and various uncontrolled cytokine-driven pathologies. The SARS-CoV-2 (COVID-19) pandemic has caused a worldwide health and economic crisis. Severe COVID-19 cases that lead to high morbidity are tightly associated with an exuberant cytokine storm that seems to trigger shock-like pathologies, leading to vascular and multiorgan failures. In other cases, the cytokine storm can lead to diffuse alveolar damage that results in acute respiratory distress syndrome (ARDS) and lung failure. Here, we address recent advances on effectors in the resolution of inflammation and discuss how pro-resolution mechanisms with particular emphasis on macrophage reprogramming, might be harnessed to limit the universal COVID-19 health threat.
Collapse
Affiliation(s)
- Esther Silberberg
- Department of Biology and Human Biology, University of Haifa, Haifa, Israel
| | - János G. Filep
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
- *Correspondence: Amiram Ariel, ; János G. Filep,
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, Israel
- *Correspondence: Amiram Ariel, ; János G. Filep,
| |
Collapse
|
44
|
Jan Z, Mollazadeh S, Abnous K, Taghdisi SM, Danesh A, Ramezani M, Alibolandi M. Targeted Delivery Platforms for the Treatment of Multiple Sclerosis. Mol Pharm 2022; 19:1952-1976. [PMID: 35501974 DOI: 10.1021/acs.molpharmaceut.1c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative condition of the central nervous system (CNS) that presents with varying levels of disability in patients, displaying the significance of timely and effective management of this complication. Though several treatments have been developed to protect nerves, comprehensive improvement of MS is still considered an essential bottleneck. Therefore, the development of innovative treatment methods for MS is one of the core research areas. In this regard, nanoscale platforms can offer practical and ideal approaches to the diagnosis and treatment of various diseases, especially immunological disorders such as MS, to improve the effectiveness of conventional therapies. It should be noted that there is significant progress in the development of neuroprotective strategies through the implementation of various nanoparticles, monoclonal antibodies, peptides, and aptamers. In this study, we summarize different particle systems as well as targeted therapies, such as antibodies, peptides, nucleic acids, and engineered cells for the treatment of MS, and discuss their potential in the treatment of MS in the preclinical and clinical stages. Future advances in targeted delivery of medical supplies may offer new strategies for complete recovery as well as practical treatment of progressive forms of MS.
Collapse
Affiliation(s)
- Zeinab Jan
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Science, 7GJP+VPQ Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, F82C+G8V Bojnurd, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Abolghasem Danesh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Science, 7GJP+VPQ Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| |
Collapse
|
45
|
Spiteri AG, Ni D, Ling ZL, Macia L, Campbell IL, Hofer MJ, King NJC. PLX5622 Reduces Disease Severity in Lethal CNS Infection by Off-Target Inhibition of Peripheral Inflammatory Monocyte Production. Front Immunol 2022; 13:851556. [PMID: 35401512 PMCID: PMC8990748 DOI: 10.3389/fimmu.2022.851556] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
PLX5622 is a CSF-1R inhibitor and microglia-depleting reagent, widely used to investigate the biology of this central nervous system (CNS)-resident myeloid population, but the indirect or off-target effects of this agent remain largely unexplored. In a murine model of severe neuroinflammation induced by West Nile virus encephalitis (WNE), we showed PLX5622 efficiently depleted both microglia and a sub-population of border-associated macrophages in the CNS. However, PLX5622 also significantly depleted mature Ly6Chi monocytes in the bone marrow (BM), inhibiting their proliferation and lethal recruitment into the infected brain, reducing neuroinflammation and clinical disease scores. Notably, in addition, BM dendritic cell subsets, plasmacytoid DC and classical DC, were depleted differentially in infected and uninfected mice. Confirming its protective effect in WNE, cessation of PLX5622 treatment exacerbated disease scores and was associated with robust repopulation of microglia, rebound BM monopoiesis and markedly increased inflammatory monocyte infiltration into the CNS. Monoclonal anti-CSF-1R antibody blockade late in WNE also impeded BM monocyte proliferation and recruitment to the brain, suggesting that the protective effect of PLX5622 is via the inhibition of CSF-1R, rather than other kinase targets. Importantly, BrdU incorporation in PLX5622-treated mice, suggest remaining microglia proliferate independently of CSF-1 in WNE. Our study uncovers significantly broader effects of PLX5622 on the myeloid lineage beyond microglia depletion, advising caution in the interpretation of PLX5622 data as microglia-specific. However, this work also strikingly demonstrates the unexpected therapeutic potential of this molecule in CNS viral infection, as well as other monocyte-mediated diseases.
Collapse
Affiliation(s)
- Alanna G Spiteri
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Duan Ni
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Chronic Diseases Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Zheng Lung Ling
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Laurence Macia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Chronic Diseases Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Iain L Campbell
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Markus J Hofer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas J C King
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
46
|
Casey LM, Hughes KR, Saunders MN, Miller SD, Pearson RM, Shea LD. Mechanistic contributions of Kupffer cells and liver sinusoidal endothelial cells in nanoparticle-induced antigen-specific immune tolerance. Biomaterials 2022; 283:121457. [PMID: 35286851 PMCID: PMC11225973 DOI: 10.1016/j.biomaterials.2022.121457] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/10/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023]
Abstract
The intravenous delivery of disease-relevant antigens (Ag) by polymeric nanoparticles (NP-Ags) has demonstrated Ag-specific immune tolerance in autoimmune and allergic disorders as well as allogeneic transplant rejection. NP-Ags are observed to distribute to the spleen, which has an established role in the induction of immune tolerance. However, studies have shown that the spleen is dispensable for NP-Ag-induced tolerance, suggesting significant contributions from other immunological sites. Here, we investigated the tolerogenic contributions of Kupffer cells (KCs) and liver sinusoidal endothelial cells (LSECs) to NP-Ag-induced tolerance in a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Intravenously delivered Ag-conjugated poly(lactide-co-glycolide) NPs (PLG-Ag) distributed largely to the liver, where they associated with both KCs and LSECs. This distribution was accompanied by CD4 T cell accumulation, clonal deletion, and PD-L1 expression by KCs and LSECs. Ex vivo co-cultures of PLG-Ag-treated KCs or LSECs with Ag-specific CD4 T cells resulted in PGE2 and IL-10 or PGE2 secretion, respectively. KC depletion and adoptive transfer experiments demonstrated that KCs were sufficient, but not necessary, to mediate PLG-Ag-induced tolerance in EAE. The durability of PLG-Ag-induced tolerance in the absence of KCs may be attributed to the distribution of PLG-Ags to LSECs, which demonstrated similar levels of PD-L1, PGE2, and T cell stimulatory ability. Collectively, these studies provide mechanistic support for the role of liver KCs and LSECs in Ag-specific tolerance for a biomaterial platform that is currently being evaluated in clinical trials.
Collapse
Affiliation(s)
- Liam M Casey
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Avenue, Ann Arbor, MI, 48105, USA
| | - Kevin R Hughes
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA
| | - Michael N Saunders
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA; Medical Scientist Training Program, University of Michigan, 1135 Catherine St., 2965 Taubman Health Sciences Library, Ann Arbor, MI, 48109, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 E. Chicago Avenue, Chicago, IL, 60611, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD, 21201, USA.
| | - Lonnie D Shea
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Avenue, Ann Arbor, MI, 48105, USA; Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
47
|
Sharma P, Vijaykumar A, Raghavan JV, Rananaware SR, Alakesh A, Bodele J, Rehman JU, Shukla S, Wagde V, Nadig S, Chakrabarti S, Visweswariah SS, Nandi D, Gopal B, Jhunjhunwala S. Particle uptake driven phagocytosis in macrophages and neutrophils enhances bacterial clearance. J Control Release 2022; 343:131-141. [PMID: 35085696 PMCID: PMC7615985 DOI: 10.1016/j.jconrel.2022.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022]
Abstract
Humans are exposed to numerous synthetic foreign particles in the form of drug delivery systems and diagnostic agents. Specialized immune cells (phagocytes) clear these particles by phagocytosing and attempting to degrade them. The process of recognition and internalization of the particles may trigger changes in the function of phagocytes. Some of these changes, especially the ability of a particle-loaded phagocyte to take up and neutralize pathogens, remains poorly studied. Herein, we demonstrate that the uptake of non-stimulatory cargo-free particles enhances the phagocytic ability of monocytes, macrophages and neutrophils. The enhancement in phagocytic ability was independent of particle properties, such as size or the base material constituting the particle. Additionally, we show that the increased phagocytosis was not a result of cellular activation or cellular heterogeneity but was driven by changes in cell membrane fluidity and cellular compliance. A consequence of the enhanced phagocytic activity was that particulate-laden immune cells neutralize Escherichia coli (E. coli) faster in culture. Moreover, when administered in mice as a prophylactic, particulates enable faster clearance of E. coli and Staphylococcus epidermidis. Together, we demonstrate that the process of uptake induces cellular changes that favor additional phagocytic events. This study provides insights into using non-stimulatory cargo-free particles to engineer immune cell functions for applications involving faster clearance of phagocytosable abiotic and biotic material.
Collapse
Affiliation(s)
- Preeti Sharma
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Anjali Vijaykumar
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | | | | | - Alakesh Alakesh
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Janhavi Bodele
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Junaid Ur Rehman
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Shivani Shukla
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Virta Wagde
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Savitha Nadig
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Sveta Chakrabarti
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | | | - Siddharth Jhunjhunwala
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
48
|
Nikdouz A, Namarvari N, Ghasemi Shayan R, Hosseini A. Comprehensive comparison of theranostic nanoparticles in breast cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2022; 11:1-27. [PMID: 35350450 PMCID: PMC8938632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Breast cancer is the most frequently happening cancer and the most typical cancer death among females. Despite the crucial progress in breast cancer therapy by using Chemotherapeutic agents, most anti-tumor drugs are insufficient to destroy exactly the breast cancer cells. The noble method of drug delivery using nanoparticles presents a great promise in treating breast cancer most sufficiently and with the least harm to the patient. Nanoparticles, with their spectacular characteristics, help overcome problems of this kind. Unique features of nanoparticles such as biocompatibility, bioavailability, biodegradability, sustained release, and, most importantly, site-specific targeting enables the Chemotherapeutic agents loaded in nanocarriers to differentiate between healthy tissue and cancer cells, leading to low toxicity and fewer side effects. This review focuses on evaluating and comprehending nanoparticles utilized in breast cancer treatment, including the most recent data related to the drugs they can carry. Also, this review covers all information related to each nanocarrier, such as their significant characteristics, subtypes, advantages, disadvantages, and chemical modification methods with recently published studies. This article discusses over 21 nanoparticles used in breast cancer treatment with possible chemical ligands such as monoclonal antibodies and chemotherapeutic agents binding to these carriers. These different nanoparticles and the unique features of each nanocarrier give the researchers all the data and insight to develop and use the brand-new drug delivery system.
Collapse
Affiliation(s)
- Amin Nikdouz
- Department of Medical Laboratory, Tabriz University of Medical Sciences5166/15731 Tabriz, Iran
| | - Nima Namarvari
- Department of Medical Laboratory, Tabriz University of Medical Sciences5166/15731 Tabriz, Iran
| | - Ramin Ghasemi Shayan
- Department of Radiology, Tabriz University of Medical Sciences5166/15731 Tabriz, Iran
| | - Arezoo Hosseini
- Department of Immunology, Tabriz University of Medical Sciences5166/15731 Tabriz, Iran
| |
Collapse
|
49
|
Xu D, Bhattacharyya S, Wang W, Ifergan I, Chiang Wong MYA, Procissi D, Yeldandi A, Bale S, Marangoni RG, Horbinski C, Miller SD, Varga J. PLG nanoparticles target fibroblasts and MARCO+ monocytes to reverse multi-organ fibrosis. JCI Insight 2022; 7:151037. [PMID: 35104243 PMCID: PMC8983146 DOI: 10.1172/jci.insight.151037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic, multisystem orphan disease with a highly variable clinical course, high mortality rate, and a poorly understood complex pathogenesis. We have identified an important role for a subpopulation of monocytes and macrophages characterized by surface expression of the scavenger receptor macrophage receptor with collagenous structure (MARCO) in chronic inflammation and fibrosis in SSc and in preclinical disease models. We show that MARCO+ monocytes and macrophages accumulate in lesional skin and lung in topographic proximity to activated myofibroblasts in patients with SSc and in the bleomycin-induced mouse model of SSc. Short-term treatment of mice with a potentially novel nanoparticle, poly(lactic-co-glycolic) acid (PLG), which is composed of a carboxylated, FDA-approved, biodegradable polymer and modulates activation and trafficking of MARCO+ inflammatory monocytes, markedly attenuated bleomycin-induced skin and lung inflammation and fibrosis. Mechanistically, in isolated cells in culture, PLG nanoparticles inhibited TGF-dependent fibrotic responses in vitro. Thus, MARCO+ monocytes are potent effector cells of skin and lung fibrosis and can be therapeutically targeted in SSc using PLG nanoparticles.
Collapse
Affiliation(s)
- Dan Xu
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Swati Bhattacharyya
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Wenxia Wang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Igal Ifergan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Ming-Yi Alice Chiang Wong
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Daniele Procissi
- Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Anjana Yeldandi
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Swarna Bale
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Roberta G Marangoni
- Northwestern Scleroderma Program, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Craig Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - John Varga
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| |
Collapse
|
50
|
Spiteri AG, Wishart CL, Pamphlett R, Locatelli G, King NJC. Microglia and monocytes in inflammatory CNS disease: integrating phenotype and function. Acta Neuropathol 2022; 143:179-224. [PMID: 34853891 PMCID: PMC8742818 DOI: 10.1007/s00401-021-02384-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023]
Abstract
In neurological diseases, the actions of microglia, the resident myeloid cells of the CNS parenchyma, may diverge from, or intersect with, those of recruited monocytes to drive immune-mediated pathology. However, defining the precise roles of each cell type has historically been impeded by the lack of discriminating markers and experimental systems capable of accurately identifying them. Our ability to distinguish microglia from monocytes in neuroinflammation has advanced with single-cell technologies, new markers and drugs that identify and deplete them, respectively. Nevertheless, the focus of individual studies on particular cell types, diseases or experimental approaches has limited our ability to connect phenotype and function more widely and across diverse CNS pathologies. Here, we critically review, tabulate and integrate the disease-specific functions and immune profiles of microglia and monocytes to provide a comprehensive atlas of myeloid responses in viral encephalitis, demyelination, neurodegeneration and ischemic injury. In emphasizing the differential roles of microglia and monocytes in the severe neuroinflammatory disease of viral encephalitis, we connect inflammatory pathways common to equally incapacitating diseases with less severe inflammation. We examine these findings in the context of human studies and highlight the benefits and inherent limitations of animal models that may impede or facilitate clinical translation. This enables us to highlight common and contrasting, non-redundant and often opposing roles of microglia and monocytes in disease that could be targeted therapeutically.
Collapse
|